第十一章三角形(知识点+题型分类练习)
八年级数学上册第十一章三角形知识点归纳超级精简版(带答案)
八年级数学上册第十一章三角形知识点归纳超级精简版单选题1、如图,直线m//n,三角尺的直角顶点在直线m上,且三角尺的直角被直线m平分,若∠1=60°,则下列结论错误的是()A.∠2=75°B.∠3=45°C.∠4=105°D.∠5=130°答案:D分析:根据角平分线的定义求出∠6和∠7的度数,再利用平行线的性质以及三角形内角和求出∠3,∠8,∠2的度数,最后利用邻补角互补求出∠4和∠5的度数.首先根据三角尺的直角被直线m平分,∴∠6=∠7=45°;A、∵∠1=60°,∠6=45°,∴∠8=180°-∠1-∠6=180-60°-45°=75°,m∥n,∴∠2=∠8=75°结论正确,选项不合题意;B、∵∠7=45°,m∥n,∴∠3=∠7=45°,结论正确,选项不合题意;C、∵∠8=75°,∴∠4=180-∠8=180-75°=105°,结论正确,选项不合题意;D、∵∠7=45°,∴∠5=180-∠7=180-45°=135°,结论错误,选项符合题意.故选:D.小提示:本题考查了角平分线的定义,平行线的性质,三角形内角和,邻补角互补,解答本题的关键是掌握平行线的性质:两直线平行,同位角相等,内错角相等,同旁内角互补.2、如图,将一副三角尺按图中所示位置摆放,点F在AC上,其中∠ACB=90°,∠ABC=60°,∠EFD=90°,∠DEF=45°,AB//DE,则∠AFD的度数是()A.15°B.30°C.45°D.60°答案:A分析:设AB与EF交于点M,根据AB//DE,得到∠AMF=∠E=45°,再根据三角形的内角和定理求出结果.解:设AB与EF交于点M,∵AB//DE,∴∠AMF=∠E=45°,∵∠ACB=90°,∠ABC=60°,∴∠A=30°,∴∠AFM=180°−30°−45°=105°,∵∠EFD=90°,∴∠AFD=15°,故选:A..小提示:此题考查平行线的性质,三角形的内角和定理,熟记平行线的性质并应用是解题的关键.3、如图,已知AD=AB,∠C=∠E,∠CDE=55°,则∠ABE的度数为()A.155°B.125°C.135°D.145°答案:B分析:根据三角形外角的性质得出∠CBE=∠A+∠E=∠A+∠C=55°,再求∠ABE即可.解:∵∠CDE=55°,∴∠A+∠C=55°,∵∠C=∠E,∴∠CBE=∠A+∠E=55°,∴∠ABE=180°−∠CBE=125°;故选:B.小提示:本题考查了三角形外角的性质,解题关键是准确识图,理清角之间的关系.4、如图表示的是三角形的分类,则正确的表示是()A.M表示三边均不相等的三角形,N表示等腰三角形,P表示等边三角形B.M表示三边均不相等的三角形,N表示等边三角形,P表示等腰三角形C.M表示等腰三角形,N表示等边三角形,P表示三边均不相等的三角形D.M表示等边三角形,N表示等腰三角形,P表示三边均不相等的三角形答案:B分析:根据三角形按照边的分类方法解答.解:根据三角形的分类,三角形可以分为三边都不相等的三角形和等腰三角形,等腰三角形分为底边和腰不相等的三角形和底边三角形,故选择B.小提示:本题考查三角形的分类,牢记三角形按照边的分类方法是解决问题的关键.5、用一根小木棒与两根长分别为3cm,6cm的小木棒组成三角形,则这根小木棒的长度可以为()A.1cm B.2cm C.3cm D.4cm答案:D分析:设第三根木棒的长为x cm,再根据三角形的三边关系得出x取值范围即可.解:设第三根木棒的长为x cm,则6−3<x<6+3,即3<x<9.观察选项,只有选项D符合题意.故选:D.小提示:本题考查的是三角形的三边关系,即三角形任意两边之和大于第三边;任意两边之差小于第三边.6、如图,AD,BE,CF依次是△ABC的高、中线和角平分线,下列表达式中错误的是()A.AE=CE B.∠ADC=90°C.∠CAD=∠CBE D.∠ACB=2∠ACF答案:C分析:根据三角形的高、中线和角平分线的定义(1)三角形的角平分线定义:三角形的一个角的平分线与这个角的对边相交,连接这个角的顶点和交点的线段叫做三角形的角平分线;(2)三角形的中线定义:在三角形中,连接一个顶点和它所对边的中点的连线段叫做三角形的中线;(3)三角形的高定义:从三角形一个顶点向它的对边(或对边所在的直线)作垂线,顶点和垂足间的线段叫做三角形的高线,简称为高.求解即可.解:A、BE是△ABC的中线,所以AE=CE,故本表达式正确;B、AD是△ABC的高,所以∠ADC=90,故本表达式正确;C、由三角形的高、中线和角平分线的定义无法得出∠CAD=∠CBE,故本表达式错误;D、CF是△ABC的角平分线,所以∠ACB=2∠ACF,故本表达式正确.故选:C.小提示:本题考查了三角形的高、中线和角平分线的定义,是基础题,熟记定义是解题的关键.7、如图,已知AB⊥BD,AC⊥CD,∠A=50°,则∠D的度数为()A.40°B.50°C.60°D.70°答案:B分析:利用两个三角形的内角和都为180°,结合相等的角即可求解.∵AB⊥BD,AC⊥CD,∴∠B=∠C=90°,又∵∠BEA=∠CED,且∠BEA+∠B+∠A=∠CED+∠C+∠D=180°,∴∠D=∠A=50°,故选:B.小提示:本题考查了三角形的内角和等于180°,熟记三角形的内角和公式是解题的关键.8、下列长度的三条线段与长度为5的线段能组成四边形的是()A.1,1,1B.1,1,8C.1,2,2D.2,2,2答案:D分析:若四条线段能组成四边形,则三条较短边的和必大于最长边,由此即可完成.A、1+1+1<5,即这三条线段的和小于5,根据两点间距离最短即知,此选项错误;B、1+1+5<8,即这三条线段的和小于8,根据两点间距离最短即知,此选项错误;C、1+2+2=5,即这三条线段的和等于5,根据两点间距离最短即知,此选项错误;D、2+2+2>5,即这三条线段的和大于5,根据两点间距离最短即知,此选项正确;故选:D.小提示:本题考查了两点间线段最短,类比三条线段能组成三角形的条件,任两边的和大于第三边,因而较短的两边的和大于最长边即可,四条线段能组成四边形,作三条线段的和大于第四条边,因而较短的三条线段的和大于最长的线段即可.9、如图,在△CEF中,∠E=80°,∠F=50°,AB∥CF,AD∥CE,连接BC,CD,则∠A的度数是()A.45°B.50°C.55°D.80°答案:B分析:连接AC并延长交EF于点M.由平行线的性质得∠3=∠1,∠2=∠4,再由等量代换得∠BAD=∠3+∠4=∠1+∠2=∠FCE,先求出∠FCE即可求出∠A.解:连接AC并延长交EF于点M.∵AB∥CF,∴∠3=∠1,∵AD∥CE,∴∠2=∠4,∴∠BAD=∠3+∠4=∠1+∠2=∠FCE,∵∠FCE=180°−∠E−∠F=180°−80°−50°=50°,∴∠BAD=∠FCE=50°,故选B.小提示:本题主要考查了平行线的性质以及三角形的内角和定理,属于基础题型.10、如图,点A、B、C、D、E在同一平面内,连接AB、BC、CD、DE、EA,若∠BCD=100°,则∠A+∠B+∠D+∠E=()A.220°B.240°C.260°D.280°答案:D分析:连接BD,根据三角形内角和求出∠CBD+∠CDB,再利用四边形内角和减去∠CBD和∠CDB的和,即可得到结果.解:连接BD,∵∠BCD=100°,∴∠CBD+∠CDB=180°-100°=80°,∴∠A+∠ABC+∠E+∠CDE=360°-∠CBD-∠CDB=360°-80°=280°,故选D.小提示:本题考查了三角形内角和,四边形内角和,解题的关键是添加辅助线,构造三角形和四边形.填空题11、如图,在△ABC中,∠F=16°,BD、CD分别平分∠ABC、∠ACB,M、N、Q分别在DB、DC、BC的延长线上,BE、CE分别平分∠MBC、∠BCN,BF、CF分别平分∠EBC、∠ECQ,则∠A=_______.答案:52°分析:根据三角形外角的性质和角平分线的定义可求出∠E,利用三角形内角和求出∠5+∠6+∠1,得到∠MBC+∠NCB,从而求出∠DBC+∠DCB,再次利用角平分线的定义和三角形内角和得到∠A.解:∵BF、CF分别平分∠EBC、∠ECQ,∴∠5=∠6,∠2=∠3+∠4,∵∠3+∠4=∠5+∠F,∠2+∠3+∠4=∠5+∠6+∠E,即∠2=∠5+∠F,2∠2=2∠5+∠E,∴2∠F=∠E=32°,∵BE、CE分别平分∠MBC、∠BCN,∴∠5+∠6=12∠MBC,∠1=12∠NCB,∴∠5+∠6+∠1=12(∠MBC+∠NCB),∵∠E=180°−(∠5+∠6+∠1)=32°,∴∠5+∠6+∠1=148°,∴∠MBC+∠NCB=2(∠5+∠6+∠1)=296°,∵BD、CD分别平分∠ABC、∠ACB,∴∠DBC=12∠ABC,∠DCB=12∠ACB,∴∠DBC+∠DCB=180°−∠MBC+180°−∠NCB=360°−(∠MBC+∠NCB)=64°,∴∠A=180°−(∠ABC+∠ACB)=180°−2(∠DBC+∠DCB)=52°,所以答案是:52°.小提示:本题考查了三角形内角和定理、三角形外角性质、角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.12、如图,BE 是△ABC 的中线,点D 是BC 边上一点,BD =2CD ,BE 、AD 交于点F ,若△ABC 的面积为24,则S △BDF ﹣S △AEF 等于_____.答案:4分析:由△ABC 的面积为24,得S △ABC =12BC •hBC =12AC •hAC =24,根据AE =CE =12AC ,得S △AEB =12AE •hAC ,S △BCE =12EC •hAC ,即S △AEF +S △ABF =12①,同理可得S △BDF +S △ABF =16②,②-①即可求得. 解:∵S △ABC =12BC •hBC =12AC •hAC =24,∴S △ABC =12(BD +CD )•hBC =12(AE +CE )•hAC =24,∵AE =CE =12AC ,S △AEB =12AE •hAC ,S △BCE =12EC •hAC ,∴S △AEB =S △CEB =12S △ABC =12×24=12, 即S △AEF +S △ABF =12①,同理:∵BD =2CD ,BD +CD =BC ,∴BD =23BC ,S △ABD =12BD •hBC ,∴S △ABD =23S △ABC =23×24=16,即S △BDF +S △ABF =16②,②-①得:S △BDF -SAEF =(S △BDF +S △ABF )-(S △AEF +S △ABF )=16-12=4,所以答案是:4.小提示:本题主要考查三角形的面积及等积变换,解答此题的关键是等积代换.13、如图,在△ABC 中,∠A =α,∠ABC 的平分线与∠ACD 的平分线交于点A 1,得∠A 1,∠A 1BC 的平分线与∠A 1CD 的平分线交于点A 2,得∠A 2,……,∠A 2008BC 的平分线与∠A 2008CD 的平分线交于点A 2009,得∠A 2009,则∠A 2009=_________.答案:122009α分析:根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD =∠A +∠ABC ,∠A 1CD =∠A 1+∠A 1BC ,根据角平分线的定义可得∠A 1CD =12∠ACD ,∠A 1BC =12∠ABC ,然后整理即可得到∠A 1=12∠A ;同理可发现规律,按照规律求出∠A 2009即可.解:(1)由三角形的外角性质得,∠ACE =∠A +∠ABC ,∠DCE =∠DBC +∠D ,∴∠A =∠ACD ﹣∠ABC ,∵∠ABC 的角平分线与∠ACE 的外角平分线交于D ,∴2∠A 1CD =∠ACD ,2∠A 1BC =∠ABC ,∴∠A =2∠A 1CD ﹣2∠A 1BC =2(∠A 1CD ﹣∠A 1BC )=2∠A 1;∴∠A 1=α2,同理可得:∠A 2=12∠A 1=α22;∠A 3=12∠A 2=α23;∠A 4=12∠A 3=α24;…∴∠A2009=1α.22009α.所以答案是:122009小提示:本题考查了三角形的内角和定理,角平分线的定义,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键.14、已知a,b,c是△ABC的三边长,a,b满足|a﹣7|+(b﹣1)2=0,c为奇数,则c=_____.答案:7分析:根据非负数的性质列式求出a、b的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c的取值范围,再根据c是奇数求出c的值.∵a,b满足|a﹣7|+(b﹣1)2=0,∴a﹣7=0,b﹣1=0,解得a=7,b=1,∵7﹣1=6,7+1=8,∴6<c<8,又∵c为奇数,∴c=7,所以答案是:7.小提示:本题考查非负数的性质:偶次方,解题的关键是明确题意,明确三角形三边的关系.15、如图,在△ABC中,AE是△ABC的角平分线,D是AE延长线上一点,DH⊥BC于点H.若∠B=30°,∠C=50°,则∠EDH=____________.答案:10°分析:在△EFD 中,由三角形的外角性质知:∠HED =∠AEC =∠B +12∠BAC ,所以∠B +12∠BAC +∠EDH =90°;联立△ABC 中,由三角形内角和定理得到的式子,即可推出∠EDH =12(∠C -∠B ). 解:由三角形的外角性质知:∠HED =∠AEC =∠B +12∠BAC ,故∠B +12∠BAC +∠EDH =90° ①, △ABC 中,由三角形内角和定理得:∠B +∠BAC +∠C =180°,即:12∠C +12∠B +12∠BAC =90° ②, ②-①,得:∠EDH =12(∠C -∠B )=12×(50°-30°)=10°.所以答案是:10°.小提示:本题考查三角形内角和定理、三角形的外角性质以及角平分线的定义等知识,解题的关键是证明∠EFD =12(∠C -∠B ).解答题16、如图,CE 平分∠ACD ,F 为CA 延长线上一点,FG//CE 交AB 于点G ,∠ACD =140°,∠B =45°,求∠AGF 的度数.答案:25°分析:根据角平分线的定义求出∠ACE ,再根据两直线平行,内错角相等可得∠AFG =∠ACE ,然后利用三角形的一个外角等于与它不相邻的两个内角的和列式求出∠GAF ,根据三角形的内角和定理即可得到结论. 解:∵CE 平分∠ACD ,∠ACD =140°∴∠ACE=12∠ACD=12×140°=70°,∠ACB=180°−∠ACD=40°,∵FG//CE,∴∠AFG=∠ACE=70°,∵∠FAG=∠B+∠ACB=85°,∴∠AGF=180°−∠AFG−∠FAG=25°,故∠AGF的度数是25°.小提示:本题考查了三角形的内角和定理,角平分线的定义,平行线的性质,以及三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图,理清图中各角度之间的关系是解题的关键.17、用两种方法证明“三角形的外角和等于360°”如图,∠BAE、∠FBC、∠DCA是△ABC的三个外角.求证∠BAE+∠FBC+∠DCA=360(1)第一种思路可以用下面的框图表示,请填写其中的空格:(2)根据第二种思路,完成证明.答案:(1)①∠BAC+∠ABC+∠ACB=180°;②∠BAC;③∠ACB;④三角形的外角等于与它不相邻的两个内角的和(2)见解析分析:(1)根据三角形内角和以及外角性质填写即可;(2)过B作BM∥AC,即可利用平行线把三个外角集中到一点,最后利用周角360°证明.(1)①根据后面推论是根据三角形内角和,所以答案是:∠BAC+∠ABC+∠ACB=180°;根据左右两边的等式可以推测是根据外角的性质填写,∠FBC=∠BAC+∠ACB,所以答案是:②∠BAC;③∠ACB,④三角形的外角等于与它不相邻的两个内角的和(2)过B作BM∥AC,∴∠EAB=∠MBF,∠ECD=∠MBC∵∠FBC+∠MBF+∠MBC=360°∴∠BAE+∠FBC+∠DCA=360°小提示:本题考查了三角形内角和定理、三角形的外角的性质、平行线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18、已知:如图,点E在AC上,点F在AB上,BE、CF交于点O,且∠C−∠B=20°,∠EOF−∠A=70°,求∠C的度数.答案:45°分析:先根据三角形外角的性质得到∠BFC=∠A+∠C,∠EOF=∠B+∠BFC,从而推出∠EOF-∠A=∠C+∠B,再由∠EOF-∠A=70°,即可得到∠C=70°-∠B,再根据∠C-∠B=20°,进行求解即可.解:∵∠BFC=∠A+∠C,∠EOF=∠B+∠BFC,∴∠EOF=∠A+∠C+∠B,即∠EOF-∠A=∠C+∠B∵∠EOF-∠A=70°,∴∠C+∠B=70°,即∠C=70°-∠B,∵∠C-∠B=20°,∴70°-2∠B=20°,∴∠B=25°,∴∠C=45°.小提示:本题主要考查了三角形外角的性质,解题的关键在于能够熟练掌握三角形外角的性质.。
八年级数学上册第十一章三角形必考考点训练(带答案)
八年级数学上册第十一章三角形必考考点训练单选题1、如图,AD,BE,CF依次是△ABC的高、中线和角平分线,下列表达式中错误的是()A.AE=CE B.∠ADC=90°C.∠CAD=∠CBE D.∠ACB=2∠ACF答案:C分析:根据三角形的高、中线和角平分线的定义(1)三角形的角平分线定义:三角形的一个角的平分线与这个角的对边相交,连接这个角的顶点和交点的线段叫做三角形的角平分线;(2)三角形的中线定义:在三角形中,连接一个顶点和它所对边的中点的连线段叫做三角形的中线;(3)三角形的高定义:从三角形一个顶点向它的对边(或对边所在的直线)作垂线,顶点和垂足间的线段叫做三角形的高线,简称为高.求解即可.解:A、BE是△ABC的中线,所以AE=CE,故本表达式正确;B、AD是△ABC的高,所以∠ADC=90,故本表达式正确;C、由三角形的高、中线和角平分线的定义无法得出∠CAD=∠CBE,故本表达式错误;D、CF是△ABC的角平分线,所以∠ACB=2∠ACF,故本表达式正确.故选:C.小提示:本题考查了三角形的高、中线和角平分线的定义,是基础题,熟记定义是解题的关键.2、如图,已知AB⊥BD,AC⊥CD,∠A=50°,则∠D的度数为()A.40°B.50°C.60°D.70°答案:B分析:利用两个三角形的内角和都为180°,结合相等的角即可求解.∵AB⊥BD,AC⊥CD,∴∠B=∠C=90°,又∵∠BEA=∠CED,且∠BEA+∠B+∠A=∠CED+∠C+∠D=180°,∴∠D=∠A=50°,故选:B.小提示:本题考查了三角形的内角和等于180°,熟记三角形的内角和公式是解题的关键.3、下列长度的三条线段与长度为5的线段能组成四边形的是()A.1,1,1B.1,1,8C.1,2,2D.2,2,2答案:D分析:若四条线段能组成四边形,则三条较短边的和必大于最长边,由此即可完成.A、1+1+1<5,即这三条线段的和小于5,根据两点间距离最短即知,此选项错误;B、1+1+5<8,即这三条线段的和小于8,根据两点间距离最短即知,此选项错误;C、1+2+2=5,即这三条线段的和等于5,根据两点间距离最短即知,此选项错误;D、2+2+2>5,即这三条线段的和大于5,根据两点间距离最短即知,此选项正确;故选:D.小提示:本题考查了两点间线段最短,类比三条线段能组成三角形的条件,任两边的和大于第三边,因而较短的两边的和大于最长边即可,四条线段能组成四边形,作三条线段的和大于第四条边,因而较短的三条线段的和大于最长的线段即可.4、要得知作业纸上两相交直线AB,CD所夹锐角的大小,发现其交点不在作业纸内,无法直接测量.两同学提供了如下间接测量方案(如图1和图2):对于方案Ⅰ、Ⅱ,说法正确的是()A.Ⅰ可行、Ⅱ不可行B.Ⅰ不可行、Ⅱ可行C.Ⅰ、Ⅱ都可行D.Ⅰ、Ⅱ都不可行答案:C分析:用夹角可以划出来的两条线,证明方案Ⅰ和Ⅱ的结果是否等于夹角,即可判断正误方案Ⅰ:如下图,∠BPD即为所要测量的角∵∠HEN=∠CFG∴MN∥PD∴∠AEM=∠BPD故方案Ⅰ可行方案Ⅱ:如下图,∠BPD即为所要测量的角在△EPF中:∠BPD+∠PEF+∠PFE=180°则:∠BPD=180°−∠AEH−∠CFG故方案Ⅱ可行故选:C小提示:本题考查平行线的性质和判定,三角形的内角和;本题的突破点是用可画出夹角的情况进行证明5、刘零想做一个三角形的框架,她有两根长度分别为6cm和8cm的细木条,需要将其中一根木条分为两段,如果不考虑损耗和接头部分,那么可以分成两段的是()A.6cm的木条B.8cm的木条C.两根都可以D.两根都不行答案:B分析:利用三角形的三边关系可得答案.解:利用三角形的三边关系可得应把8cm的木条截成两段,如将8cm的线段分成3cm和5cm或4cm和4cm,所截成的两段线段之和大于6,所以,可以,而6cm的线段无论如何分,分成的两段线段之和都小于8,所以,不可以.故选:B.小提示:此题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边.6、在矩形ABCD中,一条直线将矩形任意分为两部分,设这两部分图形的内角和分别为x、y,则x+y的和是()A.360°、540°、720°B.360°、540°C.540°、720°D.360°、720°答案:A分析:分三种情况:①一条直线将矩形分为两个三角形,②一条直线将矩形分为一个三角形和一个四边形,③一条直线将矩形分为两个四边形,再根据三角形和四边形的内角和定理求解即可.解:分三种情况:①一条直线将矩形分为两个三角形,如图1所示:则x+y=180°+180°=360°;②一条直线将矩形分为一个三角形和一个四边形,如图2所示:则x+y=180°+360°=540°;③一条直线将矩形分为两个四边形,如图3所示:则x+y=360°+360°=720°;④一条直线将矩形分为1个三角形和1个五边形,如图4所示:则x+y=180°+540°=720°;综上所述,x+y的和是360°或540°或720°,故选:A.小提示:本题考查了三角形和四边形的内角和,分类讨论是解题的关键.7、一个正多边形的每个外角都等于40°,则它的内角和是()A.1000°B.1620°C.1260°D.1080°答案:C分析:先根据多边形的外角和求多边形的边数,再根据多边形的内角和公式求出即可.解:设这个多边形是n边形,根据多边形的外角和为360°可得,40°×n=360°,解得n=9.所以这个多边形的内角和为(9-2)×180°=1260°.故选C.小提示:本题考查了多边形的内角与外角,能正确求出多边形的边数是解此题的关键,注意:多边形的外角和等于360°,边数为n的多边形的内角和=(n−2)×180°.8、当n边形边数增加2条时,其内角和增加()A.180°B.360°C.540°D.720°答案:B分析:根据n边形的内角和定理即可求解.解:原来的多边形的边数是n,则新的多边形的边数是n+2.(n+2−2)•180−(n−2)•180=360°.故选:B.小提示:本题主要考查了多边形的内角和定理,多边形的边数每增加一条,内角和就增加180度.9、在△ABC中,∠A=12∠B=13∠C,则△ABC为()三角形.A.锐角B.直角C.钝角D.等腰答案:B分析:根据∠A=12∠B=13∠C分别设出三个角的度数,再根据三角形的内角和为180°列出一个方程,解此方程即可得出答案.∵∠A=12∠B=13∠C∴可设∠A=x,∠B=2x,∠C=3x根据三角形的内角和可得:x+2x+3x=180°解得:x=30°∴∠A=30°,∠B=60°,∠C=90°因此△ABC是直角三角形故答案选择B.小提示:本题主要考查的是三角形的基本概念.10、如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=( )A.35°B.95°C.85°D.75°答案:C分析:根据CE是△ABC的外角∠ACD的平分线,∠ACE=60°,得出∠ACD=120°;再根据三角形的外角等于与它不相邻的两个内角和即可求解.解:∵CE是△ABC的外角∠ACD的平分线,∠ACE=60°∴∠ACD=2∠ACE=120°∵∠ACD=∠B+∠A∴∠A=∠ACD-∠B=120°-35°=85°故选:C.小提示:本题考查了三角形外角性质,角平分线定义的应用,注意:三角形的一个外角等于和它不相邻的两个内角的和.填空题11、如图,在△ABC中,∠1=∠2,∠3=∠4,∠A=80°,则x=______.答案:130分析:由∠1+∠2+∠3+∠4+∠A=180°可得∠1+∠2+∠3+∠4=100°,再由∠1=∠2,∠3=∠4即可求解;解:∵∠1+∠2+∠3+∠4+∠A=180°,∠A=80°,∴∠1+∠2+∠3+∠4=100°∵∠1=∠2,∠3=∠4∴2(∠2+∠4)=100°,∴∠2+∠4=50°∴x°=180°−(∠2+∠4)=180°−50°=130°所以答案是:130.小提示:本题主要考查三角形的内角和定理,掌握三角形的内角和定理并灵活应用是解本题的关键.12、如图1,赤道式日晷是中国古代最经典和传统的计时仪器,由底座,晷面、晷针三部分组成,其中底坐面与日晷所处地球半径垂直;(1)晷针与晷面夹角为___________;(2)如图2,日晷所处纬度α为50°,若太阳光(平行光)与日晷底座面夹角为60°,则太阳光与该晷面所夹锐角度为___________.答案:90°20°分析:①由垂直于两平行线之一的直线,必垂直于另一条平行线,即可判断出晷针与晷面垂直,即晷针与晷面夹角为90°.②由平行线的性质即可求出∠JHI=130°,根据题意可求出∠JIH=30°,再根据三角形内角和定理即可求出∠IJH=20°,最后由对顶角相等即可求出∠AJC=∠IJH=20°,即太阳光与该晷面所夹锐角度为20°.①根据题意晷面与赤道平行,地轴与赤道垂直,∴地轴与晷面垂直,又∵晷针与地轴平行,∴晷针与晷面垂直.即晷针与晷面夹角为90°.②可将题干中图简化为如下图:根据题意结合图形可知:AB//CD,GO⊥EF,∠AOG=50°,∠EIJ=60°.∵AB//CD,∴∠AOG+∠CHO=180°,即50°+∠CHO=180°,∴∠CHO=130°,即∠JHI=130°.∵∠AOG=50°,∠EIJ=60°.∴∠JIH=90°−60°=30°.∴∠IJH=180°−∠JIH−∠JHI=180°−30°−130°=20°.∴∠AJC=∠IJH=20°.即太阳光与该晷面所夹锐角度为20°.故答案为90°,20°.小提示:本题考查平行线的性质和三角形内角和定理.理解题意,能看懂赤道式日晷的二维图形是解答本题的关键.13、如图所示,AD是△ABC的中线.若AB=7cm,AC=5cm,则△ABD和△ADC的周长的差为____cm.答案:2分析:将△ABD和△ADC的周长表示出来,可以得到周长差即为AB﹣AC的差,算出即可.解:∵AD是BC边上的中线,∴BD=CD,∴△ABD和△ACD的周长差为:(AB+AD+BD)﹣(AC+AD+CD)=AB﹣AC,∵AB=7cm,AC=5cm,∴△ABD和△ACD的周长差=7﹣5=2cm.所以答案是:2.小提示:本题考查了三角形中线的定义、三角形的周长,掌握三角形中线的定义是解题关键.三角形中线的定义:在三角形中,连接一个顶点和它所对的边的中点的线段叫做三角形的中线.14、如图,点D在△ABC的边BA的延长线上,点E在BC边上,连接DE交AC于点F,若∠DFC=3∠B=117°,∠C=∠D,则∠BED=________.答案:102°分析:首先根据∠DFC=3∠B=117°,可以算出∠B=39°,然后设∠C=∠D=x°,根据外角与内角的关系可得39+x+x=117,再解方程即可得到x=39,再根据三角形内角和定理求出∠BED的度数.解:∵∠DFC=3∠B=117°,∴∠B=39°,设∠C=∠D=x°,39+x+x=117,解得:x=39,∴∠D=39°,∴∠BED=180°−39°−39°=102°.所以答案是:102°.小提示:此题主要考查了三角形外角的性质,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.15、已知AD、AE分别是△ABC的高和中线,若BD=2,CD=1,则DE的长为______.答案:0.5或1.5分析:根据题意作出草图,分类讨论即可求解.解:AD、AE分别是△ABC的高和中线,BD=2,CD=1,如图,当△ABC是钝角三角形时,∴BC=BD−CD=1∴DE=BD−BE=BD−12BC=2−12=32当△ABC是锐角三角形时,∵BC =BD +DC =2+1=3∴BE =12BC =32∴DE =BD −BE =2−32=12当△ABC 是直角三角形时,CD =0,不合题意,所以答案是:12或32 小提示:本题考查了三角形的高线,中线的定义,线段的和差关系,分类讨论是解题的关键.解答题16、已知△ABC 的三边长分别为1,4,a ,化简:|a −2|−|a −1|+|a −6|.答案:5−a分析:直接利用三角形三边关系进而得出a 的取值范围,进而利用绝对值的性质化简得出答案.解:因为△ABC 的三边长分别为1,4,a .所以4-1<a <4+1.解得3<a <5.∴a −2>0,a −1>0,a −6<0,∴|a −2|−|a −1|+|a −6|=a −2−(a −1)+6−a=5−a .小提示:此题主要考查了三角形三边关系以及绝对值的性质,正确得出a 的取值范围是解题关键.17、已知a ,b ,c 分别为△ABC 的三边,且满足a +b =3c −2,a −b =2c −6.(1)求c 的取值范围;(2)若△ABC 的周长为12,求c 的值.答案:(1)2<c<6(2)3.5分析:(1)根据三角形任意两边之和大于第三边得出3c-2>c,任意两边之差小于第三边得出|2c-6|<c,列不等式组求解即可;(2)由△ABC的周长为12,a+b=3c-2,4c-2=12,解方程得出答案即可.(1)∵a,b,c分别为△ABC的三边,a+b=3c-2,a-b=2c-6,∴{3c−2>c|2c−6|<c,解得:2<c<6.故c的取值范围为2<c<6;(2)∵△ABC的周长为12,a+b=3c-2,∴a+b+c=4c-2=12,解得c=3.5.故c的值是3.5.小提示:此题考查三角形的三边关系,利用三角形任意两边之和大于第三边,任意两边之差小于第三边,建立不等式解决问题.18、如图,在△ABC中,AD是BC边上的中线,△ABD的周长比△ADC的周长多1,AB与AC的和为11(1)求AB、AC的长;(2)求BC边的取值范围.答案:(1)AB=6,AC=5(2)1<BC<11分析:(1)根据三角形中线的定义,BD=CD.所以△ABD和△ADC的周长之差也就是AB与AC的差,然后联立关于AB、AC的二元一次方程组,利用加减消元法求解即可.(2)根据三角形三边关系解答即可.(1)解:∵AD是BC边上的中线,∴BD=CD,∴△ABD的周长﹣△ADC的周长=(AB+AD+BD)−(AC+AD+CD)=AB−AC=1,即AB−AC=1①,又AB+AC=11②,①+②得:2AB=12,解得AB=6,②−①得:2AC=10,解得AC=5,∴AB和AC的长分别为:AB=6,AC=5;(2)∵AB=6,AC=5;∴1<BC<11.小提示:本题考查了三角形的三边关系,三角形的中线定义,二元一次方程组的求解,利用加减消元法求解是解题的关键.。
八年级数学上册第十一章三角形知识总结例题(带答案)
八年级数学上册第十一章三角形知识总结例题单选题1、当n边形边数增加2条时,其内角和增加()A.180°B.360°C.540°D.720°答案:B分析:根据n边形的内角和定理即可求解.解:原来的多边形的边数是n,则新的多边形的边数是n+2.(n+2−2)•180−(n−2)•180=360°.故选:B.小提示:本题主要考查了多边形的内角和定理,多边形的边数每增加一条,内角和就增加180度.2、在△ABC中,∠A=12∠B=13∠C,则△ABC为()三角形.A.锐角B.直角C.钝角D.等腰答案:B分析:根据∠A=12∠B=13∠C分别设出三个角的度数,再根据三角形的内角和为180°列出一个方程,解此方程即可得出答案.∵∠A=12∠B=13∠C∴可设∠A=x,∠B=2x,∠C=3x根据三角形的内角和可得:x+2x+3x=180°解得:x=30°∴∠A=30°,∠B=60°,∠C=90°因此△ABC是直角三角形故答案选择B.小提示:本题主要考查的是三角形的基本概念.3、如图,AD,AE,AF分别是△ABC的中线,角平分线,高,下列各式中错误的是()A.BC=2CD B.∠BAE=1∠BAC2C.∠AFB=90°D.AE=CE答案:D分析:根据三角形的高线,角平分线和中线解答即可;解:A.∵AD是△ABC的中线∴BC=2CD,故选项正确,不符合题意;B.∵AE是△ABC的角平分线∴∠BAE=1∠BAC2故选项正确,不符合题意;C.∵AF分别是△ABC的高,∴∠AFB=90°故选项正确,不符合题意;D.AE=CE不一定成立,故选项错误,符合题意.故选:D.小提示:此题考查三角形的高线,角平分线和中线,关键是根据三角形的高线,角平分线和中线的定义进行判断即可.4、将一副直角三角板按如图所示的位置摆放,使得它们的直角边互相垂直,则∠1的度数是()A.95°B.100°C.105°D.110°答案:C分析:根据题意求出∠2、∠4,根据对顶角的性质、三角形的外角性质计算即可.由题意得,∠2=45°,∠4=90°−30°=60°,∴∠3=∠2=45°,由三角形的外角性质可知,∠1=∠3+∠4=105°,故选C.小提示:本题考查的是三角形的外角性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.5、下列图形具有稳定性的是()A.①②B.③④C.②③D.①②③答案:C分析:根据三角形具有稳定性,只要图形分割成了三角形,则具有稳定性.解:因为三角形具有稳定性,四边形不具有稳定性,图②③便具有稳定性,故选C.小提示:此题考查了三角形的稳定性和四边形的不稳定性,注意根据三角形的稳定性进行判断.6、如图,Rt△ABC中,∠ABC=90°,BD⊥AC于点D,DE⊥BC于点E,则下列说法正确的是( )A.DE是△ACE的高B.BD是△ADE的高C.AB是△BCD的高D.DE是△BCD的高答案:D分析:根据三角形高的定义求解即可.三角形的高:从三角形的一个顶点到它的对边作一条垂线,顶点到垂足之间的线段叫做三角形的高.解:A、DE不是△ACE的高,选项错误,不符合题意;B、BD不是△ADE的高,选项错误,不符合题意;C、AB不是△BCD的高,选项错误,不符合题意;D、DE是△BCD的高,选项正确,符合题意.故选:D.小提示:此题考查了三角形的高,解题的关键是熟练掌握三角形高的定义.三角形的高:从三角形的一个顶点到它的对边作一条垂线,顶点到垂足之间的线段叫做三角形的高.7、如图,AB=AC,AD=AE,∠BAC=∠DAE,点B,D,E在同一直线上,若∠1=25°,∠2=35°,则∠3的度数是()A.50°B.55°C.60°D.70°答案:C分析:由∠BAC=∠DAE可证得∠BAD=∠CAE,继而证明△BAD≅△CAE(SAS),由全等三角形对应角相等得到∠2=∠CAE,∠ABD=∠1,最后由三角形的外角性质解答即可.解:∵∠BAC=∠DAE∴∠BAC−∠DAC=∠DAE−∠DAC∴∠BAD=∠CAE∵AB=AC,AD=AE,∴△BAD≅△CAE(SAS)∴∠2=∠CAE,∠ABD=∠1∵∠1=25°,∠2=35°∴∠3=∠2+∠ABD=∠2+∠1=60°故选:C.小提示:本题考查全等三角形的判定与性质、三角形的外角性质等知识,是重要考点,掌握相关知识是解题关键.8、若长度分别是a、3、5的三条线段能组成一个三角形,则a的值可以是()A.1B.2C.4D.8答案:C分析:根据三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边,求出a的取值范围即可得解.根据三角形的三边关系得5−3<a<5+3,即2<a<8,则选项中4符合题意,故选:C.小提示:本题主要考查了三角形的三边关系,熟练掌握相关不等关系是解决本题的关键.9、若一个正多边形的一个外角是60°,则这个正多边形的边数是()A.10B.9C.8D.6答案:D分析:根据多边形的外角和等于360°计算即可.解:360°÷60°=6,即正多边形的边数是6.故选:D.小提示:本题考查了多边形的外角和定理,掌握多边形的外角和等于360°,正多边形的每个外角都相等是解题的关键.10、下列说法中正确的是()A.三角形的三条中线必交于一点B.直角三角形只有一条高C.三角形的中线可能在三角形的外部D.三角形的高线都在三角形的内部答案:A分析:根据三角形中线及高线的定义逐一判断即可得答案.A.三角形的三条中线必交于一点,故该选项正确,B.直角三角形有三条高,故该选项错误,C.三角形的中线不可能在三角形的外部,故该选项错误,D.三角形的高线不一定都在三角形的内部,故该选项错误,故选:A.小提示:本题考查三角形的中线及高线,熟练掌握定义是解题关键.填空题11、如图,E为△ABC的BC边上一点,点D在BA的延长线上,DE交AC于点F,∠B=46°,∠C=30°,∠EFC =70°,则∠D=______.答案:34°##34度分析:根据题意先求∠DAC,再依据△ADF三角形内角和180°可得答案.解:∵∠B=46°,∠C=30°,∴∠DAC=∠B+∠C=76°,∵∠EFC=70°,∴∠AFD=70°,∴∠D=180°-∠DAC-∠AFD=34°,所以答案是:34°.小提示:本题考查三角形内角和定理及三角形一个外角等于不相邻的两个内角的和,解题的关键是掌握三角形内角和定理.12、如图,在△ABC中,D,E分别是边AB,AC上一点,将△ABC沿DE折叠,使点A的对称点A'落在边BC 上,若∠A=50°,则∠1+∠2+∠3+∠4=______.答案:230°分析:依据三角形内角和定理,可得△ABC中,∠B+∠C=130°,再根据∠1+∠2+∠B=180°,∠3+∠4+∠C=180°,即可得出∠1+∠2+∠3+∠4=360°﹣(∠B+∠C)=230°.解:∵∠A=50°,∴△ABC中,∠B+∠C=130°,又∵∠1+∠2+∠B=180°,∠3+∠4+∠C=180°,∴∠1+∠2+∠3+∠4=360°﹣(∠B+∠C)=360°﹣130°=230°,所以答案是:230°.小提示:本题主要考查三角形内角和,熟练掌握三角形内角和及角之间的等量关系是解题的关键.13、如图,已知△ABC的面积为1,分别倍长(延长一倍)边AB,BC,CA得到△A1B1C1,再分别倍长边A1B1,B1C1,C1A1得到△A2B2C2…按此规律,倍长2021次后得到的△A2021B2021C2021的面积为_________.答案:72021分析:根据等底等高的三角形的面积相等可得三角形的中线把三角形分成两个面积相等的三角形,然后求出第一次倍长后△A1B1C1的面积是△ABC的面积的7倍,依此规律可得结论.解:连接AB1、BC1、CA1,根据等底等高的三角形面积相等,△A1BC、△A1B1C、△AB1C、△AB1C1、△ABC1、△A1BC1、△ABC的面积都相等,所以,S△A1B1C1=7S△ABC,同理S△A2B2C2=7S△A1B1C1=72S△ABC,依此类推,△A2021B2021C2021的面积为=72021S△ABC,∵△ABC的面积为1,∴△A2021B2021C2021的面积=72021.所以答案是:72021.小提示:本题考查了三角形的面积,根据等底等高的三角形的面积相等求出一次倍长后所得的三角形的面积等于原三角形的面积的7倍是解题的关键.14、在△ABC中,AD为边BC上的高,∠ABC=30°,∠CAD=20°,则∠BAC是___________度.答案:40或80##80或40分析:根据题意,由于△ABC类型不确定,需分三种情况:高在三角形内部、高在三角形边上和高在三角形外部讨论求解.解:根据题意,分三种情况讨论:①高在三角形内部,如图所示:∵在ΔABD中,AD为边BC上的高,∠ABC=30°,∴∠BAD=90°−∠ABC=90°−30°=60°,∵∠CAD=20°,∴∠BAC=∠BAD+∠CAD=60°+20°=80°;②高在三角形边上,如图所示:可知∠CAD=0°,∵∠CAD=20°,故此种情况不存在,舍弃;③高在三角形外部,如图所示:∵在ΔABD中,AD为边BC上的高,∠ABC=30°,∴∠BAD=90°−∠ABC=90°−30°=60°,∵∠CAD=20°,∴∠BAC=∠BAD−∠CAD=60°−20°=40°;综上所述:∠BAC=80°或40°,所以答案是:40或80.小提示:本题考查求角度问题,在没有图形的情况下,必须考虑清楚各种不同的情况,根据题意分情况讨论是解决问题的关键.15、如图,∠1,∠2,∠3是多边形的三个外角,边CD,AE的延长线交于点F,如果∠1+∠2+∠3=225°,那么∠DFE的度数是______.答案:45°分析:利用多边形的外角和为360°以及三角形内角和为180°,然后通过计算即可求解.解:∵多边形的外角和为360°,∴∠1+∠2+∠3+∠DEF+∠EDF=360°,又∵∠1+∠2+∠3=225°,∴∠DEF+∠EDF=135°,∵∠DEF+∠EDF+∠DFE=180°,∴∠DFE=180°-135°=45°.故答案是为45°.小提示:本题考查了多边形的外角和和三角形的内角和定理.解答题16、如图,在平面直角坐标系中,A(−1,5),B(−1,0),C(−4,3),(1)过点B作DB∥CA,且点D在格点上,则点D的坐标为______ .(2)将△ABC向右平移3个单位长度,再向下平移2个单位长度得到△A1B1C1,在图中画出△A1B1C1;(3)直接写出直线AC与y轴的交点坐标______ .答案:(1)(-4,-2),(2,2),(5,4)(2)见解析(3)(0,17)3分析:(1)可以把AC平移使A点或C点为对应点,从而确定D点位置;(2)利用平移规律写出A1、B1、C1的坐标,然后描点即可;(3)延长CA交y轴于点T,设点T的坐标为(0,m),利用△AOC的面积列出关于m的方程,解方程即可.(1)解:如图所示:则点D的坐标是:(-4,-2),(2,2),(5,4).所以答案是: (-4,-2),(2,2),(5,4) .(2)解:将△ABC向右平移3个单位长度再向下平移2个单位长度后,则△A1B1C1即为所求作的三角形,如图所示:(3)解:延长CA交y轴于点T,如图所示:SΔAOC=4×5−12×3×4−12×2×3−12×1×5=172,设点T的坐标为(0,m),则SΔAOC=SΔOCT−SΔOAT=12×4m−12×m=32m,∴172=32m,解得:m=173,∴直线AC与y轴的交点坐标为(0,173).所以答案是:(0,173).小提示:本题考查平移变换,三角形的面积等知识,解题的的关键是掌握平移变换的性质,学会利用面积法构建方程求解,属于中考常考题型.17、用一条长为18cm的细绳围成一个等腰三角形.(1)如果腰长是底边长的2倍,那么各边的长是多少?(2)能围成有一边长是4cm的等腰三角形吗?为什么?答案:(1)365cm,365cm,185cm;(2)能,理由见解析分析:(1)设底边长为xcm,则腰长为2xcm,根据周长公式列一元一次方程,解方程即可求得各边的长;(2)题中没有指明4cm所在边是底还是腰,故应该分情况进行分析,注意利用三角形三边关系进行检验.解:(1)设底边长为xcm,∵腰长是底边的2倍,∴腰长为2xcm,∴2x+2x+x=18,解得,x=185cm,∴2x=2×185=365cm,∴各边长为:365cm,365cm,185cm.(2)①当4cm为底时,腰长=18−42=7cm;②当4cm为腰时,底边=18−4−4=10cm,∵4+4<10,∴不能构成三角形,故舍去;∴能构成有一边长为4cm的等腰三角形,另两边长为7cm,7cm.小提示:本题考查的是等腰三角形的性质及三角形的三边关系,在解答此类题目时要注意分类讨论,不要漏解.18、如果一个多边形的各边都相等,且各内角也都相等,那么这个多边形就叫做正多边形,如图,就是一组正多边形,观察每个正多边形中∠α的变化情况,解答下列问题.(1)将如表的表格补充完整:)°;(2)存在,n=9答案:(1)60°,45°,36°,30°,(180n分析:(1)根据计算、观察,可发现规律:正n边形中的∠α=(180)°;n)°,可得答案.(2)根据正n边形中的∠α=(180n解:(1)观察上面每个正多边形中的∠α,填写下表:)°;所以答案是:60°,45°,36°,30°,(n(2)存在,理由如下:∵设存在正n边形使得∠α=20°,)°.得∠α=20°=(180n解得:n=9,∴存在正n边形使得∠α=20°.,三角形的内角和定理,等小提示:本题考查了多边形内角与外角,每题都利用了正多边形的内角:(n−2)⋅180°n腰三角形的两底角相等.。
人教版八年级数学上册 第十一章 三角形知识归纳与题型突破(10类题型清单)
第十一章三角形知识归纳与题型突破(题型清单)01思维导图02知识速记一、三角形的定义由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.要点诠释:(1)三角形的基本元素:①三角形的边:即组成三角形的线段;②三角形的角:即相邻两边所组成的角叫做三角形的内角,简称三角形的角;③三角形的顶点:即相邻两边的公共端点.(2)三角形的定义中的三个要求:“不在同一条直线上”、“三条线段”、“首尾顺次相接”.(3)三角形的表示:三角形用符号“△”表示,顶点为A 、B 、C 的三角形记作“△ABC ”,读作“三角形ABC ”,注意单独的△没有意义;△ABC 的三边可以用大写字母AB 、BC 、AC 来表示,也可以用小写字母a 、b 、c 来表示,边BC 用a 表示,边AC 、AB 分别用b 、c 表示.二、三角形的三边关系定理:三角形任意两边之和大于第三边.推论:三角形任意两边的之差小于第三边.要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围.(3)证明线段之间的不等关系.三、三角形的分类1.按角分类:⎧⎪⎧⎨⎨⎪⎩⎩直角三角形三角形 锐角三角形斜三角形 钝角三角形要点诠释:①锐角三角形:三个内角都是锐角的三角形;②钝角三角形:有一个内角为钝角的三角形.2.按边分类:⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形 底边和腰不相等的等腰三角形等腰三角形 等边三角形要点诠释:①不等边三角形:三边都不相等的三角形;②等腰三角形:有两条边相等的三角形叫做等腰三角形,相等的两边都叫做腰,另外一边叫做底边,两腰的夹角叫顶角,腰与底边夹角叫做底角;③等边三角形:三边都相等的三角形.四、三角形的三条重要线段三角形的高、中线和角平分线是三角形中三条重要的线段,它们提供了重要的线段或角的关系,为我们以后深入研究三角形的一些特征起着很大的帮助作用,因此,我们需要从不同的角度弄清这三条线段,列表如下:线段名称三角形的高三角形的中线三角形的角平分线文字语言从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段.三角形中,连接一个顶点和它对边中点的线段.三角形一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段.图形语言作图语言过点A 作AD ⊥BC 于点D .取BC 边的中点D ,连接AD .作∠BAC 的平分线AD ,交BC 于点D .标示图形符号语言1.AD 是△ABC 的高.2.AD 是△ABC 中BC 边上的高.3.AD ⊥BC 于点D .4.∠ADC =90°,∠ADB =90°.1.AD 是△ABC 的中线.2.AD 是△ABC 中BC 边上的中线.3.BD =DC =12BC 4.点D 是BC 边的中点.1.AD 是△ABC 的角平分线.2.AD 平分∠BAC ,交BC 于点D .3.∠1=∠2=12∠BAC .(或∠ADC=∠ADB=90°)推理语言因为AD是△ABC的高,所以AD⊥BC.(或∠ADB=∠ADC=90°)因为AD是△ABC的中线,所以BD=DC=12BC.因为AD平分∠BAC,所以∠1=∠2=12∠BAC.用途举例1.线段垂直.2.角度相等.1.线段相等.2.面积相等.角度相等.注意事项1.与边的垂线不同.2.不一定在三角形内.—与角的平分线不同.重要特征三角形的三条高(或它们的延长线)交于一点.一个三角形有三条中线,它们交于三角形内一点.一个三角形有三条角平分线,它们交于三角形内一点.五、三角形的稳定性三角形的三条边确定后,三角形的形状和大小就确定不变了,这个性质叫做三角形的稳定性.要点诠释:(1)三角形的形状固定是指三角形的三个内角不会改变,大小固定指三条边长不改变.(2)三角形的稳定性在生产和生活中很有用.例如,房屋的人字梁具有三角形的结构,它就坚固而稳定;在栅栏门上斜着钉一条(或两条)木板,构成一个三角形,就可以使栅栏门不变形.大桥钢架、输电线支架都采用三角形结构,也是这个道理.(3)四边形没有稳定性,也就是说,四边形的四条边长确定后,不能确定它的形状,它的各个角的大小可以改变.四边形的不稳定性也有广泛应用,如活动挂架,伸缩尺.有时我们又要克服四边形的不稳定性,如在门框未安好之前,先在门框上斜着钉一根木板,使它不变形.六、三角形的内角和三角形内角和定理:三角形的内角和为180°.要点诠释:应用三角形内角和定理可以解决以下三类问题:①在三角形中已知任意两个角的度数可以求出第三个角的度数;②已知三角形三个内角的关系,可以求出其内角的度数;③求一个三角形中各角之间的关系.七、三角形的外角1.定义:三角形的一边与另一边的延长线组成的角叫做三角形的外角.如图,∠ACD是△ABC的一个外角.要点诠释:(1)外角的特征:①顶点在三角形的一个顶点上;②一条边是三角形的一边;③另一条边是三角形某条边的延长线.(2)三角形每个顶点处有两个外角,它们是对顶角.所以三角形共有六个外角,通常每个顶点处取一个外角,因此,我们常说三角形有三个外角.2.性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.要点诠释:三角形内角和定理和三角形外角的性质是求角度及与角有关的推理论证明经常使用的理论依据.另外,在证角的不等关系时也常想到外角的性质.3.三角形的外角和:三角形的外角和等于360°.要点诠释:因为三角形的每个外角与它相邻的内角是邻补角,由三角形的内角和是180°,可推出三角形的三个外角和是360°.八、多边形的概念1.定义:在平面内不在同一直线上的一些线段首尾顺次相接所组成的封闭图形叫做多边形.其中,各个角相等、各条边相等的多边形叫做正多边形.2.相关概念:边:组成多边形的各条线段叫做多边形的边.顶点:每相邻两条边的公共端点叫做多边形的顶点.内角:多边形相邻两边组成的角叫多边形的内角,一个n边形有n个内角.外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角.对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.3.多边形的分类:画出多边形的任何一边所在的直线,如果整个多边形都在这条直线的同一侧,那么这个多边形就是凸多边形,如果整个多边形不在直线的同一侧,这个多边形叫凹多边形.如图:要点诠释:(1)正多边形必须同时满足“各边相等”,“各角相等”两个条件,二者缺一不可;(2)过n 边形的一个顶点可以引(n -3)条对角线,n 边形对角线的条数为(3)2n n -;(3)过n 边形的一个顶点的对角线可以把n 边形分成(n -2)个三角形.九、多边形内角和n 边形的内角和为(n -2)·180°(n ≥3).要点诠释:(1)内角和公式的应用:①已知多边形的边数,求其内角和;②已知多边形内角和求其边数;(2)正多边形的每个内角都相等,都等于(2)180n n- °;十、多边形的外角和多边形的外角和为360°.要点诠释:(1)在一个多边形的每个顶点处各取一个外角,这些外角的和叫做多边形的外角和.n 边形的外角和恒等于360°,它与边数的多少无关;(2)正n 边形的每个内角都相等,所以它的每个外角都相等,都等于360n°;(3)多边形的外角和为360°的作用是:①已知各相等外角度数求多边形边数;②已知多边形边数求各相等外角的度数.凸多边形凹多边形03题型归纳题型一三角形的稳定性例题:(23-24七年级下·陕西咸阳·阶段练习)如图,墙上置物架的底侧一般会各设计一根斜杆,与水平和竖直方向的支架构成三角形,这是利用三角形的()A.全等性B.对称性C.稳定性D.灵活性巩固训练1.(23-24八年级上·云南昆明·期末)我国建造的港珠澳大桥全长55公里,集桥、岛、隧于一体,是世界最长的跨海大桥.如图,这是港珠澳大桥的斜拉索,它能拉住桥面,并将桥面向下的力通过钢索传给索塔,确保桥面的稳定性和安全性.那么港珠澳大桥斜拉索建设运用的数学原理是()A.三角形的不稳定性B.三角形的稳定性C.四边形的不稳定性D.四边形的稳定性3.(23-24七年级下·黑龙江哈尔滨·期中)如图,松花江大桥的钢架结构采用三角形的形状,这其中运用的数学道理是.4.(23-24七年级下·全国·假期作业)如图,建高楼常需要用塔吊来吊建筑材料,而塔吊的上部是三角形结构,这是因为三角形具有.题型二判断三边是否能构成三角形例题:(23-24七年级下·江苏盐城·期末)下列每组数分别表示3根小木棒的长度(单位:cm),其中能搭成三角形的是()A.4,5,10B.5,5,10C.5,8,10D.5,10,15巩固训练1.(23-24七年级下·海南儋州·期末)下列长度的三条线段中,能构成三角形的是()A.1,3,5B.2,4,6C.1,2,3D.3,4,52.(23-24七年级下·河北邢台·阶段练习)甲同学对下列三角形的边长分别进行标注,那么他标注错误的是()A.B.C.D.3.(2024·河北邯郸·二模)将一根吸管按如图所示的位置摆放在单位长度为1的数轴(不完整)上,吸管左-”处,右端对应数轴上的“5”处.若将该吸管剪成三段围成三角形,第一刀剪在数轴上的端对应数轴上的“8“5-”处,则第二刀可以剪在()A.“4-”处B.“3-”处C.“1-”处D.“2”处题型三已知三角形的两边长,求第三边的取值范围两边长分别为4与5,第三边的长为奇数,则第三边的长的例题:(23-24七年级下·重庆·期末)已知ABC最大值为.巩固训练1.(23-24七年级下·江苏无锡·期末)已知三角形的两边长为3和4,则第三条边长可以为.(请写出一个符合条件的答案)2.(23-24七年级下·黑龙江大庆·期中)一个三角形的两边长为2和6,第三边为奇数,则这个三角形的周长为.3.(23-24七年级下·内蒙古包头·期中)一个三角形的两边长分别为5和7,若x 为最长边且为整数,则此三角形的周长为.题型四判断是否三角形的高线例题:下列各图中,正确画出AC 边上的高的是()A .B .C .D .巩固训练1.下面四个图形中,线段BD 是ABC 的高的图形是()A .B .C .D .2.(2023秋·甘肃庆阳·八年级统考期末)如图,在ABC 中,A ∠是钝角,下列图中作BC 边上的高线,正确的是()A .B .C .D .3.如图,AD BC ⊥,EC BC ⊥,CF AB ⊥,点D ,C ,F 是垂足,下列说法错误的是()A .ABD △中,AD 是BD 边上的高B .ABD △中,EC 是BD 边上的高C .CEB 中,EC 是BC 边上的高D .CEB 中,FC 是BE 边上的高题型五根据三角形的中线求面积例题:(2023春·广东茂名·七年级校考阶段练习)如图,ABC 的面积为20,点D ,E ,F 分别为BC AD CE,,的中点,则阴影部分BFC △的面积为()A .4B .5C .6D .10巩固训练1.(2023春·山西太原·七年级山西大附中校考期中)如图,AD BE 、是ABC 的中线,则下列结论中,正确的个数有()(1)AOE COE S S = ;(2)AOB EODC S S = 四边形;(3)2BOC COE S S = ;(4)4ABC BOC S S = .A .1个B .2个C .3个D .4个2.(2023春·江苏扬州·七年级校联考阶段练习)如图,BD 是ABC 的中线,点E 、F 分别为BD CE 、的中点,若AEF △的面积为22cm ,则ABC 的面积是________2cm .3.(2023春·江苏南京·七年级校考阶段练习)如图,且满足13AE AD =,13AF AC =题型六与平行线有关的三角形内角和问题例题:(23-24七年级下·上海虹口·期中)如图,已知AB ED ∥,80EDC ∠=︒,53ECD ∠=︒,105B ∠=︒,那么ACB =∠.巩固训练1.(23-24七年级下·陕西渭南·期中)如图,在三角形ABC 中,点D ,H ,E 分别是边AB ,BC ,CA 上的点,连接DE ,DH ,F 为DH 上一点,连接EF ,若12180∠+∠=︒,365B ∠=∠=︒,52C ∠=︒.则FEC ∠的度数为︒.2.(23-24七年级下·陕西咸阳·期中)如图,AN 平分BAM ∠,BM 平分ABN ∠,AN BM ⊥于点C ,25MBN ∠=︒,则下列说法:①90BCN ∠=︒;②AM BN ;③50DAM ∠=︒;④60MAN ∠=︒,其中正确的是.(填序号)3.(23-24七年级下·上海浦东新·期中)如图,将一副直角三角板放在同一条直线AB 上,其中3045OMN OCD ∠=︒∠=︒,.将三角尺OCD 绕点O 以每秒10︒的速度顺时针方向旋转一周,设旋转的时间为t 秒.在旋转的过程中,边CD 恰好与边MN 平行,t 的值为.题型七与角平分线有关的三角形内角和问题例题:(23-24七年级下·江苏南京·期末)如图,在ABC 中,AD 平分BAC ∠,过点A 作EF BC ∥.若40EAB ∠=︒,80C ∠=︒,则ADC ∠=.巩固训练1.(23-24七年级下·上海浦东新·阶段练习)如图,在ABC 中,125BDC ∠=︒,如果ABC ∠与ACB ∠的平分线交于点D ,那么A ∠=度.2.(23-24七年级下·辽宁大连·期中)如图,在ABC 中,BD CD 、分别平分,ABC ACB BG CG ∠∠、、分别平分三角形的两个外角,48EBC FCB G ∠∠∠=︒、,则D ∠=︒.3.(23-24七年级下·湖南衡阳·期末)如图,在ABC 中,30B ∠=︒,70C ∠=︒,AE 平分BAC ∠,AD BC ⊥于点D .(1)求BAE ∠的度数.(2)求EAD ∠的度数.题型八三角形的外角的定义及性质例题:(23-24七年级下·四川乐山·期末)如图,在ABC 中,点D 在BC 的延长线上,70A ∠=︒,120ACD ∠=︒,则B ∠=︒.巩固训练1.(23-24七年级下·浙江杭州·阶段练习)如图,已知直线12l l ∥,154∠=︒,2100∠=︒,则A ∠=度.2.(23-24七年级下·江苏淮安·期末)如图,ABC 的两个外角的平分线交于点P .若64BPC ∠=︒,则A ∠=.3.(23-24七年级下·江西南昌·期末)已知直线12l l ∥,将含30︒角的直角三角板按如图所示摆放.若2140∠=︒,则1∠=.题型九多边形的内角和与外角和例题:(23-24七年级下·江苏镇江·期末)足球的表面是由12个正五边形和20个正六边形组成的.如图,将足球上的一个正六边形和它相邻的一个正五边形展开放平,则图中的ABC ∠=.巩固训练1.(23-24九年级下·重庆开州·阶段练习)如图,3∠和4∠是四边形ABCD 的外角,若1120∠=︒,275∠=︒,则34∠+∠=.2.(23-24八年级下·江西萍乡·期末)一个多边形的内角和是它的外角和的1.5倍,则这个多边形的边数为.3.(23-24七年级下·河南驻马店·阶段练习)如图,已知59MON ∠=︒,正五边形ABCDE 的顶点A 、B 在射线OM 上,顶点E 在射线ON 上,则NED ∠的度数为.题型十在网格中画三角形的中线、高线及求三角形的面积例题:(2023春·黑龙江哈尔滨·七年级哈尔滨市第六十九中学校校考期中)下图为79⨯的网格,每一小格均为正方形,已知ABC .(1)画出ABC 中BC 边上的中线AD ;(2)画出ABC 中AB 边上的高CE .(3)直接写出ABC 的面积为_________.巩固训练1.(2023春·黑龙江哈尔滨·七年级哈尔滨市第四十七中学校考期中)如图所示方格纸中,每个小正方形的边长均为1,点A ,点B ,点C 在小正方形的顶点上.(1)画出ABC 中边BC 上的高AD ;(2)画出ABC 中边AB 上的中线CE ;(3)直接写出ACE △的面积为______.2.(23-24七年级下·江苏连云港·阶段练习)如图,在方格纸内将ABC 水平向右平移4个单位得到A B C ''' .(1)画出A B C ''' ;(2)若连接AA ',BB ',则这两条线段之间的关系是_________;(3)画出AB 边上的中线CD ;(利用网格点和直尺画图)(4)图中能使ABC PBC S S =△△的格点P 有_________个(点P 异于点A ).3.(23-24七年级下·江苏扬州·阶段练习)如图,方格纸中每个小正方形边长均为1,在方格纸内将ABC 的点C 平移至点C '得到A B C ''' .(1)画出A B C ''' ;(2)线段AC 和A C ''的关系是_______.(3)借助方格画出AB 边上的中线CD 和高CE ;(4)四边形ACC A ''面积为_______.第十一章三角形知识归纳与题型突破(题型清单)01思维导图02知识速记一、三角形的定义由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.要点诠释:(1)三角形的基本元素:①三角形的边:即组成三角形的线段;②三角形的角:即相邻两边所组成的角叫做三角形的内角,简称三角形的角;③三角形的顶点:即相邻两边的公共端点.(2)三角形的定义中的三个要求:“不在同一条直线上”、“三条线段”、“首尾顺次相接”.(3)三角形的表示:三角形用符号“△”表示,顶点为A 、B 、C 的三角形记作“△ABC ”,读作“三角形ABC ”,注意单独的△没有意义;△ABC 的三边可以用大写字母AB 、BC 、AC 来表示,也可以用小写字母a 、b 、c 来表示,边BC 用a 表示,边AC 、AB 分别用b 、c 表示.二、三角形的三边关系定理:三角形任意两边之和大于第三边.推论:三角形任意两边的之差小于第三边.要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围.(3)证明线段之间的不等关系.三、三角形的分类1.按角分类:⎧⎪⎧⎨⎨⎪⎩⎩直角三角形三角形 锐角三角形斜三角形 钝角三角形要点诠释:①锐角三角形:三个内角都是锐角的三角形;②钝角三角形:有一个内角为钝角的三角形.2.按边分类:⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形 底边和腰不相等的等腰三角形等腰三角形 等边三角形要点诠释:①不等边三角形:三边都不相等的三角形;②等腰三角形:有两条边相等的三角形叫做等腰三角形,相等的两边都叫做腰,另外一边叫做底边,两腰的夹角叫顶角,腰与底边夹角叫做底角;③等边三角形:三边都相等的三角形.四、三角形的三条重要线段三角形的高、中线和角平分线是三角形中三条重要的线段,它们提供了重要的线段或角的关系,为我们以后深入研究三角形的一些特征起着很大的帮助作用,因此,我们需要从不同的角度弄清这三条线段,列表如下:线段名称三角形的高三角形的中线三角形的角平分线文字语言从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段.三角形中,连接一个顶点和它对边中点的线段.三角形一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段.图形语言作图语言过点A 作AD ⊥BC 于点D .取BC 边的中点D ,连接AD .作∠BAC 的平分线AD ,交BC 于点D .标示图形符号语言1.AD 是△ABC 的高.2.AD 是△ABC 中BC 边上的高.3.AD ⊥BC 于点D .4.∠ADC =90°,∠ADB =90°.1.AD 是△ABC 的中线.2.AD 是△ABC 中BC 边上的中线.3.BD =DC =12BC 4.点D 是BC 边的中点.1.AD 是△ABC 的角平分线.2.AD 平分∠BAC ,交BC 于点D .3.∠1=∠2=12∠BAC .(或∠ADC=∠ADB=90°)推理语言因为AD是△ABC的高,所以AD⊥BC.(或∠ADB=∠ADC=90°)因为AD是△ABC的中线,所以BD=DC=12BC.因为AD平分∠BAC,所以∠1=∠2=12∠BAC.用途举例1.线段垂直.2.角度相等.1.线段相等.2.面积相等.角度相等.注意事项1.与边的垂线不同.2.不一定在三角形内.—与角的平分线不同.重要特征三角形的三条高(或它们的延长线)交于一点.一个三角形有三条中线,它们交于三角形内一点.一个三角形有三条角平分线,它们交于三角形内一点.五、三角形的稳定性三角形的三条边确定后,三角形的形状和大小就确定不变了,这个性质叫做三角形的稳定性.要点诠释:(1)三角形的形状固定是指三角形的三个内角不会改变,大小固定指三条边长不改变.(2)三角形的稳定性在生产和生活中很有用.例如,房屋的人字梁具有三角形的结构,它就坚固而稳定;在栅栏门上斜着钉一条(或两条)木板,构成一个三角形,就可以使栅栏门不变形.大桥钢架、输电线支架都采用三角形结构,也是这个道理.(3)四边形没有稳定性,也就是说,四边形的四条边长确定后,不能确定它的形状,它的各个角的大小可以改变.四边形的不稳定性也有广泛应用,如活动挂架,伸缩尺.有时我们又要克服四边形的不稳定性,如在门框未安好之前,先在门框上斜着钉一根木板,使它不变形.六、三角形的内角和三角形内角和定理:三角形的内角和为180°.要点诠释:应用三角形内角和定理可以解决以下三类问题:①在三角形中已知任意两个角的度数可以求出第三个角的度数;②已知三角形三个内角的关系,可以求出其内角的度数;③求一个三角形中各角之间的关系.七、三角形的外角1.定义:三角形的一边与另一边的延长线组成的角叫做三角形的外角.如图,∠ACD是△ABC的一个外角.要点诠释:(1)外角的特征:①顶点在三角形的一个顶点上;②一条边是三角形的一边;③另一条边是三角形某条边的延长线.(2)三角形每个顶点处有两个外角,它们是对顶角.所以三角形共有六个外角,通常每个顶点处取一个外角,因此,我们常说三角形有三个外角.2.性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.要点诠释:三角形内角和定理和三角形外角的性质是求角度及与角有关的推理论证明经常使用的理论依据.另外,在证角的不等关系时也常想到外角的性质.3.三角形的外角和:三角形的外角和等于360°.要点诠释:因为三角形的每个外角与它相邻的内角是邻补角,由三角形的内角和是180°,可推出三角形的三个外角和是360°.八、多边形的概念1.定义:在平面内不在同一直线上的一些线段首尾顺次相接所组成的封闭图形叫做多边形.其中,各个角相等、各条边相等的多边形叫做正多边形.2.相关概念:边:组成多边形的各条线段叫做多边形的边.顶点:每相邻两条边的公共端点叫做多边形的顶点.内角:多边形相邻两边组成的角叫多边形的内角,一个n边形有n个内角.外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角.对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.3.多边形的分类:画出多边形的任何一边所在的直线,如果整个多边形都在这条直线的同一侧,那么这个多边形就是凸多边形,如果整个多边形不在直线的同一侧,这个多边形叫凹多边形.如图:要点诠释:(1)正多边形必须同时满足“各边相等”,“各角相等”两个条件,二者缺一不可;(2)过n 边形的一个顶点可以引(n -3)条对角线,n 边形对角线的条数为(3)2n n -;(3)过n 边形的一个顶点的对角线可以把n 边形分成(n -2)个三角形.九、多边形内角和n 边形的内角和为(n -2)·180°(n ≥3).要点诠释:(1)内角和公式的应用:①已知多边形的边数,求其内角和;②已知多边形内角和求其边数;(2)正多边形的每个内角都相等,都等于(2)180n n- °;十、多边形的外角和多边形的外角和为360°.要点诠释:(1)在一个多边形的每个顶点处各取一个外角,这些外角的和叫做多边形的外角和.n 边形的外角和恒等于360°,它与边数的多少无关;(2)正n 边形的每个内角都相等,所以它的每个外角都相等,都等于360n°;(3)多边形的外角和为360°的作用是:①已知各相等外角度数求多边形边数;②已知多边形边数求各相等外角的度数.凸多边形凹多边形03题型归纳题型一三角形的稳定性例题:(23-24七年级下·陕西咸阳·阶段练习)如图,墙上置物架的底侧一般会各设计一根斜杆,与水平和竖直方向的支架构成三角形,这是利用三角形的()A.全等性B.对称性C.稳定性D.灵活性【答案】C【分析】本题主要考查了三角形具有稳定性,根据三角形具有稳定性,即可进行解答.【详解】解:墙上置物架的底侧一般会各设计一根斜杆,与水平和竖直方向的支架构成三角形,这是利用三角形的稳定性,故选;C.巩固训练1.(23-24八年级上·云南昆明·期末)我国建造的港珠澳大桥全长55公里,集桥、岛、隧于一体,是世界最长的跨海大桥.如图,这是港珠澳大桥的斜拉索,它能拉住桥面,并将桥面向下的力通过钢索传给索塔,确保桥面的稳定性和安全性.那么港珠澳大桥斜拉索建设运用的数学原理是()A.三角形的不稳定性B.三角形的稳定性C.四边形的不稳定性D.四边形的稳定性【答案】B【分析】本题主要考查了三角形的特性,解题的关键是熟练掌握三角形的稳定性;根据三角形的稳定性进行解答即可.。
第十一章 三角形小结(构建知识体系)作业练习
作业练习一、填空题1.下列长度的各组线段能围成一个三角形的有______.①4 cm,5 cm,6 cm;②4 cm,5 cm,10 cm;③3 cm,8 cm,5 cm;④15 cm,10 cm,7 cm.2.等腰三角形的两边长分别为4,9,则该等腰三角形的周长为____.3.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,AB=15,BC=9,AC=12,则CD=____.4.如图,在△ABC中,点D,E分别是AC,AB的中点,且S△ABC=12,则S△BDE=________5.如图,D是△ABC边BC延长线上的一点,∠A=75°,∠ACD=105°,则∠B=______6.如图,l1∥l2,∠1=80°,∠2=45°,则∠3= ____.7.如图,已知在△ABC 中,∠B =90°,角平分线AD ,CF 相交于点E ,则∠AEC =______.8.若△ABC 足∠A =12∠B = 13∠C ,则△ABC 是______三角形. 9.(1)六边形的内角和为___°,外角和为_____°;(2)一个正多边形的每个内角都为135°,则它是__边形.10.如图,在五边形ABCDE 中,AE ∥BC ,则∠C +∠D +∠E 的度数为_______.二、解答题1.在△ABC 中,AB =AC ,DB 为△ABC 的中线,且BD 将△ABC 周长分为12cm 与15cm 两部分,求三角形各边长.2.∠A ,∠B ,∠C 是△ABC 的三个内角,且分别满足下列条件,求∠A ,∠B ,∠C 中未知角的度数.(1)∠A -∠B =16°,∠C =54°;(2)∠A:∠B:∠C =2:3:4.3.如图,五边形ABCDE的内角都相等,且∠1=∠2,∠3=∠4. 求∠CAD的度数.4.如图,在△ABC中,BD是∠ABC的平分线,CD是△ABC的外角∠ACE的平分线.(1)若∠A=80°,求∠D的度数;(2)请写出∠D和∠A的数量关系并证明.5.如图,已知BD,CD分别是△ABC的外角∠EBC和∠FCB的平分线.(1)若∠ABC=50°,∠ACB=70°,则∠D的度数为_______;(2)若∠A=80°,求∠D的度数;(3)请直接写出∠D和∠A的数量关系.。
初二数学上册(人教版)第十一章三角形11.1知识点总结含同步练习及答案
描述:例题:初二数学上册(人教版)知识点总结含同步练习题及答案第十一章 三角形 11.1 与三角形有关的线段一、学习任务1. 理解三角形及其有关的概念.2. 掌握三角形三边关系,并能够熟练运用这个三角形的三边关系判定已知的三条线段能否构成三角形.3. 知道三角形具有稳定性,并且能够运用到实际问题中去.二、知识清单三角形的相关概念 三角形的三边关系 三角形的稳定性三、知识讲解1.三角形的相关概念三角形由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形(triangle ).按照三个内角的大小,可以将三角形分为锐角三角形、直角三角形和钝角三角形.三角形的高从三角形的一个顶点向它的对边画垂线,顶点和垂足之间的线段叫做三角形的高(altitude ).三角形的中线连接三角形的一个顶点和它对边中点的线段叫做三角形的中线(median ).三角形的角平分线三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线(angular bisector ).三角形的重心三角形三条中线的交点叫做三角形重心.三角形的内心三角形三条内角平分线的交点叫做三角形内心.三角形的垂心三角形三边上的三条高所在直线交于一点叫做三角形垂心.三角形的外心三角形三边的垂直平分线的交点叫做三角形外心.三角形的旁心三角形的一条内角平分线与其他两个角的外角平分线交于一点叫做三角形的旁心.一个三角形的三个内角的度数之比为 ,这个三角形是( )2:3:7中阴影部分的面积是_______.1∠DAE线,则 的度数为______.描述:例题:3.三角形的稳定性三角形具有稳定性,有着稳固、坚定、耐压的特点.四、课后作业 (查看更多本章节同步练习题,请到快乐学)(1) ,,;(2) ,,;(3) ,,();(4) ,,().解:(1) 不能;(2) 不能;(3) 能;(4) 不能.(1) 与 的和小于 ,所以不能组成三角形;(2) 与 的和等于 ,所以不能组成三角形;(3) , 均小于 ,而 ,因为 ,所以 ,所以 ,它们可以组成三角形;(4) 最大,而 ,因此不能组成三角形.3610358+3a 2+4a 2+7a 2a ≠03a 5a 8a a >03610358+3a 2+4a 2+7a 2(+3)+(+4)=2+7=(+7)+a 2a 2a 2a 2a 2a ≠0>0a 2(+3)+(+4)>+7a 2a 2a 28a 3a +5a =8a 一个不等边三角形的边长都是整数,且周长是 ,这样的三角形共有多少?分析:已知中的数较少,只知道周长为 ,应该抓住不等边三角形的边长都是整数这一个条件,依据三角形三边关系先确定出最大边的取值范围,则问题迎刃而解.解:设 ,则 ,即 ,所以 .因为 ,, 都是正整数,所以若 ,则其他两边必然为 ,.由于 ,即 ,故线段 ,, 不能组成三角形.当然 更不可能是 或 ,因而有 .当 时,,,不符合条件;当 时,,,符合条件.所以符合条件的三角形只有 个.1212a <b <c a +b +c >2c 2c <12c <6a b c c =3a =1b =21+2=3a +b =c a b c c 124⩽c <6c =4a =2b =3c =5a =3b =41下列图形中具有稳定性的是( )A. 正方形B. 长方形C. 直角三角形D. 平行四边形解:C.答案: 1. 如图,在 中, 的对边是A .B .C .D .C △ABF ∠B ()ADAE AF AC2. 如果一个三角形的两边长分别为 和 ,则第三边长可能是 A .B .C .D .24()2468高考不提分,赔付1万元,关注快乐学了解详情。
人教新版八年级数学上册 第11章 三角形 全章必考知识点分类专项练习
《三角形》全章必考知识点分类专项练习1.若长度分别为a,3,6的三条线段能组成一个三角形,则a的值可以是()A.1B. 2C.3D. 82.已知等腰三角形的两边长分别为6cm和3cm,则该等腰三角形的周长是( )A.9cmB. 12cmC. 12cm或15cmD. 15cm若等腰三角形的两边长分别为4.计算: 已知三角形两边的长是3cm和5cm,第三边的长为奇数,求第三边的长.1. 如图,工人师傅做了一个长方形窗框ABCD,E,F,G,H分别是四条边上的中点,为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在()A.A,C两点之间B.E,G两点之间C.E,F两点之间D.G,H两点之间2.如图,木工师傅做完门框后,为了防止变形,常常像图中所示那样钉上两条斜拉的木条,这样做的数学道理是;3.造房子的屋顶常用三角结构,从数学角度来看,是应用了______________,而活动接架则应用了四边形的_______________。
1. 如图:(1)在△ABC 中,BC 边上的高是________(2)在△AEC 中,AE 边上的高是________ (3)在△FEC 中,EC 边上的高是_________ (4)若AB=CD=2cm,AE=3cm,则S △AEC =_______, CE=_______.2. 如图,点D 是BC 边上的中点,如果AB=3厘米,AC=4厘米, 则△ABD 和△ACD 的周长之差为________,面积之差为__________。
5. 如图,四个图形中,线段BE 是△ABC 的高的图是( )6. 如图,在△ABC 中,AD 是BC 边上的中线,△ADC 的周长比△ABD 的周长 多5cm ,AB 与AC 的和为11cm ,求AC 的长。
_ F_A_ D _ C_ B_ EADC1. 将一副直角三角板按如图所示的位置摆放,若含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠ 的度数是( ) A.45°B.60°C.75°D.85°2. 在△ABC 中,若∠C=∠A+∠B ,则△ABC 是( ) A .等边三角形 B .锐角三角形C .钝角三角形D .直角三角形3. 在△ABC 中,若∠C=∠A-∠B ,则△ABC 是( ) A .等边三角形 B .锐角三角形C .钝角三角形D .直角三角形4. 如图,在△ABC 中,∠C=80°,沿图中虚线截去∠C ,则∠1+∠2的度数是( ) A .2000°B .220°C .260°D .280°12AB C5. 如图,在△ABC 中,∠ABC ,∠ACB 的平分线BE ,CD 相交于点F ,∠ABC =42°,∠A =60°,则∠BFC的度数是()A.118°B.119°C.120°D.121°6. 如图,AD,BE是△ABC的高,已知∠DAC=20°,则∠C=°,∠CBE∠DAC(填“>”“<”或“=”).7. 当三角形中一个内角α是另一个内角β的一半时,我们称此三角形为“半角三角形”,其中α称为“半角”,如果一个“半角三角形”的“半角”为40°,那么这个“半角三角形”的最大内角的度数为_________.8. 已知△ABC中,DE∥BC,∠AED=50°,CD平分∠ACB,求∠CDE的度数.AEDCB。
初二数学第十一章三角形详细知识点及题型总结
第十一章三角形第一讲与三角形有关的线段1.定义:不在一条直线上的三条线段首尾顺次相接组成的图形叫做三角形。
注意:三条线段必须①不在一条直线上,②首尾顺次相接。
组成三角形的线段叫做三角形的边,相邻两边所组成的角叫做三角形的内角,简称角,相邻两边的公共端点是三角形的顶点。
三角形ABC用符号表示为△ABC.三角形ABC的顶点C所对的边AB可用c 表示,顶点B所对的边AC可用b表示,顶点A所对的边BC可用a表示.2.三角形三边的不等关系三角形的任意两边之和大于第三边. 三角形的任意两边之差小于第三边。
3.三角形的高:从三角形的向它的作垂线,顶点和垂足之间的线段叫做三角形的高,(注意八字形)注意:高与垂线不同,高是线段,垂线是直线。
三角形的三条高相交于一点。
.............4.三角形的中线:三角的三条中线相交于一点。
(三角形中线分三角形面积相等的两个三角形)5.三角形的角平分线:在三角形中,一个内角的角平分线与它的对边相交,与之间的线段,叫做三角形的角平分线.三角形三个角的平分线相交于一点...............三角形的三条中线的交点、三条角平分线的交点在三角形的内部,而锐三角形的三条高......................................的交点在三角形的内部,直角三角形三条高的交战在角直角顶点,钝角三角形的三条高的交........................................点在三角形的外部。
.........6.三角形的稳定性:例1.一个等腰三角形的周长为32 cm,腰长的3倍比底边长的2倍多6 cm.求各边长.例2.已知:△ABC的周长为48cm,最大边与最小边之差为14cm,另一边与最小边之和为25cm,求:△ABC 的各边的长。
例3.已知△ABC的周长是24cm,三边a、b、c满足c+a=2b,c-a=4cm,求a、b、c的长.例4.已知等腰三角形的周长是16cm.(1)若其中一边长为4cm,求另外两边的长;(2)若其中一边长为6cm,求另外两边长;(3)若三边长都是整数,求三角形各边的长.例5.已知等腰三角形的周长是25,一腰上的中线把三角形分成两个,两个三角形的周长的差是4,求等腰三角形各边的长。
初二数学八上第十一章三角形知识点总结复习和常考题型练习题
第十一章 三角形一、知识框架:二、知识概念:1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形. 要点:①三条线段;②不在同一直线上;③首尾顺次相接2.三边关系:三角形任意两边的和大于第三边.任意两边的差小于第三边.注意:已知两边可得第三边的取值范围是:两边之差<第三边<两边之和3.高:从三角形的一个顶点向它的对边所在直线作垂线.顶点和垂足间的线段叫做三角形的高.注意:①三角形的三条高是线段;②画三角形的高时.只需要三角形一个顶点向对边或对边的延长线作垂线.连结顶点与垂足的线段就是该边上的高.4.中线:在三角形中.连接一个顶点和它对边中点的线段叫做三角形的中线. 注意:①三角形有三条中线.且它们相交三角形内部一点.交点叫重心.②画三角形中线时只需连结顶点及对边的中点即可.5.角平分线:三角形的一个内角的平分线与这个角的对边相交.这个角的顶点和交点之间的线段叫做三角形的角平分线.注意:①三角形的角平分线是一条线段.而角的平分线是经过角的顶点且平分此角的一条射线.②三角形有三条角平分线且相交于一点.这一点一定在三角形的内部.③三角形的角平分线画法与角平分线的画法相同.可以用量角器画.也可通过尺规作图来画.6.三角形的稳定性:三角形的形状是固定的.三角形的这个性质叫三角形的稳定性.7.多边形:在平面内.由一些线段首尾顺次相接组成的图形叫做多边形.8.多边形的内角:多边形相邻两边组成的角叫做它的内角.9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.10.多边形的对角线:连接多边形不相邻的两个顶点的线段.叫做多边形的对角线.11.正多边形:在平面内.各个角都相等.各条边都相等的多边形叫正多边形.12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖.叫做用 多边形覆盖平面.13.公式与性质:⑴三角形的内角和定理:三角形的内角和为180°直角三角形的两个锐角互余;有两个角互余的三角形是直角三角形.⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和.性质2:三角形的一个外角大于任何一个和它不相邻的内角.三角形的一个外角和与之相邻的内角互补.过三角形的一个顶点有两个外角.这两个角为对顶角〔相等.可见一个三角形共有六个外角.⑶多边形内角和公式:n 边形的内角和等于(2)n -·180°⑷多边形的外角和:多边形的外角和为360°.⑸多边形对角线的条数:①从n 边形的一个顶点出发可以引(3)n -条对角线.把多边形分成(2)n -个三角形.②n 边形共有(3)2n n -条对角线.例题精选1.<2015·XX中考>以下列各组线段为边.能组成三角形的是< >A.1 cm.2 cm.4 cmB.4 cm.6 cm.8 cmC.5 cm.6 cm.12 cmD.2 cm.3 cm.5 cm2.<2015·XX中考>如图.AB∥CD.直线EF交AB于点E.交CD于点F.EG平分∠BEF.交CD于点G.∠1=50°.则∠2等于< >A.50°B.60°C.65°D.90°3.<2015·来宾中考>如图.在△ABC中.已知∠A=80°.∠B=60°.DE∥BC.那么∠CED的大小是< >A.40°B.60°C.120°D.140°4.<2015·XX中考>正多边形的一个外角等于30°.则这个多边形的内角和为< >A.720B.1260C.1800D.23405.<2015·来宾中考>如果一个多边形的内角和是其外角和的一半.那么这个多边形是< >A.六边形B.五边形C.四边形D.三角形6.<2015·XX中考>若一个多边形内角和等于1260°.则该多边形有条对角线.2.下列说法错误的是< >.A.锐角三角形的三条高线、三条中线、三条角平分线分别交于一点B.钝角三角形有两条高线在三角形外部C.直角三角形只有一条高线D.任意三角形都有三条高线、三条中线、三条角平分线3.如果多边形的内角和是外角和的k倍.那么这个多边形的边数是< >.A.k B.2k+1C.2k+2 D.2k-24.四边形没有稳定性.当四边形形状改变时.发生变化的是< >.A.四边形的边长B.四边形的周长C.四边形的某些角的大小D.四边形的内角和5.如图.在△ABC中.D.E分别为BC上两点.且BD=DE=EC.则图中面积相等的三角形有< >对.A.4 B.5C.6 D.76.在下列条件中:①∠A+∠B=∠C.②∠A∶∠B∶∠C=1∶2∶3.③∠A=90°-∠B.④∠A=∠B-∠C中.能确定△ABC是直角三角形的条件有<>.A.1个B.2个C.3个 D.4个7.如果三角形的一个外角小于和它相邻的内角.那么这个三角形为< >.A.钝角三角形 B.锐角三角形C.直角三角形 D.以上都不对8.如图.把△ABC纸片沿DE折叠.当点A落在四边形BCDE内部时.∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律.你发现的规律是<>.A.∠A=∠1+∠2B.2∠A=∠1+∠2C.3∠A=2∠1+∠2D.3∠A=2<∠1+∠2>9.一个角的两边分别垂直于另一个角的两边.那么这两个角之间的关系是< >.A.相等 B.互补C.相等或互补 D.互余10.如图.生活中都把自行车的几根梁做成三角形的支架.这是因为三角形具有_____________.11.已知a.b.c是三角形的三边长.化简:|a-b+c|-|a-b-c|=__________.12.等腰三角形的周长为20 cm.一边长为6 cm.则底边长为__________.13.如图.∠ABD与∠ACE是△ABC的两个外角.若∠A=70°.则∠ABD+∠ACE =__________.14.四边形ABCD的外角之比为1∶2∶3∶4.那么∠A∶∠B∶∠C∶∠D=__________.15.如果一个多边形的内角和等于它的外角和的3倍.那么这个多边形是__________边形.16.如图.∠A+∠B+∠C+∠D+∠E+∠F=__________.17.如图.点D.B.C在同一直线上.∠A=60°.∠C=50°.∠D=25°.则∠1=__________.18.如图.小亮从A点出发.沿直线前进10米后向左转30°.再沿直线前进10米.又向左转30°.……照这样走下去.他第一次回到出发地A点时.一共走了__________米.19.一个正多边形的一个外角等于它的一个内角的13.这个正多边形是几边形?20.如图所示.直线AD和BC相交于点O.AB∥CD.∠AOC=95°.∠B=50°.求∠A和∠D.21.如图.经测量.B处在A处的南偏西57°的方向.C处在A处的南偏东15°方向.C处在B处的北偏东82°方向.求∠C的度数.22.如图所示.分别在三角形、四边形、五边形的广场各角修建半径为R的扇形草坪<图中阴影部分>.<1>图①中草坪的面积为__________;<2>图②中草坪的面积为__________;<3>图③中草坪的面积为__________;<4>如果多边形的边数为n.其余条件不变.那么.你认为草坪的面积为__________.7.如图.AD是△ABC的中线.CE是△ACD的中线.DF是△CDE的中线.若S△DEF 等于<>=2.则S△ABCA.16 B.14 C.12 D.109.如图.四边形ABCD中.点M.N分别在AB.BC上.将△BMN沿MN翻折.得△FMN.若MF∥AD.FN∥DC.则∠D的度数为<>A.115°B.105°C.95°D.85°10.如图.∠1.∠2.∠3.∠4恒满足的关系是<>A.∠1+∠2=∠3+∠4 B.∠1+∠2=∠4-∠3C.∠1+∠4=∠2+∠3 D.∠1+∠4=∠2-∠314.若一个三角形的两边长是4和9.且周长是偶数.则第三边长为________.24.<1>如图.一个直角三角板XYZ放置在△ABC上.恰好三角板XYZ的两条直角边XY.XZ分别经过点 B.C.△ABC中.若∠A=30°.则∠ABC+∠ACB=__________.∠XBC+∠XCB=__________;<2>若改变直角三角板XYZ的位置.但三角板XYZ的两条直角边XY.XZ仍然分别经过B.C.那么∠ABX+∠ACX的大小是否变化?若变化.请说明理由;若不变化.请求出∠ABX+∠ACX的大小.25.平面内的两条直线有相交和平行两种位置关系.<1>如图①.若AB∥CD.点P在AB.CD外部.则有∠B=∠BOD.又因为∠BOD是△POD的外角.故∠BOD=∠BPD+∠D.得∠BPD=∠B-∠D.将点P移到AB.CD内部.如图②.以上结论是否成立?若成立.说明理由;若不成立.则∠BPD.∠B.∠D 之间有何数量关系?请证明你的结论;<2>在如图②中.将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q.如图③.则∠BPD.∠B.∠D.∠BQD之间有何数量关系?<不需证明>;<3>根据<2>的结论求如图④中∠A+∠B+∠C+∠D+∠E的度数.。
初二数学上册(人教版)第十一章三角形11.2知识点总结含同步练习及答案
描述:初二数学上册(人教版)知识点总结含同步练习题及答案第十一章 三角形 11.2 与三角形有关的角一、学习任务1. 掌握三角形的内角和和外角和定理,并会熟练运用内外角和定理解决相关的角的问题.2. 会证明三角形内角和和外角和定理.3. 掌握直角三角形中角的性质和判定.二、知识清单三角形的内外角和三、知识讲解1.三角形的内外角和三角形内角与外角在三角形中,相邻两边组成的角,叫做三角形的内角,简称三角形的角.三角形的一边与其邻边的延长线组成的角,叫做三角形的外角.三角形内角和定理三角形三个内角的和等于 .三角形外角和定理三角形的外角等于与它不相邻的两个内角的和.三角形内角和定理的推论直角三角形两个锐角互余.两锐角互余的三角形是直角三角形.飞镖模型及“8”字模型三角形角平分线与内角和180∘例题:在 ,,则 ______.解:.△ABC ∠A :∠B :∠C =2:1:3∠A =60∘一个三角形三个外角之比为 ,三个内角的度数分别是______.解:,,.三角形外角和是,再根据比例分别求出三个外角,即可求出对应的内角.2:3:4100∘60∘20∘360∘如图,三角板的直角顶点在直线 上,若 ,则 的度数是______.解:.l ∠1=40∘∠250∘如图所示,已知 ,,,求 的度数.解:方法一:延长 交 于 ,所以 .∠A =70∘∠B =40∘∠C =20∘∠BOC BO AC D ∠BOC =∠1+∠C =∠A +∠B +∠C=130∘方法二:连接 ,因为 ,所以 .因为 ,所以 .方法三:连接 并延长到点 ,因为 ,,所以.BC ∠1+∠2+∠A +∠B +∠C =180∘∠1+∠2=50∘∠1+∠2+∠BOC =180∘∠BOC =130∘AO D ∠3+∠B =∠1∠4+∠C =∠2∠3+∠B +∠4+∠C =∠1+∠2=130∘已知如图1,线段 、 相交于点 ,连接 、,我们把形如图1的图形称之为“8字形”.如图2,在图1的条件下, 和 的平分线 和 相交于点 ,并且与 、 分别相交于 、.试解答下列问题:(1)在图1中,请直接写出 ,,, 之间的数量关系:__________________;(2)仔细观察,在图2中“8字形”的个数:_____个;(3)在图2中,若 ,,试求 的度数.分析:(1)根据三角形内角和定理即可得出 ;(2)根据“8字形”的定义,仔细观察图形即可得出“8字形”共有 个;(3)现根据“8字形”中的角的规律,可得 ,,再根据角平分线的定义,得出 ,,可得 ,进而求出 的度数.解:(1);(2)① 线段 , 相交于点 ,形成“8字形”;② 线段 , 相交于点 ,形成“8字形”;③ 线段 , 相交于点 ,形成“8字形”;④ 线段 , 相交于点 ,形成“8字形”;⑤ 线段 , 相交于点 ,形成“8字形”;AB CD O AD CB ∠DAB ∠BCD AP CP P CD AB M N ∠A ∠B ∠C ∠D ∠D =40∘∠B =36∘∠P ∠A +∠D =∠C +∠B 6∠DAP +∠D =∠P +∠DCP ∠P CB +∠B =∠P AB +∠P ∠DAP =∠P AB ∠DCP =∠P CB 2∠P =∠D +∠B ∠P ∠A +∠D =∠C +∠B AB CD O AN CM O AB CP N AB CM O APCD M AN∠E=30高考不提分,赔付1万元,关注快乐学了解详情。
第十一章三角形(知识点+题型分类练习)
三角形章节复习全章知识点梳理:一、三角形基本概念1. 三角形的概念由不在同一条直线上的三条线段首尾依次相接所组成的图形叫做三角形。
2.三角形的任意两边之和大于第三边。
三角形的任意两边之差小于第三边。
(这两个条件满足其中一个即可)用数学表达式表达就是:记三角形三边长分别是a,b,c,则a+b>c或c-b<a。
已知三角形两边的长度分别为a,b,求第三边长度的范围:|a-b|<c<a+b解题方法:①数三角形的个数方法:分类,不要重复或者多余。
②给出三条线段的长度或者三条线段的比值,要求判断这三条线段能否组成三角形方法:最小边+较小边>最大边不用比较三遍,只需比较一遍即可③给出多条线段的长度,要求从中选择三条线段能够组成三角形方法:从所给线段的最大边入手,依次寻找较小边和最小边;直到找完为止,注意不要找重,也不要漏掉。
④已知三角形两边的长度分别为a,b,求第三边长度的范围方法:第三边长度的范围:|a-b|<c<a+b⑤给出等腰三角形的两边长度,要求等腰三角形的底边和腰的长方法:因为不知道这两边哪条边是底边,哪条边是腰,所以要分类讨论,讨论完后要写“综上”,将上面讨论的结果做个总结。
二、三角形的高、中线与角平分线1. 三角形的高从△ABC的顶点向它的对边BC所在的直线画垂线,垂足为D,那么线段AD叫做△ABC的边BC上的高。
三角形的三条高的交于一点,这一点叫做“三角形的垂心”。
2. 三角形的中线连接△ABC的顶点A和它所对的对边BC的中点D,所得的线段AD叫做△ABC的边BC上的中线。
三角形三条中线的交于一点,这一点叫做“三角形的重心”。
三角形的中线可以将三角形分为面积相等的两个小三角形。
3. 三角形的角平分线∠A的平分线与对边BC交于点D,那么线段AD叫做三角形的角平分线。
要区分三角形的“角平分线”与“角的平分线”,其区别是:三角形的角平分线是条线段;角的平分线是条射线。
三角形三条角平分线的交于一点,这一点叫做“三角形的内心”。
人教版八年级上册第十一章 三角形知识点复习及习题练习
第十一章三角形知识框架【三角形的概念】1、三角形的定义由不在同一条直线上的三条线段首尾依次相接所组成的图形叫做三角形。
要点:①三条线段;②不在同一条直线上;③首尾顺次相连。
2、基本概念:三角形有三条边,三个内角,三个顶点。
边:组成三角形的线段,表示方法:AB(c)、BC(a)、AC(b)内角:相邻两边所组成的角,表示方法:∠A、∠B、∠C顶点:相邻两边的公共端点,表示方法:A、B、C三角形ABC用符号表示为△ABC。
夹边、夹角、对边、对角3、数三角形个数技巧1)按组成三角形的图形个数来数(如单个三角形、由2个图形组成的三角形……最后求和)2)从图中的某一条线段开始,按一定的顺序找出能组成三角形的另外两条边;3)先固定一个顶点,再变换另外两个顶点,找出不共线的三点共有多少组。
练:1、下列说法中正确的是()A、由三个角组成的图形叫三角形B、由三条直线组成图形叫三角形C、由不在同一直线上的三条线段首尾顺次相接所组成的图形叫三角形D、由三条线段组成的图形叫三角形2、右图中三角形的个数是()A、6B、7C、8D、93、如右图所示:(1)图中有几个三角形?把它们一一写出来。
(2)写出△ABD的三个内角。
(3)以∠C为内角的三角形有哪些?(4)以AB为边的三角形有哪些?【分类】在等腰三角形中,相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。
练:1、如果三角形的一个外角是锐角,则此三角形的形状是()A、锐角三角形B.钝角三角形C.直角三角形D.无法判断2、若△ABC三边长分别为m,n,p,且| m - n |+( n - p)2= 0 ,则这个三角形为()A、等腰三角形B、等边三角形C、直角三角形D、等腰直角三角形3、三角形中,若一个角等于其他两个角的差,则这个三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.等腰三角形4、根据下列所给条件,判断△ABC的形状(若已知的是角,则按角的分类标准去判断;若已知的是边,则按边的分类标准去判断)(1)∠A=45°,∠B=65°,∠C=70°;(2)∠C=90°;(3)∠C=120°;(4)AB=BC=4,AC=5.【三边的关系】①三角形任意两边之和大于第三边,b + c > a;②三角形任意两边之差小于第三边,b - c < a。
《常考题》初中八年级数学上册第十一章《三角形》知识点复习(含答案解析)
一、选择题1.下列说法正确的是( )A .射线AB 和射线BA 是同一条射线B .连接两点的线段叫两点间的距离C .两点之间,直线最短D .七边形的对角线一共有14条 2.已知两条线段15cm a =,8cm b =,下列线段能和a ,b 首尾相接组成三角形的是( )A .20cmB .7cmC .5cmD .2cm 3.用若干根等长的小木棍搭建等边三角形(三边相等的三角形),搭建1个等边三角形最少需要3根小木棍,搭建2个等边三角形最少需要5根小木棍,搭建4个等边三角形最少需要小木棍的根数是( )A .12B .10C .9D .6 4.如图,在ABC 中,55A ∠=︒,65C =︒∠,BD 平分ABC ∠,//DE BC ,则BDE ∠的度数是( )A .50°B .25°C .30°D .35°5.如图,//AB CD ,40C ∠=︒,60A ∠=︒,则F ∠的度数为( )A .10°B .20°C .30°D .40° 6.在下列长度的四根木棒中,能与2m 、5m 长的两根木棒钉成一个三角形的是( )A .2mB .3mC .5mD .7m 7.如图,在ABC ∆中,AD 是ABC ∆的角平分线,DE AC ⊥,若40,60B C ︒︒∠=∠=,则ADE ∠的度数为( )A .30︒B .40︒C .50︒D .60︒ 8.在△ABC 中,∠A =x °,∠B =(2x +10)°,∠C 的外角大小(x +40)°,则x 的值等于( ) A .15B .20C .30D .40 9.如果一个三角形的两边长分别为4和7,则第三边的长可能是( ) A .3B .4C .11D .12 10.下列长度的四根木棒,能与3cm ,7cm 长的两根木棒钉成一个三角形的是( ) A .3cmB .10cmC .4cmD .6cm 11.正十边形每个外角等于( )A .36°B .72°C .108°D .150° 12.如图,直线//BC AE ,CD AB ⊥于点D ,若150∠=︒,则BCD ∠的度数是( )A .60°B .50°C .40°D .30° 13.如图,在五边形ABCDE 中,AB ∥CD ,∠A =135°,∠C =60°,∠D =150°,则∠E 的大小为( )A .60°B .65°C .70°D .75° 14.将下列长度的三根木棒首尾顺次连接,不能组成三角形的是( ) A .4、5、6 B .3、4、5 C .2、3、4 D .1、2、3 15.如图,小明从点A 出发沿直线前进9米到达点,B 向左转45后又沿直线前进9米到达点C ,再向左转45后沿直线前进9米到达点D ……照这样走下去,小明第一次回到出发点A 时所走的路程为( )A.72米B.80米C.100米D.64米二、填空题16.如图1,ABC纸片面积为24,G为ABC纸片的重心,D为BC边上的一个四等<)连结CG,DG,并将纸片剪去GDC,则剩下纸片(如图2)的面分点(BD CD积为__________.17.如图,C为∠AOB的边OA上一点,过点C作CD∥OB交∠AOB的平分线OE于点F,作CH⊥OB交BO的延长线于点H,若∠EFD=α,现有以下结论:①∠COF=α;②∠AOH =180°﹣2α;③CH⊥CD;④∠OCH=2α﹣90°.其中正确的是__(填序号).18.如果三角形两条边分别为3和5,则周长L的取值范围是________∠的度19.如图,飞机P在目标A的正上方,飞行员测得目标B的俯角为30°,那么APB数为______°.20.如图所示,△ABC 中,∠BAC 、∠ABC 、∠ACB 的四等分线相交于D 、E 、F (其中∠CAD =3∠BAD ,∠ABE =3∠CBE ,∠BCF =3∠ACF ),且△DFE 的三个内角分别为∠DFE =60°、∠FDE =53°、∠FED =67°,则∠BAC 的度数为_________°.21.已知ABC 的高为AD ,65BAD ∠=︒,25CAD ∠=︒,则BAC ∠的度数是_______.22.如图,在一个四边形ABCD 中,AE 平分∠BAD ,DE 平分∠ADC ,且∠ABC=80°,∠BCD=70°,则∠AED=_________.23.如图,六边形ABCDEF 中,AB ∥DC ,∠1、∠2、∠3、∠4分别是∠BAF 、∠AFE 、∠FED 、∠EDC 的外角,则∠1+∠2+∠3+∠4=_____.24.如图,ABC 中,40A ∠=︒,72B ∠=︒,CE 平分ACB ∠,CD AB ⊥于D ,DF CE ⊥交CE 于F ,则CDF ∠=______.25.如图,在ABC ∆中,BD 平分ABC ∠,AE BD ⊥.若30ABC ∠=︒,50C ∠=︒,则CAE ∠的度数为_______︒.26.如图,线段AD ,BE ,CF 两两相交于点H ,I ,G ,分别连接AB ,CD ,EF .则A B C D E F ∠+∠+∠+∠+∠+∠=____.三、解答题27.已知:如图90MON ∠=︒,与点O 不重合的两点A 、B 分别在OM 、ON 上,BE 平分ABN ∠,BE 所在的直线与OAB ∠的平分线所在的直线相交于点C . (1)当点A 、B 分别在射线OM 、ON 上,且45BAO ∠=︒时,求ACB ∠的度数; (2)当点A 、B 分别在射线OM 、ON 上运动时,ACB ∠的大小是否发生变化?若不变,请给出证明;若发生变化,请求出ACB ∠的范围.28.如图,在ABC 中,ABC ∠和ACB ∠的平分线相交于点P ,根据下列条件,求BPC ∠的度数.(1)若40ABC ∠=︒,60ACB ∠=︒,则BPC ∠=______;(2)若110ABC ACB ∠+∠=︒,则BPC ∠=______;(3)若90A ∠=︒,则BPC ∠=______;(4)从以上的计算中,你能发现已知A ∠,求BPC ∠的公式是:BPC ∠=______(提示:用A ∠表示).29.如图所示,已知AD ,AE 分别是△ABC 的高和中线,AB =3cm ,AC =4 cm ,BC=5 cm ,∠CAB =90°.(1)求AD 的长.(2)求△ABE 的面积.30.如图,已知直线//AB CD ,直线EF 分别交直线AB ,CD 于点E ,F ,BEF ∠的平分线与DFE ∠的平分线相交于一点P .试说明:90P ∠=︒.。
八年级数学上册第十一章三角形必考知识点归纳(带答案)
八年级数学上册第十一章三角形必考知识点归纳单选题1、两个直角三角板如图摆放,其中∠BAC=∠EDF=90°,∠E=45°,∠C=30°,AB与DF交于点M.若BC//EF,则∠BMD的大小为()A.60°B.67.5°C.75°D.82.5°答案:C分析:根据BC//EF,可得∠FDB=∠F=45°,再根据三角形内角和即可得出答案.由图可得∠B=60°,∠F=45°,∵BC//EF,∴∠FDB=∠F=45°,∴∠BMD=180°−∠FDB−∠B=180°−45°−60°=75°,故选:C.小提示:本题考查了平行线的性质和三角形的内角和,掌握平行线的性质和三角形的内角和是解题的关键.2、如图,图中直角三角形共有()A.1个B.2个C.3个D.4个答案:C分析:有一个角是直角的三角形是直角三角形.解:如图,直角三角形有:△ABC、△ABD、△ACD.故选C.小提示:本题考查直角三角形的定义.掌握直角三角形的定义是关键,要做到不重不漏.3、如果一个多边形内角和是外角和的4倍,那么这个多边形有()条对角线.A.20B.27C.35D.44答案:C分析:根据多边形的内角和公式(n-2)•180°与外角和定理列出方程,然后求解,多边形对角线的条数可以表.示成n(n−3)2解:设这个多边形是n边形,根据题意得,(n-2)•180°=4×360°,解得n=10.10×(10-3)÷2=35(条).故选:C.小提示:本题考查了多边形的内角和与外角和、方程的思想.关键是记住内角和的公式与外角和的特征,及多边形对角线的条数公式.4、如图,一束太阳光线平行照射在放置于地面的正六边形上,若∠1=19°,则∠2的度数为()A.41°B.51°C.42°D.49°答案:A分析:先求出正六边形的内角和外角,再根据三角形的外角性质以及平行线的性质,即可求解.解:∵正六边形的每个内角等于120°,每个外角等于60°,∴∠FAD=120°-∠1=101°,∠ADB=60°,∴∠ABD=101°-60°=41°∵光线是平行的,∴∠2=∠ABD=41°,故选A小提示:本题主要考查平行线的性质,三角形外角性质以及正六边形的性质,掌握三角形的外角性质以及平行线的性质是解题的关键.5、将一副直角三角板ABC和EDF如图放置(其中∠A=60°,∠F=45°),使点E落在AC边上,且ED//BC,则∠AEF的度数为( )A.145°B.155°C.165°D.170°答案:C分析:根据直角三角形两锐角互余求出∠1,再根据两直线平行,内错角相等求出∠2,然后根据∠CEF=∠DEF -∠2计算出∠CEF,即可求出∠AEF.解:∵∠A=60°,∠F=45°,∴∠1=90°-60°=30°,∠DEF=90°-45°=45°,∵ED∥BC,∴∠2=∠1=30°,∠CEF=∠DEF-∠2=45°-30°=15°,∴∠AEF=180°-15°=165°.故选C.小提示:本题考查了平行线的性质,直角三角形两锐角互余的性质是基础题,熟记性质是解题的关键.6、如图,在△ABC中,AB=20,AC=18,AD为中线.则△ABD与△ACD的周长之差为()A.1B.2C.3D.4答案:B分析:利用三角形中线的定义、三角形的周长公式进行计算即可得出结果.∵在△ABC中,AD为中线,∴BD=CD.∵C△ABD=AB+BD+AD,C△ACD=AC+CD+AD,∴C△ABD−C△ACD=AB−AC=20−18=2.故选:B.小提示:本题考查三角形的中线的理解与运用能力.三角形中,连接一个顶点和它所对边的中点的线段叫做三角形的中线.明确三角形的中线的定义,运用两个三角形的周长的差等于两边的差是解本题的关键.7、如图,AB和CD相交于点O,则下列结论正确的是()A.∠1=∠2B.∠2=∠3C.∠3=∠4D.∠1=∠5答案:A分析:根据平行线的性质和对顶角的性质进行判断.解:A、∵∠1与∠2是对顶角,∴∠1=∠2,本选项说法正确;B、∵AD与AB不平行,∴∠2≠∠3,本选项说法错误;C、∵AD与CB不一定平行,∴∠3≠∠4,本选项说法错误;D、∵CD与CB不平行,∴∠1≠∠5,本选项说法错误;故选:A.小提示:本题考查平行线的应用,熟练掌握平行线的性质和对顶角的意义与性质是解题关键.8、在△ABC中,若一个内角等于另外两个角的差,则()A.必有一个角等于30°B.必有一个角等于45°C.必有一个角等于60°D.必有一个角等于90°答案:D分析:先设三角形的两个内角分别为x,y,则可得第三个角(180°-x-y),再分三种情况讨论,即可得到答案.设三角形的一个内角为x,另一个角为y,则第三个角为(180°-x-y),则有三种情况:①x=|y−(180°−x−y)|⇒y=90∘或x+y=90∘②y=|x−(180∘−x−y)|⇒x=90∘或x+y=90∘③(180∘−x−y)=|x−y|⇒x=90∘或y=90∘综上所述,必有一个角等于90°故选D.小提示:本题考查三角形内角和的性质,解题的关键是熟练掌握三角形内角和的性质,分情况讨论.9、下列多边形具有稳定性的是()A.B.C.D.答案:D分析:利用三角形具有稳定性直接得出答案.解:三角形具有稳定性,四边形、五边形、六边形都具有不稳定性,故选D.小提示:本题考查三角形的特性,牢记三角形具有稳定性是解题的关键.10、如图,小亮同学用绘画的方法,设计的一个正三角形的平面镶嵌图,其中主要利用的是正三角形和正六边形.如果整个镶嵌图△ABC的面积为75,则图中阴影部分的面积是()A.25B.26C.30D.39答案:B分析:正ΔABC中有多种图形,将不规则图形拆分后,可归结为四种图形,每种图形都可划分为面积最小的正三角形的组合,最后正ΔABC全部由小正三角形组成,根据阴影部分小正三角形的个数所占全部小正三角形个数比例与面积相乘即可得出答案.如图所示,将不规则部分进行拆分,共有四种图形:正六边形、较大正三角形、平行四边形、小正三角形;其中一个正六边形可以分成6个小正三角形,较大正三角形可以分成4个小正三角形,平行四边形可以分成6个小正三角形,由图可得:正六边形有13个,可分成小正三角形个数为:13×6=78(个);较大正三角形有26个,可分成小正三角形个数为:26×4=104(个);平行四边形有5个,可分成小正三角形个数为:5×6=30(个);小正三角形个数为13个;∴一共有小正三角形个数为:78+104+30+13=225(个),∴图中阴影部分面积为:75×78=26,225故选:B.小提示:题目主要考查创新思维,将其进行分类分解是解题难点.填空题11、如图,在三角形ABC中,AB⊥AC,AD⊥BC,垂足为D,AB=3,AC=4,BC=5,则AD=______.答案:2.4分析:根据面积相等可列式12AB·AC=12BC·AD,代入相关数据求解即可.解:∵AB⊥AC,AD⊥BC,∴12AB·AC=12BC·AD∵AB=3,AC=4,BC=5,∴AD=AB·ACBC =125=2.4故答案諀:2.4小提示:此题主要考查了运用等积关系求线段的长,准确识图是解答本题的关键.12、如图,射线AB与射线CD平行,点F为射线AB上的一定点,连接CF,点P是射线CD上的一个动点(不包括端点C),将△PFC沿PF折叠,使点C落在点E处.若∠DCF=62°,当点E到点A的距离最大时,∠CFP=_____.答案:59°##59度分析:利用三角形三边关系可知:当E落在AB上时,AE距离最大,利用AB∥CD且∠DCF=62°,得到∠CFA=62°,再根据折叠性质可知:∠EFP=∠CFP,利用补角可知∠EFP+∠CFP=118°,进一步可求出∠EFP=∠CFP=59°.解:利用两边之和大于第三边可知:当E落在AB上时,AE距离最大,如图:∵AB∥CD且∠DCF=62°,∴∠CFA=62°,∵△PCF折叠得到△PEF,∴∠EFP=∠CFP,∵∠EFP+∠CFP=118°,∴∠EFP=∠CFP=59°.所以答案是:59°小提示:本题考查三角形的三边关系,平行线的性质,折叠的性质,补角,角平分线,解题的关键是找出:当E落在AB上时,AE距离最大,再解答即可.13、三角形的中线把三角形分成了面积相等的两部分,而三条中线交于一点,这一点叫此三角形的_________心.答案:重分析:根据三角形的重心的定义即可求解.三角形的三条中线交于一点,这一点叫此三角形的重心;所以答案是:重.小提示:本题主要考查了三角形的重心,重心是三角形三边中线的交点;三角形的中线将三角形的面积分成了相等的两部分,重心到顶点的距离与重心到对边中点的距离之比为2:1.14、如图,BD是△ABC的中线,AB=5cm,BC=3cm,那么△ABD的周长比△CBD的周长多_____.答案:2cm分析:根据三角形的中线的概念得到AD=DC,根据三角形的周长公式计算,得到答案.解:∵BD是△ABC的中线,∴AD=DC,∴△ABD的周长-△CBD的周长=(AB+AD+BD)-(BC+DC+BD)=AB-BC=5-3=2(cm),∴△ABD的周长比△CBD的周长多2cm,所以答案是:2cm.小提示:本题考查的是三角形的中线的概念,三角形一边的中点与此边所对顶点的连线叫做三角形的中线.15、如图,孔明在驾校练车,他由点A出发向前行驶200米到B处,向左转45°.继续向前行驶同样的路程到C 处,再向左转45°.按这样的行驶方法,回到点A总共行驶了 __.答案:1600米##1600m分析:根据题意可知汽车所走的路程正好是一个外角为45°的多边形的周长,求出多边形的周长即可.解:根据题意得:360°÷45°=8,则他走回点A时共走的路程是8×200=1600(米).故回到A点共走了1600米.所以答案是:1600米.小提示:本意主要考查了多边形的外角和定理,即任意多边形的外角和都是360°.解答题16、如图,已知在△ABC中,∠B=30°,∠C=50°,AE是BC边上的高,AD是∠BAC的角平分线,求∠DAE的度数.答案:10°分析:先根据三角形内角和定理求出∠BAC,再根据角平分线的定义求出∠BAD,根据直角三角形两锐角互余求出∠BAE的度数即可得到答案.解:∵∠B=30°,∠C=50°,∴∠BAC=180°-∠B-∠C=100°,∵AD是∠BAC的角平分线,∴∠BAD=1∠BAC=50°,2∵AE是BC边上的高,∴∠AEB=90°,∴∠BAE=90°-∠B=60°,∴∠DAE=∠BAE-∠BAD=10°.小提示:本题主要考查了三角形内角和定理,角平分线的定义,直角三角形两锐角互余,熟知相关知识是解题的关键.17、如图,AD是△ABE的角平分线,过点B作BC⊥AB交AD的延长线于点C,点F在AB上,连接EF交AD于点G.(1)若2∠1+∠EAB=180°,求证:EF∥BC;(2)若∠C=72°,∠AEB=78°,求∠CBE的度数.答案:(1)见解析;(2)24°分析:(1)先根据AD是△ABE的角平分线得出∠EAB=2∠GAF,,再由2∠1+∠EAB=180°得出∠AGF+∠GAF=90°,进而可得出结论;(2)根据三角形内角和定理及外角的性质求解即可.(1)证明:∵AD是△ABE的角平分线,∴∠EAB=2∠GAF,∵2∠1+∠EAB=180°,∴2∠1+2∠GAF=180°,∵∠1=∠AGF,∴2∠AGF+2∠GAF=180°,∴∠AGF+∠GAF=90°,∴∠AFG=90°,∵BC⊥AB,∴∠AFG=∠ABC==90°,∴EF∥BC;(2)解:∵∠C=72°,∠ABC==90°,∴∠CAB==90°-∠C==90°-72°==18°,∴∠EAB=2∠CAB=36°,∵∠AEB=78°,∴∠ABE==180°-(∠AEB+∠EAB)==90°-(78°+36°)==66°,∴∠CBE=90°-∠ABE==90°-66°==24°.小提示:此题考查了平行线的判定及三角形的内外角性质,熟记平行线的判定定理是解题的关键.18、在一个各内角都相等的多边形中,每一个内角都比相邻外角的3倍还大20°.(1)求这个多边形的边数;(2)若将这个多边形剪去一个角,剩下多边形的内角和是多少?答案:(1)9;(2)1080º或1260º或1440º.分析:(1)设多边形的一个外角为x,则与其相邻的内角等于3x+20°,根据内角与其相邻的外角的和;是180°列出方程,求出x的值,再由多边形的外角和为360°,求出此多边形的边数为360°x(2)剪掉一个角以后,多边形的边数可能增加了1条,也可能减少了1条,或者不变,根据多边形的内角和定理即可求出答案.解:(1)设每一个外角为x,则与其相邻的内角等于3x+20°,∴180°−x=3x+20°,∴x=40°,即多边形的每个外角为40°,∵多边形的外角和为360°,∴多边形的外角个数为:360°=9,40°∴这个多边形的边数为9;(2)因为剪掉一个角以后,多边形的边数可能增加了1条,也可能减少了1条,或者不变,①若剪去一角后边数减少1条,即变成8边形,∴内角和为(8−2)×180°=1080°,②若剪去一角后边数不变,即变成9边形,∴内角和为(9−2)×180°=1260°,③若剪去一角后边数增加1,即变成10边形,∴内角和为(10−2)×180°=1440°,∴将这个多边形剪去一个角后,剩下多边形的内角和为1080°或1260°或1440°.小提示:本题考查了多边形的内角和定理,外角和定理,多边形内角与外角的关系,熟练掌握相关知识点是解题的关键.。
第十一章 三角形
第十一章三角形知识点+练习一、知识框架:二、知识概念:1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.8.多边形的内角:多边形相邻两边组成的角叫做它的内角.9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,13.公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和.性质2:三角形的一个外角大于任何一个和它不相邻的内角.⑶多边形内角和公式:n边形的内角和等于(2)n-·180°⑷多边形的外角和:多边形的外角和为360°.⑸多边形对角线的条数:从n边形的一个顶点出发可以引n(3)n-/2条对角线第十一章 三角形检测题(本检测题满分:100分,时间:90分钟)一、选择题(每小题3分,共30分)1.若一个三角形的两边长分别为3和7,则第三边长可能是( )A.6B.3C.2D.112.在△ABC 中,∠A ︰∠B ︰∠C =3︰4︰5,则∠C 等于( )A.45°B.60°C.75°D.90°3.如图,CE 是△ABC 的外角∠ACD 的平分线,若∠B =35°,∠ACE =60°,则∠A =() A.35° B.95° C.85° D.75°4.已知△ABC 中,∠ABC 和∠ACB 的平分线交于点O ,则∠BOC 一定( )A.小于直角B.等于直角C.大于直角D.不能确定5.下列说法中正确的是( )A.三角形可分为斜三角形、直角三角形和锐角三角形B.等腰三角形任何一个内角都有可能是钝角或直角C.三角形的外角一定是钝角D.在△ABC 中,如果∠A ∠B ∠C ,那么∠A 60°,∠C 60°第3题图6.(2016·山东枣庄中考)如图,在△ABC 中,AB =AC ,∠A =30°,E 为BC 延长线上一点,∠ABC 与∠ACE 的平分线相交于点D ,则∠D 的度数为( )A.15°B.17.5°C.20°D.22.5°7.不一定在三角形内部的线段是( )A.三角形的角平分线B.三角形的中线C.三角形的高D.以上皆不对8.已知△ABC 中, ,周长为12, ,则b 为( )A.3B.4C.5D.6 9.如图,在△ABC 中,点D 在BC 上,AB =AD =DC ,∠B =80°,则∠C 的度数为( )A.30°B.40°C.45°D.60°10.直角三角形的两锐角平分线相交成的角的度数是( )A.45°B.135°C.45°或135°D.以上答案均不对二、填空题(每小题3分,共24分)11.(广州中考)在△ABC 中,已知6080A B ∠=︒∠=︒,,则C ∠的外角的度数是______°.12.如图所示是一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2=_______°.13.若将边形边数增加1倍,则它的内角和增加__________. 第12题图第9题图第6题图14.如图,已知AB ∥CD ,BC ∥DE .若∠A =20°,∠C =120°,则∠AED 的度数是.15.设为△ABC 的三边长,则_______.16.在△ABC 中,AB =4,AC =3,AD 是△ABC 的角平分线,则△ABD 与△ACD 的面积之比是 .17.如图所示,AD 是正五边形ABCDE 的一条对角线,则∠BAD =_______°.18.如图,点D 在△ABC 边BC 的延长线上,CE 平分∠ACD ,∠A=80°,∠B =40°,则∠ACE 的大小是_____度.三、解答题(共46分)19.(6分)一个凸多边形,除了一个内角外,其余各内角的和为2 750°,求这个多边形的边数.20.(6分)如图所示,在△ABC 中,AB =AC ,AC 边上的中线把三角形的周第17题图 第18题图第14题图长分为24 cm和30 cm的两部分,求三角形各边的长.第20题图21.(6分)有人说,自己的步子大,一步能走四米多,你相信吗?用你学过的数学知识说明理由.22.(6分)已知一个三角形有两边长均为,第三边长为,若该三角形的边长都为整数,试判断此三角形的形状.23.(6分)如图所示,武汉有三个车站A、B、C成三角形,一辆公共汽车从B站前往到C站.(1)当汽车运动到点D时,刚好BD=CD,连接AD,AD这条线段是什么线段?这样的线段在△ABC中有几条?此时有面积相等的三角形吗?(2)汽车继续向前运动,当运动到点E时,发现∠BAE=∠CAE,那么AE这条线段是什么线段?在△ABC中,这样的线段又有几条?(3)汽车继续向前运动,当运动到点F时,发现∠AFB=∠AFC=90°,则AF是什么线段?这样的线段有几条?第23题图第24题图24.(8分)(2016·南京中考)用两种方法证明“三角形的外角和等于360°”.如图,∠BAE,∠CBF,∠ACD是△ABC的三个外角.求证:∠BAE+∠CBF+∠ACD=360°.证法1:∵,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°.∴∠BAE+∠CBF+∠ACD=540°-(∠1+∠2+∠3).∵,∴∠BAE+∠CBF+∠ACD=540°-180°=360°.请把证法1补充完整,并用不同的方法完成证法2.25.(8分)规定,满足(1)各边互不相等且均为整数,(2)最短边上的高与最长边上的高的比值为整数k,这样的三角形称为比高三角形,其中k叫做比高系数.根据规定解答下列问题:(1)求周长为13的比高三角形的比高系数k的值;(2)写出一个只有4个比高系数的比高三角形的周长.第十一章三角形检测题参考答案1.A 解析:设第三边长为x,则7-3<x<3+7,即4<x<10,故选A.点拨:本题考查了三角形的三边关系,熟记“两边之和大于第三边,两边之差小于第三边”是解题的关键.2.C 解析:根据三角形内角和为180°,得∠C=180°×53+4+5=180°×512=75°,即∠C=75°.3.D 解析:∵CE是△ABC的外角∠ACD的平分线,∠ACE=60°,∴∠ACD=2∠ACE=120°.∵∠ACD=∠B+∠A,∴∠A=∠ACD-∠B=120°-35°=85°.故选C.4.C 解析:因为在△ABC中,∠ABC+∠ACB180°,所以12所以∠BOC90°.故选C.5.D 解析:A.三角形包括直角三角形和斜三角形,斜三角形又包括锐角三角形和钝角三角形,所以A错误;B.等腰三角形只有顶角可能是钝角或直角,所以B错误;C.三角形的外角可能是钝角、锐角,也可能是直角,所以C错误;D.因为△ABC中,∠A∠B∠C,若∠A≤60°,则∠A+∠B+∠C<60°+60°+60°=180°;若∠C ≥60°,则∠A+∠B+∠C>60°+60°+60°=180°,与三角形的内角和为180°相矛盾,所以原结论正确,故选D.6.A 解析:如图,∵∠ABC的平分线与∠ACE的平分线交于点D,∴∠1=∠2,∠3=∠4.∵∠ACE=∠A+∠ABC,即∠3+∠4=∠A +∠1+∠2,∴ 2∠4=2∠2+∠A.∵ ∠4=∠2+∠D ,∴ ∠A =2∠D ,∴ ∠D =∠A =×30°=15°.故选A.点拨:本题考查了三角形内角和定理,关键是根据三角形内角和是180°和三角形外角等于和它不相邻的两个内角的和这一性质进行分析.7.C 解析:因为三角形的中线、角平分线都在三角形的内部,而钝角三角形的高有的在三角形的外部,所以答案选C .8.B 解析:因为,所以.又,所以故选B.9.B 解析: , 80AB AD ADB B =∴∠=∠=︒Q . , ,AD DC C CAD =∴∠=∠Q280, 40ADB C CAD C C ∴∠=∠+∠=∠=︒∴∠=︒.10.C 解析:如图所示:∵ AE 、BD 是直角三角形中两锐角平分线,∴ ∠OAB +∠OBA =90°÷2=45°.两角平分线组成的角有两个:∠BOE 与∠EOD ,根据三角形外角的性质,∠BOE =∠OAB +∠OBA =45°,∴ ∠EOD =180°-45°=135°,故选C . 11.140 解析:根据三角形内角和定理得∠C =40°,则∠C 的外角为18040140︒-︒=︒. 12.270 解析:如图,根据题意可知∠5=90°,∴ ∠3+∠4=90°,∴ ∠1+∠2=180°+180°-(∠3+∠4)=360°-90°=270°.第10题答图第12题答图第16题答图13. 解析:利用多边形内角和定理进行计算.因为边形与边形的内角和分别为和,所以内角和增加.14.80°解析:方法1:如图①,延长DE交AB于点F.∵BC∥DE,∴∠AFE=∠B.∵AB∥CD,∴∠B+∠C=180°.∵∠C=120°,∴∠AFE=∠B=60°.∵∠A=20°,∴∠AED=∠A+∠AFE=80°.①②方法2:如图②,延长AE交BC于点F.∵BC∥DE,∴∠AED=∠AF C.∵AB∥CD,∴∠B+∠C=180°.∵∠C=120°,∴∠B=60°.∵∠A=20°,∴∠AED=∠AFC=∠A+∠B=80°.15. 解析:因为为△ABC的三边长,所以,,所以原式=第16题答图第14题答图16.4∶3 解析:如图所示,过点D 作DM ⊥AB ,DN ⊥AC ,垂足分别为点M 和点N ,∵ AD 平分∠BAC ,∴ DM =DN .∵ AB ×DM ,AC ×DN ,∴ 142132ABD ACD AB DM S AB S AC AC DN ´´===△△. 17.72 解析:正五边形ABCDE 的每个内角为(52)1805-⨯︒=108°,由△AED 是等腰三角形得,∠EAD =12(180°-108°)=36°,所以∠DAB =∠EAB -∠EAD =108°-36°=72°. 18.60 解析:∵ ACD ∠是△ABC 的一个外角,∴ 8040120ACD A B ∠=∠+∠=︒+︒=︒. ∵ CE 平分∠ACD , ∴ 111206022ACE ACD ∠=∠=⨯︒=︒.19.分析:由于除去的一个内角大于0°且小于180°,因此题目中有两个未知量,但等量关系只有一个,在一些竞赛题目中常常会出现这种问题,这就需要依据条件中两个未知量的特殊含义去求值.解:设这个多边形的边数为(为自然数),除去的内角为°(0<<180),根据题意,得∵ ∴∴ ,∴ .点拨:本题在利用多边形的内角和公式得到方程后,又借助角的范围,通过解不等式得到了这个多边形的边数.这也是解决有关多边形的内、外角和问题的一种常用方法.20.分析:因为BD 是中线,所以AD =DC ,造成所分两部分周长不相等的原因就在于腰长与底边长的不相等,故应分情况讨论.解:设AB =AC =2,则AD =CD =.(1)当AB+AD=30,BC+CD=24时,有2=30,∴=10,2 =20,BC=24-10=14.三边长分别为:20 cm,20 cm,14 cm.(2)当AB+AD=24,BC+CD=30时,有=24,∴=8,,BC=30-8=22.三边长分别为:16 cm,16 cm,22 cm.21.分析:人的两腿可以看作是两条线段,走的步子也可看作是线段,则这三条线段正好构成三角形的三边,就应满足三边关系定理.解:不能.如果此人一步能走四米多,由三角形三边的关系得,此人两腿长的和大于4米,这与实际情况不符.所以他一步不能走四米多.22.分析:已知三角形的三边长,根据三角形的三边关系,列出不等式,再求解.解:根据三角形的三边关系,得<<,.0<<6-,0<<32因为2,3-x均为正整数,所以=1.所以三角形的三边长分别是2,2,2.因此,该三角形是等边三角形.23.分析:(1)由于BD=CD,则点D是BC的中点,AD是中线,三角形的中线把三角形分成两个面积相等的三角形;(2)由于∠BAE=∠CAE,所以AE是三角形的角平分线;(3)由于∠AFB=∠AFC=90°,则AF是三角形的高线.解:(1)AD是△ABC中BC边上的中线,三角形中有三条中线.此时△ABD与△ADC的面积相等.(2)AE是△ABC中∠BAC的平分线,三角形中角平分线有三条.(3)AF是△ABC中BC 边上的高线,三角形有三条高线.24.∠BAE+∠1=∠CBF+∠2=∠ACD+∠3=180°(1分))∠1+∠2+∠3=180°(3分证法2:如图,过点A作射线AP,使AP∥B D.(4分)∵AP∥BD,∴∠CBF=∠PAB,∠ACD=∠EAP.(6分)∵∠BAE+∠PAB+∠EAP=360°,∴∠BAE+∠CBF+∠ACD=360°.(8分)解析:(1)因为∠1与∠BAE互为邻补角,∠2与∠CBF互为邻补角,∠3与∠ACD互为邻补角,所以根据邻补角的定义,得∠BAE+∠1=∠CBF+∠2=∠ACD+∠3=180°.因为∠1,∠2,∠3是△ABC的三个内角,所以根据三角形的内角和定理,得∠1+∠2+∠3=180°.(2)过点A作射线AP∥BD,根据两直线平行,同位角相等,得∠CBF=∠PAB,∠ACD=∠EAP.根据∠BAE+∠PAB+∠EAP=360°,问题得证.注意:三角形的内角和为180°以及邻补角等都是题目中的隐含条件,在做证明题时注意隐含条件的使用.25.分析:(1)根据定义结合三角形的三边关系“任意两边之和>第三边,任意两边之差<第三边”,进行分析;(2)根据比高三角形的知识结合三角形三边关系求解只有4个比高系数的比高三角形的周长.解:(1)根据定义和三角形的三边关系,知此比高三角形的三边长是2,5,6或3,4,6,则k=3或2.(2)如周长为37的比高三角形,只有4个比高系数.当比高系数为2时,这个三角形三边长分别为9、10、18或8、13、16;当比高系数为3时,这个三角形三边长分别为6、13、18;当比高系数为6时,这个三角形三边长分别为3、16、18;当比高系数为9时,这个三角形三边长分别为2、17、18.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形必背知识点一、三角形基本概念1. 三角形的概念由不在同一条直线上的三条线段首尾依次相接所组成的图形叫做三角形。
2.3. 三角形三边的关系(重点)三角形的任意两边之和大于第三边。
三角形的任意两边之差小于第三边。
(这两个条件满足其中一个即可)用数学表达式表达就是:记三角形三边长分别是a,b,c,则a+b>c或c-b<a。
已知三角形两边的长度分别为a,b,求第三边长度的范围:|a-b|<c<a+b解题方法:①数三角形的个数方法:分类,不要重复或者多余。
②给出三条线段的长度或者三条线段的比值,要求判断这三条线段能否组成三角形方法:最小边+较小边>最大边不用比较三遍,只需比较一遍即可③给出多条线段的长度,要求从中选择三条线段能够组成三角形方法:从所给线段的最大边入手,依次寻找较小边和最小边;直到找完为止,注意不要找重,也不要漏掉。
④已知三角形两边的长度分别为a,b,求第三边长度的范围方法:第三边长度的范围:|a-b|<c<a+b⑤给出等腰三角形的两边长度,要求等腰三角形的底边和腰的长方法:因为不知道这两边哪条边是底边,哪条边是腰,所以要分类讨论,讨论完后要写“综上”,将上面讨论的结果做个总结。
二、三角形的高、中线与角平分线1. 三角形的高从△ABC的顶点向它的对边BC所在的直线画垂线,垂足为D,那么线段AD叫做△ABC的边BC上的高。
三角形的三条高的交于一点,这一点叫做“三角形的垂心”。
2. 三角形的中线连接△ABC的顶点A和它所对的对边BC的中点D,所得的线段AD叫做△ABC的边BC上的中线。
三角形三条中线的交于一点,这一点叫做“三角形的重心”。
三角形的中线可以将三角形分为面积相等的两个小三角形。
3. 三角形的角平分线∠A的平分线与对边BC交于点D,那么线段AD叫做三角形的角平分线。
要区分三角形的“角平分线”与“角的平分线”,其区别是:三角形的角平分线是条线段;角的平分线是条射线。
三角形三条角平分线的交于一点,这一点叫做“三角形的内心”。
要求会的题型:①已知三角形中两条高和其所对的底边中的三个长度,求其中未知的高或者底边的长度方法:利用“等积法”,将三角形的面积用两种方式表达,求出未知量。
三、三角形的稳定性1. 三角形具有稳定性2. 四边形及多边形不具有稳定性要使多边形具有稳定性,方法是将多边形分成多个三角形,这样多边形就具有稳定性了。
四、与三角形有关的角C1. 三角形的内角① 三角形的内角和定理三角形的内角和为180°,与三角形的形状无关。
②直角三角形的两个锐角互余(相加为90°)。
有两个角互余的三角形是直角三角形。
2.三角形的外角① 三角形外角的意义三角形的一边与另一边的延长线组成的角叫做三角形的外角。
②三角形外角的性质三角形的一个外角等于与它不相邻的两个内角之和。
三角形的一个外角大于与它不相邻的任何一个内角。
③两个基本图形八字模型:结论:∠1+∠2=∠3+∠4飞镖模型:结论:1.∠BOC =∠A +∠B +∠C 2.AB +AC >BO +CO三角形的复习题型分类讲解考点一:三角形三边关系的考查: 【基本应用】1.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是( )A. 3cm, 4cm, 8cmB. 8cm, 7cm, 15cmC. 13cm, 12cm, 20cmD. 5cm, 5cm, 11cm 2.(2013•宜昌)下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是( )A.1,2,6 B.2,2,4 C.1,2,3 D.23,43.图中共有( )个三角形。
A.5B.6C.7D.84.(2013•毕节地区)已知等腰三角形的一边长为4,另一边长为8,则这个等腰三角形的周长为( ) A. 16 B.20或16 C.20 D.12 【能力提高】1.(2013·南通中考)有3cm ,6cm ,8cm ,9cm 四条线段,任选其中的三条线段组成一个三角形,则最多能组成三角形的个数为 ( )A.1B.2C.3D.42.长为11,8,6,4的四根木条,选其中三根组成三角形有 种选法,它们分别是3.等腰三角形两边长分别为3,7,则它的周长为( )A.13B.17C.13或17D.不能确定4.(2013•广安)等腰三角形的一条边长为6,另一边长为13,则它的周长为( ) A.25 B.25或32 C.32 D.195.等腰三角形两边长分别为4和8,则这个等腰三角形的周长为______________6.若三条线段中a =3,b =5,c 为奇数,那么由a ,b ,c 为边组成的三角形共有( ) A.1个 B.3个 C.无数多个 D.无法确定7.(2012·义乌中考)如果三角形的两边长分别为3和5,第三边长是偶数,则第三边长可以是 ( ) A.2 B.3 C.4 D.8 8.已知a 、b 、c 是三角形的三边,化简c b -+a -c -b -a .9.已知a,b,c是三角形的三边长,化简|a-b+c|+|a-b-c|.10.若a,b,c分别为三角形的三边,化简:|a−b−c|+|b−c−a|+|c−a+b|.考点、三角形角的考查【基本应用】1.一个三角形中最多有个内角是钝角,最多可有个角是锐角.2.若∠A=50°,∠B=∠C,则∠C=_______3.若∠A∶∠B∶∠C=1∶2∶3,则∠A=_______,∠B=_______,∠C=_______.4.已知△ABC的三个内角的度数之比∠A:∠B:∠C=1:3:5,则∠B= 0,∠C= 05.(2010山东济宁)若一个三角形三个内角度数的比为2︰3︰4,那么这个三角形是()A. 直角三角形B. 锐角三角形C. 钝角三角形D. 等边三角形6.在Rt△ABC中,∠C=90°.若∠A=48°,则∠B=_______.7.在Rt△ABC中,∠C=90°,∠A=5∠B,则∠A=_______.8.在△ABC中,∠A=55°,∠B比∠C大25°,则∠B的度数为( )A.50°B.75°C.100°D.125°9.如图,直线MA∥NB,∠A=70°,∠B=40°,则∠P= .10.如图,则∠α=_______第9题第10题11.如图,在△ABC中,∠A=36°,∠C=72°,BD平分∠ABC,求∠DBC的度数.【能力提高】1.如图,∠A=40°,∠1+∠2+∠3+∠4=_______.2.在一个三角形中,有一个角等于另外两个角的和,则这个三角形一定是( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形3.如图,∠A、∠1、∠2的大小关系是( )A.∠A>∠1>∠2 B.∠2>∠1>∠A C.∠A>∠2>∠1 D.∠2>∠A>∠14.如图,△ABC中,∠A=50°,点D,E分别在AB,AC上,则∠1+∠2的大小为( ) A.130°B.230°C.180°D.310°第1题第3题第4题5.已知等腰三角形的一个外角是120°,则它是( )A.等腰直角三角形B.一般的等腰三角形C.等边三角形D.等腰钝角三角形6.已知△ABC中,∠A,∠B,∠C的外角度数之比为2∶3∶4,则这个三角形是( )A.直角三角形B.等边三角形C.钝角三角形D.等腰三角形7.已知三角形的三个外角的度数比为2∶3∶4,则它的最大内角的度数( ).4321AA. 90°B. 110°C. 100°D. 120° 8.若一个三角形的一个外角小于与它相邻的内角,则这个三角形是( ). A.直角三角形 B.锐角三角形 C.钝角三角形 D.无法确定 9.已知等腰三角形的一个外角为150°,则它的底角为_______.10.(2013·重庆中考)如图,AB ∥CD ,AD 平分∠BAC ,若∠BAD=70°,那么∠ACD 的度数为 _______ 11.如图,将三角尺的直角顶点放在直线a 上,a ∥b ,∠1=50°,∠2=60°,则∠3的度数为( ) A .50° B .60° C .70° D .80°第10题 第11题12.如图,在△ABC 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点,且ABCS = 42cm ,则S 阴影等于( )A .22cm B. 12cm C. 122cm D. 142cm13.如图,在△ABC 中,∠ACB=900,CD 是边AB 上的高。
那么图中与∠A 相等的角是( ) A. ∠B B. ∠ACD C. ∠BCD D. ∠BDC第12题 第13题14.如图,在△ABC 中,D 是BC 边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC 的度数.15.如图,已知点P在△ABC内任一点,试说明∠A与∠P的大小关系16.如图,∠1+∠2+∠3+∠4等于多少度;考点二、三角形中线、角平线、高的考查【基本应用】1.对下面每个三角形,过顶点A画出中线,角平分线和高.2.下列说法错误的是( ).A.三角形的三条高一定在三角形内部交于一点B.三角形的三条中线一定在三角形内部交于一点C.三角形的三条角平分线一定在三角形内部交于一点D.三角形的三条高可能相交于外部一点3.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()(1)CBAC BA(2)CBA(3)PCBAA. 锐角三角形B. 钝角三角形C. 直角三角形D.不能确定【能力提高】1.三角形的下列线段中能将三角形的面积分成相等的两部分是()A.中线B.角平分线C.高D.中位线2.(2012·梧州中考)如图,AE是△ABC的角平分线,AD⊥BC于点D,若∠BAC=128°,∠C=36°,则∠DAE的度数是( )A.10°B.12°C.15°D.18°3.如图,已知在△ABC中,∠ABC与∠ACB的平分线相交于点O,若∠BOC=140°,求∠A的度数.4.如图,在△ABC中,AD是∠BAC的平分线,∠B=54°,∠C=76°(1)求∠ADB和∠ADC的度数.(2)若DE⊥AC,求∠EDC的度数.考点三、多边形相关知识【基本应用】1.如果一个多边形的每一外角都是24°,那么它是______边形.2.正n边形的一个外角的度数为60°,则n的值为______.3.若一个多边形的边数为8条,则这个多边形的内角和是( )A.900°B.540°C.1080°D.360°4.(2014·南京模拟)如图,∠1,∠2,∠3,∠4是五边形ABCDE的4个外角,若∠A=120°,则∠1+∠2+∠3+∠4=______.5.(2013·泰安)如图,五边形ABCDE中,AB∥CD,∠1,∠2,∠3分别是∠BAE,∠AED,∠EDC的外角,则∠1+∠2+∠3等于( )A.90°B.180°C.210°D.270°6.多边形每一个内角都等于150°,则该多边形的边数是( )A.10条B.11条 C.12条 D.13条7.一个多边形的内角和是720°,这个多边形的边数是( )A.4条B.5条C.6条D.7条8.一个多边形内角和是10800,则这个多边形的边数为()A.6B.7C.8D.99.若凸n边形的内角和为1260°,则从一个顶点出发引的对角线条数是______.10.若从一多边形的一个顶点出发,最多可引10条对角线,则它是()A.十三边形B.十二边形C.十一边形D.十边形11.下列正多边中,能铺满地面的是()A.正方形B.正五边形C.等边三角形D. 正六边形12.下列正多边形的组合中,能够铺满地面的是()A.正六边形和正三角形B.正三角形和正方形C.正八边形和正方形D.正五边形和正八边形13.装饰大世界出售下列形状的地砖:○1正方形;○2长方形;○3正五边形;○4正六边形。