高中物理力学模型及方法1
高中物理力学模型归纳
高中物理力学模型归纳
1. 质点模型:将物体看成一个质点,忽略其大小、形态和内部结构,只考虑它的质量和运动状态。
2. 刚体模型:将物体看成一个刚体,认为它的各个部分不会相对运动,只考虑它的整体运动。
3. 弹性模型:将物体看成具有弹性的物体,认为它能够发生形变,但在去除外力后能够恢复原状。
4. 摩擦模型:将物体看成受到摩擦力的物体,认为在两个物体接触时存在一种阻碍运动的力,影响物体的运动状态。
5. 空气阻力模型:将物体看成受到空气阻力的物体,认为物体在空气中运动时会受到空气的阻碍,影响物体的运动状态。
6. 转动模型:将物体看成具有转动的物体,认为物体在运动过程中会发生转动,需要考虑其转动惯量和角加速度等因素。
7. 力分析模型:将物体的运动状态分解为力的作用和物体的反应,通过分析物体受力情况来预测物体的运动状态。
高中物理板块模型归纳
高中物理板块模型归纳高中物理板块模型归纳是指将高中物理课程中所涉及的知识点进行分类、总结和归纳,形成一种系统化的知识结构。
这种模型可以帮助学生更好地理解和掌握物理知识,提高学习效率。
下面详细介绍高中物理板块模型。
一、力学1. 运动学(1)描述运动的数学工具:位移、速度、加速度、角速度、周期等。
(2)直线运动规律:匀速直线运动、匀加速直线运动、匀减速直线运动、匀速圆周运动。
(3)曲线运动规律:平抛运动、斜抛运动、圆周运动。
2. 动力学(1)牛顿运动定律:惯性定律、动力定律、作用与反作用定律。
(2)动量定理:动量的守恒、动量的变化。
(3)能量守恒定律:动能、势能、机械能、内能。
3. 机械振动与机械波(1)简谐振动:正弦、余弦、螺旋线。
(2)非简谐振动:阻尼振动、受迫振动。
(3)机械波:横波、纵波、波的干涉、波的衍射、波的传播。
二、热学1. 分子动理论(1)分子运动的基本规律:布朗运动、分子碰撞、分子速率分布。
(2)气体的状态方程:理想气体状态方程、范德瓦尔斯方程。
2. 热力学(1)热力学第一定律:内能、热量、功。
(2)热力学第二定律:熵、热力学第二定律的微观解释。
3. 物态变化(1)相变:固态、液态、气态、等离子态。
(2)相变规律:熔化、凝固、汽化、液化、升华、凝华。
三、电学1. 电磁学(1)静电学:库仑定律、电场、电势、电势差、电容、电感。
(2)稳恒电流:欧姆定律、电阻、电流、电功率、电解质。
(3)磁场:毕奥-萨伐尔定律、安培环路定律、洛伦兹力、磁感应强度、磁通量、磁介质。
2. 电路与电器(1)电路:串联电路、并联电路、混联电路、电路图。
(2)电器:电阻、电容、电感、二极管、晶体管、运算放大器。
3. 电磁波(1)电磁波的产生:麦克斯韦方程组、赫兹实验。
(2)电磁波的传播:波动方程、折射、反射、衍射。
四、光学1. 几何光学(1)光线、光的反射、光的折射、光的速度。
(2)透镜:凸透镜、凹透镜、眼镜、相机、投影仪。
高中物理动力学-轻绳轻杆模型
轻绳轻杆模型一、轻绳模型:“活结”与“死结”绳是物体间连接的一种方式,当多个物体用绳连接的时候,其间必然有“结”的出现,根据“结”的形式不同,可以分为“活结”和“死结”两种。
“活结”是绳子间的一种光滑连接,其特点是结的两端同一绳上的张力相等;而“死结”是绳子间的一种固定连接,结的两端绳子上的张力不一定相等。
1.“死结”问题的解决方法:(动态平衡问题)(1)正交分解法:建立直角坐标系,把力分解到X 轴和Y 轴上,然后水平方向合力为零,竖直方向合力为零列方程组。
(2)力的合成(图解法):如果物体受3个力作用,那么其中两个力的合力与第三个力大小相等,方向相反。
把这3个力放到三角形中,根据三角形三个边长的变化情况来判断力的变化情况。
(3)拉密定理:物体受到3个力的作用,一个恒力(方向大小不变),一个定力(方向不变大小变),一个变力(方向大小都变化),定力与变力的夹角为θ(即恒力屁股对着的夹角), 那么会有:定力与θ角的变化情况相同当θ角为钝角时,变力与θ角的变化情况相同当θ角为直角时,变力有最小值。
当θ角为锐角时,变力与θ角的变化情况相反。
无论θ角时从锐角变成钝角,还是钝角变成锐角,变力都是先减小后增加。
2.“活结”问题的解决方法:(1) 无论OB 与水平方向的角度如何,OA 、OC 的拉力都不会变,都等于C 的重力。
(2)轻绳的拉力与MN 之间的距离有关,距离越大拉力大,距离约小拉力越小。
如果距离不变(即a 点或b点只是竖直方向移动),那么拉力不变,轻绳与水平方向的夹角也不会变化。
二、轻杆模型:“活杆”与“死杆” 死杆是不可转动,所以杆所受弹力的方向不一定沿杆方向.活杆是可以转动的杆所以杆所受弹力的方向沿杆方向。
1. “死杆”问题的解决方法:由于死杆是不可转动,所以杆所受弹力的方向不一定沿杆方向,也就是说可以是任意方向,那么只能先求出除了杆受到的弹力之外的所有力的合力,那么杆受到的弹力与这个合力大小相等,方向相反。
高中物理力学解题技巧总结
高中物理力学解题技巧总结在高中物理学习过程中,力学是一个重要的分支,也是学生们常常遇到的难题之一。
为了帮助学生们更好地掌握力学解题技巧,本文将从常见的力学题型出发,提供一些实用的解题方法和技巧。
一、力的平衡问题力的平衡问题是力学中最基础的题型之一。
例如,有一根绳子悬挂在两个固定点之间,一个物体悬挂在绳子上,我们需要求解物体所受的力以及绳子的张力。
解题技巧:1. 画出物体受力图:将物体所受的所有力都画在图上,包括重力、绳子的张力等。
2. 列出力的平衡方程:根据力的平衡条件,将物体所受的所有力的合力为零,列出平衡方程。
3. 解方程求解未知量:根据平衡方程,求解未知量,得到所需的结果。
举一反三:类似的力的平衡问题还有很多,比如两个物体通过绳子相连,求解绳子的张力;物体在斜面上受力平衡,求解斜面的倾角等。
通过掌握力的平衡问题的解题方法,可以更好地解决类似的问题。
二、运动学问题运动学问题是力学中另一个常见的题型,需要根据物体的运动情况求解速度、加速度等相关量。
例如,一个物体以一定的速度沿直线运动,我们需要求解物体的加速度。
解题技巧:1. 确定已知量和未知量:首先明确题目中给出的已知量和需要求解的未知量。
2. 应用运动学公式:根据已知量和未知量之间的关系,选择合适的运动学公式进行求解。
3. 代入数值求解:将已知量代入公式中,求解未知量。
举一反三:类似的运动学问题还有很多,比如求解自由落体物体的速度、求解匀加速直线运动的位移等。
通过掌握运动学问题的解题方法,可以更好地解决类似的问题。
三、动力学问题动力学问题是力学中较为复杂的题型,需要综合运用力的平衡和运动学知识进行求解。
例如,一个物体在斜面上受到一定的斜面摩擦力,我们需要求解物体的加速度。
解题技巧:1. 画出物体受力图:根据题目给出的条件,画出物体所受的所有力。
2. 列出力的平衡方程:根据力的平衡条件,列出物体所受的所有力的合力为零的平衡方程。
3. 应用运动学公式:根据已知量和未知量之间的关系,选择合适的运动学公式进行求解。
高中物理教学中常见力学模型与解题技巧
高中物理教学中常见力学模型与解题技巧黄㊀静(福建省莆田华侨中学ꎬ福建莆田351115)摘㊀要:物理作为一门学习难度较大的学科ꎬ尤其是在高中教育阶段的物理课程体系中ꎬ同初中相比ꎬ知识内容深奥难懂ꎬ抽象性特征极为显著ꎬ其中力学部分难度更大.学生在学习过程中往往会感到力学试题难度较大ꎬ会出现思路不清的情况.教师需善于利用力学模型优化力学教学ꎬ指导学生学会使用力学模型解答试题的技巧ꎬ使其顺利突破疑难障碍.基于此ꎬ笔者先介绍高中物理教学中几种常见的力学模型ꎬ再罗列一系列解题实例以供参考所用.关键词:高中物理教学ꎻ力学模型ꎻ解题技巧中图分类号:G632㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1008-0333(2023)34-0114-03收稿日期:2023-09-05作者简介:黄静(1985.5-)ꎬ女ꎬ福建省莆田人ꎬ本科ꎬ中学一级教师ꎬ从事高中物理教学研究.㊀㊀力学模型指的是根据所研究对象的几何特性等ꎬ抽象而出的力学关系的一种表达形式.因为实际中的力学问题通常比较复杂ꎬ这就要针对同一研究对象进行多次实验㊁反复观察和认真分析ꎬ把握问题本质ꎬ做出正确假设ꎬ将问题简化或理想化ꎬ最终通过简单模型解决问题.在高中物理教学过程中ꎬ力学是相当重要的一部分内容ꎬ也是学生学习的难点与重点ꎬ由于力学问题较为抽象ꎬ教师可以指引学生通过构建力学模型的方式分析题目内容ꎬ使其找到解题的切入点ꎬ把抽象问变得具体化ꎬ形成简洁㊁正确的解题思路ꎬ让他们高效解题[1].1常见物理力学模型的构建1.1物理模型构建概念在高中物理教学过程中ꎬ构建模型往往要结合例题引领学生寻找解题思路ꎬ其中力学方面涉及的模型相当多ꎬ主要涉及能量守恒定律㊁三大牛顿定律等多个力学知识要点.一些同学虽然可以熟练㊁准确运用力学公式解答物理试题ꎬ但是缺乏良好的解题思路ꎬ以至于产生不知道采用何种方式解决试题的窘况.教师运用物理模型的主要目的就是优化他们的解题思路ꎬ使其处理物理问题时做到游刃有余ꎬ为题目的顺畅解答提供支持[2].1.2力与运动模型建立力与运动属于比较基础的物理力学类试题ꎬ像小车在斜坡上进行滑动时分析受力情况ꎬ这类题目就有着与之对应的物理模型.如牛顿第二运动定律ꎬ主要用来分析物体受到力的作用以后运动状态发生变化.当遇到此类试题时ꎬ学生可使用牛顿第二运动定律直接解题ꎬ确定解题思路和方案ꎬ明确物体在运动中所受到的力的作用ꎬ当力产生时物体运动有所变化ꎬ在运动过程中物体还会受到什么力的影响ꎬ使其从多个方面展开分析ꎬ促进对牛顿第二定律的掌握ꎬ并熟悉此类试题的解题方法.如果物体为静止的ꎬ即可判定出物体受到的合力是零ꎬ不会出现加速度ꎬ假如打破物体的平衡状态ꎬ即可确定加速度的大小ꎬ运用相关公式直接求出物体所受到力的大小ꎬ最411终准确分析和判断试题[3].1.3基本力学模型构建物理学中常见的力有重力㊁弹力与摩擦力等ꎬ大部分试题都围绕这三种力设计.在重力方面ꎬ学生应知道地球上所有物体均受到重力的作用ꎬ方向为竖直向下的.解题时首步即为明确物体受到的重力情况ꎬ发现重力做功同路径不存在联系ꎬ重力做功物体的重力势能会发生变化ꎻ产生弹力的条件相对复杂ꎬ物体之间不仅需接触ꎬ当物体出现弹性形变时ꎬ能够构建出弹力模型.教师需提示学生先分析产生弹力的条件ꎬ再确定物体接触之后的弹力点ꎬ研究具体受力关系ꎬ所以要详加讲解 弹力的接触面积 这一知识要点ꎻ针对摩擦力来说ꎬ在平时教学中ꎬ教师需以摩擦力产生的原因为基本发起点ꎬ指引学生建立模型ꎬ着重讲述摩擦力的产生需有接触面ꎬ使其透彻理解摩擦力为什么会产生[4].1.4物理模型建立方式建立力学模型有助于学生快速找到正确的解题思路.当他们构建力学模型时ꎬ教师应当先给予一定的点拨ꎬ使其初步理清解题思路ꎬ培养学生从正向思维视角出发进行解题的常用方法ꎬ并指导他们研究使用逆向思维进行解题的思路ꎬ使其解题能力得到更好的锻炼ꎬ能够解答一些力学难题ꎬ逐步提高物理成绩ꎬ增强个人应试能力.2运用力学模型的解题策略2.1分析动能重力势能例1㊀已知一个质量为10kg的小球在高度为80m处进行自由下落ꎬ如果空气阻力不计ꎬ求以下时间点该小球的动能和重力势能ꎬ以及两者的之和ꎬ(1)开始下落时ꎻ(2)下落2s末时ꎻ(3)到达地面时.分析㊀(1)处理这一题目时ꎬ学生可以采用力学模型的构建思路ꎬ根据牛顿第二定律可知ꎬ当小球刚开始下落时ꎬ速度为0ꎬ可理解为小球的动能刚开始下落时为0ꎬ势能则是Ep=mgh=8000Jꎬ那么动能和重力势能之和为0+8000=8000Jꎻ(2)在小球下落2s时速度是v=10ˑ2=20m/sꎬ所以动能是Ek=12mv2=2000Jꎬh1=12gt2ꎬEp=mg(h-h1)=6000Jꎬ则动能和重力势能之和为2000+6000=8000Jꎻ(3)当小球到达地面时ꎬ动能是Ek=8000Jꎬ重力势能是Ep=0ꎬ则动能和重力势能之和为8000J+0=8000J.通过对这道题的解析与处理ꎬ学生能够进一步认识能量守恒定律ꎬ还可以形成灵活运用牛顿第二定律的解题思路[5].如此ꎬ学生通过对上述试题的解答能够发现ꎬ熟练使用牛顿第二定律和能量守恒定理可以快速完成对重力方面物体受力情况的分析ꎬ建立出相应的力学模型ꎬ促使其运用力学模型解决此类试题ꎬ且迁移至同类题目之中ꎬ有效提升他们的解题效率.2.2分析弹力物理试题例2㊀已知将四根一样的弹簧放置到水平位置ꎬ右端均受到拉力F的作用ꎬ左端各不相同: (1)在一个墙壁上面固定ꎻ(2)同样受到大小是F的拉力作用ꎻ(3)系上一个小球ꎬ小球在光滑水平桌面上进行滑动ꎻ(4)系上一个小球ꎬ小球在粗糙水平桌面上进行滑动.如果弹簧质量忽视不计ꎬ伸长量分别用L1㊁L2㊁L3㊁L4ꎬ则(㊀㊀).A.L2>L1㊀B.L4>L3㊀C.L1>L3㊀D.L2=L4分析㊀这是一道比较典型的弹力类试题ꎬ教师需先引领学生分析弹簧受力的点与接触面ꎬ使其根据题目中各个弹簧的具体情况进行具体分析ꎬ(1)弹簧左右两端均受到拉力大小为F的作用ꎬ伸长量为L=FKꎻ(2)与(1)情况基本一样ꎬ弹簧左右两端都均受到拉力F的作用ꎬ伸长量都为L=FKꎻ(3)小球到的摩擦力大小是零ꎬ力F拉着小球以加速度大小为Fm做加速运动ꎬ弹簧的长度不变ꎻ(4)弹簧伸长量不大于FKꎬ当物块作匀速运动时ꎬ能够伸的最长ꎬ否则伸长量就比FK小ꎬ故L1=L2ȡL4>L3.但511是本题中弹簧的质量忽视不计ꎬ那么弹簧两端均受到平衡力的作用ꎬ即为弹簧产生加速度是受到合力的影响ꎬ所以ΔF=maꎬ由于m=0ꎬ则ΔF=0ꎬ由此表明弹簧两端肯定存在方向相反㊁大小一样的两个力ꎬ也就是所说这四种情况一样ꎬ则L1=L2=L3=L4ꎬ所以说正确答案是选项D[6].2.3摩擦力的解题模型例3㊀如图1所示ꎬ在一个水平地面上ꎬ放置一个长度足够长的斜面且使之固定ꎬ已知倾斜角大小为θꎬ动摩擦因数为μꎬ现在将一个质量为m的木块以初速度v沿着斜面向下放置到顶端ꎬ请问该木块会做何运动?图1㊀小木块位于水平地面的固定斜面上分析㊀处理本道试题时ꎬ关键在于对这个小木块的受力情况进行分析ꎬ这里要用到分类讨论思想ꎬ因为题目中没有明确给出倾斜角θ的大小ꎬ应结合动摩擦因数和倾斜角θ角的正切值关系进行分类讨论和解题ꎬ即为解答此类力学试题的模型.详解㊀对小木块的受力情况进行分类讨论和分析ꎬ(1)如果mgsinθ=μmgcosθꎬ即为μ=tanθꎬ这时小木块将会沿着斜面做匀速直线运动ꎻ(2)如果mgsinθ>μmgcosθꎬ即为μ<tanθꎬ这时小木块将会沿着斜面做匀加速直线运动ꎬ且加速度大小是a1=gsinθ-μgcosθꎬ方向是沿着斜面向下ꎻ(3)如果mgsinθ<μmgcosθꎬ即为μ>tanθꎬ这时小木块将会沿着斜面做匀减速直线运动ꎬ且加速度大小是a2=μgcosθ-gsinθꎬ方向是沿着斜面向上.例4㊀如图2所示ꎬ在一个水平地面上放置一个长度足够的斜面ꎬ已知倾斜角为θꎬ动摩擦因数大小为μꎬ现在将一个质量为m的木块以初速度v沿着斜面向下放置到顶端ꎬ此时小木块在整个运动过程中ꎬ斜面一直处于静止状态ꎬ请问地面与斜面之间的摩擦力为多大?方向是什么?图2㊀小木块位于平地面上的斜面上详解㊀对小木块的受力情况进行分类讨论和分析ꎬ(1)假如mgsinθ=μmgcosθꎬ即为μ=tanθꎬ这时木块就沿着斜面进行匀速直线运动ꎬ其中加速度为0ꎬ地面与斜面之间没有摩擦力ꎻ(2)假如mgsinθ>μmgcosθꎬ即为μ<tanθꎬ地面和斜面之间的摩擦力为f1=m(gsinθ-μgcosθ)cosθꎬ方向是水平向左ꎻ(3)假如mgsinθ<μmgcosθꎬ即为μ>tanθꎬ地面与斜面之间的摩擦力为f2=m(μgcosθ-gsinθ)cosθꎬ方向水平向右[7].总的来说ꎬ在高中物理教学活动中ꎬ教师需高度重视力学模型的构建以及在解题中的实践应用.正式建立力学模型之前ꎬ对涉及的力学知识进行分类和归纳ꎬ从中建立一些常见和常用的力学模型ꎬ据此专门安排解题训练ꎬ让学生结合力学模型对题目内容进行深入分析ꎬ使其找到简便的解题方法ꎬ切实体会到力学模型的实用性ꎬ提高他们的力学学习质量.参考文献:[1]李素珍.高中物理力学问题的解题技巧研究[J].数理化解题研究ꎬ2023(09):66-68.[2]周余丰.妙用模型改进高中物理解题教学[J].数理化解题研究ꎬ2023(04):125-128.[3]王君.高中物理教学中物理模型的作用及构建策略[J].数理天地(高中版)ꎬ2023(02):8-10.[4]林剑芬.高中物理模型的建构及教学方法探讨[J].数理化解题研究ꎬ2022(30):62-64.[5]何青.情境模型在高中物理力学教学中的运用研究[J].广西物理ꎬ2022ꎬ43(03):182-185.[6]裴承仁.高中物理力学模型及解题策略[J].中学课程辅导(教师通讯)ꎬ2021(16):88-89.[7]许有强. 模型法 在高中物理力学学习中的使用[J].数理化解题研究ꎬ2020(24):55-56.[责任编辑:李㊀璟]611。
高中物理运动学加速度求解题常见模型及方法
高中物理运动学加速度求解题常见模型及方法引言:运动学是物理学的一个重要分支,研究物体的运动和运动规律。
在运动学中,加速度是一个关键概念,它描述了物体运动速度变化的快慢。
解决加速度相关问题需要理解常见的模型和方法。
本文将介绍高中物理中常见的加速度求解题的模型和方法。
一、直线运动加速度的求解模型及方法1. 匀加速直线运动:- 模型:匀加速直线运动的速度随时间的变化呈线性关系。
- 方法:根据速度随时间变化的关系,可以利用速度-时间图或速度-时间表求解加速度。
2. 自由落体运动:- 模型:自由落体运动是指只受重力作用的物体从静止位置开始下落的运动。
- 方法:可以利用重力加速度g来求解自由落体运动的加速度。
自由落体运动的加速度始终等于重力加速度g。
二、曲线运动加速度的求解模型及方法1. 简谐振动:- 模型:简谐振动描述了物体在一个约束力作用下沿一个路径往复运动的情况。
- 方法:可以利用力学模型来求解简谐振动的加速度,如弹簧振子的加速度可以通过Hooke定律和牛顿第二定律求解。
2. 圆周运动:- 模型:圆周运动是指物体在一个圆周轨迹上运动的情况。
- 方法:可以利用向心加速度来求解圆周运动的加速度,向心加速度的大小等于速度的平方除以半径。
结论:高中物理中,加速度求解问题常见的模型和方法包括匀加速直线运动、自由落体运动、简谐振动和圆周运动。
通过理解这些模型和方法,可以更好地解决与加速度相关的问题。
参考文献:[1] 高中物理课程标准. 人民教育出版社,2003.[2] 黄志伟, 李明. 高中物理实验教程. 人民教育出版社,2008.。
高中物理受力分析的方法与技巧
高中物理受力分析的方法与技巧高中物理力学题受力分析解题方式第一、如何对物体进行受力分析。
明确研究对象,并把它从周围的环境中隔离出来分析物体的受力,首先要选准研究对象,并把它隔离出来。
根据解题的需要,研究对象可以是质点、结点、单个物体或多个物体组成的系统。
按顺序分析物体所受的力一般按照重力、弹力、摩擦力的顺序分析较好。
“重力一定有,弹力看四周,摩擦分动静,方向要判准。
”弹力和摩擦力都是接触力,环绕研究对象一周,看研究对象与其他物体有几个接触面(点),每个接触面对研究对象可能有两个接触力,应根据弹力和摩擦力的产生条件逐一分析。
只分析根据性质命名的力只分析根据性质命名的力,如重力、弹力、摩擦力,不分析根据效果命名的力,如下滑力、动力、阻力、向心力等。
只分析研究对象受到的力,不分析研究对象对其他物体所施加的力研究对象上。
每分析一个力,都应能找出施力物体这种方法是防止“多力”的有效措施之一。
我们在分析物体的受力时,只强调物体受到的作用力,但并不意味着施力物体不存在,找不出施力物体的力不存在的。
分析物体受力时,还要考虑物体所处的状态分析物体受力时,要注意物体所处的状态,物体所处的状态不同,其受力情况一般也不同。
如:放在水平传送带上的物体随传送带一起传动时,若传送带加速运动,物体受到的摩擦力向前;若传送带减速运动,物体受到的摩擦力向后;若传送带匀速运动,物体不受摩擦力作用。
第二、力学部分常用的分析方法:整体法和隔离法整体法是从局部到全局的思维过程,是系统论中的整体原理在力学中的应用。
它的优点是:通过整体法分析物理问题,可以弄清系统的整体受力情况,从整体上揭示事物的本质和变化规律,从而避开了中间环节的繁琐推算,能够灵活地解决问题。
通常在分析这一整体对象之外的物体对整体的作用力(外力),不考虑整体内部之间的相互作用力(内力)时,用整体法。
隔离法就是把要分析的物体从相关的物体体系中隔离出来,作为研究对象,只分析该研究对象以外的物体对该对象的作用力,不考虑研究对象对其他物体的作用力。
高中典型的物理模型及方法
●典型物理模型及方法◆1.连接体模型:是指运动中几个物体或叠放在一起、或并排挤放在一起、或用细绳、细杆联系在一起的物体组。
解决这类问题的基本方法是整体法和隔离法。
整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程隔离法是指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。
连接体的圆周运动:两球有相同的角速度;两球构成的系统机械能守恒(单个球机械能不守恒)与运动方向和有无摩擦(μ相同)无关,及与两物体放置的方式都无关。
平面、斜面、竖直都一样。
只要两物体保持相对静止记住:N=211212m F m F m m ++(N 为两物体间相互作用力),一起加速运动的物体的分子m 1F 2和m 2F 1两项的规律并能应用⇒F212m m m N+=讨论:①F 1≠0;F 2=0122F=(m +m )a N=m aN=212m Fm m +②F 1≠0;F 2≠0N=211212m F m m m F ++(20F=就是上面的情况)F=211221m m g)(m m g)(m m ++F=122112m (m )m (m gsin )m m g θ++F=A B B 12m (m )m Fm m g ++F 1>F 2m 1>m 2N 1<N 2(为什么)N 5对6=F Mm (m 为第6个以后的质量)第12对13的作用力N 12对13=Fnm12)m -(n ◆2.水流星模型(竖直平面内的圆周运动——是典型的变速圆周运动)研究物体通过最高点和最低点的情况,并且经常出现临界状态。
(圆周运动实例)①火车转弯②汽车过拱桥、凹桥3③飞机做俯冲运动时,飞行员对座位的压力。
④物体在水平面内的圆周运动(汽车在水平公路转弯,水平转盘上的物体,绳拴着的物体在光滑水平面上绕绳的一端旋转)和物体在竖直平面内的圆周运动(翻滚过山车、水流星、杂技节目中的飞车走壁等)。
高中物理解题常用经典模型
1、"皮带"模型:摩擦力.牛顿运动定律.功能及摩擦生热等问题.2、"斜面"模型:运动规律.三大定律.数理问题.3、"运动关联"模型:一物体运动的同时性.独立性.等效性.多物体参与的独立性和时空联系.4、"人船"模型:动量守恒定律.能量守恒定律.数理问题.5、"子弹打木块"模型:三大定律.摩擦生热.临界问题.数理问题.6、"爆炸"模型:动量守恒定律.能量守恒定律.7、"单摆"模型:简谐运动.圆周运动中的力和能问题.对称法.图象法.8.电磁场中的"双电源"模型:顺接与反接.力学中的三大定律.闭合电路的欧姆定律.电磁感应定律.9.交流电有效值相关模型:图像法.焦耳定律.闭合电路的欧姆定律.能量问题.10、"平抛"模型:运动的合成与分解.牛顿运动定律.动能定理类平抛运动.11、"行星"模型:向心力各种力.相关物理量.功能问题.数理问题圆心.半径.临界问题.12、"全过程"模型:匀变速运动的整体性.保守力与耗散力.动量守恒定律.动能定理.全过程整体法.13、"质心"模型:质心多种体育运动.集中典型运动规律.力能角度.14、"绳件.弹簧.杆件"三件模型:三件的异同点;直线与圆周运动中的动力学问题和功能问题.15、"挂件"模型:平衡问题.死结与活结问题;采用正交分解法;图解法;三角形法则和极值法.16、"追碰"模型:运动规律.碰撞规律.临界问题.数学法函数极值法.图像法等和物理方法参照物变换法.守恒法等.17."能级"模型:能级图.跃迁规律.光电效应等光的本质综合问题.18.远距离输电升压降压的变压器模型.19、"限流与分压器"模型:电路设计.串并联电路规律及闭合电路的欧姆定律.电能.电功率.实际应用.20、"电路的动态变化"模型:闭合电路的欧姆定律.判断方法和变压器的三个制约问题.21、"磁流发电机"模型:平衡与偏转.力和能问题.22、"回旋加速器"模型:加速模型力能规律.回旋模型圆周运动.数理问题.23、"对称"模型:简谐运动波动.电场.磁场.光学问题中的对称性.多解性.对称性.24、电磁场中的单杆模型:棒与电阻.棒与电容.棒与电感.棒与弹簧组合.平面导轨.竖直导轨等;处理角度为力电角度.电学角度.力能角度.。
高中物理最全模型归纳总结
高中物理最全模型归纳总结在高中物理学习过程中,我们掌握了众多物理模型,这些模型为我们解释自然现象提供了便利。
本文将对高中物理学习中最常用的模型进行归纳总结,旨在帮助同学们更好地理解和应用这些模型。
第一部分:力学模型1. 牛顿第一定律(惯性定律)牛顿第一定律表明物体在没有外力作用时保持静止或匀速直线运动。
这个模型可以解释为何我们在车上突然刹车时会向前倾斜。
2. 牛顿第二定律(运动定律)牛顿第二定律描述了力、质量和加速度之间的关系,即力等于质量乘以加速度。
这个模型可以帮助我们计算物体受到的合力以及其加速度。
3. 牛顿第三定律(作用-反作用定律)牛顿第三定律指出,任何两个物体之间的相互作用力大小相等、方向相反。
这个模型可以解释为何我们划船时推水就能向后移动。
4. 牛顿万有引力定律牛顿万有引力定律描述了两个物体之间的引力与它们的质量和距离的平方成正比,与引力的方向成反比。
这个模型可以帮助我们理解行星的椭圆轨道和天体之间的相互作用。
第二部分:热力学模型1. 理想气体状态方程理想气体状态方程描述了理想气体的压强、体积和温度之间的关系。
这个模型可以帮助我们在气体过程中计算温度、压强和体积的变化。
2. 热传导模型热传导模型用于描述热量在物体之间传递的过程。
它遵循热量自高温物体向低温物体传递的规律。
这个模型可以解释为何我们触摸金属杯时会感觉更冷。
3. 热辐射模型热辐射模型用于解释物体通过辐射的方式传递热量。
热辐射是指物体由于其温度而产生的电磁波辐射。
这个模型可以帮助我们理解太阳能的产生和传递。
第三部分:电磁学模型1. 静电模型静电模型用于描述带电物体之间的相互作用。
根据电荷的性质,带电物体可能相互吸引或者相互排斥。
这个模型可以解释为何我们的头发梳理之后会挑起纸片。
2. 电流模型电流模型用于描述电荷在导体中流动的现象。
根据导体的电阻和电压差,电流的大小和方向也会发生变化。
这个模型可以帮助我们计算电路中的电流和电压。
高中物理模型法解题——板块模型-高中物理八种板块模型
高中物理模型法解题———板块模型【模型概述】板块模型是多个物体的多个过程问题,是一个最经典、最基本的模型之一。
木板和物块组成的相互作用的系统称为板块模型,该模型涉及到静摩擦力、滑动摩擦力的转化、方向判断等静力学知识,还涉及到牛顿运动定律、运动学规律、动能定理和能量的转化和守恒等方面的知识。
板块类问题的一般解题方法(1)受力分析.(2)物体相对运动过程的分析.(3)参考系的选择(通常选取地面).(4)做v-t图像(5)摩擦力做功与动能之间的关系.(6)能量守恒定律的运用.一、含作用力的板块模型问题:【例题1】如图所示,木板静止于水平地面上,在其最右端放一可视为质点的木块.已知木块的质量m=1kg,木板的质量M=4kg,长L=2.5m,上表面光滑,下表面与地面之间的动摩擦因数μ=0.2.现用水平恒力F=20N拉木板,g取10m/s2,求:(1)木板的加速度;(2)要使木块能滑离木板,水平恒力F作用的最短时间;(3)如果其他条件不变,假设木板的上表面也粗糙,其上表面与木块之间的动摩擦因数为0.3,欲使木板能从木块的下方抽出,需对木板施加的最小水平拉力是多大?(设最大静摩擦力等于滑动摩擦力)(4)若木板的长度、木块质量、木板的上表面与木块之间的动摩擦因数、木块与地面间的动摩擦因数都不变,只将水平恒力增加为30N,则木块滑离木板需要多长时间?【解题思路】(1)根据牛顿第二定律求出木板的加速度.(2)让木板先做匀加速直线运动,然后做匀减速直线运动,根据牛顿第二定律,结合位移之和等于板长求出恒力F作用的最短时间.(3)根据牛顿第二定律求出木块的最大加速度,隔离对木板分析求出木板的加速度,抓住木板的加速度大于木块的加速度,求出施加的最小水平拉力.(4)应用运动学公式,根据相对加速度求所需时间.【答案】(1)木板的加速度2.5m/s2;(2)要使木块能滑离木板,水平恒力F作用的最短时间1s;(3)对木板施加的最小水平拉力是25N;(4)木块滑离木板需要2s【解析】解:(1)木板受到的摩擦力F f=μ(M+m)g=10N木板的加速度=2.5m/s2(2)设拉力F作用t时间后撤去,木板的加速度为木板先做匀加速运动,后做匀减速运动,且a=﹣a′有at2=L解得:t=1s,即F作用的最短时间是1s.(3)设木块的最大加速度为a木块,木板的最大加速度为a木板,则对木板:F1﹣μ1mg﹣μ(M+m)g=Ma木板木板能从木块的下方抽出的条件:a木板>a木块解得:F>25N(4)木块的加速度木板的加速度=4.25m/s2木块滑离木板时,两者的位移关系为x木板﹣x木块=L即带入数据解得:t=2s【变式练习】如图所示,质量M=1kg的木块A静止在水平地面上,在木块的左端放置一个质量m=1kg的铁块B(大小可忽略),铁块与木块间的动摩擦因数μ1=0.3,木块长L=1m,用F=5N的水平恒力作用在铁块上,g取10m/s2.(1)若水平地面光滑,计算说明两木块间是否会发生相对滑动.(2)若木块与水平地面间的动摩擦因数μ2=0.1,求铁块运动到木块右端的时间.【解题思路】(1)假设不发生相对滑动,通过整体隔离法求出A、B之间的摩擦力,与最大静摩擦力比较,判断是否发生相对滑动.(2)根据牛顿第二定律分别求出A、B的加速度,结合位移之差等于木块的长度求出运动的时间.【答案】(1)A、B之间不发生相对滑动;(2)铁块运动到木块右端的时间为.【解析】(1)A、B之间的最大静摩擦力为:f m>μmg=0.3×10N=3N.假设A、B之间不发生相对滑动,则对AB整体分析得:F=(M+m)a对A,f AB=Ma代入数据解得:f AB=2.5N.因为f AB<f m,故A、B之间不发生相对滑动.(2)对B,根据牛顿第二定律得:F﹣μ1mg=ma B,对A,根据牛顿第二定律得:μ1mg﹣μ2(m+M)g=Ma A根据题意有:x B﹣x A=L,,联立解得:.二、不含作用力的板块模型问题:【例题2】一长木板在水平地面上运动,在t =0时刻将一相对于地面静止的物块轻放到木板上,以后木板运动的速度—时间图像如图所示。
高中物理四大经典力学模型完全解析
四大经典力学模型完全解析一、斜面问题模型1.自由释放的滑块能在斜面上(如下图所示)匀速下滑时,m与M之间的动摩擦因数μ=g tanθ.2.自由释放的滑块在斜面上(如上图所示):(1)静止或匀速下滑时,斜面M对水平地面的静摩擦力为零;(2)加速下滑时,斜面对水平地面的静摩擦力水平向右;(3)减速下滑时,斜面对水平地面的静摩擦力水平向左.3.自由释放的滑块在斜面上(如下图所示)匀速下滑时,M对水平地面的静摩擦力为零,这一过程中再在m上加上任何方向的作用力,(在m停止前)M对水平地面的静摩擦力依然为零。
4.悬挂有物体的小车在斜面上滑行(如下图所示):(1)向下的加速度a=g sinθ时,悬绳稳定时将垂直于斜面;(2)向下的加速度a>g sinθ时,悬绳稳定时将偏离垂直方向向上;(3)向下的加速度a<g sinθ时,悬绳将偏离垂直方向向下.5.在倾角为θ的斜面上以速度v0平抛一小球(如下图所示):(1)落到斜面上的时间t=2v0tanθg;(2)落到斜面上时,速度的方向与水平方向的夹角α恒定,且tanα=2tanθ,与初速度无关;6.如下图所示,当整体有向右的加速度a=g tanθ时,m能在斜面上保持相对静止。
例1在倾角为θ的光滑斜面上,存在着两个磁感应强度大小相同的匀强磁场,其方向一个垂直于斜面向上,一个垂直于斜面向下(如下图所示),它们的宽度均为L.一个质量为m、边长也为L的正方形线框以速度v进入上部磁场时,恰好做匀速运动。
(1)当ab边刚越过边界ff′时,线框的加速度为多大,方向如何?(2)当ab边到达gg′与ff′的正中间位置时,线框又恰好做匀速运动,则线框从开始进入上部磁场到ab边到达gg′与ff′的正中间位置的过程中,线框中产生的焦耳热为多少?(线框的ab边在运动过程中始终与磁场边界平行,不计摩擦阻力)【点评】导线在恒力作用下做切割磁感线运动是高中物理中一类常见题型,需要熟练掌握各种情况下求平衡速度的方法。
高中物理力学中的几种实用的简捷解题方法
高中物理力学中的几种实用的简捷解题方法高中物理力学中,学生常常感到力学题目难以解答,因为解题方法繁杂,容易混淆,所以在解题过程中需要一些简捷的解题方法来帮助解答。
下面将介绍几种高中物理力学中的实用的简捷解题方法。
一、利用受力分析进行题目解答在物理力学中,经常会涉及到受力分析的题目。
受力分析就是通过分析物体所受的各个力的大小和方向,来确定物体的运动状态。
在解题过程中,可以通过受力分析来帮助理清各种力的作用方向和大小,从而解答题目。
举例:一个物体以一定的速度沿着斜面运动,求物体沿斜面的加速度。
解题步骤:1. 分解力:将物体所受的重力分解为垂直于斜面的分力和平行于斜面的分力。
2. 使用受力分析结合牛顿第二定律进行计算,得出物体沿斜面的加速度。
通过受力分析,将力分解为各个方向的分力以及合力,能够帮助学生更清晰地理解力的作用。
受力分析方法能够帮助学生解答各种涉及受力的问题,是解题过程中非常实用的一种方法。
二、利用动量守恒定律进行题目解答动量守恒定律是物理力学中的一个重要定律,它指出在没有外力作用的情况下,系统的总动量守恒。
在解题过程中,可以利用动量守恒定律来解答一些碰撞问题和运动问题。
举例:两个物体在一维空间中发生完全弹性碰撞,求碰撞后两个物体的速度。
解题步骤:1. 根据动量守恒定律,写出碰撞前后各个物体的动量之和相等的方程。
2. 利用质心系进行坐标变换,简化动量守恒定律的应用。
3. 求解方程,得出碰撞后两个物体的速度。
通过利用动量守恒定律,可以在碰撞问题中简化计算,得出碰撞后各个物体的速度。
这种方法也可以应用于其他需要考虑动量守恒的问题,是解答力学问题时非常实用的方法之一。
举例:求物体从高处自由落体到地面的速度。
解题步骤:1. 计算物体从高处到地面的位能变化和动能变化。
2. 利用能量守恒法则,将位能和动能相互转化的过程进行计算。
3. 求解得出物体落地时的速度。
在物理力学中,有些题目需要考虑矢量的方向和分解,此时可以通过矢量分解法来简化解答过程。
高中物理68个解题模型
高中物理68个解题模型物理作为一门自然科学,研究的是物质和能量之间的相互关系。
在高中物理学习中,解题是一个重要的环节。
为了帮助同学们更好地掌握物理知识,提高解题能力,本文将介绍高中物理中常见的68个解题模型。
一、力学部分1. 牛顿第一定律模型:物体静止或匀速直线运动时,合外力为零。
2. 牛顿第二定律模型:物体的加速度与作用在物体上的合外力成正比,与物体的质量成反比。
3. 牛顿第三定律模型:任何两个物体之间的相互作用力大小相等、方向相反。
4. 重力模型:物体受到的重力与物体的质量成正比。
5. 弹簧模型:弹簧的伸长或缩短与外力的大小成正比。
6. 摩擦力模型:物体受到的摩擦力与物体受到的压力成正比。
7. 斜面模型:物体在斜面上滑动时,重力分解为平行于斜面的分力和垂直于斜面的分力。
8. 动量守恒模型:在没有外力作用下,物体的总动量保持不变。
9. 能量守恒模型:在一个封闭系统中,能量的总量保持不变。
二、热学部分10. 热传导模型:热量从高温物体传递到低温物体。
11. 热膨胀模型:物体受热后会膨胀,受冷后会收缩。
12. 热平衡模型:两个物体处于热平衡时,它们的温度相等。
13. 热容模型:物体吸收或释放的热量与物体的质量和温度变化成正比。
14. 理想气体状态方程模型:PV = nRT,描述了理想气体的状态。
15. 热力学第一定律模型:热量的增加等于物体内能的增加与对外做功的总和。
三、光学部分16. 光的直线传播模型:光在均匀介质中直线传播。
17. 光的反射模型:光线与平面镜或曲面镜相交时,遵循入射角等于反射角的规律。
18. 光的折射模型:光线从一种介质射入另一种介质时,遵循折射定律。
19. 光的色散模型:光在经过棱镜等介质时,会发生色散现象。
20. 光的干涉模型:两束相干光叠加时,会出现干涉现象。
21. 光的衍射模型:光通过狭缝或物体边缘时,会发生衍射现象。
22. 光的偏振模型:光的振动方向只在一个平面上。
四、电学部分23. 电流模型:电流的大小等于单位时间内通过导体横截面的电荷量。
高中物理知识归纳-力学模型及方法
╰α高中物理知识归纳----------------------------力学模型及方法1.连接体模型是指运动中几个物体叠放在一起、或并排在一起、或用细绳、细杆联系在一起的物体组。
解决这类问题的基本方法是整体法和隔离法。
整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程隔离法是指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。
2斜面模型(搞清物体对斜面压力为零的临界条件)斜面固定:物体在斜面上情况由倾角和摩擦因素决定μ=tgθ物体沿斜面匀速下滑或静止μ> tgθ物体静止于斜面μ< tgθ物体沿斜面加速下滑a=g(sinθ一μcosθ)3.轻绳、杆模型杆对球的作用力由运动情况决定只有θ=arctg(g a)时才沿杆方向最高点时杆对球的作用力;最低点时的速度?,杆的拉力?若小球带电呢?假设单B下摆,最低点的速度V B=R2g⇐mgR=221BmvF整体下摆2mgR=mg2R +'2B '2A mv21mv 21+ 'A 'B V 2V = ⇒ 'A V =gR 53 ; 'A 'BV 2V ==gR 256> V B =R 2g 所以AB 杆对B 做正功,AB 杆对A 做负功 若 V 0<gR ,运动情况为先平抛,绳拉直沿绳方向的速度消失即是有能量损失,绳拉紧后沿圆周下落机械能守恒。
而不能够整个过程用机械能守恒。
求水平初速及最低点时绳的拉力?换为绳时:先自由落体,在绳瞬间拉紧(沿绳方向的速度消失)有能量损失(即v 1突然消失),再v 2下摆机械能守恒例:摆球的质量为m ,从偏离水平方向30°的位置由静释放,设绳子为理想轻绳,求:小球运动到最低点A 时绳子受到的拉力是多少?4.超重失重模型 系统的重心在竖直方向上有向上或向下的加速度(或此方向的分量a y )向上超重(加速向上或减速向下)F=m(g+a);向下失重(加速向下或减速上升)F=m(g-a)难点:一个物体的运动导致系统重心的运动1到2到3过程中 (1、3除外)超重状态 绳剪断后台称示数 系统重心向下加速 斜面对地面的压力? 地面对斜面摩擦力? 导致系统重心如何运动? 铁木球的运动用同体积的水去补充5.碰撞模型:特点,①动量守恒;②碰后的动能不可能比碰前大;③对追及碰撞,碰后后面物体的速度不可能大于前面物体的速度。
高中物理力学实验完美知识点版本
常用试验原理设计方法1.限制变量法:如验证牛顿其次定律的试验中加速度、力和质量的关系限制。
2.等效替代法:某些量不易测量,可以用较易测量的量替代,从而简化试验。
如验证碰撞中的动量守恒的试验中,速度的测量就转化为对水平位移的测量。
3.志向模型法:用伏安法测电阻时,选择了合适的内外接方法,一般就忽视电表的非志向性。
4.比值定义法:用两个基本的物理量的“比”来定义一个新的物理量的方法。
如①物质密度②电阻③场强④磁通密度⑤电势差等。
5.微量放大法:微小量不易测量,牵强测量误差也较大,试验时常采纳各种方法加以放大。
卡文迪许测定万有引力恒量,采纳光路放大了金属丝的微小扭转。
6.模拟法:当试验情景不易创设或根本无法创设时,可以用物理模型或数学模型等效的情景代替,“描绘电场中的等势线”的试验就是用电流场模拟静电场。
试验一:验证力的合成[试验原理]此试验是要用互成角度的两个力与一个力产生相同的效果(即:使橡皮条在某一方向伸长肯定的长度),看其用平行四边形定则求出的合力与这一个力是否在试验误差允许范围内相等,假如在试验误差允许范围内相等,就验证了力的平行四边形定则。
[试验器材]木板一块,白纸,图钉若干,橡皮条一段,细绳,弹簧秤两个,三角板,刻度尺,量角器。
[试验步骤]1.用图钉把一张白纸钉在水平桌面上的方木板上。
2.用图钉把橡皮条的一端固定在板上的A点,用两条细绳套结在橡皮条的另一端。
3.用两个弹簧秤分别钩住细绳套,互成角度地拉橡皮条,使橡皮条伸长,结点到达某一位置O。
4.用铅笔描下结点O的位置和两条细绳套的方向,并记录弹簧秤的读数。
在白纸上按比例作出两个弹簧秤的拉力F1和F2的图示,利用刻度尺和三角板根椐平行四边形定则求出合力F。
5.只用一个弹簧秤,通过细绳套把橡皮条的结点拉到与前面相同的位置O,登记弹簧秤的读数和细绳的方向。
按同样的比例用刻度尺从O点起做出这个弹簧秤的拉力F'的图示。
6.比较F'与用平行四边形定则求得的合力F,在试验误差允许的范围内是否相等。
高中物理中的力学分析与计算方法
高中物理中的力学分析与计算方法力学是物理学的一个重要分支,它研究物体的受力和其运动规律。
在高中物理课程中,力学是其中的一个重要内容。
在学习力学的过程中,我们需要学习如何分析并计算物体所受的力以及相关的运动参数。
本文将探讨高中物理中的力学分析与计算方法。
I. 力的分类和性质分析在力学中,我们需要了解不同类型的力,以及它们的性质和特点。
力的分类主要包括接触力、重力、弹力、摩擦力等。
接触力是物体之间直接接触产生的力,例如人的手按住物体产生的力;重力是地球对物体的吸引力,其大小与物体的质量有关;弹力是弹性物体恢复形状时产生的力,例如弹簧的弹力;摩擦力是物体相对运动时由于接触面间的摩擦而产生的力。
II. 力的计算方法力的计算是力学分析的重要一环。
在高中物理中,常用的计算方法有向量分解法、合力求和法以及牛顿第二定律等。
向量分解法是将力按照范围和方向拆分为多个分力,通过简单的三角函数计算得到力的分力大小;合力求和法是将力按照范围和方向分解为多个分力,然后将其合力计算得到力的总和;牛顿第二定律是描述力与物体运动之间关系的定律,其公式为F=ma,其中F代表力的大小,m代表物体的质量,a代表物体的加速度。
III. 力的应用与问题解决在力学中,我们需要将学习到的分析和计算方法应用于实际问题的解决上。
例如,我们可以通过分析一个倾斜面上物体所受的不同力,计算物体在斜面上的加速度;我们也可以计算物体所受的重力和弹力,进而解决弹簧振动的问题。
通过将分析和计算方法应用于问题解决,我们可以更好地理解物体的运动规律和力的作用。
IV. 力学分析与计算方法的实验验证在学习力学中,实验验证是非常重要的。
通过实验,我们可以验证力学分析与计算方法的准确性和可靠性。
例如,我们可以通过斜面实验来验证分析和计算斜面上物体的运动规律和力的分析方法;我们也可以通过弹簧实验来验证力的分析和计算方法在弹簧振动问题中的应用。
实验验证能够加深对力学分析和计算方法的理解,并提高我们对物理规律的认识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
╰
α
高中物理力学模型及方法
1.连接体模型是指运动中几个物体叠放在一起、或并排在一起、或用细绳、细杆联系在一起的物体组。
解决这类问题的基本方法是整体法和隔离法。
整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程
隔离法是指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。
2斜面模型(搞清物体对斜面压力为零的临界条件)
斜面固定:物体在斜面上情况由倾角和摩擦因素决定
μ=tgθ物体沿斜面匀速下滑或静止μ> tgθ物体静止于斜面
μ< tgθ物体沿斜面加速下滑a=g(sinθ一μcosθ)
3.轻绳、杆模型
绳只能受拉力,杆能沿杆方向的拉、压、横向及任意方向的力。
杆对球的作用力由运动情况决定
只有θ=arctg(
g
a)时才沿杆方向
最高点时杆对球的作用力;最低点时的速度?,杆的拉力?
若小球带电呢?
假设单B下摆,最低点的速度
⇐mgR=2
2
1
B
mv
V B=R
2g
整体下摆
2mgR=mg
2
R
+'2
B
'2
A
mv
2
1
mv
2
1
+
'
A
'
B
V
2
V=⇒'
A
V=gR
5
3
;'
A
'
B
V
2
V==gR
2
5
6
> V B=R
2g
所以AB杆对B做正功,AB杆对A做负功
若V0<gR,运动情况为先平抛,绳拉直沿绳方向的速度消失
即是有能量损失,绳拉紧后沿圆周下落机械能守恒。
而不能够整个过程用机械能守恒。
E
m
,L
·
m2
m1
F
B
A
F1 F2 B A F
F
m
求水平初速及最低点时绳的拉力?
换为绳时:先自由落体,在绳瞬间拉紧(沿绳方向的速度消失)有能量损失(即v1突然消失),再v2下摆机械能守恒
例:摆球的质量为m,从偏离水平方向30°的位置由静释放,设绳子为理想轻绳,求:小球运动到最低点A时绳子受到的拉力是多少?
4.超重失重模型
系统的重心在竖直方向上有向上或向下的加速度(或此方向的分量a y)
向上超重(加速向上或减速向下)F=m(g+a);向下失重(加速向下或减速上升)F=m(g-a)
难点:一个物体的运动导致系统重心的运动
1到2到3过程中(1、3除外)超重状态
绳剪断后台称示数
系统重心向下加速
斜面对地面的压力?
地面对斜面摩擦力?
导致系统重心如何运动?
铁木球的运动
用同体积的水去补充
5.碰撞模型:特点,①动量守恒;②碰后的动能不可能比碰前大;
③对追及碰撞,碰后后面物体的速度不可能大于前面物体的速度。
◆弹性碰撞:m1v1+m2v2='
2
2
'
1
1
v
m
v
m+(1) '2
2
2'
1
2
2
2
1
mv
2
1
mv
2
1
mv
2
1
mv
2
1
+
=
+(2 )
◆一动一静且二球质量相等的弹性正碰:速度交换
大碰小一起向前;质量相等,速度交换;小碰大,向后返。
◆一动一静的完全非弹性碰撞(子弹打击木块模型)
mv0+0=(m+M)'v20
mv
2
1
='2
M)v
m
(
2
1
++E损
E损=2
mv
2
1
一'2
M)v
(m
2
1
+=
2
2
0E
m
M
M
m
2
1
m)
(M
M
M)
2(m
mM
k
v
v
+
=
+
=
+
E损可用于克服相对运动时的摩擦力做功转化为内能E损=fd相=μmg·d相=20
mv
2
1
一'2
M)v
(m
2
1
+
“碰撞过程”中四个有用推论
弹性碰撞除了遵从动量守恒定律外,还具备:碰前、碰后系统的总动能相等的特征,
设两物体质量分别为m1、m2,碰撞前速度分别为υ1、υ2,碰撞后速度分别为u1、u2,即有:m1υ1+m2υ2=m1u1+m1u2
2
1
m1υ12+
2
1
m2υ22=
2
1
m1u12+
2
1
m1u22
a
θ
v0
A
B A B
v0
v
s
M
v L
1 2
A
v0
S 1
S 2 v 0
A
B
C 碰后的速度u 1和u 2表示为: u 1=
2121m m m m +-υ1+2122m m m +υ2 u 2=2112m m m +υ1+2
11
2m m m m +-υ2
推论一:如对弹性碰撞的速度表达式进行分析,还会发现:弹性碰撞前、后,碰撞双方的相对速度大
小相等,即}: u 2-u 1=υ1-υ2
推论二:如对弹性碰撞的速度表达式进一步探讨,当m 1=m 2时,代入上式得:1221,v u v u ==。
即当质量相等的两物体发生弹性正碰时,速度互换。
推论三:完全非弹性碰撞碰撞双方碰后的速度相等的特征,即: u 1=u 2
由此即可把完全非弹性碰撞后的速度u 1和u 2表为: u 1=u 2=
2
12
211m m m m ++υυ
完全非弹性碰撞过程中机械能损失最大。
推论四:碰撞过程中除受到动量守恒以及能量不会增加等因素的制约外,还受到运动的合理性要求的制约,比如,某物体向右运动,被后面物体追及而发生碰撞,被碰物体运动速度只会增大而不应该减小并且肯定大于或者等于(不小于)碰撞物体的碰后速度。
6.人船模型:一个原来处于静止状态的系统,在系统内发生相对运动的过程中, 在此方向遵从动量守恒:mv=MV ms=MS s+S=d ⇒s=
d M
m M
+ M/m=L m /L M
载人气球原静止于高h 的高空,气球质量为M ,人的质量为m .若人沿绳梯滑至地面,则绳梯至少为多长? 物理解题方法:如整体法、假设法、极限法、逆向思维法、物理模型法、等效法、物理图像法等. 模型法常常有下面三种情况
(1)物理对象模型:用来代替由具体物质组成的、代表研究对象的实体系统,称为对象模型(也可称为概念模型),即把研究的对象的本身理想化.常见的如“力学”中有质点、刚体、杠杆、轻质弹簧、单摆、弹簧振子、弹性体、绝热物质等;
(2)条件模型:把研究对象所处的外部条件理想化,排除外部条件中干扰研究对象运动变化的次要因素,突出外部条件的本质特征或最主要的方面,从而建立的物理模型称为条件模型.
(3)过程模型:把具体过理过程纯粹化、理想化后抽象出来的一种物理过程,称过程模型
其它的碰撞模型:
20m
M
m
O
R
A
B C 1 2
A。