专题训练角平分线的应用

合集下载

专题训练(四) 有关线段的垂直平分线和角的平分线的四种解题方法-学习文档

专题训练(四) 有关线段的垂直平分线和角的平分线的四种解题方法-学习文档

专题训练(四) 有关线段的垂直平分线和角的平分线的四种解题方法►方法一直接根据相关性质定理解题1.如图4-ZT-1所示,在四边形ABCD中,AC,BD相交于点O,AB=BC=CD=DA.求证:AC与BD互相垂直平分.图4-ZT-1►方法二连线构造全等三角形2.如图4-ZT-2,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F.求证:DE=DF.图4-ZT-23.如图4-ZT-3,在△ABC中,AB=2AC,∠BAD=∠CAD,AD=DB.求证:CD⊥CA.图4-ZT-3►方法三作垂线段得距离4.如图4-ZT-4,在△ABC中,∠BAC的平分线AD平分底边BC.求证:AB=AC.图4-ZT-45.如图4-ZT-5,在△ABC中,∠ABC与∠ACB的平分线相交于点O,OE⊥BC于点E,△ABC的周长为12,面积为6,求OE的长.图4-ZT-56.如图4-ZT-6所示,在△ABC中,AD是△ABC的角平分线,E,F分别是AB,AC上的点,并且有∠EDF+∠EAF=180°,DG⊥AB于点G.(1)试判断DE和DF的数量关系,并说明理由;(2)若△ADF和△AED的面积分别为50和39,求△EDG的面积.图4-ZT-67.如图4-ZT-7,DA⊥AB于点A,CB⊥AB于点B,P为AB边上一点,且DP平分∠ADC,CP平分∠DCB.求证:(1)P为AB的中点;(2)DC=AD+BC.图4-ZT-78.如图4-ZT -8,D 是△ABC 的边BC 的延长线上一点,BE 平分∠ABC,CE 平分∠ACD. 求证:(1)∠BAC=2∠BEC;(2)∠CAE+∠BEC=90°.图4-ZT -8► 方法四 作线段的延长线构造全等三角形9.如图4-ZT -9,在△ABC 中,∠BAC =90°,AB =AC ,CD 垂直于∠ABC 的平分线BD 于点D ,BD 交AC 于点E.求证:BE =2CD.图4-ZT -9详解详析1.证明:∵AB =DA ,BC =CD ,∴点A ,C 在线段BD 的垂直平分线上,即AC 垂直平分BD ,同理可证得BD 垂直平分AC.∴AC 与BD 互相垂直平分.2.证明:连接AD.在△ABD 与△ACD 中,∵⎩⎨⎧AB =AC ,BD =CD ,AD =AD ,∴△ABD ≌△ACD ,∴∠BAD =∠CAD. 又∵DE ⊥AB ,DF ⊥AC ,∴DE =DF.3.[解析] 要证明CD ⊥CA ,只要使∠ACD =90°即可.由于AD =DB ,可在AB 边上取中点E ,连接DE ,由AB =2AC 及∠BAD =∠CAD ,得△ADE ≌△ADC ,从而得∠ACD =∠AED.由AD =DB 知DE 是AB 的垂直平分线,可得∠AED =90°.证明:在AB 边上取中点E ,连接DE.因为AD =DB ,E 为AB 的中点,所以ED ⊥AB.因为AB =2AC ,所以AE =12AB =AC. 在△ADE 和△ADC 中,⎩⎨⎧AE =AC ,∠DAE =∠DAC ,AD =AD ,所以△ADE ≌△ADC , 所以∠ACD =∠AED =90°,所以CD ⊥CA.4.[解析] 根据题意可知AD 是∠BAC 的平分线,可过点D 作∠BAC 两边的垂线段,根据角平分线的性质,并结合三角形的面积进行证明.证明:如图,分别过点D 作DE ⊥AB ,DF ⊥AC ,垂足分别为E ,F.因为AD 为∠BAC 的平分线,所以DE =DF.又因为AD 平分BC ,所以BD =CD ,所以S △ABD =S △ACD .又S △ABD =12AB ·DE ,S △ACD =12AC ·DF , 所以AB·DE =AC·DF ,所以AB =AC.5.[解析] 连接OA ,过点O 作OM ⊥AC 于点M ,OF ⊥AB 于点F ,则OE =OF =OM.由S △ABC =S △AOB +S △BOC +S △AOC 可求OE 的长.解:如图,连接OA ,过点O 作OM ⊥AC 于点M ,OF ⊥AB 于点F.∵BO 平分∠ABC ,OF ⊥AB ,OE ⊥BC ,∴OF =OE.同理OE =OM.∴OF =OE =OM.∵S △ABC =S △AOB +S △BOC +S △AOC ,∴12AB ·OF +12BC ·OE +12AC ·OM =6, ∴12OE ·(BC +AB +AC)=6. 又∵△ABC 的周长为12,即BC +AB +AC =12,∴OE =1.6.解:(1)DE =DF.理由:过点D 作DN ⊥AC 于点N.∵DG ⊥AB 于点G ,∴∠EGD =∠FND =90°.∵AD 平分∠BAC ,DG ⊥AB ,DN ⊥AC ,∴DG =DN(角平分线的性质).∵∠EAF +∠EDF =180°,∴∠AED +∠AFD =360°-180°=180°.∵∠AED +∠DEG =180°,∴∠DEG =∠NFD.在△EGD 和△FND 中,⎩⎨⎧∠GED =∠DFN ,∠DGE =∠DNF ,DG =DN ,∴△EGD ≌△FND(AAS),∴DE =DF.(2)由已知易证△ADG ≌△ADN.由(1)知△EGD ≌△FND ,∴S △ADG =S △ADN ,S △EGD =S △FND ,∴S △ADE +S △EGD =S △ADF -S △EGD ,即39+S △EGD =50-S △EGD ,∴S △EGD =5.5.7.证明:(1)如图,过点P 作PE ⊥DC 于点E.∵DP 平分∠ADC ,PA ⊥AD ,PE ⊥DC ,∴PA =PE.同理PB =PE.∴PA =PB ,∴P 为AB 的中点.(2)在△ADP 与△EDP 中,∵DP 平分∠ADC ,∴∠ADP =∠EDP.又∵∠PAD =∠PED =90°,DP =DP ,∴△ADP ≌△EDP ,∴AD =ED.同理BC =EC.∵DC =DE +EC ,∴DC =AD +BC.8.证明:(1)∵∠ACD =∠BAC +∠ABC ,CE 平分∠ACD ,∴∠ECD =12∠ACD =12(∠BAC +∠ABC). ∵BE 平分∠ABC ,∴∠EBC =12∠ABC. ∴∠ECD =∠BEC +∠EBC =∠BEC +12∠ABC , ∴∠BEC +12∠ABC =12(∠BAC +∠ABC), ∴∠BEC =12∠BAC ,即∠BAC =2∠BEC. (2)过点E 作EM ⊥BD 于点M ,EN ⊥BA 支BH 的延长线于点N ,EG ⊥AC 于点G. ∵CE 平分∠ACD ,EM ⊥BD ,EG ⊥AC ,∴EG =EM.∵BE 平分∠ABC ,EM ⊥BD ,EN ⊥BA ,∴EN =EM ,∴EG =EN ,∴AE 平分∠CAN ,∴∠CAE =12∠CAN =12(180°-∠BAC), ∴∠CAE +∠BEC =12(180°-∠BAC)+12∠BAC =90°. 9.[解析] 要证BE =2CD ,想到要构造等于2CD 的线段,结合角平分线, 利用轴对称的性质把△CBD 沿BD 翻折,使BC 重叠到BA 所在的直线上,构造全等三角形,然后证明BE 和CF(2CD)所在的三角形全等.证明:如图,延长BA ,CD 交于点F.∵BD ⊥CF(已知),∴∠BDC =∠BDF =90°.∵BD 平分∠ABC(已知),∴∠1=∠2.在△BCD 和△BFD 中,⎩⎨⎧∠2=∠1(已证),BD =BD (公共边),∠BDC =∠BDF (已证),∴△BCD ≌△BFD(ASA),∴CD =FD ,即CF =2CD.∵∠5=∠4=90°,∠BDF =90°,∴∠3+∠F =90°,∠1+∠F =90°,∴∠1=∠3.在△ABE 和△ACF 中,⎩⎨⎧∠4=∠5,AB =AC ,∠1=∠3(已证),∴△ABE ≌△ACF(ASA),∴BE =CF ,∴BE =2CD.。

2020年中考数学专题训练(三)与角平分线有关的全等证明的三种模型

2020年中考数学专题训练(三)与角平分线有关的全等证明的三种模型

专题训练(三)与角平分线有关的全等证明的三种模型模型一过角平分线上的点向角的两边作垂线如图3-ZT-1,P是∠MON的平分线上一点,过点P作PA⊥OM于点A,PB⊥ON于点B.图3-ZT-1结论:PB=PA.1.如图3-ZT-2,∠1=∠2,∠3=∠4.求证:AP平分∠BAC.图3-ZT-22.感知:如图3-ZT-3①,AD平分∠BAC,∠B+∠C=180°,∠B=90°.易知:DB=DC.探究:如图3-ZT-3②,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°.求证:DB=DC.图3-ZT-33.如图3-ZT-4,P为∠ABC的平分线上的一点,点D和点E分别在AB和BC上,且BD<BE,PD=PE,试探究∠BDP与∠BEP的数量关系,并给予证明.图3-ZT-44.如图3-ZT-5,△ABC的外角∠ACD的平分线CP与内角∠ABC的平分线BP交于点P,若∠BPC=40°,求∠PAC 的度数.图3-ZT-5模型二截取构造对称全等(截长补短)如图3-ZT-6,P是∠MON的平分线上一点,A是射线OM上任意一点,在ON上截取OB=OA,连接PB.图3-ZT-6结论:△OPB≌△OPA.5.如图3-ZT-7所示,在△ABC中,AD是△ABC的外角平分线,P是AD上异于点A的任意一点,试比较PB+PC 与AB+AC的大小,并说明理由.图3-ZT-76.如图3-ZT-8所示,AD是△ABC的内角平分线,P是AD上异于点A的任意一点,试比较PC-PB与AC-AB 的大小,并说明理由.图3-ZT-87.如图3-ZT-9所示,在△ABC中,∠A=100°,∠ABC=40°,AB=AC,BD是∠ABC的平分线,延长BD至点E,使ED=AD.求证:BC=AB+CE.图3-ZT-9模型三角平分线+垂线(延长法)如图3-ZT-10,P是∠MON的平分线上的一点,AP⊥OP于点P,延长AP交ON于点B.图3-ZT-10结论:OA=OB.8.如图3-ZT-11,在△ABC中,AD是∠BAC的平分线,BE⊥AD于点E.探究∠ABE,∠DBE,∠C之间的数量关系.图3-ZT-119.如图3-ZT-12,已知等腰直角三角形ABC中,∠A=90°,AB=AC,BD平分∠ABC,CE⊥BD交BD的延长线于点E.求证:BD=2CE.图3-ZT-12教师详解详析1.证明:如图,过点P作PQ⊥AB于点Q,PN⊥BC于点N,PM⊥AC于点M.∵∠1=∠2,∠3=∠4,∴PQ=PN,PN=PM.∴PQ=PM.又∵PQ⊥AB,PM⊥AC,∴AP平分∠BAC.2.证明:如图,过点D分别作DE⊥AB于点E,DF⊥AC于点F.∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴∠F=∠DEB=90°,DE=DF.∵∠ABD+∠ACD=180°,∠ACD+∠FCD=180°,∴∠ABD=∠FCD.在△DFC和△DEB中,{∠F=∠DEB,∠FCD=∠EBD, DF=DE,∴△DFC≌△DEB.∴DC=DB.3.解:∠BDP+∠BEP=180°.证明:过点P作PM⊥AB于点M,PN⊥BC于点N,则∠PMD=∠PNE=90°.∵BP平分∠ABC,∴PM=PN.在Rt△DPM和Rt△EPN中,{PD=PE,PM=PN,∴Rt△DPM≌Rt△EPN(HL).∴∠ADP=∠BEP.∵∠BDP+∠ADP=180°,∴∠BDP+∠BEP=180°.4.解:如图,过点P作PN⊥BD,PF⊥BA,PM⊥AC,垂足分别为N,F,M.设∠PCD=x °.∵CP 平分∠ACD ,∴∠ACP=∠PCD=x °,PM=PN. ∵BP 平分∠ABC , ∴∠ABP=∠PBC ,PF=PN. ∴PF=PM. ∵∠BPC=40°,∴∠ABP=∠PBC=∠PCD-∠BPC=(x-40)°.∴∠BAC=∠ACD-∠ABC=2x °-(x °-40°)-(x °-40°)=80°. ∴∠CAF=100°.在Rt △PFA 和Rt △PMA 中,{PA =PA,PF =PM,∴Rt △PFA ≌Rt △PMA (HL). ∴∠FAP=∠PAC=50°.5.解:PB+PC>AB+AC.理由如下:如图,在BA 的延长线上截取一点F ,使AF=AC ,连接PF.在△ACP 和△AFP 中,{AC =AF,∠CAP =∠FAP,AP =AP,∴△ACP ≌△AFP (SAS). ∴AC=AF ,PC=PF. ∵PB+PF>BF , ∴PB+PC>AB+AC.6.解:PC-PB<AC-AB.理由如下:如图,在AC上截取一点F,使AF=AB,连接PF.在△ABP和△AFP中,{AB=AF,∠BAP=∠FAP, AP=AP,∴△ABP≌△AFP(SAS).∴PB=PF.∵AF=AB=AC-CF,∴CF=AC-AB.∵PC-PF<CF,∴PC-PB<AC-AB.7.证明:如图,在BC上截取一点F,使得FB=AB,连接DF.∵BD是∠ABC的平分线,∠ABC=40°,∴∠ABD=∠FBD=20°.在△ABD和△FBD中,{AB=FB,∠ABD=∠FBD, BD=BD,∴△ABD≌△FBD(SAS).∴AD=FD,∠BDF=∠BDA=180°-∠A-∠ABD=60°.∴∠FDC=∠BDA=∠EDC=60°.又∵ED=AD,∴ED=FD.在△EDC和△FDC中,{ED =FD,∠EDC =∠FDC,DC =DC,∴△EDC ≌△FDC (SAS). ∴CE=CF.∴BC=FB+CF=AB+CE.8.解:如图,延长BE 交AC 于点F.在△ABE 和△AFE 中,{∠BAE =∠FAE,AE =AE,∠AEB =∠AEF =90°,∴△ABE ≌△AFE (ASA). ∴∠ABE=∠AFE. ∵∠AFB=∠DBE+∠C , ∴∠ABE=∠DBE+∠C.9.证明:如图,延长CE ,BA 交于点F.在△BEF 和△BEC 中,{∠FBE =∠CBE,BE =BE,∠BEF =∠BEC,∴△BEF ≌△BEC (ASA). ∴FE=CE=12CF ,即CF=2CE.∵∠ABD+∠ADB=90°,∠EDC+∠DCE=90°,∠ADB=∠EDC , ∴∠ABD=∠DCE.在△ABD 和△ACF 中,{∠ABD =∠DCE,AB =AC,∠BAD =∠CAF =90°,∴△ABD≌△ACF(ASA).∴BD=CF.∴BD=2CE.。

专题训练(五) 角平分线的六种运用

专题训练(五) 角平分线的六种运用
图5-ZT-8
9.如图5-ZT-9所示,已知∠B=∠C=90°,M是BC的中点, DM平分∠ADC. 求证:(1)AM平分∠DAB; (2)AD=AB+CD.
图5-ZT-9
[解析] 作ME⊥AD,证明Rt△DEM≌Rt△DCM,Rt△AEM≌Rt△ABM.
证明:(1)如图,过点 M 作 ME⊥AD 于点 E. ∵DM 平分∠ADC,∠C=90°,∴MC=ME. ∵M 是 BC 的中点, ∴MC=MB=ME. 又∵ME⊥AD,MB⊥AB, ∴AM 平分∠DAB.
距离相等,OA,OB为海岸线.一轮船P离开码头O,计划沿
∠AOB的平分线航行.
(1)用尺规作出轮船的预定航线OC;
(2)在航行途中,轮船P始终保持与灯
塔A,B的距离相等,则轮船航行时 是否偏离了预定航线?请说明理由.
图5-ZT-12
解:(1)如图.
(2) 轮船航行时没有偏离预定航线. 理由:在△AOP 和△BOP 中,POAA==POBB,,
运用三 确定三角形的周长
6.如图5-ZT-6,在△ABC中,∠B=90°,AB=BC,AD平分 ∠BAC,DE⊥AC,AC=20,求△CED的周长.
[解析] 猜想△DCE和△DBF的面积相等, 由已知CE=BF,故只需说明两个三角形中以 CE,BF为底边上的高相等.
图5-ZT-6
解::因为 AD 平分∠BAC,DE⊥AC,DB⊥AB,所以 DE=DB. 在 Rt△ADE 和 Rt△ADB 中,DAED==DABD,,所以 Rt△ADE≌Rt△ADB. 所以 AE=AB. 所以△CED 的周长为 CE+DE+CD=CE+DB+CD=CE+(DB+CD) =CE+BC=CE+AB=CE+AE=AC=20.
第十二章 全等三角形

三角形的角平分线、中线和高的专题训练50题

三角形的角平分线、中线和高的专题训练50题

三角形的角平分线、中线和高1.已知,△ABC中,AD是BC边上的高,∠CAD=33°,则∠ACB= °.2.△ABC中,AD,CE是BC,AB边上的高,AD,CE相交于P,∠B=50°,则∠APC 的度数是.3.△ABC中,∠B的外角平分线的与∠C外角平分线相交于点P,且∠BPC=80°,则∠BAP的度数为.4.在Rt△ABC中,∠ACB=90°,∠CAB=30°,∠ACB平分线与∠ABC的外角平分线交于点E,连接AE,则∠AEB= .5.如图,AD是△ABC的中线,AB=5,AC=3,△ABD的周长和△ACD的周长相差.&6.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是(填“锐角三角形”,“直角三角形”,“钝角三角形”)7.如图,△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠B=46°,∠C=72°,则∠EAD= °.8.如图,AD、BE、CF是△ABC的三条中线,若△ABC的周长是a cm.则AE+CD+BF= cm.@9.如图,△ABC中,∠A=30°,∠B=70°,CE平分∠ACB,CD⊥AB于D.则∠ECD= .10.角平分线一定垂直于底边.11.在△ABC中,已知AD是角平分线,∠B=50°,∠C=70°,∠BAD= °.12.如图,在△ABC中,BD平分∠ABC,BE是AC边上的中线,如果AC=10cm,则AE=cm,如果∠ABD=30°,则∠ABC= .13.如图六,在△ABC中,∠BAC是钝角,完成下列画图,并用适当的符号在图中表示;(1)AC边上的高;(2)BC边上的高.(在上图中直接画)[14.在△ABC中,AC=3cm,AD是△ABC中线,若△ABD周长比△ADC的周长大2cm,则BA= cm.15.△ABC中,∠A等于80度,则内角∠B、∠C的平分线相交所成的锐角为°.16.如图,在△ABC中,∠ACB=90°,∠A=20°,CD与CE分别是斜边AB上的高和中线,那么∠DCE= 度.·17.直角三角形中,两锐角的角平分线所夹的锐角是度.18.如图,在△ABC中,BE、CF分别是∠ABC和∠ACB的角平分线,并相交于点D,EG,FG分别是∠AEB和∠AFC的角平分线,并相交于点G,如果∠A=40°,那么∠CDB= ;∠G= .19.如图,△ABC中,AD是BC边上的中线,已知AB=6cm,AC=4cm,则△ABD 和△ACD周长之差为.20.如图,Rt△ABC中,∠ACB=90°,∠A=40°,D为AB中点,CE⊥AB,则∠DCE= 度.》21.三角形中的角平分线、中线、高都是三条特殊的 (填直线、射线、线段)22.如图所示,BD 是△ABC 的中线,AD=2,AB+BC=5,则△ABC 的周长是 .23.三角形一边上的中线把原三角形分成两个 相等的三角形.24.如图,AD 是△ABC 的中线,AE 是△ABD 的中线,若CE=9cm ,则BC= cm .25.点D 是△ABC 中BC 边上的中点,若AB=3,AC=4,则△ABD 与△ACD 的周长之差为 .、26.如图,AC 、BD 相交于O ,BE 、CE 分别平分∠ABD 、∠ACD ,且交于E ,若∠A=60°,∠D=40°,则∠E= .27.如图,根据图形填空:(1)AD 是△ABC 中∠BAC 的角平分线,则∠ =∠ =21∠ . (2)(2)AE 是△ABC 中线,则 = =21 . (3)AF 是△ABC 的高,则∠ =∠ =90°.28.如图,AD ⊥BC 于D ,那么图中以AD 为高的三角形有 个.29.如图所示:30.(1)在△ABC中,BC边上的高是;31.(2)在△AEC中,AE边上的高是.)32.我们都晓得,三角形的高是比较活泼的,它会出现在三角形的内部,也会出现在三角形的外部,然而,当它与三角形一边相会时,你可能找不到它了,今天就请你猜一猜,如果三角形的高与一边重合了,那么这是什么三角形呢答:三角形.31.在直角三角形、钝角三角形和锐角三角形这三种三角形中,有两条高在三角形外部的是三角形.32.如图,在△ABC中,AD、CE是边BC、AB上的高,若∠B=70°,∠CAD=30°,则∠BCE= ,∠ECA= ..33.如图,在△ABC中,AE是中线,AD是角平分线,AF是高,则:(1)∠BAC=2 ;(2)BC=2 ;(3)=90°.34.如图,∠ABD、∠ACD的平分线交于E,∠E=β1;∠EBD、∠ECD的平分线交于F,∠F=β2;如此下去,∠FBD、∠FCD的平分线的交角为β3;…若∠A=40°,∠D=32°,则β4为度.35.如图所示,在△ABC中,BC边上的高是,AB边上的高是;在△BCE中,BE 边上的高是;EC边上的高是;在△ACD中,AC边上的高是;CD边上的高是.36.在△ABC中,BO平分∠ABC,CO平分∠ACB,当∠A=50°时,∠BOC= .)37.如图,在△ABC中,AC⊥BC,CD⊥AB于点D.则图中共有个直角三角形.38.已知:如图,在△ABC中,∠ACD是△ABC的外角,∠ABC与∠ACD的平分线相交于点A1,∠A1BC与∠A1CD的平分线相交于点A2,如果∠A2=m°,那么∠A= °(用含m的代数式表示).39.如图,△ABC的∠B的外角的平分线与∠C的外角的平分线交于点P,连接AP.若∠BPC=50°,则∠PAC= 度.40.已知△ABC 中,∠A=α.在图(1)中∠B 、∠C 的角平分线交于点O 1,则可计算得∠BO 1C=90°+ 21α;在图(2)中,设∠B 、∠C 的两条三等分角线分别对应交于O 1、O 2,则∠BO 2C= ;请你猜想,当∠B 、∠C 同时n 等分时,(n-1)条等分角线分别对应交于O 1、O 2,…,O n-1,如图(3),则∠BO n-1C= (用含n 和α的代数式表示).41..42.如图,△ABC 中,∠ABC 和∠ACB 的平分线交于点O ,若∠BOC=115°, 则∠A= °.42.如图,已知△ABC 中,∠BAC=80°,∠C=60°,AD 、AE 分别是三角形的高和角平分线,则∠CAD=°,∠DAE= °.43.如图,在△ABC 中,∠A=α.∠ABC 与∠ACD 的平分线交于点A 1,得∠A 1;∠A 1BC 与∠A 1CD 的平分线相交于点A 2,得∠A 2; …;∠A 2011BC 与∠A 2011CD 的平分线相交于点A 2012,得∠A 2012,则∠A 2012= .44.如图,已知△ABC中,∠B=65°,∠C=45°,AD是∠ABC的高线,AE是∠BAC 的平分线,则∠DAE= .45.如图,点O是△ABC的两条角平分线的交点,且∠A=40°,则∠BOC= .·46.在△ABC中,∠A=80°,I是∠B,∠C的角平分线的交点,则∠BIC= °.47.如果三角形的三条高的交点落在一个顶点上,那么它的形状是.48.如图所示,CD是△ABC的中线,AC=9cm,BC=3cm,那么△ACD和△BCD的周长差是cm.49.如图,∠ACB是直角,CD是中线,CD=,BC=3,则AC= .50.BM是△ABC中AC边上的中线,AB=5cm,BC=3cm,那么△ABM与△BCM 的周长之差为cm.。

专题角平分线的性质(学生版)

专题角平分线的性质(学生版)

专题12.3 角平分线的性质二、考点点拨与训练考点1:角平分线性质定理及其应用典例:(2020·河北省初二期末)如图,在△ABC中,D是BC边上的点(不与点B,C重合),连结AD(1)如图1,当点D是BC边上的中点时,则S△ABD:S△ACD=_________(直接写出答案)(2)如图2,当AD是∠BAC的平分线时,若AB=m,AC=n,S△ABD:S△ACD=_________ (用含m,n的代数式表示).(3)如图3,AD平分∠BAC,延长AD到E,使得AD=DE,连结BE,如果AC=2,AB=4,S△BDE =6,求△ABC 的面积.方法或规律点拨本题考查了角平分线性质和三角形的面积公式,能根据(1)(2)得出规律是解此题的关键.巩固练习1.(2019·广东省深圳外国语学校初一期末)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,AD平分∠CAB交BC于D点,E,F分别是AD,AC上的动点,则CE+EF的最小值为()A.152B.203C.3D.1252.(2020·山东省济南外国语学校初二期中)如图,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为用A、B.下列结论中不一定成立的是()A.PA=PE B.PO平分∠APB C.AB垂直平分OP D.OA=OB3.(2020·辽宁省初三其他)如图,在Rt ABC ∆中,90C ∠=︒,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若4CD =,15AB =,则ABD ∆的面积是 ( )A .15B .30C .45D .604.(2020·南通市八一中学初一月考)如图,a 、b 、c 三条公路的位置相交成三角形,现决定在三条公路之间建一购物超市,使超市到三条公路的距离相等,则超市应建在( )A .三角形两边高线的交点处B .三角形两边中线的交点处C .∠α的平分线上D .∠α和∠β的平分线的交点处5.(2020·河南省初三二模)如图,在Rt ABC ∆中,90B =∠,以点A 为圆心,适当长为半径画弧,分别交AB AC 、于点,D E ,再分别以点D E 、为圆心,大于12DE 为半径画弧,两弧交于点F ,作射线AF 交边BC 于点1,4BG AC ==,则ACG ∆的面积是( )A .1B .32C .2D .526.(2020·黑龙江省初二期末)如图所示,在△ABC 中,∠ACB=90°,BE 平分∠ABC ,DE ⊥AB 于点D ,如果AC=3cm ,那么AE+DE 等于( )A .2cmB .3cmC .4cmD .5cm7.(2019·内蒙古自治区初二期中)如图,AD 是△ABC 的角平分线,DF ⊥AB ,垂足为F ,DE=DG ,△ADG 和△AED 的面积分别为50和39,则△EDF 的面积为( )A .11B .5.5C .7D .3.58.(2019·陕西省交大附中分校初一期末)如图,在△ABC 中,E 为AC 的中点,AD 平分∠BAC ,BA :CA=2:3,AD 与BE 相交于点O ,若△OAE 的面积比△BOD 的面积大1,则△ABC 的面积是( )A .8B .9C .10D .119.(2020·湖北省武汉市江汉区教育局初二月考)在Rt △ABC 中,∠C=90°,AB=10,BC=8,AC=6.点I 为△ABC 三条角平分线的交点,则点I 到边AB 的距离为__________10.(2019·湖北省初二期中)如图,∠B =∠C =90°,DM 平分∠ADC ,AM 平分∠DAB ,CB =8,则点M 到BC 的距离_______.11.(2020·上饶市广信区第七中学初二月考)如图,ABC 的三边AB BC CA 、、 的长分别为405060、、,其三条角平分线交于点O ,则::ABOBCOCAOSSS=______.12.(2019·眉山东辰国际学校初一期末)如图,BD 平分∠ABC ,DE ⊥AB 于E ,DF ⊥BC 于F ,AB =6,BC =8.若S △ABC =21,则DE =________.13.(2019·深圳市明德外语实验学校初二期中)如图:在△ABC 中,∠C =90°,AD 是∠BAC 的平分线,DE ⊥AB 于E ,F 在AC 上,BD =DF . (1)求证:CF=EB .(2)若AF =2,EB =1,求AB 的长.14.(2020·凌海市石山镇初级中学初一月考)已知OM 是AOB ∠的平分线,点P 是射线OM 上一点,点C 、D 分别在射线OA 、OB 上,连接PC 、PD . (1)发现问题如图①,当PC OA ⊥,PD OB ⊥时,则PC 与PD 的数量关系是________. (2)探究问题如图②,点C 、D 在射线OA 、OB 上滑动,且∠AOB =90°,∠OCP +∠ODP =180°,当PC PD ⊥时,PC 与PD 在(1)中的数量关系还成立吗?说明理由.考点2:角平分线性质定理的逆定理及其应用典例:(2020·四川省初二期中)如图,在△ABC 中,∠BAC 的平分线与BC 的中垂线DE 交于点E ,过点E 作AC 边的垂线,垂足为N ,过点E 作AB 延长线的垂线,垂足为M.(1)求证:BM=CN ;(2)若,AB=2,AC=8,求BM 的长.方法或规律点拨本题考查全等三角形的判定和性质、角平分线的性质,解题的关键是掌握角平分线的性质以及具体的应用. 巩固练习1.(2020·福州四十中金山分校初二月考)小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB ,另一把直尺压住射线OA 并且与第一把直尺交于点P ,小明说:“射线OP 就是∠BOA 的角平分线.”他这样做的依据是( )A .角的内部到角的两边的距离相等的点在角的平分线上B .角平分线上的点到这个角两边的距离相等C .三角形三条角平分线的交点到三条边的距离相等D .以上均不正确2.(2020·湖北省中考真题)如图,已知ABC 和ADE 都是等腰三角形,90BAC DAE ∠=∠=︒,,BD CE 交于点F ,连接AF ,下列结论:①BD CE =;②BF CF ⊥;③AF 平分CAD ∠;④45AFE ∠=︒.其中正确结论的个数有( )A .1个B .2个C .3个D .4个3.(2020·四川省正兴中学初二二模)已知,如图,ABC 中,90C ∠=︒,点O 为ABC 的三条角平分线的交点,OD 垂直BC ,OE AC ⊥,OF AB ⊥,点D 、E 、F 分别是垂足,且10cm AB =,8cm BC =,6cm CA =,则OF =__________.4.(2020·甘肃省平川区四中初二期中)如图,在Rt △ABC 中,∠A=90°,点D 为斜边BC 上一点,且BD=BA ,过点D 作BC 的垂线交AC 于点E .求证:点E 在∠ABC 的角平分线上.5.(2020·甘州区南关学校初二月考)如图,已知AC 平分∠BAD ,CE ⊥AB 于E ,CF ⊥AD 于F ,且BC=CD . (1)求证:△BCE ≌△DCF ; (2)求证:AB+AD=2AE.6.(2019·云龙县第三中学初二期中)如图,BE ⊥AC 、CF ⊥AB 于点E 、F ,BE 与CF 交于点D ,DE=DF ,连接AD .求证:(1)∠FAD=∠EAD ; (2)BD=CD .7.(2018·江苏省初二期中)已知:如图BAC ∠中,BF AC ⊥,CE AB ⊥,垂足分别为F 、E ,BF 交CE于点D ,BD CD =,求证:D 点在BAC ∠的平分线上.考点3:与角平分线有关的尺规作图典例:(2020·河北省中考真题)如图1,已知ABC ∠,用尺规作它的角平分线. 如图2,步骤如下,第一步:以B 为圆心,以a 为半径画弧,分别交射线BA ,BC 于点D ,E ; 第二步:分别以D ,E 为圆心,以b 为半径画弧,两弧在ABC ∠内部交于点P ; 第三步:画射线BP .射线BP 即为所求. 下列正确的是( )A .a ,b 均无限制B .0a >,12b DE >的长 C .a 有最小限制,b 无限制 D .0a ≥,12b DE <的长方法或规律点拨本题主要考查了基本作图,解决问题的关键是掌握作角平分线的方法. 巩固练习1.(2020·广西壮族自治区初三其他)如图尺规作业,OC 为AOB ∠的平分线,这样的作法依据是( )A .SSSB .SASC .ASAD .AAS2.(2020·河南省初二月考)如图,△ABC 中,点 E ,F ,G 分别在 BC ,AC ,AB 上,AE 与 BF 交于点 O ,且点 O 在 CG 上,根据尺规作图的痕迹,判断下列说法不正确的是( )A .AE ,BF 是△ABC 的角平分线B .点 O 到△ABC 三边的距离相等 C .CG 也是△ABC 的一条角平分线D .AO =BO =CO3.(2020·新疆维吾尔自治区初三其他)如图,在AOB ∠中,尺规作图如下:在射线OA 、OB 上,分别截取OD 、OE ,使OD OE =;分别以点D 和点E 为圆心、大于12DE 的长为半径作弧,两弧相交于点C ;作射线OC ,连结CE 、CD .下列结论不一定...成立的是( )A . OE EC =B .CE CD =C .OEC ODC ∠=∠D .ECO DCO ∠=∠4.(2020·广东省仙田外国语学校初一期中)如图所示,已知∠AOB=40°,现按照以下步骤作图: ①在OA ,OB 上分别截取线段OD ,OE ,使OD=OE ; ②分别以D ,E 为圆心,以大于12DE 的长为半径画弧,在∠AOB 内两弧交于点C ; ③作射线OC .则∠AOC 的大小为_________.5.(2020·内蒙古自治区初二期末)如图,在Rt △ABC 中,∠C =90°,以点A 为圆心,任意长为半径画弧,分别交AC 、AB 于点M 、N ,再分别以M 、N 为圆心,任意长为半径画弧,两弧交于点O ,作射线AO 交BC 于点D ,若CD =3,P 为AB 上一动点,则PD 的最小值为_____.6.(2020·湖南省中考真题)人教版初中数学教科书八年级上册第48页告诉我们一种作已知角的平分线的方法:已知:AOB∠求作:AOB∠的平分线做法:(1)以O为圆心,适当长为半径画弧,交OA于点M,交OB于点N,(2)分别以点M,N为圆心,大于12MN的长为半径画弧,两弧在AOB∠的内部相交于点C(3)画射线OC,射线OC即为所求.请你根据提供的材料完成下面问题:(1)这种作已知角平分线的方法的依据是__________________(填序号).①SSS②SAS③AAS④ASA(2)请你证明OC为AOB∠的平分线.7.(2020·云南省初三二模)如图所示,在△ABC中,按以下步骤作图:①以点B为圆心,任意长为半径作弧,分别交BA、BC于点M、N;再以点N为圆心,MN长为半径作弧交前面的弧于点F,作射线BF交AC 的延长线于点E.②以点B为圆心,BA长为半径作弧交BE于点D,连接CD.请你观察图形,解答下列问题:(1)求证:△ABC≌△DBC;(2)若∠A=100°,∠E=50°,求∠ACB的度数.8.(2019·广西壮族自治区初一期末)如图,平面内有A,B,C,D四点,请按要求完成:(1)尺规作图:连接AB ,作射线CD ,交AB 于点E ,作射线EF 平分CEB ∠.须保留作图痕迹,且用黑色笔将作图痕迹描黑,不写作法和证明.(2)在(1)的条件下,若100AEC ∠=︒,求CEF ∠的度数.9.(2020·佛山市南海外国语学校初三月考)如图,已知在ABC 中,点D 在边AC 上,且AB AD =.(1)用尺规作图法,作BAC ∠的平分线AP ,交BC 于点P ;(保留作图痕迹,不要求写作法) (2)在(1)的条件下,连接PD .求证:PD PB =.。

专题01 角平分线四大模型在三角形中的应用(知识解读)-备战2023年中考数学《重难点解读专项训练

专题01  角平分线四大模型在三角形中的应用(知识解读)-备战2023年中考数学《重难点解读专项训练

N M O A B PPO N M B A专题01 角平分线四大模型在三角形中的应用(知识解读)【专题说明】角平分线在几何中占有重要地位,是解决许多问题的桥梁和纽带,角平分线把一个角分成相等的两个部分,其“轴承对称功能”衍生出“角平分线上的点到角两边的距离相等”以及“等腰三角形三线合一”、“三角形的内心到三边的距离相等”等性质,而角平分线与平行线相结合构造出等腰三角形,也常在解题中给我们带来帮助,本专题介绍四种常考解题方法。

【方法技巧】模型1 角平分线上的点向两边作垂线如图,P 是∠MON 的平分线上一点,过点P 作PA ⊥OM 于点A ,PB ⊥ON 于点B 。

结论:PB=PA 。

【模型分析】利用角平分线的性质:角平分线上的点到角两边的距离相等,构造模型,为边相等、角相等、三角形全等创造更多的条件,进而可以快速找到解题的突破口。

模型2 截取构造对称全等如图,P 是∠MON 的平分线上一点,点A 是射线OM 上任意一点,在ON 上截取OB=OA ,连接PB 。

结论:△OPB ≌△OPA 。

P O N MB AQP O N M 【模型分析】利用角平分线图形的对称性,在角的两边构造对称全等三角形,可以得到对应边、对应角相等。

利用对称性把一些线段或角进行转移,这是经常使用的一种解题技巧。

模型3 角平分线+垂线构造等腰三角形如图,P 是∠MO 的平分线上一点,AP ⊥OP 于P 点,延长AP 于点B 。

结论:△AOB 是等腰三角形。

【模型分析】构造此模型可以利用等腰三角形的“三线合一”,也可以得到两个全等的直角三角形,进而得到对应边、对应角相等。

这个模型巧妙地把角平分线和三线合一联系了起来。

模型4 角平分线+平行线如图,P 是∠MO 的平分线上一点,过点P 作PQ ∥ON ,交OM 于点Q 。

结论:△POQ 是等腰三角形。

【模型分析】有角平分线时,常过角平分线上一点作角的一边的平行线,构造等腰三角形,为证明结论提供更多的条件,体现了角平分线与等腰三角形之间的密切关系。

八年级数学角平分线、中点专题训练试题

八年级数学角平分线、中点专题训练试题

A DBC八年级数学角平分线、中点专题训练试题【例题讲解】(一)过角平分线上一点向角两边作垂线段,利用角平分线上的点到角两边距离相等去作题.1.如图在四边形ABCD 中,BC>BA ,AD=DC ,BD 平分∠ABC . 求证:︒=∠+∠180C A .2.已知:如图,在∆ABC 中,∠A=90°,AB=AC ,∠1=∠2,求证:BC=AB+AD . 3.如图,□ABCD 中,E 是DC 上一点,F 是AD 上一点,AE 交CF 于点O ,且AE=CF.求证:OB 平分AOC ∠.(二)有和角平分线垂直的线段时,把它延长可得到中点或相等的线段,从而与三角形中位线或三角形全等建立起联系.4.已知:如图,∠1=∠2,AB ﹥AC ,CD ⊥AD 于D ,H 是BC 中点, 求证:DH=21(AB -AC ). 5.已知:如图,AB=AC ,∠BAC=90°,∠1=∠2,CE ⊥BE ,求证:BD=2CE(三)有角平分线时,常作平行线,构造等腰三角形。

(角平分线+平行线⇒三角形.)6.已知:如图,)(AC AB ABC ≠∆中,D 、E 在BC 上,且DE=EC ,过D 作DF ∥AB,交AE 于点F ,DF=AC.求证:AE 平分BAC ∠. (四)作斜边中线,利用斜边中线性质解题7.如图,在ABC Rt ∆中,AB=AC ,︒=∠90BAC ,O 为BC 的中点. ①写出点O 到ABC ∆的三个顶点A 、B 、C 的距离的关系(不变证明)②如果点N 、M 分别在线段AB 、AC上移动,在移动中保证AN=BM ,请判断OMN 的形状,并证明你的结论.M(五)有底中点,连中线,利用等腰三角形三线合一性质证题8.已知:如图,矩形ABCD ,E 为CB 延长线上一点,且AC=CE ,F 为AE 中点, 求证:FD BF ⊥.(六)有中线时可延长中线,构造全等三角形或平行四边形: 9.已知:如图,AD 为ABC ∆中线,求证:AD AC AB 2>+.10.已知:如图,在ABC ∆中,︒=∠90C ,M 为AB 中点,P 、Q 分别在AC 、BC 上,且QM PM ⊥于M.求证:222BQ AP PQ +=.11.已知:如图,ABC ∆的边BC 的中点为N ,过A 的任一直线BD AD ⊥于D ,AD CE ⊥于E.求证:NE=ND.(七)有中点,造中位线12.如图,在ABC ∆中,AD 是BC 边上的高,B C ∠=∠21,点E 为BC 的中点, 求证:AB=2DE.D13.已知:如图,E 、F 分别为四边形ABCD 的对角线中点,AB>CD.求证:()CD AB EF ->21.(八)与梯形中点有关的辅助线:①有腰中点时,常见以下三种引辅助线法14.已知:如图,在梯形ABCD 中,AB ∥CD ,DC AB >,M 为AD 中点,且CM BM ⊥. 求证:(1)BM 平分ABC ∠,CM 平分DCB ∠.(2)BC CD AB =+.15.已知:如图,在直角梯形ABCD 中,AD ∥BC ,BC AB ⊥,M 为CD 的中点.求证:AM=MB.AD FEBCB(1B(2GB(3B【随堂练习】1.如图,△ABC为等边三角形,D、F分别是BC、AB上的点,且CD=BF,以AD为边作等边△ADC.(1)求证:△ACD≌△CNBF;(2)当D在线段BC上何处时,四边形CDEF为平行四边形,且∠DEF=30°?证明你的结论.2、如图,在△ABC中,∠C=90°,点M在BC上,且BM=AC,N在AC上,且AN=MC,AM与BN相交于P,求证:∠BPM=45°.3.如图,在Rt△ABC中,∠ABC=90°,∠C=60°,BC=2,D是AC的中点,以D作DE⊥AC与CB的延长线交于E,以AB、BE为邻边作长方形ABEF,连结DF,求DF的长.例1.如图,在矩形ABCD中,已知AD=12,AB=5,P是AD边上任意一点,PE⊥BD于E,PF⊥AC于F,那么PE+PF的值为.例2.△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)求证:CO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.(3)当△ABC满足什么条件时,四边形AECF是正方形?AD ,BE∥AC,DE交AC的延长线于F点,交BE于E点.(1)求例3.如图,ABCD为平行四边形,a证:DF=FE;(2)若AC=2CF,∠ADC=60°,AC⊥DC,求BE的长;(3)在(2)的条件下,求四边形ABED的面积.例4.如图,在△ABC中,∠ACB=90°,AC=2,BC=3.D是BC边上一点,直线DE⊥BC于D,交AB于E,CF∥AB交直线DF于F.设CD=x.(1)当x取何值时,四边形EACF是菱形?请说明理由;(2)当x取何值时,四边形EACD的面积等于2?例5.阅读下面短文:如图1,△ABC是直角三角形,∠C=90°,现将△ABC补成矩形,使△ABC的两个顶点为矩形一边的两个端点,第三个便点落在矩形这一边的对边上,那么符合要求的矩形可以画出两个:矩形ACBD和矩形AEFB(如图2).解答问题;(1)设图2中矩形ACBD和矩形AEFB的面积分别为S l、S2,则S1 S2(填“>”,“=”或“<”);(2)如图3,△ABC是钝角三角形,按短文中的要求把它补成矩形,那么符合要求的矩形可以画出个,利用图3把它画出来;(3)如图4,△ABC是锐角三角形且三边满足BC>AC>AB,按短文中的要求把它补成矩形,则符合要求的矩形可以画出个,利用图4把它画出来;(4)在(3)中所画出的矩形中,哪一个的周长最小?为什么?【随堂练习】1.如图,BD是平行四边形ABCD的对角线,点E、F在BD上,要使四边形AECF是平行四边形,还需要增加的一个条件是C M2.(1)如图,已知矩形ABCD 中,对角线AC 、BD 相交于O ,AE ⊥BD 于E ,若∠DAE :∠BAE =3:1,则∠CAC = ; (2)矩形的一个角的平分线分矩形一边为lcm 和3cm 两部分,则这个矩形的面积为_______cm 2.3.如图,以△ABC 的三边为边在BC 的同一侧分别作三个等边三角形,即△ABD 、 △BCE 、△ACF .(1)四边形ADEF 是 ; (2)当△ABC 满足条件 时,四边形ADEF 为矩形; (3)当△ABC 满足条件 时,四边形ADEF 不存在.4.已知一个三角形的一边长为2,这边上的中线为1,另两边之和为1+3,则这两边之积为 .5.如图,ABCD 中,M 是AB 上的一点,连结CM 并延长交DA 的延长线于P ,交对角线BD 于N ,求证:NP MN CN ⋅=218.如图,在梯形ABCD 中,AD ∥BC ,∠B=∠ACD ⑴请再写出图中另外一对相等的角;⑵若AC=6,BC=9,试求梯形ABCD 的中位线的长度。

22.第四章 微专题 遇到角平分线如何添加辅助线

22.第四章  微专题  遇到角平分线如何添加辅助线
例1题图
微专题 遇到角平分线如何添加辅助线 例2 如图,在△ABC中,AD平分∠BAC,E是BC的中点,AD⊥BD,若 AC=7,AB=3,则DE的长为 2 .
例2题图
微专题 遇到角平分线如何添加辅助线
例3 如图,在四边形ABCD中,AC为∠BAD的平分线,BC=2,若∠B =2∠D=120°,求CD的长.
在△ABD和△ACF中,
∠ABD=∠ACF
AB=AC

∠BAD=∠CAF=90°
∴△ABD≌△ACF(ASA),
∴BD=CF,
∵BD平分∠ABC,
∴∠EBC=∠EBF,
第5题图
F
微专题 遇到角平分线如何添加辅助线
在△BCE和△BFE中,
∠EBC=∠EBF
BE=BE

∠CEB=∠FEB
∴△BCE≌△BFE(ASA),
微专题 遇到角平分线如何添加辅助线
例5
一题多解法 如图,在△ABC中,AB=3,BC=6,BD平
分∠ABC,求
CD AD
的值.
解:如图,过点D作DE∥AB交BC于点E,
则∠ABD=∠BDE,
∵BD平分∠ABC, ∴∠ABD=∠DBC, ∴∠BDE=∠DBE,Байду номын сангаас∴DE=BE,
E
例5题图
微专题 遇到角平分线如何添加辅助线
AC上,连接DE,DF,DE=4,若∠BAC+∠EDF=180°,则DF的长
为___4____.
第4题图
解题关键点 在AB上截取AG=AF,连接DG,构造全等三角形.
微专题 遇到角平分线如何添加辅助线
5.如图,在等腰直角△ABC中,∠BAC=90°,AB=AC,BD是∠ABC的

角平分线专题训练题

角平分线专题训练题

角平分线专题训练题1. 已知三角形ABC,角A的角平分线交BC边于点D,角B 的角平分线交AC边于点E。

若AD=DE,求证角A=2角B。

证明:由角平分线的定义,有∠DAB=∠EAC,且∠DAE=∠EAD。

在△ADE中,由角度和定理可得∠DAE+∠DEA+∠EDA=180°,即∠DAE+∠DEA+∠EAD=180°。

由已知条件AD=DE,可得∠DEA=∠EAD,代入上式得2∠DAE+∠EAD=180°,即3∠DAE=180°,解得∠DAE=60°。

同理,在△DBE中,由角度和定理可得∠EBD+∠BED+∠DEB=180°,即∠EBD+∠BED+∠EDA=180°。

由已知条件AD=DE,可得∠DEA=∠EDA,代入上式得∠EBD+2∠DEA=180°,即∠EBD+2∠DAE=180°,代入∠DAE=60°,得∠EBD+120°=180°,即∠EBD=60°。

又因为∠DAB=∠DBE,且∠DAE=∠EBD,所以,由三角形内角和定理可得∠ABD+∠DBE+∠DAE=180°。

代入∠DAE=60°,得∠ABD+60°+60°=180°,即∠ABD=60°。

所以,角A=∠DAB+∠DAD+∠DAE=∠DAB+∠ABD+∠DAE=∠DBE+∠EBD+∠DAE=∠EDC+∠CDE+∠EAD=∠EDC+∠CDE+∠A DA=∠ADC+∠CDA+∠ADA=2∠ADC。

角B=∠ABD+∠DBE+∠BED=∠ABD+∠DBE+∠EDC=∠ABD+∠DBE+∠DCE=∠ADG+∠DGE+∠DCE=∠ADE+∠DEC+∠D CE=∠DAE+∠EDA+∠DCE=∠DAE+∠EDA+∠EDA=2∠DA E。

所以,角A=2∠ADC,角B=2∠DAE,结合前面的推导可知角A=2角B。

专题 角平分线四大模型在三角形中的应用(专项训练)(解析版)

专题  角平分线四大模型在三角形中的应用(专项训练)(解析版)

专题01 角平分线四大模型在三角形中的应用(专项训练)1.如图,在△ABC中,∠C=90°,AD平分∠CAB,BD=4cm,CD=2cm,(1)求D点到直线AB的距离.(2)求AC.【解答】解:(1)作DE⊥AB于E,∵AD平分∠CAB,∠C=90°,DE⊥AB,∴DE=CD=2cm;(2)在Rt△ADC和Rt△ADE中,,∴Rt△ADC≌Rt△ADE,∴AC=AE,∵BD=4cm,CD=2cm,∴BE=2cm,则AC2+62=(AC+2)2,解得,AC=2cm.2.如图,△ABC的外角∠ACD的平分线CP与内角∠ABC的平分线BP交于点P,∠BPC =40°.(1)求∠BAC;(2)证明:点P到△ABC三边所在直线的距离相等;(3)求∠CAP.【解答】解:(1)在△ABC中,∠ACD=∠BAC+∠ABC,在△PBC中,∠PCD=∠BPC+∠PBC,∵PB、PC分别是∠ABC和∠ACD的平分线,∴∠PCD=∠ACD,∠PBC=∠ABC,∴∠APC+∠PCB=(∠BAC+∠ABC)=∠BAC+∠ABC=∠BAC+∠PCB,∴∠PCD=∠BAC,∴∠BPC=40°,∴∠BAC=2×40°=80°,即∠BAC=80°;(2)作PE⊥BA于E,PF⊥AC于F,PG⊥BC于G,∵CP是∠ACD的平分线,PF⊥AC,PG⊥BC,∴PF=PG,同理,PE=PF,∴PE=PF=PG,即点P到△ABC三边所在直线的距离相等;(3)∵PE⊥BA,PF⊥AC,PE=PF,∴∠CAP=∠CAE=50°.3.(1)如图①在△ABC,∠C=90°,AD平分∠CAB,BC=6cm,BD=4cm,那么点D到AB的距离是cm(2)如图②,已知∠1=∠2,∠3=∠4,求证:AP平分∠BAC.【解答】解:(1)如图①,作DE⊥AB于E,∵BC=6cm,BD=4cm,∴CD=2cm,∵AD平分∠CAB,∠C=90°,DE⊥AB,∴DE=CD=2cm,即点D到AB的距离是2cm,故答案为:2;(2)证明:如图②,作PD⊥AB于D,PE⊥BC于E,PF⊥AC于F,∵∠1=∠2,PD⊥AB,PE⊥BC,∴PD=PE,同理,PF=PE,∴PD=PF,又PD⊥AB,PF⊥AC,∴AP平分∠BAC.4.四边形ABCD中,DA=DC,连接BD,∠ABD=∠DBC.(1)如图1,求证:∠BAD+∠BCD=180°;(2)如图2,连接AC,当∠DAC=45°时,BC=3AB,S△DBC=27,求AB的长;(3)如图3,在(2)的条件下,把△ADC沿AC翻折,点D的对应点是点E,AE交BC 于点K,F是线段BC上一点,连接EF,∠BFE=45°,求△EFC的面积.【解答】(1)证明:如图1,过点D作DM⊥BA交BA的延长线于M,DN⊥BC于N,则∠DMA=∠DNC=90°,∵∠ABD=∠DBC,DM⊥BA,DN⊥BC,∴DM=DN,在Rt△DMA和Rt△DNC中,,∴Rt△DMA≌Rt△DNC(HL),∴∠DAM=∠BCD,∵∠DAM+∠DAB=180°,∴∠DAB+∠BCD=180°;(2)如图2,过点D作DM⊥BA交BA的延长线于M,DN⊥BC于N,由(1)得,△DNC≌△DMA,CN=MA,∵DA=DC,∠DAC=45°,∴∠DAC=∠DCA=45°,即∠DAC+∠DCA=90°,∴∠ADC=90°,∴∠ABC=180°﹣∠ADC=90°,∵BD平分∠ABC,∴∠DBM=∠DBN=45°,∵∠M=∠DNB=90°,∴∠MDB=∠BDN=∠DBM=∠DBN=45°,∴DN=BN,DM=BM,∵DM=DN,∴MB=BN=DN,设AB=a,则BC=3AB=3a,设CN=b,则MA=CN=b,∴MB=a+b,BN=3a﹣b,∴a+b=3a﹣b,∴b=a,∴BN=DN=3a﹣b=2a,∴S△BCD=BC•DN=•3a•2a=27,解得,a=b=3,∴AB=3;(3)如图3,过点E作EG⊥AB交AB的延长线于G,EH⊥BC于H,由翻折可知,AE=AD=CD=CE,∠AEC=∠ADC=90°.∵∠AKB=∠CKE,∴∠BAE=∠BCE,在△AGE和△CHE中,,∴△AGE≌△CHE(AAS),∴AG=CH,EG=EH,∴BE平分∠CBG,即∠GBE=∠CBE=45°=∠HEB=∠BEG,∴BH=EH=BG=EG,设BH=k,则AG=3+k,CH=9﹣k,∵AG=CH,∴3+k=9﹣k,解得,k=3,∴EH=BH=3,∵∠BFE=45°,∠EHF=90°,∴∠HEF=∠HFE=45°,∴HE=FH=3,∴CF=CB﹣BF=9﹣3﹣3=3,∴△EFC的面积=×CF×EH=×3×3=.5.如图,在四边形ABCD中,∠BAD=α,∠BCD=180°﹣α,BD平分∠ABC.(1)如图1,若α=90°,根据教材中一个重要性质直接可得DA=CD,这个性质是(2)问题解决:如图2,求证AD=CD;(3)问题拓展:如图3,在等腰△ABC中,∠BAC=100°,BD平分∠ABC,求证:BD+AD =BC.【解答】解:(1)∵BD平分∠ABC,∠BAD=90°,∠BCD=90°,∴DA=DC(角平分线上的点到角的两边距离相等),故答案为:角平分线上的点到角的两边距离相等;(2)如图2,作DE⊥BA交BA延长线于E,DF⊥BC于F,∵BD平分∠EBF,DE⊥BE,DF⊥BF,∴DE=DF,∵∠BAD+∠C=180°,∠BAD+∠EAD=180°,∴∠EAD=∠C,在△DEA和△DFC中,∴△DEA≌△DFC(AAS),∴DA=DC;(3)如图,在BC时截取BK=BD,连接DK,∵AB=AC,∠A=100°,∴∠ABC=∠C=40°,∵BD平分∠ABC,∴∠DBK=∠ABC=20°,∵BD=BK,∴∠BKD=∠BDK=80°,即∠A+∠BKD=180°,由(2)的结论得AD=DK,∵∠BKD=∠C+∠KDC,∴∠KDC=∠C=40°,∴DK=CK,∴AD=DK=CK,∴BD+AD=BK+CK=BC.6.如图,△ABC中,∠B=2∠A,∠ACB的平分线CD交AB于点D,已知AC=16,BC =9,则BD的长为()A.6B.7C.8D.9【解答】解:如图,在AC上截取CE=CB,连接DE,∵∠ACB的平分线CD交AB于点D,∴∠BCD=∠ECD.在△CBD与△CED中,.∴△CBD≌△CED(SAS),∴BD=ED,∠B=∠CED,∵∠B=2∠C,∠CED=∠A+∠ADE,∴∠CED=2∠A,∴∠A=∠EDA,∴AE=ED,∴AE=BD,∴BD=AC﹣CE=AC﹣BC=16﹣9=7.故选:B.7.如图,△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB,AD、CE相交于点P.(1)求∠APC的度数;(2)若AE=3,CD=4,求线段AC的长.【解答】解:(1)∵∠ABC=60°,∴∠BAC+∠BCA=120°,∵AD、CE分别平分∠BAC、∠ACB,∴∠P AC+∠PCA=(∠BAC+∠BCA)=60°,∴∠APC=120°.(2)如图,在AC上截取AF=AE,连接PF,∵AD平分∠BAC,∴∠BAD=∠CAD,在△APE和△APF中,,∴△APE≌△APF(SAS),∴∠APE=∠APF,∵∠APC=120°,∴∠APE=60°,∴∠APF=∠CPD=60°=∠CPF,∵CE平分∠ACB,∴∠ACP=∠BCP,在△CPF和△CPD中,,∴△CPF≌△CPD(ASA),∴CF=CD,∴AC=AF+CF=AE+CD=3+4=7.8.阅读下面材料:小聪遇到这样一个有关角平分线的问题:如图1,在△ABC中,∠A=2∠B,CD平分∠ACB,AD=2,AC=3,求BC的长.小聪思考:因为CD平分∠ACB,所以可在BC边上取点E,使EC=AC,连接DE.这样很容易得到△DEC≌△DAC,经过推理能使问题得到解决(如图2).请完成:(1)求证:△BDE是等腰三角形;(2)求BC的长为多少?【解答】(1)证明:如图2,在BC边上取点E,使EC=AC,连接DE,在△ACD与△ECD中,∵,∴△ACD≌△ECD,∴AD=DE,∠A=∠DEC,∵∠A=2∠B,∴∠DEC=2∠B,∵∠DEC=∠B+∠EDB∴∠B=∠EDB,∴△BDE是等腰三角形;(2)解:∵AD=DE=BE=2,EC=AC=3,∴BC=BE+CE=2+3=5.9.阅读材料:小明遇到这样一个问题:如图1,在△AC中,∠A=2∠B,CD平分∠ACB,AD=2.2,AC=3.6,求BC的长.小明的想法:因为CD平分∠ACB,所以可利用“翻折”来解决该问题.即在BC边上取点E,使EC=AC,并连接DE(如图2).(1)如图2,根据小明的想法,回答下面问题:①△DEC和△DAC的关系是,判断的依据是;②△BDE是三角形;③BC的长为.(2)参考小明的想法,解决下面问题:已知:如图3,在△ABC中,AB=AC,∠A=20°,BD平分∠ABC,BD=2.3,BC=2,求AD的长.【解答】解:(1)如答图1,①在△ACD与△ECD中,,∴△ACD≌△ECD(SAS);②由①知,△ACD≌△ECD,∴AD=DE,∠A=∠DEC,∵∠A=2∠B,∴∠DEC=2∠B,∴∠B=∠EDB,∴BE=DE,∴△BDE是等腰三角形;③由①知,△ACD≌△ECD,则EC=AC=3.6,DE=AD=2.2.又∵BE=DE,∴BE=AD=2.2.∴BC=BE+EC=2.2+3.6=5.8.故答案是:①△ACD≌△ECD;SAS;②等腰;③5.8;(2)∵△ABC中,AB=AC,∠A=20°,∴∠ABC=∠C=80°,∵BD平分∠B,∴∠1=∠2=40°∠BDC=60°,如答图2,在BA边上取点E,使BE=BC=2,连接DE,则△DEB≌△DBC,∴∠BED=∠C=80°,∴∠4=60°,∴∠3=60°,在DA边上取点F,使DF=DB,连接FE,则△BDE≌△FDE,∴∠5=∠1=40°,BE=EF=2,∵∠A=20°,∴∠6=20°,∴AF=EF=2,∵BD=DF=2.3,∴AD=BD+BC=4.3.10.如图1,在△ABC中,∠A的外角平分线交BC的延长线于点D.(1)线段BC的垂直平分线交DA的延长线于点P,连接PB,PC.①利用尺规作图补全图形1,不写作法,保留痕迹;②求证:∠BPC=∠BAC;(2)如图2,若Q是线段AD上异于A,D的任意一点,判断QB+QC与AB+AC的大小,并予以证明.【解答】(1)①解:如图1所示,②证明:在AE上截取AF=AC.设PC交AB于G.∵AD平分∠CAF,∴∠DAC=∠DAF,∴∠CAP=∠F AP,∵AP=AP,AC=AF,∴△APC≌△APF,∴∠PCA=∠PF A,PC=PF,∵点P在线段BC的垂直平分线上,∴PB=PC=PF,∴∠PBF=∠PF A,∴∠PBG=∠ACG,∵∠PGB=∠AGC,∴∠BPC=∠BAC;(2)如图2中,在AE上截取AF=AC.同法可证△QAF≌△QAC,∴QC=QF,∵QB+QC=QB+QF>BF,BF=AB+AF=AB+AC,∴QB+QC>AB+AC.11.如图,在△ABC中,∠ABC=3∠C,AD平分∠BAC,BE⊥AD于E,求证:BE=(AC ﹣AB).(提示:延长BE交AC于点F).【解答】证明:如图:延长BE交AC于点F,∵BF⊥AD,∴∠AEB=∠AEF.∵AD平分∠BAC,∴∠BAE=∠F AE在△ABE和△AFE中,,∴△ABE≌△AFE(ASA)∴∠ABF=∠AFB,AB=AF,BE=EF.∵∠C+∠CBF=∠AFB=∠ABF,∠ABF+∠CBF=∠ABC=3∠C,∴∠C+2∠CBF=3∠C,∴∠CBF=∠C.∴BF=CF,∴BE=BF=CF.∵CF=AC﹣AF=AC﹣AB,∴BE=(AC﹣AB).12.如图,在△ABC中,AD为∠BAC的平分线,BP⊥AD,垂足为P.已知AB=5,BP=2,AC=9.试说明∠ABC=3∠ACB.【解答】证明:延长BP,交AC于E,∵AD平分∠BAC,BP⊥AD,∴∠BAP=∠EAP,∠APB=∠APE,又∵AP=AP,∴△ABP≌△AEP,∴BP=PE,AE=AB,∠AEB=∠ABE,∴BE=BP+PE=4,AE=AB=5,∴CE=AC﹣AE=9﹣5=4,∴CE=BE,∴△BCE是等腰三角形,∴∠EBC=∠C,又∵∠ABE=∠AEB=∠C+∠EBC,∴∠ABE=2∠C,∴∠ABC=∠ABE+∠EBC=3∠C.13.如图,△ABC中,AC=BC,∠ACB=90°,AD平分∠BAC交BC于点D,过点B作BE⊥AD,交AD延长线于点E,F为AB的中点,连接CF,交AD于点G,连接BG.(1)线段BE与线段AD有何数量关系?并说明理由;(2)判断△BEG的形状,并说明理由.【解答】解:(1)如图,BE=AD,理由如下:延长BE、AC交于点H,∵BE⊥AD,∴∠AEB=∠AEH=90°,∵AD平分∠BAC,∴∠BAE=∠HAE,在△BAE和△HAE中,,∴△BAE≌△HAE(ASA),∴BE=HE=BH,∵∠ACB=90°,∴∠BCH=180°﹣∠ACB=90°=∠ACD,∴∠CBH=90°﹣∠H=∠CAD,在△BCH和△ACD中,,∴△BCH≌△ACD(ASA),∴BH=AD,∴BE=AD.(2)△BEG是等腰直角三角形,理由如下:∵AC=BC,AF=BF,∴CF⊥AB,∴AG=BG,∴∠GAB=∠GBA,∵AC=BC,∠ACB=90°,∴∠CAB=∠CBA=45°,∴∠GAB=∠CAB=22.5°,∴∠GAB=∠GBA=22.5°,∴∠EGB=∠GAB+∠GBA=45°,∵∠BEG=90°,∴∠EBG=∠EGB=45°,∴EG=EB,∴△BEG是等腰直角三角形.14.如图,△ABC中,AB=6,AC=8,∠ABC、∠ACB的平分线BD、CD交于点D.过点D作EF∥BC,分别交AB、AC于点E、F,则△AEF的周长为()A.12B.13C.14D.15【解答】解:∵BD平分∠ABC,CD平分∠ACB,∴∠ABD=∠DBC,∠ACD=∠DCB,∵EF∥BC,∴∠EDB=∠DBC,∠FDC=∠DCB,∴∠ABD=∠EDB,∠ACD=∠FDC,∴EB=ED,FD=FC,∵AB=6,AC=8,∴△AEF的周长=AE+EF+AF=AE+ED+DF+AF=AE+EB+AF+FC=AB+AC=14,∴△AEF的周长为:14,故选:C.15.如图,在△ABC中,∠ABC、∠ACB的平分线交于点E,过点E作EF∥BC,交AB于点M,交AC于点N.求证:MN=MB+NC.【解答】证明:∵∠ABC、∠ACB的平分线相交于点E,∴∠MBE=∠EBC,∠ECN=∠ECB,∵MN∥BC,∴∠EBC=∠MEB,∠NEC=∠ECB,∴∠MBE=∠MEB,∠NEC=∠ECN,∴BM=ME,EN=CN,∵MN=ME+EN,∴MN=BM+CN.16.如图,已知AC∥BD,EA、EB分别平分∠CAB和∠DBA,CD过点E,求证:AB=AC+BD.【解答】证明:在AB上取一点F,使AF=AC,连接EF.∵EA、EB分别平分∠CAB和∠DBA,∴∠CAE=∠F AE,∠EBF=∠EBD.∵AC∥BD,∴∠C+∠D=180°.在△ACE和△AFE中,,∴△ACE≌△AFE(SAS),∴∠C=∠AFE.∵∠AFE+∠EFB=180°,∴∠EFB=∠D.在△BEF和△BED中,,∴△BEF≌△BED(AAS),∴BF=BD.∵AB=AF+BF,∴AB=AC+BD.17.已知:如图,在四边形ABCD中,AD∥BC,点E是边CD上一点,且AE平分∠BAD,BE平分∠ABC.求证:(1)AE⊥BE;(2)E是线段CD的中点.【解答】证明:(1)∵AD∥BC,∴∠ABC+∠BAD=180°,∵AE平分∠BAD,BE平分∠ABC,∴∠ABE=∠ABC,∠BAE=∠BAD,∵∠AEB=180°﹣(∠ABE+∠BAE)=180°﹣(∠ABC+∠BAD)=90°,∴AE⊥BE;(2)过点E作EF∥AD,如图所示:∴∠DAE=∠AEF,∵AE平分∠BAD,∴∠DAE=∠BAE,∴∠BAE=∠AEF,∴AF=EF,∵AD∥BC,∴EF∥BC,同理可证得:BF=EF,∴AF=BF,∴点F是AB的中点,∴点E是CD的中点。

中考数学复习题方法技巧专题七角平分线训练(含答案)

中考数学复习题方法技巧专题七角平分线训练(含答案)

方法技巧专题(七) 角平分线训练【方法解读】1.与角平分线有关的判定和性质:(1)角平分线的判定和性质.(2)角平分线的夹角:①三角形两内角的平分线的夹角等于90°与第三角一半的和;②三角形两外角的平分线的夹角等于90°与第三角一半的差;③三角形一内角与另一外角的平分线的夹角等于第三角的一半.(3)三角形的内心及其性质.(4)圆中弧、圆心角、圆周角之间的关系.2.与角平分线有关的图形或辅助线:(1)角平分线“加”平行线构成等腰三角形.(2)角平分线“加”垂线构成等腰三角形.(3)过角平分线上的点作边的垂线.1.[2018·黑龙江] 如图F7-1,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB的度数是 ()图F7-1A.30°B.35°C.45°D.60°2.[2018·陕西] 如图F7-2,在△ABC中,AC=8,∠ABC=60°,∠C=45°,AD⊥BC,垂足为D,∠ABC的平分线交AD于点E,则AE的长为()图F7-2A.B.2C.D.33.[2018·达州] 如图F7-3,△ABC的周长为19,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M.若BC=7,则MN的长为()图F7-3A.B.2C.D.34.如图F7-4,在直角梯形ABCD中,DC∥AB,∠DAB=90°,AC⊥BC,AC=BC,∠ABC的平分线分别交AD,AC于点E,F,则的值是()图F7-4A.-1B.2+C.+1D.5.[2017·滨州] 如图F7-5,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补.若∠MPN在绕点P旋转的过程中,其两边分别与OA,OB相交于M,N两点,则以下结论:(1)PM=PN恒成立;(2)OM+ON的值不变;(3)四边形PMON的面积不变;(4)MN的长不变.其中正确的个数为()图F7-5A.4B.3C.2D.16.[2016·宁夏] 如图F7-6,在平行四边形ABCD中,∠BAD的平分线AE交BC于点E,且BE=3,若平行四边形ABCD的周长是16,则EC等于.图F7-67.[2017·十堰] 如图F7-7,△ABC内接于☉O,∠ACB=90°,∠ACB的平分线交☉O于点D,若AC=6,BD=5,则BC的长为.图F7-78.如图F7-8,在矩形ABCD中,∠ABC的平分线BE与AD交于点E,∠BED的平分线EF与DC交于点F,若AB=9,DF=2FC,则BC= .(结果保留根号)图F7-89.如图F7-9,已知☉O的直径AB=5,AC,AE为弦,且AC=4,AC平分∠BAE,求AE的长.图F7-910.[2017·盐城] 如图F7-10,矩形ABCD中,∠ABD,∠CDB的平分线BE,DF分别交边AD,BC于点E,F.(1)求证:四边形BEDF为平行四边形.(2)当∠ABE为多少度时,四边形BEDF是菱形?请说明理由.图F7-1011.[2017·临沂] 如图F7-11,∠BAC的平分线交△ABC的外接圆于点D,∠ABC的平分线交AD于点E.(1)求证:DE=DB;(2)若∠BAC=90°,BD=4,求△ABC外接圆的半径.图F7-1112.如图F7-12,BD是△ABC的角平分线,它的垂直平分线分别交AB,BD,BC于点E,F,G,连结ED,DG.(1)请判断四边形EBGD的形状,并说明理由;(2)若∠ABC=30°,∠C=45°,ED=2,点H是BD上的一个动点,求HG+HC的最小值.图F7-12参考答案1.B2.C[解析] ∵BE平分∠ABD,∠ABC=60°,∴∠ABE=∠EBD=30°.∵AD⊥BC,∴∠BDA=90°.∴DE=BE.∵∠BAD=90°-60°=30°,∴∠BAD=∠ABE=30°,∴AE=BE=2DE,∴AE=AD.在Rt△ACD中,sin C=,∴AD=AC sin C=8×=4,∴AE=×4=.故选C.3.C[解析] ∵△ABC的周长为19,BC=7,∴AB+AC=12.∵∠ABC的平分线垂直于AE,垂足为N,∴BA=BE,N是AE的中点.∵∠ACB的平分线垂直于AD,垂足为M,∴AC=DC,M是AD的中点,∴DE=AB+AC-BC=5.∵MN是△ADE的中位线,∴MN=DE=.故选C.4.C[解析] 如图,过点F作FG⊥AD于点G.依题意可知△ABC是等腰直角三角形,∴△AFG也是等腰直角三角形.设FG=1,则AG=1,AF=.∵BE平分∠ABC,∴∠ABE=22.5°.∴∠AEB=90°-∠ABE=67.5°,∠AFE=∠CAB+∠ABE=67.5°.∴∠AEB=∠AFE,∴AE=AF=,∴EG=-1.∵FG⊥AD,∠DAB=90°,∴FG∥AB.∴===+1.故选C.5.B[解析] 结论(1),如图,过点P分别作OA,OB的垂线段,由于∠PEO=∠PFO=90°,因此∠AOB与∠EPF互补,由已知“∠MPN与∠AOB互补”,可得∠MPN=∠EPF,可得∠MPE=∠NPF.根据“角平分线上一点到角两边距离相等”,可证PE=PF,即可证得Rt△PME≌Rt△PNF,因此对于结论(1),“PM=PN”由全等即可证得是成立的;结论(2),也可以由全等得到ME=NF,即可证得OM+ON=OE+OF,由于OE+OF保持不变,因此OM+ON的值也保持不变;结论(3),由“Rt△PME≌Rt△PNF”可得这两个三角形的面积相等,因此四边形PMON的面积与四边形PEOF的面积始终相等,因此结论(3)是正确的;结论(4),如图,连结EF,对于△PMN与△PEF,这两个三角形都是等腰三角形,且顶角相等,但由于腰长不等,因此这两个三角形不可能全等,所以底边MN与EF不可能相等.所以MN的长是变化的.故选B.6.27.8[解析] 连结DA,因为∠ACB=90°,所以AB为☉O的直径,所以∠ADB=90°.因为CD平分∠ACB,所以BD=AD.在△ABD 中,AB===10.在△ABC中,BC===8.8.6+3[解析] 如图,延长EF和BC,交于点G.矩形ABCD中,∠ABC的平分线BE与AD交于点E,所以∠ABE=∠GBE=45°,所以在Rt△ABE中,∠ABE=∠AEB=45°,所以AB=AE=9.在Rt△ABE中,根据勾股定理,得BE===9.又因为∠BED的平分线EF与DC相交于点F,所以∠BEG=∠DEF.因为AD∥BC,所以∠G=∠DEF,所以∠BEG=∠G,所以BG=BE=9.由∠G=∠DEF,∠EFD=∠GFC,可得△EFD∽△GFC,所以===.设CG=x,DE=2x,则AD=9+2x=BC.因为BG=BC+CG,所以9=9+2x+x,解得x=3-3,所以BC=9+2x=9+2(3-3)=6+3.9.解:如图,连结BC,BE,OC,OC交BE于点G.因为∠BAE=2∠BAC=∠BOC,且∠BAE+∠ABE=90°,所以∠OGB=90°,即OC⊥BE,所以BG=EG,AE=2OG.设OG=x,则CG=-x,BC=3,由勾股定理可得OB2-OG2=BC2-CG2,即-x2=9--x2,解得x=,故AE=2x=.10.解:(1)证明:∵四边形ABCD是矩形,∴AB∥CD,BC∥AD,∴∠ABD=∠CDB.∵BE平分∠ABD,DF平分∠CDB,∴∠EBD=∠ABD,∠FDB=∠CDB.∴∠EBD=∠FDB.∴BE∥DF.又∵BC∥AD,∴四边形BEDF是平行四边形. (2)当∠ABE=30°时,四边形BEDF是菱形.理由如下:∵BE平分∠ABD,∠ABE=30°,∴∠ABD=60°,∠DBE=30°.∵四边形ABCD是矩形,∴∠A=90°,∴∠ADB=90°-∠ABD=90°-60°=30°.∴∠DBE=∠ADB,∴DE=BE.∵四边形BEDF是平行四边形,∴四边形BEDF是菱形.11.解:(1)证明:∵AD平分∠BAC,∴∠BAD=∠CAD.又∵∠CBD=∠CAD,∴∠BAD=∠CBD.∵BE平分∠ABC,∴∠CBE=∠ABE,∴∠DBE=∠CBE+∠CBD=∠ABE+∠BAD.又∵∠BED=∠ABE+∠BAD,∴∠DBE=∠BED,∴DE=BD.(2)如图,连结CD.∵∠BAC=90°,∴BC是直径,∴∠BDC=90°.∵AD平分∠BAC,BD=4,∴BD=CD=4,∴BC==4,∴△ABC外接圆的半径为2.12.解:(1)四边形EBGD是菱形.理由:∵EG垂直平分BD,∴EB=ED,GB=GD,∴∠EBD=∠EDB.∵BD平分∠ABC,∴∠EBD=∠DBC,∴∠EDF=∠GBF.在△EFD和△GFB中,∴△EFD≌△GFB,∴ED=BG,∴BE=ED=DG=GB,∴四边形EBGD是菱形.(2)如图,分别过点E,D作EM⊥BC于点M,DN⊥BC于点N,连结EC交BD于点H,此时HG+HC最小, 在Rt△EBM中,∵∠EMB=90°,∠EBM=30°,EB=ED=2,∴EM=BE=.∵DE∥BC,EM⊥BC,DN⊥BC,∴EM∥DN,EM=DN=,MN=DE=2.在Rt△DNC中,∵∠DNC=90°,∠DCN=45°,∴∠NDC=∠NCD=45°,∴DN=NC=,∴MC=3.在Rt△EMC中,∵∠EMC=90°,EM=,MC=3,∴EC===10.∵HG+HC=EH+HC=EC,∴HG+HC的最小值为10.。

2021年九年级数学中考复习小专题突破训练:角平分线性质的应用

2021年九年级数学中考复习小专题突破训练:角平分线性质的应用

2021年九年级数学中考复习小专题突破训练:角平分线性质的应用(附答案)1.如图,OP平分∠MON,P A⊥ON于点A,点Q是射线OM上一个动点,若P A=3,则PQ的最小值为()A.B.2C.3D.22.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD =8,则点P到BC的距离是()A.8B.6C.4D.23.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3B.4C.5D.64.如图,△ABC的三边AB,BC,CA长分别是20,30,40,其三条角平分线将△ABC分为三个三角形,则S△ABO:S△BCO:S△CAO等于()A.1:1:1B.1:2:3C.2:3:4D.3:4:55.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15B.30C.45D.606.如图,OC是∠AOB的平分线,P是OC上一点,PD⊥OA于点D,PD=6,则点P到边OB的距离为()A.6B.5C.4D.37.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为()A.11B.5.5C.7D.3.58.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED =90°;②∠ADE=∠CDE;③DE=BE;④AD=AB+CD,四个结论中成立的是()A.①②④B.①②③C.②③④D.①③9.如图,已知∠AOB=30°,P是∠AOB平分线上一点,CP∥OB,交OA于点C,PD⊥OB,垂足为点D,且PC=4,则PD等于()A.1B.2C.4D.810.如图,点P是∠AOB平分线OC上一点,PD⊥OB,垂足为D,若PD=2,则点P到边OA的距离是()A.1B.2C.D.411.在Rt△ABC中,如图所示,∠C=90°,∠CAB=60°,AD平分∠CAB,点D到AB 的距离DE=3.8cm,则BC等于()A.3.8cm B.7.6cm C.11.4cm D.11.2cm12.如图,已知在四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=6,BC=9,CD =4,则四边形ABCD的面积是()A.24B.30C.36D.4213.观察图中尺规作图痕迹,下列说法错误的是()A.OE是∠AOB的平分线B.OC=ODC.点C、D到OE的距离不相等D.∠AOE=∠BOE14.如图,已知△ABC的周长是20,OB和OC分别平分∠ABC和∠ACB,OD⊥BC于点D,且OD=3,则△ABC的面积是()A.20B.25C.30D.3516.如图,在四边形ABCD中,∠A=90°,AD=4,连接BD,BD⊥CD,∠ADB=∠C.若P是BC边上一动点,则DP长的最小值为.17.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M、N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是.18.如图,Rt△ABC中,∠C=90°,AD为的∠BAC角平分线,与BC相交于点D,若CD=3,AB=10,则△ABD的面积是.19.如图,三条公路两两相交,现计划修建一个油库,如果要求油库到这三条公路的距离都相等,则油库的位置有个.20.在Rt△ABC中,∠C=90°,AD平分∠CAB,AC=6,BC=8,CD=.21.如图,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是.22.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,△ABC的面积是.23.如图,在△ABC中,BD是边AC上的高,CE平分∠ACB,交BD于点E,DE=2,BC =5,则△BCE的面积为.24.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于点E,DF⊥AC于点F,若△ABC的面积为21cm2,AB=8cm,AC=6cm,则DE的长为cm.25.如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=°.26.如图,Rt△ABC中,∠ACB=90°,△ABC的三条内角平分线交于点O,OM⊥AB于M,若OM=4,S△ABC=180,则△ABC的周长是.27.如图,在△ABC中,∠C=90°,AD平分∠BAC,AB=8,CD=3,则△ABD的面积是.28.如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF,证明:(1)CF=EB.(2)AB=AF+2EB.29.如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.(1)说明BE=CF的理由;(2)如果AB=5,AC=3,求AE、BE的长.30.如图,四边形ABDC中,∠D=∠ABD=90°,点O为BD的中点,且OA平分∠BAC.(1)求证:OC平分∠ACD;(2)求证:OA⊥OC;(3)求证:AB+CD=AC.31.如图,在△ABC中,AD平分∠BAC,∠C=90°,DE⊥AB于点E,点F在AC上,BD =DF.(1)求证:CF=EB.(2)若AB=12,AF=8,求CF的长.32.已知:如图,P是OC上一点,PD⊥OA于D,PE⊥OB于E,F、G分别是OA、OB 上的点,且PF=PG,DF=EG.求证:OC是∠AOB的平分线.33.如图,在△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于点E,点F在AC上,BE=FC.求证:BD=DF.34.如图,已知AC∥BD,AE,BE分别平分∠CAB和∠DBA,点E在线段CD上.(1)求∠AEB的度数;(2)求证:CE=DE.35.如图,△ABC的外角∠DAC的平分线交BC边的垂直平分线于P点,PD⊥AB于D,PE⊥AC于E.(1)求证:BD=CE;(2)若AB=6cm,AC=10cm,求AD的长.参考答案1.解:过点P作PB⊥OM于B,∵OP平分∠MON,P A⊥ON,P A=3,∴PB=P A=3,∴PQ的最小值为3.故选:C.2.解:过点P作PE⊥BC于E,∵AB∥CD,P A⊥AB,∴PD⊥CD,∵BP和CP分别平分∠ABC和∠DCB,∴P A=PE,PD=PE,∴PE=P A=PD,∵P A+PD=AD=8,∴P A=PD=4,∴PE=4.故选:C.3.解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD,∴S△ABD=AB•DE=×10•DE=15,解得DE=3,∴CD=3.故选:A.4.解:过点O作OD⊥AC于D,OE⊥AB于E,OF⊥BC于F,∵点O是内心,∴OE=OF=OD,∴S△ABO:S△BCO:S△CAO=•AB•OE:•BC•OF:•AC•OD=AB:BC:AC=2:3:4,5.解:由题意得AP是∠BAC的平分线,过点D作DE⊥AB于E,又∵∠C=90°,∴DE=CD,∴△ABD的面积=AB•DE=×15×4=30.故选:B.6.解:如图,过点P作PE⊥OB于点E,∵OC是∠AOB的平分线,PD⊥OA于D,∴PE=PD,∵PD=6,∴PE=6,即点P到OB的距离是6.故选:A.7.解:作DM=DE交AC于M,作DN⊥AC于点N,∴DM=DG,∵AD是△ABC的角平分线,DF⊥AB,∴DF=DN,在Rt△DEF和Rt△DMN中,,∴Rt△DEF≌Rt△DMN(HL),∵△ADG和△AED的面积分别为50和39,∴S△MDG=S△ADG﹣S△ADM=50﹣39=11,S△DNM=S△EDF=S△MDG=×11=5.5.故选:B.8.解:过E作EF⊥AD于F,如图,∵AB⊥BC,AE平分∠BAD,∴Rt△AEF≌Rt△AEB∴BE=EF,AB=AF,∠AEF=∠AEB;而点E是BC的中点,∴EC=EF=BE,所以③错误;∴Rt△EFD≌Rt△ECD,∴DC=DF,∠FDE=∠CDE,所以②正确;∴AD=AF+FD=AB+DC,所以④正确;∴∠AED=∠AEF+∠FED=∠BEC=90°,所以①正确.故选:A.9.解:作PE⊥OA于E,如图,∵CP∥OB,∴∠ECP=∠AOB=30°,在Rt△EPC中,PE=PC=×4=2,∵P是∠AOB平分线上一点,PE⊥OA,PD⊥OB,∴PD=PE=2.故选:B.10.解:作PE⊥OA于E,∵点P是∠AOB平分线OC上一点,PD⊥OB,PE⊥OA,∴PE=PD=2,故选:B.11.解:∵∠C=90°,∠CAB=60°,∴∠B=30°,在Rt△BDE中,BD=2DE=7.6,又∵AD平分∠CAB,∴DC=DE=3.8,∴BC=BD+DC=7.6+3.8=11.4.故选:C.12.解:过D作DH⊥AB交BA的延长线于H,∵BD平分∠ABC,∠BCD=90°,∴DH=CD=4,∴四边形ABCD的面积=S△ABD+S△BCD=AB•DH+BC•CD=×6×4+×9×4=30,故选:B.13.解:根据尺规作图的画法可知:OE是∠AOB的角平分线.A、OE是∠AOB的平分线,A正确;B、OC=OD,B正确;C、点C、D到OE的距离相等,C不正确;D、∠AOE=∠BOE,D正确.故选:C.14.解:如图,连接OA,过O作OE⊥AB于E,OF⊥AC于F,∵OB、OC分别平分∠ABC和∠ACB,∴OE=OF=OD=3,∵△ABC的周长是20,OD⊥BC于D,且OD=3,∴S△ABC=×AB×OE+×BC×OD+×AC×OF=×(AB+BC+AC)×3=×20×3=30,故选:C.16.解:根据垂线段最短,当DP⊥BC的时候,DP的长度最小,∵BD⊥CD,即∠BDC=90°,又∠A=90°,∴∠A=∠BDC,又∠ADB=∠C,∴∠ABD=∠CBD,又DA⊥BA,DP⊥BC,∴AD=DP,又AD=4,∴DP=4.故答案为:4.17.解:作DE⊥AB于E,由基本尺规作图可知,AD是△ABC的角平分线,∵∠C=90°,DE⊥AB,∴DE=DC=4,∴△ABD的面积=×AB×DE=30,故答案为:30.18.解:作DE⊥AB于E,∵AD为的∠BAC角平分线,∠C=90°,DE⊥AB,∴DE=DC=3,∴△ABD的面积=×AB×DE=×10×3=15,故答案为:15.19.解:∵三条公路两两相交,要求油库到这三条公路的距离都相等,∴油库在角平分线的交点处,画出油库位置如图所示.故答案为:420.解:如图,过点D作DE⊥AB于E,∵∠C=90°,AC=6,BC=8,∴AB===10,∵AD平分∠CAB,∴CD=DE,∴S△ABC=AC•CD+AB•DE=AC•BC,即×6•CD+×10•CD=×6×8,解得CD=3.故答案为:3.21.解:∵∠C=90°,AD平分∠BAC,∴点D到AB的距离=CD=2,∴△ABD的面积是5×2÷2=5.故答案为:5.22.解:作OE⊥AC,OF⊥AB,垂足分别为E、F,连接OA,∵OB,OC分别平分∠ABC和∠ACB,OD⊥BC,∴OD=OE=OF,∴S△ABC=S△OBC+S△OAC+S△OAB=×OD×BC+×OE×AC+×OF×AB=×OD×(BC+AC+AB)=×3×21=31.5.故答案为:31.5.23.解:作EF⊥BC于F,∵CE平分∠ACB,BD⊥AC,EF⊥BC,∴EF=DE=2,∴S△BCE=BC•EF=×5×2=5.故答案为:5.24.解:∵AD为∠BAC的平分线,DE⊥AB,DF⊥AC,∴DE=DF,∵S△ABD+S△ACD=S△ABC,∴×AB×DE+×DF×AC=21,即×8×DE+×DE×6=21,∴DE=3(cm).故答案为3.25.解:作MN⊥AD于N,∵∠B=∠C=90°,∴AB∥CD,∴∠DAB=180°﹣∠ADC=70°,∵DM平分∠ADC,MN⊥AD,MC⊥CD,∴MN=MC,∵M是BC的中点,∴MC=MB,∴MN=MB,又MN⊥AD,MB⊥AB,∴∠MAB=∠DAB=35°,故答案为:3526.解:∵点O是三角形三条角平分线的交点,OM⊥AB于点M,∴点O到三边的距离等于OM的长,∵S△ABC=180,∴(AB+BC+CA)•OM=180,即(AB+BC+CA)×4=180,∴AB+BC+CA=90,故答案为:90.27.解:作DE⊥AB于E,如图,∵AD平分∠BAC,DE⊥AB,DC⊥AC,∴DE=DC=3,∴S△ABD=×8×3=12.故答案为12.28.证明:(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴DE=DC,在Rt△CDF和Rt△EDB中,,∴Rt△CDF≌Rt△EDB(HL).∴CF=EB;(2)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴CD=DE.在Rt△ADC与Rt△ADE中,,∴Rt△ADC≌Rt△ADE(HL),∴AC=AE,∴AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.29.(1)证明:连接BD,CD,∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∠BED=∠CFD=90°,∵DG⊥BC且平分BC,∴BD=CD,在Rt△BED与Rt△CFD中,,∴Rt△BED≌Rt△CFD(HL),∴BE=CF;(2)解:在△AED和△AFD中,,∴△AED≌△AFD(AAS),∴AE=AF,设BE=x,则CF=x,∵AB=5,AC=3,AE=AB﹣BE,AF=AC+CF,∴5﹣x=3+x,解得:x=1,∴BE=1,AE=AB﹣BE=5﹣1=4.30.证明:(1)过点O作OE⊥AC于E,∵∠ABD=90゜,OA平分∠BAC,∴OB=OE,∵点O为BD的中点,∴OB=OD,∴OE=OD,∴OC平分∠ACD;(2)在Rt△ABO和Rt△AEO中,,∴Rt△ABO≌Rt△AEO(HL),∴∠AOB=∠AOE,同理求出∠COD=∠COE,∴∠AOC=∠AOE+∠COE=×180°=90°,∴OA⊥OC;(3)∵Rt△ABO≌Rt△AEO,∴AB=AE,同理可得CD=CE,∵AC=AE+CE,∴AB+CD=AC.31.(1)证明:∵AD平分∠BAC,∠C=90°,DE⊥AB于E,∴DE=DC.在Rt△CDF与Rt△EDB中,,∴Rt△CDF≌Rt△EDB(HL),∴CF=EB.(2)解:设CF=x,则AE=12﹣x,∵AD平分∠BAC,DE⊥AB,∴CD=DE.在Rt△ACD与Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴AC=AE,即8+x=12﹣x,解得x=2,即CF=2.32.证明:在Rt△PFD和Rt△PGE中,,∴Rt△PFD≌Rt△PGE(HL),∴PD=PE,∵P是OC上一点,PD⊥OA,PE⊥OB,∴OC是∠AOB的平分线.33.证明:∵AD平分∠BAC,DE⊥AB,∠C=90°,∴DC=DE,在△DCF和△DEB中,,∴△DCF≌△DEB,(SAS),∴BD=DF.34.解:(1)∵AC∥BD,∴∠CAB+∠ABD=180°.∵AE平分∠CAB,∴∠EAB=∠CAB.同理可得∠EBA=∠ABD.∴∠EAB+∠EBA=90°,∴∠AEB=90°;(2)如图,在AB上截取AF=AC,连接EF,在△ACE和△AFE中,∴△ACE≌△AFE(SAS).∴CE=FE,∠CEA=∠FEA.∵∠CEA+∠DEB=90°,∠FEA+∠FEB=90°,∴∠DEB=∠FEB.在△DEB和△FEB中∴△DEB≌△FEB(ASA).∴ED=EF.∴ED=CE.35.(1)证明:连接BP、CP,∵点P在BC的垂直平分线上,∴BP=CP,∵AP是∠DAC的平分线,∴DP=EP,在Rt△BDP和Rt△CEP中,,∴Rt△BDP≌Rt△CEP(HL),∴BD=CE;(2)解:在Rt△ADP和Rt△AEP中,,∴Rt△ADP≌Rt△AEP(HL),∴AD=AE,∵AB=6cm,AC=10cm,∴6+AD=10﹣AE,即6+AD=10﹣AD,解得AD=2cm.。

专题11.10角平分线模型经典问题特色训练(重难点培优)-【拔尖特训】2024-2025学年八年级数

专题11.10角平分线模型经典问题特色训练(重难点培优)-【拔尖特训】2024-2025学年八年级数

【拔尖特训】2024-2025学年八年级数学上册尖子生培优必刷题(人教版)专题11.10角平分线模型经典问题特色训练(重难点培优)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷满分100分,试题共23题,其中选择10道、填空6道、解答7道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.如图,BE、CF都是△ABC的角平分线,且∠BDC=115°,则∠A=()A.50°B.45°C.65°D.70°2.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠A+∠P=()A.70°B.80°C.90°D.100°3.如图,在△ABC中,∠C=30°,BD平分∠ABC交AC于点D,DE∥AB,交BC于点E,若∠BDE=50°,则∠A的度数是()A.40°B.50°C.60°D.70°4.如图,AF∥CD,CB平分∠ACD,BD平分∠EBF,且BC⊥BD,下列结论:①BC平分∠ABE;②AC∥BE;③∠BCD+∠D=90°;④∠DEB=2∠ACB.其中结论正确的序号为()A.③④B.①②C.①②③D.①②③④5.如图,将△ABC纸片沿DE折叠,使点A落在点A'处,且A'B平分∠ABC,A'C平分∠ACB,若∠BA'C =122°,则∠1+∠2的度数为()A.116°B.100°C.128°D.120°6.如图,△ABC沿EF折叠使点A落在点A'处,BP、CP分别是∠ABD、∠ACD平分线,若∠P=30°,∠A'EB=20°,则∠A'FC为()A.125°B.130°C.135°D.140°7.如图,∠AOB=60°,点M、N分别在OA、OB上运动(不与点O重合),ME平分∠AMN,ME的反向延长线与∠MNO的平分线交于点F,在M、N的运动过程中,∠F的度数()A.变大B.变小C.等于45°D.等于30°8.如图,△ABC中,CD平分∠ACB,点M在线段CD上,且MN⊥CD交BA的延长线于点N.若∠B=30°,∠CAN=96°,则∠N的度数为()A.22°B.27°C.30°D.37°9.如图,在△ABC中,AD平分∠BAC,点E在射线BC上,EF⊥AD于F,∠B=40°,∠ACE=72,则∠E的度数为()A.68°B.56°C.34°D.32°10.如图,D是△ABC的角平分线BD和CD的交点,过点D作△BCD的高,交BC于点E.若∠A=70°,∠CDE=65°,则∠DBE的度数为()A.30°B.35°C.20°D.25°二、填空题(本大题共6小题,每小题3分,共18分)请把答案直接填写在横线上11.在如图所示的△ABC纸片中,点E是边AB的中点,点F是边BC上任意一点,现将△BEF沿EF折叠,得到△B′EF,折痕EF与△ABC的角平分线BD相交于点O,连接CB′,当线段EB′与CB′的长度和最小时,∠EOB=100°,则此时∠B′CB=°.12.如图,△ABC的角平分线BD,CE交于点O,∠A=60°,则∠BOC=°.13.如图,△ABC中,AB=AC,D、E分别为AB、AC上的点,∠BDE、∠CED的平分线分别交BC于点F、G,EG∥AB,若∠BGE=98°,则∠ADE的度数为.14.如图,在Rt△ABC中,∠C=90°,∠A=60°,∠ABC的平分线交AC于点D,∠BDC的平分线交BC于点E,点F在边AB上,BE=BF,连接EF,则12∠AFE+∠BDE=.15.如图,在△ABC中,AD是BC边上的高,AE是∠BAC的平分线,若∠B=70°,∠C=40°,则∠DAE 的度数为.16.如图,在△ABC中,∠A=α,∠ABC的平分线与∠ACD的平分线交于点A1,得∠A1,则∠A1=.∠A1BC的平分线与∠A1CD的平分线交于点A2,得∠A2,…,∠A2009BC的平分线与∠A2009CD的平分线交于点A2010,得∠A2010,则∠A2010=.三、解答题(本大题共7小题,共52分.解答时应写出文字说明、证明过程或演算步骤)17.【基本模型】(1)如图1,在△ABC中,BP平分∠ABC,CP平分外角∠ACD,试说明∠P=12∠A.【变式应用】(2)如图2,∠MON=90°,A,B分别是射线ON,OM上的两个动点,∠ABO与∠BAN的平分线的交点为P,则点A,B的运动的过程中,∠P的大小是否会发生变化?若不发生变化,请求出其值;若发生变化,请说明理由.【拓展应用】(3)如图3,∠MON=90°,作∠MON的平分线OD,A是射线OD上的一定点,B是直线OM上的任意一点(不与点O重合),连接AB,设∠ABO的平分线与∠BAO的邻补角的平分线的交点为P,请直接写出∠P的度数.18.如图,已知∠AOB=n,P,Q两点分别是OA、OB上的两动点,QD,PE分别平分∠PQO和∠APQ,射线PE的反向延长线与射线QD相交于点D.(1)如图1,若n=60°,求∠EDQ的度数;(2)如图2,作∠PQB的角平分线QE交射线PE于点E,求∠PEQ的度数;(3)如图3,M、N为线段PE和EQ上的两定点,若将△MNE沿MN翻折,点E对应点E'在△PEQ的内部,且满足∠E'PQ=−13∠EPQ,∠E'QP=13∠EQP,请求出∠PE'Q与∠1,∠2的关系.19.在△ABC中,CD平分∠ACB交AB于点D,点E是射线AB上的动点(不与点D重合),过点E作EF ∥BC交直线CD于点F,∠BEF的角平分线所在的直线与射线CD交于点G.(1)如图1,点E在线段AD上运动.①若∠B=60°,∠ACB=40°,则∠EGC=°;②若∠A=90°,求∠EGC的度数;(2)若点E在射线DB上运动时,探究∠EGC与∠A之间的数量关系.20.如图,△ABC中,∠C=40°,∠B=70°,AE平分∠CAB,AD⊥BC于D,DF⊥AE于F.(1)求∠CAE的度数;(2)求∠ADF的度数.21.问题情境:如图1,△ABC中,BO平分∠ABC,CO平分∠ACD.(1)探索发现:若∠A=60°,则∠O的度数为;若∠A=130°,则∠O的度数为.(2)猜想证明:试判断∠A与∠O的关系,并说明理由.(3)结论应用:如图2,在四边形MNCB中,BD平分∠MBC,且与四边形MNCB的外角∠NCE的平分线CD交于点D.若∠BMN=130°,∠CNM=100°,则∠D的度数为.22.如图,在四边形ABCD中,BD,CA分别平分∠ABC和∠DCB,BD与AC相交于点O,延长BA,CD 交于点P.(1)已知∠OAD+∠ODA=60°,求∠P的度数;(2)若∠BAC=α,∠CDB=β,∠BOC=γ,试探究α,β,γ三者之间的等量关系.23.【初步认识】(1)如图①,在△ABC中,BP,CP分别平分∠ABC,∠ACB.求证:∠BPC=90°+12∠A;【继续探索】(2)如图②,在△ABC中,BM平分∠ABC,CM平分△ABC外角∠ACD.求证:∠M=12∠A;(3)如图③,BN、CN分别平分△ABC外角∠EBC,∠FCB.则∠N与∠A的数量关系是;(4)如图④,△ABC中的两内角平分线交于P点,两外角平分线交于N点,一内角平分线与一外角平分线交于M点.设∠BPC=a°,∠M=b°,∠N=c°,则a,b,c之间的关系是.。

专题07 角平分线性质及其应用 (原卷版)

专题07 角平分线性质及其应用 (原卷版)

专题07 角平分线的性质及其应用【知识点睛】❖见角平分线,作双垂→得①DE=DF;②△ADE≌△ADF❖见角平分线,作对称→即截长补短造全等❖角平分线+垂直→边相等即AC=AB❖角平分线+平行线→边相等即AE=DE❖三角形角平分线夹角模型————————————【类题训练】1.如图,△ABC的∠ABC和∠ACB的角平分线BE,CF相交于点O,∠A=60°,则∠BOC的大小为()A.110°B.120°C.130°D.150°2.如图,在△ABC中,∠A=α,∠ABC的平分线与∠ACD的平分线交于点A1,得∠A1,则∠A1=.∠A1BC的平分线与∠A1CD的平分线交于点A2,得∠A2,…,∠A2009BC的平分线与∠A2009CD 的平分线交于点A2010,得∠A2010,则∠A2010=.3.如图,在△ABC中,AD是高,角平分线AE,BF相交于点O,∠BAC=50°,∠C=70°,则∠BOA= ,∠DAC= .4.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点F,过F作DE∥BC,交AB于点D,交AC 于点E.若BD=4,DE=7,则线段EC的长为()A.3B.4C.3.5D.25.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°.则∠FEC的度数为()A.10°B.20°C.30°D.60°6.如图,在△ABC中,∠B+∠C=100°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是()A.30°B.40°C.50°D.60°7.如图,点O是△ABC角平分线的交点,过点O作MN∥BC分别与AB,AC相交于点M,N,若AB =5,BC=8,CA=7,则△AMN的周长为.8.如图,Rt△ABC的两直角边AB、BC的长分别是9、12.其三条角平分线交于点O,将△ABC分为三个三角形,则S△ABO:S△BCO:S△CAO等于()A.1:1:1B.1:2:3C.3:4:5D.2:3:49.如图,在△ABC中,∠ACB=90°,AD平分∠BAC交BC于点D,若BC=10,点D到AB的距离为4,则DB的长为()A.6B.8C.5D.410.如图,AB∥CD,∠CAB和∠ACD的平分线相交于H点,E为AC的中点,若EH=4.则AC=()A.8B.7C.6D.911.到三角形的三条边距离相等的点()A.是三条角平分线的交点B.是三条中线的交点C.是三条高的交点D.以上答案都不对12.如图,点P是∠AOB内的一点,PC⊥OA于点C,PD⊥OB于点D,连接OP,CD.若PC=PD,则下列结论不一定成立的是()A.∠AOP=∠BOP B.∠OPC=∠OPDC.PO垂直平分CD D.PD=CD13.如图,在△ABC中,∠A=90°,AB=3,AC=4,∠ABC与∠ACB的平分线交于点O,过点O作OD⊥AB于点D,则AD的长为14.如图,AB∥CD,BP和CP分别平分∠ABC和∠BCD,AD过点P,且与AB垂直,若AD=8,则点P到BC的距离是15.如图,Rt△ABC中,∠C=90°,AC=BC=6,AD为∠BAC的平分线,DE⊥AB垂足为E,则△DBE 的周长等于16.如图,△ABC的面积为9cm2,BP平分∠ABC,AP⊥BP于P,连接PC,则△PBC的面积为()A.3cm2B.4cm2C.4.5cm2D.5cm217.如图1-3-1,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连结AD.下列结论不正确的是()A.∠BAC=70°B.∠DOC=90°C.∠BDC=35°D.∠DAC=55°18.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点G,过点G作EF∥BC交AB于E,交AC 于F,过点G作GD⊥AC于D,下列四个结论:①EF=BE+CF;②∠BGC=90°﹣∠A;③点G图1-3-1到△ABC各边的距离相等;④设GD=m,AE+AF=n,则,其中正确的结论有(填序号).19.如图,在△ABC中,AC=BC,∠C=90°,AD是△ABC的角平分线,已知CD=4.则AC的长为.20.如图,已知△ABC,∠BAC=80°,∠ABC=40°,若BE平分∠ABC,CE平分外角∠ACD,连接AE,则∠AEB的度数为.21.如图,已知∠ABC、∠EAC的角平分线BP、AP相交于点P,PM⊥BE,PN⊥BF,垂足分别为M、N.现有四个结论:①CP平分∠ACF;②∠BPC=∠BAC;③∠APC=90°﹣∠ABC;④S△APM+S△CPN>S△APC.其中结论正确的为.(填写结论的编号)22.已知,如图1-3-5所示,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.图1-3-523.如图,已知∠ABC、∠ACB的平分线相交于点O,EF过点O且EF∥BC.(1)若∠ABC=50°,∠ACB=60°,求∠BOC的度数;(2)若∠BOC=130°,∠1:∠2=3:2,求∠ABC、∠ACB的度数.24.如图1-3-13,已知∠AOB=90°,OM是∠AOB的平分线,将三角形的直角顶点P在射线OM上滑动,两直角边分别与OA,OB交于C,D.(1)PC和PD的数量关系是_ __;(2)请你证明(1)得出的结论.图1-3-1325.如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,BD=4,∠B=30°,S△ACD=7,求AC 的长.26.在△ABC中,AD是角平分线,∠B<∠C,(1)如图(1),AE是高,∠B=50°,∠C=70°,求∠DAE的度数;(2)如图(2),点E在AD上.EF⊥BC于F,试探究∠DEF与∠B、∠C的大小关系,并证明你的结论;(3)如图(3),点E在AD的延长线上.EF⊥BC于F,试探究∠DEF与∠B、∠C的关系是(直接写出结论,不需证明).。

初中数学经典几何模型04-角平分线模型在三角形中的应用(含答案)

初中数学经典几何模型04-角平分线模型在三角形中的应用(含答案)

初中数学经典几何模型专题04 角平分线模型在三角形中的应用在初中几何证明中,常会遇到与角平分线有关的问题。

不少同学遇到这类问题时,不清楚应该怎样去作辅助线。

实际上这类问题是有章可循的,其策略是:明确辅助线作用,记清相应模型辅助线作法,理解作辅助线以后的目的。

能做到这三点,就能在解题时得心应手。

【知识总结】【模型】一、角平分线垂两边 角平分线+外垂直当已知条件中出现OP 为OAB ∠的角平分线、PM OA ⊥于点M 时,辅助线的作法大都为过点P 作PN OB ⊥即可.即有PM PN =、OMP ∆≌ONP ∆等,利用相关结论解决问题.【模型】二、角平分线垂中间 角平分线+内垂直当已知条件中出现OP 为AOB ∠的角平分线,PM OP ⊥于点P 时,辅助线的作法大都为延长MP 交OB 于点N 即可.即有OMN ∆是等腰三角形、OP 是三线等,利用相关结论解决问题.【模型】三、角平分线构造轴对称 角平分线+截线段等当已知条件中出现OP 为AOB ∠的角平分线、PM 不具备特殊位置时,辅助线的作法大都为在OB 上截取ON OM =,连结PN 即可.即有OMP ∆≌ONP ∆,利用相关结论解决问题.【模型】四、角平分线加平行线等腰现 角平分线+平行线当已知条件中出现OP 为AOB ∠的角平分线,点P 角平分线上任一点时,辅助线的作法大都为过点P 作PM //OB 或PM //OA 即可.即有OMP ∆是等腰三角形,利用相关结论解决问题.1、如图, ABN CBN ∠=∠, P 为BN 上的一点,并且PD BC ⊥于点D ,2AB BC BD +=,求证:180BAP BCP ∠+∠=︒.2、如图,在ABC ∆中,CD 是ACB ∠的平分线,AD CD ⊥于点D ,DE //BC 交AB 于点E ,求证:EA EB =.3、已知:如图7,2,,AB AC BAD CAD DA DB =∠=∠=,求证:DC AC ⊥.4、如图,AB //CD ,AE 、DE 分别平分BAD ∠和ADC ∠.探究:在线段AD 上是否存在点M ,使得2AD EM =.【基础训练】1、如图所示,在四边形ABCD中,DC//AB,∠DAB=90°,AC⊥BC,AC=BC,∠ABC的平分线交AD,AC于点E、F,则BFEF的值是___________.2、如图,D是△ABC的BC边的中点,AE平分∠BAC,AE⊥CE于点E,且AB =10,AC =16,则DE的长度为______3、如图所示,在△ABC中,BC=6,E、F分别是AB、AC的中点,动点P在射线EF上,BP交CE于D,∠CBP的平分线交CE于Q,当CQ =13CE时,EP+BP =________.【巩固提升】1、如图,F,G是OA上两点,M,N是OB上两点,且FG =MN,S△PFG=S△PMN,试问点P是否在∠AOB 的平分线上?2、已知:在△ABC中,∠B的平分线和外角∠ACE的平分线相交于D,DG//BC,交AC于F,交AB于G,求证:GF =BG CF.3、在四边形ABCD中,∠ABC是钝角,∠ABC+∠ADC =180°,对角线AC平分∠BAD.(1)求证:BC =CD;(2)若AB +AD =AC,求∠BCD的度数;4、如图,在△ABC中,D、E、F分别为三边的中点,G点在边AB上,△BDG与四边形ACDG的周长相等,设BC =a、AC =b、AB =c.(1)求线段BG的长(2)求证:DG平分∠EDF.5、如图,BA⊥MN,垂足为A,BA=4,点P是射线AN上的一个动点(点P与点A不重合),∠B PC=∠BP A,BC⊥BP,过点C作CD⊥MN,垂足为D,设AP=x.CD的长度是否随着x的变化而变化?若变化,请用含x的代数式表示CD的长度;若不变化,请求出线段CD的长度.6、已知:平面直角坐标系中,四边形OABC的顶点分别为0(0,0)、A(5,0)、B(m,2)、C(m-5,2).(1)问:是否存在这样的m,使得在边BC上总存在点P,使∠OP A=90°?若存在,求出m的取值范围;若不存在,请说明理由.(2)当∠AOC与∠OAB的平分线的交点Q在边BC上时,求m的值.7、我们把由不平行于底边的直线截等腰三角形的两腰所得的四边形称为“准等腰梯形”。

中考复习微专题 与角平分线有关的四种方法

中考复习微专题 与角平分线有关的四种方法
2021 江西
数学
微专题 与角平分线有关的四种方法
微专题 与角平分线有关的四种方法
微专题 与角平分线有关的四种方法
方法一 过角平分线上的点向角两边作垂线
方法解读
(2019.22(2)②,2015.9,2011.13)
如图,点 P 是∠MON 的平分线上一点,PA⊥OM 于点 A.
结论:PB=___P_A____,Rt△ BOP≌_R__t△__A__O_P__.
第1题图
微专题 与角平分线有关的四种方法
(2)若∠BDE=40°,求∠BAC 的度数. 解:∵△BDE≌△CDF,∠BDE=40°,∠BED=90°, ∴∠B=∠C=90°-50°=40°, ∴∠A=180°-∠B-∠C=80°.
第1题图
微专题 与角平分线有关的四种方法
2. 如图,在菱形 ABCD 中,点 E,F 分别为 BC,AB 上一点,连接 AE,CF 交于点 G,
第7题解图
微专题 与角平分线有关的四种方法
综合训练
1. (2020 衡阳)如图,在△ ABC 中,∠B=∠C,过 BC 的中点 D 作 DE⊥AB,DF⊥AC,
垂足分别为点 E、F. (1)求证:DE=DF; 证明:∵DE⊥AB,DF⊥AC, ∴∠BED=∠CFD=90°, ∵点 D 是 BC 的中点, ∴BD=DC, ∵∠B=∠C, ∴△BDE≌△CDF(AAS), ∴DE=DF;
方法应用
5. 如图,在△ ABC 中,AD 平分∠CAB,BD⊥AD.已知 S△ ADC=14,S△ ABD=10,求 S△ ABC
的值. 解:如解图,延长 BD 交 AC 于点 E,
∵AD 平分∠CAB,
∴∠EAD=∠BAD.
又∵AD=AD,∠EDA=∠BDA=90°, ∴△ABD≌△AED(ASA).

专题训练(五) 角平分线的六种运用

专题训练(五) 角平分线的六种运用

专题训练(五) 角平分线的六种运用► 运用一 确定点的坐标和线段的长1.如图5-ZT -1所示,在平面直角坐标系中,AD 是Rt △OAB 的角平分线,点D 到AB 的距离DE =3,则点D 的坐标是________.图5-ZT -12.如图5-ZT -2,在四边形ABCD 中,∠A =90°,AD =4,连接BD ,BD ⊥CD ,∠ADB =∠C.若P 是BC 边上一动点,则DP 长的最小值为________.图5-ZT -2► 运用二 确定三角形的面积3.如图5-ZT -3,在△ABC 中,∠A =90°,BD 是角平分线.若AB =8,BC =10,S △ABD=323,求△BDC 的面积.图5-ZT -34.如图5-ZT-4,D,E,F分别是△ABC三边上的点,AD平分∠BAC,CE=BF.若S△DCE =4,求S△DBF.图5-ZT-45.如图5-ZT-5,现有一块三角形的空地,其三条边长分别是20 m,30 m,40 m.现要把它分成面积比为2∶3∶4的三部分,分别种植不同种类的花,请你设计一种方案,并简单说明理由.(要求:尺规作图,保留作图痕迹,不写作法)图5-ZT-5►运用三确定三角形的周长6.如图5-ZT-6,在△ABC中,∠B=90°,AB=BC,AD平分∠BAC,DE⊥AC,AC=20,求△CED的周长.图5-ZT-6►运用四证明两条线段相等7.如图5-ZT-7,BD是∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD,PN⊥CD,M,N分别是垂足.求证:PM=PN.图5-ZT-78.我们把两组邻边相等的四边形叫做“筝形”.如图5-ZT-8,四边形ABCD是一个筝形,其中AB=CB,AD=CD.对角线AC,BD相交于点O,OE⊥AB,OF⊥CB,垂足分别是E,F.求证:OE=OF.图5-ZT-8►运用五角平分线的性质和判定的综合9.如图5-ZT-9所示,△ABC的外角∠CBD,∠BCE的平分线相交于点F,则下列结论一定成立的是( )A.AF平分BC B.AF⊥BCC.AF平分∠BAC D.FA平分∠BFC图5-ZT-910.如图5-ZT-10所示,已知∠B=∠C=90°,M是BC的中点,DM平分∠ADC.求证:(1)AM平分∠DAB;(2)AD=AB+CD.图5-ZT-1011.已知:如图5-ZT-11,在四边形ABCD中,AB=AD,CB=CD,BO平分∠ABC交AC 于点O.求证:DO平分∠ADC.图5-ZT-11►运用六角平分线在实际生活中的应用12.如图5-ZT-12所示,O为码头,A,B两个灯塔与码头O的距离相等,OA,OB为海岸线.一轮船P离开码头O,计划沿∠AOB的平分线航行.(1)用尺规作出轮船的预定航线OC;(2)在航行途中,轮船P始终保持与灯塔A,B的距离相等,则轮船航行时是否偏离了预定航线?请说明理由.图5-ZT-12详解详析1.[答案] (3,0)[解析] 欲求点D 的坐标,先求线段OD 的长.因为AD 是Rt △OAB 的角平分线,DE ⊥AB ,OD ⊥OA ,所以DE =OD =3,所以点D 的坐标是(3,0). 2.[答案] 4[解析] 由垂线段最短可知,当DP ⊥BC 时,DP 的长最小. ∵∠A =∠BDC =90°,∠ADB =∠C , ∴∠DBA =∠DBC ,∴BD 平分∠ABC . ∵DA ⊥AB ,DP ⊥BC ,∴DP =DA =4.3.[解析] 由已知BC =10,欲求△BDC 的面积,需求出BC 边上的高,从而考虑过点D 作DE ⊥BC ,由角平分线的性质可知DE =AD ,从而问题转化为求AD 的长.解:如图,过点D 作DE ⊥BC ,垂足为E .因为AB =8,S △ABD =323,所以12AB ·AD =323,所以AD =83.因为BD 是角平分线,DA ⊥AB ,DE ⊥BC , 所以DE =AD =83,所以S △BDC =12BC ·DE =12×10×83=403.4.[解析] 猜想△DCE 和△DBF 的面积相等,由已知CE =BF ,故只需说明两个三角形中以CE ,BF 为底边上的高相等.解:如图,过点D 作DH ⊥AB 于点H ,DG ⊥AC 于点G .因为点D 在∠BAC 的平分线上, 所以DG =DH . 又因为CE =BF , 所以12CE ·DG =12BF ·DH ,所以S △DBF =S △DCE =4.5.解:分别作∠ACB 和∠ABC 的平分线,相交于点P .连接PA ,则△PAB ,△PAC ,△PBC 的面积之比为2∶3∶4(如图所示).理由如下:∵P 是∠ABC 和∠ACB 的平分线的交点,如图,过点P 分别作PE ⊥AB 于点E ,PF ⊥AC 于点F ,PH ⊥BC 于点H ,则PE =PF =PH , ∴S △PAB =12AB ·PE =10PE ,S △PAC =12PF ·AC =15PF ,S △PBC =12PH ·BC =20PH ,∴S △PAB ∶S △PAC ∶S △PBC =10∶15∶20=2∶3∶4.6.[解析] △CED 的周长为CE +DE +CD ,而题中仅给出AC =20,于是猜想CE +DE +CD =AC ,可通过角平分线的性质及全等三角形的性质进行线段间的转化,进而验证猜想.解:因为AD 平分∠BAC ,DE ⊥AC ,DB ⊥AB ,所以DE =DB .又AD =AD ,所以Rt △ADE ≌Rt △ADB ,所以AE =AB ,所以△CED 的周长为CE +DE +CD =CE +DB +CD =CE +(DB +CD )=CE +BC =CE +AB =CE +AE =AC =20.7.[解析] 结合已知条件PM ⊥AD ,PN ⊥CD ,欲证明PM =PN ,只需证明DP 平分∠ADC .问题可转化为证明∠ADB =∠CDB ,从而需证明△ADB ≌△CDB .证明:因为BD 是∠ABC 的平分线,所以∠ABD =∠CBD . 又AB =CB ,BD =BD , 所以△ADB ≌△CDB , 所以∠ADB =∠CDB , 所以∠ADP =∠CDP .又因为PM ⊥AD ,PN ⊥CD ,所以PM =PN .8.证明:在△ABD 和△CBD 中,⎩⎪⎨⎪⎧AB =CB ,AD =CD ,BD =BD ,∴△ABD ≌△CBD (SSS), ∴∠ABD =∠CBD , ∴BD 平分∠ABC .又∵OE ⊥AB ,OF ⊥CB ,∴OE =OF . 9.C10.[解析] 作ME ⊥AD ,证明△DEM ≌△DCM ,Rt △AEM ≌Rt △ABM . 证明:(1)过点M 作ME ⊥AD 于点E .∵DM 平分∠ADC ,∠C =90°,∴MC =ME . ∵M 是BC 的中点,∴MC =MB =ME . 又∵ME ⊥AD ,MB ⊥AB ,∴∠EAM =∠BAM ,即AM 平分∠DAB . (2)在Rt △DEM 和Rt △DCM 中,⎩⎪⎨⎪⎧ME =MC ,DM =DM , ∴Rt △DEM ≌Rt △DCM ,∴DE =DC .在Rt △AEM 和Rt △ABM 中,⎩⎪⎨⎪⎧ME =MB ,AM =AM ,∴Rt △AEM ≌Rt △ABM .∵AE =AB ,∴AD =AE +DE =AB +CD .[点评] 作出点M 到角两边的垂线段,利用垂线段相等是解决这个问题的关键,因此当遇到角平分线的问题时,如果不能打开思路,不妨过角平分线上的点作出到角两边的垂线段.11.证明:如图,过点O 作AB ,BC ,CD ,DA 的垂线,垂足分别为E ,F ,G ,H .∵AB =AD ,CB =CD ,AC =AC ,∴△ACB ≌△ACD (SSS), ∴∠BAC =∠DAC ,∠BCA = ∠DCA ,即AC 平分∠BAD ,CA 平分∠BCD . 由角平分线的性质可知OE =OH ,OF =OG . ∵BO 平分∠ABC , ∴OE =OF , ∴OG =OH , ∴DO 平分∠ADC . 12.解:(1)如图...(2)轮船航行时没有偏离预定航线.理由:在△AOP和△BOP中,⎩⎪⎨⎪⎧PA=PB,OA=OB,OP=OP,∴△AOP≌△BOP(SSS),∴∠AOP=∠BOP,即点P在∠AOB的平分线上.故轮船航行时没有偏离预定航线.。

中考数学专题训练(附详细解析):角平分线

中考数学专题训练(附详细解析):角平分线

中考数学专题训练(附详细解析)角平分线1、(专题•雅安)如图,AB∥CD,AD平分∠BAC,且∠C=80°,则∠D的度数为()2、(专题•遂宁)如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是()①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.3、(专题•咸宁)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为()4、(专题•曲靖)如图,直线AB 、CD 相交于点O ,若∠BOD=40°,OA 平分∠COE ,则∠AOE= 40° .5、(专题成都市)如图,B 30∠=,若AB ∥CD ,CB 平分ACD ∠,则ACD=∠______度.答案:60°解析:∠ACD=2∠BCD=2∠ABC=60°6、(专题安徽省14分、23 )我们把由不平行于底边的直线截等腰三角形的两腰所得的四边形称为“准等腰梯形”。

如图1,四边形ABCD 即为“准等腰梯形”。

其中∠B=∠C 。

(1)在图1所示的“准等腰梯形”ABCD 中,选择合适的一个顶点引一条直线将四边形ABCD 分割成一个等腰梯形和一个三角形或分割成一个等腰三角形和一个梯形(画出一种示意图即可)。

(2)如图2,在“准等腰梯形”ABCD 中,∠B=∠C ,E 为边BC 上一点,若AB ∥DE ,AE ∥DC ,求证:ECBE DC AB(3)在由不平行于BC 的直线截ΔPBC 所得的四边形ABCD 中,∠BAD与∠ADC 的平分线交于点E ,若EB=EC ,请问当点E 在四边形ABCD内部时(即图3所示情形),四边形ABCD 是不是“准等腰梯形”,为什么?若点E 不在四边形ABCD 内部时,情况又将如何?写出你的结论(不必说明理由)7、(专题•湘西州)如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.==10ADB=AB DE=8、(专题•温州)如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.。

八年级上册数学专题训练《角平分线》

八年级上册数学专题训练《角平分线》

角平分线1.角平分线的性质定理:角平分线上的点到这个角的两边的距离相等。

定理的数学表示:如图,已知OE是∠AOB的平分线,F是OE上一点,若CF⊥OA于点C,DF⊥OB于点D,则CF =DF.判定定理:到角两边距离相等的点在这个角的角平分线上.角平分线除了简单的平分角以外,结合其它的条件,一般可产生以下三种常见模型!模型讲解:模型1-BD平分∠ABC,且DC⊥BC 模型2一BD平分∠ABC,且CD⊥BD理由:角平分线的性质理由:等腰三角形三线合一结论:△DCB≌△DFB 结论:△BDC≌△BDE 模型3-BD平分∠ABC,AD//BC理由:平行线的性质结论:△ABD为等腰三角形【专项练习】1、如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合,过角尺顶点C的射线OC便是∠AOB的平分线OC,做法用得到三角形全等的判定定方法是()A.SASB.SSSC.ASAD.HL(第1题)(第3题)2、三角形中到三边距离相等的点是()A、三条边的垂直平分线的交点B、三条高的交点C、三条中线的交点D、三条角平分线的交点3、如图,△ABC的周长为26,点D,E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直于AD,垂足为P,若BC =10,则DE的长为()A.3B.5C.6D.84、如图,在△ABC中,∠C=90°,AC=BC,AD平分∠BAC交BC于点D,DE⊥AB于点E,若△BDE的周长是5cm,则AB的长为 .(第4题)(第5题)(第6题)5、如图,已知OB、OC为△ABC的角平分线,DE∥BC交AB、AC于D、E,△ADE的周长为15,BC长为7,则△ABC的周长为 .6、如图,已知∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,垂足分别为E、F,AB =6,AC =3,则BE = .7、如图,F,G是OA上两点,M,N是OB上两点,且FG=MN,S△PFG=S△PMN,试问点P 是否在∠AOB的平分线上?8、已知:在△ABC中,∠B的平分线和外角∠ACE的平分线相交于D,DG//BC,交AC于F,交AB于G,求证:GF =BG-CF.9、在四边形ABCD中,∠ABC是钝角,∠ABC+∠ADC=180°,对角线AC平分∠BAD.(1)求证:BC =CD;(2)若AB +AD =AC,求∠BCD的度数;10、如图,在△ABC中,D、E、F分别为三边的中点,G点在边AB上,△BDG与四边形ACDG的周长相等,设BC =a、AC =b、AB =c.(1)求线段BG的长;(2)求证:DG平分∠EDF.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档