第四章 溶液——多组分体系热力学

合集下载

物理化学:第4章_多组分系统热力学_

物理化学:第4章_多组分系统热力学_
Vm*,B Vm*,C Vm*,B xC
真实混合物:实曲线
Vm xBVB xCVC VB (VC VB)xC
当混合物组成改变时,两组 分偏摩尔体积随之改变,且二者 变化相互关联。
组成接近某纯组分,其偏摩 尔体积也接近该纯组分摩尔体积。
5. 吉布斯 − 杜亥姆方程
对广度量 X (T , p, nB, nC , nD ,) 求全微分:
dX
X T
p,nB
dT
X p
T ,nB
dp
B
X nB
dnB T , p,nC
恒温、恒压
另一方面,由加和公式
,恒温恒压下求导:
比较两式,得


吉布斯-杜亥姆方程--在一定温度压力下,当混合物
组成变化时,各组分偏摩尔量变化的相互依赖关系。
➢ 系统中各组分的偏摩尔量并非完全独立,而是相 互依存的。
➢ 例:固体溶解、过饱和溶液析出、…
组分B在α、β两相中迁移达平衡的条件:该组分
在两相中的化学势相等。
➢ 物质总是从其化学势高的相向化学势低的相迁移, 直至物质迁移达平衡时为止,此时系统中每个组分在 其所处的相中的化学势相等。
化学势 判据
② 化学平衡
<0:自发不可逆; =0:平衡、可逆
任一化学反应,假定系统已处于相平衡,
任一组分B在每个相中的化学势都相等: Bα B
B
B
整个系统中B组分物质的量的变化量: dnBα dnB
α
BdnB
B
化学平衡时
平衡条件:与化学反应达到平衡的方式无关。
§4.3 气体组分的化学势
1、纯理想气体的化学势 2、理想气体混合物中任一组分的化学势 3、纯真实气体的化学势 4、真实气体混合物中任一组分的化学势

第四章 溶液的热力学性质

第四章 溶液的热力学性质
(nM ) (nM ) (nM ) d (nM ) ( ) P ,ni dT ( )T ,ni dP ( )T , P ,n ji dni T P ni
定义
偏摩尔性质:用偏微分 (nM ) Mi [ ]T , P,n ji ni 表示性质随组成变化
M V, U, H, S, F, G
35
(nM ) Mi [ ]T , P,n ji ni
1 2
3 4
变情况下,向无限多的溶液中加入1mol的 组分i所引起的一系列热力学性质的变化。
物理意义:在T、P和其它组分量nj不
强度性质:只有广度性质才有偏摩尔性质, 而偏摩尔性质是强度性质。 纯物质:偏摩尔性质就是它的摩尔性质。
影响因素:任何偏摩尔性质都是T,P和组 成X的函数。 影响作用力必影 响偏摩尔性质
46
§4.2.3 偏摩尔性质 M i 的计算
1
解析法:定义式
2
截距法:二元体系
47
2
截距法:二元体系
I1
dM M I 2 dx1 x1
切线
K 斜率
M
I2
M2
组分
M1
dM I 2 M x1 M2 dx1
0
x1
1
dM I1 M x2 M1 dx1
两个特殊点
M1 M
M 1 lim M 1
x1 1
M 2 lim M 2
x2 1
M lim M 1
x1 0
1
Mx2 0
2
例1. 实验室需要配制含有20%(wt%)的甲醇的水溶液 3×10-3m-3作防冻剂.问在20℃时需要多少体积的甲醇 (1)和水(2)混合,方能配制成3×10-3m3的防冻溶液。

物理化学 第四章 多组分系统热力学

物理化学 第四章 多组分系统热力学

Vm
T,p一定
V*m,C VC
V*m,B VB
d c· b·
0 B
a xC
C
图4.1.2 二组分液态混合物的 偏摩尔体积示意图
若B,C形成真实液态混合物: 则混合物体积为由V*m,B至V*m,C的曲线。对于任一 组成a时,两组分的偏摩尔体积可用下法表示: 过组成点a所对应的系统体积点d作Vm-xC曲线的 切线,此切线在左右两纵坐标上的截距即分别 为该组成下两组分的偏摩尔体积VB,VC。
B
系统中各广度量的偏摩尔量: 对于多组分系统中的组分B,有: 偏摩尔体积: VB=(ƽV/ƽnB)T,p,n C 偏摩尔热力学能: UB=(ƽU/ƽnB)T,p,n C 偏摩尔焓: HB=(ƽH/ƽnB)T,p,n C 偏摩尔熵: SB=(ƽS/ƽnB)T,p,n C 偏摩尔亥姆霍兹函数:AB=(ƽA/ƽnB)T,p,n C 偏摩尔吉布斯函数: GB=(ƽG/ƽnB)T,p,n
C
几点说明: (1)偏摩尔量为两个广度性质之比,所以为强度 性质; (2)偏摩尔量的定义中明确是在恒温、恒压及系 统组成不变的条件下,偏导数式的下标为T,p 时才是偏摩尔量; (3)同一物质在相同温度、压力但组成不同的多 组分均相系统中,偏摩尔量不同; (4)若系统为单组分系统,则该组分的偏摩尔量 与该组分的摩尔量相等,即: XB=X*B,m
C
=VB (数学知识:二阶偏导与求导的顺序无关) 得证。
4.2化学势 4.2化学势
1.化学势的定义 混合物(或溶液中)组分B的偏摩尔吉布斯函数GB 定义为B的化学势,用符号μB表示:
μB = GB=(ƽG/ƽnB)T,p,n
def
C
对于纯物质,其化学势等于它的摩尔吉布斯函 数。

第四章 多组分系统热力学及其在溶液中的应用

第四章 多组分系统热力学及其在溶液中的应用

第四章 多组分系统热力学及其在溶液中的应用1.在298K 时,有0.10kg 质量分数为0.0947的硫酸H 2SO 4水溶液,试分别用(1)质量摩尔浓度B m ;(2)物质的量浓度和B c (3)摩尔分数B x 来表示硫酸的含量。

已知在该条件下,硫酸溶液的密度为331.060310kg m -⨯⋅ ,纯水的浓度为3997.1kg m -⋅ 。

解:质量摩尔浓度:()2410.19.47%/1009.47%0.1981.067mol H SO B n m W kg -⨯==-⨯=⋅水物质量浓度:()24331009.47%0.10.19.47%/98997.11.02310mol H SO B n c V m --⨯⨯===⨯g 水 摩尔分数:242420.0189H SO B H SO H On x n n ==+2、在K 298和大气压力下,含甲醇()B 的摩尔分数B x 为0.458的水溶液密度为30.8946kg dm -⋅,甲醇的偏摩尔体积313()39.80V CH OH cm mol -=⋅,试求该水溶液中水的摩尔体积2()V H O 。

解:3322CH OH CH OH H O H O V n V n V =+3322CH OH CH OHH O H OV n V V n -=以1mol 甲醇水溶液为基准,则330.45832(10.458)180.027290.894610m V dm ρ⨯+-⨯===⨯ ∴23310.027290.45839.801016.7210.458H OV cm mol ---⨯⨯==⋅-3.在298K 和大气压下,某酒窖中存在酒10.0m3,其中含乙醇的质量分数为0.96。

今欲加水调制含乙醇的质量分数为0.56的酒,试计算(1)应加入水的体积;(2)加水后,能得到含乙醇的质量分数为0.56的酒的体积已知该条件下,纯水的密度为3997.1kg m -⋅,水和乙醇的偏摩尔体积为()25C H OH ω()()6312/10V H O m mol --⋅()()63125/10V C H OH m mol --⋅0.96 14.61 58.0 0.5617.1156.58解:设加入水的物质的量为O H n 2',根据题意,未加水时,2520.9610.96::9.3914618C H OH H O n n -== 2525221C H OHC H OH H O H O V n V n V =⋅+⋅ 即 661001.581061.1410522--⨯⨯+⨯⨯=OH H C O H n n解出:25167882C H OH n mol =217877H O n mol = 加入水后,25220.5610.56:():0.4984618C H OH H O H O n n n -'+== 20.5610.56167882:(17877):0.4984618H O n -'+==2'317887H On mol = 加入水的物质的体积为23331788718105.727()999.1H O V m -⨯⨯'== 2525222252'26'6()56.5810(17877)17.1110C H OH C H OH H O H OH OC H OH H OV n V n n V n n --=++=⨯⨯++⨯⨯329.4984495 5.76753115.266V m =+=4.在K 298和kPa 100下,甲醇)(B 的摩尔分数B x 为30.0的水溶液中,水)(A 和甲醇)(B 的偏摩尔体积分别为:132765.17)(-⋅=mol cm O H V ,133632.38)(-⋅=mol cm OH CH V 。

物理化学第四版 第四章 多组分系统热力学2014.2

物理化学第四版 第四章  多组分系统热力学2014.2

)
p,n
(
B
)
,V
(
G P
)T
,n(
B
)
k
dG SdT VdP BdnB
证毕
B 1
14
又 dA d(G PV ) dG pdV Vdp
将上式dG 代入,整理得:
k
dA sdT PdV BdnB ……..(3) B 1
同理可得出另二个热力学基本方程。
因 A=A(T,V,n1,n2…….nk)
B
B
B
........
n B
相平衡条件
有N 个组分,就有N 个这样的式子
19
例:在、 两相中均含有A和B两种物质,达到相平衡时,下列
各式正确的是(
)。
A、
A
B
B、
B
B
C、
A
B
D、
B
A
例:组分B从相扩散入相中,则以下说法正确的有( A、总是从浓度低的相扩散入浓度高的相 B、平衡时两相浓度相等 C、总是从化学势高的相移向低化学势低的相
dA
(
A T
)V
,n
(
B
)
dT
( A V
)T ,n(B)
dV
k B 1
(
A n(B)
)T
,V
,n
(
c,c
B)
dnB
将式(4)和式(3)比较
B
A ( nB
)T ,V ,n(c,cB)
同样可得出
B
U ( nB
)S ,V ,n(c,cB)
H ( nB
)S ,P.n(c,cB)
…..(4)
15
例 2: 下列偏导数中那些是偏摩尔量?那些是化学势?

物理化学第四章 多组分系统(72)

物理化学第四章 多组分系统(72)


pg:理想气体
• 3.2 理想气体混合物中任一组分的化学势
B ( pg ) B ( g ) RT ln( pB / p )

★不同系统中各组分的化学势表达式是本章的一个重要 内容,要注意区分不同的表达式,特别是明确其中标准 态的不同
§4.5 拉乌尔定律与亨利定律
• 5.1 液态混合物的气液平衡
B (l ) B ( g) B ( g) RT ln( pB / p )

将拉乌尔定律代入: (l ) ( g ) RT ln( p x / p ) B B B B 该式可以看成 是理想液态混 合物的定义式
B
B ( g ) RT ln( pB / p ) RT ln xB
★在恒温、恒压条件下,在大量系统中,除了B 组分以外, 保持其它组分的数量不变,加入1mol 组分B 引起的系统广度 量X 的变化 ★或:在等温等压下,系统广度性质X 随着组分B的量的变 化率就是XB。
(3)说明
1) X 代表体系的任一广度性质
V VB nB T , p ,n C U UB nB T , p ,n C
§4.1 偏摩尔量
• 1.1 问题的提出
而对多组分系统, 如水与无水乙醇的混合: V n水Vm,水 n乙醇Vm,乙醇
对纯物质而言: nVm V
由此可见:由纯组分混合形成混合物时不仅体积发生变化, 而且体积变化多少与形成混合物的组成有关
广度性质 X (如 V,G,S,U 等)除与温度、压力有关外, 还与系统中各组分的量n1、n2、n3、…、nk有关。
X B X nB T , p ,n
C
G S GB SB nB T , p ,n nB T , p ,n C C

第四章 多组分系统热力学及其在溶液中的应用自测题

第四章 多组分系统热力学及其在溶液中的应用自测题

第四章 多组分系统热力学及其在溶液中的应用自测题和答案Ⅰ. 选择题1. 恒温时,在A -B 双液系中,若增加A 组分使其分压p A 上升,则B 组分在气相中的分压p A 将( b )。

(a )上升 (b )下降 (c )不变 (d )不确定 2. 一直 373 K 时液体A 的饱和蒸汽压为105 Pa ,液体B 的饱和蒸汽压为 0.5×105Pa 。

设A 和B 构成理想溶液,则当A 在溶液中的摩尔分数为0.5时,在气相中A 的摩尔分数为( c )。

(a )1 (b )12 (c )23 (d )133. 273.15 K ,101 325 Pa 下,1 dm 3 水中能溶解49 mol 氧或23.5 mol 氮,在标准情况下,1 dm 3 水中能溶解的空气的量为( b )(a )25.5 mol (b )28.6 mol (c )96 mol (d )72.5 mol4. 一封闭钟罩中放一杯纯水A 和一杯糖水B,静置足够长时间后发现( b )。

(a )A 杯水减少,B 杯水满后不再变化 (b )A 杯水减少至空杯,B 杯水满后溢出 (c )B 杯水减少,A 杯水满后不再变化 (d )B 杯水减少至空杯,A 杯水满后溢出5. 保持压力不变,在稀溶液中溶剂的化学势μ随温度降低而( c )。

(a )降低 (b )不变 (c )增大 (d )不确定 6. 温度为273 K ,压力为1×106 Pa 下液态水和固态水的化学势(l)μ和(s)μ之间的关系为( c )。

(a )(l)(s)μμ> (b )(l)=(s)μμ (c )(l)(s)μμ< (d ) 无确定关系7. 在等温、等压下,溶剂A 和溶质B 形成一定浓度的稀溶液,采用不同浓度表示的话,则( d )。

(a )溶液中A 和B 的活度不变(b )溶液中A 和B 的标准化学势不变 (c )溶液中A 和B 的活度因子不变 (d )溶液中A 和B 的化学势值不变 8. 有一稀溶液质量摩尔浓度为m ,沸点升高为b T ∆,凝固点降低值为f T ∆,则( a )。

第四章 多组分系统热力学及其在溶液中的作用

第四章  多组分系统热力学及其在溶液中的作用

第四章 多组分系统热力学及其在溶液中的作用一、选择题1、对于偏摩尔量,指出下列说法错误者( )(1)偏摩尔量必须有恒温恒压条件;(2)偏摩尔量不随各组分浓度的变化而变化;(3)偏摩尔量不随温度T 和压力p 的变化而变化;(4)偏摩尔量不但随温度T 、压力p 的变化而变化,而且也随各组分浓度变化而变化。

(A) (2) (4) (B) (3) (4) (C) (2) (3) (D) (1) (4)2、1 mol A 与n mol B 组成的溶液,体积为0.65dm 3,当x B = 0.8时,A 的偏摩尔体积 V A = 0.090dm 3·mol -1,那么B 的偏摩尔V B 为:( )(A) 0.140 dm 3·mol -1 (B) 0.072 dm 3·mol -1(C) 0.028 dm 3·mol -1 (D) 0.010 dm 3·mol -13、在恒温恒压下形成理想液体混合物的混合吉布斯自由能Δmix G ≠ 0,恒温下Δmix G 对温度T 进行微商,则: ( )(A) (∂Δmix G/∂T)T < 0 (B) (∂Δmix G/∂T)T > 0(C) (∂Δmix G/∂T)T = 0 (D) (∂Δmix G/∂T)T ≠ 04、在恒定温度与压力p 下,理想气体A 与B 混合后,说法中正确的是( )(1)A 气体的标准态化学势不变;(2)B 气体的化学势不变 ;(3)当A 气体的分压为p A 时,其化学势的改变量为ΔμA =RTln(p A /p ø);(4)当B 气体的分压为p B 时,其化学势的改变量为ΔμB =-RTln(p B /p*)。

(A) (B) (1) (2) (B) (1) (3) (C) (2) (4) (D) (3) (4)5、下列各式中哪个是化学势( )(A) ()j n ,V ,T i n U/∂∂ (B)()j n ,V ,T i n H/∂∂(C) ()j n ,V ,T i n A/∂∂ (D) ()j n ,V ,T i n G/∂∂6、在293K 时,从一组成为NH 3·19/2 H 2O 的大量溶液中取出1molNH 3往另一组成为NH 3·21H 2O 的溶液中转移,此过程的Δμ的表达式为: ( )(A)Δμ=RTln(2/19) (B)Δμ=RTln(1/22)(C)Δμ=RTln(21/44) (D)Δμ=RTln(44/21)7、已知水的两种状态A(373K ,101.3kPa ,g),B(373K ,101.3kPa ,l),则与的关系为: ( )(A)μA=μB(B)μA>μB(C)(D)μA<μB(D)两者不能比较8、过饱和溶液中溶剂的化学势比纯溶剂的化学势()(A)高(B)低(C)(D)相等(D)0.569、关于亨利定律,下面的表述中不正确的是:( )(A)若溶液中溶剂在某浓度区间遵从拉乌尔定律,则在该浓度区间组分B必遵从亨利定律(B)温度越高、压力越低,亨利定律越正确(C)因为亨利定律是稀溶液定律,所以任何溶质在稀溶液范围内都遵守亨利定律(D)温度一定时,在一定体积的溶液中溶解的气体体积与该气体的分压力无关10、下列气体溶于水溶剂中,哪个气体不能用亨利定律:()(A)N2 (B)O2 (C)NO2 (D)CO11、溶剂服从拉乌尔定律及溶质服从亨利定律的二元溶液是( )(A)理想混合物(B)实际溶液(C)理想稀溶液(D)胶体溶液12、当不挥发的溶质溶于溶剂形成溶液后,溶液的蒸气压( )(A)升高(B)不变(C)降低(D)升高、降低不一定13、在一定温度下,若等物质的量的A、B两液体形成理想液体混合物,且纯A的饱和蒸气压p A*大于纯B的饱和蒸气压p B*,则( )(A)y A<x A(B)y A>x A(C)y A=x A(D)无法确定y A、x A的大小14、拉乌尔定律适用于( )(A)非理想溶液中的溶剂(B)稀溶液中的溶质;(C)稀溶液中的溶剂(D)稀溶液中的溶剂及溶质15、在恒温抽空的玻璃罩中封入两杯液面相同的糖水(A) 和纯水(B)。

物理化学(天津大学第四版)课后答案 第四章 多组分系统热力学

物理化学(天津大学第四版)课后答案 第四章 多组分系统热力学

第四章多组分系统热力学4.1有溶剂A 与溶质B 形成一定组成的溶液。

此溶液中B 的浓度为cB ,质量摩尔浓度为bB ,此溶液的密度为。

以MA ,MB 分别代表溶剂和溶质的摩尔质量,若溶液的组成用B 的摩尔分数xB 表示时,试导出xB 与cB ,xB 与bB 之间的关系。

解:根据各组成表示的定义4.2D-果糖溶于水(A )中形成的某溶液,质量分数,此溶液在20°C 时的密度。

求:此溶液中D-果糖的(1)摩尔分数;(2)浓度;(3)质量摩尔浓度。

解:质量分数的定义为4.3在25°C ,1kg 水(A )中溶有醋酸(B ),当醋酸的质量摩w ww .k h d a w .c o m 课后答案网尔浓度bB 介于和之间时,溶液的总体积。

求:(1)把水(A )和醋酸(B )的偏摩尔体积分别表示成bB 的函数关系。

(2)时水和醋酸的偏摩尔体积。

解:根据定义当时4.460°C 时甲醇的饱和蒸气压是84.4kPa ,乙醇的饱和蒸气压是47.0kPa 。

二者可形成理想液态混合物。

若混合物的组成为二者的质量分数各50%,求60°C 时此混合物的平衡蒸气组成,以摩尔分数表示。

解:质量分数与摩尔分数的关系为w w w .k h d a w .c o m 课后答案网求得甲醇的摩尔分数为根据Raoult 定律4.580°C 是纯苯的蒸气压为100kPa ,纯甲苯的蒸气压为38.7kPa 。

两液体可形成理想液态混合物。

若有苯-甲苯的气-液平衡混合物,80°C 时气相中苯的摩尔分数,求液相的组成。

解:根据Raoult 定律4.6在18°C ,气体压力101.352kPa 下,1dm3的水中能溶解O20.045g ,能溶解N20.02g 。

现将1dm3被202.65kPa 空气所饱和了的水溶液加热至沸腾,赶出所溶解的O2和N2,并干燥之,求此干燥气体在101.325kPa ,18°C 下的体积及其组成。

溶液ppt课件

溶液ppt课件

旳化学势,它不是原则态。
上一内容 下一内容 回主目录
2024/9/28
溶质旳化学势
Henry定律因浓度表达措施不同,有如下三种形式:
pB kx xB kmmB kccB
(1)B (T , P) B (T ) RT ln(PB / P )
B (T ) RT ln(Kx / P ) RT ln xB
2024/9/28
溶质旳化学势
上一内容 下一内容 回主目录
2024/9/28
4.7 稀溶液旳依数性
依数性质:(colligative properties)当把一种不挥发
性物质溶于某一溶剂,构成稀溶液时,该溶液旳某些 性质只与溶质旳质点数(即多少)有关,而与溶质本 身旳性质无关,我们把稀溶液旳此种特征称为“依数 性”。 依数性旳种类:
2024/9/28
4.2 溶液构成旳表达法
4.质量分数wB(mass fraction)
wB
WB W (总)
溶质B旳质量与溶液总质量之比称为溶 质B旳质量分数。为无量纲量。
上一内容 下一内容 回主目录
2024/9/28
4.3 稀溶液中旳两个经验定律
拉乌尔定律(Raoult’s Law)
1887年,法国化学家拉乌尔在屡次试验旳基础上总
p)
(T
,
p
)
RTIn
P P
纯物质旳摩尔吉布斯自由能等于化学势
(T ,
P)
(T ,
P
)
RT
ln
P P
上一内容 下一内容 回主目录
2024/9/28
理想气体旳化学势
(T ,
P)
(T ,
P
)
RT

第四章_多组分系统热力学及其在溶液中的应用习题课

第四章_多组分系统热力学及其在溶液中的应用习题课

66.66 kPa,101.325kPa。设A和B构成理想溶液。则当
A 在溶液中的物质的量分数为 0.5 时,气相中 A 的物质 的量分数为( C ) (A) 0.200 (B) 0.300 (C) 0.397 (D) 0.603
解:根据拉乌尔定律 pi=pi*xi pA = pA*xA=66.66×0.5 pB = pB*xB =101.325×0.5 p = pA+pB=(66.66+101.325) ×0.5 yA(g)= pA /p=66.66/(66.66+101.325)= 0.397
解:混合成理想溶液时,无热效应,故H=0,
SB S R ln xB
* B
SB R ln xB
mixS RnB ln xB
S = – R ln x苯= 7.617 J ·K-1 , G = RT ln x苯= - 2270 J ·mol-1
10.
已知在 373K 时液体 A 、 B 的饱和蒸气压分别为
11、 在25℃时,纯水的蒸气压为3167.7Pa。某溶液 x(水) =0.98,与溶液成平衡的气相中,水的分压为 3066Pa。以298K, p为纯水的标准态,则该溶液中 水的活度系数( B ) (A)大于1 解: (B)小于1 (C)等于1 (D)不确定
p p * ax
p p * x x
一、偏摩尔量及化学势的概念
为了确定组成可变的多组分系统的热力学性质,引入了 偏摩尔量的概念;为了判定组成可变的多组分系统中过程 的自发变化的方向和限度,引入了化学势的概念。
1. 偏摩尔量 (1) 定义
Z ZB n B T , p ,nC
(2) 基本公式 标准态时的化学势,均是T,p的函数,它们 分别为:当xB=1,mB=1molkg-1,cB=1moldm-3 时且服从亨利定律的那个假想态的化学势。

物理化学-溶液多组分体系热力学公开课获奖课件百校联赛一等奖课件

物理化学-溶液多组分体系热力学公开课获奖课件百校联赛一等奖课件

5. 溶质B旳质量摩尔浓度mB(molality)
mB def
nB WmmAAA
6. 溶质B旳摩尔比
rB nB / nA
(二) 偏摩尔量和化学势
(二) 偏摩尔量和化学势 1.偏摩尔量旳定义
2. 应注意旳问题
ZB
Z nB
T , p,nC (C B)
(1) 只有容量性质才有偏摩尔量,而偏摩尔量是强 度性质。 (2) 偏摩尔数量旳下标是 T , p, nC (C B) 。
XE= ΔmixXre -ΔmixXid
(九)渗透因子和超额函数
超额吉布斯自由能
GE
GE def G mix re G mix id
GE nB RT ln B B
当 GE 0 ,表达系统对理想情况发生正偏差;

,则发生负偏差。
GE 0
(十) 分配定律
“在定温、定压下,若一种物质溶解在两个同步存在旳 互不相溶旳液体里,到达平衡后,该物质在两相中浓度 之比等于常数” ,这称为分配定律。用公式表达为:
pB kccB
(b) 溶质在气相和在溶液中旳分子状态必须相同
(c) 溶液浓度愈稀,对亨利定律符合得愈好。
(四) 稀溶液中旳两个经验定律
在很稀旳溶液中,溶质旳蒸气压仅与溶质旳浓 度有关,且两者成正比。但是kx可能不等于pB*(环境 与纯溶质旳环境大不相同)。 kx与溶剂对溶质分子旳 引力F大小有关。
MA
合用条件: 稀溶液,且溶质不挥发
(七) 稀溶液旳依数性
若A,B组分都挥发:
Tb
kBmB (1
yB xB
)
xB为液相构成, yB为气相构成。
xB yB ΔTb 0
升高
xB yB

2010 第四章多组分系统热力学及其在溶液中的应用

2010 第四章多组分系统热力学及其在溶液中的应用

结论:1.溶液的体积并不等于各组分在纯态时的体积之和; 2.以不同的比例混合时,所得溶液的体积并不是定值。
多组分系统
Z Z (T , p, n1 , n2 ,, nk )
k Z Z Z dZ dT dp dnB p n T p ,n1 ,nk B 1 T ,n1 ,nk B T , p , nC ( C B )
纯B气体在T, p 时的化学势
3、理想气体混合过程热力学性质的变化
纯气体1 纯气体2 纯气体k n1, T, p n2, T, p nk, T, p

混合
理想气体混合物 T, p, x1, x2, xk
等温等压: mix G nB B nB B
nB RT ln xB RT nB lnxB 0
3
V
3
c cm3 m
c cm3
m
3
cm3
cm3
cm
3
c m
0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
12.67 25.34 38.01 50.68 63.35 76.02 88.69 101.36 114.03
90.36 80.32 70.28 60.24 50.20 40.16 36.12 20.08 10.04
第四章—多组分系统热力学及其在溶液中的应用
气态溶液
固态溶液
液态溶液
正规溶液
非电解质溶液
第四章
多组分系统热力学及其在溶液中的应用
4.1 4.3 4.4 4.5 4.6
引言 偏摩尔量 化学势 气体混合物中各组分的化学势 稀溶液中的两个经验定律

第四章 多组分体系统热力学1范文

第四章  多组分体系统热力学1范文

第四章多组分体系统热力学一.选择题1. 当某溶质溶于某溶剂形成一定的溶液时,若采用不同的浓标,则下列描述溶质的各说法中正确的是()A. 浓度数据相同B. 活度数据相同C. 活度因子相同D. 化学势相同2. 恒温时在A和B的二元液系中,若增加A组分使其分压p A上升,则B组分在气相中的分压p B将( )A. 上升B. 不变C. 下降D. 不确定3. 沸点升高,说明在溶剂中加入非挥发性溶质后,该溶剂的化学势与加入前比较将()A. 升高B. 不变C. 降低D. 无法确定4. 在α,β相中均含有A和B两种物质,达到相平衡时,下列各式正确的是()A. B. C. D.5. 在298.15K时0.01m ol.dm-3葡萄糖水溶液的渗透压π1,0.01m ol.dm-3硫酸钾水溶液的渗透压π2 ,下列各项正确的是( )A. B. C. D. 不能确定6. 组分B从a相扩散入β相中,则以下说法正确的有()A. 总是从浓度高的相扩散入浓度低的相B. 总是从浓度低的相扩散到浓度高的相C. 平衡时两相浓度相等D. 总是从高化学势移向底化学势7. 在363,15K,101.325kP a时水和水蒸气构成两相平衡,两相化学势的关系为()A. B. C. D. 不能确定8. 在298.15K,A和B两种气体在某种溶剂中的亨利系数分别为k A和k B并有k A>k B当A和B具有相同的分压力时,二者的浓度关系是( )A. B. C. D. 不能确定9. 对非理想液体中的溶质,当选假想的,符合亨利定律的,的状态为标准态时,下列结果正确的是( )时,时,时,时,,10. A和B形成理想溶液,已知373K时纯A的蒸气压为133.3kP a,纯 B的蒸气压为166.66kP a,与此二元溶液成平衡的气相中的摩尔分数为2/3时,溶液中A的摩尔分数为( )A.1B.2/3C. 1/2D.1/411.在298.15K,P a时某溶液中溶剂A的蒸气压为p A,化学势为u A,凝固点为T A,上述三者与纯溶剂的相比,有()12.下列活度与标准态的关系表述正确的是( )A. 活度等于1的状态必为标准态B. 活度等于1的状态与标准态的化学势相等C. 标准态的活度并不一定等于1D. 活度与标准态的选择无关13.下列关于亨利系数讨论中,不正确的是( )A. 其值因溶液组成表示方法不同而异B. 其值与温度有关C. 其值与溶剂的性质均有关D. 其值与溶质的活度有关14..对A,B二组分理想液态混合物系统中,下列说法不正确的是()A. A,B 在全部组成范围内均服从拉乌尔定律B. 该系统的沸点-组成图,液相线为直线C. 任一组分的化学势表示为D. 对任一组分均有15.在讨论稀溶液的蒸气压下降的规律时,溶质必须是()A. 挥发性溶质B.气体物质C.非挥发性溶质D. 电解质16.溶剂服从拉乌尔定律同时溶质服从亨利定律的二元溶液()A.理想稀溶液B.理想溶液C.实际溶液D.共轭溶液17..由水(1)和甲醇(2)组成的二元溶液,下列各式不是甲醇在此溶液中化学势的是()A B C18.下列关于稀溶液依数性的讨论中,不正确的是( )A. 在依数性中最灵敏的性质是渗透压B. 在依数性公式的推导中,都应用了拉乌尔定律C. 依数性都可以用来测知溶剂的不纯性D. 在依数性公式的热力学推倒中没有任何近似假定,是十分严格的19.对于二元溶液,其组分的平衡分压与组成的关系为杜亥姆- 马居尔公式:,其适用的条件为( )A. 温度和总压恒定B. 温度恒定,气相为理想气体C. 恒温D. 温度和总压恒定,并且气相为理想气体20.在298.15K时,纯丙酮的蒸气压为43kP a,在氯仿的摩尔分数为0.30的丙酮- 氯仿二元溶液上丙酮的蒸气压为26.77k P a,则此溶液( )A.为理想溶液B.对丙酮为正偏差C.对丙酮为负偏差D.以上都不对21. 1 mol A与n mol B组成的溶液,体积为0.65dm3,当x B = 0.8时,A的偏摩尔体积V A = 0.090dm3·mol-1,那么B的偏摩尔V B 为:(A) 0.140 dm3·mol-1;(B) 0.072 dm3·mol-1;(C) 0.028 dm3·mol-1;(D) 0.010 dm3·mol-1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B
法不同而有所不同。
3、活度(或活度因子)的求算
aB B xB pB * * 非理想液态混合物 pB pB aB pB B xB B * pB xB
p aB B * pB
(1)蒸气压法
非理想稀溶液 溶剂
pA p A xA
* A
p B k x x , B xB
T f K f bB
Tb Tb T
* b
R(Tb* ) 2 Kb MA * vap H m , A
稀溶液中不挥发性 溶质
5. 渗透压
(1)定义
为了阻止溶剂渗透,必须在溶液一侧额外施加的压力 定义为渗透压。 (2)公式
V nB RT

cB RT
(范霍夫公式)

可逆
不可逆 不能自发
平衡 自发
(二)混合气体中各组分的化学势 1.纯组分理想气体的化学势
p (T , p) (T ) RT ln p

2. 混合理想气体中各组分的化学势
pB B B (T ) RT ln p

(T , p) RT ln xB
* B

s ln A
A (T , p) RT ln x A A (T ) RT ln x A
*

* A (T , p)的物理意义是:温度为T压力为p时,纯溶剂
A( xA 1) 的化学势,它不是标准态。
(2) 溶质的化学势
a. 组成用摩尔分数表示
(T , p) RT ln xB
pB kb.B b, BbB pB kc c,B cB
pA A * pA xA
(2) 还可以通过分配系数、平衡常数以及电化学等方法 测得活度或活度系数
(八) 分配定律
“在定温、定压下,若一个物质溶解在两个同时存在的 互不相溶的液体里,达到平衡后,该物质在两相中浓度 之比等于常数” ,这称为分配定律。用公式表示为:
例2. 若气体的状态方程式为 pV 1 βp RT 求其逸度的表示式。
例3 在1000K,101325Pa下,金属物质A的物质的量为 nA=5000mol,金属物质B的物质的量nB=40mol,混合形成溶液。 已知溶液的吉布斯自有能与物质的量的关系为:
G / J ( n AG
* m, A
pA p x
* A A
注:(a) Raoult定律适用于稀溶液的溶剂和理想 液体混合物的任一组分。 (b)在计算溶剂的物质的量时,应用气态时的摩尔质量 (c) 溶质挥发与否不限。
2、亨利定律(Herry’s Law) (1)文字表述 在一定温度和平衡状态下,气体在液体里的溶解度与 该气体的平衡分压p成正比。 (2)数学表达式
mix H 0
mixU 0
具有理想的混合熵
mixS R nB ln xB 0
B
(5) (6)
具有理想的混合吉布斯自由能
mixG RT nB ln xB 0
B
拉乌尔定律与亨利定律没有区别
(五)理想稀溶液中各组分的化学势
1、理想稀溶液的定义 两种物质组成一溶液,在一定的温度和压力下, 在一定的浓度范围内,溶剂遵守Raoult定律,溶质遵 守Henry定律,这种溶液称为理想稀溶液。 2、稀溶液各组分的化学势 (1) 溶剂的化学势
X nB X B
B
3、Gibbs-Duhem公式
n dX
B 1 B
k
B
0
适用条件:恒温恒压组成变化的多组分系统
4.化学势的定义
U H B ( )S ,V ,nc (cB) ( )S , p ,nc (cB) 纯物质 nB nB * A Gm ( )T ,V ,nc B ( G ) T , p , nc (c B) nB n
* A * A
nB * m( B ) M A p p pA nA M B m( A)
* A
3.凝固点降低
T f K f bB
MB
R(Tf* ) 2 kf MA * fus H m , A
Tf Tf* Tf K f m( B )
T f m( A)
4. 沸点升高
计算大分子的相对分子质量
(七)活度与活度因子
1. 非理想液态混合物各组分的化学势 * * B B (T , p) RT ln B xB B (T , p) RT ln aB
B (T , p ) RT ln aB
B aB / xB
Raoult定律可以修正为
第四章溶液 —多组分体系热力学在溶液中的 应用
偏摩尔量和化学势定义
化学势表达式

气体(真实气体 逸度) 理想液态混合物、理想稀溶液 真实液态混合物、真实溶液 (活度和活度因子)
理想液态混合物 理想稀溶液

(一) 偏摩尔量和化学势
1.偏摩尔量的定义
2、偏摩尔数量的加和公式
X XB n B T , p ,nC (C B )
* b,B
采用组成的不同标度时,溶质B的标准态、
标准态化学势及化学势的表达式不同,但 对同一溶液,在同样的条件下,μB是唯一 的。
(六) 稀溶液的依数性
1. 依数性的概念 稀溶液依数性是在指定溶剂的种类和数量后,这些性质 只取决于所含溶质分子的数目,而与溶质的本性无关。 2.蒸气压降低
p p pA p xB
例4 丙酮(1)和甲醇(2)混合液在101.325KPa 57.2℃下平衡, 平衡时,气相和液相的摩尔分数如下: 平衡组成(摩尔分数) 纯组分在57.2℃时 液相中 气相中 饱和蒸汽压(kPa) 丙酮 x1=0.400 y1=0.519 p1=104.8 kPa 甲醇 x1=0.600 y1=0.481 p2=73.46 kPa (1)问假定蒸气为理想气体,则溶液是否为理想溶液; (2)求溶液中丙酮和甲醇的活度; (3)求溶液中丙酮和甲醇的活度系数; (4) G 混合 为何值?(在2mol丙酮和3mol甲醇混合时) (5)若溶液为理想溶液,则G 混合为何值? V、H、S、Q、U、A 为何值
例5 将0.0684Kg蔗糖(C12H22O11)溶于1L水中,得 到一种溶液,
(1)求该溶液在293K时的蒸气压; (2)求该溶液的沸点是多少; (3)求该溶液的凝固点是多少;
(4)求该溶液在293K时的渗透压有多大?
已知水在293K时的饱和蒸气压为2.338kPa ,沸点 升高常数Kb=0.52K · kg/mol;凝固点下降常数 Kf=1.86 K · kg/mol ,293K时该蔗糖溶液比重为 1.024g/mL
例6 在293.2K时,HCl(g)溶于苯达平 衡后,气相中HCl(g)的分压为 101.325kPa时,HCl在苯中的摩尔分数为 0.0425。已知293.2K时纯苯的蒸气压为 9959Pa。若HCl(g)和苯蒸气的总压力 为101.325kPa,问在293.2K时100g苯里 溶解有多少克HCl?
(3) 浓度用物质的量浓度 c B 表示
(T , p) RT ln aB,c
B
* B
a B ,c c , B
cB cB
cB 0
lim c , B 1
* * * (T , p) b.B (T , p) c, B (T , p) ,但B 显然 物质的化学势 B 是相同的,并不因为浓度的表示方
3.非理想气体的化学势
~
p (T ) RT ln p

(T)是指气体在温度为T,压 力为p且具有理想气体行为的 那个状态的化学势。它是一个 假想态化学势。
4.逸度因子的求法
~
B
(1) 状态方程法
pB pB
ig lim B 1
p 0
μ V p T
p B k x , B xB
pB kb , B bB
p B k c , B cB
注:(a)同一系统,采用浓度不同,k单位数值不同
(b)溶质在气相和在溶液中的分子状态必须相同,多种溶质分别 使用。 (c)适用稀溶液中的挥发性溶质,溶液浓度愈稀,对亨利定律符合 得愈好。 (d)
* k x , B pB

cB K cB
式中 c 和 cB 分别为溶质B在两个互不相溶的溶剂 ,
B
中的浓度,K 称为分配系数(distribution coefficient)。 注:物质在两相中的相态应相同
二、例题计算
例1. 298K下,苯(组分1)和甲苯(组分2)混合组成 理想溶液,求过程所需的最大功。 (1)将1摩尔苯从x1=0.8(状态1)稀释到x1=0.6 (状 态2),用甲苯稀释; (2)将1摩尔苯从状态2分离出来。
/ J ) ( nB G
* m, B
/ J ) 0.0577 (n A / mol )
2
7.95(nB / mol)3 2.385(T / K )
若将此溶液与炉渣混合,设炉渣可视为理想液体混合物,其中 含B物质的摩尔分数为0.001,试用化学势的定义及其与活度的 关系求算: (1)金属液中物质B的活度和度系数。 (2)这种炉渣能否将合金中的B除去一部分。
B
* B
温度为T,压力为p,xB=1 或 bB=b 或 cB=c 时且 服从Henry定律的假想态,它不是标准态。 标准态是指温度为T,压力为p ,xB=1 或 bB=b 或 cB=c 时且服从Henry定律的假想态。
bB B (T , p) RT ln b. 当 p k b 时, B b,B B b cB * B c , B (T , p) RT ln c. 当 pB kc cB 时 c
相关文档
最新文档