《信号与系统》总结:第一章(统编)
《信号与系统》第一章 信号与系统
第1-6页
西安邮电大学通信与信息工程学院
信号与系统
第一章 信号与系统
信号的定义及分类 信号的基本运算 阶跃函数和冲激函数 系统的描述和特性
第1-7页
西安邮电大学通信与信息工程学院
信号与系统
1.1 信号与系统基本概念
什么是信号?什么是系统?为什么把这两个概念 连在一起?
一、信号的概念
1. 消息(message):
1.1 信号与系统基本概念
二、系统的概念
系统:由若干相互作用和相互依赖的事物组合而成
的,具有稳定功能的整体。如通信系统、控制系统
和经济系统等。
系统的基本作用:是对输入信号进行加工和处理, 将其转换为所需要的输出信号。
输入信号
系统
输出信号
激励
响应
系统的描述:在数学上系统用微分方程和差分方程
来描述,其功能就是通过由怎样的激励产生怎样的
为随机信号或不确定信号。电子系统中的起伏热噪声、
雷电干扰信号就是两种典型的随机信号。
研究确定信号是研究随机信号的基础。本课程只
讨论确定信号。
第1-13页
西安邮电大学通信与信息工程学院
信号与系统
1.2 信号的分类
2. 连续信号和离散信号 :根据信号定义域划分
(1)连续时间信号: 在信号存在的时间范围内,任意时刻都有定义
的信号称为连续时间信号,简称连续信号。
这里的“连续”指函数的定义域—时间是连续
的,但可含间断点,至于值域可连续也可不连续。
值域连续
f1(t) =sin(πt)
1
o1 -1
2t
第1-14页
f2(t) 1
o1 2 t -1
值域不 连续
信号与系统总结
信号与系统总结信号与系统是电子信息类专业中的一门重要课程,它是电子学、通信学和控制学的基础学科之一。
在学习这门课程过程中,我们主要学习了信号与系统的基本概念、性质以及在实际应用中的分析和处理方法。
以下是我对信号与系统这门课程的总结。
首先,信号是信息的载体。
在信号与系统的学习中,我们对信号进行了分类。
根据信号的特性,可以将信号分为连续时间信号和离散时间信号。
连续时间信号是定义在连续时间域上的函数,而离散时间信号是定义在离散时间点上的序列。
对于连续时间信号,我们学习了信号的时域表示、频域表示以及系统对信号的影响。
在时域上,我们可以通过信号的波形图来观察信号的特性,通过信号的傅里叶变换可以得到信号的频谱。
而对于离散时间信号,我们学习了离散时间信号的表示方法、离散时间傅里叶变换以及系统对离散时间信号的影响。
其次,系统是对信号的处理。
在信号与系统的学习中,我们主要学习了线性时间不变系统(LTI系统)。
线性时间不变系统是指对输入信号进行线性运算并且其输出与输入信号的时间关系不变的系统。
我们通过系统的冲激响应来描述系统的性质,并通过线性卷积来描述系统对输入信号的处理。
此外,我们还学习了系统的频率响应,包括系统的幅频响应和相频响应。
幅频响应描述了系统对不同频率信号的幅度放大或衰减程度,而相频响应描述了系统对不同频率信号的相位延迟或提前程度。
最后,信号与系统的分析和处理方法。
在信号与系统的学习中,我们学习了多种信号与系统的分析和处理方法。
其中,时域分析方法主要包括信号的加法、乘法、移位、数乘和反褶等运算,以及系统的时域特性分析方法,如单位冲激函数、单位阶跃函数、单位斜坡函数、冲击响应和阶跃响应等。
频域分析方法主要包括信号的傅里叶变换、频域性质分析和系统的频率响应分析。
此外,我们还学习了离散时间信号的离散傅里叶变换(DFT)和离散傅里叶级数(DFS),以及系统的差分方程和差分方程的解法。
总的来说,信号与系统是电子信息类专业中一门重要的基础课程,它为我们理解和掌握电子信号的基本原理和处理方法提供了基础。
信号与系统第一章(重点)
-1
图 1.2-1 连续时间信号
离散时间信号:亦称序列, 其自变量n是离散的, 通常为整数。 若是时间信号 (可为非时间信号), 它只在某些不连续的、 规定的瞬时给出确定的函数值, 其它 时间没有定义, 其幅值可以是连续的也可以是离散的, 如图1.2-2所示。
x1(n) 2
1
只能取-1,0,1,2
0
t
-1
6. 单位冲激偶函数δ′(t)
单位冲激函数的导数。
(t)
1 lim
0
u(t
)
2
u(t
2)
(t)
d(t)
dt
1 lim
0
(t
)
2
(t
2)
(1.3-30) (1.3-31)
式(1.3-31)取极限后是两个强度为无限大的冲激函数,
0
t
-k
3. 复指数信号
f(t)=kest
s=σ+jω为复数, σ为实部系数, ω为虚部系数。 借用欧拉公式: kest=ke(σ+jω)t=keσt e jωt=keσt cosωt+jkeσt sinωt 复指数信号可分解为实部与虚部。 实部为振幅随时间变化的余弦函数, 虚部为振幅随时间变化的正弦函数。
第1章 信号与系统
1.1 信号与系统概述 1.2 信号及其分类 1.3 典型信号 1.4 连续信号的运算 1.5 连续信号的分解 1.6 系统及其响应 1.7 系统的分类 1.8 LTI系统分析方法
1.1 信号与系统概述
人们每天都与载有信息的信号密切接触:
听广播、看电视是接收带有信息的消息; 发短信、打电话是传送带有信息的消息。
信号与系统-复习总结
信号与系统-复习总结.doc信号与系统复习总结前言信号与系统是电子工程、通信工程和自动控制等专业的基础课程之一。
它主要研究信号的特性、系统的分析方法以及信号与系统之间的相互作用。
通过对信号与系统的学习,可以为后续课程打下坚实的基础。
以下是我对信号与系统课程的复习总结。
第一部分:信号的基本概念1.1 信号的分类信号可以分为连续时间信号和离散时间信号,根据信号的确定性与否,又可以分为确定性信号和随机信号。
1.2 信号的基本属性信号的基本属性包括幅度、频率、相位和时延等。
这些属性决定了信号的基本特性。
1.3 信号的运算信号的基本运算包括加法、减法、乘法、卷积等。
这些运算是信号处理中的基础。
第二部分:系统的特性2.1 系统的分类系统可以分为线性时不变系统(LTI系统)、线性时变系统、非线性系统等。
2.2 系统的特性系统的特性包括因果性、稳定性、可逆性等。
这些特性决定了系统对信号的处理能力。
2.3 系统的数学模型系统的数学模型通常包括差分方程、状态空间模型、传递函数等。
第三部分:信号与系统的分析方法3.1 时域分析时域分析是直接在时间轴上对信号进行分析的方法,包括信号的时域特性分析和系统的时域响应分析。
3.2 频域分析频域分析是将信号从时间域转换到频率域进行分析的方法,包括傅里叶变换、拉普拉斯变换等。
3.3 复频域分析复频域分析是利用拉普拉斯变换将信号和系统从时域转换到复频域进行分析的方法。
3.4 系统的状态空间分析状态空间分析是一种现代的系统分析方法,它利用状态变量来描述系统的动态行为。
第四部分:信号与系统的实际应用4.1 通信系统信号与系统的知识在通信系统中有着广泛的应用,如信号的调制与解调、信道编码与解码等。
4.2 控制系统在控制系统中,信号与系统的知识用于系统的设计和分析,如PID控制器的设计、系统稳定性分析等。
4.3 滤波器设计滤波器设计是信号处理中的一个重要应用,包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器的设计。
信号与系统 第一章 小结
4. 信号 f ( t ) 分解: • 直流分量与交流分量
• 偶分量与奇分量 1 1 f o ( t ) f ( t ) f ( t ) f e ( t ) f ( t ) f ( t ) 2 2 • 脉冲分量 f (t ) f ( ) (t ) d
第一章
绪论
1. 信号的描述、分类、典型信号 描述:表达式、波形、频谱(门函数为例) 分类:周期非周期、时间连续离散、确定随机信号 典型信号:门函数、指数函数、正弦函数、复指数函 数、抽样函数、高斯(钟形)函数、冲激函 数、阶跃函数 2. 信号的运算及变换 不连续点邻域的积分为0,导数为冲激函数; 信号变换6种方法:例题1-1(P.11)
H s Re( s) 0
ht 收敛或绝对可积
稳定系统:
H s 的极点位于S平面左半开 H j
6. 线性时不变系统的性质:
输入信号 激励
系统
输出信号 响应
e (t ) e (t ) r
1 1 2 2 1
et r f t
et r f t
3. 阶跃函数和冲激函数
(t ) d t 1 (t ) 0 t 0
(t ) ( t )
at
1 t a
(t ) f (t t 0) f (t0 ) (t )
uat ut
f (t ) t t0 f t t0
(k )
1f
(t ) 2 r 2 f (t )e e源自( n)t t
rf rf
(k )
( n)
t t
t r f t h(t )
信号与系统总结报告
信号与系统总结报告信号与系统是一门电子信息类本科阶段的专业基础课。
通过本学期对该课程的学习,我了解了什么是信号,什么是系统,掌握了基本的信号分析的理论和方法和对线性时不变系统的描述方法,并且对求解微分方程有了一定的了解。
最后学习了傅里叶变换和拉普拉斯变换,明白了如何用matlab去求解本课程的问题。
1.1信号与系统信号是一种物理量(电,光,声)的变化,近代中使用的电台发出的电磁波也是一种信号,所以信号本身是带有信息的。
而系统是一组相互有联系的事物并具有特定功能的整体,又分为物理系统和非物理系统,每一个系统都有各自的数学模型,两个不同的系统可能有相同的数学模型。
1.2信号从不同的角度看,信号也有不同的分类。
信号可分为确定性信号和随机性信号,周期信号与非周期信号,连续时间信号与离散时间信号。
还有一种离散信号:采样信号和数字信号。
在该课程中,还有几种类似数学函数的信号,指数信号和正弦信号;其表达式与对应的函数表达式也类似。
另外,如果指数信号的指数因子为一复数,则称为复指数信号,其表达式为 f(t)=Kest,s=σ+jw。
还有一种Sa(t)函数,其表达式为sint/t。
从数学上来讲,它也是一个偶函数。
1.2.1 信号的运算另外,信号也可以像数字那样进行运算,可以进行加减,数乘运算。
信号的运算以图像为基础进行运算;包括反褶运算:f(t)->f(-t),以y轴为轴,将图像对称到另一边,时移运算:f(t)->f(t-t1),该运算移动法则类似数学上的左加右减;尺度变换运算:f(t)->f(2t)表示将图像压缩。
除此之外,信号还有微分,积分运算,运算过后仍然是一个信号。
1.2.2信号的分类单位斜边信号指的是从某一时刻开始随时间正比例增长的信号,表达式为R (t)=t,(t>=0)。
单位阶跃信号从数学上来讲,是一个常数函数图像;单位冲激信号有不同的定义方法,狄拉克提出了一种方法,因此它又叫狄拉克函数;用极限也可以定义它,冲激函数也可以把冲激所在位置处的函数值抽取出来。
《信号与系统》第一章
学习目标
1
掌握信号与系统的基本概念、性质和分类,理解 信号与系统在信息传输、处理和应用中的重要地 位和作用。
2
掌握信号的描述和分析方法,包括时域和频域分 析,理括线性时不变系 统和线性时变系统,理解系统的基本特性、分析 和设计方法。
02
系统的基本概念和分类
阐述了系统的基本概念,系统分类(如线性时不变系统、非线性系统 、离散系统等),以及系统的描述方法。
信号与系统在通信工程中的应用
讨论了信号与系统在通信工程中的重要性,如调制解调、频分复用等 。
信号与系统在控制工程中的应用
探讨了信号与系统在控制工程中的应用,如PID控制器、控制系统稳 定性分析等。
下章预告
傅里叶变换
介绍傅里叶变换的定义、性质 及其在信号处理中的应用。
系统的状态变量分析
通过状态变量法对线性时不变系统 进行分析,包括状态方程的建立、 解法以及系统的稳定性分析。
拉普拉斯变换与Z变换
介绍拉普拉斯变换和Z变换的定 义、性质及其在连续系统和离 散系统分析中的应用。
系统的能控性和能观性
介绍能控性和能观性的概念、 判据以及其在控制系统设计中 的应用。
02
在实际应用中,需要根据具体需求和场景,选择合适的系统和信号处理方法, 以达到最佳的处理效果。
03
深入研究和理解信号与系统之间的相互作用关系,有助于更好地应用信号处理 技术,推动相关领域的发展和创新。
05
CATALOGUE
总结与展望
本章总结
信号的基本概念和分类
介绍了信号的基本概念、信号的分类(如连续信号、离散信号、周期 信号、非周期信号等)以及信号的表示方法。
CATALOGUE
信号的基本概念
信号与系统第1章总结
第一章:信号与系统的基本概念1.1 信号的基本概念一、什么是信号信号是信息的表现形式。
例如,光信号、声信号和电信号等。
二、信号的分类1、确定性信号和随机信号()f t 确定性信号有确定的函数表达式2、周期信号和非周期信号f(t)=f(t+kT) k=1,2,3...周期信号3、连续时间信号和非连续时间信号时间t 连续的是连续时间信号,时间变量t 只取特定值的为离散时间信号4、有始信号和无始信号0t t <若,0()0,f t t =为起始点三、典型的连续时间信号1、正旋信号21()cos(),,,2f t A wt T f w f w T πϕπ=+===AMFMPM A w ϕ不为常数,调幅信号不为常数,调频信号不为常数,调相信号欧拉公式:cos 2sin 2j j e e j j ee jθθθθθθ-+--=⎧⎪⎪⎨⎪⎪⎩=2、指数信号为实数αα,)(t ke t f =3、复指数信号(一种数学模型)(),st f t ke s jw δ==+4、抽样信号sin (),a ts t t t =-∞<<∞性质1、偶函数,随着t 的增大,幅值减小0sin 2()lim 1a x tt t →==性质:t=0,s3sin 0,1, 2...t t k k π=⇒==±±性质:过零点1.2 信号的运算一、信号的时域变换1、平移(时移)000()()()()()()f t f t t f t f t t f t f t t =±→-→+右移,左移2、反转以纵轴为中心,左右反转()()f t f t =-t 3、展缩{011,()(),a a f t f at <<>=,扩展压缩二、信号的相加、相乘、微分和积分1、相加:对应点相加2、相乘:主要用于信号的截取3、微分:t 4∞、积分:指(-,0)上积分t-(),f d t ττ∞⎰为变量t<0()0t 1()t>1()1t t t f d f d tf d ττττττ-∞-∞-∞=<<==⎰⎰⎰当时,当0时,当时,1.3 奇异信号----------------------------------------------------一种数学模型信号的取值或导数出现了奇异值(极大),趋于无穷一、单位阶跃信号{0,01,0()t t t ε<>=t因果信号{0,0(),0()()t f t t f t t ε<>=二、单位冲击信号----------------也是一种数学模型作用时间极短,但幅值极大{()0,0()1,1t t t dt δδ+∞-∞=∀≠=⎰即冲激强度为性质1:抽样性0000001.()()(0)()2.()()(0)()3.()()(0)()(0)4.()()()()()t t t t f t t f t f t t t f t t f t t d f t d f f t t t d f t t t d f t δδδδδδδδ+∞+∞-∞-∞+∞+∞-∞-∞=-=-==-=-=⎰⎰⎰⎰性质2:卷积特性1212()()()()()f t f t f t f f t d τττ+∞-∞=*=-⎰0005.()()()()()6.()()()()()f t t f t d f t f t t t f t t d f t t ττδτδτδτδτ+∞-∞+∞-∞*=-=*-=--=-⎰⎰注:一个信号与冲激信号的卷积就是信号本身三、阶跃、冲激信号的关系 {0,01,0()()()()t t t d t d t t dt δττεεδ<-∞>===⎧⎰⎨⎩注:阶跃信号求导即为冲激信号1.4 信号分解为冲激信号的叠加1.5系统及分类一、分类1.连续时间系统:微分方程离散时间系统:差分方程2.线性系统:叠加性、齐次性f(t)→系统→y(t) kf(t)→系统 →ky(t)f1(t)+f2(t)→系统→y1(t)+y2(t)当齐次和叠加只要有一个不满足则是非线性的3.因果系统:响应不早于激励非因果系统4.时变系统是不变系统:输入输出都做相应的变化,并不随时间变化二、线性时不变系统(LTI 系统)性质1:线性、齐次性、叠加性Yzi(t):零输入响应,外部激励为0,仅在初始状态作用下的响应 Yzs(t):零状态响应,仅在外部激励作用下的响应性质2:是不变性性质3:微分、积分性f(t)→系统→y(t)()y ()f t t ''→→系统t -()()tf t dt y t dt-∞∞→→⎰⎰系统 性质4:因果性。
信号与系统——第一章 信号与系统概论(1)
图1-1 各类信号:
二、周期信号与非周期信号
如图1-1(c)所示,周期信号是按某一固定周期重 复出现的信号,它可表示为
f (t ) f (t nT )
其中,T为周期,任何周期信号都可表示为仅在 基本周期内取非零值的有限长信号的周期延拓, 即
f (t ) t 0, T f1 (t ) f (t ) f1 (t nT ) t 0, T 0 n
第一章 信号与系统概论
学习要点: 1. 信号与系统课程的重要性; 2. 信号的概念、分类与运算; 3. 系统的概念、分类与联接形式; 4. 系统的线性性、时不变性、因果性和稳定性的定 义与判断。
§ 1-1 引
言
信号与系统是在电工原理的基础上发展起 来的,并随着电子工程、通信工程、计算 机和信息技术的飞速发展而不断地发展与 完善。 在信号与系统学科的发展中,微分方程、 差分方程理论,傅里叶(Fourier)变换、 拉普拉斯(Laplace)变换、离散傅里叶 变换和Z变换等正交变换理论起着十分重 要的作用。 二十世纪四十年代创立的系统论、信息论 与控制论极大地推动了信号与系统学科的 发展。
能量信号和功率信号的判断方法
判断能量信号和功率信号的方法: 先计算信号能量,若为有限值则为能量信号, 同时也必是功率信号;否则,计算信号功率,若 为有限值则为功率信号;若上述两者均不符合, 则信号既不是能量信号,也不是功率信号。
连续时间信号能量:E
f (t ) dt
2
1 连续时间信号功率:P lim T 2T
+ -
T
T
f (t ) dt
2
信号与系统概念公式总结
信号与系统概念,公式集:第一章:概论1.信号:信号是消息的表现形式。
(消息是信号的具体内容)2.系统:由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。
第二章:信号的复数表示:1.复数的两种表示方法:设C 为复数,a 、b 为实数。
常数形式的复数C=a+jb a 为实部,b 为虚部;或C=|C|e j φ,其中,22||b a C +=为复数的模,tan φ=b/a ,φ为复数的辐角。
(复平面)2.欧拉公式:wt j wt e jwtsin cos +=(前加-,后变减) 第三章:正交函数集及信号在其上的分解1.正交函数集的定义:设函数集合)}(),(),({21t f t f t f Fn =如果满足:ni K dt t f ji dt t f t f iT T i T T j i 2,1)(0)()(21212==≠=⎰⎰则称集合F 为正交函数集 如果n i K i,2,11==,则称F 为标准正交函数集。
如果F 中的函数为复数函数条件变为:ni K dt t f t f ji dt t f t f iT T i i T T j i 2,1)()(0)()(2121**==⋅≠=⋅⎰⎰其中)(*t f i 为)(t f i 的复共轭。
2.正交函数集的物理意义:一个正交函数集可以类比成一个坐标系统;正交函数集中的每个函数均类比成该坐标系统中的一个轴; 在该坐标系统中,一个函数可以类比成一个点;点向这个坐标系统的投影(体现为该函数与构成坐标系的函数间的点积)就是该函数在这个坐标系统中的坐标。
3.正交函数集完备的概念和物理意义: 如果值空间中的任一元素均可以由某正交集中的元素准确的线性表出,我们就称该正交集是完备的,否则称该正交集是不完备的。
如果在正交函数集()()()()t g n ,t g ,t g ,t g 321之外,不存在函数x (t )()∞<<⎰2120t t dt t x ,满足等式:()()⎰=210t t i dt t g t x ,则此函数集称为完备正交函数集。
【信号与系统】复习总结笔记
【信号与系统】复习总结笔记学习笔记(信号与系统)来源:⽹络第⼀章信号和系统信号的概念、描述和分类信号的基本运算典型信号系统的概念和分类1、常常把来⾃外界的各种报道统称为消息;信息是消息中有意义的内容;信号是反映信息的各种物理量,是系统直接进⾏加⼯、变换以实现通信的对象。
信号是信息的表现形式,信息是信号的具体内容;信号是信息的载体,通过信号传递信息。
2、系统(system):是指若⼲相互关联的事物组合⽽成具有特定功能的整体。
3、信号的描述——数学描述,波形描述。
信号的分类:1)确定信号(规则信号)和随机信号确定信号或规则信号 ——可以⽤确定时间函数表⽰的信号;随机信号——若信号不能⽤确切的函数描述,它在任意时刻的取值都具有不确定性,只可能知道它的统计特性。
2)连续信号和离散信号连续时间信号——在连续的时间范围内(-∞<t<∞)有定义的信号称为连续时间信号,简称连续信号,实际中也常称为模拟信号;离散时间信号——仅在⼀些离散的瞬间才有定义的信号称为离散时间信号,简称离散信号,实际中也常称为数字信号。
3)周期信号和⾮周期信号周期信号——是指⼀个每隔⼀定时间T,按相同规律重复变化的信号;⾮周期信号——不具有周期性的信号称为⾮周期信号。
4)能量信号与功率信号能量信号——信号总能量为有限值⽽信号平均功率为零;功率信号——平均功率为有限值⽽信号总能量为⽆限⼤。
5)⼀维信号与多维信号信号可以表⽰为⼀个或多个变量的函数,称为⼀维或多维函数。
6)因果信号若当t<0时f(t)=0,当t>0时f(t)≠0的信号,称为因果信号;⾮因果信号指的是在时间零点之前有⾮零值。
4、信号的基本运算:信号的+、-、×运算:两信号f1(·)和f2(·)的相+、-、×指同⼀时刻两信号之值对应相加减乘。
平移:将f(t)→f(t + t0)称为对信号f(·)的平移或移位,若t0< 0,则将f(·)右移,否则左移。
信号与系统第一章总结
信号与系统第一章总结1、信号的分类(1)周期信号和非周期信号两个周期信号x(t),y(t)的周期分别为T 1和T 2,若其周期之比T 1/T 2为有理数,则其和信号x(t)+y(t)仍然是周期信号,其周期为T 1和T 2的最小公倍数。
(2)连续信号和离散信号连续时间信号:信号存在的时间范围内,任意时刻都有定义。
用t 表示连续时间变量。
离散时间信号:在时间上是离散的,只在某些不连续的规定瞬时给出函数值, 用n 表示。
(3)模拟信号,抽样信号,数字信号 模拟信号:时间和幅值均为连续的信号。
抽样信号:时间离散,幅值连续的信号。
数字信号:时间和幅值均为离散的信号。
(4)按照信号能量特点分类:能量受限信号:若信号f (t)的能量有界,即E<∞ ,则称其为能量有限信号,简称能量信号,此时P = 0。
功率受限信号:若信号f(t)的功率有界,即P<∞ ,则称为功率有限信号,简称功率信号,此时E = ∞。
PS :时限信号为能量信号;周期信号属于功率信号。
2、典型的确定性信号(1)指数信号: , α=0 直流(常数);α<0 指数衰减;α>0指数增长。
通常把称为指数信号的时间常数,记作τ ,代表信号衰减速度,具有时间的量纲。
对时间的微分和积分仍然是指数形式(2)正弦信号:,振幅K ,周期T=ωπ2 ,初相衰减正弦信号:对时间的微分和积分仍然是同频率的正弦信号 (3)复指数信号:α1θdt t f E 2)(⎰∞∞-∆=⎰-∞→=222|)(|1lim T T T dt t f T P t K t f αe )(=)sin()(θω+=t K t f ()0sin e )(>⎩⎨⎧<≥=-αωαt t t K t f t()()t K t K t K t f t t stωωσσsin e j cos e )( e )(+=∞<<-∞=为复数,称为复频率j ωσ+=s rad/s的量纲为 ,/s 1 的量纲为 ωσ振荡衰减增幅等幅⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≠<≠>≠= 0 ,0 0 ,0 0 ,0ωσωσωσ⎪⎩⎪⎨⎧=<=>==衰减指数信号升指数信号直流 0 ,0 0 ,0 0 ,0ωσωσωσ(4)抽样信号(重点): 性质:1. 偶函数2. 3. 4.5. 6.(5)钟形信号(高斯函数):3、信号的平移,反褶,展缩(1)平移:左加右减(注意符号)(2)反褶:关于y 轴对称(3)展缩:f(t)到f(at),图形变换(1/a)倍变换方法: 1. 先展缩:a>1,压缩a 倍; a<1,扩展1/a 倍 2. 后平移:+,左移b/a 单位;-,右移b/a 单位 3. 加上倒置:4、阶跃信号和冲激信号(1)单位阶跃信号(通常以u (t )表示)门函数:符号函数:ttt sin )Sa(=)Sa(lim ,即1)Sa(,00===→t t t t 3,2,1π,0)Sa(=±==n n t t ,⎰⎰∞∞-∞==πd sin ,2πd sin 0t t t t t t 0)Sa(lim=±∞→t t ()()t t t ππsin )sinc(=2e )(⎪⎭⎫ ⎝⎛-=τt E tf ()()()[]()0 >±=±→a a b t a f b at f t f 设()()[]a b t a f b at f -=±-()[(/)]f t f a t b a →±()()f t f at →210 0100)(点无定义或⎩⎨⎧><=t t t u ()⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛+=22ττt u t u t f ⎩⎨⎧<->=0101)sgn(t t t(2)单位冲激信号:①定义:狄拉克函数 只在t=0时,函数值不为0;积分面积为1;t =0 时,为无界函数。
信号与系统课程总结(大全5篇)
信号与系统课程总结(大全5篇)第一篇:信号与系统课程总结信号与系统总结一信号与系统的基本概念 1信号的概念信号是物质运动的表现形式;在通信系统中,信号是传送各种消息的工具。
2信号的分类①确定信号与随机信号取决于该信号是否能够由确定的数学函数表达②周期信号与非周期信号取决于该信号是否按某一固定周期重复出现③连续信号与离散信号取决于该信号是否在所有连续的时间值上都有定义④因果信号与非因果信号取决于该信号是否为有始信号(即当时间t小于0时,信号f(t)为零,大于0时,才有定义)3系统的概念即由若干相互联系,相互作用的单元组成的具有一定功能的有机整体 4系统的分类无记忆系统:即输出只与同时刻的激励有关记忆系统:输出不仅与同时刻的激励有关,而且与它过去的工作状态有关 5信号与系统的关系相互依存,缺一不可二连续系统的时域分析 1零输入响应与零状态响应零输入响应:仅有该时刻系统本身具有的起始状态引起的响应零状态响应:在起始状态为0的条件下,系统由外加激励信号引起的响应注:系统的全响应等于系统的零输入响应加上零状态响应2冲激响应与阶跃响应单位冲激响应:LTI系统在零状态条件下,由单位冲激响应信号所引起的响应单位阶跃响应:LTI系统在零状态条件下,由单位阶跃响应信号所引起的响应三傅里叶变换的性质与应用 1线性性质2脉冲展缩与频带变化时域压缩,则频域扩展时域扩展,则频域压缩 3信号的延时与相位移动当信号通过系统后仅有时间延迟而波形保持不变,则系统将使信号的所有频率分量相位滞后四拉普拉斯变换1傅里叶变换存在的条件:满足绝对可积条件注:增长的信号不存在傅里叶变换,例如指数函数 2卷积定理表明:两个时域函数卷积对应的拉氏变换为相应两象函数的乘积五系统函数与零、极点分析 1系统稳定性相关结论①稳定:若H(s)的全部极点位于s的左半平面,则系统是稳定的;②临界稳定:若H(s)在虚轴上有s=0的单极点或有一对共轭单极点,其余极点全在s的左半平面,则系统是临界稳定的;③不稳定:H(s)只要有一个极点位于s的右半平面,或者虚轴上有二阶或者二阶以上的重极点,则系统是不稳定的。
信号与系统 总结
解: (1) yzs(t) = 2 f (t) +1, yzi(t) = 3 x(0) + 1
显然, y (t) ≠ yzs(t) + yzi(t) 不满足可分解性,故为非线性
(2) yzs(t) = | f (t)|, yzi(t) = 2 x(0)
y (t) = yzs(t) + yzi(t) 满足可分解性;
两个周期信号x(t),y(t)的周期分别为T1和T2,若其 周期之比T1/T2为有理数,则其和信号x(t)+y(t)仍然是周 期信号,其周期为T1和T2的最小公倍数。
例: 判断下列序列是否为周期信号,若是,确定其周期。 (1)f1(k) = sin (3πk/4) + cos (0.5πk) (2)f2(k) = sin (2k)
δ(5t)(t 2)2 dt ? 4
5
f(5-2t)
f(t) (4)
例: 已知信号f (5 2t)的波形,
(2)
请画出f (t)的波形。
t 0 123
-1 0 1 2 3
第 11 页
1.5 系统的特性与分类
连续系统与离散系统:分别用微分方程与差分方程来描述 动态系统与即时系统:动态系统也称为记忆系统 线性系统与非线性系统:齐次性和可加性
求导
(2) -1
f '(t)
1t 0 (-2)
第8 页
1.4 阶跃函数和冲激函数
冲激函数的性质(习题1.10)
取样性
δ(t) f (t) f (0) δ(t)
δ(t) f (t) d t f (0)
f (t) δ(t t 0) f (t0 ) δ(t t 0)
信号与系统概论第一章
2)冲激函数定义 (多种方式演变) ①单位冲激函数(狄拉克函数)
( ※ 0时刻取不定值,面积为1。为广义函数)
1.5 奇异信号及其基本特性(续)
◆ t=t0时刻的单位冲激函数:
②矩形脉冲定义的单位冲激函数
( ※ 面积为冲激强度,强度为1时为单位冲激)
1.5 奇异信号及其基本特性(续)
※ 对于冲激偶函数可继续二次求导。(如双边指数脉冲等)
冲激函数
冲激偶函数
强度无穷大
(单向面积:1/τ)
1.5 奇异信号及其基本特性(续)
2)冲激偶函数的性质 ①
推导:
0
性质
1.5 奇异信号及其基本特性(续)
②面积为零:
③冲激偶函数与普通函数乘积的性质: (证:两边取积分)
-f’(0)
0
-f’(0)
1.4 信号的基本运算及波形变换(续)
② 若以变量 at+b 代替 t,可得沿时间轴伸缩平移的 新信号 f(at+b)。 a>0时:信号沿时间轴伸缩、平移。
(a>1, a<1)
a<0时:信号沿时间轴伸缩、平移、反褶。(a>-1,a<-1) ◆特点:
所有运算都是自变量t的变换,且变换前后端点函数值不变。
③其他函数形式定义的单位冲激函数
1.5 奇异信号及其基本特性(续)
1.5 奇异信号及其基本特性(续)
3)冲激函数的性质 ①抽样性质(筛选特性)
1.5 奇异信号及其基本特性(续)
冲激函数与普通函数乘积的积分可将普通 函数在冲激出现时刻的函数值抽取出来!
1.5 奇异信号及其基本特性(续)
②偶函数性质: ③与阶跃函数的关系: ◆冲激函数的积分是阶跃函数: δ(t) = δ(-t)
奥本海姆 信号与系统 第一章知识点总结
第一章 信号与系统一.连续时间和离散时间信号 1.两种基本类型的信号:连续时间信号和离散时间信号。
在前一种情况下,自变量是连续可变的,因此信号在自变量的连续值上都有定义;而后者是仅仅定义在离散时刻点上,也就是自变量仅取在一组离散值上。
为了区分,我们用t 表示连续时间变量。
而用n 表示离散时间变量,连续时间变量用圆括号()•把自变量括在里面,而离散时间信号则用方括号[]•来表示。
2.信号能量与功率连续时间信号在[]21t t ,区间的能量定义为:E=dt t x t t 221)(⎰连续时间信号在[]21,t t 区间的平均功率定义为:P=dt t x t t t t 21221)(1⎰- 离散时间信号在[]21,n n 区间的能量定义为:E=∑=212][n n n n x离散时间信号在[]21,n n 区间的平均功率定义为:P=∑=+-21212)(11n n n t x n n 在无限区间上也可以定义信号的总能量: 连续时间情况下:⎰⎰+∞∞--∞→∆∞==dt t x E TTT 22x(t)dt )(lim离散时间情况下:∑∑+∞-∞=+-=∞→∆==n NNn N n x n x E 22][][lim在无限区间内的平均功率可定义为:⎰-∞→∆∞=TTT dt t x TP 2)(21lim∑+-=∞→∆∞+=NNn N n x N P 2][121lim 二.自变量的变换1.时移变换x(t)→x(t-0t ) 当0t >0时,信号向右平移0t ;当0t <0时,信号向左平移0tx[n]→x[n-0n ] 当0n >0时,信号向右平移0n ;当0n <0时,信号向左平移0n 2.反转变换x(t)→x(-t) 信号以t=0为轴呈镜像对称 x[n]→x[-n] 与连续时间的情况相同 3.尺度变换x(t)→x(at) a>1时,x(at) 是将x(t)在时间上压缩a 倍 0<a<1时,x(at)是将x(t)在时间上扩展1/a 倍由于离散时间信号的自变量只能取整数值,因而尺度变换只对连续时间信号而言。
《信号与系统》第一章知识要点+典型例题
(ak ) ( k )
6 7
【注意: 】 (1) ( t ) 、 ( t ) 是奇异函数;而 ( k ) 、 ( k ) 为普通函数。 (2)利用阶跃函数的截取特性,可方便地写出分段函数的闭合表达式。 四、信号的运算 1、信号的时域变换(自变量变换) 信号的时域变换是指信号在时间域里进行移位、反转、尺度变换以及三者的结合变换。 表 1.3 归纳了信号时域变换的各种情况。 2、信号的时域运算 连续信号的常用时域运算有加、减、乘、微分、积分等;离散信号的常用时域运算有加、 减、乘、差分、求和等。表 1.4 归纳了信号时域运算的情况。 表 1.3 信号 类别 设连续信号 信号的时域变换 设离散信号
f (t ) dt ,它所消耗的功率
2
P lim
1 T T
T 2 T 2
f (t ) dt ,分别定义为该信号的能量和功率。
2
如果信号 f ( t ) 的能量 E 满足: 0 E (此时信号功率 P 0 ) ,则称 f ( t ) 为能量 有限信号,简称能量信号。任何时限有界信号都属于能量信号。 如果信号 f ( t ) 的功率 P 满足: 0 P (此时信号能量 E ) ,则称 f ( t ) 为功 率有限信号,简称功率信号。任何有界的周期信号均属于功率信号。 有些信号既不属于能量信号也不属于功率信号,如 f ( t ) e 。 相应地,对于离散时间信号,也有能量信号、功率信号之分。 满足 E
() 与 () 的定义及二者关系
连续 离散
定义
0 1 (t ) 2 1
t 0 t0 t 0
0 k 0 (k ) 1 k 0
( t ) 0, t 0 ( t )dt 1 (t ) () 与 () 的关系
信号与系统第一章
0 t ≠ 0 δ (t) = 和 ∞ t = 0
∫
∞
∞
δ (t)dt =1
3. 复指数信号(complex exponential signal)
f (t) = est
s = σ + jω 为复数,称复频率.
由于复指数信号能概括多种情况,所以可利用它来描述多种 基本信号,如直流信号,指数信号,等幅,增幅或减幅正弦 或余弦信号,因此,它是信号与系统分析中经常遇到的重要 信号. 上面我们介绍了几种最基本的信号,接着来介绍有关信号的 各种运算. 1.2 信号的运算 1.2.1 信号的相加与相乘 两个信号相加(相乘)可得到一个新的信号,它在任意时刻 的值等于两个信号在该时刻的值之和(积).信号相加与相 乘运算可以通过信号的波形 ( 或信号的表达式 ) 进行.
信号的特性可以从两个方面来描述,即时间特性和频率特性. 信号可写成数学表达式,即是时间 t 的函数,它具有一定的 波形,因而表现出一定波形的时间特性,如出现时间的先后, 持续时间的长短,重复周期的大小及随时间变化的快慢等. 另一方面,任意信号在一定条件下总可以分解为许多不同频 率的正弦分量,即具有一定的频率成份,因而表现为一定波 形的频率特性,如含有大小不同频率分量,主要频率分量占 有不同的范围等. 信号的形式所以不同,就因为它们各自有不同的时间特性和 频率特性,而信号的时间特性和频率特性有着对应的关系, 不同的时间特性将导致不同的频率特性的出现. 1.1.2 信号的分类 对于各种信号,可以从不同的角度进行分类. 1.确定信号和随机信号
信号与系统
沈元隆 周井泉
第一章
第1章 信号与系统的基本概念 1.1 信号的描述及分类 1.2 信号的运算 1.3 系统的数学模型及其分类 1.4 系统的模拟 1.5 线性时不变系统分析方法概述 习题1
信号与系统总结
第一章 信号与系统分析导论一.信号的描述及分类信号是消息的表现形式与传送载体,消息则是信号的具体内容。
1. 信号的分类:(1)从信号的确定性划分:确定信号 与 随机信号(2)从信号在时间轴上取值是否连续划分:连续信号 与 离散信号 (3)从信号的周期性划分:周期信号 与 非周期信号 (4)从信号的可积性划分:能量信号 与 功率信号 重点讨论:确定信号 特别注意:离散信号 的自变量 要求取整数 2. 能量信号定义: 0 < W < ∞,P = 0。
功率信号定义: W → ∞,0 < P < ∞。
直流信号与周期信号都是功率信号。
二.系统的描述及其分类 1. 描述:(1)数学模型输入输出描述:N 阶微分方程或N 阶差分方程状态空间描述:N 个一阶微分方程组或N 个一阶差分方程组 (2)方框图表示 2. 分类:(一)连续时间系统 与 离散时间系统 (二)线性系统 与 非线性系统 无初始状态:线性:均匀特性 与 叠加特性 见教案例1-3 若: 有:其中 α 、β 为任意常数-------线性系统线性系统的数学模型是线性微分方程式或线性差分方程式 含有初始状态:见教案例1-4完全响应、零输入响应、零状态响应定义从三方面判别:1、具有可分解性: 2、零输入线性3、零状态线性(三)时不变系统 与 时变系统 见教案例1-5 时不变特性:[]k f k )()(),()(2211t y t f t y t f −→−−→−)()()()(2121t y t y t f t f ⋅+⋅−→−⋅+⋅βαβα)()()(t y t y t y f x +=)()(t y t f f −→−)()(00t t y t t f f -−→−-线性时不变系统数学模型:定常系数的线性微分方程式或差分方程式 线性时不变性的判别见教案总结 (四)因果系统 与 非因果系统 -----为因果系统----------非因果系统 (五)稳定系统 与 不稳定系统 本课程重点讨论线性时不变系统 三:信号与系统分析概述1. 信号分析:核心是信号分解2. 系统分析:主要任务是建立系统的数学模型,求线性时不变系统的输出响应学习要求:1. 掌握信号的定义及分类;2. 掌握系统的描述、分类及特性;3. 重点掌握确定信号及线性时不变系统的特性。
信号与系统第一章和第七章主要知识点
1:连续时间信号,离散时间信号和数字信号的关系连续时间信号(时间和幅度都是连续)通过抽样保持后,变为离散时间信号(时间离散、幅度连续),再经量化编码后,变成数字信号(时间和幅度都离散)。
2:典型信号和奇异信号典型信号主要掌握Sa(t)抽样信号的定义形式及其性质,能利用傅里叶变换的性质计算:奇异信号:阶越信号()u t 与阶越序列()u n 的区别:对于()u t ,其在0t =时,无定义或定义为12;对于()u n ,在0n =时,其定义为1; 单位冲击信号()t δ与单位样值信号()n δ的区别:()t δ在0t =时不为0(冲击的幅度无穷大,但是其强度(面积)为1),在其它时刻为0;而在0n =时,()1n δ=,在其它时刻为0;3:信号的运算(重点)熟练掌握信号的移位、反褶与尺度变换对于连续时间信号:()(,0)f at b a b -±>,建议先反褶,再尺度变换,最后移位,但是也要掌握其它的如先移位,再反褶,最后尺度变换。
也要掌握对于给定()(,0)f at b a b -±>的波形,能画出()f t 的波形。
对于离散时间信号:()(,0)f an b a b -±>,要特别注意在尺度变换时,当信号进行压缩时(1)a >,要删除一些点;当信号进行扩展时(01)a <<,要补0; 4:系统方框图(重点)(1)要熟练掌握给定微分方程(对于连续时间系统)和差分方程(对于离散时间系统),能利用1)加法器、乘法器、积分器画连续时间系统的方框图;2)加法器、乘法器和延时单元画离散时间系统的方框图(2)给定系统的方框图,能列系统的微分方程或差分方程;5:线性时不变系统的判断(重点)(1)线性系统的判断:先经系统再线性运算是否等于先线性运算再经系统,如满足,则为线性系统,否则为非线性系统。
可用公式表示为:11221122[()][()][()()]T x t T x t T x t x t αααα+=+(2)时不变系统的判断:先时延再经系统是否等于先经系统再时延,如满足,则为时不变系统,否则为时变系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
连续时间信号
离散时间信号
时间区间 (,)T T -
(,)-∞∞
(,)N N - (,)-∞∞
瞬时功率 2
()f t
能 量
2
()T
T
E f t dt -=⎰
2
2
lim ()()T
T T
E f t dt f t dt →∞-∞
-∞
==⎰
⎰
2
()N
n N
E x n =-=
∑
2
()n E x n ∞
=-∞
=
∑
平均功率
2
12()T
T
T
P f t dt -=
⎰
2
1
2lim
()T
T T
T
P f t dt →∞-=⎰
2
1()21N
n N P x n N =-=+∑ 2
1()21lim N
n N
N P x n N =-→∞=+∑ 周期信号
()()f t f t mT =+ 0,1,2,m =±±⋅⋅⋅⋅⋅⋅ ()()x n x n mn =+ 0,1,2,m =±±⋅⋅⋅⋅⋅⋅
000()j T j t T e e ωω+= 00
2T π
ω=
线 性
11221212()()
()()()()()()()()()()
f t y t af t ay t f t y t f t y t f t f t y t y t ⎧→⎪
→⎪
⎨
→→⎪
⎪+→+⎩
若齐次性则若,可加性则 ⎧⎪
⎨⎪⎩
分解性
线性系统零状态线性零输入线性
0()()()()()()x f n y t y t y t y n y n y n =+=+
判断方法:先线性运算,后经系统的结果=先经系统,后线性运算的结果 时不变性
若()()f f t y t →,则00()()f f t t y t t -→- 若()()x n y n =,则00()()x n n y n n -=-
系统时不变性:
1电路分析:元件的参数值是否随时间而变化 2方程分析:系数是否随时间而变
3输入输出分析:输入激励信号有时移,输出响应信号也同样有时移。
功率信号:0P E <<∞=∞且 能量信号:0E P <<∞=∞且 备注 : Z ⎧⎧⎪⎪
⎧⎪
⎪⎪⎨⎪
⎨⎨⎪
⎪⎪⎪⎩⎩⎪⎪⎩
时域分析频域输入输出系统模型系统模型变换域分析复频域域状态变量系统模型
第一章引论。