平面连杆机构图解法

合集下载

机械原理第二章连杆机构(杨家军版)

机械原理第二章连杆机构(杨家军版)

3、平面连杆机构的应用
机械手
汽车中那些部位用到连杆机构
起重装置
§3-2 平面四杆机构的基本类型及应用
一、平面四杆机构的基本形式 1. 构件及运动副名称 构件名称:
连架杆——与机架连接的构件 曲柄——作整周回转的连架杆 摇杆——作来回摆动的连架杆 连杆——未与机架连接的构件 机架——固定不动的构件
α1 180° +θ t1 V2 ω = α = = = 180° -θ V1 2 t2 ω
连杆机构输出件具有急回特性的条件: 1)原动件等角速整周转动; 2)输出件具有正、反行程的往复运动; 3)极位夹角θ >0。
分析: 180° +θ K= 180° -θ
K≥1,K=1时无急回特性
设计具有急回特性的机构时,一般先根据使用要求给 定K值,则有 (K-1) θ=180° (K+1) θ= 0 θ≠0 θ↑,K↑,急回运动越明显,一般取K<2
●导杆机构(曲柄为主动件) ●导杆机构(摇杆为主动件)
α B2 ≡0°
3 2 1 3 A B VB2 D 4 FB2 1 2 FB3 B D VB2 FB2 FB1
机构压力角:在不计摩擦力、惯性力和重力的条件下, 机构中驱使输出件运动的力的方向线与输出件上受 力点的速度方向间所夹的锐角,称为机构压力角, 通常用α 表示。P50
传动角:压力角的余角。 通常用γ 表示.
F2 C
B
A
δ
D
γ F α
F1
vc
机构的传动角和压力角作出如下规定: γ min≥[γ ];[γ ]= 3060°; α max≤[α ]。 [γ ]、[α ]分别为许用传动角和许用压力角。
C
(2) 推广到导杆机构 结论:有急回特性,且极位夹角等于摆杆摆角,即

第2章平面连杆机构

第2章平面连杆机构

把铰销B扩大,使其包含A,这时曲柄演化为一几何中心不与回转中 心相重合的圆盘,此盘称为偏心轮,两中心间距称偏心距,等于曲柄之 长,这种机构称为偏心轮机构。 该结构可避免在较短的曲柄两端设两个转动副而引起的结构设计上 的困难, 且盘状构件在强度上比杆状高得多,所以多用于载荷较大或AB较短的 场合。 2、 转动副转化成移动副
例:设计一曲柄摇杆机构,已知摇杆长C及摆角ψ,行程速度变化 系数K。 步骤:①计算 ②按已知条件画C1D、C2D ③连C1C2作∠ C1C2P=90°— ∠ C2C1P=90° ④作C1.C2.P的外接园 ⑤延长C1D、C2D与园交于C1′、C2′ ⑥在或上任取一点即可作A ⑦ AC1=b-a θ。说明此为曲柄与连杆共线的两位置) AC2=b+a 而AD即为机架长度d 由上述知A是可任选的,∴有无数解,若另有其他辅助条件,加给 定d或min或给定a等,则A点便可确定了。 若为曲柄滑块机构:则可由e在园上定A。 若为摆动导杆机构:由 在ψ角平分线上由d→A→B 3、按给定两连架杆对应位置设计(解析法、实验法) 例已知两连架杆AB和CD对应位置 取坐标系如图示,各构件长度在x、y轴上投影,得如下关系式
连杆曲线,用缩放仪求出图谱中的曲线与要求轨迹的相差倍数,将机构 尺寸作相应缩放,从而求得所需的四杆机构尺寸。 这种方法可使设计过程大为简化,适合于工厂和设计单位使用。
几组机构错位安装。 则用死点:例飞机起落架机构 连杆与从动件CD位于一直线上,机构处于死点。机轮着地时产生的 巨大冲击力不致使从动件CD转动,从而保持支撑状态。 又例如机床夹具。见22页图2-6 对其他四杆机构应会用同样方法分析以上四个特性。
§2-4 平面四杆机构的设计
基本问题:按给定的运动条件————确定运动简图的尺寸参数。 给定运动规律(位置、速度、加速度) 已知条件 给定运动轨迹 图解法: 直观 设计方法 解折法: 精确 应根据已知条件和机构具体情况选用 某 实验法: 简便 某种方法 一、按给定的运动规律设计四杆机构 1、按给定的连杆位置设计四杆机构(找圆心法) 已知连杆长度b及两位置B1C1、B2C2,设计该铰链四杆机构(定A、 D点)分析铰链四杆机构ABCD知: B1、B2、B3……应位于园弧k A上 C1、C2、C3……就位于园弧 k c上 作B1B2、B2 B3垂直平分线A C1C2、C2C3垂直平分成D 当给定两个位置时,只能得B1B2、C1C2,分别作其垂直平分线b12、 C12 A点可在b12上任选一点 ∴有无数解 D点可在C12上任选一点 在多解的情况下,可添加一些辅助条件,如满足有曲柄,紧凑的尺 寸,较好的传动角,固定铰链的位置等,从中选取满足附加条件的机 构。(如要求A、D水平) 当给定连杆三个位置时: 作B1B2中垂线 交点为A 作B2 B3中垂线 有唯一解ABCD 作C1C2中垂线 交点为D 作C2C3中垂线 2、按给定的行程速度变化系数K设计(三点共园法)

机械原理课程设计图解法设计平面连杆机构

机械原理课程设计图解法设计平面连杆机构

工程技术学院课程设计题目:图解法设计平面连杆机构摘要设计内容:设计曲柄摇杆机构。

已知摇杆长度l,摆角ψ,摇杆3的行程速比系数K,要求摇杆CD靠近曲柄回转中心A一侧的极限位置与机架间的夹角为∠CDA,试用图解法设计其余三杆的长度,并计算机构的最小传动角γ。

设计方法:在设计时首先需计算极位夹角θ,再绘制机架位置线及摇杆的两个极限位置,然后确定曲柄回转中心和各杆长度最后验算最小传动角 。

最后根据已知数据和所计算的数据进行图解,画出平面四杆机构图。

平面连杆机构是由若干构件用平面低副(转动副和移动副)联接而成的平面机构,用以实现运动的传递、变换和传送动力。

平面连杆机构的使用很广泛,它被广泛地使用在各种机器、仪表及操纵装置中。

例如内燃机、牛头刨、钢窗启闭机构、碎石机等等,这些机构都有一个共同的特点:其机构都是通过低副连接而成,故此这些机构又称低副机构低副机构低副机构低副机构。

关键词:机械设计基础机械设计基础课程设计平面四杆机构图解法极位夹角云南农业大学工程技术学院目录1题目 (3)1.1原始数据及要求 (3)1.2 工作量 (3)1.3 制图说明 (3)1.4 设计计算说明书包括的内容 (3)2 设计方案的讨论 (4)3 设计过程 (5)3.1 各杆长度的确定 (5)3.2 盐酸最小传动角 (6)4 小结 (7)5 参考文献 (8)1、题目1.1原始数据及要求:设计曲柄摇杆机构。

已知摇杆长度l,摆角ψ,3摇杆的行程速比系数K,要求摇杆CD靠近曲柄回转中心A一侧的极限位置与机架间的夹角为∠CDA,试用图解法设计其余三杆的长度,并计算机构的最小传动角γ。

1.2工作量:1.平面连杆机构图解法设计图纸一张。

2.计算说明书一份。

1.3制图说明:1.用3号图纸作图。

2.标注尺寸。

3.辅助线用细实线。

4.杆的一个极限位置用粗实线,另一个极限位置用虚线。

1.4设计计算说明书包括的内容:1.设计任务书2.目录3.设计过程3.1.计算极位夹角θ3.2.绘制机架位置线及摇杆的两个极限位置3.3.确定曲柄回转中心3.4.确定各杆长度3.5.验算最小传动角γ参考文献2、设计方案的讨论平面连杆机构是将各构件用转动副或移动副联接而成的平面机构。

平面连杆机构ppt课件

平面连杆机构ppt课件
15
3.1 平面连杆机构的类型
(2)应用案例:雷达天线、脚踏式脱粒机、搅拌 机、水稻插秧机的秧爪运动机构。
脚踏式脱粒机
缝纫机的脚踏粒机
雷达天线
16
3.1 平面连杆机构的类型
水稻插秧机的秧爪运动机构
搅拌机机构
(3)功能:将连续转动转换为摆动,或者将摆动转换为 连续转动。
17
3.1 平面连杆机构的类型
2、双曲柄机构 (1)概念:具有两个曲柄的铰链四杆机构,称 为双曲柄机构。
18
3.1 平面连杆机构的类型
(2)应用案例:惯性筛机构
惯性筛机构
(3)功能:将等速转动转换为不等速同向转动19。
3.1 平面连杆机构的类型
(4)双曲柄机构的其他类型 1)平行四边形机构:两相对构件互相平行,
呈平行四边形的双曲柄机构。
3.2.1 曲柄滑块机构 ( 1)由曲柄摇杆机构,将CD→无穷大,C点轨迹变成直
线; ( 2)演化方法:将转动副→移动副; ( 3)类型: a.偏心曲柄滑块机构 ,e≠0 偏距:曲柄转动
中心距导路的距离。 b.对心曲柄滑块机构,e=0
35
3.2 铰链四杆机构的演化
(4)应用案例:内燃机、空气压缩机、冲床和送料 机构等。
请画出下列机构运动示意图,并判断由几种机构 组合而成?
插齿机
冲床机构
48
3.3 铰链四杆机构的基本特性
3.3.1 急回特性和行程数比系数 1、基本概念:(以曲柄摇杆机构为例,曲柄为原动
件) (1)四杆机构的极限位置:当曲柄与连杆二次共线时,
摇杆位于机构的最左或最右的位置。 (2)极位夹角(θ):从动件处于二个极限位置时,
1-偏心轮 2-连杆 3-滑块 4-机架

平面机构及运动简图

平面机构及运动简图

高性能材料的发展将为平面机 构的设计提供更大的灵活性, 如轻质高强材料可以减轻机构 重量,提高运动效率;耐磨耐 腐蚀材料可以增强机构的耐久 性和可靠性。
随着人工智能和自动化技术的 不断发展,未来平面机构的设 计、分析和优化将更加智能化 和自动化,提高设计效率和质 量。
平面机构的研究将越来越多地 与其他学科进行交叉融合,如 控制理论、计算机科学、生物 医学等,以拓展应用领域和推 动技术创新。
由至少一个导杆(即具有滑动副的杆 件)与其他杆件组成的连杆机构。具 有传动效率高、运动平稳等特点。
滑块四杆机构
由四个杆件和一个滑块组成,滑块可 以在某一杆件上滑动。具有结构紧凑、 设计灵活等特点。
连杆机构设计原则和方法
设计原则
满足运动学要求,实现预期的运动轨迹和速度;满足动力学要求,保证机构的 传力性能和效率;满足结构紧凑、制造简便等要求。
02 平面机构组成及运动副
组成要素
01
02
03
构件
平面机构中的运动单元体, 具有独立的运动特性。
运动副
连接两个构件并保持其相 对运动的装置,分为低副 和高副。
自由度
描述机构运动独立参数的 数目,决定机构运动的可 能性。
运动副类型与特点
转动副
允许两构件绕公共轴线作 相对转动的运动副,如铰 链。
移动副
07 总结与展望
平面机构研究现状总结
1 2 3
平面机构类型多样性
目前已知的平面机构类型非常丰富,包括连杆机 构、凸轮机构、齿轮机构等,每种机构都有其独 特的工作原理和应用场景。
运动简图分析方法
运动简图是平面机构分析和设计的重要工具,通 过绘制和分析运动简图,可以清晰地表达机构的 运动特性和力学特性。

第二章 平面连杆机构及其设计

第二章  平面连杆机构及其设计

搅拌机
抓片机构
输送机
10/49
§2—1 铰链四杆机构的基本型式和特性
2)摇杆为原动件,曲柄为从动件时: 摇杆的往复摆动 曲柄的连续转动。 3 2
如图所示的缝纫机踏板机构。
3 2 1 4 摇杆主动
4 1
缝纫机踏板机构
11/49
§2—1 铰链四杆机构的基本型式和特性
二、双曲柄机构
双曲柄机构:两个连架杆都是曲柄。 传动特点: 主动曲柄连续等速转动时,从动 曲柄一般作变速转动。
冲床机构
如图所示的旋转式水泵和如上图所示的冲床机构。
A
1 D C 3 A B 2 4 D
1 B
2 C 3
旋转式叶片泵
振动筛机构
12/49
§2—1 铰链四杆机构的基本型式和特性
三、双摇杆机构
两个连架杆都是摇杆,则称为双摇杆机构。 其运动特性是:两摇杆都作摆动,但两 摇杆的摆角大小不同。 应用实例: 图2-6所示的工件夹紧机构、图2-11的飞机起落架机 构 ;
优 点:
图c
图d
3/49
2、缺点:
1)低副中存在间隙,会引起运动误差,使效率降低;
2)动平衡较困难,所以一般不宜用于高速传动;
3)设计比较复杂,不易精确地实现复杂的运动规律。
应 用:
连杆机构广泛地应用在各种机械和仪器中。 如雷 达调整机构(图2-3)、缝纫机踏板机构(图2-5) 、 鹤式起重机、机车驱动轮联动机构(图2-10)、牛头刨 床、椭圆仪(图2-22) 、机器人等。
1、在满足杆长条件下,即Lmin+Lmax≤Li+Lj : 1)取Lmin为机架时,机架上有两个整转副,该机构为 双曲柄机构(2个曲柄)。 2)取Lmin为连架杆(即最短杆的邻边为机架)时,机 架上只有一个整转副,该机构为曲柄摇杆机构(1 个曲柄)。 3)取Lmin为连杆(即最短杆的对边为机架)时,机架 上没有整转副,该机构为双摇杆机构(无曲柄)。

平面连杆机构

平面连杆机构

第3章平面连杆机构平面连杆机构是由若干个构件通过低副联接而成的机构,又称平面低副机构;由四个构件通过低副联接的平面连杆机构称为平面四杆机构,是平面连杆机构中最常见的形式;平面连杆机构广泛应用于各种机械和仪表中,具有许多优点:平面连杆机构中的运动副均为低副,组成运动副的两构件之间为低副联接,因而承受的压强小,便于润滑,磨损较轻,能承受较大的载荷;构件形状简单,加工方便,构件之间的接触是由构件本身的几何约束来保持的,所以工作平稳;在主动件等速连续运动的条件下,当各构件的相对长度不同时,可使从动件实现多种形式的运动;利用连杆可满足多种运动轨迹的要求;平面连杆机构的主要缺点:低副中存在间隙,会引起运动误差,不易精确地实现复杂的运动规律;连杆机构运动时产生的惯性力难以平衡,不适用于高速场合;平面连杆机构常以其所含的构件杆数来命名,如四杆机构、五杆机构……,常把五杆或五杆以上的平面连杆机构称为多杆机构;最基本、最简单的平面连杆机构是由四个构件组成的平面四杆机构;它不仅应用广泛,而且又是多杆机构的基础;平面四杆机构可分为铰链四杆机构和衍生平面四杆机构两大类,前者是平面四杆机构的基本形式,后者由前者演化而来;平面四杆机构的基本形式及演化平面四杆机构可分为两类:1. 运动副全为转动副的平面四杆机构,称为铰链四杆机构;图3-1 铰链四杆机构图3-1为铰链四杆机构示意图,其中AD杆是机架,与机架相对的BC杆称为连杆,与机架相连的AB杆和CD杆称为连架杆,其中能做整周回转运动的连架杆称为曲柄,只能在小于360°范围内摆动的连架杆称为摇杆;2. 运动副中既有转动副又有移动副的平面四杆机构,称为衍生平面四杆机构,如曲柄滑块机构如图3-2所示;3.1.1铰链四杆机构的基本类型图3-2 曲柄滑块机构1.曲柄摇杆机构两连架杆中一个为曲柄另一个为摇杆的铰链四杆机构,称为曲柄摇杆机构;曲柄摇杆机构中,当以曲柄为原动件时,可将曲柄的匀速转动变为从动件的摆动;如图3-3所示的雷达天线机构,当原动件曲柄1转动时,通过连杆2,使与摇杆3固结的抛物面天线作一定角度的摆动,以调整天线的俯仰角度;图3-4为汽车前窗的刮雨器,当主动曲柄AB回转时,从动摇杆作往复摆动,利用摇杆的延长部分实现刮雨动作;图3-3 雷达天线机构图3-4 汽车前窗刮雨器1-曲柄 2-连杆 3-摇杆天线 4-机架 1-机架 2-曲柄 3-连杆4-摇杆也有以摇杆为原动件、曲柄为从动件的情况;如图3-5所示缝纫机的脚踏机构,当脚踏板原动件上下摆动时,通过连杆使曲柄从动件连续转动,输出动力;图3-5 缝纫机2. 双曲柄机构在铰链四杆机构中,若两个连架杆均为曲柄,则称为双曲柄机构;如图3-6所示的惯性筛机构,工作时以曲柄2为主动件,做等角速连续转动;通过连杆3带动曲柄4,做周期性的变角速连续转动;再通过构件5使筛体做变速往复直线运动;图3-6 惯性筛双曲柄机构中,应用很广的是两曲柄长度相等、连杆与机架的长度也相等且彼此平行的平行四边形机构,也称为平行双曲柄机构;其特点是两个曲柄的运动规律完全相同,连杆3始终做平动;如图3-7所示的机车车轮机构;图3-7机车车轮机构平行四边形机构中,若对边杆彼此不平行,则称为反向双曲柄机构;其特点是原动件与其对边从动件做相反方向的转动,如图3-8所示的窗门启闭机构;3. 双摇杆机构两连架杆均为摇杆的铰链四杆机构称为双摇杆机构;图3-9a 所示为港口起重机,当CD 杆摆动时,连杆CB 上悬挂重物的点M 在近似水平直线上移动;图3-9b 所示的电风扇的摇头机构中,电机装在摇杆4上,铰链A 处装有一个与连杆1固结在一起的蜗轮;电机转动时,电机轴上的蜗杆带动蜗轮迫使连杆1绕A 点作整周转动,从而使连架杆2和4作往复摆动,达到风扇摇头的目的;图3-9图3-8窗门启闭机图3-10a、b所示的飞机起落架及汽车前轮的转向机构等也均为双摇杆机构的实际应用;汽车前轮的转向机构中,两摇杆的长度相等,称为等腰梯形机构,它能使与摇杆固联的两前轮轴转过的角度不同,使车轮转弯时,两前轮的轴线与后轮轴延长线上的某点P交于点,汽车四轮同时以P点为瞬时转动中心,各轮相对地面近似于纯滚动,保证了汽车转弯平稳并减少了轮胎磨损;图3-103.1.2 平面四杆机构的演化在实际机器中,还广泛地采用着其他多种型式的四杆机构;这些型式的四杆机构,可认为是通过改变某些构件的形状、改变构件的相对长度、改变某些运动副的尺寸、或者选择不同的构件作为机架等方法,由四杆机构的基本型式演化而成的;铰链四杆机构的演化,不仅是为了满足运动方面的要求,还往往是为了改善受力状况以及满足结构设计上的需要等;各种演化机构的外形虽然各不相同,但是它们的运动性质以及分析和设计方法却常常是相同或类似的,这就为连杆机构的研究提供了方便;ab图3-11 铰链四杆机构的演化1.曲柄滑块机构在如图3-11a 所示的曲柄摇杆机构中,当曲柄1绕轴A 回转时,铰链C 将沿圆弧ββ往复运动;现如图b 所示,设将摇杆3做成滑块形式,并使其沿圆弧导轨BB 往复运动,显然其运动性质并未发生改变;但此时铰链四杆机构已演化为曲线导轨的曲柄滑块机构;又如在图3-11a 所示的铰链四杆机构中,设将摇杆3的长度增至无穷大,则铰链C 运动的轨迹ββ将变为直线,而与之相应的图3-11b 中的曲线导轨将变为直线导轨,于是铰链四杆机构将演化成为常见的曲柄滑块机构,如图3-12所示;其中图3-12a 所示的为具有一偏距e 的偏置曲柄滑块机构;而图3-12b 所示的为没有偏距的对心曲柄滑块机构;曲柄滑块机构在冲床、内燃机、空气压缩机等各种机械中得到了广泛的应用;2.导杆机构如图3-13a 所示的曲柄滑块机构中,若改选构件AB 为机架,则构件4将绕轴A 转动,而构件3则将以构件4为导轨沿该构件相对移动;将构件4称为导杆,而由此演化成的四杆机构称为导杆机构如图3-13b 所示;ab图3-12曲柄滑块机构 a bcd图3-13导杆机构在导杆机构中,如果其导杆能作整周转动,则称其为回转导杆机构;如图3-14所示,为回转导杆机构在一小型刨床中的应用实例;在导杆机构中,如果导杆仅能在某一角度范围内往复摆动,则称为摆动导杆机构;如图3-15a 所示为一种牛头刨床的导杆机构;图3-15b 为图3-15a 所示牛头刨床的主机运动简图;3.摇块机构和定块机构同样,在如图3-12a 所示的曲柄滑块机构中,若改选构件BC 为机架,则将演化成为曲柄摇块机构如图3-12c 所示;其中滑块3仅能绕点O 摇摆,如图3-16所示的液压作动筒,即为此种机构的应用实例,液压作动筒的应用很广泛;如图3-17所示的自卸卡车的举升机构即为应用的又一实例;ab图3-19偏心轮机构 图3-14回转导杆机构图3-16液压作动筒 图3-17自卸卡车的举升机构液图3-15 牛头刨床的导杆机构在图3-12a 所示的曲柄滑块机构中,若改选滑块3为机架,称定块,则将演化成为定块机构如图3-12d 所示;如图3-18所示为定块机构用于抽水唧筒的实例;4.偏心轮机构在如图3-19a 所示的曲柄滑块机构中,当曲柄AB 的尺寸较小时,由于结构的需要常将曲柄改作成如图3-19b 所示的一个几何中心不与其回转中心相重合的圆盘,此圆盘称为偏心轮,其回转中心与几何中心间的距离称为偏心距它等于曲柄长,这种机构则称为偏心轮机构;显然,此偏心轮机构与图3-18a 所示的曲柄滑块机构的运动特性完全相同;而此偏心轮机构,则可认为是将图3-18a 所示的曲柄滑块机构中的转动副B 的半径扩大,使之超过曲柄的长度演化而成的;这种机构在各种机床和夹具中广为采用;5.双滑块机构在图3-19a 的曲柄滑块机构中,将摇杆BC 改为滑块时,则变为如图3-19b 所示的双滑块机构;双滑块机构一般用于仪表和计算装置中如印刷机械、机床、纺织机械等 ,如缝纫机中针杆机构图3-20a 、b,椭圆规图3-21; 图3-18抽水唧筒图3-19双滑块机构图3-20 缝纫机针杆机构 图3-21 椭圆规平面四杆机构的基本特性3.2.1铰链四杆机构的类型的判别1.存在一个曲柄的条件铰链四杆机构是否存在曲柄,取决于两个因素:各杆的相对长度以及选择哪一个构件作为机架;设图3-22所示的机构为曲柄摇杆机构,其中杆1为曲柄,杆3为摇杆;各杆长度分别用1l 、2l 、3l 、4l 表示;杆1是否能作整周转动,就看其是否能顺利通过与机架共线的两个位置AB ′和AB ″;当曲柄位于AB ′时机构折叠成三角形B ′C ′D,根据三角形任意两边之差小于极限状态等于第三边的条件可得2l -3l ≤4l -1l图3-22存在曲柄的条件1l +2l ≤3l +4l 3-1或 3l -2l ≤4l -1l即 1l +3l ≤2l +4l 3-2当曲柄位于AB ″时机构折叠成三角形B ″C ″D,根据三角形任意两边之和大于等于第三边的条件可得1l +4l ≤2l +3l 3-3将式3-1、3-2、3-3两两相加可得1l ≤2l ,1l ≤3l ,1l ≤4l 3-4由式3-1、3-2、3-3 、3-4可得构成曲柄摇杆机构的必要条件:1曲柄为最短杆;2最短杆与最长杆长度之和小于等于另外两杆长度之和;2.铰链四杆机构类型的判别通则上述分析得出了铰链四杆机构存在一个曲柄的条件,但铰链四杆机构三个基本类型的演化取决于“取不同的构件作为机架”;如图3-22a 所示曲柄摇杆机构中,杆AD 为机架,杆AB 为曲柄,杆AB 与杆AD 可作相对整周转动,以大于半圆的单箭头弧线表示;CD 为摇杆,与杆AD 只能作相对摆动,以小于半圆的双箭头弧线表示;若以杆BC 为机架,仍然满足构成曲柄摇杆机构的两个条件,因此,杆AB 为曲柄,杆AB 与杆BC 可作相对整周转动,以大于半圆的单箭头弧线表示;CD 为摇杆,与杆BC 只能作相对摆动,以小于半圆的双箭头弧线表示,如图3-22b 所示; 图3-22 机架变更对机构类型的影响当四杆机构中各杆的长度确定之后,构件与构件之间相对运动的范围即已确定,与选择哪一构件作为机架无关;若以杆AB 为机架,根据图3-22a 所示的关系,杆AD 、BC 相对于杆AB 之间均可作整周转动,成为双曲柄机构,如图3-22c 所示;若以杆CD 为机架,杆AD 、BC 相对于杆CD 之间都只能作摆动,成为双摇杆机构,如图3-22d 所示;根据以上分析可得铰链四杆机构类型的判别通则:1 若最短杆与最长杆长度之和大于另外两杆长度之和,无论以哪一个构件作为机架,均不存在曲柄,都只能是双摇杆机构;2 若最短杆与最长杆长度之和小于另外两杆长度之和,是否存在曲柄取决于哪一个构件作为机架:1 以最短杆邻边作为机架,构成曲柄摇杆机构,如图3-22a 、3-22b 所示;2 以最短杆作为机架,构成双曲柄机构,如图3-22c 所示;3 以最短杆对边作为机架,构成双摇杆机构,如图3-22d 所示;作为特例,平行四边形机构以任何一边作为机架,均构成双曲柄机构;3.2.2机构的急回特性如图3-22所示为曲柄摇杆机构,当曲柄AB 沿顺时针方向以等角速度ω从与BC 共线位置AB l 转到共线位置AB 2时,转过的角度为ϕ1180°+θ;摇杆CD 从左极限位置C 1D 摆到右极限位置C 2D,设所需时间为1t ,C 点平均速度为1ν;当曲柄AB 再继续转过角度ϕ2180°+θ,即从AB 2到AB l ,摇杆CD 自C 2D 摆回到C 1D,设所需时间为2t ,C 点的平均速度为2ν;由于ϕ1>ϕ2,则1t >2t ;又因摇杆CD 往返的摆角都是ψ,而所用的时间却不同,往返的平均速度也不相同,即1ν<2ν;由此可见,当曲柄等速转动时,摇杆来回摆动的平均速度是不同的,摇杆的这种运动特性称为急回运动特性;为了表明摇杆的急回运动特性的程度,通常用行程速比系数K 来衡量,K 与极位夹角θ的关系是:1212ωωνν==K =错误! = 错误!=错误!=错误! 3-5 图3-23 曲柄存在的条件图3-24 急回运动特性式中,θ称为极位夹角,即从动摇杆处于左、右两极限位置时,主动曲柄相应两位置所夹的锐角;由式3-5可知,行程速比系数与极位夹角θ有关,θ越大,K 越大;当θ=0时,K=1,说明机构无急回运动;由式3-5可得:︒⨯+-=18011K K θ 3-6 由式3-6可知如果要得到既定的行程速比系数,只要设计出相应的极位夹角θ即可; 除曲柄摇杆机构外,具有急回运动特性的四连杆机构还有偏置曲柄滑块机构和曲柄摆动导杆机构;在各种机器中,应用四连杆机构的急回运动特性,可以节省空回行程的时间,以提高生产效率;3.2.3压力角和传动角如图3-25所示为曲柄摇杆机构,主动曲柄通过连杆BC 传递到C 点上的力F 的方向与从动摇杆受力点C 的绝对速度c ν的方向之间所夹的锐角α,称为压力角;压力角α的余角γ,称为传动角;力F 可分解为沿C 点绝对速度c ν方向的分力Ft,及沿摇杆CD 方向的分力Fn,Fn 只能对摇杆CD 产生径向压力,而Ft 则是推动摇杆运动的有效分力;α越小,γ越大,有效分力Ft 越大,而Fn 越小,对机构传动越有利;在机构运动过程中,其传动角γ的大小是变化的,为保证机构传动良好,设计时通常要使︒≥40min γ,传动力矩较大时,则要使︒≥50min γ;3.2.4死点位置图3-26四连杆机构的死点位置图3-25压力角和传动角在如图3-26a 所示的曲柄摇杆机构中,若摇杆主动,则当摇杆处于两个极限位置即机构处于两个虚线位置时,连杆与曲柄共线,此时传动角︒=0γ;这时,主动件摇杆CD 通过连杆作用于从动曲柄AB 上的力,恰好通过曲柄的回转中心A,所以理论上不论用多大的力,都不能使曲柄转动,因而产生了“顶死”现象,机构的这种状态位置称为死点位置;例如,如图3-26b 所示的偏置曲柄滑块机构,当滑块主动并处于极限位置时;如图3-26c 所示曲柄摆动导杆机构,当导杆主动并处于极限位置时;为了使机构能顺利通过死点而连续正常运转,曲柄摇杆机构和曲柄滑块机构可以安装飞轮,增大转动惯量如缝纫机、汽车发动机等;对曲柄摆动导杆机构和双摇杆机构,则通常是限制其主动构件的摆动角度;工程上,也常利用机构的死点位置来实现一定的工作要求;如图3-27所示为钻床夹紧机构,使机构处于死点位置来夹紧工件;如图3-28所示的飞机起落架也是利用双摇杆机构处于死点状态,来保证飞机安全起降的;平面四杆机构的设计平面四杆机构的设计主要是根据给定的运动要求,确定各构件的几何参数;在设计中还应考虑结构条件如合适的杆长比和运动副结构与尺寸、动力条件如最大压力角限制、运动条件等;常用的设计方法有图解法、解析法和实验法;这里主要对图解法进行介绍;3.3.1已知连杆的位置设计四杆机构生产实践中,经常要求一个构件在运动过程中能达到某些特定的图3-29振实造型机翻台机构图3-27钻床夹紧机构 图3-28飞机起落架位置,如图3-29所示的造型机翻台机构,当翻台处于位置I 时,在砂箱内填砂造型;造型结束时,液压缸活塞杆驱动四杆机构AB l C l D,使翻台转至位置Ⅱ,这时托台上升,接下砂箱并起模;要求翻台能实现B 1C 1,B 2C 2两个位置;再如图3-30所示加热炉炉门启闭机构,要求加热工件时炉门关闭;加热后炉门开启,开启后炉门应放到水平位置并将G 面朝上,能作为一个平台使用为使炉门实现这两个位置,可将有一定位置要求的构件翻台和炉门视作该四杆机构中的连杆,此类问题可用作图法设计,具体设计方法如下;已知:连杆BC 的长度l BC 及其两个位置B lC l ,B 2C 2;分析:由图3-31可知,如能确定固定铰链A和D 的中心位置,便可确定各构件的长度;由于连杆上B,C 两点的轨迹分别在以A 和D 为圆心的圆周上,所以A,D 两点必然分别位于B 1B 2、C l C 2和中垂线b 12和c 12上;据此,可得设计方法和步骤如下:1选用比例尺1μ,按已知条件画出连杆的两个位置B 1C 1和B 2C 2;2分别连接B 1、B 2和C l 、C 2点;并作它的中垂线b 12和c 12;3在b 12上任取一点A,在c 12任取一点D,连接ABCD,则ABCD 即为所求的四杆机构;各杆长度11AB l AB μ=,D C l CD 11μ=,AD l AD 1μ=;在已知构件两个位置的情况下,由于A 、D 两点在b 12和c 12上是任取的,所以有无数解;若给出其他辅助条件,如机架长度AD l 及其位置等,就可得出唯一解;另外,如果给定连杆长度及其三个位置,则答案也是唯一的,如图3-32所示;给定连杆三个位置设计四杆机构步骤如下:图3-30加热炉炉门启闭机构 图3-31 按连杆位置来设计四杆机构图3-32 按给定连杆位置设计四杆机构连B 1B 2并作其垂直平分线,B 铰链中心运动轨迹的圆心A 必须在该垂直平分线上;连B 2B 3并作其垂直平分线,A 点也必定在该垂直平分线上,因而A 点必在这两条垂直平分线的交点上,由此可得铰链A 的位置;同理可得铰链D 的位置,从而作出四杆机构AB 1C 1D;3.3.2已知行程速比系数设计四杆机构知道了行程速比系数K,就知道了四杆机构急回运动的条件,从而可以计算出极位夹角θ;再根据其他一些限制条件及极位夹角θ,可用作图法方便地作出该四杆机构;1.曲柄摇杆机构设已知摇杆长度CD l 、摆角ψ和程速比系数K,请设计曲柄摇杆机构;分析 如图3-33所示,显然在已知CD l 、摆角ψ的情况下,只要能确定A 铰链的位置,则在量得1C A l 和2C A l 后,则可求得曲柄长度AB l 心和连杆长度BC l 212AC AC AB l l l -= 221AC AC BC l l l +=CD l 可直接量得;由于A 点是极位夹角的顶点,即∠C 1AC 2=θ,如过AC l C 2三点作辅助圆,由几何知识可知,在该圆上任取一点A 为顶点,其圆周角也是θ,且过辅助圆心O 的圆心角∠C 10C 2=2θ;显然,当求得极位夹角θ后,用作图法容易作出辅助圆并得到圆心O,则问题迎刃而解;作图步骤归纳如下:1计算:按式3-6求得θ ︒⨯+-=18011K K θ 2作摇杆的两极限位置:任选摇杆回转中心D 的位置,按一定的长度比例尺1μ,根据已知CD l 及摆角ψ作出摇杆的两个极限位置C l D 和C 2D 见图3-33b;图3-33 按行程速比系数设计四杆机构3作辅助圆:联接C 1、C 2,并且作与C l C 2成90θ-︒的两条直线,设它们交于O 点,则∠C 10C 2=2θ;以O 点为圆心,以OC 1或0C 2为半径作辅助圆;4在辅助圆上任取一点A 为铰链中心,并连接AC 1和AC 2,量得1AC l 和2AC l 的长度,据此可求出曲柄和连杆的长度5求其他杆件的长度:机架CD l 可直接量得,乘以比例尺1μ即为实际尺寸; 2121AC AC ABl l l -=μ 2211AC AC BC l l l +=μ由于A 点是在辅助圆上任选的一点,所以实际可有无穷多解;若能给定其他辅助条件,如曲柄长度AB l 、机架长AD l 或最小传动角min γ等,则可有唯一的解;实际设计时,多数都有相应的辅助条件,如果没有辅助条件,可以根据实际情况自行确定;若已知滑块行程s 、偏距e 和行程速比系数K的情况,则可设计偏置曲柄滑块机构;如果已知机架长度AC l 和行程速比系数K,由图3-34可以看出,摆动导杆机构的极位夹角θ与导杆的摆角ψ相等,则设计摆动导杆机构的实质,就是确定曲柄长度AB l ;设计方法和步骤:1计算θ:︒⨯+-=18011K K θ 2作导杆的两极限位置:任选一点为固定铰链C 点的中心,按ψ=θ作导杆的两极限位置C m 和C n ,使∠m C n =ψ;3确定A 点及曲柄长度:作摆角ψ的平分线,并在其上取CA=AC l ,得曲柄回转中心A 点的位置;过A 作C m 线C n 线的垂线AB 1AB 2,垂足为B 1、B 2,即得曲柄长度AB l =1μAB 1;画出滑块,则设计完成;2.曲柄滑块机构如图3-35所示,已知滑块行程H=50mm,偏心距e =10mm,行程速比系图3-34 摆动导杆机构图3-35 曲柄滑块机构数K=,试设计一偏置的曲柄滑块机构;解: 计算机构的极位夹角θ︒⨯+-=18011K K θ=° 1 选择作图比例1μ=2mm/mm,作滑块的极限位置C 1、C 2,使C 1C 2=H/1μ=25mm,如图3-36所示;2 作∠C 1C 2O=∠C 2C 1O =90θ-︒=°,直线C 1O 与C 2O 交于点O;以O 为圆心、C 1O 为半径画圆,则弦C 1C 2对应的加以角为2θ=°;3 作直线A A '∥21C C 并相距e /1μ=5mm,与圆O 交于A 、A ',连接C 1A 与C 2A,圆周角∠C 2AC 1=θ;则C l A 与C 2A 即为滑块处于极限位置时曲柄与连杆对应的位置,A 点即为铰链A 的中心位置;4由C l A=BC-AB,C 2A=BC+AB,从图中量出线段C l A 与C 2A 的长度,可得212A C A C AB -=, 212A C A C BC += 杆的实际长度为:曲柄长度AB l ⨯=11μ=24mm,连杆长度BC l ⨯=12μ=48mm;由于点A 是圆O 与直线AA ′的交点,因而答案是唯一的取A ′为曲柄转动中心,所得杆长与取A 点时相同;本章小结通过对本章的学习,学生应理解平面四杆机构的概念,掌握铰链四杆机构基本类型及演化形式,平面四杆机构的基本特性;了解平面四杆机构常用的设计方法;图3-36 曲柄滑块机构设计图习题与思考题平面四杆机构的基本形式是什么它有哪些演化形式演化的方式有哪些什么是曲柄平面四杆机构中曲柄存在的条件是什么曲柄是否就是最短杆什么是行程速比系数、极位夹角、急回特性三者之间关系如何什么是机构的死点位置,用什么什么方法可以使机构通过死点位置在曲柄摇杆机构中,已知连杆长度BC=90mm,机架长度AD=100mm,摇杆长度CD=70mm,试确定曲柄长度AB的取值范围;在双曲柄机构中,已知连杆长度BC=130mm,两曲柄长度AB=100mm,CD=110mm,试确定机架长度AD的取值范围;在双摇杆机构中,已知连杆长度BC=200mm,摇杆长度AB=70mm,摇杆长度CD=120mm,试确定机架长度AD的取值范围;在曲柄摇杆机构中,已知曲柄长度AB=50mm,机架长度AD=120mm,摇杆长度CD=100mm,试确定连杆长度BC的取值范围;一曲柄滑块机构,知行程S=100mm,K=,偏距e=50mm;试设计该机构;。

机械原理-连杆机构设计图解法_一_

机械原理-连杆机构设计图解法_一_
连杆机构设计(图解法)
连杆机构设计(图解法)
按给定连杆位置设计四杆机构 按给定两连架杆对应的角位移设计四杆机构
按给定的急回要求设计四杆机构
按给定连杆位置设计四杆机构
按给定连杆位置设计四杆机构
给定连杆三个位置,设计四杆机构
B1
A1
E1
A
2
E2
A3
B2
A0
B0
E3
B3
A0 A1 B1 B0就是所求机构的第一个位置。
m12
N1 M2
n12
M1 M0
动平面上任选两个参考点 M、N——动铰链
N2
12 12
P12
N0
m12上任选M0—定铰链
n12上任选N0—定铰链
引导平面由E1到E2的位置的 四杆机构有无数
两连架杆上动铰链和定铰链与极连线的夹角 相等∠M1 P12 M0= ∠N1 P12 N0= θ 12/2
方法:半角转动法
方法:半角转动法
原理
N1 M1 M2 E1 E2 N2
动平面由E1到E2的位置过程中,动 平面上任意一点都可以视为绕某点 P12转θ 12
P12——转动极(极)
θ 12——有向转动角
E1、E2两个位置一经确定,P12、 θ 12就确定与选择的参考点无关
12
P12
转动极P12 的求法
m12
N1 M2
n12
M1
连接P12M1和P12M2,所夹 的角即为转动角θ 12
N2
12 12
P12
连接P12 N1和P12 N2 ,所 夹的角也为转动角θ 12 ∠M1 P12 M2= ∠N1 P12 N2= θ 12
动平面由E1到E2的位置可由四杆机构实现

图解法设计平面四杆机构

图解法设计平面四杆机构

图解法设计平面四杆机构-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN图解法设计平面四杆机构3.4.1按连杆位置设计四杆机构1.给定连杆的三个位置给定连杆的三个位置设计四杆机构时,往往是已知连杆B C的长度L B C和连杆的三个位置B1C1和B2C2和B3C3时,怎样设计四杆机构呐图解过程。

::1::2.给定连杆的两个位置给定连杆的两个位置B1C1和B2C2时与给定连杆的三个位置相似,设计四杆机构图解过程如下。

①选定长度比例尺绘出连杆的两个位置B1C1、B2C2。

②连接B1B2、C1C2,分别作线段B1B2和C1C2的垂直平分线B12和C12,分别在B12和C12上任意取A,D两点,A,D两点即是两个连架杆的固定铰链中心。

连接A B1、C1D、B1C1、A D,A B1C1D即为所求的四杆机构。

③测量A B1、C1D、A D计算l A B、L C D L A D的长度,由于A点可任意选取,所以有无穷解。

在实际设计中可根据其他辅助条件,例如限制最小传动角或者A、D的安装位置来确定铰链A、D的安装位置。

例设计一振实造型机的反转机构,要求反转台8位于位置Ⅰ(实线位置)时,在砂箱7内填砂造型振实,反转台8反转至位置Ⅱ(虚线线位置)时起模,已知连杆B C长和两个位置B1C1、B2C2.。

要求固定铰链中心A、D在同一水平线上并且A D=B C。

自己可以试着在纸上按比例作出图形,再求出各杆长度。

若想对答案请点击例题祥解3.4.2 按行程速度变化系数设计四杆机构1.设计曲柄摇杆机构按行程速度变化系数K设计曲柄摇杆机构往往是已知曲柄机构摇杆L3的长度及摇杆摆角ψ和速度变化系数K。

怎样用作图法设计曲柄摇杆机构?2.设计曲柄摆动导杆机构已知机架长度l4和速度变化系数K,设计曲柄导杆机构。

①求出极位夹角②根据导杆摆角ψ等于曲柄极位夹角θ,任选一点C后可找出导杆两极限C m、C n。

③作∠M C N的角评分线,取C A=,得到A点,过A点作C m和C n的垂线B1和B2两点,A B1(或A B2)即为曲柄。

(完整版)图解法设计平面四杆机构

(完整版)图解法设计平面四杆机构

3.4 图解法设计平面四杆机构3.4.1按连杆位置设计四杆机构1.给定连杆的三个位置给定连杆的三个位置设计四杆机构时,往往是已知连杆B C的长度L B C和连杆的三个位置B1C1和B2C2和B3C3时,怎样设计四杆机构呐?图解过程。

::1::::2::2.给定连杆的两个位置给定连杆的两个位置B1C1和B2C2时与给定连杆的三个位置相似,设计四杆机构图解过程如下。

①选定长度比例尺绘出连杆的两个位置B1C1、B2C2。

②连接B1B2、C1C2,分别作线段B1B2和C1C2的垂直平分线B12和C12,分别在B12和C12上任意取A,D两点,A,D两点即是两个连架杆的固定铰链中心。

连接A B1、C1D、B1C1、A D,A B1C1D即为所求的四杆机构。

③测量A B1、C1D、A D计算l A B、L C D L A D的长度,由于A点可任意选取,所以有无穷解。

在实际设计中可根据其他辅助条件,例如限制最小传动角或者A、D的安装位置来确定铰链A、D的安装位置。

例设计一振实造型机的反转机构,要求反转台8位于位置Ⅰ(实线位置)时,在砂箱7内填砂造型振实,反转台8反转至位置Ⅱ(虚线线位置)时起模,已知连杆B C长0.5m和两个位置B1C1、B2C2.。

要求固定铰链中心A、D在同一水平线上并且A D=B C。

自己可以试着在纸上按比例作出图形,再求出各杆长度。

若想对答案请点击例题祥解3.4.2 按行程速度变化系数设计四杆机构1.设计曲柄摇杆机构按行程速度变化系数K设计曲柄摇杆机构往往是已知曲柄机构摇杆L3的长度及摇杆摆角ψ和速度变化系数K。

怎样用作图法设计曲柄摇杆机构?2.设计曲柄摆动导杆机构已知机架长度l4和速度变化系数K,设计曲柄导杆机构。

①求出极位夹角②根据导杆摆角ψ等于曲柄极位夹角θ,任选一点C后可找出导杆两极限C m、C n。

③作∠M C N的角评分线,取C A=,得到A点,过A点作C m和C n的垂线B1和B2两点,A B1(或A B2)即为曲柄。

机械基础-平面连杆机构

机械基础-平面连杆机构

化工机械
如搅拌机、反应器等, 利用平面连杆机构实现
物料的混合和反应。
02
平面连杆机构的基本类型
曲柄摇杆机构
总结词
曲柄摇杆机构是平面连杆机构中最基本的一种形式,它由一个曲柄和一个摇杆 组成,曲柄通过转动将动力传递给摇杆,使摇杆进行摆动或转动。
详细描述
曲柄摇杆机构广泛应用于各种机械装置中,如缝纫机、搅拌机、车窗升降器等。 曲柄通常作为主动件,通过转动将动力传递给摇杆,使摇杆进行摆动或转动, 从而实现特定的运动形式。
机械基础-平面连杆机构
• 引言 • 平面连杆机构的基本类型 • 平面连杆机构的运动特性 • 平面连杆机构的传力特性 • 平面连杆机构的设计 • 平面连杆机构的实例分析
01
引言
平面连杆机构简介
01
平面连杆机构是由若干个刚性构 件通过低副(铰链或滑块)连接 而成的机构,构件在互相平行的 平面内运动。
机构的承载能力分析
总结词
机构的承载能力分析是评估 平面连杆机构在承受载荷时
的承载能力和稳定性。
详细描述
通过承载能力分析,可以确 定机构在各种工况下的最大 承载能力,为机构的安全使
用和优化设计提供保障。
总结词
在进行承载能力分析时,需要综合考虑机 构中各个构件的强度、刚度和稳定性等因 素。
详细描述
通过对这些因素的评估和分析,可以确定 机构在各种工况下的承载能力和稳定性, 为机构的安全使用和优化设计提供依据。
压力角和传动角
总结词
压力角是指在平面连杆机构中,主动件与从动件之间所形成的夹角。传动角是指连杆与曲柄之间所形成的夹角。
详细描述
压力角的大小直接影响到机构的传动能力和效率。较小的压力角可以减小作用在从动件上的力,提高传动效率。 而传动角的大小则与机构的传动性能和曲柄的形状有关。在设计平面连杆机构时,需要综合考虑压力角和传动角 的影响,以获得最佳的传动效果。

第八章四杆机构 117页

第八章四杆机构 117页

实现预定轨迹的例题
鹤式起重机
搅拌机
连杆
1.平面四杆机构中,是否存在死点取决于
是否与
连杆共线。
A 、主动件 B、 从动件 C、 机架 D、 摇杆
2、在设计铰链四杆机构时,应使最小传动角 。 A、 尽可能小一些 B 、为0 C、 尽可能大一些 D、 为90
3.一对心曲柄滑块机构中,如果将曲柄改为机架,则将演 化为 机构。
4.下面简图所示的铰链四杆机构,图 是双曲柄机构。 A)a; B)b; C)c; D)d。
(a)
(b)
(c)
(d)
二、平面连杆机构设计
图解法 解析法 实验法
(一)图解法
简单、直观、 易理解知识点、误差大。
1.给定连杆的位置要求设计四杆机构
(1)给定连杆的两个位置设计四杆机构
已知连杆长度,连杆的2个(或3,4。。 个)工作位置B1C1与B2C2。设计此四杆机构。
一 、四杆机构设计的基本问题
1)实现给定位置的设计(导引机构设计) 2)实现预定运动规律的设计(函数机构设计) 3)实现预定轨迹的设计(轨迹机构设计)
1.实现给定位置的设计
例如:满足预定的连杆位置要求
要求所设计的机构 能引导连杆顺序通 过一系列给定的位 置。即要求连杆能 依次占据一系列给 定的位置。
(3)极为夹角=0,则K=1,无急回 运动;
(4)角越大,则K值越大,说明急回 运动的性质也越显著。
曲柄滑块机构中,原动件AB以 1 等速转动
B
a1
2
C2
b
C3 C1
1
A B1 H
4
B2
偏置曲柄滑块机构
H (a b )2 e2(b a )2 e2

《机械原理》第三章平面连杆机构及其设计

《机械原理》第三章平面连杆机构及其设计
等于其他两构件长度之和。(杆长条件) •四杆机构有曲柄的条件是: •(1)各杆的长度应满足杆长条件; •(2)最短杆为连架杆或机架。

铰链四杆机构可以分为两大类:
1、不满足杆长条件时,不管取那个构件为机架,所组成 的机构都是双摇杆机构。
2、满足杆长条件时,最短构件相对于与它组成转动副的 构件可以作相对整周转动。
•站在连杆上观察:从位置1到位置2,
•E2 •F1 •B2 •C1
•F2 •C2
•A •D
•∠ABC增大, ∠BCD减小,即A点饶B点顺时针转动,D点饶C点顺时针转动 。
•(avi)
•连杆运动1
•(avi)
• •连杆运动2
•E1 •B1
•A
•F1 •E2 •C1
•B2
•(avi) •F2•C2
•D •A•′1

2.含一个移动副四杆运动链中转动副为整转副的 充分必要条件(曲柄滑块有曲柄的条件)
•a •b
•e
b-a>e b>a+e
•当 e=0时 b>a

•二、行程速度变化系数
1. 机构极位(极限位置) :曲柄回转一周,与连杆两 次共线,此时摇杆分别处于 两个位置,称为机构极位。
2. 极位夹角:机构在两个 极位时,原动件所处两个位 置之间所夹的角θ称为极位 夹角。
•取最短杆 相邻的构件
为机架得曲 柄摇杆机构
•最短杆为 机架得双 曲柄机构
•取最短杆 对边为机架 得双摇杆机 构

特殊情况: 如果铰链四杆机构中两个构件长度相等且均为最短杆 1、若另两个构件长度不相等,则不存在整转副。 2、若另两个构件长度也相等, (1)当两最短构件相邻时,有三个整转副。 (2)当两最短构件相对时,有四个整转副。 例1' 课后3-3

第八章 平面连杆机构及其设计

第八章 平面连杆机构及其设计

组成转动副的两个构件不能作整周转动
三种基本型式:
曲柄摇杆机构、双曲柄机构、双摇杆机构
铰链四杆机构 曲柄摇杆机构 双曲柄机构 双摇杆机构
应用实例
双曲柄机构
反平行四边形机构
曲柄摇杆机构
平行四边形机构
双摇杆机构
还有含一个移动副的四杆机构 ……,型式多样。 直 动 滑 杆 机 构 各种型式的四 杆机构相互之 间有无关系?
应用
连杆式快速夹具
飞机起落架
三 铰链四杆机构的运动连续性
错位不连续
C C1 B φ A D A B1 C1' D B2 B4 C1 C2
错序不连续
C2 C3 C4
B3
C2 '
小 结 1、平面四杆机构的基本型式 三种 曲柄摇杆机构 双曲柄机构 双摇杆机构 2、平面四杆机构的演化型式
1)改变构件的形状和运动尺寸 2)改变运动副的尺寸 3)选取不同的构件为机架 4)运动副元素的逆换
低副运动的可逆性: 由低副连接的两个构件,其相对运动关 系不因其中哪个构件是固定件而改变
4、铰链四杆机构类型的判断方法:
a) 满足杆长条件 (i) 机架与最短杆相邻——曲柄摇杆机构 (ii) 机架是最短杆——双曲柄机构 (iii) 机架与最短杆相对——双摇杆机构
b) 不满足杆长条件 ——双摇杆机构
不论取哪个构件为机架都是双曲柄机构
2.急回运动和行程速比系数
C B
(以曲柄摇杆机构为例)
C
C1 C2
b c
A
D B
q
a
A α2
B2

摇杆处于两个极限位 置时, 曲柄两相应位 置所夹锐角θ .—— 极位夹角
曲柄
α1

四杆机构

四杆机构
二、急回特性
急回特性 机构工作件返回行程速度大于工作行程速度的特性。 行程速比系数K 为了表示工作件往复运动时的急回程度,用V2和V1的比值K来描述。
急回性能分析
V2 c2c1 / t 2 t1 1 1800 k V1 c1c2 / t1 t 2 2 1800
演化:曲柄摇杆机构
回转副D→移动副 曲柄滑块机构
§2.2 平面四杆机构的基本形式及其演化
类型:
曲柄滑块机构(偏距e) 对心曲柄滑块机构, e=0 滑块运动线与曲柄回转中心共线 偏置曲柄滑块机构,e≠0 滑块运动线与曲柄回转中心不共线 特点:曲柄等速回转,滑块具有急 回特性。
应用:活塞式内燃机,空气压缩
§2.2 平面四杆机构的基本形式及其演化
曲柄摇杆机构应用实例
缝纫机脚踏板机构
§2.2 平面四杆机构的基本形式及其演化
曲柄摇杆机构应用实例
跑步机
§2.2 平面四杆机构的基本形式及其演化
曲柄摇杆机构应用实例
自动送料机构
§2.2 平面四杆机构的基本形式及其演化
2.双曲柄机构——两连杆架均为曲柄的四杆机构 连杆架 曲柄—原动件,等速转动 曲柄—从动件,变速转动
l1+l4≤ l2+ l3 将式2-1、2-2、2-3两两相加,可得 l1≤l2 , l1≤l3 , l1≤l4 AB杆(曲柄)为最短杆 最短杆与任意一杆长度之和≤其它两杆长度之和
§2.3 平面四杆机构的几个基本概念
铰链四杆机构有一个曲柄的条件: (1) 最短杆与最长杆之和小于或等于其余两杆长度之和;
Fn
1 1
A
B
2

4

3 D
g C a
F

平面连杆机构及其设计

平面连杆机构及其设计

设计的主要任务:确定固定铰链点A、D的位置。 设计步骤 (1)连接B1、B2和B2、B3, 再分别作这两条线段的中 垂线a12和a23,
其交点即为固定铰链中心A。 (2)连接C1C2、 C2C3。 再分别作这两条线段的中垂线 a12和a23,其交点即为固定铰链中心D。 (3)则AB1C1D即为所求四杆机构在第一个位置时的机 构运动简图
力 F 可分解为两个分力:沿着受力点C的速度υc方向的分 力Ft和垂直于υc方向的分力Fn。设力F与着力点的速度υc 方向之间所夹的锐角为,则
小,对机构的传动越有利。因此,在连杆机构中,常用传动角 的大小及其变化情况来衡量一机构传力性能的优劣。 因此,对于传动机构,应使其角尽可能小(γ 尽可能大)。 连杆机构的压力角(或传动角)在机构运动过程中是不断变 化的。从动件处于不同位置时有不同的值,在从动件的一个 运动循环中,角存在一个最大值max。在设计连杆机构时, 应注意使max小于等于[]。
首先来分析机构的运动情况 设已有四杆机构ABCD,当主动连架杆AB 运动时,连杆上铰链 B相对于另一连架杆CD 的运动,是绕铰链点C的转动。因此, 以C 为圆心,以BC长为半径的圆弧即为连杆上已知铰链点B 相 对于铰链点C 的运动轨迹。如果能找到铰链B 的这种轨迹,则 铰链C 的位置就不难确定了。
由于在铰链四杆机构中,两连架杆均作定轴转动或摆动,只 有连杆作平面一般运动,故能够实现上述运动要求的刚体必 是机构中的连杆。设计问题为实现连杆给定位置的设计。 首先根据刚体的具体结构,在其上选择活动铰链点B,C 的位 置。一旦确定了B,C 的位置,对应于刚体3个位置时活动铰 链的位置B1C1,B2C2,B3C3也就确定了。
平行四边形机构
惯性筛机构
位置不确定问题 平行四边形机构有一个 位置不确定问题,如图示。

平面四杆机构设计介绍

平面四杆机构设计介绍

第三章 平面四杆机构的设计§3—1 平面连杆机构的特点、类型及应用1.1 概 述连杆机构:各构件之间用低副和刚性构件连接起来实行运动传递的机构。

如图2-1 分为平面连杆机构和空间连杆机构 。

连杆机构由连架杆,连杆和机架组成。

平面连杆机构的特点:1.2平面连杆机构的基本类型和结构特点:由于连杆机构的构件一般呈杆状,也以其构件的数量称为多杆机构。

平面杆机构是最基本最常用的连杆机构。

1.2.1 平面连杆机构的基本类型:1) 曲柄摇杆机构 2)双曲柄机构 3)双摇杆机构 1.2.2 平面连杆机构演化 1) 转动副转化为移动副 2)取不同的构件为机架 3)变换构件的形态 4)扩大转动副的尺寸§3—2 平面连杆机构的运动特性2.1平面连杆机构的运动特性:(1Grashoff 定理(简称曲柄存在条件):如图示a + d ≤b + cb ≤ d – a +c c ≤d – a + b a ≤ c a + b ≤ c + da ≤b a +c ≤ b +d a ≤ d a + d ≤ b + c在全铰链四杆机构中,如果最短杆与最长杆杆长之和小于或等于其余两杆杆长之和,则必然存在作整周转动的构件。

若不满足上述条件,即最短杆与最长杆杆长之和大于其余两杆杆长之和,则不存在作整周转动的构件。

(2)四杆机构从动件的急回特性:如图示四杆机构从动件的回程所用时间小于工作行程所用的时间,称为该机构急回特性。

急回特性用行程速比系数K 表示。

212112ϕϕ===t t v v K极位夹角θ—— 从动摇杆位于两极限位置时,原动件两位置所夹锐角。

θ越大,K 越大,急回特性越明显。

§3—3 平面连杆机构的传力特性3.1. 传动角与压力角:如图示在机构处于某一定位置时,从动件上作用力与作用点绝对速度方向所夹的锐角 α 称为压力角。

压力角的余角 γ( γ = 90°— α) 作为机构的传力特性参数,故称为传动角。

平面连杆机构

平面连杆机构

【结论】曲柄存在的条件是:
①最长杆与最短杆的长度之和≤其他两杆长度之和。
②连架杆或机架之一为最短杆。
C
铰链四杆机构类型的判断: B
B
(1)若最短杆+最长杆≤其他两杆之和 A
①若选最短杆的相邻杆做机架——曲柄摇杆机构。
DA
②若选最短杆做机架——双曲柄机构。
B
③若选最短杆的对面的杆做机架——双摇杆机构。
利用死点实现某些功能。
钻床夹具
飞机起落架
3.3 平面四杆机构的运动设计
一、目的 根据给定的运动条件、动力条件、位置条件等,确
定机构运动简图的尺寸参数。 二、两类设计问题
1.实现给定点的运动轨迹的设计 2. 实现给定从动件的运动规律的设计; 三、设计方法 1. 解析法。便于得到精确的结果,但计算量大, 目前多采用计算机辅助优化设计; 2. 作图法。直观、简单。 3. 实验法。连杆曲线图谱设计。
θD
④作△P C1C2的外接圆,则A点必在此圆上;
P
⑤选定A,设曲柄为a ,连杆长为b ,则:
A C1= a+b ,A C2= b-a => a =( A C1-A C2)/ 2
⑥以A为圆心,A C2为半径作弧交于E,得:
a =EC1/ 2 b = A C1-EC1/ 2
(2) 曲柄滑块机构 设计步骤如下:
(2)若最短杆+最长杆>其他两杆之和
A
——双摇杆机构(无论何杆做机架)
B
A
C
D C
D C
D
铰链四杆机构类型的判断:


lmax+lmin ≤ l余1+l余2
不存在曲柄
双摇杆机构
可能有曲柄 固定件
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面连杆机构图解法
四、(20分)图4所示,现欲设计一铰链四杆机构,设已知摇杆CD 的长度为75CD l mm =,行程速度变化系数 1.5K =,机架AD 的长度为100AD l mm =,摇杆的一个极限位置与机架间的夹角为45ϕ︒
=。

试求曲柄的长度AB l 和连杆的长度BC l 。

A B
C
D ϕ
五、(20分)在图5所示的铰链四杆机构中,各杆的长度为mm l 281=,mm l 522=,mm l 503=,mm l 724=试求:
(1)当取杆4为机架时,该机构的极位夹角θ、杆3的最大摆角m ax ϕ、最小传动角min γ和行程速比系数K ;
(2)当取杆1为机架时,该机构将演化成何种类型的机构;
(3)当取杆3为机架时,该机构又将演化成何种类型的机构;
五、(20分)图示为偏置曲柄滑块机构的示意图。

已知曲柄长度25m m l AB =,连杆长度95mm l BC =,滑块行程60mm H =,试用图解法求:①导路的偏距e ;②极位夹角θ;③机构的行程速比系数K 。

四、(20分)已知曲柄摇杆机构的行程速度比系数K=1.2,摇杆长度l CD =300mm ,摇杆摆角︒=35ϕ,曲柄长度l AB =80mm 。

求连杆的长度l BC 的值。

ϕ=︒,曲柄长七、(15分)如图所示,设已知破碎机的行程速比系数K=1.2,颚板摆角35
度l AB=80mm,求连杆的长度。

相关文档
最新文档