遗传的基本规律与伴性遗传汇总

合集下载

复习遗传的基本规律+性别决定和伴性遗传

复习遗传的基本规律+性别决定和伴性遗传

判断显、隐性
1、有一匹家系不明的雄性黑马与若干纯 种枣红马,生出20匹枣红马和17匹黑马,
你认为其中的显性性状是( B )
A、枣红色 B、黑色 C、不分显隐性 D、无法确定
基因分离规律有关几率问题
幼儿黑蒙性白痴是一种严重的精神病,这是一 种常染色体上的隐性基因(d)遗传病,请分析 回答: (1)如果两个正常的双亲生了一个患此病的女 儿和一正常的儿子,那么这个儿子携带此隐性
5、再确定致病基因的位置 常染色体显性遗传病
6、典型实例判定法
常染色体隐性遗传病: 白化病、先天性聋哑、 苯丙酮尿症
常染色体显性遗传病: 多指病、并指病、 软骨发育不全症
伴X隐性遗传病: 红绿色盲、血友病、 进行性肌营养不良
伴X显性遗传病: 抗维生素D佝偻病
小 结 一般常染色体、性染色体遗传的确定
父亲 PpBb
配子 PB pB Pb pb
母亲
×
ppBb
pB
pb
PpBB多指不聋 PpBb多指不聋
ppBB五指不聋 ppBb五指不聋
PpBb多指不聋 Ppbb多指、聋
ppBb五指不聋 ppbb五指、聋
子女的表现型:多指不聋:多指、聋:五指不聋:五指、聋 3 :1 : 3 : 1
多指:五指 = 1:1
A 1/9 B2/9
C5/9
D8/9
基因的自由组合规律
一、两对相对性状的遗传试验
P
×
黄圆
绿皱
F1
黄圆
×
F2
黄圆 黄 皱
个体数 315 108
绿圆 101
绿皱 32
9 :3 : 3 : 1
对每一对相对性状单独进行分析
粒 圆粒种子 315+101=416 形 皱粒种子 108+32=140

2020年高考生物易错集专题08遗传的基本规律和伴性遗传

2020年高考生物易错集专题08遗传的基本规律和伴性遗传

专题08 遗传的基本规律和伴性遗传1.孟德尔通过豌豆杂交实验揭示了遗传的基本定律。

下列相关叙述不正确的是( )A.F1自交时,雌、雄配子结合的机会相等B.F1自交后,各种基因型个体成活的机会相等C.F1形成配子时,产生了数量相等的雌雄配子D.F1形成配子时,非同源染色体上的非等位基因组合进入同一配子的机会相等【答案】C【解析】F1自交时,雌雄配子结合的机会相等,保证配子的随机结合,A正确;F1自交后,各种基因型个体成活的机会相等,使后代出现性状分离比为3∶1,B正确;F1产生的雌配子和雄配子的数量不等,但雌、雄配子中D∶d均为1∶1,C错误;F1形成配子时,非同源染色体的非等位基因自由组合,进入同一配子的机会相等,D正确。

2.以抗螟非糯性水稻(GGHH)与不抗螟糯性水稻(gghh)为亲本杂交得F1,F1自交得F2,F2的性状分离比为3∶1。

假如两对基因都完全显性遗传,则F1中两对基因在染色体上的位置关系最可能是( )【答案】A3.某一植物体内常染色体上具有三对等位基因(A和a,B和b,D和d),已知A、B、D三个基因分别对a、b、d完全显性,但不知这三对等位基因是否独立遗传。

某同学为了探究这三对等位基因在常染色体上的分布情况做了以下实验:用显性纯合个体与隐性纯合个体杂交得F1,F1同隐性纯合个体测交,结果及比例为AaBbDd∶AaBbdd∶aabbDd∶aabbdd=1∶1∶1∶1,则下列表述正确的是( )A.A、B在同一条染色体上B.A、b在同一条染色体上C.A、D在同一条染色体上D.A、d在同一条染色体上【答案】A4.某种植物雄株(只开雄花)的性染色体XY;雌株(只开雌花)的性染色体XX。

等位基因B和b是伴X 遗传的,分别控制阔叶(B)和细叶(b),且带X b的精子与卵细胞结合后使受精卵致死。

用阔叶雄株和杂合阔叶雌株进行杂交得到子一代,再让子一代相互杂交得到子二代。

回答下列问题:(1)理论上,子二代中,雄株数∶雌株数为________。

遗传的基本规律、伴性遗传与人类遗传病

遗传的基本规律、伴性遗传与人类遗传病

遗传的基本规律、伴性遗传与人类遗传病一:知识点(一)名词解读:名词:1、染色体组型:也叫核型,是指一种生物体细胞中全部染色体的数目、大小和形态特征。

观察染色体组型最好的时期是有丝分裂的中期。

2、性别决定:一般是指雌雄异体的生物决定性别的方式。

3、性染色体:决定性别的染色体叫做性染色体。

4、常染色体:与决定性别无关的染色体叫做常染色体。

5、伴性遗传:性染色体上的基因,它的遗传方式是与性别相联系的,这种遗传方式叫做伴性遗传。

语句:1、染色体的四种类型:中着丝粒染色体,亚中着丝粒染色体,近端着丝粒染色体,端着丝粒染色体。

2、性别决定的类型:(1)XY型:雄性个体的体细胞中含有两个异型的性染色体(XY),雌性个体含有两个同型的性染色体(XX)的性别决定类型。

(2)ZW型:与XY型相反,同型性染色体的个体是雄性,而异型性染色体的个体是雌性。

蛾类、蝶类、鸟类(鸡、鸭、鹅)的性别决定属于"ZW"型。

3、色盲病是一种先天性色觉障碍病,不能分辨各种颜色或两种颜色。

其中,常见的色盲是红绿色盲,患者对红色、绿色分不清,全色盲极个别。

色盲基因(b)以及它的等位基因--正常人的B就位于X染色体上,而Y染色体的相应位置上没有什么色觉的基因。

4、人的正常色觉和红绿色盲的基因型(在写色觉基因型时,为了与常染色体的基因相区别,一定要先写出性染色体,再在右上角标明基因型。

):色盲女性(XbXb),正常(携带者)女性(XBXb),正常女性(XBXB),色盲男性(XbY),正常男性(XBY)。

由此可见,色盲是伴X隐性遗传病,男性只要他的X上有b基因就会色盲,而女性必须同时具有双重的b 才会患病,所以,患男>患女。

5、色盲的遗传特点:男性多于女性一般地说,色盲这种病是由男性通过他的女儿(不病)遗传给他的外孙子(隔代遗传、交叉遗传)。

色盲基因不能由男性传给男性)。

6、血友病简介:症状--血液中缺少一种凝血因子,故凝血时间延长,或出血不止;血友病也是一种伴X隐性遗传病,其遗传特点与色盲完全一样。

遗传的基本规律和伴性遗传

遗传的基本规律和伴性遗传
Aa Bb Cc
2基因型类型的问题
例:
AaBbCc与AaBBCc杂交,其后代有多少种基因型? 先将问题分解为分离定律问题:
Aax Aaf后代有3种基因型(1AA:2Aa:laa);
Bbx BB f后代有2种基因型(1BB:1Bb);
Ccx Cc f后代有3种基因型(ICC:2Cc:1cc)。
因而AaBbCc与AaBBCc杂交,其后代有3X2X3=18种基因型
遗传的基本规律和伴性遗传
[容概述]
本专题容包括: 基因分离定律、 基因自由组合定律及其在实践上的应用;性别决定和伴性遗
传。
[重点难点]
一、遗传的基本规律:
1•孟德尔获得成功的原因:
选用豌豆作为实验材料;研究方法采用由单因素到多因素;能科学地运用统计学方法对实验
结果进行分析;实验程序科学严谨:实验-假设-验证-总结规律。
(3)患病双亲生出正常孩子是显性遗传病的特点 者,男患者的母亲和女儿一定是患者。如不符合上述 色体显性遗传。
2.遗传病概率计算:所谓概率是指在反复试验中,预期某一事件的出现次数的比例。
①加法定律:当一个事件岀现时,另一个事件就被排除,这样的两个事件互为排斥事件,它
们出现的概率为各自概率之和。
②乘法定律:当一个事件的发生不影响另一个事件的发生时, 生的概率是他们各自概率的乘积。
因型。
规书写遗传图解,例如:(复杂的遗传图解也可用棋盘法)
5 •基因自由组合定律应用题简便算法:
基因自由组合定律研究两对(或更多对)相对性状分别由两对(或更多对)等位基因控制的
遗传,其中每一对等位基因的传递规律仍然遵循基因分离规律。在解题时,将自由组合问题转化
为若干个分离定律问题。要对每一对相对性状单独进行分析,再把结果综合起来。(以丫、y;

遗传的基本规律和伴性遗传

遗传的基本规律和伴性遗传

遗传的基本规律和伴性遗传一.[连接处思考](1)两个基本定律之间有怎样联系?(2)伴性遗传与遗传规律有怎样的关系?答案(1)①两定律均发生在形成配子时(减数第一次分裂后期),两定律同时进行,同时发挥作用。

②分离定律是自由组合定律的基础。

③两定律均为真核生物细胞核基因在有性生殖中的传递规律。

(2)性染色体在减数分裂形成配子时也会分离,同样遵循分离定律;同时与其他非同源染色体自由组合,因此性别性状也会和常染色体上基因所控制的性状发生自由组合现象。

二、遗传的基本规律1.总结下面显、隐性性状的判断(1)据子代性状判断①不同性状亲本杂交→后代只出现一种性状→显性性状②相同性状亲本杂交→后代出现不同于亲本的性状→隐性性状(2)据子代性状分离比判断①具一对相同性状亲本杂交→子代性状分离比为3∶1→,分离比为3的性状为显性性状②具两对相同性状亲本杂交→子代性状分离比为9∶3∶3∶1→分离比为9的两性状都为显性。

(3)遗传系谱图中显、隐性判断①双亲正常→子代患病→隐性遗传病②双亲患病→子代正常→显性遗传病特别提示若以上方法无法判断,可用假设法。

注意在运用假设法判断显隐性性状时,若出现假设与事实相符的情况时,要注意两种性状同时作假设或对同一性状作两种假设,切不可只根据一种假设做出片面的结论。

但若假设与事实不相符时,则不必再作另一假设,可予以直接判断。

2.总结下面遗传基本定律的确定(1)自交法①自交后代的分离比为3∶1 ,则符合基因的分离定律。

②若F1自交后代的分离比为9∶3∶3∶1 ,则符合基因的自由组合定律。

(2)测交法①若测交后代的性状比例为1∶1,则符合基因的分离定律。

②若测交后代的性状比例为1∶1∶1∶1 ,则符合基因的自由组合定律。

(3)花粉鉴定法根据花粉表现的性状(如花粉的形状、染色后的颜色等)判断。

①若花粉有两种表现型,比例为1∶1,则符合分离定律。

②若花粉有四种表现型,比例为1:1:1:1,则符合自由组合定律。

第8课时 遗传的基本规律和伴性遗传

第8课时 遗传的基本规律和伴性遗传
一对相对性状的遗传。 ②基因的自由组合定律适用于两对或两对以上 的等位基因,且这些等位基因必须位于非同源染色 体上。
(二)基因的分离定律和自由组合定律的比较
遗传定律 比较项目 发生时期 遗传定律 的细胞学 基础—— 减数分裂 遗传实质 配子(2N 生物) 基因的分离定律 自由组合定律
减数第一次分裂 减数第一次分裂后期 后期 同源染色体分离 非同源染色体上的非 →等位基因分离 等位基因自由组合 配子中含等位基 配子中含不同基因组 因中的一个 合 一对 两对(或两对以上)
【例1】现有4个纯合南瓜品种,其中2个品种的
果形表现为圆形(圆甲和圆乙),1个表现为扁盘形(扁
盘),1个表现为长形(长)。用这4个南瓜品种做了3个 实验,结果如下: 实验1:圆甲×圆乙,F1 为扁盘,F2 中扁盘∶ 圆∶长=9∶6∶1
实验2:扁盘×长,F1 为扁盘,F2 中扁盘∶圆∶
长=9∶6∶1 实验3:用长形品种植株的花粉分别对上述两个 杂交组合的F1植株授粉,其后代中扁盘∶圆∶长均等 于1∶2∶1。综合上述实验结果,请回答:
两 (1)南瓜果形的遗传受_____对等位基因控制, 基因的自由组合 且遵循_______________定律。 (2)若果形由一对等位基因控制用A、a表示,若 由两对等位基因控制用A、a和B、b表示,以此类推, AAbb 、 Aabb 、 aaBb 、 则圆形的基因型应为____________________ aaBB AABB、AABb、 ________,扁盘形的基因型应为_____________
让待测个体长大开花后,取出花粉粒放在载玻片上,
加一滴碘酒→结果分析(若后代一半红褐色,一半
蓝色,则待测个体为杂合子;若后代全为红褐色, 则待测个体为纯合子)

高中生物必修二遗传的基本规律与伴性遗传易错知识点归纳

高中生物必修二遗传的基本规律与伴性遗传易错知识点归纳

遗传的根本规律与伴性遗传易错知识点汇总1.观察以下图示答复以下问题:⑴能正确表示基因别离定律实质的图示是①〜④中的, 其具体内涵是;发生时间为,细胞学根底是O⑵ 图示基因别离过程适用范围是提示:〔1〕③ 限制相对性状的遗传因子在形成配子时彼此别离减数第一次分裂后期同源染色体别离〔2〕真核生物有性生殖时核基因的遗传2.下面两图分别是具有一对和两对等位基因的个体杂交的遗传图解.同一个体产生的各种配子类型数量相等.请思考并答复:亲代M An例②]配子蒸H A M.腺祥子代 A.A A JI A IL力口"I-里^子代A B A bb 侬叱iLabh 除C?三奇富券除J⑴基因别离定律的实质表达在图中的,基因自由组合定律的实质表达在图中的 O 〔均填序号〕⑵③⑥过程表示,这一过程中子代遗传物质的来源情况如何? O⑶如果A和a、B和b 〔完全显性〕各限制一对相对性状,并且彼此间对性状的限制互不影响,那么图2中所产生的子代中表现型有种,它们的比例为.〔4〕图中哪些过程可以发生基因重组? .为什么?⑸以下图表示基因在染色体上的分布情况,其中哪些基因不遵循基因的自由组合定律?为什么?提示:〔1〕①② ④⑤〔2〕受精作用细胞核中遗传物质一半来自父方,另一半来自母方,细胞质中遗传物质几乎全部来自母方〔3〕4 9:3:3 : 1 〔4〕④⑤ 基因自由组合发生于产生配子的减数第一次分裂过程中,而且是非同源染色体上的非等位基因之间的重组,故①〜⑤过程中仅④、⑤ 过程发生基因自由组合,①、②过程仅发生了等位基因别离,未发生基因自由组合.〔5〕Aa与Dd和BB与Cc分别位于同一对同源染色体上,不遵循该定律.只有位于非同源染色体上的非等位基因之间,其遗传时才遵循自由组合定律.3.分析并说明“基因在染色体上〞是否适合所有生物?提示:“基因在染色体上〞只适合于进行有性生殖的真核生物,其基因主要在染色体上;原核生物、病毒无染色体,故不适合“基因在染色体上〞这种说法.4.生物体细胞中的基因都位于染色体上吗?提示:不一定.①真核生物的细胞核基因都位于染色体上,而细胞质中的基因位于细胞的线粒体和叶绿体的 DNA上.②原核细胞中无染色体,原核细胞的基因在拟核DNA或细胞质的质粒DNA上.5.生物的伴性遗传现象与性染色体有关,所有的生物都有性染色体吗?为什么?.提示:不是,一般有性别分化的生物才有性染色体.6.X、Y染色体同源区段的基因遗传与性别有关吗?请举例说明.提示:假设限制某相对性状的基因〔A、a〕位于X、Y染色体同源区段,那么: 早X a X a X X a Y A©早X a X a X X A Y H今X a Y A X a X a X A X a X a Y a〔今全为显性〕〔?全为隐性〕〔早全为显性〕〔©全为隐性〕可见同源区段上的基因遗传与性别有关.7.豌豆、果蝇、玉米也是研究遗传的常用材料,其原因是什么?提示:豌豆:豌豆是自花传粉植物,而且是闭花受粉,所以豌豆在自然状态下一般都是纯种;具有稳定的易于区分的性状,且能稳定地遗传给后代.豌豆生长周期短,易于栽培.籽粒较多,数学统计分析结果更可靠.果蝇:果蝇体型小,饲养治理容易,繁殖快;染色体数目少且大,便于分析;产生的后代多;相对性状易于区分.玉米:相对性状差异明显,易于区分观察;易于种植,培养,生长周期短,繁殖速度快;产生后代〔玉米粒〕数量多,结果更可靠,统计更准确;玉米是雌雄同株,风媒花,顶部雄蕊,下面雌蕊分开生长,且成熟时间不同,自交和杂交均可进行,便于遗传操作.8.任意两对相对性状的遗传都符合自由组合定律吗?为什么?提示:决定两对性状的基因必须位于细胞核两对不同的同源染色体上, 才符合,如果是两对基因位于一对同源染色体上只符合别离定律,如果位于细胞质基因那就两个都不符合.9.马的毛色有栗色和白色两种.正常情况下,一匹母马一次只能生一匹小马,假定毛色由基因B和b限制,此基因位于常染色体上. 现提供一个自由放养多年的农场马群为实验动物,在一个配种季节从该马群中随机抽取1头栗色公马和多头白色母马交配,〔1〕如果后代毛色均为栗色;〔2〕如果后代小马毛色有栗色的,也有白色的.能否分别依据〔1〕〔2〕结果判断限制马毛色基因的显隐性关系. 说明理由..提示:〔1〕能.〔2〕不能.理由:如果栗色为隐性,那么这匹公马的基因型为bb,白色母马的基因型为BB、Bb,那么后代小马的基因型为Bb和bb,即既有白色的也有栗色的.如果栗色为显性,那么这匹栗色公马的基因型为BB或Bb, 多匹白色母马的基因型均为bb,那么后代小马的基因型为Bb,全为栗色或Bb和bb,栗色和白色均有.综上所述,只有在栗色公马为显性纯合体的情况下才会出现后代小马毛色全为栗色的杂交结果.10.精子细胞变成精子的过程中,细胞中很多结构会消失,而细胞核和线拉体都保存下来,对这一现象怎样理解? .提示:细胞核是精子遗传物质储存和复制的场所,也是参与精、卵结合和后代遗传特性与细胞代谢活动的限制中央.而线粒体那么是有氧呼吸产生运动能量的场所.11.卵细胞形成过程中减数分裂的两次分裂过程均呈现过不均等分裂,这有何重要意义?O提示:卵细胞形成过程中细胞质不均等分裂,使初级卵母细胞的细胞质更多地集中在卵细胞中,使受精卵内有大量的细胞质.细胞质内的卵黄是受精卵最初发育所需要的营养物质.可见,卵细胞形成过程中,细胞质不均等分裂对受精卵的发育是有利的.〔提示:保证卵细胞有较多的营养物质,以满足早期胚胎发育过程中物质的需要.〕12.子代从双亲各继承了半数的染色体,双亲对子代的奉献是一样的吗?解释原因.提示:不一样.母亲除了提供一半的核基因之外,还提供了全部的细胞质基因,如线粒体内含有的DNA.13.摩尔根针对果蝇眼色杂交实验结果做出什么假设及作出假设的依据是什么?提示:限制白眼的基因〔用w表示〕在X染色体上,而丫染色体不含有它的等位基因,由于白眼的遗传和性别相联系,而且与 X染色体的遗传相似.14.用荧光标记法可显示基因在染色体上的位置,图中为什么同种颜色在同一条染色体上会有两个?提示:观察的时期为有丝分裂中期,每条染色体上含有两条染色单体, 其相同位置上的基因相同.15.生物如果丧失或增加一条或几条染色体,就会出现严重疾病甚至死亡.但在自然界中,有些动植物的某些个体是由未受精的生殖细胞〔如卵细胞〕单独发育来的,如蜜蜂中的雄蜂等.这些生物的体细胞中染色体数目虽然减少一半,但仍能正常生活.你如何解释这一现象?.提示:这些生物的体细胞中的染色体虽然减少一半,但仍具有一整套非同源染色体.这一组染色体,携带有限制该种生物体所有性状的一整套基因.16 .人的体细胞中有23对染色体,其中第1号一第22号是常染色 体,第23号是性染色体.现在已经发现第13号、第18号或第 21号染色体多一条的婴儿,都表现出严重的病症.据不完全调查, 现在还未发现其他常染色体多一条〔或几条〕的婴儿.请你试着 作出一些可能的解释..提示:人体细胞染色体数目变异,会严重影响生殖、发育等各种生命 活动,未发现其他染色体数目变异的婴儿,很可能是发生这类变异的受精 卵不能发育,或在胚胎早期就死亡了的缘故.17 . 一对夫妇生两个女儿,那么女儿中来自父亲〔XJ 〕的X 染色体相同 吗?来自母亲〔X 2X 3〕的相同吗?为什么?1提示:女儿中来自父亲的X 染色体都为X 1,应是相同的,但来自母亲的既 可能为人,也可能为人,不一定相同.118 .根据遗传规律,白眼雌果蝇〔X w X w 〕与和红眼雄果蝇〔X W Y 〕交 配,后代雄果蝇都应该是白眼的,后代雌果蝇都应该是红眼的.可是有一天,摩尔根的合作者布里吉斯〔Bridges 〕发现白眼雌果 蝇和红眼雄果蝇杂交所产生的子一代中出现了一个白眼雌果蝇.大量的观察发现,在上述杂交中,2000〜3000只红眼雌果蝇中会 出现一只白眼雌果蝇,同样在2000〜3000只白眼雄果蝇中会出现 一只红眼雄果蝇.你怎样解释这种奇怪的现象?如何验证你的解 释?提示:雌果蝇卵原细胞减数分裂过程中,在 2 000〜3 000个细胞中, 有一次发生了过失,两条X 染色体不别离,结果产生的卵细胞中,或者含 有两条X 染色体,或者不含X 染色体.如果含X w X w 卵细胞与含Y 的精子受 精,产生X w X w Y 的个体为白眼雌果蝇,如果不含X 的卵细胞与含X w 的精子受 精,产生OX w 的个体为红眼雄果蝇,这样就可以解释上述现象.可以用显微 镜检查细胞中的染色体,如果在上述杂交中的子一代出现的那只白眼雌果 蝇中找到Y 染色体,在那只红眼雄果蝇中找不到 Y 染色体,就可以证实解 释是正确的.19.1961年首次报道性染色体为3条的XYY 男性,患者的临床表 现是举止异常,性格失调,容易冲动,局部患者生殖器官发育不 全.你认为这种病是父母哪一方、在减数分裂的哪个阶段出现异 常引起的?提示:是父方,可能是在减数分裂第二次分裂中,复制的 丫染色体没 有分开,产生了含有YY 的精子.20 .“牝鸡司晨〞是我国古代人民早就发现的性反转现象.原来下 过蛋的母鸡,以后却变成公鸡,长出公鸡的羽毛,发出公鸡样的啼声.从遗传的物质根底和性别限制的角度,你怎样解释这种现象出现的可能原因?鸡是ZW型性别决定,公鸡的两条性染色体是同型的〔ZZ〕,母鸡的两条性染色体是异型的〔ZW〕.如果一只母鸡性反转成公鸡,这只公鸡与母鸡交配,后代的性别会是怎样的? .提示:性别和其他性状类似,也是受遗传物质和环境共同影响的,性反转现象可能是某种环境因素,使性腺出现反转现象的缘故.子代雌雄之比是2:1. 21.从细菌到人类,性状都受基因限制.是否所有生物的基因,都遵循孟德尔遗传规律?为什么?提示:否.孟德尔遗传规律的细胞学根底是减数分裂中染色体的分配规律,该规律只适用于真核生物.22.是否所有的真核生物,其基因组的染色体均不等同于染色体组的染色体?说明原因.提示:不是.对于有性染色体的生物〔二倍体〕,其基因组为常染色体 /2+性染色体;对于无性染色体的生物,其基因组与染色体组相同.。

高中生物伴性遗传知识要点归纳

高中生物伴性遗传知识要点归纳

高中生物伴性遗传知识要点归纳伴性遗传是指通过性染色体携带的基因在非性染色体上表现出来的遗传现象。

在高中生物学课程中,学生需要掌握伴性遗传的相关知识,以便更好地理解遗传规律以及相关生物现象的产生。

下面是对高中生物伴性遗传知识的要点归纳:一、伴性遗传的概念伴性遗传是遗传学中的一个概念,指的是某些特定基因的表达与性别染色体的携带有关。

这些基因位于非性染色体上,但在性染色体上也有一部分相应的区域。

二、伴随现象1. 男性与女性的发病率不同:由于男性只有一个X染色体,所以他们具有更高的可能患上与基因相关的疾病。

2. 女性携带者的存在:女性通常有两个X染色体,所以她们可以是携带者,即携带有相应基因但并不表现出疾病症状的个体。

三、伴性遗传的传递方式1. 父母的遗传:男性与女性有不同的性染色体组合,所以伴性遗传通常是由父母传递给子女的。

2. 母亲到儿子的传递:若女性是携带者(heterozygote),则她有50%的概率将其携带的基因传递给儿子,使其成为患者。

3. 父亲到女儿的传递:若男性是患者,则他的所有女儿都将成为携带者。

4. 母亲到女儿的传递:若母亲是携带者,则她的所有女儿都有50%的概率成为携带者。

四、伴性遗传的例子1. 色盲:红绿色盲是一种常见的伴性遗传疾病,男性患者较多,女性通常是携带者。

2. 血友病:血友病也是一种常见的伴性遗传疾病,男性患者很多,女性通常是携带者。

3. 杜氏肌营养不良症:杜氏肌营养不良症是一种严重的伴性遗传疾病,主要影响男性患者,女性很少发病。

五、伴性遗传的分子机制伴性遗传是由于非性染色体上的基因与性染色体上的相应区域之间发生重组导致的。

重组使得非性染色体上的基因与性染色体上的相应区域产生连锁,从而影响到基因的表达。

六、伴性遗传的重要意义伴性遗传研究揭示了性染色体的特殊性质以及基因与表型之间的关系。

通过对伴性遗传的研究,人们能更好地理解遗传规律,提高对遗传疾病的认识,并为相关疾病的预防与治疗提供理论依据。

高三生物二轮复习-遗传的基本规律和伴性遗传.总结

高三生物二轮复习-遗传的基本规律和伴性遗传.总结

高三生物二轮复习-遗传的基本规律和伴性遗传一、遗传的基本规律1. 孟德尔遗传规律孟德尔遗传规律是遗传学的基础,孟德尔在豌豆实验中发现了遗传物质的存在和遗传现象有规律可循,提出了三条遗传规律,分别是:•个体遗传规律:个体从父母分得的遗传因子是一对,其中只有一个因子参与遗传,另一个因子隐性•分离规律:杂交后代第一代被覆盖的性状表现,而第二代中,隐性基因重新组合成为相应的表型•自由组合规律:非同源染色体之间自由组合,染色体上基因之间也自由组合,就算在同一个染色体上也会发生交换,而产生新的基因组合。

孟德尔遗传规律的提出,为遗传学奠定了基础,后来的遗传学家和生物学家也通过实验验证了它的正确性。

2. 基因连锁规律基因连锁规律是基因遗传中的一种规律,指的是多个在同一条染色体上的基因之间存在的串联基因效应,即这些基因在游离染色体的新组合中的联合组合性引起的现象。

基因连锁规律的发现来源于Ångström和 Tjio对眼虫的研究。

他们发现一些形态的随机出现,但分开看后却发现其实是由基因的组合引起的。

基因连锁规律的发现,帮助人们更深入地了解了基因遗传,同时也为人类疾病的研究提供了思路。

3. 随机独立规律随机独立规律指的是频率相对比较稳定的在群体中的基因或某种等位基因在自然条件下遵从大数定律而呈现的随机性分布规律。

随机独立规律是基于基因频率变动理论的基本原则,它揭示了群体基因分布的规律和周期。

对于群体基因每一代中的全面和长期发展具有重要意义。

二、伴性遗传伴性遗传是指染色体上携带并控制着伴性位点的一种遗传规律。

伴性遗传中的伴性位点通常指基因座(基因位点)。

通常出现在X染色体的上,而Y染色体上没有伴性连锁基因。

伴性遗传中,母亲为患者的孩子所患的疾病可能在XX和XY两种基因型中出现,而且患病率相对积极。

而伴性基因常常被视为隐性基因,其表现受到染色体性别和其他基因因素的影响,不同基因位点的基因表达不同。

三、遗传是生命的重要组成部分之一,它不仅影响了生命的发展过程,还决定了生命的后代。

考前12天遗传的基本规律及伴性遗传-2023年高考生物考前15天倒计时必看宝典(1)

考前12天遗传的基本规律及伴性遗传-2023年高考生物考前15天倒计时必看宝典(1)

考前必会
4.基因在 X、Y 染色体的同源区段上还是仅位于 X 染色体上 杂交组合:隐性雌×显性雄(已知纯合选择一对杂交即可,未知纯合应选择多对杂交) ⇓ 若子代雄性个体全为隐性性状,则基因仅位于 X 染色体上;若子代雄性个体全为显性性状, 则基因位于 X、Y 染色体同源区段上。 5.基因在 X、Y 染色体的同源区段上还是常染色体上 杂交组合:隐性雌×纯合显性雄→F1 (1)F1 中雌雄个体相互交配 若子代雄性个体全为显性,雌性个体中显性∶隐性=1∶1,则基因在 X、Y 染色体的同源区段 上;若子代雌、雄个体中均有两种性状,且显性∶隐性=3∶1,则基因在常染色体上。
解题技巧
考前必会
本题四个选项分别列举了四种情况,各选项间没有因果关系,因此只能采用逐项验证法, 对每个选项列举的原因进行验证,看子代表型是否出现对应的比例。
考前必会
要领2 判断基因位置的方法
1.基因是否在 Y 染色体上 无须杂交,统计种群中具有相应性状个体的性别,若全为雄性,则为伴 Y 染色体遗传,若出现 雌性,则排除伴 Y 染色体遗传。 2.基因是否在细胞质中 设计正反交实验,若子代的表型总是和母本一致,则为细胞质遗传,否则排除细胞质遗传。 3.基因在常染色体上还是 X 染色体上 (1)若已知性状的显隐性,只需一个杂交组合就可判断基因的位置
( ×)
12.位于 X 染色体非同源区段的基因在体细胞中不存在等位基因。
(×)
13.人类遗传病是由遗传物质改变引起的,是生下来就有的疾病。
(×)
14.携带遗传病致病基因的个体一定患遗传病,不携带致病基因的个体一定不患遗传病。 ( × )
15.多基因遗传病是指受两个或两个以上基因控制的遗传病。
( ×)
表所示。对这些比例的分析,不.合.理.的是( D )。

高中生物遗传与变异知识点汇总

高中生物遗传与变异知识点汇总

中学生物遗传与变异学问点一、遗传的基本规律一、基本概念1.概念整理:杂交:基因型不同的生物体间相互交配的过程,一般用 x 表示自交:基因型相同的生物体间相互交配;植物体中指雌雄同花的植株自花受粉和雌雄异花的同株受粉,自交是获得纯系的有效方法。

一般用表示。

测交:就是让杂种子一代与隐性个体相交,用来测定F1的基因型。

性状:生物体的形态、结构和生理生化的总称。

相对性状:同种生物同一性状的不同表现类型。

显性性状:具有相对性状的亲本杂交,F1表现出来的那个亲本性状。

隐性性状:具有相对性状的亲本杂交,F1未表现出来的那个亲本性状。

性状分别:杂种的自交后代中,同时显现出显性性状和隐性性状的现象。

显性基因:限制显性性状的基因,一般用大写英文字母表示,如D。

隐性基因:限制隐性性状的基因,一般用小写英文字母表示,如d。

等位基因:在一对同源染色体的同一位置上,限制相对性状的基因,一般用英文字母的大写和小写表示,如D、d。

非等位基因:位于同源染色体的不同位置上或非同源染色体上的基因。

表现型:是指生物个体所表现出来的性状。

基因型:是指限制生物性状的基因组成。

纯合子:是由含有相同基因的配子结合成的合子发育而成的个体。

杂合子:是由含有不同基因的配子结合成的合子发育而成的个体。

2.例题:(1)推断:表现型相同,基因型肯定相同。

( x )基因型相同,表现型肯定相同。

(x )纯合子自交后代都是纯合子。

(√)纯合子测交后代都是纯合子。

( x )杂合子自交后代都是杂合子。

( x )只要存在等位基因,肯定是杂合子。

(√)等位基因必定位于同源染色体上,非等位基因必定位于非同源染色体上。

( x )(2)下列性状中属于相对性状的是( B )A.人的长发和白发 B.花生的厚壳和薄壳C.狗的长毛和卷毛 D.豌豆的红花和黄粒(3)下列属于等位基因的是( C )A. aa B. Bd C. Ff D. YY二、基因的分别定律1、一对相对性状的遗传试验2、基因分别定律的实质生物体在进行减数分裂形成配子的过程中,等位基因会随着同源染色体的分开而分别,分别进入到两种不同的配子中,独立地遗传给后代。

高考生物一轮考点复习 第五单元遗传的基本规律与伴性遗传 第3课 基因在染色体上、伴性遗传和人类遗传病

高考生物一轮考点复习 第五单元遗传的基本规律与伴性遗传 第3课 基因在染色体上、伴性遗传和人类遗传病

第3课基因在染色体上、伴性遗传和人类遗传病【课标要求】1.概述性染色体上的基因传递和性别相关联。

2.举例说明人类遗传病是可以检测和预防的。

【素养目标】1.理解基因在染色体上与伴性遗传特点,从分子水平、细胞水平阐述生命的延续性。

(生命观念)2.掌握伴性遗传规律和解答遗传系谱图方法,培养归纳与逻辑分析能力。

(科学思维)【主干·梳理与辨析】一、基因在染色体上1.萨顿的假说:项目基因染色体生殖过程中在杂交过程中保持完整性和独立性在配子形成和受精过程中,形态结构相对稳定存在体细胞成对成对配子成对中的一个成对中的一条体细胞中来源成对基因一个来自父方,一个来自母方一对同源染色体,一条来自父方,一条来自母方形成配子时非同源染色体上的非等位基因自由组合非同源染色体自由组合2.实验证据——摩尔根的果蝇眼色实验: (1)实验方法——假说—演绎法。

(2)研究过程。

②提出问题:白眼性状为什么总是与性别相关联?③提出假说,进行解释。

假说:控制白眼的基因位于X染色体上,而Y染色体上没有它的等位基因。

图解:④演绎推理,验证假说。

通过测交等方法,进一步验证了这些解释。

⑤得出结论:控制白眼的基因位于X染色体上。

1.萨顿利用假说—演绎法推测基因位于染色体上,且基因都位于染色体上。

(×)分析:萨顿利用的是类比推理法,且细胞质基因不在染色体上。

2.非等位基因随非同源染色体的自由组合而组合能说明核基因和染色体行为存在平行关系。

(√)3.摩尔根利用假说—演绎法证明控制果蝇红眼和白眼的基因位于X染色体上。

(√)4.摩尔根在实验室培养的雄果蝇中首次发现了白眼性状,该性状来自基因重组。

(×)分析:该性状来自基因突变,而不是基因重组。

5.一条染色体上有多个基因,基因在染色体上呈线性排列。

(√)二、伴性遗传1.伴性遗传的概念:性染色体上的基因控制的性状的遗传与性别相关联的现象。

2.红绿色盲的遗传图解和特点:(1)遗传图解:(2)特点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《遗传的基本规律与伴性遗传》专练一、选择题1.下列选项中的比例一定不符合1∶3的有A.酵母菌在无氧呼吸和有氧呼吸时消耗等量葡萄糖所释放出的CO2体积比B.在两对基因独立遗传的情况下,AaBb与AaBB杂交后代中具有隐性性状的个体与不具隐性性状的个体之比C.白化病患者的正常双亲,生下的正常孩子中纯合体与杂合体概率之比D.一个初级卵母细胞减数分裂后形成的卵细胞与极体数目之比2.表现型为绿豆荚(A)灰种皮(B)黄子叶(C)的豌豆植株AaBbCc自交,果实成熟前取其一个豆荚剖开(如图)进行研究,有关说法正确的是A.b一定表现为绿色,d一定表现为灰色B.a、b、c所对应植株基因型相同的概率为0C.剥去该豆荚中所有种子的种皮d,里面c的颜色相同D.该实验能验证基因的分离定律,不能验证自由组合定律3.已知小麦的抗病和感病、无芒和有芒是两对独立遗传的相对性状。

现用两种表现型不同的小麦作亲本进行杂交,得到的F1如表所示:如果让F1中抗病无芒与感病有芒小麦杂交,则F2中表现型为抗病无芒、抗病有芒、感病无芒与感病有芒的比例为A.2∶2∶1∶1 B.1∶1∶1∶1 C.9∶3∶3∶1 D.3∶3∶1∶14.一种观赏植物,纯合的蓝色品种与纯合的鲜红色品种杂交,F1为蓝色。

若让F1蓝色与纯合鲜红品种杂交,子代的表现型及其比例为蓝色∶鲜红色=3∶1。

若将F1蓝色植株自花授粉,则F2表现型及其比例最可能是A.蓝色∶鲜红色=1∶1 B.蓝色∶鲜红色=3∶1C.蓝色∶鲜红色=9∶7 D.蓝色∶鲜红色=15∶15.图甲为某种人类遗传病的系谱图,已知某种方法能够使正常基因显示一个条带,致病基因则显示为位置不同的另一个条带。

用该方法对上述家系中的每个个体进行分析,条带的有无及其位置表示为图乙。

根据实验结果,有关该遗传病的叙述错误的是A.该病为常染色体隐性遗传病,且1号为致病基因的携带者B.若13号与一致病基因的携带者婚配,则生育患病孩子的概率为1/6C.10号个体可能发生了基因突变D.若不考虑突变因素,则9号与该病患者结婚,出现该病子女的概率为06.如图是患甲病(等位基因用A、a表示)和乙病(等位基因用B、b表示)的遗传系谱图,3号和8号的家庭中无乙病史。

下列叙述与该家系遗传特性不相符合的是A.甲病是常染色体显性遗传病,乙病是伴X染色体隐性遗传病B.如果只考虑甲病的遗传,12号是杂合子的概率为1/2C.正常情况下5号个体的儿子可能患乙病,但不能肯定是否患甲病D.如果11号与无病史的男子结婚生育,无需进行产前诊断7.如图为雄性果蝇体细胞染色体的模式图和性染色体放大图,其中I为X染色体和Y染色体的同源区段,Ⅱ和Ⅲ分别是X、Y染色体的特有区段,有关分析正确的是A.X染色体和Y染色体上的基因在体细胞中不能表达B.若A-a基因位于Ⅰ上,则雄性个体的基因型有4种C.位于Ⅱ上的基因所控制的性状,雌果蝇中出现的概率高于雄果蝇D.该果蝇的有丝分裂后期和减数第一次分裂后期的细胞中均含有2条X染色体8.科学兴趣小组偶然发现某植物雄株出现一突变体。

为确定突变基因的显隐性及其位置,设计了杂交实验方案:利用该突变雄株与多株野生纯合雌株杂交,观察记录子代中该突变性状的雄株在全部子代雄株中所占的比率(用Q表示)以及子代中该突变性状的雌株在全部子代中所占的比率(用P表示)。

下列有关叙述错误的是A.若突变基因位于Y染色体上,则Q和P值分别为1、0B.若突变基因位于X染色体上且为显性,则Q和P值分别为0、1/2C.若突变基因位于X染色体上且为隐性,则Q和P值分别为1、1/2D.若突变基因位于常染色体上且为显性,则Q和P值可能分别为1/2、1/4二、非选择题9.(8分)下图A、B分别表示某雌雄异株植物M的花色遗传及花瓣中色素合成的控制过程。

植物M的花色(白色、蓝色和紫色)由常染色体上两对独立遗传的等位基因(A和a,B和b)控制。

请据图回答下列问题:(1)图A中甲、乙两植株的基因型分别为____________、____________。

若让图A中的F2蓝花植株自由交配,其后代表现型及比例为____________。

(2)与F1相比,F2中a基因频率__________________(填“增大”、“减小”或“不变”)。

不考虑其他因素的影响,仅通过图A中的杂交和自交,若白花植株更易被天敌捕食,此因素__________________(填“会”或“不会”)导致种群b基因频率下降。

(3)在F2植株传粉前,将所有紫花雌株与蓝花雄株移栽到同一地块(每一雌株可接受任何雄株的花粉),单株收获种子,每株所有的种子(假定数目相等且足够多)单独种植在一起可获得一个株系。

则在所有株系中,理论上有____________的株系只有紫花植株;有____________的株系三种花色的植株都有,且紫花∶蓝花∶白花的比例为____________。

10.(10分)科学家的在研究果蝇时,发现果蝇的眼色中有红色、褐色、白色三种表现型,身色有灰身、黑身两种表现型。

(1)果蝇是XY型性别决定的生物,体细胞中染色体数为2N=8条。

如果对果蝇的基因组进行测序,需要测量________条染色体。

(2)若假设控制果蝇眼色A(a)与身色B(b)的基因位于两对常染色体上。

有人将两只果蝇杂交,获得了100只个体,其表现型为37只灰身褐色眼;19只灰身白眼;18只灰身红眼;13只黑身褐色眼;7只黑身红眼;6只黑身白眼。

则两个亲本的基因型是________。

若该人进行的杂交实验果蝇所产白眼果蝇胚胎致死,则理论上亲代两只果蝇杂交后代的比例为灰红∶灰褐∶黑红∶黑褐=________。

(3)已知果蝇中,灰身与黑身是一对相对性状(相关基因用B、b表示),直毛与分叉毛是一对相对性状(相关基因用F、f表示)、现有两只亲代果蝇杂交,子代中雌、雄蝇表现型比例如图所示。

①控制直毛与分叉毛的基因位于________染色体上。

②子一代表现型为灰身直毛的雌蝇中,纯合体与杂合体的比例是________。

③若让子一代中灰身雄蝇与黑身雌蝇杂交,后代中黑身果蝇所占比例为________。

11.(10分)(2014·保定模拟)野茉莉花有白色、浅红、粉红、大红和深红五种颜色,其花瓣所含色素由核基因控制的有关酶所决定,基因A、B、D(独立遗传)分别编码酶A、酶B、酶D,酶所催化的反应及各产物的关系如图所示。

据图回答下列问题:注:三种物质同时出现则为深红,只有一种白色物质或没有白色物质为白色。

(1)开深红花的野茉莉植株中,基因型为杂合子的有________种,开白花的野茉莉植株基因型有________种。

(2)开大红花的野莱莉植株自交,后代的表现型及比例可能为________________________________________________________________________。

(3)两株开深红花的野茉莉植株杂交,检测到有的后代植株中没有白色物质,则这两植株杂交后代中,开白花的植株所占的比例为________,开浅红花的植株数与开大红花的植株数的比例为________。

(4)由题意概括基因和性状之间的关系(写两点)______________________________________、_____________________________ _____。

12.(10分)研究人员以不同品种的鸡为实验材料,通过不同的杂交实验,分析了羽型、羽速两种性状的遗传规律。

已知公鸡的两条性染色体是同型的(ZZ),母鸡的两条性染色体是异型的(1)由实验结果分析可知,丝状羽性状的遗传受________染色体上的________性基因控制。

杂交二可以用来检验F1的________。

根据上述杂交结果可以推知,所有用来进行实验的亲本(P)的片状羽鸡均为________。

(2)鸡的羽速性状由一对等位基因(用A、a表示)控制。

研究人员进行了下列杂交实验:由上述实验结果可以推知,亲本组合中的慢羽鸡和快羽鸡的基因型分别是________和________。

若将亲本的慢羽鸡与后代慢羽鸡杂交,所生子代中慢羽鸡占________。

13.(10分)某雌雄同株植物花的颜色由两对基因(A和a,B和b)控制,A基因控制色素合成(A:出现色素,AA和Aa的效应相同),该色素随液泡中细胞液pH降低而颜色变浅。

另一对基因与细胞液酸碱性有关。

其基因型与表现型的对应关系如表。

(1)推测B基因控制合成的蛋白质可能位于________上,并且该蛋白质的作用可能与________有关。

(2)以纯合白色植株和纯合红色植株作亲本杂交,子—代全部是粉色植株。

该杂交亲本的基因型组合是________。

(3)实验可能的结果(不考虑交叉互换)及相应的结论:若子代植株的花色及比例为____________________________________________________,则这两对基因位于两对同源染色体上。

如果通过实验,确认上述两对基因位于两对同源染色体上。

则粉色植株(AaBb)自交后代中,子代白色植株的基因型有____________种。

《遗传的基本规律与伴性遗传》专练答案1.解析根据有氧呼吸和无氧呼吸的方程式可知,消耗等量葡萄糖无氧呼吸释放的CO2与有氧呼吸释放的CO2的体积比为1∶3;若两对基因分别控制两对相对性状,且完全显性,则AaBb 与AaBB杂交后代中具有隐性性状的个体占1/4,不具有隐性性状的个体占3/4;白化病患者的正常双亲,生下的正常孩子中纯合体占1/3,杂合体占2/3,因此比例为1∶2;一个初级卵母细胞经减数分裂形成一个卵细胞和三个极体。

答案 C2.解析选项A,b、d分别为豆荚皮(果皮)和种皮,二者均属于母本植株的一部分,故性状由母本植株决定。

选项B,a、b的基因型均为AaBbCc,子叶c为亲本豌豆植株AaBbCc自交产生的F1的,其所对应植株基因型为AaBbCc的概率为1/8。

选项C,该植株上所结种子的子叶c的性状会发生分离,即使在同一个豆荚中的种子也可能不同。

选项D,本实验仅仅刮开了一个豆荚进行统计,因此种子数目太少,无法用于验证遗传规律。

答案 A3.解析假设控制抗病、感病性状的基因为A、a,控制无芒、有芒性状的基因为B、b,则由表中数据可知,两种表现型不同的小麦亲本基因型为AaBb和Aabb,F1中抗病无芒与感病有芒小麦杂交,单独考虑抗病和感病,杂交组合为A_×aa,后代抗病A_占2/3,感病aa占1/3;单独考虑有芒和无芒,杂交组合为Bb×bb,后代有芒占1/2,无芒占1/2,两个性状组合后,抗病无芒∶抗病有芒∶感病无芒∶感病有芒=2∶2∶1∶1。

答案 A4.解析F1的测交比为3∶1,说明颜色由两对独立遗传的等位基因控制,设为A、a和B、b,鲜红色为aabb的个体,其他基因型的个体都为蓝色。

相关文档
最新文档