现代测试技术及应用学习课件【新版】
现代检测技术及其应用精品PPT课件
仪器。
2020/10/8
14
– 如:虚拟示波器
Vi 输入电路
A/D
RAM
控制系统
PC机
2020/10/8
15
– 虚拟数字电压表
– 基于虚拟仪器的 温度检测与控制
2020/10/8
16
• (2)虚拟仪器的特点
– 从虚拟仪器的组成结构上来看:
– 1)虚拟仪器的硬件是通用的(包括通用计算机硬件平台 和通用的测量功能硬件);
在上述这个系统中,需要数百个不同的传感器将 各种机械、热工量转换成电量,供计算机采样和运算。
ቤተ መጻሕፍቲ ባይዱ
2020/10/8
3
现代化火力发电厂及其控制系统 火力发电厂机组
汽轮机 发电机
励磁机
2020/10/8
火力发电 厂控制室
4
10.1 智能检测与虚拟仪器
1.智能仪器 2.自动测试系统 3.虚拟仪器
1.智能仪器:将诸如微处理器、存储器、接
2020/10/8
13
1)虚拟仪器的基本概念
(1)定义
– 传统仪器:特定功能和仪器外观。
– 虚拟仪器(VI,Virtual Instrumentation):是
一种以计算机和测试模块的硬件为基础、以计
算机软件为核心所构成的,并且在计算机显示
屏幕上虚拟的仪器面板,以及由计算机所完成
的仪器功能,都可由用户软件来定义的计算机
口等芯片与传感器融合在一起,可组成智能仪 器。它有专用的小键盘、开关、按键及显示屏 等,多使用汇编语言,体积小,专用性强。
2020/10/8
5
所谓智能仪器是用以形容新的一代测量仪
器.这类仪器仪表中含有微处理器、单片计
现代测试技术讲义PPT.
种相平 衡过程
简历的结构在很大程度上反映了应聘者组织和沟通能力。结构合理的简历都比较简练,一般不超过两页。通常应聘煮 了强调自己近期
瑞利分馏——由各种瑞利过程引起的同 的工作,书写教育背景和工作经历时往往采取从现在到过去的时间排列方式。相关经历常被突出表述。其实,书写简历并没有一定规
格,只要通顺易懂即可。
研究这两种作用是稳定同位素地质研究的一个重要组成 部分。
一、同位素分馏
(一)同位素分馏——是指在一系统中,元素的 同位素以不同的比值分配到两种物质或物相中 的现象。
一种元素的各同位素由于其质量差异而 引起物理—化学性质差异,因此在物理—化学 和生物化学过程中,这种差异使共存于同一体 系中的某种物质富集较轻的同位素,而另一种 物质富集较重的同位素;
第二章 同位素地球化学的基本原理
§ 2.1 基本概念 § 2.2 同位素组成的变化机理 § 2-3 同位素组成及表示方法
§ 2.1 基本概念
1、 同位素——指原子核内质子数相同,中子数不同的 一类原子,由于这些原子的质子数相同,因而具有基 本相同的化学性质,在化学元素周期表中占有同一位 置。
2、 同位素分类 (1) 放射性同位素——原子核不稳定,能自发
例如,高温下H2S,SO2共存体系中(封闭)同 位素交换反应使SO2富集较重的34S,H2S富 集较轻的32S。
(二)两种物质间同位素分馏的程度以同 位素分馏系数α 表示,分馏系数又称分离系数。
同位素分馏系数——两种物质间同位素分 馏的程度又称为分馏系数。
αA-B = RA / RB RA , RB 分别表示两种物质 中的同位素比值。
(2)重元素的稳定同位素地球化学
锶 Sr、钕 Nd、铅Pb等质量较大, 87
现代测试的技术ppt课件
分析化学的发展及仪器分析的产生
第一次变革
从16世纪天平的发明到20世纪初物理化 学溶液理论(特别是四大反应的平衡理论) 的发展,分析化学引入了物理化学的理论, 也形成了自身的理论。因此,这次变革的 标志是,分析化学从单纯的操作技术变成 为一门学科。
7
分析化学的发展及仪器分析的产生
第二次变革 20世纪中期,由于科学技术的进步,特
放射分析法——利用物质的放射性。它包 括同位素稀释法、活化分析法等。
15
定量分析的评价指标
定量分析是仪器分析的主要任务之一。对于一 种方法的好坏评价可利用其精密度、准确度、 灵敏度、检出限及校准曲线的线性范围等指标 进行评价。
16
定量分析的评价指标——精密度
精密度是指使用同一种方法,对同一样品进行 多次测定所得结果的一致程度,包括重复性和 再现性等。
20
定 量是被分测析物的质评的价浓指度标与—仪—器校响准应曲信线号的关系曲
线,用标准物质或溶液绘制。
线性范围——校准曲线的直线部分所对应 的被测物质的浓度。一般,好的分析方法应 有较宽的线性范围。
。
21
参考资料
1. 《仪器分析》,赵藻潘等编,高等教育出版社,1990年; 2. 《仪器分析教程》,北京大学化学系仪器分析教程组编,
北京大学出版社,1997年; 3. 《仪器分析原理》,方惠群等编,南京大学出版社,1994
年; 4. 《仪器分析》,邓勃等编,清华大学出版社,1991年; 5. 《仪器分析》,赵文宽等编,高等教育出版社,2001年; 6. 《 Principles of Instrumental Analysis 》, D. A. Skoog and J.
14
仪器分析方法——其它
第五章 现代检测技术(共10张PPT)
)、数据采集卡等。
(由即VX(基I总于线即过构程成基数的据虚于建拟模仪过)器。程系统数据建模)。具体来说建模可分为:机理
也可将虚拟仪器概括为:由计算机、应用软件和仪器硬件三大部
分组成,且在仪器仪表中最大限度地用软件代替硬件。
二、虚拟仪器的构成
图5-1 虚拟仪器的基本组成
所建模型和实际对象间存在误差,如果误差大于工艺允许的 能通过其他检测手段得到过程变量估计值以对软测量模型进行校验,并根据两者偏差确定数学模型校正与否; 性,使其对象特性和工作点会不可避免的发生变化和漂移,
2.尚存在的问题 第二节 虚拟仪器技术
第二节 虚拟仪器技术
软保测持•量 一技定软术的按精测其度建的量模软技方测法量术可模分型的为的机问发理题展建还模没依和有非理赖机想理的于建解模决两方个案。基本问题的解决: 工业实际可装置计在运算行过性程与中,实由于时过程性的随问机噪题声和。不确定
解(:2)建经软过测模分量析、技可术知回的湿通蒸归用汽性干分度的析在、线自状动测态量主估要依计赖于、给水模式识别、人工神经网络、 保第持二模一 节定虚糊的拟精数仪度器的学技软术测、量模相型的关问分题还析没有和理想现的解代决方非案。线性信息处理技术等。
四、 软测量技术应用举例 第二节 虚拟仪器技术
4. 测量模型修正 工业实际装置在运行过程中,由于过程的随机噪声和不确定
据进行重新建模,也可以通过闭环校正进行数学模型的修正。
三、软测量技术的应用
1. 软测量技术的应用条件
•通过软测量技术所得到的过程变量估计值必须在工艺过程所允许的精
现代检测技术及应用课件-现代检测系统设计
图9-12 总线型网络拓扑结构
总线型结构:各站地位平等, 传递方向从发送信息的节点开 始向两端扩散,各个节点在接 收信息时都检查地址,对比地 址是否与本站地址相符,相符 则接收网上的信息。
需防止数据“碰撞”。
三 虚拟仪器
3.1 虚拟仪器的基本概念 虚拟仪器(Virtual Instrument,简称VI)就是在以计算机为核 心的硬件平台上,由用户设计定义具有虚拟面板,其测试功能由 测试软件实现的一种计算机仪器系统。
设 计 室
工
仪器制造
厂
制板/装配/调试
车 间
仪器成品
仓
库
虚拟仪器开发
方案设计 仪器建模
技术设计 模型算法
仪器制造 程序编制
计 算 机 完 成
仪器成品
传感器
模块化功能硬件
软件系统
执行器
图9-1 虚拟仪器硬件组成
计算机
接口卡板
计算机
信号调理 传感器
网络
3.3 虚拟仪器软件系统
系统管理 虚拟仪器开发软件
电源模块
电源自动切换 TPS2111
I2C ATmega64L
USB/USART CP2102
UART1
SPI
UART 2
红外探头
实时时钟 DS1307
铁电存储器 FM24C512
A/D 转换器 AD7715
双 T 型滤波器
测量元件
手持测温枪原理示意图
(2) 基于通用模块的多通道温度/压力信号采集系统
1.5 计算机检测系统设计举例 (1)基于Atmega64L的红外点温仪设计
利用单片机设计一个手持式红外加热电偶测温系统,要求: • 可以读入工业现场的热电偶输出 • 具有红外测温能力 •能记录设备编号、位置编号、测量时间等信息; •具有USB接口,可以通过上位机对采集数据进行分析处 理
《现代测试技术》课件
详细描述
信号发生器通常采用晶体振荡器或合成技 术,能够产生高精度和高稳定性的信号, 并且具有低噪声和低失真的特点。
05
现代测试技术的应用实例
在通信领域的应用实例
信号完整性测试
无线通信测试
利用先进的测试设备和技术,对通信 设备的信号质量和传输性能进行全面 检测,确保信号在传输过程中保持完 整。
频谱分析仪广泛应用于通信、雷达、电子对抗、频谱管理等领 域。
频谱分析仪通常采用快速傅里叶变换技术,能够实现快速和准 确的频谱分析,并且具有高灵敏度和宽动态范围的特点。
网络分析仪
总结词
网络分析仪是一种用于测量电子设备网络特性的仪器。
详细描述
网络分析仪能够测量电子设备的阻抗、导纳、增益、相位 等参数,并且可以分析网络的频率响应和传输特性。
信号的预处理
对采集到的信号进行滤波、放大 、去噪等处理,以提高信号质量 。
数字信号处理
离散傅里叶变换(DFT)
将时域信号转换为频域信号,便于分析信号的频率成分。
数字滤波器
通过设定滤波器参数,对信号进行滤波处理,以提取特定频率范围的信号或抑制噪声。
频谱分析
频谱分析方法
包括傅里叶分析、小波分析等,用于 研究信号的频率特性。
精度和准确性
测试系统应具备高精度和准确性,以减小测 量误差。
实时性
测试系统应具备快速响应能力,能够实时采 集和处理数据。
可扩展性
测试系统应具备良好的可扩展性,方便后续 升级和功能扩展。
测试系统的优化设计
模块化设计
将测试系统划分为多个模块,每个模 块具有独立的功能和接口,便于维护 和升级。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
现代测试技术及应用作业学号姓名刘浩峰专业核技术及应用提交作业时间2014 12 10无损检测中的CT重建技术1无损检测1.1无损检测概述无损检测是工业发展必不可少的有效工具,在一定程度上反映了一个国家的工业发展水平,其重要性已得到公认。
中国在1978年11月成立了全国性的无损检测学术组织——中国机械工程学会无损检测分会。
此外,冶金、电力、石油化工、船舶、宇航、核能等行业还成立了各自的无损检测学会或协会;部分省、自治区、直辖市和地级市成立了省(市)级、地市级无损检测学会或协会;东北、华东、西南等区域还各自成立了区域性的无损检测学会或协会。
无损检测缩写是NDT(或NDE,non-destructive examination),也叫无损探伤,是在不损害或不影响被检测对象使用性能的前提下,采用射线、超声、红外、电磁等原理技术并结合仪器对材料、零件、设备进行缺陷、化学、物理参数检测的技术。
利用材料内部结构异常或缺陷存在引起的热、声、光、电、磁等反应的变化,以物理或化学方法为手段,借助现代化的技术和设备器材,对试件内部及表面的结构、性质、状态及缺陷的类型、性质、数量、形状、位置、尺寸、分布及其变化进行检查和测试。
无损检测是工业发展必不可少的有效工具,在一定程度上反映了一个国家的工业发展水平,无损检测的重要性已得到公认,主要有射线检验(RT)、超声检测(UT)、磁粉检测(MT)、液体渗透检测(PT)、涡流检测(ECT)、声发射(AE)和超声波衍射时差法(TOFD)。
1、射线照相法(RT)是指用X射线或γ射线穿透试件,以胶片作为记录信息的器材的无损检测方法,该方法是最基本的,应用最广泛的一种非破坏性检验方法。
工作原理是射线能穿透肉眼无法穿透的物质使胶片感光,当X射线或r射线照射胶片时,与普通光线一样,能使胶片乳剂层中的卤化银产生潜影,由于不同密度的物质对射线的吸收系数不同,照射到胶片各处的射线强度也就会产生差异,便可根据暗室处理后的底片各处黑度差来判别缺陷。
RT的定性更准确,有可供长期保存的直观图像,总体成本相对较高,而且射线对人体有害,检验速度会较慢。
2、超声波检测(UT)原理是通过超声波与试件相互作用,就反射、透射和散射的波进行研究,对试件进行宏观缺陷检测、几何特性测量、组织结构和力学性能变化的检测和表征,并进而对其特定应用性进行评价的技术。
适用于金属、非金属和复合材料等多种试件的无损检测;可对较大厚度范围内的试件内部缺陷进行检测。
如对金属材料,可检测厚度为1~2mm的薄壁管材和板材,也可检测几米长的钢锻件;而且缺陷定位较准确,对面积型缺陷的检出率较高;灵敏度高,可检测试件内部尺寸很小的缺陷;并且检测成本低、速度快,设备轻便,对人体及环境无害,现场使用较方便。
缺点是对具有复杂形状或不规则外形的试件进行超声检测有困难;并且缺陷的位置、取向和形状以及材质和晶粒度都对检测结果有一定影响,检测结果也无直接见证记录。
3、磁粉检测(MT)原理是铁磁性材料和工件被磁化后,由于不连续性的存在,使工件表面和近表面的磁力线发生局部畸变而产生漏磁场,吸附施加在工件表面的磁粉,形成在合适光照下目视可见的磁痕,从而显示出不连续性的位置、形状和大小。
磁粉探伤适用于检测铁磁性材料表面和近表面尺寸很小、间隙极窄(如可检测出长0.1mm、宽为微米级的裂纹)目视难以看出的不连续性;也可对原材料、半成品、成品工件和在役的零部件检测,还可对板材、型材、管材、棒材、焊接件、铸钢件及锻钢件进行检测,可发现裂纹、夹杂、发纹、白点、折叠、冷隔和疏松等缺陷。
磁粉检测不能检测奥氏体不锈钢材料和用奥氏体不锈钢焊条焊接的焊缝,也不能检测铜、铝、镁、钛等非磁性材料。
对于表面浅的划伤、埋藏较深的孔洞和与工件表面夹角小于20°的分层和折叠难以发现。
4、渗透检测(PT)工作原理是零件表面涂上含有荧光染料或着色染料的渗透剂后,在毛细管作用下,经过一段时间,渗透液可以渗透进表面开口缺陷中;经去除零件表面多余的渗透液后,再在零件表面涂上显像剂,同样,在毛细管的作用下,显像剂将吸引缺陷中保留的渗透液,渗透液回渗到显像剂中,在一定的光源下(紫外线光或白光),缺陷处的渗透液痕迹被现实,(黄绿色荧光或鲜艳红色),从而探测出缺陷的形貌及分布状态。
渗透检测可检测各种材料,金属、非金属材料;磁性、非磁性材料;焊接、锻造、轧制等加工方式;具有较高的灵敏度(可发现0.1μm宽缺陷),同时显示直观、操作方便、检测费用低。
但它只能检出表面开口的缺陷,不适于检查多孔性疏松材料制成的工件和表面粗糙的工件;只能检出缺陷的表面分布,难以确定缺陷的实际深度,因而很难对缺陷做出定量评价,检出结果受到操作者的影响较大。
5、涡流检测(ECT)原理是将通有交流电的线圈置于待测的金属板上或套在待测的金属管外。
这时线圈内及其附近将产生交变磁场,使试件中产生呈旋涡状的感应交变电流,称为涡流。
涡流的分布和大小,除与线圈的形状和尺寸、交流电流的大小和频率等有关外,还取决于试件的电导率、磁导率、形状和尺寸、与线圈的距离以及表面有无裂纹缺陷等。
因而,在保持其他因素相对不变的条件下,用探测线圈测量涡流所引起的磁场变化,可推知试件中涡流的大小和相位变化,进而获得有关电导率、缺陷、材质状况和其他物理量(如形状、尺寸等)的变化或缺陷存在等信息。
但由于涡流是交变电流,具有集肤效应,所检测到的信息仅能反映试件表面或近表面处的情况。
涡流检测时线圈不需与被测物直接接触,可进行高速检测,易于实现自动化,但不适用于形状复杂的零件,而且只能检测导电材料的表面和近表面缺陷,检测结果也易于受到材料本身及其他因素的干扰。
6、声发射(AE)通过接收和分析材料的声发射信号来评定材料性能或结构完整性的无损检测方法。
材料中因裂缝扩展、塑性变形或相变等引起应变能快速释放而产生的应力波现象称为声发射。
这是一种新增的无损检测方法,通过材料内部的裂纹扩张等发出的声音进行检测。
主要用于检测在用设备、器件的缺陷即缺陷发展情况,以判断其良好性。
7、超声波衍射时差法(TOFD)技术于20世纪70年代由英国哈威尔的国家无损检测中心Silk博士首先提出,其原理源于silk博士对裂纹尖端衍射信号的研究。
在同一时期我国中科院也检测出了裂纹尖端衍射信号,发展出一套裂纹测高的工艺方法,但并未发展出现在通行的TOFD检测技术。
TOFD技术首先是一种检测方法,但能满足这种检测方法要求的仪器却迟迟未能问世。
详细情况在下一部分内容进行讲解。
TOFD要求探头接收微弱的衍射波时达到足够的信噪比,仪器可全程记录A扫波形、形成D扫描图谱,并且可用解三角形的方法将A扫时间值换算成深度值。
而同一时期工业探伤的技术水平没能达到可满足这些技术要求的水平。
直到20实际90年代,计算机技术的发展使得数字化超声探伤仪发展成熟后,研制便携、成本可接受的TOFD检测仪才成为可能。
但即便如此,TOFD仪器与普通A超仪器之间还是存在很大技术差别。
是一种依靠从待检试件内部结构(主要是指缺陷)的“端角”和“端点”处得到的衍射能量来检测缺陷的方法,用于缺陷的检测、定量和定位。
1.2无损检测特点及发展方向无损检测有以下特点。
第一是具有非破坏性,因为它在做检测时不会损害被检测对象的使用性能;第二具有全面性,由于检测是非破坏性,因此必要时可对被检测对象进行100%的全面检测,这是破坏性检测办不到的;第三具有全程性,破坏性检测一般只适用于对原材料进行检测,如机械工程中普遍采用的拉伸、压缩、弯曲等,破坏性检验都是针对制造用原材料进行的,对于产成品和在用品,除非不准备让其继续服役,否则是不能进行破坏性检测的,而无损检测因不损坏被检测对象的使用性能。
所以,它不仅可对制造用原材料,各中间工艺环节、直至最终产成品进行全程检测,也可对服役中的设备进行检测。
常见无损检查目视检测范围:1、焊缝表面缺陷检查。
检查焊缝表面裂纹、未焊透及漏焊等焊接质量。
2、状态检查。
检查表面裂纹、起皮、拉线、划痕、凹坑、凸起、斑点、腐蚀等缺陷。
3、内腔检查。
当某些产品(如蜗轮泵、发动机等)工作后,按技术要求规定的项目进行内窥检测。
4、装配检查。
当有要求和需要时,使用同三维工业视频内窥镜对装配质量进行检查;装配或某一工序完成后,检查各零部组件装配位置是否符合图样或技术条件的要求;是否存在装配缺陷。
5、多余物检查。
检查产品内腔残余内屑,外来物等多余物。
随着科技进步,一些看上去非常传统的无损检测方法,也已经发展出了许多新技术,譬如:射线检测——传统技术是:胶片射线照相(X 射线和伽马射线)。
新技术有:加速器高能X射线照相、数字射线成像(DR)、计算机射线照相(CR,类似于数码照相)、计算机层析成像(CT)、射线衍射等等。
2.CT重建技术电子计算机断层扫描即CT(Computed Tomography),是利用精确准直的X线束、γ射线、超声波等,与灵敏度极高的探测器一同围绕被测物体的某一部位作一个接一个的断面扫描,具有扫描时间快,图像清晰等特点,根据所采用的射线不同可分为:X射线CT(X-CT)、超声CT(UCT)以及γ射线CT(γ-CT)等。
2.1CT重建技术的发展历史CT重建理论起源于1917年奥地利数学家J.Radon的研究论证结果,他在论文中给出Radon变换和Radon反变换公式,指出二维、三维物体的图像能够通过无限多个射线投影确定,这一理论奠定了CT成像的数学理论基础[1],但是限于当时的技术条件而未能实现。
1956 年美国科学家R.N.Bracewell将这一重建原理应用在了射线天文学,重建出太阳微波发射的图像[2]。
1963年、1964年美国塔夫茨大学A.M.Cormack教授在《应用物理杂志》上发表题为“用线积分表示函数的方法及其在放射学上的应用”的系列论文,提出用数学手段进行图像重建的方法,并应用到一台简易模拟装置上。
1971年,在英国EMI公司工程师G.Houndsfield 的带领下,第一台真正的医用CT机EMI Markerl在Atkinson Morley医院诞生,并开始了医学临床应用,虽然它的第一次诊断耗时15个小时,但最终成功地为一名妇女诊断出了脑部囊肿,这台CT 的成像矩阵为80×80,分辨率为3mm/pixel[3]。
Houndsfield和Cormack这两位没有医学和生物学背景的科学家因为这项重大发明而获得了诺贝尔生理学和医学奖。
CT从此开始进入历史舞台,大大丰富了对于人体内部器官进行无损检测的方法和手段,为疾病的早期正确诊断提供了科学而准确的依据。
相比于X光摄影术,计算机断层成像技术具有对软组织分辨能力高、投影剂量小、动态范围大、无损检测和存储方便等优势。
因为CT 的投影数据100%只依赖于成像断面内物体的密度,不涉及其它截面,这样以来有效地排除了无关截面对成像断面图像的干扰,彻底解决了影像重叠问题,计算机数字化处理得出各种物质的CT数(Houndsfield数):CT数=μt−μwμw×1000μt是物质的衰减系数,μw是水的衰减系数。