将军饮马问题例题讲解及答案
最值问题----将军饮马(一)
本节课你的收获是什么?
【问题解析】 △PMN周长即PM+PN+MN的最小值,此处 M、N均为折点,分别作点P关于OB、OA对称点P'、P'', 化PM+PN+MN为P'N+MN+P''M.当P'、N、M、P''共线时, 得△PMN周长的最小值,即线段P'P''长,连接OP'、OP'', 可得△OP'P''为等边三角形,所以P'P''=OP'=OP=8.
【问题解析】:此处点P为折点,可以作点D关于折点P 所在直线OA的对称: 也可以作点C的对称:
05 正方形中的将军饮马。
【问题描述】:如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,
DC=1,点P是AB上的动点,则PC+PD的最小值为( )
A.4
B.5
C.6
D.7
【问题解析】:作点C关于P点 所在直线AB的对称点C',当C'、 P、D共线时,PC+PD最小, 最小值为5,故选B.
05 正方形中的将军饮马。
【问题描述】:如图,正方形ABCD的边长是4,M在DC上,且DM=1, N是AC边上 的一动点,则△DMN周长的最小值是________。
【问题解析】:考虑DM为定值, 故求△DMN周长最小值即求 DN+MN最小值.点N为折点, 作点D关于AC的对称点,即点B, 连接BN交AC于点N,此时 △DMN周长最小.
04 将军饮马模型系列“一定两动”之点到线。
【问题描述】:在OA、OB上分别取点M、N,使得PM+MN最小。
初二将军饮马练习题及答案
初二将军饮马练习题及答案题目一:将军饮马练习阅读下面的短文,然后根据短文内容回答问题。
春秋时期,楚国的将军薛将军因在战场上立下赫赫战功,受到国王的嘉奖,被封为将军。
薛将军深感自己取得的成就来之不易,为了更好地提升自己的军事才能,他经常利用业余时间练习骑射。
一天,他饮酒之后,心血来潮,决定骑马练习。
他醉醺醺地骑在马背上,手握弓箭,身姿挺拔。
突然,他抬头目视远方的鹰,大声喊道:“马儿,你好生奔放,将你的速度发挥到极致。
”马儿似乎听懂了薛将军的话,使出浑身解数奔驰起来。
薛将军稳稳地坐在马背上,准备放箭。
问题:1. 薛将军为什么经常练习骑射?2. 为什么薛将军喊马儿将速度发挥到极致?3. 薛将军的骑射练习中有哪些亮点?答案:1. 薛将军经常练习骑射是为了提升自己的军事才能。
2. 薛将军喊马儿将速度发挥到极致是为了更好地测试自己的骑射技巧。
3. 薛将军的骑射练习中的亮点包括:饮酒后决定进行练习,以更高难度的状态来挑战自己;喊马儿将速度发挥到极致,考验自己的射击准确性和反应能力。
题目二:将军饮马练习答案解析问题:1. 薛将军为什么经常练习骑射?答案解析:薛将军经常练习骑射是为了更好地提升自己的军事才能。
他深感自己在战场上立下的赫赫战功来之不易,因此希望通过练习骑射来增强自己的战斗力。
2. 为什么薛将军喊马儿将速度发挥到极致?答案解析:薛将军喊马儿将速度发挥到极致是为了更好地测试自己的骑射技巧。
他希望在马儿飞驰的情况下,能够准确地射箭,展现出自己的高超技艺。
3. 薛将军的骑射练习中有哪些亮点?答案解析:薛将军的骑射练习中的亮点包括:a) 饮酒后决定进行练习:饮酒之后,薛将军心血来潮,决定骑马练习。
这展现了他的勇气和自信,也体现了他对自己技艺的自豪感。
b) 喊马儿将速度发挥到极致:薛将军对马儿的速度要求极高,希望它能够发挥出最快的速度。
这要求他自己的反应能力和射击准确性都必须达到非常高的水平。
总结:薛将军通过练习骑射来提升自己的军事才能,展示了他在战场上立下的赫赫战功所带来的成就感。
将军饮马问题例题
将军饮马问题例题
例题:一个将军饮马,有三个酒坛,其中一个酒坛里装着毒酒,另外两个酒坛里装着普通的酒。
这三个酒坛外观相同,将军无法通过外观来判断哪个酒坛是有毒的。
在喝下一杯毒酒后,将军将会立即死亡。
现在将军有一匹马,这匹马可以闻出毒酒,如果马喝下一杯毒酒,它将会在30分钟后死亡。
将军只有30
分钟的时间来确定哪个酒坛里装着毒酒,并且不允许酒坛之间进行任何类型的测量。
解法:将军可以按照以下步骤确定毒酒所在的酒坛:
1. 为了节省时间,将将军的马分成三组,每组10匹马。
标记
这三组马为A、B、C。
2. 让A组的马尝试第一个酒坛,让B组尝试第二个酒坛,C
组尝试第三个酒坛。
3. 让所有的马者都喝下一杯酒。
4. 等待15分钟。
5. 如果A组的马中有马死亡,那么第一个酒坛是有毒的;如
果B组的马中有马死亡,那么第二个酒坛是有毒的;如果C
组的马中有马死亡,那么第三个酒坛是有毒的。
6. 如果在15分钟内没有任何马死亡,那么第一个酒坛是安全的,因此第二个酒坛是有毒的;如果A和B组的马都没有死
亡,那么第三个酒坛是有毒的。
这样,将军可以在30分钟内确定哪个酒坛里装着毒酒。
专题02 最值模型之将军饮马(遛马、过桥)模型(解析版)
专题02 最值模型之将军饮马(遛马、过桥)模型将军遛马模型和将军过桥(造桥)模型是将军饮马的姊妹篇,它是在将军饮马的基础上加入了平移的思想,主要还是考查转化与化归等的数学思想。
在各类考试中都以中高档题为主,本专题就将军遛马模型和将军过桥(造桥)模型进行梳理及对应试题分析,方便掌握。
在解决将军遛马和将军过桥(造桥),不管是横向还是纵向的线段长度(定长),只要将线段按照长度方向平移即可,即可以跨越长度转化为标准的将军饮马模型,再依据同侧做对称点变异侧,异侧直接连线即可。
利用数学的转化思想,将复杂模型变成基本模型就简单容易多了,从此将军遛马和将军过桥(造桥)再也不是问题!模型1.将军遛马模型【核心思路】去除定量,组合变量(通过几何变换将若干段原本彼此分类的线段组合到一起)。
【模型解读】已知A 、B 是两个定点,P 、Q 是直线m 上的两个动点,P 在Q 的左侧,且PQ 间长度恒定,在直线m 上要求P 、Q 两点,使得PA +PQ +QB 的值最小。
(原理用平移知识解)(1)点A 、B 在直线m 两侧:(2)点A 、B 在直线m 同侧:如图1 如图2(1)如图1,过A 点作AC ∥m ,且AC 长等于PQ 长,连接BC ,交直线m 于Q ,Q 向左平移PQ 长,即为P 点,此时P 、Q 即为所求的点。
(2)如图2,过A 点作AE ∥m ,且AE 长等于PQ 长,作B 关于m 的对称点B ’,连接B ’E ,交直线m 于Q ,Q 向左平移PQ 长,即为P 点,此时P 、Q 即为所求的点。
【最值原理】两点之间线段最短。
例1.(2023·黑龙江·九年级校考期中)问题背景(1)如图(1),在公路l 的一侧有A ,B 两个工厂,A ,B 到公路的垂直距离分别为1km 和3km ,A ,B 之间的水平距离为3km .现需把A 厂的产品先运送到公路上然后再转送到B 厂,则最短路线的长是_____km .问题探究(2)如图(2),ACB △和DEF V 是腰长为2的两个全等的等腰直角三角形,90ACB DEF Ð=Ð=°,点A ,D 重合,点B ,F 重合,将ACB △沿直线AB 平移,得到A C B ¢¢¢△,连接QQ P【答案】(1)5km (2)存在,最小值为25(3)最短路线长为15km【分析】(1)根据最短路径的作法,找出最短路径A B ¢,再利用矩形的性质,求出BE 和A E ¢利用勾股定理即可求出最短路径;(2)根据平移的性质可知四边形CQEC ¢和AQEA ¢均为平行四边形,再利用最短路径作法得出则 AQ A Q ¢=,AQ BQ A Q ¢=\+\ 当点Q 与点P 重合时, AQ 连接AA ¢, 交l 于点C , 过点由平移知CC AB ¢∥,CC QE ¢\∥.又 CQ EC ¢∥,\四边形 CQEC ¢是平行四边形,CC QE \¢=,CQ EC =¢由平移知CC AA ¢¢=,AA QE\¢=又n AB ∥,\四边形 AQEA ¢是平行四边形,AQ A E \=¢1A E C E AQ CQ QA CQ \+=+=+³¢¢\当点Q 与点P 重合时, A E C E ¢+¢过点C 作 1CG A A ^交 1A A 的延长线于点2AC AE ==Q ,2CG \=,13A G =例3.(2022·四川自贡·中考真题)如图,矩形ABCD 中,42AB BC ==,,G 是AD 的中点,线段EF 在边AB 上左右滑动;若1EF =,则GE CF +的最小值为____________.【答案】【分析】如图,作G关于AB的对称点G',在CD上截取CH=1,然后连接HG'交AB于E,在EB上截取EF=1,此时GE+CF的值最小,可得四边形EFCH是平行四边形,从而得到G'H=EG'+EH=EG+CF,再由勾股定理求出HG'的长,即可求解.【详解】解:如图,作G关于AB的对称点G',在CD上截取CH=1,然后连接HG'交AB于E,在EB上截取EF=1,此时GE+CF的值最小,∴G'E=GE,AG=AG',∵四边形ABCD是矩形,∴AB∥CD,AD=BC=2∴CH∥EF,∵CH=EF=1,∴四边形EFCH是平行四边形,∴EH=CF,∴G'H=EG'+EH=EG+CF,∵AB=4,BC=AD=2,G为边AD的中点,∴AG=AG'=1 ∴DG′=AD+AG'=2+1=3,DH=4-1=3,+的最小值为∴HG¢===GE CF【点睛】此题主要考查了利用轴对称求最短路径问题,矩形的性质,勾股定理等知识,确定GE+CF最小时E,F位置是解题关键.【答案】35【分析】连接BD与AC交于点O,延长Q四边形ABCD是菱形,AC\\=+=,由平移性质知,246OM\+=FM FD\=,DF DE AF当点A、F、M三点共线时,\+的最小值为:AMDF DE模型2.将军过桥(造桥)模型【核心思路】去除定量,组合变量(通过几何变换将若干段原本彼此分类的线段组合到一起)。
专题14 将军饮马问题(解析版)
专题14将军饮马问题模型的概述:唐朝诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题:将军在观望烽火之后从山脚下的A点出发,走到河边让战马饮水后再到B点宿营。
问如何行走才能使总的路程最短。
模型一(两点在河的异侧):将军在观望烽火之后从山脚下的A点出发,走到河边让战马饮水后再到B点宿营,将在何处渡河使行走距离最短并求最短距离。
方法:如右图,连接AB,与线段L交于点M,在M处渡河距离最短,最短距离为线段AB的长。
模型二(两点在河的同侧):将军在观望烽火之后从山脚下的A点出发,需先走到河边让战马饮水后再到B 点宿营,将在何处渡河使行走距离最短并求最短距离。
方法:如右图,作点B关于直线L的对称点B’,连接AB’,与直线L的交点即为所求的渡河点,最短距离为线段AB’的长。
模型三:如图,将军同部队行驶至P处,准备在此驻扎,但有哨兵发现前方为两河AB、BC的交汇处,为防止敌军在对岸埋伏需派侦察兵到河边观察,再返回P处向将军汇报情况,问侦察兵在AB、BC何处侦查才能最快完成任务并求最短距离。
数学描述:如图在直线AB、BC上分别找点M、N,使得∆PMN周长最小。
方法:如右图,分别作点P关于直线AB、BC的对称点P’、P’’,连接P’P’’,与两直线的交点即为所求点M、N,最短距离为线段P’P’’的长。
模型四如图,深夜为防止敌军在对岸埋伏,将军又派一队侦察兵到河边观察,并叮嘱观察之后先去存粮位置点Q处查看再返回P处向将军汇报情况,问侦察在AB、BC何处侦查才能最快完成任务并求最短距离。
数学描述:如图在直线AB、BC上分别找点M、N,使得四边形PQNM周长最小。
方法:如右图,分别作点P、点Q关于直线AB、BC的对称点P’、Q’,连接P’Q’,与两直线的交点即为所求点M、N,最短距离为线段(PQ+P’Q’)的长。
模型一-模型四的理论依据:两点之间线段最短。
模型五:已知点P在直线AB、BC的外侧,在直线AB和BC上分别取一点M、N,求PM+PN的最小值方法:如右图,过点P作PN⊥BC,垂足为点N,PN与AB相交于点M,与两直线的交点即为所求点M、N,最短距离为线段PN的长。
专题07 最值模型之将军饮马精讲练(11大模型)(解析版)
专题07最值模型之将军饮马精讲练(11大模型)学校:___________姓名:___________班级:___________考号:___________模型背景【模型来历】早在古罗马时代,传说亚历山大城有一位精通数学和物理的学者,名叫海伦.一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题.将军每天从军营A出发,先到河边饮马,然后再去河岸同侧的军营B开会,应该怎样走才能使路程最短?这个问题的答案并不难,据说海伦略加思索就解决了它.从此以后,这个被称为“将军饮马”的问题便流传至今.【考点】两点之间线段最短,垂线段最短;三角形两边三边关系;轴对称;平行四边形--平移;【解题思路】学会化归,移花接木,化折为直【核心思想】共线与垂线段最短。
模型精讲一、两动一定型(2种模型):两定点到直线上一动点的距离和最小。
例1-1:如图1-1在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB最小.【证明】图1-2。
PA+PB的最小值即为线段AB的长度理由:在l上任取异于点P的一点P´,连接AP´、BP´,在△ABP’中,AP´+BP´>AB,即AP´+BP´>AP+BP ∴P为直线AB与直线l的交点时,PA+PB最小.图1-2lPABP'lAB图1-1反思:解决本题很简单,但却点明了将军饮马的解题思路。
【变式】例1-2 如图1-3,如图,定点A 和定点B 在定直线l 的同侧 要求:在直线l 上找一点P ,使得PA+PB 值最小 。
作法:图1-41.作A 关于直线CD 对称点A’。
2.连A’B 。
3.交点P 就是要求点。
连线长A’B 就是PA+PB 最小值。
【证明】:图1-5在l 上任取异于点P 的一点P´,连接AP´、BP´, 在△ABP’中,AP´+BP´>AB ,即AP´+BP´>AP+BP ∴P 为直线AB 与直线l 的交点时,PA+PB 最小.二、造桥选址,移花接木。
初中数学最值系列之将军饮马
最值系列之——将军饮马一、什么是将军饮马?【问题引入】“白日登山望烽火,黄昏饮马傍交河”,这是唐代诗人李颀《古从军行》里的一句诗。
而由此却引申出一系列非常有趣的数学问题,通常称为“将军饮马”。
【问题描述】如图,将军在图中点A处,现在他要带马去河边喝水,之后返回军营,问:将军怎么走能使得路程最短?A B将军军营河【问题简化】如图,在直线上找一点P使得P A+PB最小?【问题分析】这个问题的难点在于PA+PB是一段折线段,通过观察图形很难得出结果,关于最小值,我们知道“两点之间,线段最短”、“点到直线的连线中,垂线段最短”等,所以此处,需转化问题,将折线段变为直线段.【问题解决】作点A关于直线的对称点A’,连接P A’,则P A’=P A,所以P A+PB=P A’+PB当A’、P、B三点共线的时候,P A’+PB=A’B,此时为最小值(两点之间线段最短)【思路概述】作端点(点A或点B)关于折点(上图P点)所在直线的对称,化折线段为直线段.二、将军饮马模型系列【一定两动之点点】在OA、OB上分别取点M、N,使得△PMN周长最小.B B此处M、N均为折点,分别作点P关于OA(折点M所在直线)、OB(折点N所在直线)的对称点,化折线段PM+MN+NP为P’M+MN+NP’’,当P’、M、N、P’’共线时,△PMN周长最小.【例题】如图,点P是∠AOB内任意一点,∠AOB=30°,OP=8,点M和点N分别是射线OA和射线OB上的动点,则△PMN周长的最小值为___________.P O B AMN【分析】△PMN周长即PM+PN+MN的最小值,此处M、N均为折点,分别作点P关于OB、OA对称点P’、P’’,化PM+PN+MN为P’N+MN+P’’M.P''A当P’、N、M、P’’共线时,得△PMN周长的最小值,即线段P’P’’长,连接OP’、OP’’,可得△OP’P’’为等边三角形,所以P’P’’=OP’=OP=8.A【两定两动之点点】在OA、OB上分别取点M、N使得四边形PMNQ的周长最小。
专题36 几何最值之将军饮马问题【热点专题】(含答案解析)
模型
作法
结论
△PCD 周
点P在 ∠AOB 内部,在 OB 边上找点 D, OA 边上找点 C,使得△PCD 周长最 小.
分别作点 P 关 于 OA、OB 的对称点 P′、P″,连接
长的最小 值为 P′P″
P′P″,交 OA、OB 于点 C、D,点 C、
D 即为所求.
点P在 ∠AOB 内部,在 OB 边上找点 D, OA 边上找点 C,使得 PD+CD 最小.
【例 11】 11.村庄 A 和村庄 B 位于一条小河的两侧,若河岸彼此平行,要架设一座与河岸垂直 的桥,桥址应如何选择,才使 A 与 B 之间的距离最短?
试卷第 7页,共 11页
12.如图,在 Rt△ABC 中, ACB 90 , AC 6 , AB 12 ,AD 平分 CAB ,点 F 是 AC 的中点,点 E 是 AD 上的动点,则 CE EF 的最小值为( )
试卷第 10页,共 11页
试卷第 11页,共 11页
参考答案: 1. 3
4 【分析】作 A 关于 x 3的对称点 A ,连接 AB 交直线 x 3与点 C,先求得 BA 的解析式,然 后将 x 3代入直线 BA 的解析式,从而可求得 y 的值. 【详解】解:作 A 关于 x 3 的对称点 A ,连接 AB 交直线 x 3 与点 C.
【例 5】 5.如图,点 P 是∠AOB 内任意一点,且∠AOB=40°,点 M 和点 N 分别是射线 OA 和 射线 OB 上的动点,当△PMN 周长取最小值时,则∠MPN 的度数为( )
试卷第 4页,共 11页
A.140° 【例 6】
B.100°
C.50°
D.40°
6.如图,在正方形 ABCD 中,点 E,F 分别是边 AD,BC 的中点,连接 DF,过点 E
2020中考数学专题8——最值问题之将军饮马-含答案
2020 中考专题 8 ——最值问题之将军饮马【例题分析】例 1.如图,在平面直角坐标系中, Rt △OAB 的顶点 A 在 x 轴的正半轴上,顶点 B 的坐标为 (3, 3 ), 点 C 的坐标为 (1 ,0),点P 为斜边 OB 上的一动点,则 PA +PC 的最小值为.2中,∠ BAE =120°,∠ B =∠ E =90°, AB =BC =1,AE =DE = 2, N . AMN +∠ ANM =tan ∠ MBC 的值为动在 BC 、 DE 上分别找一点 M 、 (1) 当△ AMN 的周长最小时,∠ (2) 求△ AMN 的(1) 求四边形 BMNE 周长最小值;[ 南瓜讲数学] 系列之中考专题且 CE=1,长为 2 的线段 MN 在 AC 上运例 4.在平面直角坐标系中,已知点 A(一 2,0),点 B(0 ,4),点 E 在 OB 上,且∠ OAE=∠ OBA .如图,将△ AEO 沿 x 轴向右平移得到△ AE′O′,连接 A' B、BE' .当 AB+BE' 取得最小值时,求点 E' 的坐标.例 5.如图,已知正比例函数 y=kx(k>0)的图像与 x轴相交所成的锐角为 70°,定点 A的坐标为(0, 4),P 为 y 轴上的一个动点, M、N 为函数 y= kx( k> 0)的图像上的两个动点,则 AM + MP+ PN 的最小值为.【巩固训练】1.如图 1 所示,正方形 ABCD 的面积为 12,△ ABE 是等边三角形,点 E 在正方形 ABCD 内,在对角线 AC 上有一点P,使 PD+PE 的和最小,则这个最小值为.2.如图 2,在菱形 ABCD 中,对角线 AC=6,BD= 8,点 E、F、 P 分别是边 AB、 BC、AC上的动点, PE+ PF 的最小值是.3.如图 3,在边长为 2 的等边△ ABC 中,D 为BC 的中点,E 是 AC 边上一点,则 BE+DE 的最小值为.4.如图 4 ,钝角三角形 ABC 的面积为 9,最长边 AB=6,BD 平分∠ ABC,点 M、N 分别是 BD、BC 上的动点,则 CM+ MN 的最小值为.5.如图 5,在△ ABC 中,AM 平分∠ BAC,点 D、E 分别为 AM、AB 上的动点,(1)若AC=4,S△ABC=6,则 BD+DE 的最小值为图1 图2 图4(2)若∠ BAC=30°, AB=8,则BD +DE 的最小值为.(3)若 AB=17,BC=10,CA=21,则 BD+DE 的最小值为.6.如图 6,在△ ABC 中, AB =BC = 4, S △ ABC = 4 3 ,点 一点,则 PK + QK 的最小值为 .7.如图 7,AB 是⊙O 的直径, AB =8,点M 在⊙O 上, 径 AB 上的一动点,则 PM +PN 的最小值为 . 8. 如图 8,在锐角△ ABC 中,AB =4,∠ BAC =45°,∠AD 和 AB 上的动点,则 BM +MN 的最小值是 .9. 如图 9 ,圆柱形玻璃杯高为 12 cm 、底面周长为 18 cm ,在杯内离杯底 4cm 的点 C 处有一滴蜂蜜, 此时一只蚂蚁正好在杯外壁,离杯上沿 4cm 与蜂蜜相对的点 A 处,则蚂蚁到达蜂蜜的最短距离为cm .10. 如图 10,菱形 OABC 中,点 A 在 x 轴上,顶点 C 的坐标为 (1, 3),动点 D 、E 分别在射线 OC 、OB 上,则 CE +DE +DB 的最小值是 .311. 如图 11,点 A (a ,1)、B (-1,b )都在双曲线 y =- 3( x< 0)上,点 P 、Q 分别是 x 轴、y 轴上x 的动点,当四边形 PABQ 的周长取最小值时, PQ 所在直线的解析式是 .12. 如图 12,点 P 是∠AOB 内任意一点, OP =5cm ,点 M 和点 N 分别是射线 OA 和射线 OB 上的 动点,△ PMN 周长的最小值是 5cm ,则∠ AOB 的度数是 .13. 如图 13,∠ AOB =30°,点 M 、N 分别在边 OA 、OB 上,且 OM = 1, ON = 3,点 P 、Q 分别在 边 OB 、OA 上,则 MP +PQ + QN 的最小值是 .14. 如图 14,在 Rt △ABC 中,∠ ACB =90°,点 D 是 AB 边的中点,过 D 作DE ⊥BC 于点 E . (1) 点 P 是边 BC 上的一个动点,在线段 BC 上找一点 P ,使得 AP + PD 最小,在下图中画出点 P ; (2) 在(1)的条件下,连接 CD 交AP 于点Q ,求 AQ 与PQ 的数量关系;BAC 的平分线交 BC 于点 D ,M 、N 分别是 MAB =20°, N 是弧 MB 的中点, P是直15.在矩形 ABCD 中, AB=6, BC= 8,G 为边 AD 的中点.(1) 如图 1,若 E 为 AB 上的一个动点,当△ CGE 的周长最小时,求 AE 的长.(2) 如图 2,若 E、F 为边 AB 上的两个动点,且 EF= 4,当四边形 CGEF 的周长最小时,求 AF 的长.1216.如图,抛物线 y x2 2x 4交 y轴于点 B,点A为 x轴上的一点,OA=2,过点A作直线 MNAB 2交抛物线与 M、N 两点.( 1) 求直线 AB 的解析式;(2) 将线段 AB 沿 y 轴负方向平移 t 个单位长度,得到线段 A1B1 ,求 MA1 MB1 取最小值时实数 t 的值 .图2020 中考专题 8 ——最值问题之将军饮马 参考答案例 1. 解:作 A 关于 OB 的对称点 D ,连接 CD 交 OB 于 P ,连接 AP ,过 D 作 DN ⊥OA于 N , 则此时 PA +PC 的值最小,∵DP =PA ,∴PA +PC =PD +PC =CD ,∵B (3, 3 ) ,∴ AB = 3,OA =3, ∵ tan ∠AOB = AB = 3,∴ ∠ AOB =30°,∴OB =2AB =2 3 ,OA 31 1 3 3 由三角形面积公× OA ×AB = ×OB ×AM ,∴AM = ,∴ A D =2× = 3,2222∵∠AMB =90° ,∠ B =60° ,∴∠ BAM =30°,∵ ∠ BAO =90°, ∴∠ OAM =60°, ∵DN ⊥OA ,∴∠ NDA =30° 1 3 ,∴ AN =1AD = 由勾股定理得:3 DN = 3 ,222∵C( 1 ,0) ,∴CN=3﹣ 1 ﹣ 3= 1,在 Rt △ DNC 中,由勾股定理得: DC = 31 ,22 22即 PA + PC 的最小值是31例 2. 解:作 A 关于 BC 和 ED 的对称点 A ′, A ″,连接 A ′A ″,交 BC 于 M ,交 ED 于 N ,则 A ′A ″即为△ AMN 的周长最小值.⑴作 EA 延长线的垂线,垂足为 H ,∠ BAE =120°,∴∠ AA ′A ″+∠ AA ″A ′= 60 °,∠AA ′A ″=∠ A ′AM ,∠AA ″A ′=∠EAN ,∴∠CAN =120°-∠AA ′A ″-∠AA ″A ′=60°, 也 就是说∠ AMN +∠ ANM =180°-60°=120°. ⑵过点 A ′作 EA 延长线的垂线,垂足为 H ,∵AB =BC =1,AE = DE =2,∴AA ′=2BA =2,AA ″=2AE =4, 则 Rt △ A ′HA 中,∵∠ EAB = 120°,∴∠ HAA ′= 60°,1∵ A ′H ⊥ HA ,∴∠ AA ″H =30°,∴ AH =1AA ′= 1,∴ A ′H = 3 ,A ″H =1+4=5,2∴A ′A ″=2 7 ,例3.解:作 EF∥AC 且 EF=2,连结 DF 交AC 于M,在 AC 上截取 MN=2,延长 DF 交BC 于 P ,作 FQ⊥BC 于 Q,作出点 E 关于 AC 的对称点 E′,则 CE′=CE= 1,将 MN 平移至E′F′处,则四边形 MNE ′ F ′为平行四边形,当 BM +EN =BM +FM = BF ′时,四边形 BMNE 的周长最小, 由∠ FEQ =∠ ACB =45°,可求得 FQ =EQ =1, tan ∠MBC = tan ∠PDC =例 4. 【提示】将△ AEO 向右平移转化为△ AEO 不动,点 移动的轨迹为一平行于 x 轴的直线,所以作点 点 E 1 ,连接 AE 1 ,与该直线交点 F 即为最小时点 长度即可求出点 E 向右平移的距离.例 5. 解:如图所示,直线 OC 、y 轴关于直线 y =kx 对称,直线 OD 、直线 y =kx 关于 y轴对称,点 A ′是点 A 关于直线 y = kx 的对称点.作 A ′E ⊥ OD 垂足为 E ,交 y 轴于点 P ,交直线 y = kx 于 M ,作 PN ⊥直线 y = kx 垂足为 N , ∵PN =PE ,AM =A ′M ,∴AM +PM +PN =A ′M +PM +PE =A ′E 最小(垂线段最短 ),在 RT △A ′EO 中,∵∠ A ′EO =90°, OA ′= 4,∠ A ′OE =3∠ AOM =60°,1∴OE = 1 OA ′= 2, A ′E = 42 22 =2 3 .2 ∴AM +MP +PN 的最小值为 23 .PQ ,PQ = 1 ,解PQ = 2 ,PC =CD PQ 2 433∵∠ DPC =∠ FPQ ,∠ DCP =∠ FQP ,∴△ PFQ ∽△PDC , PQ PQ QE EC2 3由对称性可求巩固训练】答案1.解:连接 BD,∵点 B 与 D 关于 AC 对称,∴PD=PB,∴PD+PE=PB+PE=BE 最小.∵正方形 ABCD 的面积为 12,∴AB=2 3 ,又∵△ ABE 是等边三角形,∴ BE= AB= 2 3 ,故所求最小值为 2 3 .2.解:∵四边形 ABCD 是菱形,对角线 AC=6,BD=8,∴AB=5,作E 关于 AC 的对称点 E′,作 E′F⊥BC 于F 交AC 于P,连接 PE,则E′F 即为 PE +PF 的最3.解:作 B 关于 AC 的对称点 B′,连接 BB′、B′D,交 AC 于 E,此时 BE+ED=B′E+ED=B′D,根据两点之间线段最短可知 B′D 就是 BE+ED 的最小值,∵ B、 B′关于 AC 的对称,∴ AC、BB′互相垂直平分,∴四边形ABCB′是平行四边形,∵三角形 ABC 是边长为 2,D 为 BC 的中点,∴ AD⊥BC,AD= 3 ,BD=CD=1,BB′=2AD =2 3 ,作 B′G⊥BC 的延长线于 G,∴ B′G= AD= 3 ,在Rt△B′BG 中,BG=3,∴DG=BG﹣BD=3﹣1=2,在Rt△B′DG 中,B′D=74.解:过点 C 作 CE⊥AB 于点 E,交 BD 于点 M,过点 M 作 MN⊥BC 于 N,∵BD平分∠ ABC, ME⊥AB 于点 E,MN⊥BC 于 N,∴ MN = ME,∴CE=CM+ME=CM+MN 是最小值.1∵三角形 ABC 的面积为 9 ,AB =6,∴×6CE = 9,∴ CE=3.2即 CM+MN 的最小值为 3.小值,AC BD=AD E′F,∴E′F=24,∴ PE+PF 的最小值为24125.提示:作点 E 关于 AM 的对称点 E′,BH⊥AC 于 H,易知 BD+DE 的最小值即为BH 的长. 答案: (1)3 ; (2)4 ;(3)8 .6.解:如图,过 A 作AH⊥BC 交 CB 的延长线于 H,∵ AB= CB = 4, S△ABC = 43 ,∴ AH=2 3 ,∴ cos∠ HAB=AH= 2 3=3,∴∠ HAB =30°,∴∠ ABH =60°,∴∠ ABC=120°,AB 4 2 ∵∠ BAC=∠ C=30°,作点 P 关于直线 AC 的对称点 P′,过P′作 P′Q⊥ BC 于 Q 交AC 于K,则 P′Q 的长度= PK + QK 的最小值,∴∠ P′AK =∠ BAC=30°,∴∠ HAP′=90°,∴∠ H =∠ HAP ′=∠ P′QH =90°,∴四边形 AP′QH 是矩形,∴ P′Q=AH=2 3 ,即 PK +QK 的最小值为 23 .7.解:作点 N 关于 AB 的对称点 N′,连接 OM、ON、ON′、MN′,则 MN′与 AB的交点即为 PM+ PN 的最小时的点, PM+ PN 的最小值= MN′,∵∠ MAB=20°,∴∠ MOB =2∠ MAB=2×20°=40°,11∵N 是弧 MB 的中点,∴∠ BON=1∠MOB=1×40°=20°,22由对称性,∠ N′OB=∠ BON =20°,∴∠ MON ′=∠ MOB+∠ N′OB=40°+20°=60°, 1 1∴△ MON ′是等边三角形,∴ MN′=OM=OB=1 AB=18 =4,2 2∴PM+PN 的最小值为 4,8.解:如图,作 BH ⊥AC ,垂足为 H,交 AD 于 M′点,过 M′点作 M′N′⊥AB,垂足为N′,则 BM ′+ M′N′为所求的最小值.∵AD 是∠BAC 的平分线,∴ M′H=M′N′,∴BH 是点 B 到直线 AC 的最短距离,2∵AB=4,∠ BAC=45°,∴ BH=AB sin45°= 4× 2=2 2.2∵BM+MN 的最小值是 BM′+M′N′=BM′+M′H=BH=2 2 .9.解:沿过 A 的圆柱的高剪开,得出矩形 EFGH ,过 C 作 CQ⊥ EF 于 Q,作 A 关于 EH 的对称点 A′,连接 A′C 交 EH 于 P,连接AP,则 AP+ PC 就是蚂蚁到达蜂蜜的最短距离,∵AE=A′E,A′P=AP,∴ AP+PC=A′P+PC=A′C,1∵CQ=×18cm=9cm,A′Q=12cm﹣4cm+4cm= 12cm,2在 Rt△A′QC 中,由勾股定理得: A′C= 15cm,故答案为: 15.10.解:连接 AC,作 B 关于直线 OC 的对称点 E′,连接 AE′,交OC 于D,交OB 于E,此时 CE+ DE +BD 的值最小,∵四边形 OCBA 是菱形,∴ AC⊥ OB,AO= OC,即 A 和 C 关于 OB 对称,∴CE= AE,∴ DE +CE= DE+AE=AD,∵B 和 E′关于 OC 对称,∴ DE′=DB,∴CE+DE+DB=AD+DE′=AE′,过C 作 CN⊥OA 于 N,∵ C(1 ,3),∴ON=1,CN=3,由勾股定理得: OC=2,即 AB=BC=OA=OC=2,∴∠ CON=60°,∴∠ CBA=∠ COA =60°,∵四边形 COAB 是菱形,∴ BC∥ OA,∴∠ DCB=∠ COA=60°,∵B 和 E′关于 OC 对称,∴∠ BFC=90°,∴∠ E′BC=90°﹣60°=30°,∴∠E′BA=60°+30°=90°, CF=1 BC=1,由勾股定理得: BF=3=E′F,2在 Rt△EBA 中,由勾股定理得: AE′=4,即 CE+DE+DB 的最小值是 4 .12.解:分别作点 P 关于 OA 、OB 的对称点 C 、D ,连接 CD ,分别交 OA 、OB 于点 M 、N ,连接 OC 、OD 、PM 、PN 、MN ,如图所示:∵点 P 关于 OA 的对称点为 D ,关于 OB 的对称点为 C ,∴PM =DM ,OP =OD ,∠ DOA =∠ POA ;∵点 P 关于 OB 的对称点为 C ,∴ PN =CN ,OP =OC ,∠ COB =∠ POB , ∴OC =OP =OD ,∠AOB = 1 ∠COD,2 ∵△ PMN 周长的最小值是 5 cm ,∴ PM +PN + MN = 5,∴ DM + CN + MN =5,即 CD =5=OP , ∴OC =OD =CD ,即△ OCD 是等边三角形,∴∠ COD =60°,∴∠ AOB =30°;13 解:作 M 关于 OB 的对称点 M ′,作 N 关于 OA 的对称点 N ′,连接 M ′N ′,即为 MP + PQ +QN 的最小值.根据轴对称的定义可知:∠ N ′OQ =∠M ′OB =30°,∠ ONN ′=60°, ∴△ ONN ′为等边三角形,△ OMM ′为等边三角形,∴∠ N ′OM ′=90 ∴在 Rt △ M ′ON ′中, M ′N ′= 10 .故答案为 10.3b )代入 y =﹣ 3 (x <0) 得 a = x3),作 A 点关于 x 轴的对称点 C ,B 点关于 y 轴的对称点 D , 3),连结 CD 分别交 x 轴、 y 轴于 设直线 CD 的解析式为 y = kx + b ,﹣ 3,b =3,则 A ( ﹣3,1)、B ( ﹣1,P 点、Q 点,此时四边形 则 3k b 1 ,解得 k b所以 C 点为(﹣3,﹣1),D 点为(1, P 1 ABQ 的周长最小, 214. 解: (1)作点 A 关于 BC 的对称点 A′,连 DA′交 BC 于点 P.(2) 由 (1) 可证得 PA 垂直平分 CD,∴ AQ= 3 CQ= 3PQ15.解:(1) ∵ E 为 AB 上的一个动点,∴作 G 关于 AB 的对称点 M,连接 CM 交 AB 于 E,那么 E 满足使△ CGE 的周长最小;∵在矩形 ABCD 中, AB= 6, BC= 8, G 为边 AD 的中点,∴ AG=AM=4,MD=12,CD MA而 AE∥ CD ,∴△ AEM ∽△ DCM ,∴ AE: CD= MA : MD ,∴ AE=CD MA=2;MD(2) ∵E 为 AB 上的一个动点,∴如图,作 G 关于 AB 的对称点 M,在 CD 上截取 CH =4,然后连接 HM 交 AB 于 E,接着EF=4,那么 E、F 两点即可满足使四边形中, AB= 6, BC= 8, G 为边 AD 的中点, MD= 12,而 CH=4,∴ DH=2,∴△ AEM∽△ DHM ,∴ AE:HD = MA: MD ,∴ AE=HD MAMD 在 EB 上截取∵在矩形ABCD ∴AG=AM=4,CGEF 的周长最小.而AE∥CD,16.解:( 1)依题B4),A2,0),则 AB 解析式: y 2x(2)∵ AB⊥MN∴直线 MN: y 1 x 12 1 2y2x 4x与抛物线联立可 2y1 x 12解得: M( -2, -2)将 AB 向负方向平移 t 个单位后, A1( 2, -t),B1(0,4-t)则 A1 关于直线 x=-2 的对称点 A2 为( -6,-t)当 A2、M、B1 三点共线时, MA1 MB1 取最小值∴ t 143。
专题07 将军饮马模型(解析版)
专题07.将军饮马模型将军饮马模型在考试中,无论是解答题,还是选择、填空题,都是学生感觉有困难的地方,也恰是学生能力区分度最重要的地方,主要考查转化与化归等的数学思想。
在各类考试中都以中高档题为主。
在解决几何最值问题主要依据是:①两点之间,线段最短;②垂线段最短,涉及的基本方法还有:利用轴对称变换化归到“三角形两边之和大于第三边”、“三角形两边之差小于第三边”等。
希望通过本专题的讲解让大家对这类问题有比较清晰的认识。
··模型1、将军饮马--两定一动求线段和的最小值【模型探究】A,B为定点,m为定直线,P为直线m上的一个动点,求AP+BP的最小。
(1)如图1,点A、B在直线m两侧:辅助线:连接AB交直线m于点P,则AP+BP的最小值为AB.(2)如图2,点A、B在直线同侧:辅助线:过点A作关于定直线m的对称点A’,连接A’B交直线m于点P,则AP+BP的最小值为A’B.图1图2例1.(2022·江苏·八年级专题练习)要在街道旁修建一个奶站,向居民区A、B提供牛奶,小聪根据实际情况,以街道旁为x轴,测得A点的坐标为(0,3),B点的坐标为(6,5),则从A、B两点到奶站距离之和的最小值是____.【答案】10【分析】作A点关于x轴的对称点A',连接A'B与x轴交于点P,连接AP,则A'B即为所求.【详解】解:作A点关于x轴的对称点A',连接A'B与x轴交于点P,连接AP,∵AP=A'P,∴AP+BP∵A(0,3),∴A'(0∴P点到A、B的距离最小值为【点睛】本题考查轴对称求最短距离,熟练掌握轴对称求最短距离的方法,会根据两点坐标求两点间距离例2.(2022·江苏·八年级专题练习)如图,等边△ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是边AC上一点,若AE=2,则EM+CM的最小值为()C.D.A B.【点睛】本题考查轴对称求最短距离,熟练掌握轴对称求最短距离的方法,灵活运用勾股定理是解题关键.例3.(2022·江苏·八年级专题练习)如图所示,在ABC 中,AB AC =,直线EF 是AB 的垂直平分线,D 是BC 的中点,M 是EF 上一个动点,ABC 的面积为12,4BC =,则BDM 周长的最小值是_________.【点睛】本题主要考查了线段垂直平分线的性质,三线合一定理,解题的关键在于能够根据题意得到当A、M、D三点共线时,AM+DM最小,即为AD.例4.(2023·湖北洪山·八年级期中)如图,将△ABC沿AD折叠使得顶点C恰好落在AB边上的点M处,D 在BC上,点P在线段AD上移动,若AC=6,CD=3,BD=7,则△PMB周长的最小值为___.【答案】18【分析】首先明确要使得△PMB周长最小,即使得PM+PB最小,再根据翻折的性质可知PM=PC,从而可得满足PC+PB最小即可,根据两点之间线段最短确定BC即为最小值,从而求解即可.【详解】解:由翻折的性质可知,AM=AC,PM=PC,∴M点为AB上一个固定点,则BM长度固定,∵△PMB周长=PM+PB+BM,∴要使得△PMB周长最小,即使得PM+PB最小,∵PM=PC,∴满足PC+PB最小即可,显然,当P、B、C三点共线时,满足PC+PB最小,如图所示,此时,P点与D点重合,PC+PB=BC,∴△PMB周长最小值即为BC+BM,此时,作DS⊥AB于S点,DT⊥AC延长线于T点,AQ⊥BC延长线于Q点,由题意,AD为∠BAC的角平分线,∴DS=DT,∵1122ACDS AC DT CD AQ==,1122ABDS AB DS BD AQ==,∴11221122ABDACDAB DS BD AQSS AC DT CD AQ==,即:AB BDAC CD=,∴763AB=,解得:AB=14,∵AM=AC=6,∴BM=14-6=8,∴△PMB周长最小值为BC+BM=3+7+8=18,故答案为:18.【点睛】本题考查翻折的性质,以及最短路径问题等,掌握翻折的基本性质,利用角平分线的性质进行推理求解,理解并熟练运用两点之间线段最短是解题关键.例5.(2023·江阴市八年级月考)某班级在探究“将军饮马问题”时抽象出数学模型:直线l 同旁有两个定点A 、B ,在直线l 上存在点P ,使得PA PB +的值最小.解法:如图1,作点A 关于直线l 的对称点A ',连接A B ',则A B '与直线l 的交点即为P ,且PA PB +的最小值为A B '.请利用上述模型解决下列问题:(1)几何应用:如图2,ABC ∆中,90C ∠=︒,2AC BC ==,E 是AB 的中点,P 是BC 边上的一动点,则PA PE +的最小值为;(2)几何拓展:如图3,ABC ∆中,2AC =,30A ∠=︒,若在AB 、AC 上各取一点M 、N 使CM MN +的值最小,画出图形,求最小值并简要说明理由.【答案】(110;(23【分析】(1)作点A 关于BC 的对称点A′,连接A′E 交BC 于P ,此时PA+PE 的值最小.连接BA′,先根据勾股定理求出BA′的长,再判断出∠A′BA=90°,根据勾股定理即可得出结论;(2)作点C 关于直线AB 的对称点C′,作C′N ⊥AC 于N 交AB 于M ,连接AC′,根据等边三角形的性质解答.【详解】解:(1)如图2所示,作点A 关于BC 的对称点A′,连接A′E 交BC 于P ,此时PA+PE 的值最小.连接BA′.由勾股定理得,22BC AC +2222+2,∵E 是AB 的中点,∴BE=122,∵90C ∠=︒,2AC BC ==,∴∠A′BC=∠ABC=45°,∴∠A′BA=90°,∴PA+PE 的最小值=A′E=22'A B BE +()()22222+1010;(2)如图3,作点C关于直线AB的对称点C′,作C′N⊥AC于N交AB于M,连接AC′,则C′A=CA=2,∠C′AB=∠CAB=30°,∴△C′AC为等边三角形,∴∠AC′N=30°,∴AN=12C′A=1,∴CM+MN的最小值为2221 3.【点睛】本题考查的是轴对称--最短路线问题、勾股定理、等边三角形的判定和性质、含30°角的直角三角形的性质、垂线段最短,解这类问题的关键是将所给问题抽象或转化为数学模型,把两条线段的和转化为一条线段.模型2、将军饮马--两动一定求线段和的最小值【模型探究】已知定点A位于定直线m,n的内侧,在直线m、n分别上求点P、Q点PA+PQ+QA周长最短.辅助线:过点A作关于定直线m、n的对称点A’、A’’,连接A’A’’交直线m、n于点P、Q,则PA+PQ+QA 的最小值为A’A’’.例1.(2022·江苏·无锡市八年级期末)如图,已知∠AOB的大小为α,P是∠AOB内部的一个定点,且OP =4,点E、F分别是OA、OB上的动点,若△PEF周长的最小值等于4,则α=()A.30°B.45°C.60°D.90°【答案】A【分析】设点P关于OA的对称点为C,关于OB的对称点为D,当点E、F在CD上时,△PEF的周长为PE+EF+FP=CD,此时周长最小,根据CD=4可得出△COD是等边三角形,进而可求出α的度数.【详解】解:如图,作点P关于OA的对称点C,关于OB的对称点D,连接CD,交OA于E,OB于F.此时,△PEF的周长最小.连接OC,OD,PE,PF.∵点P与点C关于OA对称,∴OA垂直平分PC,∴∠COA=∠AOP,PE=CE,OC=OP,同理,可得∠DOB=∠BOP,PF=DF,OD=OP.∴∠COA+∠DOB=∠AOP+∠BOP=∠AOB=α,OC=OD=OP=4,∴∠COD=2α.又∵△PEF的周长=PE+EF+FP=CE+EF+FD=CD=4,∴OC=OD=CD=4,∴△COD是等边三角形,∴2α=60°,∴α=30°.故选:A.【点睛】本题主要考查了最短路径问题,本题找到点E和F的位置是解题的关键.要使△PEF的周长最小,通常是把三边的和转化为一条线段,运用三角形三边关系解决.例2.(2022·江苏九年级一模)如图,Rt△ABC中,∠C=90°,AC=3,BC=4,D,E,F分别是AB,BC,AC边上的动点,则△DEF的周长的最小值是()A.2.5B.3.5C.4.8D.6【答案】C【分析】如图作D关于直线AC的对称点M,作D关于直线BC的对称点N,连接CM,CN,CD,EN,FM,DN,DM.由∠MCA=∠DCA,∠BCN=∠BCD,∠ACD+∠BCD=90°,推出∠MCD+∠NCD=180°,可得M、B、N 共线,由DF+DE+EF=FM+EN+EF,FM+EN+EF≥MN,可知当M、F、E、N共线时,且CD⊥AB时,DE+EF+FD的值最小,最小值=2CD,求出CD的值即可解决问题.【详解】解:如图,作D关于直线AC的对称点M,作D关于直线BC的对称点N,连接CM,CN,CD,EN,FM,DN,DM.∴DF =FM ,DE =EN ,CD =CM ,CD =CN ,∴CD =CM =CN ,∵∠MCA =∠DCA ,∠BCN =∠BCD ,∠ACD +∠BCD =90°,∴∠MCD +∠NCD =180°,∴M 、C 、N 共线,∵DF +DE +EF =FM +EN +EF ,∵FM +EN +EF ≥MN ,∴当M 、F 、E 、N 共线时,且CD ⊥AB 时,DE +EF +FD 的值最小,最小值为MN =2CD ,∵CD ⊥AB ,∴12•AB •CD =12•AB•AC ,∴CD =•AB AC AB =125=2.4,∴DE +EF +FD 的最小值为4.8.故选:C .【点睛】本题考查了轴对称-最短问题、两点之间线段最短、垂线段最短等知识,解题的关键是灵活运用轴对称以及垂线段最短解决最短问题,属于中考选择题中的压轴题.例3.(2023春·贵州毕节·七年级统考期末)如图所示,30AOB ∠= ,点P 为AOB ∠内一点,8OP =,点,M N 分别在,OA OB 上,求PMN ∆周长的最小值.【答案】PMN ∆周长的最小值为8【分析】作P 关于OA 、OB 的对称点12P P 、,连结1OP、2OP ,即可快速找到解题思路.【详解】如图,作P 关于OA 、OB 的对称点12P P 、,连结1OP、2OP ,12PP 交OA 、OB 于M 、N ,此时PMN ∆周长最小,根据轴对称性质可知1PM PM =,2P N PN =,1212PM N PM M N PN PP ∴∆=++=,且1AO P AO P ∠=∠,2BO P BO P ∠=∠,12260POP AOB ∠=∠=︒,128O P O P O P ===,12PPO ∆为等边三角形,1218PP OP ==即PMN ∆周长的最小值为8.【点睛】本题应用知识比较隐晦,分别考查了轴对称图形和等边三角形,需要认真分析,充分联系所学知识,方可正确解答.例4.(2023.山东八年级期末)如图所示,在四边形ABCD中,∠A=90º,∠C=90º,∠D=60º,AD=3,AB=,若点M、N分别为边CD,AD上的动点,则△BMN的周长最小值为()A. B. C.6 D.3【答案】C【解析】作点B关于CD、AD的对称点分别为点B'和点B'',连接B'B''交DC和AD于点M和点N,连接MB、NB;再DC和AD上分别取一动点M’和N’(不同于点M和N),连接M'B,M'B',N’B和N'B'',如图1所示:∵B'B''<M'B'+M'N'+N'B",B'M'=BM',B"N'=BN',∴BM'+M'N'+BN'>B'B",又∵B'B"=B'M+MN+NB",MB=MB',NB=NB'',∴NB+NM+BM<BM'+M’N'+BN'NB+NM+BM时周长最小;连接DB,过点B'作B'H⊥DB''于B’’D的延长线于点H,如图示2所示:在Rt△ABD中,AD=3,AB=,,∴∠2=30º,∴∠5=30º,DB=DB'',又∵∠ADC=∠1+∠2=60º,∴∠1=30º,∴∠7=30º,DB'=DB,∴∠B'DB''=∠1+∠2+∠5+∠7=120º,DB'=DB''=DB,又∵∠B'DB"+∠6=180º,∴∠6=60º,∴HD=,HB'=3,在Rt △B'HB''中,由勾股定理得:B'B"=,NB +NM +BM =6,故选C.模型3、将军饮马--两动两定求线段和的最小值【模型探究】A ,B 为定点,在定直线m 、n 上分别找两点P 、Q ,使PA +PQ +QB 最小。
将军饮马问题(讲)
将军饮马问题类型一、基本模式类型二、轴对称变换的应用(将军饮马问题)2、如图所示,如果将军从马棚M出发,先赶到河OA上的某一位置P,再马上赶到河OB上的某一位置Q,然后立即返回校场N.请为将军重新设计一条路线(即选择点P和Q),使得总路程MP+PQ+QN最短.【变式】如图所示,将军希望从马棚M出发,先赶到河OA上的某一位置P,再马上赶到河OB上的某一位置Q.请为将军设计一条路线(即选择点P和Q),使得总路程MP+PQ最短.3、将军要检阅一队士兵,要求(如图所示):队伍长为a,沿河OB排开(从点P到点Q);将军从马棚M出发到达队头P,从P至Q检阅队伍后再赶到校场N.请问:在什么位置列队(即选择点P和Q),可以使得将军走的总路程MP+PQ+QN最短?4. 如图,点M在锐角∠AOB内部,在OB边上求作一点P,使点P到点M的距离与点P到OA 边的距离之和最小5已知∠MON内有一点P,P关于OM,ON的对称点分别是和,分别交OM, ON于点A、B,已知=15,则△PAB 的周长为()A. 15 B 7.5 C. 10 D. 246. 已知∠AOB,试在∠AOB内确定一点P,如图,使P到OA、OB的距离相等,并且到M、N 两点的距离也相等.7、已知∠MON=40°,P为∠MON内一定点,OM上有一点A,ON上有一点B,当△PAB的周长取最小值时,求∠APB的度数.8. 如图,在四边形ABCD中,∠A=90°,AD=4,连接BD,BD⊥CD,∠ADB=∠C.若P是BC 边上一动点,则DP长的最小值为______.练习1、已知点A在直线l外,点P为直线l上的一个动点,探究是否存在一个定点B,当点P在直线l上运动时,点P与A、B两点的距离总相等,如果存在,请作出定点B;若不存在,请说明理由.2、 如图,在公路a 的同旁有两个仓库A 、B ,现需要建一货物中转站,要求到A 、B 两仓库的距离和最短,这个中转站M 应建在公路旁的哪个位置比较合理?aBA3、 已知:A 、B 两点在直线l 的同侧, 在l 上求作一点M ,使得||AM BM -最小.4、如图,正方形ABCD 中,8AB =,M 是DC 上的一点,且2DM =,N 是AC 上的一动点,求DN MN +的最小值与最大值.NMD CB A5、如图,已知∠AOB 内有一点P ,试分别在边OA 和OB 上各找一点E 、F ,使得△PEF 的周长最小。
(完整版)将军饮马模型(终稿)
将军饮马模型一、背景知识:【传说】早在古罗马时代,传说亚历山大城有一位精通数学和物理的学者,名叫海伦.一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题.将军每天从军营A出发,先到河边饮马,然后再去河岸同侧的军营B开会,应该怎样走才能使路程最短?这个问题的答案并不难,据说海伦略加思索就解决了它.从此以后,这个被称为“将军饮马”的问题便流传至今.【问题原型】将军饮马造桥选址费马点【涉及知识】两点之间线段最短,垂线段最短;三角形两边三边关系;轴对称;平移;【解题思路】找对称点,实现折转直二、将军饮马问题常见模型1.两定一动型:两定点到一动点的距离和最小例1:在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB最小.作法:连接AB,与直线l的交点Q,Q即为所要寻找的点,即当动点P跑到了点Q处,PA+PB最小,且最小值等于AB。
原理:两点之间线段最短。
证明:连接AB,与直线l的交点Q,P为直线l上任意一点,在⊿PAB中,由三角形三边关系可知:AP+PB≧AB(当且仅当PQ重合时取﹦)例2:在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB的和最小.关键:找对称点作法:作定点B关于定直线l的对称点C,连接AC,与直线l的交点Q即为所要寻找的点,即当动点P跑到了点Q处,PA+PB和最小,且最小值等于AC.原理:两点之间,线段最短证明:连接AC,与直线l的交点Q,P为直线l上任意一点,在⊿PA C中,由三角形三边关系可知:AP+PC≧AC(当且仅当PQ重合时取﹦)2.两动一定型例3:在∠MON的内部有一点A,在OM上找一点B,在ON上找一点C,使得△BAC周长最短.作法:作点A关于OM的对称点A’,作点A关于ON的对称点A’’,连接A’ A’’,与OM交于点B,与ON交于点C,连接AB,AC,△ABC即为所求.原理:两点之间,线段最短例4:在∠MON的内部有点A和点B,在OM上找一点C,在ON上找一点D,使得四边形ABCD周长最短.作法:作点A关于OM的对称点A’,作点B关于ON的对称点B’,连接A’ B’,与OM交于点C,与ON 交于点D,连接AC,BD,AB,四边形ABCD即为所求.原理:两点之间,线段最短3.两定两动型最值例5:已知A、B是两个定点,在定直线l上找两个动点M与N,且MN长度等于定长d(动点M位于动点N 左侧),使AM+MN+NB的值最小.提示:存在定长的动点问题一定要考虑平移作法一:将点A向右平移长度d得到点A’,作A’关于直线l的对称点A’’,连接A’’B,交直线l 于点N,将点N向左平移长度d,得到点M.作法二:作点A关于直线l的对称点A1,将点A1向右平移长度d得到点A2,连接A2 B,交直线l于点Q,将点Q向左平移长度d,得到点Q。
最值系列之将军饮马 - 解析
最值系列之——将军饮马一、什么是将军饮马?【问题引入】“白日登山望烽火,黄昏饮马傍交河”,这是唐代诗人李颀《古从军行》里的一句诗。
而由此却引申出一系列非常有趣的数学问题,通常称为“将军饮马”。
【问题描述】如图,将军在图中点A处,现在他要带马去河边喝水,之后返回军营,问:将军怎么走能使得路程最短?A B将军军营河【问题简化】如图,在直线上找一点P使得P A+PB最小?P【问题分析】这个问题的难点在于P A+PB是一段折线段,通过观察图形很难得出结果,关于最小值,我们知道“两点之间,线段最短”、“点到直线的连线中,垂线段最短”等,所以此处,需转化问题,将折线段变为直线段.【问题解决】作点A关于直线的对称点A’,连接P A’,则P A’=P A,所以P A+PB=P A’+PB当A’、P、B三点共线的时候,P A’+PB=A’B,此时为最小值(两点之间线段最短)【思路概述】作端点(点A或点B)关于折点(上图P点)所在直线的对称,化折线段为直线段.二、将军饮马模型系列【一定两动之点点】在OA、OB上分别取点M、N,使得△PMN周长最小.B B此处M、N均为折点,分别作点P关于OA(折点M所在直线)、OB(折点N所在直线)的对称点,化折线段PM+MN+NP为P’M+MN+NP’’,当P’、M、N、P’’共线时,△PMN周长最小.【例题】如图,点P是∠AOB内任意一点,∠AOB=30°,OP=8,点M和点N分别是射线OA和射线OB 上的动点,则△PMN周长的最小值为___________.P O B AMN【分析】△PMN周长即PM+PN+MN的最小值,此处M、N均为折点,分别作点P关于OB、OA对称点P’、P’’,化PM+PN+MN为P’N+MN+P’’M.AP''当P’、N、M、P’’共线时,得△PMN周长的最小值,即线段P’P’’长,连接OP’、OP’’,可得△OP’P’’为等边三角形,所以P’P’’=OP’=OP=8.A【两定两动之点点】在OA、OB上分别取点M、N使得四边形PMNQ的周长最小。
将军饮马问题例题
将军饮马问题例题将军饮马问题是一个经典的数学谜题,题目如下:【题目】有一座1000级的楼梯,上面站着一位将军和他的马。
将军说:“我每次可以上1级、2级或者3级楼梯,而我的马每次只能上2级或者3级楼梯。
我们两个必须同时到达楼顶。
问,将军和马分别需要多少次才能到达楼顶,并且楼梯的哪些级别才能让他们同时到达楼顶?”【解答】假设将军上x次楼梯,马上y次楼梯。
1. 如果将军上1级楼梯,则马上y次楼梯,剩下的楼梯有999-x-2y级,将剩余楼梯由马上。
2. 如果将军上2级楼梯,则马上y次楼梯,剩下的楼梯有998-x-2y级,将剩余楼梯由马上。
3. 如果将军上3级楼梯,则马上y次楼梯,剩下的楼梯有997-x-2y级,将剩余楼梯由马上。
根据题意,将军和马必须同时到达楼顶,所以剩余的楼梯必须是2的倍数。
而剩余楼梯有999-x-2y、998-x-2y、997-x-2y三种情况,这些数分别除以2后的余数只能是0、1或者2。
又考虑到将军和马上楼梯的次数必须是整数,所以只需考虑将军和马都上奇数次楼梯的情况。
假设将军上奇数次楼梯x=2n+1,马上奇数次楼梯y=2m+1,代入上述条件,有:1. 剩下楼梯为999-(2n+1)-2(2m+1)=998-(2n+2m)-4=2(499-n-m)-4,是2的倍数;2. 剩下楼梯为998-(2n+1)-2(2m+1)=997-(2n+2m)-4=2(498-n-m)-3,不是2的倍数;3. 剩下楼梯为997-(2n+1)-2(2m+1)=996-(2n+2m)-4=2(498-n-m)-2,是2的倍数。
所以,将军和马必须同时走的是第3种情况,即将军和马都上奇数次楼梯。
最终答案是将军和马各上398次楼梯,并且将军和马会同时站在2、4、6、...、996、998共有499级楼梯上。
初中将军饮马问题题型总结(全)
初中将军饮马问题题型总结(全)题型一:将军饮马之单动点1.三角形中的将军饮马题目描述:在等腰三角形ABC中,AB=AC,AD、CE是三角形ABC的两条中线,P是AD上的一个动点,则下列线段的长度等于BP+EP最小值的是()解析:连接PC,由于AB=AC,BD=CD,AD垂直于BC,所以PB=PC。
因此,PB+PE=PC+PE,PE+PC>CE,当P、C、E共线时,PB+PE的值最小,最小值为CE的长度,故选B.2.等边三角形中的将军饮马题目描述:在等边三角形ABC中,AB=2,AD是BC边上的高,E是AC的中点,P是AD上的一个动点,则PE+PC的最小值为()解析:连接BE交AD于点P',AD、BE分别是等边三角形ABC边BC、AC的垂直平分线,P'B=P'C,P'E+P'C=P'E+P'B=BE。
根据两点之间线段最短,点P在点P'时,PE+PC有最小值,最小值即为BE的长。
因此,BE=BC/2-CE/2=3,所以P'E+P'C的最小值为3,故选C.3.等腰三角形中的将军饮马题目描述:在等腰三角形ABC中,AB=AC,BC=4,面积是16,AC的垂直平分线EF分别交AC、AB边于E、F点,若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为()解析:连接AD、AM,由于△ABC是等腰三角形,点D是BC边的中点,AD垂直于BC,所以S△ABC=1/2×4×AD=16,解得AD=8.EF是线段AC的垂直平分线,所以点C关于直线EF的对称点为点A,MA=MC,AD=AM+MD,因此AD的长为CM+MD的最小值。
且AC6,BM3,因为BM AD,故BM AC,所以BM是AC的中线,故CM3。
又因为AC是菱形的对角线,所以AC平分DAB,即DAM30。
又因为AM MD,所以ADM75。
将军饮马例题
将军饮马例题
将军饮马是一道古代的数学题,题干如下:
有一个酒坛,重50斤,将军要喝酒,每次要从坛中取出1斤酒来喝。
但是由于将军醉得晕头转向,他希望用两个马来帮助他取酒。
其中一个马每次可以往回扛3斤酒,另外一个马每次可以往回扛1斤酒。
问将军最少需要命令这两匹马经过多少次才能够喝掉整坛酒?
思路:
将军每次要喝掉1斤酒,可以让一个马往回扛3斤酒,另一个马往回扛1斤酒。
由于这两个数的最小公倍数是3,因此将军每次可以让这两匹马一起配合,将3斤酒扛回来。
但是由于酒坛只有50斤酒,不是3的倍数,最终会剩下1斤酒,无法一次扛回来。
因此,将军需要多次命令这两匹马来扛酒。
由于每次让这两匹马扛酒,相当于将军喝了1斤酒,因此将军最后需要喝掉酒坛中所有的49斤酒。
以将军刚开始要喝掉1斤酒为第一次命令,那么将军需要命令这两匹马经过48次才能够喝掉整坛酒。
答案:将军最少需要命令这两匹马经过48次才能够喝掉整坛酒。
专题02 将军饮马(解析版)
专题02 将军饮马和最小【例1】如图,抛物线215222y x x =-++与x 轴相交于A ,B 两点,点B 在点A 的右侧,与y 轴相交于点C .(1)求点A ,B ,C 的坐标;(2)在抛物线的对称轴上有一点P ,使PA PC +的值最小,求点P 的坐标;【解答】解:(1)当0x =时,则52y =, 5(0,)2C ∴, 当0y =时,2152022x x -++=, 化简,得2450x x --=,解得,1x =-或5x =,(1,0)A ∴-,(5,0)B ;(2)如图,连接BC ,交对称轴于点P ,连接AP .点A 和点B 关于抛物线的对称轴对称,AP PB ∴=,要使PA PC +的值最小,则应使PB PC +的值最小,BC ∴与对称轴的交点,使得PA PC +的值最小.设BC 的解析式为y kx b =+.将(5,0)B ,5(0,)2C 代入y kx b =+, 得5250b k b ⎧=⎪⎨⎪+=⎩,∴1252k b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴直线BC 的解析式为1522y x =-+ 抛物线的对称轴为直线22122x ==-⨯ 当2x =时,1532222y =-⨯+=, 3(2,)2P ∴;【变式训练1】已知抛物线26(0)y ax bx a =++≠交x 轴于点(6,0)A 和点(1,0)B -,交y 轴于点C .(1)求抛物线的解析式和顶点坐标;(2)如图(1),点P 是抛物线上位于直线AC 上方的动点,过点P 分别作x 轴、y 轴的平行线,交直线AC 于点D ,E ,当PD PE +取最大值时,求点P 的坐标;【解答】解:(1)抛物线26y ax bx =++经过点(6,0)A ,(1,0)B -,∴6036660a b a b -+=⎧⎨++=⎩, ∴15a b =-⎧⎨=⎩, ∴抛物线的解析式为2254956()24y x x x =-++=--+, ∴抛物线的解析式为256y x x =-++,顶点坐标为5(2,49)4;(2)由(1)知,抛物线的解析式为256y x x =-++,(0,6)C ∴,6OC ∴=, (6,0)A ,6OA ∴=,OA OC ∴=,45OAC ∴∠=︒, PD 平行于x 轴,PE 平行于y 轴,90DPE ∴∠=︒,45PDE DAO ∠=∠=︒,45PED ∴∠=︒,PDE PED ∴∠=∠,PD PE ∴=,2PD PE PE ∴+=,∴当PE 的长度最大时,PE PD +取最大值,(6,0)A ,(0,6)C ,∴直线AC 的解析式为6y x =-+,设(E t ,6)(06)t t -+<<,则2(,56)P t t t -++,22256(6)6(3)9PE t t t t t t ∴=-++--+=-+=--+,当3t =时,PE 最大,此时,25612t t -++=,(3,12)P ∴;【变式训练2】如图,抛物线23y ax bx =+-经过点(2,3)A -,与x 轴负半轴交于点B ,与y 轴交于点C ,且3OC OB =.(1)求抛物线的解析式;(2)抛物线的对称轴上有一点P ,使PB PC +的值最小,求点P 的坐标;【解答】解:(1)令0x =,则3y =-,3OC ∴=,3OC OB =,1OB ∴=,(1,0)B ∴-,(2,3)A -,(1,0)B -在抛物线23y ax bx =+-上,∴423330a b a b +-=-⎧⎨--=⎩, ∴12a b =⎧⎨=-⎩, ∴抛物线的解析式为223y x x =--;(2)由(1)知,抛物线的解析式为223y x x =--,∴抛物线的对称轴直线为1x =,由(1)知,(0,3)C -,(2,3)A -,∴点A ,C 关于抛物线对称轴直线1x =对称,∴直线AB 与对称轴直线1x =的交点为点P ,设直线AB 的解析式为y kx c =+,点(2,3)A -,(1,0)B -在直线AB 上,∴023k c k c -+=⎧⎨+=-⎩, ∴11k c =-⎧⎨=-⎩, ∴直线AB 的解析式为1y x =--,令1x =,则2y =-,(1,2)P ∴-;【变式训练3】如图,抛物线2(0)y ax bx c a =++≠与x 轴交于点A 、(1,0)B ,与y 轴交于点C ,直线122y x =-经过点A 、C .抛物线的顶点为D ,对称轴为直线l . (1)求抛物线的解析式;(2)设点E 为x 轴上一点,且AE CE =,求点E 的坐标;(3)设点G 是y 轴上一点,是否存在点G ,使得GD GB +的值最小,若存在,求出点G 的坐标;若不存在,请说明理由.【解答】解:(1)如图1,对于直线122y x =-,令0y =,得4x =,令0x =,得2y =-,∴点(4,0)A ,点(0,2)C -,将(4,0)A ,(1,0)B ,(0,2)C -代入抛物线解析式得:164002a b c a b c c ++=⎧⎪++=⎨⎪=-⎩, 解得:12522a b c ⎧=-⎪⎪⎪=⎨⎪=-⎪⎪⎩, ∴抛物线解析式为215222y x x =-+-;(2)如图2,由点E 在x 轴上,可设点E 的坐标为(,0)e ,则4AE e =-,在Rt COE ∆中,根据勾股定理得:222222CE OC OE e =+=+,AE CE =,222(4)2e e ∴-=+, 解得:32e =, 则点E 的坐标为3(2,0); (3)存在.如图3,取点B 关于y 轴的对称点B ',则点B '的坐标为(1,0)-,连接B D ',直线B D '与y 轴的交点G 即为所求的点.22151592()22228y x x x =-+-=--+, ∴顶点5(2D ,9)8,设直线B D '的解析式为(0)y kx d k =+≠,则05928k d k d -+=⎧⎪⎨+=⎪⎩,解得:928928k b ⎧=⎪⎪⎨⎪=⎪⎩, ∴直线B D '的解析式为992828y x =+, 当0x =时,928y =, ∴点G 的坐标为9(0,)28. 【例2】如图,已知抛物线2(0)y ax bx c a =++≠经过(1,0)A -,(3,0)B ,(0,3)C -三点,直线l 是抛物线的对称轴.(1)求抛物线的函数解析式;(2)在抛物线的对称轴上是否存在一点M ,使得ACM ∆的周长最短?若存在,求点M 的坐标;若不存在,请说明理由.【解答】解:(1)把(1,0)A -,(3,0)B ,(0,3)C -代入2y ax bx c =++得,09303a b c a b c c -+=⎧⎪++=⎨⎪=-⎩,解得,123a b c =⎧⎪=-⎨⎪=-⎩,∴抛物线的关系式为223y x x ==--;(2)抛物线223y x x =--的对称轴为212x -=-=, 点M 在对称轴1x =上,且ACM ∆的周长最短,MC MA ∴+最小,点A 、点B 关于直线1x =对称,∴连接BC 交直线1x =于点M ,此时MC MA +最小,设直BC 的关系式为y x b =+,(3,0)B ,(0,3)C -,∴303b b +=⎧⎨=-⎩,解得,13b =⎧⎨=-⎩, ∴直线BC 的关系式为3y x =-,当1x =时,132y =-=-,∴点(1,2)M -,∴在抛物线的对称轴上存在一点M ,使得ACM ∆的周长最短,此时(1,2)M -.【变式训练1】如图,抛物线213y x mx n =-+与x 轴交于A 、B 两点,与y 轴交于点(0,1)C -,且对称轴1x =.(1)求出抛物线的解析式及A ,B 两点的坐标;(2)在对称轴上方是否存在点D ,使三角形ADC 的周长最小?若存在,求出点D 的坐标;若不存在.说明理由(使用图1);【解答】解:(1)抛物线与y 轴交于点(0,1)C -,且对称轴x l =, 则11231m n -⎧-=⎪⎪⨯⎨⎪=-⎪⎩,解得231m n ⎧=⎪⎨⎪=-⎩, ∴抛物线解析式为212133y x x =--,令2121033y x x =--=,得:11x =-,23x =, (1,0)A ∴-,(3,0)B ;(2)在对称轴上存在D 使三角形形DAC 的周长最小,连接CB 交对称轴于点D ,此时三角形DAC 周长最小.设BC 的解析式为y kx b =+,把(3,0)B 、(0,1)C -分别代入上式得:130b k b =-⎧⎨+=⎩,解得131k b ⎧=⎪⎨⎪=-⎩, 故直线BC 的解析式为113y x =-, 当1x =时,23y =-, 所以点D 的坐标为2(1,)3-; 【变式训练2】如图,已知二次函数24(0)y ax x c a =-+≠的图象与坐标轴交于点(1,0)A -和点(0,5)B -.(1)求该二次函数的解析式;(2)已知该函数图象的对称轴上存在一点P ,使得ABP ∆的周长最小,请求出点P 的坐标;【解答】解:(1)将点A 、点B 的坐标代入, 得405a c c ++=⎧⎨=-⎩,解得:15a c =⎧⎨=-⎩,∴二次函数解析式为245y x x =--;(2)二次函数解析式为245y x x =--,∴对称轴方程为:2x =,令0y =,则2450x x --=, 解得:11x =-,25x =,则抛物线与x 轴的另一个交点C 的坐标为(5,0), 设直线BC 的解析式为:y kx b =+, 将点B 、C 的坐标代入得:505k b b +=⎧⎨=-⎩,解得:15k b =⎧⎨=-⎩,即直线BC 的解析式为:5y x =-,点P 在抛物线对称轴上,∴点P 的坐标为(2,3)-;【例3】如图,抛物线2y =+x 轴交于A ,B 两点(A 点在B 点的左侧),与y 轴交于点C ,顶点为D ,连接AC . (1)求顶点D 的坐标及直线AC 的解析式;(2)如图,P 为直线AC 上方抛物线上的一动点,连接PC 、PA ,当PAC ∆面积最大时,过P 作PQ x ⊥轴于点Q ,M 为抛物线对称轴上的一动点,过M 作y 轴的垂线,垂足为点N .连接PM ,NQ ,求PM MN NQ ++的最小值.【解答】解:(1)2y=+20y=-=,解得:4x=-或1,故点A、B的坐标分别为:(4,1)-、(1,0),点C,由抛物线的表达式知,顶点3(2D-;将点A、C的坐标代入一次函数:y kx b=+得:40k bb-+=⎧⎪⎨=⎪⎩,解得kb⎧=⎪⎪⎨⎪=⎪⎩,则直线AC的表达式为:y=+(2)设直线PQ交AC于点H,设点2(,P x x-+,则点(Hx+,则PAC∆面积2212[4)2PHC PHAS S PH OA x x∆∆=+=⨯⨯=⨯-+=+,36-<,故PAC∆面积存在最大值,此时2x=-,故点(2P-,,则点(2,0)Q-;将点P向右平移32个单位得到点1(2P'-,,作点P'关于y轴的对称点1(2P'',,连接P Q''交y轴于点N,过点N作NM垂直于函数的对称轴于点M,则点M、N为所求点,理由:连接PM、P N',//PP MN ',32PP MN '==,故四边形PPNM 为平行四边形,故PM P C P C ='='', 则PM MN NQ P C MN NQ MN P Q ++=''++=+''为最小,PM MN NQ ∴++最小值32MN P Q =+''=【变式训练1】如图,在平面直角坐标系中,矩形ABCD 的边BC 与x 轴、y 轴的交点分别为(8,0)C ,(0,6)B ,5CD =,抛物线215(0)4y ax x c a =-+≠过B ,C 两点,动点M 从点D 开始以每秒5个单位长度的速度沿D A B C →→→的方向运动到达C 点后停止运动.动点N 从点O 以每秒4个单位长度的速度沿OC 方向运动,到达C 点后,立即返回,向CO 方向运动,到达O 点后,又立即返回,依此在线段OC 上反复运动,当点M 停止运动时,点N 也停止运动,设运动时间为t . (1)求抛物线的解析式; (2)求点D 的坐标;(3)当点M ,N 同时开始运动时,若以点M ,D ,C 为顶点的三角形与以点B ,O ,N 为顶点的三角形相似,求t 的值;(4)过点D 与x 轴平行的直线,交抛物线的对称轴于点Q ,将线段BA 沿过点B 的直线翻折,点A 的对称点为A ',求A Q QN DN '++的最小值.【解答】解:(1)将(8,0)C ,(0,6)B 代入2154y ax x c =-+,得15648046a c c ⎧-⨯+=⎪⎨⎪=⎩, 解得386a c ⎧=⎪⎨⎪=⎩,∴抛物线的解析式为:2315684y x x =-+;(2)如答图1,作DE x ⊥轴于点E ,(8,0)C ,(0,6)B ,8OC ∴=,6OB =. 10BC ∴=.BOC BCD DEC ∠=∠=∠, ~BOC CED ∴∆∆.∴BC BO OCCD CE DE==. 3CE ∴=,4DE =. 11OE OC CE ∴=+=.(11,4)D ∴.(3)若点M 在DA 上运动时,5DM t =,4ON t =, 当~BON CDM ∆∆,则BO ONCD DM=,即6455t t =不成立,舍去; 当~BON MDC ∆∆,则BO ONMD DC=,即6455t t =,解得:t = 若点M 在BC 上运动时,255CM t =-.当~BON MCD ∆∆,则BO ON MC CD =,即62555ONt =-, ∴65ON t=-. 当34t <时,164ON t =-.∴61645t t=--,解得1t =,2t =.当45t <时,416ON t =-∴64165t t=--,无解; 当~BON DCM ∆∆,则BO ON DC CM =,即65255ONt=-, 306ON t ∴=-;当34t <时,164ON t =-,306164t t ∴-=-,解得7t =(舍去);当45t <时,416ON t =-,306416t t ∴-=-,解得235t =.综上所示:当t =时,~BON MDC ∆∆;t =时,~BON MCD ∆∆;235t =时,~BON DCM ∆∆;(4)如答图2,作点D 关于x 轴的对称点F ,连接QF 交x 轴于点N ,点(11,4)D ,∴点(11,4)F -.由2315684y x x =-+得对称轴为5x =,∴点(5,4)Q .∴10QF ,BQ ==∴5105A Q QN DN BQ BA QF ''++=-++.故A Q QN DN '++5.差最大【例1】如图,已知抛物线23(0)y ax bx a =++≠经过点(1,0)A 和点(3,0)B ,与y 轴交于点C . (1)求此抛物线的解析式;(2)①若点P 是直线BC 下方的抛物线上一动点,则PBC ∆的面积最大值为 ; ②若点T 为对称轴直线2x =上一点,则TC TB -的最大值为 .【解答】解:(1)设抛物线的表达式为2212()()(1)(3)(43)3y a x x x x a x x a x x ax bx =--=--=-+=++,解得1a =,故抛物线的表达式为243y x x =-+①;(2)①如图1,过点P 作//PH y 轴交BC 于点H ,由点B 、C 的坐标得,直线BC 的表达式为3y x =-+, 设点2(,43)P x x x -+,则点(,3)H x x -+,PBC ∆的面积2211393(343)2222PHC PHB S S PH OB x x x x x ∆∆=+=⨯⨯=⨯⨯-+-+-=-+, 302-<,故PBC ∆的面积有最大值,当32x =时,其最大值为278,故答案为278;②点B 关于函数对称轴的对称点为点A ,连接CA 交函数对称轴于点T ,则点T 为所求点,则TC TB TC TA AC -=-=为最大,故TC TB -的最大值为AC =【变式训练1】如图,抛物线212y x bx c =++与直线132y x =+交于A 、B 两点,点A 在y 轴上,抛物线交x 轴于C 、D 两点,已知(3,0)C - (Ⅰ)求抛物线的解析式;(Ⅱ)在抛物线对称轴l 上找一点M ,使||MB MD -的值最大,请求出点M 的坐标及这个最大值.【解答】解:(Ⅰ)当0x =时,1332y x =+=,则(0,3)A ,把(0,3)A ,(3,0)C -代入212y x bx c =++得39302c b c =⎧⎪⎨-+=⎪⎩,解得523b c ⎧=⎪⎨⎪=⎩,∴抛物线解析式为215322y x x =++;(Ⅱ)抛物线的对称轴为直线522b x a =-=-, C 点和D 点关于直线52x =-对称, MC MD ∴=,||MB MC BC -(当B 、C 、M 共线时,取等号), ||MB MC ∴-的最大值为BC 的长,解方程组213215322y x y x x ⎧=+⎪⎪⎨⎪=++⎪⎩,解得0431x x y y ==-⎧⎧⎨⎨==⎩⎩或,则(4,1)B -,BC ∴设直线BC 的解析式为y kx t =+,把(4,1)B -,(3,0)C -代入得4130k t k t -+=⎧⎨-+=⎩,解得13k t =-⎧⎨=-⎩,∴直线BC 的解析式为3y x =--,当52x =-时,132y x =--=-,则此时M 点的坐标为5(2-,1)2-,∴点M 的坐标为5(2-,1)2-时,||MB MD -.【变式训练2】如图,已知抛物线上有三点(4,0)A -、(1,0)B 、(0,3)C -. (1)求出抛物线的解析式;(2)是否存在一点D ,能使A 、B 、C 、D 四点为顶点构成的四边形为菱形,若存在,请求出D 点坐标,若没有,请说明理由.(3)在(2)问的条件,P 为抛物线上一动点,请求出||PD PB -取最大值时,点P 的坐标.【解答】解:(1)设抛物线的解析式为2y ax bx c =++, (4,0)A -、(1,0)B 、(0,3)C -,∴016403a b c a b c c ++=⎧⎪-+=⎨⎪=-⎩, 解得:34a =,94b =,3c =-, ∴抛物线的解析式为239344y x x =+-;(2)存在一点(5,3)D -,使得以点A 、B 、C 、P 为顶点的四边形为菱形,理由为:1OB =,3OC =,4OA =,5AC ∴,AB AC ∴=,当CD 平行且等于AB 时,四边形ACDB 为菱形,5CD AB ∴==,∴点D 的坐标为(5,3)-,当点D 在第二、三象限时,以点A 、B 、C 、D 为顶点的四边形只能是平行四边形,不是菱形,∴存在一点(5,3)D -,使得以点A 、B 、C 、D 为顶点的四边形为菱形.(3)设直线DB 的解析式为(0)y kx b k =+≠, (1,0)B ,(5,3)D -,∴53k b k b +=-⎧⎨+=⎩,解得:34k =-,34b =,∴直线DB 的解析式为3344y x =-+,当点P 与点D 、B 不在同一直线上时,根据三角形的三边关系||PD PB DB -<, 当点P 与点D 、B 在同一直线上时,||PD PB DB -=,∴当点P 与点D 、B 在同一直线上时,||PD PB -的值最大,即点P 为直线DB 与抛物线的交点,解方程组2334439344y x y x x ⎧=-+⎪⎪⎨⎪=+-⎪⎩,得1110x y =⎧⎨=⎩(舍去)或22592x y =-⎧⎪⎨=⎪⎩,∴点P 的坐标为9(5,)2-时,||PD PB -的值最大.【变式训练3】如图,二次函数21212y x x =-++的图象与一次函数1y x =-+的图象交于A ,B 两点,点C 是二次函数图象的顶点,P 是x 轴下方线段AB 上一点,过点P 分别作x 轴的垂线和平行线,垂足为E ,平行线交直线BC 于F .(1)当PEF ∆面积最大时,在x 轴上找一点H ,使||BH PH -的值最大,求点H 的坐标和||BH PH -的最大值;【答案】(1)点(1,0)H ,||BH PH -; 【解答】解:(1)设点(,1)P m m -+,则点(,0)E m , 联立两个函数表达式得212121y x x y x ⎧=-++⎪⎨⎪=-+⎩,解得0615x x y y ==⎧⎧⎨⎨==-⎩⎩或, 即点A 、B 的坐标分别为(0,1)、(6,5)-,由抛物线的表达式知,点(2,3)C ,由B 、C 的坐标得,直线BC 的表达式为27y x =-+, 当271y x m =-+=-+时,62m x +=,故点6(2m F +,1)m -+, PEF ∆面积1161(1)()(1)(6)2224m PE PF m m m m +=⨯=⨯--=---, 104-<,故PEF ∆面积有最大值,此时17(16)22m =+=, 故点7(2P ,5)2-, 当P 、B 、H 三点共线时,||BH PH -的值最大,即点H为直线AB 与x 轴的交点,故点(1,0)H ,则||BH PH -的最大值BH PH BP =-===;。
专题4:坐标系中的将军饮马问题(作1次;2次对称)
19.19专题4:坐标系中的将军饮马问题(作1次;2次对称)一.【知识要点】1.坐标系中的将军饮马问题(作1次;2次对称)二.【经典例题】1.如图,直线3x + 4y-12 = 0与x轴、y轴分别交于点B、A两点,以线段AB为边在第一象限内作正方形ABCD.若点P为x轴上的一个动点,求当PC + PD的长最小时点P的坐标.2.在如图所示的平面直角坐标系中,点P是直线y=x上的动点,A(1,0),B(2,0)是x轴上的两点,当PA+PB为最小值时,求点P的坐标和PA+PB的最小值。
3.如图,在平面直角坐标系中,已知直线的解析式为,直线交轴于点,交轴于点.(1)若一个等腰直角三角形OBD的顶点D与点C重合,直角顶点B在第一象限内,请直接写出点B的坐标;(2)过点B作x轴的垂线l,在l上是否存在一点P,使得△AOP的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;(3)试在直线AC上求出到两坐标轴距离相等的所有点的坐标.xOy AC122y x=-+AC xC y AOABDCxyP三.【题库】 【A 】1.已知A (5,5),B (2,4),M 是x 轴上一动点,求使得M A +MB 最小时的点M 的坐标.【B 】1.如图,平面直角坐标系中两点A (2,3),B (1,0),点P 是y 轴上一动点. (1)画图的出点P 的位置,使△APB 的周长最短;(不用证明) (2)当△ABP 的周长最短时,求点P 的坐标.【C 】1.如图,直线432+=x y 与x 轴,y 轴分别交于A 点和B 点,点C 和点D 分别为线段AB ,OB 的中点,点P 为OA 上一动点,当PC+PD 最小时,点P 的坐标为( ) A.(-3,0) B.(-6,0) C.(23-,0) D.(25-,0)2.如图,菱形OABC 在平面直角坐标系中,顶点A(5,0),对角线OB=P 是对角线OB 上的一动点,D(0,1),则当PC+PD 最短时,点P 的坐标为( )()163105.0,0.1,.,.,25577A B C D ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【D 】1.平面直角坐标系xOy 中,已知点A (8,0)及第一象限的动点P (x ,y ),且x + y = 10.设△OPA 的面积为S ,周长为l .给出下列结论:① 0≤x ≤10 ② S =-4x + 40(0<x <10) ③ 2≤PA <412 ④ l 的最小值为2628+;其中正确结论的个数是( )A .1B .2C .3D .4 2.已知坐标平面内D (3,-2),E (5,2) (1)求经过D 、E 的直线1l 的解析式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
将军饮马问题路径最短、线段和最小、线段差最大、周长最小等一系列最值问题1.两点之间,线段最短;2.三角形两边之和大于第三边,两边之差小于第三边;3.中垂线上的点到线段两端点的距离相等;4.垂线段最短.1.已知:如图,定点A、B分布在定直线l两侧;要求:在直线l上找一点P,使PA+PB的值最小解:连接AB交直线l于点P,点P即为所求,PA+PB的最小值即为线段AB的长度理由:在l上任取异于点P的一点P´,连接AP´、BP´,在△ABP’中,AP´+BP´>AB,即AP´+BP´>AP+BP∴P为直线AB与直线l的交点时,PA+PB最小.2.已知:如图,定点A和定点B在定直线l的同侧要求:在直线l上找一点P,使得PA+PB值最小(或△ABP的周长最小)解:作点A关于直线l的对称点A´,连接A´B交l于P,点P即为所求;理由:根据轴对称的性质知直线l为线段AA´的中垂线,由中垂线的性质得:PA=PA´,要使PA+PB最小,则需PA´+PB值最小,从而转化为模型1.3.已知:如图,定点A、B分布在定直线l的同侧(A、B两点到l的距离不相等)要求:在直线l上找一点P,使︱PA-PB︱的值最大解:连接BA并延长,交直线l于点P,点P即为所求;理由:此时︱PA-PB︱=AB,在l上任取异于点P的一点P´,连接AP´、BP´,由三角形的三边关系知︱P´A-P´B︱<AB,即︱P´A-P´B︱<︱PA-PB︱4. 已知:如图,定点A、B分布在定直线l的两侧(A、B两点到l的距离不相等)要求:在直线l上找一点P,使︱PA-PB︱的值最大解:作点B关于直线l的对称点B´,连接B´A并延长交于点P,点P即为所求;理由:根据对称的性质知l为线段BB´的中垂线,由中垂线的性质得:PB=PB´,要使︱PA-PB︱最大,则需︱PA-PB´︱值最大,从而转化为模型3.典型例题1-1x+4与x轴、y轴分别交于点A和点B,点C、D分如图,直线y=23别为线段AB、OB的中点,点P为OA上一动点,当PC+PD最小时,点P的坐标为_________,此时PC+PD的最小值为_________.【分析】符合基本模型2的特征,作点D关于x轴的对称点D',连接CD'交x轴于点P,此时PC+PD值最小,由条件知CD为△BAO的中位线,OP为△CDD'的中位线,易求OP长,从而求出P点坐标;PC+PD的最小值即CD'长,可用勾股定理(或两点之间的距离公式,实质相同)计算.【解答】连接CD,作点D关于x轴的对称点D′,连接CD′交x轴于点P ,此时PC+PD 值最小.令y=23x+4中x=0,则y=4, ∴点B 坐标(0,4);令y=23x+4中y=0,则23x+4=0,解得:x=﹣6,∴点A 的坐标为(﹣6,0).∵点C 、D 分别为线段AB 、OB 的中点,∴CD 为△BAO 的中位线, ∴CD ∥x 轴,且CD=21AO=3,∵点D ′和点D 关于x 轴对称,∴O 为DD ′的中点,D ′(0,-1),∴OP 为△CDD ′的中位线,∴OP=21CD=23,∴点P 的坐标为(﹣32,0).在Rt △CDD ′中,CD ′=22D D CD '+=2243+=5,即PC+PD 的最小值为5.【小结】还可用中点坐标公式先后求出点C 、点P 坐标;若题型变化,C 、D 不是AB 和OB 中点时,则先求直线CD ′的解析式,再求其与x 轴的交点P 的坐标.典型例题1-2如图,在平面直角坐标系中,已知点A 的坐标为(0,1),点B的坐标为(32,﹣2),点P 在直线y=﹣x 上运动,当|PA ﹣PB|最 大时点P 的坐标为_________,|PA ﹣PB|的最大值是_________.【分析】符合基本模型4的特征,作A 关于直线y=﹣x 对称点C ,连接BC ,可得直线BC 的方程;求得BC 与直线y=﹣x 的交点P 的坐标;此时|PA ﹣PB|=|PC ﹣PB|=BC 取得最大值,再用两点之间的距离公式求此最大值.【解答】作A 关于直线y=﹣x 对称点C ,易得C 的坐标为(﹣1,0);连接BC ,可得直线BC的方程为y=﹣54x ﹣54,与直线y=﹣x 联立解得交点坐标P 为(4,﹣4);此时|PA﹣PB|=|PC ﹣PB|=BC 取得最大值,最大值BC=2223)2()1(−++=241;【小结】“两点一线”大多考查基本模型2和4,需作一次对称点,连线得交点.变式训练1-1已知菱形OABC 在平面直角坐标系的位置如图所示,顶点A (5,0),OB=4√5,点P 是对角线OB 上的一个动点,D (0,1),当CP+DP 最短时,点P 的坐标为( )A .(0,0)B .(1,12)C .(65,35)D .(107,57)变式训练1-2如图,菱形ABCD中,对角线AC和BD交于点O,AC=2,BD=2√3,E为AB的中点,P为对角线AC上一动点,则PE+PB的最小值为__________.变式训练1-3如图,已知直线y=12x+1与y轴交于点A,与x轴交于点D,抛物线y=12x2+bx+c与直线交于A、E两点,与x轴交于B、C两点,且B点坐标为(1,0).(1)求该抛物线的解析式;(2)在抛物线的对称轴上找一点M,使|AM﹣MC|的值最大,求出点M的坐标.1.已知:如图,A为锐角∠MON外一定点;要求:在射线OM上找一点P,在射线ON上找一点Q,使AP+PQ的值最小.解:过点A作AQ⊥ON于点Q,AQ与OM相交于点P,此时,AP+PQ最小;理由:AP+PQ≧AQ,当且仅当A、P、Q三点共线时,AP+PQ取得最小值AQ,根据垂线段最短,当AQ⊥ON时,AQ最小.2.已知:如图,A为锐角∠MON内一定点;要求:在射线OM上找一点P,在射线ON上找一点Q,使AP+PQ的值最小.解:作点A关于OM的对称点A′,过点A′作AQ⊥ON于点Q,A′Q交OM于点P,此时AP+PQ最小;理由:由轴对称的性质知AP=A′P,要使AP+PQ最小,只需A′P+PQ最小,从而转化为拓展模型13.已知:如图,A为锐角∠MON内一定点;要求:在射线OM上找一点P,在射线ON上找一点Q,使△APQ的周长最小解:分别作A点关于直线OM的对称点A1,关于ON的对称点A2,连接 A1A2交OM于点P,交ON于点Q,点P和点Q即为所求,此时△APQ周长最小,最小值即为线段A1A2的长度;理由:由轴对称的性质知AP=A1P,AQ=A2Q,△APQ的周长AP+PQ+AQ=A1P+PQ+A2Q,当A1、P、Q、A2四点共线时,其值最小.4. 已知:如图,A、B为锐角∠MON内两个定点;要求:在OM上找一点P,在ON上找一点Q,使四边形APQB的周长最小解:作点A关于直线OM的对称点A´,作点B关于直线ON的对称点B´,连接A´B´交OM于P,交ON于Q,则点P、点Q即为所求,此时四边形APQB周长的最小值即为线段AB和A´B´的长度之和;理由:AB长为定值,由基本模型将PA转化为PA´,将QB转化为QB´,当A´、P、Q、B´四点共线时,PA´+PQ+ QB´的值最小,即PA+PQ+ QB的值最小.5.搭桥模型已知:如图,直线m∥n,A、B分别为m上方和n下方的定点,(直线AB不与m垂直)要求:在m、n之间求作垂线段PQ,使得AP+PQ+BQ最小.分析:PQ为定值,只需AP+BQ最小,可通过平移,使P、Q“接头”,转化为基本模型解:如图,将点A沿着平行于PQ的方向,向下平移至点A′,使得AA′=PQ,连接A′B交直线n于点Q,过点Q作PQ⊥n,交直线m于点P,线段PQ即为所求,此时AP+PQ+BQ最小.理由:易知四边形QPAA′为平行四边形,则QA′=PA,当B、Q、A′三点共线时,QA′+BQ最小,即AP+BQ最小,PQ长为定值,此时AP+PQ+BQ最小.6.已知:如图,定点A、B分布于直线l两侧,长度为a(a为定值)的线段PQ在l上移动(P在Q左边)要求:确定PQ的位置,使得AP+PQ+QB最小分析:PQ为定值,只需AP+QB的值最小,可通过平移,使P、Q“接头”,转化为基本模型解:将点A沿着平行于l的方向,向右移至A´,使AA´=PQ=a,连接A´B交直线l于点Q,在l上截取PQ=a(P在Q左边),则线段PQ即为所求,此时AP+PQ+QB的最小值为A´B+PQ,即A´B+a理由:易知四边形APQA´为平行四边形,则PA=QA´,当A´、Q、B三点共线时,QA´+QB最小,即PA+QB最小,又PQ长为定值此时PA+PQ+QB值最小.7.已知:如图,定点A、B分布于直线l的同侧,长度a(a为定值)的线段PQ在l上移动(P在Q左边)要求:确定PQ 的位置,使得四边形APQB 周长最小分析:AB 长度确定,只需AP+PQ+QB 最小,通过作A 点关于l 的对称点,转化为上述模型3解:作A 点关于l 的对称点A ´,将点A ´沿着平行于l的方向,向右移至A ´´,使A ´A ´´=PQ=a ,连接A ´´B交l 于Q ,在l 上截取QP=a (P 在Q 左边),线段PQ 即为所求,此时四边形APQB 周长的最小值为A ´´B+AB+PQ ,即A ´´B+AB+a典型例题2-1如图,在矩形ABCD 中,AB=10,BC=5,若点M 、N 分别是线段AC 、AB 上的两个动点,则BM+MN 的最小值为 .【分析】符合拓展模型2的特征,作点B 关于AC 的对称点E ,再过点E 作AB 的垂线段,该垂线段的长即BM+MN 的最小值,借助等面积法和相似可求其长度.【解答】作点B 关于AC 的对称点E ,再过点E 作EN ⊥AB 于N ,则BM+MN=EM+MN ,其最小值即EN 长;∵AB=10,BC=5,∴AC=22BC AB +=55,等面积法求得AC 边上的高为55510⨯=25,∴BE=45, 易知△ABC ∽△ENB ,∴,代入数据解得EN=8. 即BM+MN 的最小值为8.【小结】该类题的思路是通过作对称,将线段转化,再根据定理、公理连线或作垂线;可作定点或动点关于定直线的对称点,有些题作定点的对称点易解,有些题则作动点的对称点易解.典型例题2-2如图,∠AOB=60°,点P 是∠AOB 内的定点且OP=,点M 、N 分别是射线OA 、OB 上异于点O 的动点,则△PMN 周长的最小值是( )A .B .C .6D .3【分析】符合拓展模型3的特征;作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,此时△PMN周长最小,其值为CD长;根据对称性连接OC、OD,分析条件知△OCD是顶角为120°的等腰三角形,作底边上高,易求底边CD. 【解答】作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,则MP=MC,NP=ND,OP=OD=OC=,∠BOP=∠BOD,∠AOP=∠AOC,∴PN+PM+MN=ND+MN+NC=DC,∠COD=∠BOP+∠BOD+∠AOP+∠AOC=2∠AOB=120°,∴此时△PMN周长最小,作OH⊥CD于H,则CH=DH,∵∠OCH=30°,∴OH=OC=,CH=OH=,∴CD=2CH=3.即△PMN周长的最小值是3;故选:D.【小结】根据对称的性质,发现△OCD是顶角为120°的等腰三角形,是解题的关键,也是难点.典型例题2-3如图,已知平行四边形ABCO,以点O为原点,OC所在的直线为x轴,建立直角坐标系,AB交y轴于点D,AD=2,OC=6,∠A=60°,线段EF所在的直线为OD的垂直平分线,点P为线段EF上的动点,PM⊥x轴于点M点,点E与E′关于x轴对称,连接BP、E′M.(1)请直接写出点A坐标为,点B坐标为;(2)当BP+PM+ME′的长度最小时,请求出点P的坐标.【分析】(1)解直角三角形求出OD,BD的长即可解决;(2)符合“搭桥模型”的特征;首先证明四边形OPME′是平行四边形,可得OP=EM,PM是定值,PB+ME′=OP+PB的值最小时,BP+PM+ME′的长度最小,此时P点为直线OB与EF的交点,结合OB的解析式可得P点坐标;【解答】(1)在Rt△ADO中,∵∠A=60°,AD=2,∴OD=2•tan60°=2,∴A(﹣2,2),∵四边形ABCO是平行四边形,∴AB=OC=6,∴DB=6﹣2=4,∴B(4,2)(2)如图,连接OP.∵EF垂直平分线段OD,PM⊥OC,∴∠PEO=∠EOM=∠PMO=90°,∴四边形OMPE是矩形,∴PM=OE=,∵OE=OE′,∴PM=OE′,PM∥OE′,∴四边形OPME′是平行四边形,∴OP=EM,∵PM是定值,∴PB+ME′=OP+PB的值最小时,BP+PM+ME′的长度最小,∴当O、P、B共线时,BP+PM+ME′的长度最小,∵直线OB的解析式为y=x,∴P(2,).【小结】求没有公共端点的两条线段之和的最小值,一般通过作对称和平移(构造平行四边形)的方法,转化为基本模型.典型例题2-4如图所示,在平面直角坐标系中,Rt△AOB的顶点坐标分别为A(﹣2,0),O(0,0),B(0,4),把△AOB绕点O按顺时针方向旋转90°,得到△COD.(1)求C、D两点的坐标;(2)求经过A、B、D三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上取两点E、F(点E在点F的上方),且EF=1,使四边形ACEF的周长最小,求出E、F两点的坐标.【分析】符合拓展模型7的特征,通过作对称、平移、连线,可找出E、F点,结合直线的解析式和抛物线的对称轴可解出E、F坐标.【解答】(1)由旋转的性质可知:OC=OA=2,OD=OB=4,∴C点的坐标是(0,2),D点的坐标是(4,0),(2)设所求抛物线的解析式为y=ax2+bx+c,4a-2b+c=0由题意,得 16a+4b+c=0c=4解得a=-12,b=1,c=4,∴所求抛物线的解析式为y=-12x²+x+4;(3)只需AF+CE最短,抛物线y=-12x²+x+4的对称轴为x=1,将点A向上平移至A1(﹣2,1),则AF=A1E,作A1关于对称轴x=1的对称点A2(4,1),连接A2C,A2C与对称轴交于点E,E为所求,可求得A2C的解析式为y=-14x+2,当x=1时,y=74,∴点E的坐标为(1,74),点F的坐标为(1,34).【小结】解决此类题的套路是“对称、平移、连线”;其中,作对称和平移的顺序可互换.变式训练2-1几何模型:条件:如图1,A,B是直线l同旁的两个定点.问题:在直线l上确定一点P,使PA+PB的值最小.方法:作点A关于直线l的对称点A’,连接A’B交l于点P,即为所求.(不必证明)模型应用:(1)如图2,已知平面直角坐标系中两定点A(0,﹣1)和B(2,﹣1),P为x轴上一动点,则当PA+PB的值最小是点P的横坐标是,此时PA+PB= .(2)如图3,正方形ABCD的边长为4,E为AB的中点,P是AC上一动点,连接BD,由正方形对称性可知,B与D关于直线AC对称.连接ED交AC于P,则PB+PE的最小值是.(3)如图4,在菱形ABCD中,AB=10,∠DAB=60°,P是对角线AC上一动点,E,F分别是线段AB和BC上的动点,则PE+PF的最小值是.(4)如图5,在菱形ABCD中,AB=6,∠B=60°,点G是边CD边的中点,点E.F分别是AG,AD上的两个动点,则EF+ED的最小值是.变式训练2-2如图,矩形ABCD中,AD=15,AB=10,E为AB边上一点,且DE=2AE,连接CE与对角线BD交于F;若P、Q分别为AB边和BC边上的动点,连接EP、PQ和QF;则四边形EPQF周长的最小值是___________.变式训练2-3如图,已知直线l1∥l2,l1、l2之间的距离为8,点P到直线l1的距离为6,点Q到直线l2的距离为4,PQ=4,在直线l1上有一动点A,直线l2上有一动点B,满足AB⊥l2,且PA+AB+BQ最小,此时PA+BQ= .变式训练2-4如图,已知在平面直角坐标系xOy中,直角梯形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=AB=2,OC=3,过点B作BD⊥BC,交OA于点D.将∠DBC绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴、x轴的正半轴于点E和F.(1)求经过A、B、C三点的抛物线的解析式;(2)当BE经过(1)中抛物线的顶点时,求CF的长;(3)在抛物线的对称轴上取两点P、Q(点Q在点P的上方),且PQ=1,要使四边形BCPQ 的周长最小,求出P、Q两点的坐标.1.要在街道旁建奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使A、B到它的距离之和最短?小聪以街道为x轴,建立了如图所示的平面直角坐标系,A点坐标为(0,3),B点坐标为(6,5),则A、B两点到奶站距离之和的最小值是.2.如图,矩形ABOC的顶点A的坐标为(﹣4,5),D是OB的中点,E是OC上的一点,当△ADE的周长最小时,点E的坐标是()A .(0,)B .(0,)C .(0,2)D .(0,)3.如图,在矩形ABCD 中,AB=5,AD=3,动点P 满足S △PAB =31S 矩形ABCD ,则点P 到A 、B 两点距离之和PA+PB 的最小值为( )A .B .C .5D .4.已知抛物线y=x 2+1具有如下性质:该抛物线上任意一点到定点F (0,2)的距离与到x轴的距离始终相等,如图,点M 的坐标为(,3),P 是抛物线y=x 2+1上一个动点,则△PMF 周长的最小值是( )A .3B .4C .5D .65.如图,点A (a ,3),B (b ,1)都在双曲线y=上,点C ,D ,分别是x 轴,y 轴上的动点,则四边形ABCD 周长的最小值为( )A .B .C .D .6.如图,在Rt △ABC 中,∠C=90°,AC=3,BC=4,D 、E 分别是AB 、BC 边上的动点,则AE+DE 的最小值为( )A .B .C .5D .7.如图,Rt △ABC 中,∠BAC=90°,AB=3,AC=6,点D ,E 分别是边BC ,AC 上的动点,则DA+DE 的最小值为 .8.如图,等腰△ABC 的底边BC=20,面积为120,点F 在边BC 上,且BF=3FC ,EG 是腰AC 的垂直平分线,若点D 在EG 上运动,则△CDF 周长的最小值为 .9.如图,菱形ABCD 的边长为6,∠ABC=120°,M 是BC 边的一个三等分点,P 是对角线AC 上的动点,当PB+PM 的值最小时,PM 的长是( )A.B.C.D.10.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD平分∠CAB交BC于D点,E,F分别是AD,AC上的动点,则CE+EF的最小值为()A.B.C.D.611.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象与边长是6的正方形OABC的两边AB,BC分别相交于M,N 两点.△OMN的面积为10.若动点P在x轴上,则PM+PN 的最小值是()A.6B.10 C.2D.212.如图,△ABC中,AC=BC=2,AB=1,将它沿AB翻折得到△ABD,则四边形ADBC的形状是形,P、E、F分别为线段AB、AD、DB上的任意点,则PE+PF的最小值是.13.如图,已知抛物线y=x2+bx+c与直线y=x+3交于A,B两点,交x轴于C、D两点,连接AC、BC,已知A(0,3),C(﹣3,0).(1)求此抛物线的解析式;(2)在抛物线对称轴l上找一点M,使|MB﹣MD|的值最大,并求出这个最大值;(3)点P为y轴右侧抛物线上一动点,连接PA,过点P作PQ⊥PA交y轴于点Q,问:是否存在点P,使得以A,P,Q为顶点的三角形与△ABC相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.14.如图,在四边形ABCD中,∠B=∠C=90°,AB>CD,AD=AB+CD.(1)用尺规作∠ADC的平分线DE,交BC于点E,连接AE(保留作图痕迹,不写作法);(2)在(1)的条件下,①证明:AE⊥DE;②若CD=2,AB=4,点M,N分别是AE,AB上的动点,求BM+MN的最小值.15.如图,抛物线y=ax2+bx+c(a≠0)经过点A(﹣1,0),B(3,0),C(0,3)三点.(1)求抛物线的解析式及顶点M的坐标;(2)连接AC、BC,N为抛物线上的点且在第四象限,当S△NBC=S△ABC时,求N点的坐标;(3)在(2)问的条件下,过点C作直线l∥x轴,动点P(m,3)在直线l上,动点Q(m,0)在x轴上,连接PM、PQ、NQ,当m为何值时,PM+PQ+QN的和最小,并求出 PM+PQ+QN 和的最小值.16.如图,直线y=5x+5交x轴于点A,交y轴于点C,过A,C两点的二次函数y=ax2+4x+c的图象交x轴于另一点B.(1)求二次函数的表达式;(2)连接BC,点N是线段BC上的动点,作ND⊥x轴交二次函数的图象于点D,求线段ND 长度的最大值;(3)若点H为二次函数y=ax2+4x+c图象的顶点,点M(4,m)是该二次函数图象上一点,在x轴、y轴上分别找点F,E,使四边形HEFM的周长最小,求出点F,E的坐标.17.如图1,已知抛物线y=(x﹣2)(x+a)(a>0)与x轴从左至右交于A,B两点,与y轴交于点C.(1)若抛物线过点T(1,﹣),求抛物线的解析式;(2)在第二象限内的抛物线上是否存在点D,使得以A、B、D三点为顶点的三角形与△ABC相似?若存在,求a的值;若不存在,请说明理由.(3)如图2,在(1)的条件下,点P的坐标为(﹣1,1),点Q(6,t)是抛物线上的点,在x轴上,从左至右有M、N两点,且MN=2,问MN在x轴上移动到何处时,四边形PQNM 的周长最小?请直接写出符合条件的点M的坐标.18.如图,对称轴为直线x=2的抛物线经过A(﹣1,0),C(0,5)两点,与x轴另一交点为B.已知M(0,1),E(a,0),F(a+1,0),P是第一象限内抛物线上的动点.(1)求此抛物线的解析式;(2)当a=1时,求四边形MEFP的面积的最大值,并求此时点P的坐标;(3)若△PCM是以点P为顶点的等腰三角形,求a为何值时,四边形PMEF周长最小?请说明理由.19.探究:小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系内任意两点P1(x1,y1),P2(x2,y2),可通过构造直角三角形利用图1得到结论:P1P2=他还利用图2证明了线段P1P2的中点P(x,y)P的坐标公式:x=,y=.(1)请你帮小明写出中点坐标公式的证明过程;运用:(2)①已知点M(2,﹣1),N(﹣3,5),则线段MN长度为;②直接写出以点A(2,2),B(﹣2,0),C(3,﹣1),D为顶点的平行四边形顶点D的坐标:;拓展:(3)如图3,点P(2,n)在函数y=x(x≥0)的图象OL与x轴正半轴夹角的平分线上,请在OL、x轴上分别找出点E、F,使△PEF的周长最小,简要叙述作图方法,并求出周长的最小值.20.如图,直线y=kx+b(k、b为常数)分别与x轴、y轴交于点A(﹣4,0)、B(0,3),抛物线y=﹣x2+2x+1与y轴交于点C.(1)求直线y=kx+b的函数解析式;(2)若点P(x,y)是抛物线y=﹣x2+2x+1上的任意一点,设点P到直线AB的距离为d,求d关于x的函数解析式,并求d取最小值时点P的坐标;(3)若点E在抛物线y=﹣x2+2x+1的对称轴上移动,点F在直线AB上移动,求CE+EF的最小值.21.如图①,在平面直角坐标系中,OA=6,以OA为边长作等边三角形ABC,使得BC∥OA,且点B、C落在过原点且开口向下的抛物线上.(1)求这条抛物线的解析式;(2)在图①中,假设一动点P从点B出发,沿折线BAC的方向以每秒2个单位的速度运动,同时另一动点Q从O点出发,沿x轴的负半轴方向以每秒1个单位的速度运动,当点P 运动到A点时,P、Q都同时停止运动,在P、Q的运动过程中,是否存在时间t,使得PQ⊥AB,若存在,求出t的值,若不存在,请说明理由;(3)在BC边上取两点E、F,使BE=EF=1个单位,试在AB边上找一点G,在抛物线的对称轴上找一点H,使得四边形EGHF的周长最小,并求出周长的最小值.。