第1章 粉体性质-1
药学专业知识考点:药剂学粉体学概念及性质
药学专业知识考点:药剂学粉体学概念及性质(2021最新版)作者:______编写日期:2021年__月__日粉体学概念及性质:粉体学(mlcromeritics)是研究固体粒子集合体(称为粉体)的表面性质、力学性质、电学性质等内容的应用科学。
由于在散剂、颗粒剂、片剂和胶囊剂等固体制剂的生产中需要对原辅科进行粉碎、混合等处理,以改善粉体性质,使之满足工艺操作和制剂加工的要求,所以粉体的各方面性质在固体制剂中占有较为重要的地位。
粉体的性质:1.粉体的粒子大小、粒度分布和粒径的测定方法(1)粉体的粒子大小和粒度分布粉体的粒子大小是粉体的最基本性质,它对粉体的溶解性、可压性、密度、流动性等均有显著的影响,从而影响药物的溶出、吸收等。
粒子大小的常用表示方法有:①定方向径:即在显微镜下按同一方向测得的粒子径。
②等价径:即粒子的外接圆的直径。
③体积等价径:即与粒子的体积相同球体的直径,可用库尔特计数器测得。
④有效径:即根据沉降公式(Stocks方程)计算所得的直径,因此又称Stocks径。
⑤筛分径:即用筛分法测得的直径,一般用粗细筛孔直径的算术或几何平均值来表示。
粉体的大小不可能均匀一致,而是存在着粒度分布的问题,分布不均会导致制剂的分剂量不准、可压性变化以及粒子密度变化等问题。
因此,研究粒度分布同样具有重要的意义。
常用频率分布表示各个粒径相对应的粒子占全体粒子群中的百分比。
官方信息:执业药师考试信息最新资讯:执业药师考试资讯准考证信息:执业药师准考证考试信息:执业药师考试信息成绩查询:执业药师成绩查询合格分数:执业药师合格分数考试真题:执业药师考试真题考试答案:执业药师考试答案考生经验:执业药师考生经验考试辅导:执业药师考试辅导2021年执业药师精品VIP课程,让您考试!。
第章粉体学基础PPT课件
有效径的测定法还有离心法、比浊法、沉降天平法、光扫描 快速粒度测定法等
26
4.比表面积法(specific surface area method)
原理:粉体比表面积与粒径关系 • <100μm,吸附法、透过法,不能得到粒度分布
5.筛分法(sieving method)
• 粒径与粒径分布的测量中应用最早、最广,且简单、快 速的方法,> 45μm,重量基准。
• DH—Heywood 径(DH=(4A/π)1/2) • L-粒子的投影周长。
33
(二)形状系数
• 将平均粒径为D,体积为Vp,表面积为S的粒 子的各种形状系数(shape factor)表示如下。
• 1.体积形状系数 v Vp / D3
• 球体体积形状系数?立方体?
• 2.表面积形状系数 • 球体?立方体?
21
• 筛分法测定累积分布时,以筛下粒径累计的 分布叫筛下分布(undersize distribution); 以筛上粒径累积的分布叫筛上分布(oversize distribution)。
• 筛上累积分布函数F(x)和筛下累积分布函数 R(x)与频率分布函数f(x)之间的关系式见课 本:P319 (13-4) (13-5) (13-6)
• 1.体积比表面积:单位体积粉体的表面积,Sv,
•
cm2/cm3。
Sv
s v
d 2n d 3 n
6 d
(13-13)
6
S-粉体粒子的总表面积 V-粒子的体积 d-面积平均径 n-粒子个数
36
2.重量比表面积:单位重量粉体的表面积,Sw,
cm2/g。
Sw
s w
d 2n d 3n
3. 粉体的基本性质
§1.5.1 休止角(堆积角、安息角)
1. 定义,是指粉体自然堆积时的自由表面在 静止平衡状态下与水平面所形成的最大角 度
2. 用途,用来衡量评价粉体的流动性 3. 形式,注入角、排出角,而者之间差别与
粉体的 粒度分布有关系;粒度分布均匀的 粉体两种形式休止角相同
(a) 注入角
(b) 排出角
4. 休止角的测定: 火山口法、排出法、残留圆锥法、回转圆筒法 5. 影响休止角的 因素 1) 粒度相同时,料堆底园直径D愈大,测休止角
( 1)
(3)比表面积形状系数
表面积形状系数 体积形状系数
s v
(4)Carman形状系数
(>1)
0 6 / (≤1)
—— 研究颗粒流体力学问题
对于球形颗粒,上述形状系数各为多少?
§1.3.3 粗糙度系数
R 粒子微观的实际表面积 表观视为光滑粒子宏观表面积
(>1)
直接关系到颗粒之间、颗粒与器壁之间摩擦力、黏附、 吸附、吸水性、空隙率等性质,是影响单元操作设备 工作部件被磨损程度的主要因素之一.
形状指数 形状系数 粗糙度系数
§1.3.1 形状指数
定义:表示单一颗粒外形的 几何量的各种无因次
组合称为形状指数(即理想形状与实际形状比较时,
差异的指数化)
均齐度
体积充满度
常用的形状指数
面积充满度
球形度
圆形度
1、 均齐度
颗粒三轴径b、l、h之间的差异,它 们之间的比值可导出
长短度=长径/短径 l / b 1
一次填充后的堆积性质
Horsfield填充
一次填充后的堆积性质
类别
空隙率 小球直径 混合物空 小球的
隙率
粉体性质
2020/8/9
二、粉体工程研究的内容、意义
人类赖以生存、活动、利用的资源,除水、石油、空 气等单相流体外都存在“粒度化小”和“颗粒处理”的问 题,前者构成“粉体工程学”(Powder Technology or Powder Engineering),后者构成“颗粒学”(Particulate) 。例如矿产资源从开采到各有价成分的分离、回收和利用 都属于粉体工程范畴。水泥、玻璃、陶瓷以及耐火材料等 的生产同样离不开粉体处理。粉碎是粉体工程中的主要研 究内容,此外还有颗粒性质、颗粒传输、固液(气)分离 等。
2020/8/9
一、开课目的
科学技术发展至近代,几乎所有的工业部门均涉 及到粉粒体处理过程。人类赖以生存、活动、利用的 资源,除水、石油、空气等单相流体外都存在“粒度 化小”和“颗粒处理”的问题,例如矿产资源从开采 到各有价成分的分离、回收和利用都离不开粉体制备 技术与设备。水泥、玻璃、陶瓷以及耐火材料等的生 产同样离不开粉体处理。各种材料的性能在很大程度 上取决于材料粒度、形状、表面特性等性质,而这些 又与粉体制备技术和设备有关。
在定义中用“相近”一词,使定义更有一般性; (4)将待测颗粒的某种物理特性或物理行为与同质球体 作比较时,有时能找到一个确定的直径的球与之对应, 有时则需一组大小不同的球的组合与之对应,才能最相 近(例如激光粒度仪)。
由于所采用的测定方法不同,目前出现的表示方法 主要有以下几种(详见表1-2)。 (1)用指定的特征线段表示;如定方向径dF,定方向等 分径(Martin径)dM,定向最大径 (2)用算术平均直径表示; (3)用几何特征的平均值表示; (4)用等效直径表示,即某种图形的当量直径;
第一章粉体的基本性质
第一章粉体的基本性质所谓粉体就是大量固体粒子的集合体,而且在集合体的粒子间存在着适当的作用力。
粉体由一个个固体粒子所组成,它仍具有固体的许多属性。
与固体的不同点在于在少许外力的作用下呈现出固体所不具备的流动性和变形。
它表示物质存在的一种状态,即不同于气体、液体,也不完全同于固体,正如不少国外学者所认为的,粉体是气、液、固相之外的第四相。
粉体粒子间的相互作用力,至今仍无明确的定量概念。
通常是指在触及它时,集合体就发生流动、变形这样大小的力。
粉体粒子间的适当作用力是粒子集合体成为粉体的必要条件之一,粒子间的作用力过大或过小都不能成为粉体。
材料成为粉体时具有以下特征:能控制物性的方向性;即使是固体也具有一定的流动性;在流动极限附近流动性的变化较大;能在固体状态下混合;离散集合是可逆的;具有塑性,可加工成型;具有化学活性。
组成粉体的固体颗粒其粒径的大小对粉体系统的各种性质有很大的影响,同时固体颗粒的粒径大小也决定了粉体的应用范畴。
各个工业部门对粉体的粒径要求不同,可以从几毫米到几十埃。
通常将粒径大于1毫米的粒子称为颗粒,而粒径小于1毫米的粒子称为粉体。
在材料的开发和研究中,材料的性能主要由材料的组成和显微结构决定。
显微结构,尤其是无机非金属材料在烧结过程中所形成的显微结构,在很大程度上由所采用原料的粉体的特性所决定。
根据粉体的特性有目的地对生产所用原料进行粉体的制备和粉体性能的调控、处理,是获得性能优良的材料的前提。
第一节粉体的粒度及粒度分布粉体颗粒是构成粉体的基本单位。
粉体的许多性质都由颗粒的大小及分布状态所决定。
粒径或粒度都是表征粉体所占空间范围的代表性尺寸。
对单个颗粒,常用粒径来表示几何尺寸的大小;对颗粒群,则用平均粒度来表示。
任何一个颗粒群不可能是同一粒径的粒子所组成的单分散系统,也就是说颗粒群总是由不同粒度组成的多分散系统。
为此,对于颗粒群来说,最重要的粒度特征是平均粒度和粒度分布。
一、单个颗粒的粒径以一因次值即颗粒的尺寸表示粒度时,该尺寸称为粒径。
第一章特种陶瓷粉体的物理性能及其制备
Ao =A / V, 单位 m2/m3 或m-1 。
2、粉体颗粒的吸附与凝聚
粉体所以区别于一般固体而呈独立物态,是因为:一方 面它是细化了的固体;另一方面,在接触点上与其它粒 子间有相互作用力存在。此外,颗粒之间也相互附着而 形成团聚体。 附着:一个颗粒依附于其它物体表面上的现象。 附着力(force of adhesion):存在于异种固体表面的引力。 凝聚:颗粒间在各种引力作用下的团聚。 凝聚力(agglomerative force) :存在于同种固体表面间的 引力。
积、可压缩性、流动性和工艺性能有重要影响。
特种陶瓷的制备,实际上是将特种陶瓷的粉体原
料经过成型、热处理,最终成为制品的过程。因 此,学习和掌握好特种陶瓷粉体的特性,并在此 基础上有目的地进行粉体制备和粉体性能调控、 处理,是获得优良特种陶瓷制品的重要前提。粉
体的制备方法一般可分为粉碎法和合成法两种。
3) 氧化还原法
非氧化物特种陶瓷的原料粉末多采用氧化物还原方法制备。 或者还原碳化,或者还原氮化。如SiC、Si3N4等粉末的制备。 SiC粉末的制备:将SiO2与碳粉混合,在1460~1600℃的加 热条件下,逐步还原碳化。其大致历程 如下: SiO2 + C → SiO+CO SiO + 2C → SiC+CO SiO + C → Si+CO Si + C → SiC Si3N4粉末的制备:在N2条件下,通过SiO2与C的还原-氮化。 反应温度在1600℃附近。其基本反应如下: 3SiO2+6C+2N2 → Si3N4 +6CO
2) 化合反应法
两种或两种以上的固体粉末,经混合后在一定的热力学条件 和气氛下反应而成为复合物粉末,有时也伴随气体逸出。化 合反应的基本形式: A(s)+B(s)→C(s)+D(g) 钛酸钡粉末、尖晶石粉末、莫来石粉末的合成都是化学反应 法: BaCO3+TiO2→BaTiO3+CO2 Al2O3+MgO→MgAlO4 3Al2O3+2SiO2→3Al2O3· 2SiO2
粉体工程作业答案
第一章粉体基本性质1—1 粉体是细小颗粒状物料的集合体.粉体物料是由无数颗粒构成的, 颗粒是粉体物料的最小单元. 1-2 工程上常把在常态下以较细的粉粒状态存在的物料,称为粉体。
1—3 颗粒的大小、分布、结构、形态和表面形态等因素,是粉体其他性能的基础. 1-4 构成粉体颗粒的大小,一般在几个纳米到几十毫米区间。
1—5 如果构成粉体的所有颗粒,其大小和形状都是一样的,则称这种粉体为单分散粉体。
大多数粉体都是由参差不齐的各种不同大小的颗粒所组成,这样的粉体称为多分散粉体.粉体颗粒的大小和在粉体颗粒群中所占的比例分别称为粉体物料的粒度和粒度分布。
1-6“目"是一个长度单位,代表在1平方英寸上的标准试验筛网上筛孔数量.1—7 粒度是颗粒在空间范围所占大小的线性尺度。
粒度越小,颗粒越细。
所谓粒径,即表示颗粒大小的一因次尺寸.1-8以颗粒的长度l 、宽度b 、高度h 定义的粒度平均值称为三轴平均径,适用于必须强调长形颗粒存在的情况。
1—9 沿一定方向与颗粒投影轮廓两端相切的两平行线间的距离。
称为弗雷特直径。
沿一定方向将颗粒投影面积等分的线段长度,称为马丁直径。
1—10 与颗粒同体积的球的直径称为等体积球当量径;与颗粒等表面的球的直径称为等表面积球当量径;与颗粒投影面积相等的圆的直径称为投影圆当量径(亦称heywood 径.1-11若以Q 表示颗粒的平面或立体的参数,d 为粒径,则形状系数Φ定义为n d Q =Φ;若以S 表示颗粒的表面积,d 为粒径,则颗粒的表面积形状系数形状系数Φs 定义为2d Ss =Φ ; 对于球形颗粒,Φs=;对于立方体颗粒,Φs= 6 .若以V 表示颗粒的体积,d 为粒径,则颗粒的体积形状系数Φv 定义为Φv = 3d V 对于球形颗粒,Φv= 6π;对于立方体颗粒,Φv= 1。
1-12比表面积形状系数定义为表面积形状系数与体积形状系数之比,用符号Φsv 表示:Φsv=V S ΦΦ,对于球形颗粒和立方体颗粒,Φsv= 6。
粉体学基础
6.5 15.8 23.2 23.9 24.3 8.8 7.5
19.5 25.6 24.1 17.2 7.6 3.6 2.4
100.0 93.5 77.7 54.5 30.6 16.3 7.5
6.5 22.3 45.5 69.4 83.7 92.5 100.0
100.0 80.5 54.9 30.8 13.6 6.0 2.4
• 在固体剂型的制备过程中(如散剂、颗粒剂、
胶囊剂、片剂、粉针、混悬剂等,他们在医
药产品中约占70%-80%),必将涉及到固体药
物的粉碎、分级、混合、制粒、干燥、压片、
包装、输送、贮存等。
• 粉体技术在固体制剂的处方设计、生产工艺
和质量控制等方面具有重要的理论意义和实
际应用价值。
第二节
粉体的基础性质
• 将单一结晶粒子称为一级粒子(primary particle
),将一级粒子的聚结体称为二级粒子(second
particle)。
• (1)由范德华力、静电力等弱结合力的作用而发生
的不规则絮凝物(random floc)和(2)由粘合剂
的强结合力的作用聚集在一起的聚结物(agglomera • te)属于二级粒子。
颗粒间空隙率ε间=V间/V
总空隙率ε总=(V内+V间)/V
空隙率也可以通过相应的密度计算而求得:
内
g 1 t
间
总
b 1 g
b 1 t
第四节
粉体的流动性与充填性
一、粉体的流动性(flowability)
• 粉体的流动性与粒子的形状、大小、表面状态、 密度、空隙率等有关,加上颗粒之间的内摩擦力 和粘附力等的复杂关系,粉体的流动性无法用单 一的物性值来表达。
粉体学基础——精选推荐
粉体学基础粉体学基础⼀粉体概述1 粉体相关概念1.1 粉体粉体是⽆数固体粒⼦的集合体1.2 粒⼦在粉体中不能再分离的运动单元1.3 “粉”和“粒”通常≤100µm的粒⼦叫“粉”,容易产⽣粒⼦间的相互作⽤⽽流动性较差;> 100µm的粒⼦叫“粒”,较难产⽣粒⼦间的相互作⽤⽽流动性较好。
2 粉体的物理特征⾃然界中的物质可分为三种形态:⽓体、固体和液体,那么粉体属于哪种形态?粉体虽然具有与固体类似的抗变形能⼒,但不是固体粉体虽然具有与流体相似的流动性,但不是液体。
粉体虽然具有与⽓体相似的可压缩性,但不是⽓体。
它属于第四种物质形态3 粉体的性质3.1 ⼀般性质粉体的⼀般性质包括:粉体粒度(尺⼨、形状和粒度分布)、流动性、分散性及稳定性、填充性及吸湿性等等。
3.2 特殊性质当尺⼨处于亚微⽶级或纳⽶级时,粉体具有与普通粉体完全不同的特殊性质。
(1)表⾯效应纳⽶材料的表⾯效应是指纳⽶粒⼦的表⾯原⼦数与总原⼦数之⽐随粒径的变⼩⽽急剧增⼤后所引起的性质上的变化。
如图1所⽰。
超微粉体尺⼨⼩,⽐表⾯积⼤,位于表⾯的原⼦占有相当⼤的⽐例。
随着尺⼨减⼩,⽐表⾯积急剧增⼤,引起表⾯原⼦数迅速增加,增强了粒⼦的活性。
例如,尺⼨⼩于5 m的⾚磷在空⽓中能⾃燃,⽽某些纳⽶级的⾦属粉末在空⽓中也会燃烧。
随着颗粒尺⼨的量变,在⼀定的条件下会引起颗粒性质的质变。
由于颗粒尺⼨变⼩所引起的宏观物理性质的变化称为⼩尺⼨效应。
纳⽶颗粒尺⼨⼩,表⾯积⼤,在熔点,磁性,热阻,电学性能,光学性能,化学活性和催化性等都较⼤尺度颗粒发⽣了变化,产⽣⼀系列奇特的性质。
例如,⾦属纳⽶颗粒对光的吸收效果显著增加,并产⽣吸收峰的等离⼦共振频率偏移;出现磁有序态向磁⽆序态,超导相向正常相的转变。
(3)量⼦尺⼨效应各种元素原⼦具有特定的光谱线。
由⽆数的原⼦构成固体时,单独原⼦的能级就并合成能带,由于电⼦数⽬很多,能带中能级的间距很⼩,因此可以看作是连续的,从能带理论出发成功地解释了⼤块⾦属、半导体、绝缘体之间的联系与区别,对介于原⼦、分⼦与⼤块固体之间的超微颗粒⽽⾔,⼤块材料中连续的能带将分裂为分⽴的能级;能级间的间距随颗粒尺⼨减⼩⽽增⼤。
粉体的基本性质及功能
粉体的基本性质及功能《营销界•化妆品观察》2011年1月27日作者:裴廷镐【小中大】彩妆按照分散技术不同,可分类为粉体(powder)彩妆、乳化彩妆、油分散彩妆。
粉体的作用是,为化妆品赋予色调,或构成产品的骨骼。
本文欲从粉体的基本特性着手,带大家了解使用在化妆品上的粉体的特性及功能、用于改善粉体的功能的表面处理方法。
1. 粉体的基本特性粉体(powder material)可以视为固体、液体、气体以外的第四性状。
粉体和固体一样拥有结晶性,与液体一样拥有流动性,与气体一样在不同的粒度(grain size/granularity)表现出飞散(free flowing)性。
粉体是多个固体微粒的集合体,粒子之间有一定的相互作用存在。
考虑一种粉体粒子的基本性质时,应区分粒子的大小、表面能量、表面构造、表面物性等因素。
如果按粒子大小分类可分为——广义的粉体:1 nm ~ 1 mm,狭义的粉体:< 50 um,微粉体:1 um ~ 50 um,超微粉体:10 nm ~ 1 um。
粉体以1um粒度为分界线,表现出的物理、化学性质有以下差异(见表1)。
λ粗大粒子(Macro particle)的特征——不凝集、流动性增加。
λ微粒子的特征——粒子的附着力增加,超过重力的影响而出现凝集。
粒子的大小小于1um时大于1um时增加的物理性质表面积,表面活性,反应性,凝集性,吸液量流动性,充填性,纯度增加表1.粒子大小与物理性质粉体粒子的物理性质可分为粒子性质与粉体性质(见表2)。
作为粒子的性质作为粉体的性质结晶质的大小、排向大小和分布外观密度形状充填构造构造流动性密度吸液量附着力表面的性质表2.粉体粒子的物理性质2. 化妆品用粉体的特性化妆品用的粉体可以分为无机颜料(体质颜料、白色颜料、彩色颜料)、有机颜料、天然颜料、珠光颜料等等(详见表3)。
体质颜料:是构成骨骼的原料,以天然的粘土矿物如云母、滑石粉最具有代表性,另外还有高岭土(kaolin)、碳酸钙、碳酸镁等等。
《粉体学基础》课件
药物载体
粉体可作为药物载体,将 药物包裹在粉体中,以控 制药物的释放速度和部位 。
医疗器械
粉体在医疗器械的制造中 也有应用,如用于制造人 工关节、牙科材料等。
化妆品工业
粉底
粉体作为化妆品中的主要成分,起到遮盖皮肤瑕疵、调整肤色等 作用。
眼影
不同颜色的粉体用于制造眼影,增加眼部层次感和立体感。
腮红
粉体腮红能够增添脸部红润感,提升整体妆容效果。
粉体作为食品添加剂,如面粉、 糖粉、奶粉等,用于改善食品的 口感、质地和外观。
食品包装材料
粉体材料如二氧化硅、滑石粉等 ,用于食品包装,起到防潮、防 霉、防虫等作用。
食品加工助剂
粉体如碳酸钙、碳酸镁等,作为 食品加工助剂,起到调节酸碱度 、增加食品稳定性等作用。
医药工业
药物制备
粉体在医药工业中用于制 备药物,如中药粉末、西 药颗粒等。
应用
在化工、陶瓷、制药等领域,粉体的密度与孔隙率对产品的性能和生 产工艺具有重要影响,如流动性和填充性等。
粉体的流动性与填充性
总结词
粉体的流动性与填充性是描述粉体流 动和填充性能的重要参数,它们对粉 体的加工和应用具有重要影响。
影响因素
粉体的流动性与填充性受到粒径、粒 径分布、颗粒形状、表面粗糙度、摩 擦系数等因素的影响。
干式粉碎
通过机械力将大颗粒物料 破碎成小颗粒,如球磨、 振动磨等。
湿式粉碎
将物料与液体一起送入粉 碎机,使物料在湿润状态 下进行粉碎。
超细粉碎
利用超音速气流、高能球 磨等技术将物料粉碎至纳 米级别。
物理粉碎法
结晶法
利用物质结晶时体积膨胀、硬度增加的特性,通 过反复结晶、破碎来制备粉体。
第1章 粉体性质
振动,大幅度降低颗粒之间的作用力。
§1.5 粉体的堆积性质
1.5.1 粉体密度的概念
• 粉体的密度系指单位体积粉体的质量。 • 由于粉体的颗粒内部和颗粒间存在空隙,粉体
的体积具有不同的含义。
• 粉体的密度根据所指的体积不同分为:
真密度、颗粒密度、松密度(堆积密度)
1.真密度(true density) ρt
§1.4 颗粒的团聚与分散
1.4.4 颗粒在空气中分散的主要方法
机械分散
打散机、笼型碾
压缩空气分散——气力均化库
§1.4 颗粒的团聚与分散
1.4.4 颗粒在空气中分散的主要方法
干燥分散
表面改性:靠表面物理化学活性剂处理,改
变颗粒的表面性质
静电分散
§1.4 颗粒的团聚与分散
粉体的分散性好是制备复合材料的基本要求;
对于分级和分离作业,充分分散是前提;
§1.4 颗粒的团聚与分散
1.4.3 颗粒在介质中团聚的原因 颗粒团聚的主要原因是颗粒之间的相互吸引力,在 空气或液体中颗粒之间的作用力主要有: 粉碎过程使颗粒带电,产生静电引力; 颗粒表面断键,存在范德华力,相互吸引; 超细颗粒具有极大的表面能,团聚可以降低表面能; 颗粒在液相中存在双电层动电位,存在静电作用力; 颗粒在液相中形成溶剂化膜,与极性相反的颗粒产生 斥力; 颗粒吸附水后会形成毛细管力(液桥力); 颗粒与液相的润湿性不同,不润湿时团聚
§1.6 粉体的摩擦性质
1.6.1 粉体摩擦性质的概念
• 指粉体中由于颗粒之间或颗粒与固体壁面因摩擦而产生
的一些物理现象。摩擦性质是粉体力学的基础。
• 摩擦性也可以反映粉体的流动性。 • 摩擦性对于粉体的储存、运输、压缩等都有重要影响。 • 一般用摩擦角或摩擦系数来表示。
粉体工程学第1章
天然粉体
特种粉体 纳米级 0.1~100nm
单质粉体
粉体 (粉末)
微米级 1~100µm
混合粉体
复合粉体
电解粉体
亚微米级颗粒 0.1~1µm
雾化粉体
(2)颗粒和粉体研究特征 颗粒→微观特征 ↓ 形状形貌 粒度大小 比表面积 粉体→宏观特征 ↓ 粒度分布 流动性能 堆积状态 产品→产品性能 ↓ 化性物性 质量优虐 使用寿命
1.1.2.1 粉体的定义 (1)颗粒和粉体区分 颗粒:人工或天然制成的粒状物, 一般指固体颗粒。 也可以延伸到液体和气体。 颗粒是构成粉体的最小单元。
粉体:大量具有相互作用的微小固体 颗粒的集合体。 粉体是无数相对微小颗粒的集合体。
一般分为两种型体
单分散粉体: 构成粉体的所有颗粒其大小和形状都是一样的粉末。 (自然界中少见),一般为化学和人工合成的近似体。 多分散粉体: 构成粉体的所有颗粒其大小和形状参差不起、 形状各异的粉末。(自然界中常见)
1.1.2 粉体工程学的基本概念
粉体工程学(powder engineering)是 研究无数个固体粒子集合体的基本性质及其应用的科学。 是以颗粒和粉状物料为对象,而研究其性质加工及处理 技术的一门学科。 由于固体颗粒在工程应用中的地位显得愈来愈重要, 而且有很多共同规律和问题:如 ◆ 粉体的制造、分离、纯化、运输; ◆ 细粉特性的表示方法和测量; ◆ 细粉流态化的特性和规律;细粉的表面性质; ◆ 流体在孔性细粉中传递性质等。 因此形成了一个新的学科,称为粉体工程学。 通常我们所说的“粉末”、“粉粒”或“粒子”、 “粉尘”、“颗粒”都属于粉体学的研究范畴。
第四节 与粉体相关的产业
1.4.1 以粉体为主体的相关产业 (1)无机非金属材料工业 (2)冶金和金属工艺学 (3)颜料和感光剂工业 (4)电化学和部分无机化学工业
粉体的基本性质及功能
粉体的基本性质及功能《营销界•化妆品观察》2011年1月27日作者:裴廷镐【小中大】彩妆按照分散技术不同,可分类为粉体(powder)彩妆、乳化彩妆、油分散彩妆。
粉体的作用是,为化妆品赋予色调,或构成产品的骨骼。
本文欲从粉体的基本特性着手,带大家了解使用在化妆品上的粉体的特性及功能、用于改善粉体的功能的表面处理方法。
1. 粉体的基本特性粉体(powder materi al)可以视为固体、液体、气体以外的第四性状。
粉体和固体一样拥有结晶性,与液体一样拥有流动性,与气体一样在不同的粒度(grainsize/granul arity)表现出飞散(free flowin g)性。
粉体是多个固体微粒的集合体,粒子之间有一定的相互作用存在。
考虑一种粉体粒子的基本性质时,应区分粒子的大小、表面能量、表面构造、表面物性等因素。
如果按粒子大小分类可分为——广义的粉体:1 nm ~ 1 mm,狭义的粉体:< 50 um,微粉体:1 um ~ 50 um,超微粉体:10 nm ~ 1 um。
粉体以1um粒度为分界线,表现出的物理、化学性质有以下差异(见表1)。
λ粗大粒子(Macropartic le)的特征——不凝集、流动性增加。
λ微粒子的特征——粒子的附着力增加,超过重力的影响而出现凝集。
粒子的大小小于1um时大于1um时增加的物理性质表面积,表面活性,反应性,凝集性,吸液量流动性,充填性,纯度增加表1.粒子大小与物理性质粉体粒子的物理性质可分为粒子性质与粉体性质(见表2)。
作为粒子的性质作为粉体的性质结晶质的大小、排向大小和分布外观密度形状充填构造构造流动性密度吸液量附着力表面的性质表2.粉体粒子的物理性质2. 化妆品用粉体的特性化妆品用的粉体可以分为无机颜料(体质颜料、白色颜料、彩色颜料)、有机颜料、天然颜料、珠光颜料等等(详见表3)。
粉体的基本性质Word版
第一章粉体的基本性质所谓粉体就是大量固体粒子的集合体,而且在集合体的粒子间存在着适当的作用力。
粉体由一个个固体粒子所组成,它仍具有固体的许多属性。
与固体的不同点在于在少许外力的作用下呈现出固体所不具备的流动性和变形。
它表示物质存在的一种状态,即不同于气体、液体,也不完全同于固体,正如不少国外学者所认为的,粉体是气、液、固相之外的第四相。
粉体粒子间的相互作用力,至今仍无明确的定量概念。
通常是指在触及它时,集合体就发生流动、变形这样大小的力。
粉体粒子间的适当作用力是粒子集合体成为粉体的必要条件之一,粒子间的作用力过大或过小都不能成为粉体。
材料成为粉体时具有以下特征:能控制物性的方向性;即使是固体也具有一定的流动性;在流动极限附近流动性的变化较大;能在固体状态下混合;离散集合是可逆的;具有塑性,可加工成型;具有化学活性。
组成粉体的固体颗粒其粒径的大小对粉体系统的各种性质有很大的影响,同时固体颗粒的粒径大小也决定了粉体的应用范畴。
各个工业部门对粉体的粒径要求不同,可以从几毫米到几十埃。
通常将粒径大于1毫米的粒子称为颗粒,而粒径小于1毫米的粒子称为粉体。
在材料的开发和研究中,材料的性能主要由材料的组成和显微结构决定。
显微结构,尤其是无机非金属材料在烧结过程中所形成的显微结构,在很大程度上由所采用原料的粉体的特性所决定。
根据粉体的特性有目的地对生产所用原料进行粉体的制备和粉体性能的调控、处理,是获得性能优良的材料的前提。
第一节粉体的粒度及粒度分布粉体颗粒是构成粉体的基本单位。
粉体的许多性质都由颗粒的大小及分布状态所决定。
粒径或粒度都是表征粉体所占空间范围的代表性尺寸。
对单个颗粒,常用粒径来表示几何尺寸的大小;对颗粒群,则用平均粒度来表示。
任何一个颗粒群不可能是同一粒径的粒子所组成的单分散系统,也就是说颗粒群总是由不同粒度组成的多分散系统。
为此,对于颗粒群来说,最重要的粒度特征是平均粒度和粒度分布。
一、单个颗粒的粒径以一因次值即颗粒的尺寸表示粒度时,该尺寸称为粒径。
粉体的基本性质及功能
粉体的基本性质及功能《营销界•化妆品观察》2011年1月27日作者:裴廷镐【小中大】彩妆按照分散技术不同,可分类为粉体(powder)彩妆、乳化彩妆、油分散彩妆。
粉体的作用是,为化妆品赋予色调,或构成产品的骨骼。
本文欲从粉体的基本特性着手,带大家了解使用在化妆品上的粉体的特性及功能、用于改善粉体的功能的表面处理方法。
1. 粉体的基本特性粉体(powder material)可以视为固体、液体、气体以外的第四性状。
粉体和固体一样拥有结晶性,与液体一样拥有流动性,与气体一样在不同的粒度(grain size/granularity)表现出飞散(free flowing)性。
粉体是多个固体微粒的集合体,粒子之间有一定的相互作用存在。
考虑一种粉体粒子的基本性质时,应区分粒子的大小、表面能量、表面构造、表面物性等因素。
如果按粒子大小分类可分为——广义的粉体:1 nm ~ 1 mm,狭义的粉体:< 50 um,微粉体:1 um ~ 50 um,超微粉体:10 nm ~ 1 um。
粉体以1um粒度为分界线,表现出的物理、化学性质有以下差异(见表1)。
λ粗大粒子(Macro particle)的特征——不凝集、流动性增加。
λ微粒子的特征——粒子的附着力增加,超过重力的影响而出现凝集。
粒子的大小小于1um时大于1um时增加的物理性质表面积,表面活性,反应性,凝集性,吸液量流动性,充填性,纯度增加表1.粒子大小与物理性质粉体粒子的物理性质可分为粒子性质与粉体性质(见表2)。
作为粒子的性质作为粉体的性质结晶质的大小、排向大小和分布外观密度形状充填构造构造流动性密度吸液量附着力表面的性质表2.粉体粒子的物理性质2. 化妆品用粉体的特性化妆品用的粉体可以分为无机颜料(体质颜料、白色颜料、彩色颜料)、有机颜料、天然颜料、珠光颜料等等(详见表3)。
体质颜料:是构成骨骼的原料,以天然的粘土矿物如云母、滑石粉最具有代表性,另外还有高岭土(kaolin)、碳酸钙、碳酸镁等等。
粉体的基本性质
第一章粉体的基本性质所谓粉体就是大量固体粒子的集合体,而且在集合体的粒子间存在着适当的作用力。
粉体由一个个固体粒子所组成,它仍具有固体的许多属性。
与固体的不同点在于在少许外力的作用下呈现出固体所不具备的流动性和变形。
它表示物质存在的一种状态,即不同于气体、液体,也不完全同于固体,正如不少国外学者所认为的,粉体是气、液、固相之外的第四相。
粉体粒子间的相互作用力,至今仍无明确的定量概念。
通常是指在触及它时,集合体就发生流动、变形这样大小的力。
粉体粒子间的适当作用力是粒子集合体成为粉体的必要条件之一,粒子间的作用力过大或过小都不能成为粉体。
材料成为粉体时具有以下特征:能控制物性的方向性;即使是固体也具有一定的流动性;在流动极限附近流动性的变化较大;能在固体状态下混合;离散集合是可逆的;具有塑性,可加工成型;具有化学活性。
组成粉体的固体颗粒其粒径的大小对粉体系统的各种性质有很大的影响,同时固体颗粒的粒径大小也决定了粉体的应用范畴。
各个工业部门对粉体的粒径要求不同,可以从几毫米到几十埃。
通常将粒径大于1毫米的粒子称为颗粒,而粒径小于1毫米的粒子称为粉体。
在材料的开发和研究中,材料的性能主要由材料的组成和显微结构决定。
显微结构,尤其是无机非金属材料在烧结过程中所形成的显微结构,在很大程度上由所采用原料的粉体的特性所决定。
根据粉体的特性有目的地对生产所用原料进行粉体的制备和粉体性能的调控、处理,是获得性能优良的材料的前提。
第一节粉体的粒度及粒度分布粉体颗粒是构成粉体的基本单位。
粉体的许多性质都由颗粒的大小及分布状态所决定。
粒径或粒度都是表征粉体所占空间范围的代表性尺寸。
对单个颗粒,常用粒径来表示几何尺寸的大小;对颗粒群,则用平均粒度来表示。
任何一个颗粒群不可能是同一粒径的粒子所组成的单分散系统,也就是说颗粒群总是由不同粒度组成的多分散系统。
为此,对于颗粒群来说,最重要的粒度特征是平均粒度和粒度分布。
一、单个颗粒的粒径以一因次值即颗粒的尺寸表示粒度时,该尺寸称为粒径。
「第一章粉体的基本性质」
第一章粉体的基本性质所谓粉体就是大量固体粒子的集合体,而且在集合体的粒子间存在着适当的作用力。
粉体由一个个固体粒子所组成,它仍具有固体的许多属性。
与固体的不同点在于在少许外力的作用下呈现出固体所不具备的流动性和变形。
它表示物质存在的一种状态,即不同于气体、液体,也不完全同于固体,正如不少国外学者所认为的,粉体是气、液、固相之外的第四相。
粉体粒子间的相互作用力,至今仍无明确的定量概念。
通常是指在触及它时,集合体就发生流动、变形这样大小的力。
粉体粒子间的适当作用力是粒子集合体成为粉体的必要条件之一,粒子间的作用力过大或过小都不能成为粉体。
材料成为粉体时具有以下特征:能控制物性的方向性;即使是固体也具有一定的流动性;在流动极限附近流动性的变化较大;能在固体状态下混合;离散集合是可逆的;具有塑性,可加工成型;具有化学活性。
组成粉体的固体颗粒其粒径的大小对粉体系统的各种性质有很大的影响,同时固体颗粒的粒径大小也决定了粉体的应用范畴。
各个工业部门对粉体的粒径要求不同,可以从几毫米到几十埃。
通常将粒径大于1毫米的粒子称为颗粒,而粒径小于1毫米的粒子称为粉体。
在材料的开发和研究中,材料的性能主要由材料的组成和显微结构决定。
显微结构,尤其是无机非金属材料在烧结过程中所形成的显微结构,在很大程度上由所采用原料的粉体的特性所决定。
根据粉体的特性有目的地对生产所用原料进行粉体的制备和粉体性能的调控、处理,是获得性能优良的材料的前提。
第一节粉体的粒度及粒度分布粉体颗粒是构成粉体的基本单位。
粉体的许多性质都由颗粒的大小及分布状态所决定。
粒径或粒度都是表征粉体所占空间范围的代表性尺寸。
对单个颗粒,常用粒径来表示几何尺寸的大小;对颗粒群,则用平均粒度来表示。
任何一个颗粒群不可能是同一粒径的粒子所组成的单分散系统,也就是说颗粒群总是由不同粒度组成的多分散系统。
为此,对于颗粒群来说,最重要的粒度特征是平均粒度和粒度分布。
一、单个颗粒的粒径以一因次值即颗粒的尺寸表示粒度时,该尺寸称为粒径。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n:均匀性指数,表示粒度分布范围的宽窄,与粉体物料性质及粉碎设 备有关,对一种粉碎产品n为常数。 De:特征粒径,表示颗粒宏观上的粗细程度。
Scheme of Rosin-Rammeler Distribution
如果粒径分布能遵守Rosin-Rammler分布,它将变成一条直线。 由于RRB方程能比较好的反应了工业上粉磨产品的粒度分布特性,故 在粉碎过程中被广泛使用。
1.1.5.2 粒度分布的表示方法
列表法:粒度表格,直观简单 图解法:直方图,分布曲线法,误差较大 函数法:数学方程,精确度高,便于处理
正态分布 对数正态分布 RRB分布
例:以显微镜观察测量粉体的Feret径(测量总数为1000个)
粒径间隔 (μ m) 1~2 2~3 3~4 4~5 5~6 6~7 7~8 8~9 9~10 10~11
5
lbh
与外接长方形体积相同的立 方体的一条边 与外接长方形比比表面积相 同的立方体的一条边
6
2lb 2bh 2lh 三轴等表面积平均 径 6
1.1.2 当量粒径
颗粒与球或投影圆有某种等量关系的球或投影圆的直径。
等效圆球体积直径
等体积球当量径: 与颗粒同体积球的直径。 根据 dv3 π/6=v 推导得:
[例1] 设颗粒群由粒径为d1,d2…..dn 的颗粒组成,每种颗粒的个数分别 为n1,n2,….nn,由颗粒总长的特性导出其平均径。
解: 颗粒群的总长可表示为: n1d1+n2d2+……+nndn=Σ(nd)=f(d) 将全部颗粒视为粒径为D的均一颗粒, 上式中的d用D替代: n1D+n2D+……+nnD=Σ(nD)=DΣ(n)=f(D) 则,由 f(d)=f(D), Σ(nd)= DΣ(n) 求得:DnL= Σ(nd)/ Σ(n) 所得DnL即为个数长度平均径.
颗粒的大小
直径D
直径D、高度H
?
实际颗粒形貌
颗粒
粉体
1.1.1 几何学粒径(三轴径)
When a particle is circumscribed by a rectangular prism with length l, width b, height t, its size is expressed by the diameter, obtained from the three dimensions.
相关的定面积 Σ(6nd2) 颗粒群的总体积(总重量) Σ(nd3), ρpΣ(nd3). 颗粒群的比表面积 Σ(6nd2)/ Σ(nd3) 上式中假设颗粒为边长为d的立方体。
Calculation of average diameter
平均几何粒径:
ni ln D pi ln Dg N
几何标准偏差:
ni (ln DPi ln Dg ) ln g ( ) N
2
1 2
对数正态分布图
对数正态分布在对数概率纸上标绘出的是一条直线。这种分布经 常出现在结晶或粉碎法获得的粉末以及气体溶胶中。累积曲线50%点 称为几何平均粒径或数量平均粒径。
Rosin-Rammeler Distribution
RRS方程:
粉碎后的细粉,粉末等粒度分布范围很宽的粉体利用对数正态分布 函数计算时,在对数概率纸上所得直线偏差仍很大。 Rosin,Rammler和Sperling等人通过对煤粉水泥等物料粉碎实验的 概率和统计理论的研究归纳出用指数函数表示粒度分布的关系式其累 积分布表达式为:
粒度分布(Particle size distribution) 频率分布和累积分布
个数基准:测定颗粒个数 质量基准:测定颗粒质量
频率(概率密度函数):在粉体样品中,某一粒度范围内的颗粒数
或质量占据总颗粒数或总质量的百分数。
q0 ( D p )
1 N
dn dDp
q3 ( Dp)
1 M
dm dDp
dv 3
根据 πds2=s 推导得:
6v
等表面积球当量径: 与颗粒等表面积球的直径。
ds
s
比表面积球当量径: 与颗粒具有相同的表面积对体 积之比,即具有相同的体积比表面的球的直径。
d sv
6v s
3 dv 2 ds
投影圆当量径(Heywood径):与颗粒投影面积相等的圆的 直径,根据π /4 da2=a 推导得:
f (d ) f ( D) (n 6 d 2 ) (n 6 D 2 ) m m 两边同乘 P D, 得 :
(n 6 D 2 ) (n 6 D 2 ) f ( D) 3 m (n P D )
P D (n 6 d 2 ) P D (n 6 D 2 )
以三维尺寸计算的平均径
序号 1 计算式 名 称 长短平均径 二轴平均径 三轴平均径 物理意义 二维图形算术平均
lh 2
2
3
l bh 3 3 1 1 1 l b h
三维图形算术平均
三轴调和平均径
与外接长方形比表面积相同 的球体直径
平面图形上的几何平均
4
lb
3
二轴几何平均径
三轴几何平均径
颗粒形状的表达方式之一
颗粒形状基本术语
球形 spherical 粒状 针状 granular need-like
1.1.4 平均粒径(Average particle diameter)
平均粒径的定义:
颗粒群由d1,d2,d3……颗粒构成,其物理特性可用各粒径函数的加合表示:
f(d)=f(d1)+f(d2)+f(d3)+……+f(dn)
f(d)称为定义函数。 若将粒径假想成一均一球径D表示: 则
f(d)=f(D), 求解得D即表示平均径。
级别 1 2 3 4 5 6 7 8 9 10
颗粒数 39 71 88 142 173 218 151 78 32 8
频度(f%) 3.9 7.1 8.8 14.2 17.3 21.8 15.1 7.8 3.2 0.8
累计百分数 3.9 11.0 19.8 34.0 51.3 73.1 88.2 96.0 99.2 100
Calculation of average diameter
[例2] 设颗粒群的总质量为Σm, 试由比表面积的定义函数求平 均粒径.
比表面积定义函数为:
(n 6 d 2 ) (n 6 d 2 ) f (d ) (n P d 3 ) m
将全部颗粒视为边长为D的立方体, 则
粒径的Rosin-Rammler分布
§1.2 颗粒形状(Particle Shape )
颗粒形状是指一个颗粒的轮廓边界或表面上各点所构成的图像,它是除 粒度外颗粒的另一重要的几何特征.
还原Fe粉 扫描电镜照片
球形铜粉的 光镜照片
球形CdS粉末
扫描电镜照片 棒状LaPO4粉末的 透射电镜照片
球形颗粒-填充性好,流动性好 多棱角状颗粒-研磨性好,混凝土集料堆积致密 片状颗粒-涂覆性好 针状颗粒-相互交织成胶体,强度高
dQ0 q0 ( D p ) dD p
Q0
0
q0 ( D p )dD p
实际的含义: 频率分布--某个粒径范围内Dp-1/2△Dp~ Dp+1/2△Dp的颗粒数占总颗 粒数的百分比。 累积分布--小于或大于某个粒径Dp的颗粒数占颗粒总数的百分比。
累积分布是频率分布的积分形式; 频率分布是累积分布的微分形式。
概率密度函数性质:
0
q0 ( D p )dD p 1
累积分布:表示大于或小于某一粒径的颗粒在全部颗粒中所占的
百分数。可分为: 筛上累积分布:大于某一粒经,用 R(Dp)表示 筛下累积分布:小于某一粒经,用 U(Dp)表示
R(Dp)+ U(Dp)=100%
Dp
R(Dp)= U(Dp)=50%
q0 ( D p )
1
2
exp(
( Dp D p ) 2 2
2
)
平均粒径:
Dp
ni DPi N
2
标准方差:
1 ni ( D pi D p ) 2 ( ) N
ni:颗粒数量, Dpi:粒径,N:颗粒总数,
Dp
:累积含量50%时对应粒径
对数正态分布
粉体的粒度分布有时也出现非对称分布,这时将正态分布函数中的 Dp和σ分别用和lnDp 和lnσg取代,就得到对数正态分布:
D (n P d 2 ) (n P D 3 ) m D m m m (n P d 2 ) [(n P d 3 ) / d ] m d
从测定量和定义函数导出的平均粒径
从测定量和定义函数导出的平均粒径
1.1.5 1.1.5.1
(第三章推导)
1.1.3 统计粒径
Feret diameter (a) : 在特定方向与投影轮廓相切的两条平行线间距. Martin diameter (b): 在特定方向将投影面积等分的割线长. Krumbein diameter (c) (定方向最大直径)最大割线长 Heywood diameter (d) (投影面积相当径): 与投影面积相等的圆的直径.
Q0 1 exp( bD )
n p
RRB方程
经Bennet研究取, 累积分布的表达式为:
b 1 Den
则指数一项可写成无因次项,即得RRB方程。其
Dp n Q0 1 exp ( ) De
频率分布表达式:
dQ0 n 1 n q0 nbDp exp( bDp ) dDp