人工神经网络BP算法简述
BP神经网络算法步骤
BP神经网络算法步骤
<br>一、概述
BP神经网络(Back Propagation Neural Network,BPNN)是一种经
典的人工神经网络,其发展始于上世纪80年代。
BP神经网络的原理是按
照误差反向传播算法,以及前馈神经网络的模型,利用反向传播方法来调
整网络各层的权值。
由于其具有自动学习和非线性特性,BP神经网络被
广泛应用在很多和人工智能、计算智能紧密相关的诸如计算机视觉、自然
语言处理、语音识别等领域。
<br>二、BP神经网络的结构
BP神经网络经常使用的是一种多层前馈结构,它可以由输入层,若
干隐藏层,以及输出层三部分组成。
其中,输入层是输入信号的正向传输
路径,将输入信号正向传送至隐藏层,在隐藏层中神经元以其中一种复杂
模式对输入信号进行处理,并将其正向传送至输出层,在输出层中将获得
的输出信号和设定的模式进行比较,以获得预期的输出结果。
<br>三、BP神经网络的学习过程
BP神经网络的学习过程包括正向传播和反向传播两个阶段。
其中,
正向传播是指从输入层到隐藏层和输出层,利用现有的训练数据,根据神
经网络结构,计算出网络每一层上各结点的的激活值,从而得到输出结果。
正向传播的过程是完全可以确定的。
BP神经网络算法
BP神经网络算法一、算法原理在BP神经网络中,每个神经元都与上一层的所有神经元以及下一层的所有神经元相连。
每个连接都有一个权重,表示信息传递的强度或权重。
算法流程:1.初始化权重和阈值:通过随机初始化权重和阈值,为网络赋予初值。
2.前向传播:从输入层开始,通过激活函数计算每个神经元的输出值,并将输出传递到下一层。
重复该过程,直到达到输出层。
3.计算误差:将输出层的输出值与期望输出进行比较,计算输出误差。
4.反向传播:根据误差反向传播,调整网络参数。
通过链式求导法则,计算每层的误差并更新对应的权重和阈值。
5.重复训练:不断重复前向传播和反向传播的过程,直到达到预设的训练次数或误差限度。
优缺点:1.优点:(1)非线性建模能力强:BP神经网络能够很好地处理非线性问题,具有较强的拟合能力。
(2)自适应性:网络参数可以在训练过程中自动调整,逐渐逼近期望输出。
(3)灵活性:可以通过调整网络结构和参数来适应不同的问题和任务。
(4)并行计算:网络中的神经元之间存在并行计算的特点,能够提高训练速度。
2.缺点:(1)容易陷入局部最优点:由于BP神经网络使用梯度下降算法进行权重调整,容易陷入局部最优点,导致模型精度不高。
(2)训练耗时:BP神经网络的训练过程需要大量的计算资源和耗时,特别是对于较大规模的网络和复杂的输入数据。
(3)需要大量样本:BP神经网络对于训练样本的要求较高,需要足够多的训练样本以避免过拟合或欠拟合的情况。
三、应用领域1.模式识别:BP神经网络可以用于图像识别、手写字符识别、语音识别等方面,具有优秀的分类能力。
2.预测与回归:BP神经网络可以应用于股票预测、销量预测、房价预测等问题,进行趋势预测和数据拟合。
3.控制系统:BP神经网络可以用于自适应控制、智能控制、机器人运动控制等方面,提高系统的稳定性和精度。
4.数据挖掘:BP神经网络可以应用于聚类分析、异常检测、关联规则挖掘等方面,发现数据中的隐藏信息和规律。
bp算法原理
bp算法原理BP算法原理。
BP神经网络算法是一种常见的人工神经网络训练算法,它是由Rumelhart和McCelland等人提出的,也是目前应用最为广泛的一种神经网络学习算法。
BP算法的全称是“误差反向传播算法”,它主要用于训练多层前馈神经网络,通过不断调整网络中的权值和阈值,使得网络的输出结果与期望结果尽可能接近。
在本文中,我们将详细介绍BP算法的原理及其实现过程。
首先,我们需要了解BP算法的基本原理。
BP算法的核心思想是通过计算输出值和期望值之间的误差,然后将误差反向传播到网络中的各个神经元,根据误差大小来调整各个神经元之间的连接权值和阈值,从而不断优化网络的性能。
具体而言,BP算法包括两个主要的过程,即前向传播和反向传播。
在前向传播过程中,输入样本通过网络的输入层,经过隐藏层的处理,最终得到输出层的输出结果。
然后,将输出结果与期望输出进行比较,计算误差值。
接着,在反向传播过程中,将误差值从输出层开始逐层向前传播,根据误差值调整连接权值和阈值。
这样,通过不断迭代训练,网络的输出结果将逐渐接近期望输出,从而实现对神经网络的训练。
BP算法的实现过程可以分为以下几个步骤:1. 初始化网络,确定网络的结构,包括输入层、隐藏层和输出层的神经元数量,以及他们之间的连接权值和阈值。
2. 输入样本,将训练样本输入到网络中,通过前向传播计算得到输出结果。
3. 计算误差,将网络输出结果与期望输出进行比较,计算误差值。
4. 反向传播,根据误差值,从输出层开始逐层向前传播,调整连接权值和阈值。
5. 更新权值和阈值,根据误差值的大小,利用梯度下降法更新连接权值和阈值,使得误差逐渐减小。
6. 重复迭代,重复以上步骤,直到网络的输出结果与期望输出尽可能接近,或者达到预定的训练次数。
需要注意的是,BP算法的训练过程可能会受到一些因素的影响,比如局部最小值、过拟合等问题。
为了解决这些问题,可以采用一些改进的BP算法,比如动量法、学习率衰减等方法,来提高网络的训练效果。
BP神经网络学习及算法
BP神经网络学习及算法1.前向传播:在BP神经网络中,前向传播用于将输入数据从输入层传递到输出层,其中包括两个主要步骤:输入层到隐藏层的传播和隐藏层到输出层的传播。
(1)输入层到隐藏层的传播:首先,输入数据通过输入层的神经元进行传递。
每个输入层神经元都与隐藏层神经元连接,并且每个连接都有一个对应的权值。
输入数据乘以对应的权值,并通过激活函数进行处理,得到隐藏层神经元的输出。
(2)隐藏层到输出层的传播:隐藏层的输出被传递到输出层的神经元。
同样,每个隐藏层神经元与输出层神经元连接,并有对应的权值。
隐藏层输出乘以对应的权值,并通过激活函数处理,得到输出层神经元的输出。
2.反向传播:在前向传播后,可以计算出网络的输出值。
接下来,需要计算输出和期望输出之间的误差,并将误差通过反向传播的方式传递回隐藏层和输入层,以更新权值。
(1)计算误差:使用误差函数(通常为均方差函数)计算网络输出与期望输出之间的误差。
误差函数的具体形式根据问题的特点而定。
(2)反向传播误差:从输出层开始,将误差通过反向传播的方式传递回隐藏层和输入层。
首先,计算输出层神经元的误差,然后将误差按照权值比例分配给连接到该神经元的隐藏层神经元,并计算隐藏层神经元的误差。
依此类推,直到计算出输入层神经元的误差。
(3)更新权值:利用误差和学习率来更新网络中的权值。
通过梯度下降法,沿着误差最速下降的方向对权值和阈值进行更新。
权值的更新公式为:Δwij = ηδjxi,其中η为学习率,δj为神经元的误差,xi为连接该神经元的输入。
以上就是BP神经网络的学习算法。
在实际应用中,还需要考虑一些其他的优化方法和技巧,比如动量法、自适应学习率和正则化等,以提高网络的性能和稳定性。
此外,BP神经网络也存在一些问题,比如容易陷入局部极小值、收敛速度慢等,这些问题需要根据实际情况进行调优和改进。
bp算法公式
bp算法公式
BP算法是一种常用的人工神经网络训练算法。
其全称为“反向传播算法”,其基本思想是利用链式求导法则,通过计算输出误差对每个权重的偏导数来更新网络中各层之间的连接权重,从而不断调整网络参数直到达到预定的训练目标。
BP算法的公式如下:
1. 前向传播
对于输入样本x,在神经网络中进行前向传播,计算出每个神经元的输出值,并将这些值作为输入传递到下一层神经元中,直至输出层。
2. 计算误差项
对于输出层每个神经元j,计算其误差项δj = yj - tj,其中yj为神经元j的输出值,tj为样本对应的真实标签值。
3. 反向传播
从输出层开始,计算每个神经元的误差项,然后根据误差项计算每个权重的偏导数,最后根据偏导数调整权重。
对于隐藏层每个神经元h,其误差项δh可由以下公式计算:
δh = f"(netH) * Σ(δj * wjh)
其中f"为h的激活函数的导数,netH表示神经元h的净输入,wjh为从神经元h到神经元j的权重,Σ表示对输出层每个神经元j 求和。
对于连接h->j的权重wjh,其偏导数可以使用以下公式计算: E/wjh = δj * ah
其中ah为连接h->j的输入值。
4. 更新权重
根据计算出来的各个权重的偏导数,利用梯度下降法更新权重。
具体地,对于权重wjh,更新方式为:
wjh = wjh - η * E/wjh
其中η为学习率,即权重的调整步长。
bp算法原理
bp算法原理BP算法原理BP算法是神经网络中应用最广泛的一种学习算法,它的全称是“反向传播算法”,用于训练多层前馈神经网络。
BP算法基于误差反向传播原理,即先通过前向传播计算网络输出值,再通过反向传播来调整各个神经元的权重,使误差函数最小化。
BP算法的步骤如下:1. 初始化:随机初始化网络每个神经元的权重,包括输入层、隐藏层和输出层的神经元的权重。
2. 前向传播:将训练样本输送到输入层,通过乘积和运算得到每个隐藏层神经元的输出,再通过激活函数得到隐藏层神经元的实际输出值。
然后,将隐藏层的输出值输送到输出层,按照同样的方法计算输出层神经元的输出值。
3. 反向传播:通过误差函数计算输出层神经元的误差值,然后反向传播计算隐藏层神经元的误差值。
4. 权值调整:按照梯度下降法,计算误差对每个神经元的权重的偏导数,根据偏导数的大小来调整各个神经元的权重,使误差逐渐减小。
5. 重复步骤2~4,直到误差小到一定程度或者训练次数达到预定值。
其中,误差函数可以选择MSE(Mean Squared Error)函数,也可以选择交叉熵函数等其他函数,不同的函数对应不同的优化目标。
BP算法原理的理解需要理解以下几个方面:1. 神经元的输入和输出:神经元的输入是由上一层神经元的输出和它们之间的权重乘积的和,加上神经元的偏置值(常数)。
神经元的输出是通过激活函数把输入值转化为输出值。
2. 前向传播和反向传播:前向传播是按照输入层到输出层的顺序计算神经元的输出值。
反向传播是一种误差反向传播的过程,它把误差从输出层往回传递,计算出每个神经元的误差,然后调整各个神经元的权重来使误差逐渐减小。
3. 梯度下降法:梯度下降法是一种优化算法,根据误差函数的梯度方向来寻找误差最小的点。
BP算法就是基于梯度下降法来优化误差函数的值,使神经网络的输出结果逼近实际值。
综上所述,BP算法是一种常用的神经网络学习算法,它利用前向传播和反向传播的过程来调整神经元的权重,不断优化误差函数的值,从而使神经网络的输出结果更加准确。
神经网络——BP算法
BP算法的学习过程由
正向传播和反向传播组成
BP算法是由两部分组成:信息 的正向传递与误差的反向传播。
在正向传播过程中,输入信息 从输入经隐含层逐层计算传向输 出层,每一层神经元的状态只影 响下一层神经元的状态。
如果在输出层没有得到期望
的输出,则计算输出层的误 差变化值,然后转向反向传 播,通过网络将误差信号沿 原来的连接通路反传回来修 改各层神经元的权值直至达 到期望目标。
第7 章 7.2
典型神经网络--BP
反向传播网络
Back—Propagation Network, 由于其权值的调整采用反向传播 (Backpropagation)的学习算法, 因此被称为BP网络。
BP网络
是一种单向传播的多层前向网络 其神经元的变换函数是S型函数,
因此输出量为0到1之间的连续量 它可以对非线性可微分函数进行 权值训练,从而实现输入到输出 的任意的非线性映射。
隐层输入:
xj
i
ij
xi
隐层输出采用S函数
x
'
j
1 f x j x j 1 e
yn k j 2 x j
' j
输出层输出
j 2 k 1 j 2 k j 2 j 2 k j 2 k 1
BP网络用途 1) 函数逼近:用输入矢量和相应的输出矢 量训练一个网络逼近—个函数; 2) 模式识别:用一个特定的输出矢量将它 与输入矢量联系起来; 3) 分类:把输入矢量以所定义的合适方式 进行分类; 4)数据压缩:减少输出矢量维数以便于传 输或存储。
BP网络的逼近
用于逼近的BP网络
前向传播:计算网络输出
3. 只有当希望对网络的输出 进行限制,如限制在0和1之 间,那么在输出层应当包含S 型激活函数,在一般情况下, 均是在隐含层采用S型激活函 数,而输出层采用线性激活 函数。
bp算法分类实例
bp算法分类实例一、BP算法基本原理BP算法,即反向传播算法(Back Propagation),是一种常用的人工神经网络训练算法。
它通过不断调整网络中各个连接权值,使得网络能够学习到输入与输出之间的映射关系。
BP算法基于梯度下降法的思想,通过计算误差的梯度来更新权值,从而逐步减小网络的预测误差。
BP算法的基本原理可以简述为以下几个步骤:1. 初始化网络的权值和阈值。
2. 输入样本,并通过前向传播计算网络的输出。
3. 计算输出误差,并根据误差计算每个权值需要调整的量。
4. 通过反向传播,将误差从输出层向输入层逐层传播,并根据误差梯度更新各层的权值和阈值。
5. 重复步骤2~4,直到网络的输出接近或达到预期输出。
6. 对于分类问题,可以使用交叉熵损失函数来计算误差,并使用softmax函数作为输出层的激活函数。
二、BP算法应用实例为了更好地理解BP算法的应用,我们以一个简单的手写数字识别问题为例进行说明。
假设我们有一组手写数字的图像数据集,每个图像都是28x28像素的灰度图像,且标注了对应的数字。
我们的目标是通过BP算法训练一个神经网络模型,使其能够自动识别输入图像中的数字。
我们需要将每个图像展开成一个向量,并将像素值归一化到0~1的范围内。
然后,我们构建一个多层感知机(MLP)神经网络,其中包含输入层、隐藏层和输出层。
输入层的节点数与图像的像素数相同,输出层的节点数与数字的类别数相同,隐藏层的节点数可以根据需要进行设置。
接下来,我们使用BP算法对神经网络进行训练。
训练过程中,我们将数据集分为训练集和验证集,用训练集进行权值的更新和调整,用验证集评估网络的性能。
我们通过计算交叉熵损失函数来度量网络的预测误差,并使用梯度下降法来更新权值和阈值。
训练完成后,我们可以使用测试集来评估网络的泛化能力。
将测试集中的图像输入到网络中,通过前向传播得到网络的输出,并与标注的数字进行比较,即可得到分类结果。
我们可以计算分类准确率来评估网络的性能。
BP算法及其优缺点
BP算法及其优缺点BP算法,即反向传播算法(Backpropagation algorithm),是一种在人工神经网络中被广泛应用的训练算法。
它通过将误差从网络的输出层反向传播到输入层,来调整网络中的连接权值,以达到学习和逼近目标函数的目的。
BP算法的步骤如下:1.初始化网络的连接权值2.将输入样本送入网络,通过前向传播计算得到输出结果3.计算输出层的误差,并将误差反向传播到隐藏层和输入层4.根据误差调整连接权值5.重复步骤2-4,直到达到停止条件(如误差小于一些阈值或达到最大迭代次数)BP算法的优点包括:1.强大的拟合能力:BP算法适用于解决非线性问题,能够学习和逼近各种复杂的函数关系。
2.广泛适用性:BP算法可以应用于多种不同的学习任务,包括分类、回归、聚类等。
3.支持并行计算:BP算法可以通过多个节点同时计算数据的梯度,从而加速训练过程。
然而,BP算法也存在一些缺点:1.容易陷入局部最优解:BP算法的目标是最小化误差函数,但是由于其基于梯度下降的策略,容易陷入局部最优解而无法收敛到全局最优解。
2.训练速度慢:BP算法通常需要大量的训练样本和迭代次数才能达到较好的学习效果,造成了训练速度较慢。
3.对初始权值敏感:BP算法的性能受到初始权值的影响,不同的初始权值可能导致不同的训练结果。
4.容易出现过拟合问题:BP算法在训练样本数量较少或网络结构过于复杂的情况下,容易出现过拟合现象。
针对这些缺点,研究者们提出了一些改进和优化的方法,如使用正则化技术来减小过拟合的风险、采用随机梯度下降来加速训练速度、引入动量项来增加学习的稳定性等。
综上所述,BP算法是一种经典的人工神经网络训练算法,具有强大的拟合能力和广泛的适用性。
但是它也存在一些缺点,如容易陷入局部最优解、训练速度慢、对初始权值敏感等。
在实际应用中,我们需要根据具体问题的特点和需求,综合考虑优缺点,在算法的改进和优化上进行进一步的研究和探索。
BP神经网络算法
1
目
录
一、BP神经网络算法概述
二、BP神经网络算法原理
三、BP神经网络算法特点及改进
2
一.BP神经网络算法概述
BP神经网络(Back-Propagation Neural Network),即误差
后向传播神经网络,是一种按误差逆向传播算法训练的多层前馈网
络,是目前应用最广泛的网络模型之一。
11
二.BP神经网络算法原理
图5 Tan-Sigmoid函数在(-4,4)范围内的函数曲线
12
二.BP神经网络算法原理
激活函数性质:
① 非线性
② 可导性:神经网络的优化是基于梯度的,求解梯度需要确保函
数可导。
③ 单调性:激活函数是单调的,否则不能保证神经网络抽象的优
化问题转化为凸优化问题。
④ 输出范围有限:激活函数的输出值范围有限时,基于梯度的方
= 1
=1
7
,
= 1,2,3 … , q
二.BP神经网络算法原理
输出层节点的输出为:
j = 2 ,
= 1,2,3. . . ,
=1
至此,BP网络完成了n维空间向量对m维空间的近似映射。
图2 三层神经网络的拓扑结构
8
二.BP神经网络算法原理
BP神经网络是多层前馈型神经网络中的一种,属于人工神经网
络的一类,理论可以对任何一种非线性输入输出关系进行模仿,因
此 被 广 泛 应 用 在 分 类 识 别 ( classification ) 、 回 归
(regression)、压缩(compression)、逼近(fitting)等领域。
在工程应用中,大约80%的神经网络模型都选择采用BP神经网
BP神经网络算法
BP神经网络算法BP神经网络算法(BackPropagation Neural Network)是一种基于梯度下降法训练的人工神经网络模型,广泛应用于分类、回归和模式识别等领域。
它通过多个神经元之间的连接和权重来模拟真实神经系统中的信息传递过程,从而实现复杂的非线性函数拟合和预测。
BP神经网络由输入层、隐含层和输出层组成,其中输入层接受外部输入的特征向量,隐含层负责进行特征的抽取和转换,输出层产生最终的预测结果。
每个神经元都与上一层的所有神经元相连,且每个连接都有一个权重,通过不断调整权重来优化神经网络的性能。
BP神经网络的训练过程主要包括前向传播和反向传播两个阶段。
在前向传播中,通过输入层将特征向量引入网络,逐层计算每个神经元的输出值,直至得到输出层的预测结果。
在反向传播中,通过计算输出层的误差,逐层地反向传播误差信号,并根据误差信号调整每个连接的权重值。
具体来说,在前向传播过程中,每个神经元的输出可以通过激活函数来计算。
常见的激活函数包括Sigmoid函数、ReLU函数等,用于引入非线性因素,增加模型的表达能力。
然后,根据权重和输入信号的乘积来计算每个神经元的加权和,并通过激活函数将其转化为输出。
在反向传播过程中,首先需要计算输出层的误差。
一般采用均方差损失函数,通过计算预测值与真实值之间的差异来衡量模型的性能。
然后,根据误差信号逐层传播,通过链式法则来计算每个神经元的局部梯度。
最后,根据梯度下降法则,更新每个连接的权重值,以减小误差并提高模型的拟合能力。
总结来说,BP神经网络算法是一种通过多层神经元之间的连接和权重来模拟信息传递的人工神经网络模型。
通过前向传播和反向传播两个阶段,通过不断调整权重来训练模型,并通过激活函数引入非线性因素。
BP 神经网络算法在分类、回归和模式识别等领域具有广泛的应用前景。
BP算法的基本原理
BP算法的基本原理BP算法(反向传播算法)是一种神经网络训练算法,用于更新神经网络的权重和偏置,以使之能够适应所需任务的输入输出关系。
BP算法基于梯度下降优化方法,通过求解损失函数关于权重和偏置的偏导数来进行参数更新。
其基本原理涉及到神经网络的前向传播和反向传播两个过程。
以下将详细介绍BP算法的基本原理。
1.前向传播:在神经网络的前向传播过程中,输入数据通过网络的各个层,通过各个神经元的激活函数,最终得到网络的输出。
在前向传播过程中,每个神经元接收到上一层的信号,并通过权重和偏置进行加权求和,然后经过激活函数处理后输出。
具体而言,假设神经网络有L层,第l层的神经元为h(l),输入为x,激活函数为f(l),权重为w(l),偏置为b(l)。
其中,输入层为第1层,隐藏层和输出层分别为第2层到第L层。
对于第l层的神经元h(l),其输入信号为:z(l)=w(l)*h(l-1)+b(l)其中,h(l-1)表示第(l-1)层的神经元的输出。
然后,通过激活函数f(l)处理输入信号z(l)得到第l层的输出信号:h(l)=f(l)(z(l))。
依次类推,通过前向传播过程,神经网络可以将输入信号转化为输出信号。
2.反向传播:在神经网络的反向传播过程中,根据网络的输出和真实值之间的差异,通过链式法则来计算损失函数对于各层权重和偏置的偏导数,然后根据梯度下降法则对权重和偏置进行更新。
具体而言,假设网络的输出为y,损失函数为L,权重和偏置为w和b,求解L对w和b的偏导数的过程为反向传播。
首先,计算L对于网络输出y的偏导数:δ(L)/δy = dL(y)/dy。
然后,根据链式法则,计算L对于第L层的输入信号z(L)的偏导数:δ(L)/δz(L)=δ(L)/δy*δy/δz(L)。
接着,计算L对于第(L-1)层的输入信号z(L-1)的偏导数:δ(L)/δz(L-1) = δ(L)/δz(L) * dz(L)/dz(L-1)。
依次类推,通过链式法则得到L对于各层输入信号z(l)的偏导数。
BP算法的基本原理
BP算法的基本原理BP算法,全称为反向传播算法(Back Propagation),是一种用于训练人工神经网络的常用算法。
它基于梯度下降的思想,通过不断地调整网络中的权值和偏置来最小化预测值与实际值之间的误差。
在前向传播阶段,输入数据通过网络的各个层,产生输出结果。
首先,每个输入特征通过输入层的神经元传递,并在隐藏层中进行加权求和。
在隐藏层中,每个神经元根据激活函数的结果计算输出值,然后传递给下一层的神经元。
最后,输出层的神经元根据激活函数的结果计算输出结果,并与实际值进行比较。
在反向传播阶段,误差被反向传播回网络中的每个神经元,从而计算每个权值和偏置的梯度,以便调整它们的值。
首先,计算输出层误差,即预测值与实际值之间的差异。
然后,将输出层误差反向传播到隐藏层和输入层,计算每个神经元的误差。
最后,根据误差和激活函数的导数,计算每个权值和偏置的梯度。
通过计算梯度,可以根据梯度下降的思想,按照一定的学习率调整每个权值和偏置的值。
学习率决定了每次调整的幅度,通常设置为一个小的正数。
在调整过程中,权值和偏置会根据梯度的方向逐渐减小误差,直到达到最小化误差的目标。
总结起来,BP算法的基本原理可以归纳为以下几个步骤:1.初始化网络的权值和偏置。
2.前向传播:输入数据通过网络的各个层,产生输出结果。
3.计算输出层误差:根据预测值和实际值之间的差异,计算输出层的误差。
4.反向传播:将输出层误差反向传播到隐藏层和输入层,并计算每个神经元的误差。
5.计算梯度:根据误差和激活函数的导数,计算每个权值和偏置的梯度。
6.根据梯度下降的思想,按照一定的学习率调整每个权值和偏置的值。
7.重复步骤2~6,直到达到最小化误差的目标。
需要注意的是,BP算法可能会面临一些问题,例如局部极小值和过拟合等。
为了解决这些问题,可以采用一些改进的技术,例如随机梯度下降、正则化等方法。
总之,BP算法是一种通过调整权值和偏置来训练人工神经网络的常用算法。
第三讲(2)人工神经网络(BP算法)
1974年,Werbos已提出了该方法
2。弱点 :训练速度非常慢、局部极小点的逃离问题、算法 不一定收敛。 3。优点:广泛的适应性和有效性。
4.1 概述
一、简介
BP算法即反向传播算法,有时也称为BP模型; BP算法是为了解决多层前向神经网络的权系数优化而提出来
的,通常暗示着神经网络的拓扑结构是一种无反馈的多层前向
Xim = Yi
(期望输出)
误差信号e
反向传播修改权系数
2、反向传播 称 为一般化的Delta法则,由公式可知 求取本层 dik时,要用到高一层的 dik+1 ;可见,误差函数的求 取是从输出层开始,到输入层的反向传播过程; 通过多个样本的反复训练,同时向误差渐渐减小的方向对权 系数进行修正,以达最终消除误差。从上面公式也可以知道,
Real Distribution
Overfitted
4.2 BP网的学习算法
二、BP算法原理 (六)几个问题
收敛速度问题 局部极小点问题 网络瘫痪问题 :训练中当训练步长会变得非常小,将导致训练速度降得非 常低,最终导致网络停止收敛 稳定性问题 步长问题 BP网络的收敛是基于无穷小的权修改量 步长太小,收敛就非常慢 步长太大,可能会导致网络的瘫痪和不稳定 自适应步长,使得权修改量能随着网络的训练而不断变化。
输出Y=(Y1,Y2,…,Yn)。 3.计算各层的输出。 对于第k层第i个神经元的输出Xik,有:
4.2 BP网的学习算法
二、BP算法原理 (四)BP算法的执行步骤 4.求各层的学习误差dik对于输出层有:
If k=m
else
5.修正权系数Wij和阀值θ
4.2 BP网的学习算法
二、BP算法原理 (四)BP算法的执行步骤
阐述bp神经网络的原理
阐述bp神经网络的原理
BP神经网络全称为反向传播神经网络,是一种常用的人工神经网络模型。
其原理基于两个基本思想:前向传播和反向误差传播。
前向传播:BP神经网络是一个多层感知器,由输入层、隐藏层和输出层组成。
输入层接收外部输入的数据,隐藏层负责处理输入,并传递给输出层,输出层根据处理结果生成输出。
隐藏层和输出层的每个神经元都有一个权重向量,用于对输入数据进行线性组合。
然后,通过激活函数对线性组合结果进行非线性变换,得到该神经元的输出。
隐藏层和输出层的每个神经元的输出都会作为下一层神经元的输入。
反向误差传播:当神经网络的输出与期望输出之间存在差异时,需要通过反向传播算法来调整权重,以减小这个误差。
算法的基本思想是将误差从输出层向隐藏层逐层传递,通过调整每个神经元的权重,最终使得网络的输出与期望输出尽可能接近。
具体实现时,首先计算输出层的误差,然后根据误差调整输出层的权重。
接下来,将误差反向传播到隐藏层,再根据误差调整隐藏层的权重。
这个过程会不断迭代,直到网络的输出与期望输出的误差足够小。
通过反向误差传播算法,BP神经网络可以学习到输入-输出的映射关系,从而能
够对未知输入进行预测或分类。
然而,BP神经网络也存在一些问题,例如容易陷入局部极小值、对初始权重较敏感等,因此在实际应用中需要进行一定的调优和训练策略。
BP算法介绍范文
BP算法介绍范文BP算法,即反向传播算法(Back propagation algorithm),是一种经典的人工神经网络(Artificial Neural Network,ANN)训练算法。
它通过反向传播误差信号,根据目标函数的梯度调整网络的参数,以降低网络的输出误差,从而实现学习和逼近任意复杂函数的目的。
BP算法是一种监督式学习算法,需要训练数据集作为输入,即输入-输出样本集。
BP算法的基本原理是利用链式法则对网络的每一层参数进行更新。
首先,通过正向传播计算神经网络的输出值。
然后,通过反向传播计算输出误差,并根据误差对网络的权值和偏置项进行调整。
具体来说,BP算法可以分为三个主要的步骤:正向传播、误差计算和反向传播。
正向传播:在正向传播中,输入样本通过神经网络的前向运算,逐层传递,并计算每一层的输出值。
首先将输入样本传递到输入层,然后通过各层的神经元激活函数计算每一层的输出值。
每一层的输出值都作为下一层的输入,直到最后一层输出层。
误差计算:经过正向传播,神经网络得到了输出层的输出值。
然后,通过计算输出值与目标值之间的误差,确定网络的预测结果与真实结果之间的差别。
误差通常使用均方误差(Mean Square Error,MSE)或交叉熵(Cross Entropy)来进行计算。
反向传播:在反向传播中,误差信号从输出层向输入层进行传递,并根据误差信号对网络的参数进行调整。
首先,计算输出层的误差信号,并将误差信号向输入层逐层传递。
在每一层,根据误差信号和各层的输出值,计算该层的参数的梯度。
通过梯度下降法,根据梯度的方向和幅度,更新每一层的权值和偏置项。
在反向传播过程中,需要不断迭代调整参数,直到网络的输出误差满足一定的停止条件。
BP算法的优缺点:BP算法具有以下优点:1.神经网络具有非常强的逼近能力,可以逼近任意复杂的函数关系。
2.BP算法可以通过训练样本进行自适应学习,不需要人工设计特征和规则。
bp算法的设计与实现
bp算法的设计与实现一、BP算法的概述BP算法,全称为反向传播算法,是一种常用的人工神经网络学习算法。
其主要思想是通过不断地调整神经元之间的权重和阈值,使得网络输出与期望输出之间的误差最小化。
BP算法的核心在于误差反向传播,即将输出层的误差逐层向前传播至输入层,从而实现对权值和阈值的更新。
二、BP算法的设计1. 神经网络结构设计BP算法需要先确定神经网络的结构,包括输入层、隐藏层和输出层。
其中输入层负责接收外部输入数据,隐藏层通过变换将输入数据映射到高维空间中,并进行特征提取和抽象表示。
输出层则将隐藏层处理后的结果映射回原始空间中,并得出最终结果。
2. 激活函数设计激活函数用于计算神经元输出值,在BP算法中起到了非常重要的作用。
常见的激活函数有sigmoid函数、ReLU函数等。
其中sigmoid函数具有平滑性和可导性等优点,在训练过程中更加稳定。
3. 误差计算方法设计误差计算方法是决定BP算法效果好坏的关键因素之一。
常见的误差计算方法有均方误差法、交叉熵误差法等。
其中均方误差法是最常用的一种方法,其计算公式为:E = 1/2*(y - t)^2,其中y为网络输出值,t为期望输出值。
4. 权重和阈值调整方法设计权重和阈值调整方法是BP算法的核心所在。
常见的调整方法有梯度下降法、动量法、RMSprop等。
其中梯度下降法是最基础的一种方法,其核心思想是通过不断地迭代来更新权重和阈值。
三、BP算法的实现1. 数据预处理在使用BP算法进行训练前,需要对输入数据进行预处理。
常见的预处理方式包括归一化、标准化等。
2. 神经网络初始化神经网络初始化需要设置初始权重和阈值,并将其赋给神经元。
初始权重和阈值可以随机生成或者根据经验设置。
3. 前向传播前向传播过程中,输入数据从输入层开始逐层传递至输出层,并通过激活函数计算出每个神经元的输出值。
4. 反向传播反向传播过程中,先计算出输出层误差,并逐层向前传播至输入层。
BP神经网络
BP神经网络BP神经网络,也称为反向传播神经网络(Backpropagation Neural Network),是一种常见的人工神经网络类型,用于机器学习和深度学习任务。
它是一种监督学习算法,用于解决分类和回归问题。
以下是BP神经网络的基本概念和工作原理:神经元(Neurons):BP神经网络由多个神经元组成,通常分为三层:输入层、隐藏层和输出层。
输入层接收外部数据,隐藏层用于中间计算,输出层产生网络的最终输出。
权重(Weights):每个连接两个神经元的边都有一个权重,表示连接的强度。
这些权重是网络的参数,需要通过训练来调整,以便网络能够正确地进行预测。
激活函数(Activation Function):每个神经元都有一个激活函数,用于计算神经元的输出。
常见的激活函数包括Sigmoid、ReLU(Rectified Linear Unit)和tanh(双曲正切)等。
前向传播(Forward Propagation):在训练过程中,输入数据从输入层传递到输出层的过程称为前向传播。
数据经过一系列线性和非线性变换,最终产生网络的预测输出。
反向传播(Backpropagation):反向传播是BP神经网络的核心。
它用于计算网络预测的误差,并根据误差调整网络中的权重。
这个过程分为以下几个步骤:1.计算预测输出与实际标签之间的误差。
2.将误差反向传播回隐藏层和输入层,计算它们的误差贡献。
3.根据误差贡献来更新权重,通常使用梯度下降法或其变种来进行权重更新。
训练(Training):训练是通过多次迭代前向传播和反向传播来完成的过程。
目标是通过调整权重来减小网络的误差,使其能够正确地进行预测。
超参数(Hyperparameters):BP神经网络中有一些需要人工设置的参数,如学习率、隐藏层的数量和神经元数量等。
这些参数的选择对网络的性能和训练速度具有重要影响。
BP神经网络在各种应用中都得到了广泛的使用,包括图像分类、语音识别、自然语言处理等领域。
BP算法推导范文
BP算法推导范文BP算法(Back Propagation Algorithm,反向传播算法)是一种用于训练人工神经网络的监督学习算法。
它通过计算神经网络中每个神经元的误差,并将这个误差传播回网络中的每一层来更新权重,以最小化网络的总误差。
本文将详细介绍BP算法的推导过程。
BP算法的推导基于梯度下降法,因此首先需要了解梯度下降法的原理。
梯度下降法是一种通过迭代的方式来寻找目标函数的最小值的优化算法。
对于一个函数,梯度下降法选择一个初始点,在该点求取函数的梯度,然后沿着负梯度方向调整初始点的位置,以降低函数值。
这个过程将会不断进行,直到达到一些停止条件。
在BP算法中,目标函数是网络输出与实际值之间的误差,我们的目标是最小化这个误差。
我们假设神经网络的目标函数可以通过用平方误差度量实现,即将网络预测输出与目标输出之间的差的平方求和作为误差函数。
该函数的定义如下:E=∑1/2(y-t)²其中,E是误差函数,y是网络的预测输出,t是目标输出。
BP算法的核心思想是通过反向传播误差来更新网络的权重。
通过计算输出层每个神经元的误差,然后将这个误差沿着网络的反方向传播到每一层的神经元中,最后通过一个梯度下降法来更新权重。
下面是BP算法的推导过程:1.初始化网络权重。
随机选择一个初始权重值,通常来说,这个初始权重值是随机分布的。
2.前向传播。
将输入样本输入到网络中,计算每个神经元的输出。
根据权重和激活函数的定义,可以知道每个神经元的输出为:y=f(w·x+b)其中,f是激活函数,w是权重,x是输入样本,b是偏置。
3.计算输出层的误差。
通过将网络的预测输出减去目标输出,可以得到输出层每个神经元的误差。
即:δ⁽ⁿ⁾=y⁽ⁿ⁾-t其中,δ⁽ⁿ⁾是输出层的误差,y⁽ⁿ⁾是网络的预测输出,t是目标输出。
4.反向传播误差。
从输出层开始,将误差反向传播到每一层的神经元中。
通过链式法则,可以得到每个神经元的误差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(������������������ − �������Leabharlann ���������� )2 )/2
BP 网络的权值修正公式为 ������ ������������ =������ ������������ (t)+η������������������ ������������������ ������������������ = f ������������������������������ ������������������ − ������������������
1
BP 人工神经网络模型的构造和评述
1.1BP 神经网络概言
BP 神经网络,即误差反向传播神经网络 ,是神经网络模型中应用最广泛的一 种。它由输入层、隐含层和输出层构成。假设 BP 神经网络每层有 N 个节点,作用 函数为非线性的 Sigmoid 型函数,一般采用 f(x)=1/(1+������ −������ ),学习集包括 M 个样本模 式(������������ ,������������ )。 对第 P 个学习样本(P=1,2,...,M),节点 j 的输总和记为������������������������������ ,输出记为������������������ , 则: ������������������������������ =
���������� =
������ ������ =1 ������ ������ ������ ������ 2 ������ 2 : ������ ������ =1 ������ ������ : ������ =1 ������ ������
显而易见:|ρ������������ |≤1. ρ������������ 愈接近±1,表示两序列������������������ 与������������������ 的线性相关程度愈大,互相回归的离散度 愈小;反之,则两序列的线性相关程度愈小,互相回归的离散度愈大。 定义 1°同层隐节点 i 和 j 的相关系数 ρ������������ =
2 设������������������ 是隐节点 i 在学习第 p 个样本时的输出,������������������ 隐节点 j 在学������������ 习第 p 个样
本时的输出,N 为学习样本总数 , 则������������ =
1 ������ ������ ������ =1 ������������������
东华大学研究生课程论文封面
教师填写:
得分
任课教师签名
年 月 日
学生填写:
姓名 专业 课程名称 任课教师 上课时间 递交时间 20 至 20
年 月
学号 导师
课程学分 学年
日
第
学期
星期
本人郑重声明:我恪守学术道德,崇尚严谨学风。所呈交的课程论文,是本 人独立进行研究工作所取得的成果。除文中已明确注明和引用的内容外,本论文 不包含任何其他个人或集体已经发表或撰写过的作品及成果的内容。 论文为本人 亲自撰写,我对所写的内容负责,并完全意识到本声明的法律结果由本人承担。
C2 为规定的下限值,一般C1 取 0.8~0.9,C2 取 0.001~0.01。 规则 2 若S������ <C2 ,则节点 i 的作用如同阀值,可与阀值合并,即节点 i 被删除。
2.2
神经网络学习参数的自适应学习
在传统的 BP 神经网络模型中,对学习参数η 的选取一般都是根据建模者的经 验选取一个值。但事实上η 的选取对算法的成败有着重要影响。BP 神经网络模 型实际上是一个多元函数的优化问题,即以连结权系数为变量,误差函数最小为目 标的优化问题。当求出对连结权的梯度后,对连结权进行修正时,学习速率η 实际 上是一个沿负梯度方向的步长问题 ,步长过大将使误差函数发生振荡 ,步长过小, 收敛过慢。 并且在不同的点,可选步长也不一样。 总之,不存在原 BP 算法中所提到 的固定学习速率。 对于学习参数η 的选取,我们可以引入学习参数自适应算法加以确定。其基 本思想是:当 Wji 远离稳定点(学习要达到的目标点)时,η 取较大值,而当其逼近稳 定点(E1※0)时,η 取较小值。具体作法为: η (t+1)= η(t)·E1 (t)/E1 (t-1) 其中,E1 =
������
,对于输出节点
f(������������������������������ )
������������������ ������������������ ,对于输入节点
上式中引入学习速率η ,是为了加快网络的收敛速度。通常权值修正公式中还需
加一个惯性参数 a,从而有: ������ ������������ =������ ������������ (t)+η������������������ ������������������ +a(������ ������������ (t)− ������ ������������ (t-1)) 式中,a 为一常数项,它决定上一次的权值对本次权值的影响。其具体算法步骤 详见文献[1]。
������������ =������������������ -������
1
������ ������ ������ =1 ������������������ =������������������ -������
则两序列������������������ 与������������������ (p=1,„,N)的相关系数为:
2
2.1
BP 人工神经网络模型的改进
BP 人工神经网络结构的自我调整
在 BP 人工神经网络拓扑结构中,输入节点与输出节点是由问题的本身决定的, 关键在于隐层的层数与隐节点的数目。对于隐层的层数,许多学者作了理论上的 研究。Lippmann[2]和 Cyberko[3]曾指出,有两个隐层,就可以解决任何形式的分类 问题;后来 Robert Hecht Nielson[5]等人研究进一步指出:只有一个隐层的神经网络, 只要隐节点足够多,就可以以任意精度逼近一个非线性函数。相对来说,隐节点数 的选取很困难。 隐节点少了,学习过程不可能收敛;隐节点多了,网络性能下降,节点 冗余。为了找到合适的隐节点数,最好的办法是在网络的学习过程中,根据环境要 求,自组织地学习、调整自己的结构,最后得到一个大小合适的神经网络模型。
������ ������ =0
������ ������������ ������������������
������������������ =f(������������������������������ )
如果任意设置网络初始权值,那么对每个输入样本 P,网络输出与期望输出(������������������ ) 间的误差为 E=∑������������ =(
������������ =
1 ������
������ ������ =1 ������������������
令������������ =������������������ -������
1
������ ������ =1 ������������������ =������������������ -������������
1.2 传统 BP 网络的评述
传统 BP 网络模型把一组样本的输入/输出问题变为一个非线性优化问题,使 用了优化中的最普通的梯度下降算法,对问题的识别具有很强的功能,对于复杂的 非线性模型仿真从理论上来说其误差可以达到任意小的程度。 但它仍然存在一些 缺陷: 1)传统的 BP 网络既然是一个非线性优化问题,这就不可避免地存在局部极小 问题。网络的极值通过沿局部改善的方向一小步一小步进行修正 ,力图达到使误 差函数 E 最小化的全局解,但实际上常得到的是局部最优点。 2)学习过程中,下降慢, 学习速度缓,易出现一个长时间的误差平坦区 ,即出现 平台。 3)网络结构选择不一,网络过大,在训练中效率不高,而且还会由于过拟合造成 网络性能脆弱,容错性下降,浮点溢出,而太小的网络可能根本不收敛。在实际应用 中,网络结构人为性较大,缺乏规则指导。
������ ������ =1 ������ ������ ������ ������ 2 ������ 2 : ������ ������ =1 ������ ������ : ������ =1 ������ ������
ρ������������ 说明隐节点 i 和 j 的相关程度,ρ������������ 过大,说明节点 i 和 j 功能重复,需要压缩合并。 定义 2°样本发散度S������ S������ =������
论文作者签名:
注:本表格作为课程论文的首页递交,请用水笔或钢笔填写。
人工神经网络 BP 算法的改进及其应用
摘 要:对传统的 BP 算法进行了改进,提出了 BP 神经网络动态全参数自调整 学习算法,又将其编制成计算机程序,使得隐层节点和学习速率的选取全部动态实 现,减少了人为因素的干预,改善了学习速率和网络的适应能力。 计算结果表明:BP 神经网络动态全参数自调整算法较传统的方法优越,训练后的神经网络模型不仅 能准确地拟合训练值,而且能较精确地预测未来趋势。 关键词:人工神经网络;BP 算法;自调整;自组织方法 近年来,国际上掀起了一股人工神经网络研究、开发应用的热潮。人工神经网 络的理论的应用已渗透到各个领域,并在智能控制、模式识别、计算机视觉、自 适应滤波和信号处理、非线性优化、自动目标识别、生物医学工程等方面取得了 显著成效。BP 神经网络模型是人工神经网络的重要模型之一。通常,BP 算法是通 过一些学习规则来调整神经元之间的连接权值,在学习过程中,学习规则以及网络 的拓扑结构不变。 然而,一个神经网络的信息处理功能不仅取决于神经元之间的连接强度 ,而且 与网络的拓扑结构(神经元的连接方式)、神经元的输入输出特性和神经元的阀值 有关。因而,神经网络模型要加强自身的适应和学习能力,应该知道如何合理地自 组织网络的拓扑结构,改变神经元的激活特性以及在必要时调整网络的学习参数 等。 本文基于此,在前人研究的基础上,对传统的 BP 算法进行了改进,提出了 BP 神 经网络动态全参数自调整学习算法,不仅加快了网络的收敛速度,而且可以优化网 络的拓扑结构,从而增强了 BP 神经网络的适应能力。