紫外可见吸收光谱分析法

合集下载

第三章 紫外-可见吸收光谱分析

第三章   紫外-可见吸收光谱分析

2.不饱和脂肪烃 .
在不饱和烃类分子中,除含有σ键外,还含有π 键,它们可以产生 σ→σ*和π→π* 两种跃迁。 如果存在共轭体系,则随共轭系统的延长, 吸收带将明显向长波方 向移动,吸收强度也随之增强 在共轭体系中, π→π*跃迁产生的吸收带又称为K(Konjugation) 带。其特点是:强度大,εmax›104;位置一般在217~280nm λmax和εmax的大小与共轭链的长短及取代基的位置有关 根据K带是否出现,可判断分子中共轭体系的存在的情况。在紫外光 根据 带是否出现,可判断分子中共轭体系的存在的情况 带是否出现 谱分析中有重要应用。
紫外- §3-3 紫外-可见分光光度法的应用 一、 定性分析 二、纯度检查 三、结构推测 四、定量分析 单组分样品的定量分析 多组分样品的定量分析
一、 定性分析
1、依据:吸收光谱的特征——形状、波长、峰数目、强度、 吸光系数。 、依据:吸收光谱的特征 形状、 形状 波长、峰数目、强度、 吸光系数。 2、方法:对比法 、方法: (1) 对比吸收光谱特征数据 (2) 对比吸光度或吸光系数的比值
3.芳香烃 .
苯有三个吸收带 E1带180∼184nm ε=47000 E 2带200∼204 nm ε=7000 苯环上三个共扼双键的 π → π*跃迁特征吸收带 B带 230-270 nm
ε=200
π → π*与苯环振动引起; 含取代基时, B带简化,红移 当苯环上有取代基时,苯的三个特征谱带都会发生显著的变化, 其中影响较大的是E2带和B谱带。
化合物 H2O CH3OH CH3CL CH3I CH3NH2
λmax(nm) 167 184 173 258 215
εmax 1480 150 200 365 600

5.紫外-可见吸收光谱法

5.紫外-可见吸收光谱法

•双波长分光光度计
双波长分光光度计的优点:是可以在有 背景干忧或共存组分吸收干忧的情况下 对某组分进行定量测定。 岛津UV-2700双光束双波长的
5.4 分析条件的选择 (一)显色反应的选择及类型 选择显色反应时应考虑的因素:
灵敏度高、选择性高、生成物稳定、显色剂在测定波 长处无明显吸收,两种有色物最大吸收波长之差:“对比 度”,要求△ > 60nm。
吸光度A与显色剂用量CR 的关系会出现如图所示的几种 情况。选择曲线变化平坦处。
2.反应体系的酸度
在相同实验条件下,分别测定不同pH值条件 下显色溶液的吸光度。选择曲线中吸光度较大且 恒定的平坦区所对应的pH范围。
3.显色时间与温度
由实验确定。
4.溶剂
一般尽量采用水相测定。
(三) 波长的选择
一般根据待测组分的吸收光谱,选择最大 吸收波长作为测定波长。
收物质最大限度的吸光能力,也反映了光度法测定该物质可 能达到的最大灵敏度。 (5)εmax越大表明该物质的吸光能力越强,用光度法测定该 物质的灵敏度越高。 ε>105:超高灵敏; ε=(6~10)×104 :高灵敏;
ε<2×104 :不灵敏。
3. 吸光度A与透光度T的关系
透过光的强度It与入射光的强度Io之比称 为透光度或透光率,用T表示。 T = I t / I0
⑶ π→π*跃迁
所需能量较小,吸收波长处于远紫外区的近紫外端或近 紫外区,摩尔吸光系数εmax一般在104 L· mol-1· cm-1以上,属于
强吸收。不饱和烃、共轭烯烃和芳香烃类均可发生该类跃迁 。如:乙烯π→π*跃迁的λmax为162 nm,εmax为1×104 L·mol1· cm-1。
在波长200-750nm内,基于分子内电子跃迁的吸收 光谱来确定物质的组成、含量,推测物质结构的一种 分析方法,又称为紫外-可见分光光度法。它属于分子 吸收光谱法。

05第5章 紫外可见吸收光谱法

05第5章 紫外可见吸收光谱法

ε=200
苯 甲苯 间二甲苯 1,3,5-三甲苯 六甲苯
其中B带为芳香族的重要特 征吸收带,常用于识别:精 精 细结构是 π → π*与苯环振动 细结构 引起;
λmax(nm) 254 261 263 266 272
ε max 200 300 300 305 300
含带有孤对电子的取代基时,由于n → π*共轭, B带强度 增大简化,红移;对于烷基取代基影响不大。
ε
能级跃迁
电子能级间跃迁 同时,总伴随有 的同时 同时 振动和转动 振动 转动能级间 转动 的跃迁。即电子光 谱中总包含 包含有振动 包含 能级和转动能级间 跃迁产生的若干谱 线而呈现宽谱带 宽谱带。 宽谱带
分子的内能: 分子的内能:电子能量Ee 、振动能量Ev 、转 动能量Er 即: E=Ee+Ev+Er 三种能级都是量子化的, 三种能级都是量子化的,且各自具有相应的能 量。
σ*
K E,B R
∆E
π*
n
π
σ
2):n→σ*跃迁
所需能量较大。 吸收波长为150~250nm,大部分在远紫外区,近紫外区 仍不易观察到。 含非键电子的饱和烃衍生物(含N、O、S和卤素等杂原 子)均呈现n→σ* 跃迁。
化合物 H2O CH3OH CH3CL CH3I CH3NH2 λmax(nm) 167 184 173 258 215 εmax 1480 150 200 365 600
讨论: 讨论:
0.005~0.050eV, (1) 转动能级间的能量差ΔΕr:0.005~0.050eV,跃迁 产生吸收光谱位于远红外区。远红外光谱或分子转动光谱; 产生吸收光谱位于远红外区。远红外光谱或分子转动光谱; 约为:0.05~ eV, (2) 振动能级的能量差ΔΕv约为:0.05~1eV,跃迁产 生的吸收光谱位于红外区,红外光谱或分子振动光谱; 生的吸收光谱位于红外区,红外光谱或分子振动光谱; 较大1 20eV。 (3) 电子能级的能量差ΔΕe较大1~20eV。电子跃迁产生 的吸收光谱在紫外-可见光区,紫外— 的吸收光谱在紫外-可见光区,紫外—可见光谱或分子的电 子光谱; 子光谱;

紫外可见吸收光谱法

紫外可见吸收光谱法
不饱和烃π→π*跃迁: C=C 发色基团, 但 p → p* ,λmax 200 nm。 乙烯π→π*跃迁的λmax为162 nm, κmax为:1×104 L·mol1·cm-1。
H
H
CC
H
H
助色基团取代 p p*发生红移。
取代基
-SR
红移距离/nm 45
-NR2 -OR
40
30
-Cl 5
-CH3 5
试样室: 吸收池(比色皿)+池架附件。 吸收池:石英池,玻璃池。 在紫外区须采用石英池,可见区 一般用玻璃池。
4.检测器
利用光电效应将透过吸收池的光 信号变成可测的电信号,常用的有 光电池、光电管或光电倍增管。
5. 结果显示记录系统
检流计、数字显示、微机进行仪器自动控 制和结果处理。
分光光度计的类型
第三章 紫外-可见吸收光谱法
紫外-可见吸收光谱法是利用某些物质的分子吸收 200~800nm光谱区的辐射来进行分析测定的方法。 这种分子吸收光谱产生于价电子和分子轨道上的电 子在电子能级间的跃迁,广泛用于有机和无机物质 的定性和定量测定。
包括比色法和紫外-可见光分光光度法
2020/5/9
概述
波长范围:100 ~ 800 nm。 远紫外区: 100 ~ 200 nm; 近紫外区: 200 ~ 400 nm; 可见光区: 400 ~ 800 nm。
08:10:40
(2)极性溶剂对π→π*跃迁的影响
规律:使π→π*吸收带发生红移,κmax略有降低。
原因:C=C基态时,两个π电子位 于 π 成 键 轨 道 上 , 无 极 性 ; π→π* 跃迁后,分别在成键π和反键π*轨 道上,C+=C-,极性,与极性溶剂 作用强,能量。

紫外-可见吸收光谱分析

紫外-可见吸收光谱分析

故 =
hc E
4.136 10 15 eV s 2.998 1010 cm s-1 = 5eV
=2.48×10-5cm=248 nm
烟草化学 Tobacco Chemistry
Zhengzhou University of Light Industry
可见,由于分子内部电子能级跃迁而产生的吸收光谱主 要处于紫外可见光区(200~800nm),这种分子光谱称为电子光 谱或紫外-可见光谱。 在电子能级跃迁时不可避免地要产生振动能级的跃迁。 ΔEv大约比ΔEe小10倍,一般在0.05~1eV之间。如果是0.1eV,
Zhengzhou University of Light Industry
仪器分析
郑州轻工业学院
程传玲
烟草化学 Tobacco Chemistry
Zhengzhou University of Light Industry
第五章 紫外-可见吸收光谱法 Ultraviolet-Visible Absorption Spectrometry , UV-VIS
烟草化学 Tobacco Chemistry
Zhengzhou University of Light Industry
将不同波长的光透过某一物质,测量每一波长下物质对 光的吸收程度即吸光度,然后以波长为横坐标,以吸光度为
纵坐标作图,这种图谱称为该物质吸收曲线或吸收光谱。某
物质的吸收光谱反映了它在不同的光谱区域内吸收能力的分 布情况,可以从波形、波峰的强度、位置及其数目看出来,
区域内,不同波长的光引起人的视觉神经的感受不同,所以
我们看到了各种不同颜色的光。例如,400~450nm的光是紫 光,580~600nm的光是黄光等。

紫外可见吸收光谱法分析

紫外可见吸收光谱法分析

例: 铬酸盐或重铬酸盐溶液中存在下列平衡: CrO42- +2H+ = Cr2O72- +H2O 溶液中CrO42-、 Cr2O72-的颜色不同,吸光性质也不 相同。故此时溶液pH 对测定有重要影响。
五、有机化合物的紫外吸收光谱
知识回顾: 有机分子化学键的类型 两种或以上的原子或同一种原子由化学键连接; 主要化学键类型:σ键、π键、n键 (1)化学键的形成
处吸光度A 的差异最大。此特性可作为物质定量分析的依据。
4.2 吸光度的加和性
多组分的体系中,如各组分之间不发生相互作用,此时体系 的总吸光度等于各组分吸光度之和,称之为吸光度的加和性。
A = A1 + A2 + … +An
各组分在同一波长处吸光度等于各自物质在此波长处的吸光度 之和,而此波长并不一定是各组分的最大吸收波长
Optical response: Absorbance, Emission, diffraction,
reflection, refraction, polarization,scattering.
1.电磁波的基本性质
电磁波是一种光量子流,具有波粒二象性: 波动性
c /
频率 波长
光速=2.9979×108m· s-1 =2.9979×1010cm· s-1
粒子性
E h hc /
普朗克常数 h =6.6262×10-34J· s
电磁辐射
紫外光区: λ=180~400nm
波长
可见光区:λ=400~800nm
红外光区: λ=800~1000nm
在红外区域,常用波数代替波长,波数与波长的相互 关系为:
1/
σ单位:cm-1,物理意义:1cm 的间距内有多少个光波

紫外可见吸收光谱分析法

紫外可见吸收光谱分析法
杂原子电负性越大,跃迁所需的能量越大。 λmax CH3Cl:173 nm,CH3Br:204 nm,CH3I: 258 nm
2020/10/25
(3)n →π*跃迁
由n电子从非键轨道向π*反键轨道的跃迁(R 带),基团中 既有π电子,也有n电子,可以发生这类跃迁。如:
C=O, N=N, N=O, C=S
-OH、-OR、 -NH2、 -NR2、 -SH、 -SR、 -Cl、-Br
D. 蓝移
是指一些基团与某些生色团(C=O)连接后,使生色团的吸 收带向短波移动,这种效应成为蓝移,该基团称为蓝移基团 :
-CH3、-CH2CH3、 -O-COCH3
2020/10/25
E. 增色效应
最大吸收带的 εmax 增加时称为增色效应。 F. 减色效应
B. 助色团
是指分子中的一些带有非成键电子对的基团。本身在紫 外-可见光区不产生吸收,但是当它与生色团连接后,使生 色团的吸收带向长波移动,且吸收强度增大。
-OH、-OR、-NHR、-SH、-Cl、-Br、-I
2020/10/25
C. 红移
是指一些带有非成键电子对的基团与生色团连接后,使 生色团的吸收带向长波移动,这种效应成为红移,该基团 称为红移基团:
特点: (a). 与组成π键的杂原子有关,杂原子的电负性越强,
λmax 越小; (b). n →π* 跃迁所需能量最小,大部分吸收在
200 ~ 700 nm; (c). n →π* 跃迁的几率比较小,所以摩尔吸光系数比较
小 ,一般~ 102。
2020/10/25
(4) π→π* 跃迁
是π电子从成键π轨道向反键π*轨道的跃迁,含有π电子 基团的不饱和有机化合物,都会发生π→π*跃迁。如含有 碳碳双键、碳碳叁键的化合物。吸收一般在200 nm附近。

第9章-紫外可见吸收光谱法

第9章-紫外可见吸收光谱法

第九章紫外可见吸收光谱法§9-1 概述利用紫外可见分光光度计测量物质对紫外可见光的吸收程度〔吸光度〕和紫外可见吸收光谱来确定物质的组成、含量,推测物质结构的分析方法,称为紫外可见吸收光谱法或紫外可见分光光度法〔ultraviolet and visible spectrophotometry,UV-VIS〕。

它具有如下特点:〔1〕灵敏度高适于微量组分的测定,一般可测定10-6g级的物质,其摩尔吸收系数可以到达104~105数量级。

(2) 准确度较高其相对误差一般在1%~5%之。

(3) 方法简便操作容易、分析速度快。

(4) 应用广泛不仅用于无机化合物的分析,更重要的是用于有机化合物的鉴定与结构分析〔鉴定有机化合物中的官能团〕。

可对同分异构体进展鉴别。

此外,还可用于配合物的组成和稳定常数的测定。

紫外可见吸收光谱法也有一定的局限性,有些有机化合物在紫外可见光区没有吸收谱带,有的仅有较简单而宽阔的吸收光谱,更有个别的紫外可见吸收光谱大体相似。

例如,甲苯和乙苯的紫外吸收光谱根本一样。

因此,单根据紫外可见吸收光谱不能完全决定这些物质的分子结构,只有与红外吸收光谱、核磁共振波谱和质谱等方法配合起来,得出的结论才会更可靠。

§9-2 紫外可见吸收光谱法的根本原理当一束紫外可见光〔波长围200~760nm〕通过一透明的物质时,具有某种能量的光子被吸收,而另一些能量的光子那么不被吸收,光子是否被物质所吸收既决定于物质的部结构,也决定于光子的能量。

当光子的能量等于电子能级的能量差时〔即ΔE电 = h f〕,那么此能量的光子被吸收,并使电子由基态跃迁到激发态。

物质对光的吸收特征,可用吸收曲线来描述。

以波长λ为横坐标,吸光度A为纵坐标作图,得到的A-λ曲线即为紫外可见吸收光谱〔或紫外可见吸收曲线〕。

它能更清楚地描述物质对光的吸收情况〔图9-1〕。

从图9-1中可以看出:物质在某一波长处对光的吸收最强,称为最大吸收峰,对应的波长称为最大吸收波长〔λmax〕;低于高吸收峰的峰称为次峰;吸收峰旁边的一个小的曲折称为肩峰;曲线中的低谷称为波谷其所对应的波长称为最小吸〕;在吸收曲线波长最短的一端,吸收强度相当大,但不成峰形的收波长〔λmin局部,称为末端吸收。

紫外可见吸收光谱分析法

紫外可见吸收光谱分析法

紫外可见吸收光谱分析法紫外可见吸收光谱分析法是一种广泛应用于化学、生物、环境科学等领域的检测方法,通过测定物质对紫外可见光的吸收特性来获得有关物质的结构和浓度等信息。

本文将详细介绍紫外可见光谱分析法的原理、仪器和应用等方面,以及其在药物、环境、食品等领域的具体应用。

首先,紫外可见光谱的基本原理是根据物质对不同波长的紫外或可见光的吸收特性来确定其浓度或进行定性分析。

在紫外可见光谱中,紫外光波长范围为200-400nm,可见光波长范围为400-800nm。

当物质吸收光线时,其分子内的电子从基态跃迁到激发态,吸收能量取决于分子内电子的能级跃迁,这将导致光谱吸收峰的出现。

物质的吸收光谱图形反映了不同波长的光线对物质的吸收能力,吸收峰的强度与物质的浓度成正比。

为了进行紫外可见光谱分析,需要使用紫外可见分光光度计。

该仪器由光源、样品室、单色器、检测器和计算机等组成。

光源发出广谱连续光,在单色器中,只有特定波长的光通过,其他波长的光被滤除。

样品放在样品室中,光线穿过样品后到达检测器。

检测器将光强度转换为电信号,并将信号输出到计算机进行分析。

紫外可见光谱分析法在各个领域有广泛的应用。

在药物领域,紫外可见光谱可用于药物成分的定量分析。

例如,可以通过对药物溶液的吸光度测定得到药物的浓度,从而判断药物的纯度和含量。

在环境领域,紫外可见光谱可以用于水质和大气污染物的监测。

通过检测水样中有机物和无机物的紫外可见吸收光谱,可以对水质进行评估和监测。

同时,还可以使用紫外可见光谱分析法来检测大气中的有害气体,如二氧化硫和氮氧化物等。

此外,紫外可见光谱分析法还在食品行业中得到了应用。

例如,可以利用该方法检测食品中的添加剂,如防腐剂和色素等,以确保食品的安全性和质量。

紫外可见光谱分析法还可用于检测食品中的重金属和农药残留物,以保障消费者的健康和权益。

综上所述,紫外可见吸收光谱分析法是一种快速、准确、灵敏的分析方法,可以广泛应用于化学、生物、环境科学等领域。

紫外-可见吸收光谱.

紫外-可见吸收光谱.
饱和烃的取代衍生物如卤代烃,其卤素原子上存 在n电子,可产生n* 的跃迁。 n* 的能量 低于*。例如,CH3Cl、CH3Br和CH3I的n* 跃迁分别出现在173、204和258nm处。
3.有机化合物的吸收光谱与分子结构
(2)不饱和烃及共轭烯烃
在不饱和烃类分子中,除含有键外,还含有 键,它们可以产生*和*两种跃迁。 *跃迁的能量小于 *跃迁。例如,在 乙烯分子中, *跃迁最大吸收波长为180nm。
第一节 紫外-可见吸收光谱 一、分子吸收光谱的产生
过程:
运动的分子外层电子---吸收外来辐射--产生电子能级跃迁----分子吸收光谱。
M h I0 M * It
一、分子吸收光谱的产生
在分子中,除了电子 相对于原子核的运动 外,还有核间相对位 移引起的振动和转动。 这三种运动能量都是 量子化的,并对应有 一定能级。左图为分 子的能级示意图。
丙酮
例:KMnO4紫红色,吸收的是绿光,λmax=525nm。它 对其它颜色的光吸收极小。吸收曲线形状是物质特有 的。当KMnO4的量不同,只使曲线沿纵座标上下移动, 但曲线形状不变。
图 KMnO----4的吸收光谱图 浓度:5、10、20、40μg/ml,1cm厚比色杯
四、分子跃迁类型及吸收光谱
max 较大 (104以上),可用于定量分析。
2.几个概念
生色团(Chromogenesis group)
有机化合物分子中含有非键或键的电子体系,
能吸收外来辐射时并引起n-* 和-*跃迁,可产生 此类跃迁或吸收的结构单元,称为生色团。
是一些具有不饱和健和含有孤对电子的基团。
如-C=C-、-C ≡ C-、—CH=O、—N=N—、-N=O 、—C≡N、—NO2等

紫外-可见吸收光谱分析

紫外-可见吸收光谱分析

• 分子、原子或离子具有不连续的量子化能级,仅当
照射光光子的能量(hυ)与被照射物质粒子的基态和 激发态能量之差相当时才能发生吸收。不同的物质微粒 由于结构不同而具有不同的量子化能级,其能量差也不 相同。所以物质对光的吸收具有选择性。
三、吸收曲线(吸收光谱)
• 吸光度(A)--波长(λ)曲线称--。 • 光吸收程度最大处的波长叫 • 最大吸收波长,用λmax表示。 • 高锰酸钾的λmax=525nm。 • 浓度不同时,光吸收曲线形状不同,最大吸收波长
1852年,比耳(Beer)发现:
• 当单色光通过液层厚度b一
• 定的有色溶液时,溶液的吸
• 光度A与溶液浓度C成正比:

A= lg(I0/I)= k2 C
• --- 比耳定律

( C--有色溶液的浓度 k2--比例常数 )
• 将朗白定律与比耳定律合并起来:

A = lg(I0/I) = K b c
物质颜色
黄绿 黄 橙 红
紫红 紫 蓝
绿蓝 蓝绿
吸收光
颜色
波长范围

40/0n-m450

450-480
绿蓝
480-490
蓝绿
490-500
绿
500-560
黄绿
560-580

580-600

600-650

650-700
二、物质对光的选择性吸收
当一束光照射到某物质或其溶液时,组成该物质的 分子、原子或离子与光子发生“碰撞”,光子的能量就 转移到分子、原子上,使这些粒子由最低能态(基态) 跃迁到较高能态(激发态):M + hυ → M* 这个作用叫物质对光的吸收。

紫外-可见吸收光谱法精选全文完整版

紫外-可见吸收光谱法精选全文完整版

溶剂极性增大
吸收峰呈规律性蓝移
3、溶剂效应
O
异丙叉丙酮(CH3-C-CH=C
CH3
CH3 )的溶剂效应
吸收带
p → p*
正己烷
230nm
CH3Cl
238nm
CH3OH
237nm
H2 O
243nm
波长
红移
n→ p*
329nm
315nm
309nm

电子跃迁类型主要有四种:σ→σ*、n→σ*、π→π*和
n→π*,各种跃迁所需的能量大小不同,次序为:
σ→σ*> n→σ*≥ π→π* > n →π*,
因此,形成的吸收光谱谱带的位置也不相同。

σ→σ*跃迁:
需要能量最大, λ<200nm ,真空紫外区,εmax > 104
饱和烃(远紫外区);
C-H共价键,如CH4( λmax 125nm)
(I) 顺式二苯乙烯 (II)反式二苯乙烯
2、跨环效应的影响
助色基团虽不共轭,但由于空间排列使电子
云相互影响,使 n→π*吸收峰长移。
O
CH3-C - CH3
O
C
S
lmax156,279 nm
lmax238nm
3、溶剂效应影响
溶剂的极性增大时,n p* 跃迁吸收带蓝移
p p* 跃迁吸收带红移
少,分析速度快。
2 灵敏度高。如在紫外区直接检测抗坏血酸时,其最低检出浓度可
达到10-6g/mL。
3 选择性好。通过适当的选择测量条件,一般可在多种组分共存的
体系中,对某一物质进行测定。
4 精密度和准确度较高。在仪器设备和其他测量条件较好的情况下,

紫外吸收光谱分析(UV)

紫外吸收光谱分析(UV)

1 紫外光谱法的特点
(1)所对应的电磁波长较短,能量大,它反映了分 子中价电子能级跃迁情况。主要应用于共轭体系 (共轭烯烃和不饱和羰基化合物)及芳香族化合物 的分析。
(2)电子光谱图比较简单,但峰形较宽。一般来说, 利用紫外吸收光谱进行定性分析信号较少。
(3)紫外吸收光谱常用于共轭体系的定量分析,灵 敏度高,检出限低。
(4) 吸收带分类
5.3 分子结构与紫外吸收光谱
1 有机化合物的紫外吸收光谱
(1) 饱和烃化合物 如甲烷和乙烷的吸收带分别在125nm和135nm。
(2)简单的不饱和化合物
最简单的乙烯化合物,在165nm处有一个强 的吸收带。
(3)共轭双烯
(4) α,β-不饱和羰基化合物
(5)芳香族化合物
1 紫外-可见分光光度计的基本结构 紫外-可见分光光度计由光源、单色器、吸收池、
检测器以及数据处理及记录(计算机)等部分组成。
图2.30 双光束分光光度计的原理图
5.6 紫外吸收光谱的应用
物质的紫外吸收光谱基本上是其分子中生色团及助色 团的特征,而不是整个分子的特征。如果物质组成的变化 不影响生色团和助色团,就不会显著地影响其吸收光谱, 如甲苯和乙苯具有相同的紫外吸收光谱。另外,外界因素 如溶剂的改变也会影响吸收光谱,在极性溶剂中某些化合 物吸收光谱的精细结构会消失,成为一个宽带。所以,只 根据紫外光谱是不能完全确定物质的分子结构,还必须与 红外吸收光谱、核磁共振波谱、质谱以及其他化学、物理 方法共同配合才能得出可靠的结论。
ii 二取代苯
在二取代苯中,由于取代基的性质和取代位置 不同,产生的影响也不同。
a 当一个发色团(如 —NO2,—C=O)及 一个助色团(如—OH,—OCH3,—X)相 互处于(在苯环中)对位时,由于两个取代 基效应相反,产生协同作用,故λmax产生 显著的向红位移。效应相反的两个取代基若 相互处于间位或邻位时,则二取代物的光谱 与各单取代物的区别是很小的。

紫外-可见吸收光谱法(UV-Vis)

紫外-可见吸收光谱法(UV-Vis)
max 1104 ; M 100
max 一般 10
增大

A 1103 7 1 Cmin 1 10 mol L b 1104 1 1107 100 1108 g mL1 1000
3 ~104;灵敏
的 >104;个别的可达 105 106
若λ1= λ2
dA b dC
ε 1 = ε2= ε 在一定的浓度范围内 A= εbC
若λ1≠ λ2
2.303 f1 f 2b 2 ( λ1 λ 2 ) 210 ( λ1 λ 2 )bc d2A 0 λ 1bc λ 2bc 2 2 dC ( f110 f 210 )
1) 液气固介质均适用 2)入射光是单色光,平行光 3)稀溶液
朗伯-比尔定律
A = Kbc
(二)朗伯-比尔定律推导
Ix dIx S I0 db b It
-dIx ∝ Ix adn dn = csdb
-dIx∝ IxaCsdb -dIx/Ix=k Cdb
b dI x I0 I x k 0 cdb It
0
0
C
A = 0.434
(四)吸光系数
1. a ( L · g –1 · cm-1) 2.ε ( L · mol–1 · cm-1)
max
A KCb
A aCb A Cb
C: g / L C: mol/ L
吸光物质结构的特征参数;
吸光物质定量分析的灵敏度参数
3. 检出限与摩尔吸光系数 若可测量的吸光度为0.001
It ln kcb I0 It kcb lg Kcb I 0 2.303
A lg T Kbc
吸光度 与透射率

紫外可见吸收光谱法

紫外可见吸收光谱法

M +热
基态
激发态
M + 荧光或磷光
E1 (△E) E2
E = E2 - E1 = h :量子化 ;选择性吸收 吸收曲线与最大吸收波长 max
用不同波长的单色光照射,测吸光度
光的互补:蓝 黄
吸收曲线的讨论:
①同一种物质对不同波长光 的吸光度不同。吸光度最大 处对应的波长称为最大吸收
波长λmax
1.5.5 稠环芳烃及杂环化合物
稠环芳烃,如奈、蒽、芘等,均显示 苯的三个吸收带,但是与苯本身相比较, 这三个吸收带均发生红移,且强度增加。 随着苯环数目的增多,吸收波长红移越多, 吸收强度也相应增加。
当芳环上的-CH基团被氮原子取代后,则相 应的氮杂环化合物(如吡啶、喹啉)的吸收光 谱,与相应的碳化合物极为相似,即吡啶与苯 相似,喹啉与奈相似。此外,由于引入含有n 电子的N原子的,这类杂环化合物还可能产生 n*吸收带。
摩尔吸光系数ε在数值上等于浓度为1 mol/L、液层厚度
为1cm时该溶液在某一波长下的吸光度;
吸光系数a(L·g-1·cm-1)相当于浓度为1 g/L、液层厚度
为1cm时该溶液在某一波长下的吸光度。
1.8.2 摩尔吸光系数ε
吸收物质在一定波长和溶剂条件下的特征常数;不随
浓度c和光程长度b的改变而改变。在温度和波长等条 件一定时,ε仅与吸收物质本身的性质有关;可作为 定性鉴定的参数;同一吸收物质在不同波长下的ε值
(2)在溶解度允许的范围内,尽量选择极 性较小的溶剂。
(3)溶剂在样品的吸收光谱区应无明显吸 收。
1.8 光的吸收定律
1.8.1 朗伯—比耳定律
• 布格(Bouguer)和朗伯(Lambert)先后于1729年和

紫外-可见分子吸收光谱法

紫外-可见分子吸收光谱法

NN
溶剂与溶质之相互作用增强 C H
溶质分子的振动受到限制
水中 环己烷中
振动引起的精细结构消失
蒸汽中
500
555
对称四嗪的吸收光谱
/nm
b. 溶剂极性对π →π*跃迁谱带的影响
➢ 溶剂极性增大时,由π →π*跃迁产生的吸收 带发生红移。
c. 溶剂极性对n →π*跃迁谱带的影响
➢ 溶剂极性增大,由n →π*跃迁产生的吸收谱 带发生蓝移。
(4)多通道分光光度计
以光二极管阵列作检测器
光源
透镜
光二极管阵列
试样池
光栅
三、光吸收定律
1、朗伯-比尔定律
A lg T lg I0 bc 或 A lg T lg I0 abc
I
I
2、吸光度的加和性
当溶液中含有多种对光产生吸收的物质,且各组分之
间不存在相互作用时,则该溶液对波长λ光的总吸光度A总
➢ 根据分子轨道理论,这三种电子的能级高 低为: σ<π<n <π*<σ*
三种价电子可能产生六种形式电子跃迁:
σ→ σ*, σ→ π*, π→ σ*对应的吸收光谱处于 远紫外区,研究少。
(1) n → σ* 跃迁:
➢ 吸收光谱出现在远紫外光区和近紫外光区 ➢ 某些含有氧、氮、硫、卤素等杂原子的基 团(如—NH2、—OH、—SH、—X等)的 有机物可产生n → σ* 跃迁。 例如:CH3OH:λmax=183 nm 、CH3NH2:λmax=213 nm
② 吸收峰通常位于200~400nm之间。
(7) K带
➢ 由共轭体系的π →π*跃迁产生的吸收带。
特点:
ε ① 强度大,一般 > 104 L ·mol-1 ·cm-1 ;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5. 结果显示记录系统
作用是放大信号并以适当的方式指示或记录。 直流检流计、电位调零装置、数字显示及自动记录装置等。
03:04:37
二、分光光度计的类型
1.单光束
经单色器分光后的一束平行光,轮流通过参比溶液和样 品溶液,以进行吸光度的测定。结构简单,操作方便,维修 容易,适用于常规分析。一般不能作全波段光谱扫描。
03:04:37
2. 紫外-可见吸收光谱的产生
当分子吸收外界的辐射能量(电磁辐射)时,会发生运 动状态的变化,亦即发生能级的跃迁,其中含电子能级、振 动能级和转动能级的跃迁。
h E2 E1 E Ee Ev Er
E h


c


hc
E
分子吸收光谱: 用一连续波的电磁辐射以波长大小顺序分别照射分子,并
流动测量池 两面透光
4.检测器
检测器的作用 检测器是一种光电转换元件,是检测单色光通过溶液被吸收 后透射光的强度,并把这种光信号转变为电信号的装置。 对检测器的要求 检测器应在测量的光谱范围内具有高的灵敏度;对辐射能量 的响应快、线性关系好、线性范围宽;对不同波长的辐射响 应性能相同且可靠;有好的稳定性和低的噪音水平等。 检测器有光电池、光电管和光电倍增管等。
2.双光束
光源发出光经单色器分光后,分解为强度相等的两束 光,一束通过参比池,另一束通过样品池,双光束分光光 度计一般都能自动记录吸收光谱曲线。由于两束光同时分 别通过参比池和样品池,因而能自动消除光源强度变化所 引起的误差。
03:04:37
03:04:37
3.双波长
适用多组分混合物、混浊试样(如生物组织液)分析, 以及存在背景干扰或共存组分吸收干扰的情况下分析,还 能进行化学反应动力学研究。
围在320~2500 nm。 氢灯、氘灯等: 气体放电光源,紫外光区,可使用波长的
有效范围为200~375nm 。
03:04:37
2.单色器
将光源发射的复合光分解成单色光并可从中选出一任 波长单色光的光学系统。 ① 入射狭缝:光源的光由此进入单色器; ② 准光装置:透镜或返射镜使入射光成为平行光束; ③ 色散元件:将复合光分解成单色光;棱镜或光栅;
记录物质分子对辐射吸收程度随辐射波长变化的关系曲线。 紫外-可见光:紫外-可见吸收光谱。
03:04:37
电子能级跃迁的能量: 1~20 eV
振动能级跃迁的能量: 0.05~1 eV
转动能级间的能量: 0.005~0.050 eV 电子能级间跃迁的同时
,总伴随有振动和转动能 级间的跃迁。 1~20 eV的能量相对应 的波长是1230-62nm。
03:04:37
二、紫外、可见吸收光谱
1 、吸收曲线特点 连续的带状光谱
03:04:37
原子光谱:线状谱
2 、紫外-可见吸收光谱的作用 定性分析:分子的紫外-可见光谱在宏观上呈现带状,
称为带状光谱。吸收带的峰值波长为最大吸收波长,常表 示为λmax,各种化合物由于组成和结构上的不同都有各自特 征的紫外-可见吸收光谱,因此可以从吸收光谱的形状、波 峰的位置及强度、波峰的数目等进行定性分析 。
④ 聚焦装置:透镜或凹面 反射镜,将分光后所得单 色光聚焦至出射狭缝; ⑤ 出射狭缝。
03:04:37
3.样品室
样品池、吸收池(比色皿)。吸收池主要有石英池和玻璃池两 种。
1cm 长方形测量池 两面透光
圆形测量池 两面透光
可拆卸圆形测量池 两面透光
气体测量池 两面透光
03:04:37
微量测量池 两面透光
第二节 紫外-可见分光
光度计
03:04:37
仪器
紫外-可见分光光度计
03:04:37
一、基本组成与工作原理
光源
光源
单色器
碘 钨 灯
样品池
检测器
数据处理 仪器控制
单色器
氘 灯光
电 03:04:37
一、基本组成与工作原理
1. 光源
在整个紫外光区或可见光谱区可以发射连续光谱,具有足够 的辐射强度、较好的稳定性、较长的使用寿命。 分光光度计中常用的光源有两类: 钨灯、卤钨灯等:热辐射光源 ,可见光区,其辐射波长范
定量分析:根据A可用来定量分析,A=-lgT=εbc。
03:04:37
3、 Lambert-Beer定律
I0 Ia It Ir
I0 Ia It
T It I0
A lg 1 lg I0
T
It
03:04:37
A cl lg T
l : 吸收光程(液层厚度),cm。 c: 吸光物质浓度。 ε: 摩尔吸光系数
一、紫外-可见吸收光谱概述
1.概述
紫外-可见分光光度法是利用物质的分子对紫外-可见光谱 区的辐射的吸收来进行定性、定量及结构分析的方法。
产生于价电子和分子轨道上的电子在电子能级间的跃迁。 波长范围:100-800 nm.
(1) 远紫外光区: 100-200nm; (2) 近紫外光区: 200-400nm; (3) 可见光区: 400-800nm。 广泛用于有机和无机物质的定性和定量分析。
03:04:37
第六章 紫外吸收光谱
分析法
第三节 吸收带类型与溶
剂效应
03:04:37
一、电子跃迁与吸收带类型
1. 电子跃迁类型
成键的价电子 σ键,σ电子 — σ成键轨道
外层电子
π键,π电子 — π成键轨道
非成键的价电子 — n 电子 — n 轨道
π* 反键轨道(激发态电子) σ* 反键轨道(激发态电子)
2) max 可作为定性鉴定的参数
03:04:37
3) 可用来估量定量分析方法的灵敏度。 ε max越大,定量分析的灵敏度越高。 例如:
εmax ~ 104:强吸收,测量浓度范围为10-6 ~ 10-5 mol•L-1。
03:04:37
第六章 紫外吸收光谱
分析法
一、基本组成
二、分光光度计的类 型
能量大小顺序: σ <π < n < π* < σ*
c 单位 为mol•L-1时,摩尔吸光系数 ε(L•mol-1•cm-1)。
03:04:37
c 单位为 mol•L-1时,摩尔吸光系数
(L• mol-1•cm-1)。
1) 吸收物质在一定波长和溶剂条件下的特征 常数,不随浓度c 和光程长度b的改变而改变。 在温度和波长等条件一定时,仅与吸收物质 本身的性质有关。
相关文档
最新文档