2020年四川省泸州市中考数学试题及答案
2020年四川省泸州市中考数学试卷及答案
2020年四川省泸州市中考数学试卷一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的). 1.(3分)2的倒数是( ) A .12B .−12C .2D .﹣22.(3分)将867000用科学记数法表示为( ) A .867×103B .8.67×104C .8.67×105D .8.67×1063.(3分)如图所示的几何体的主视图是( )A .B .C .D .4.(3分)在平面直角坐标系中,将点A (﹣2,3)向右平移4个单位长度,得到的对应点A '的坐标为( ) A .(2,7)B .(﹣6,3)C .(2,3)D .(﹣2,﹣1)5.(3分)下列正多边形中,不是中心对称图形的是( )A .B .C .D .6.(3分)下列各式运算正确的是( ) A .x 2+x 3=x 5B .x 3﹣x 2=xC .x 2•x 3=x 6D .(x 3)2=x 67.(3分)如图,⊙O 中,AB̂=AC ̂,∠ABC =70°.则∠BOC 的度数为( )A .100°B .90°C .80°D .70°8.(3分)某语文教师调查了本班10名学生平均每天的课外阅读时间,统计结果如下表所示:课外阅读时间(小时) 0.511.52人数2341那么这10名学生平均每天的课外阅读时间的平均数和众数分别是( ) A .1.2和1.5B .1.2和4C .1.25和1.5D .1.25 和49.(3分)下列命题是假命题的是( ) A .平行四边形的对角线互相平分B .矩形的对角线互相垂直C .菱形的对角线互相垂直平分D .正方形的对角线互相垂直平分且相等 10.(3分)已知关于x 的分式方程m x−1+2=−31−x的解为非负数,则正整数m 的所有个数为( ) A .3B .4C .5D .611.(3分)古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点G 将一线段MN 分为两线段MG ,GN ,使得其中较长的一段MG 是全长MN 与较短的一段GN 的比例中项,即满足MG MN=GN MG=√5−12,后人把√5−12这个数称为“黄金分割”数,把点G 称为线段MN 的“黄金分割”点.如图,在△ABC 中,已知AB =AC =3,BC =4,若D ,E 是边BC 的两个“黄金分割”点,则△ADE 的面积为( )A .10﹣4√5B .3√5−5C .5−2√52D .20﹣8√512.(3分)已知二次函数y =x 2﹣2bx +2b 2﹣4c (其中x 是自变量)的图象经过不同两点A (1﹣b ,m ),B (2b +c ,m ),且该二次函数的图象与x 轴有公共点,则b +c 的值为( ) A .﹣1B .2C .3D .4二、填空题(本大题共4个小题,每小题3分,共12分).13.(3分)函数y =√x −2的自变量x 的取值范围是 . 14.(3分)若x a +1y 3与12x 4y 3是同类项,则a 的值是 .15.(3分)已知x 1,x 2是一元二次方程x 2﹣4x ﹣7=0的两个实数根,则x 12+4x 1x 2+x 22的值是 .16.(3分)如图,在矩形ABCD 中,E ,F 分别为边AB ,AD 的中点,BF 与EC 、ED 分别交于点M ,N .已知AB =4,BC =6,则MN 的长为 .三、本大题共3个小题,每小题6分,共18分.17.(6分)计算:|﹣5|﹣(π﹣2020)0+2cos60°+(13)﹣1.18.(6分)如图,AC 平分∠BAD ,AB =AD .求证:BC =DC .19.(6分)化简:(x+2x+1)÷x 2−1x. 四、本大题共2个小题,每小题7分,共14分.20.(7分)某汽车公司为了解某型号汽车在同一条件下的耗油情况,随机抽取了n 辆该型号汽车耗油1L 所行使的路程作为样本,并绘制了如图不完整的频数分布直方图和扇形统计图.根据题中已有信息,解答下列问题:(1)求n 的值,并补全频数分布直方图;(2)若该汽车公司有600辆该型号汽车.试估计耗油1L所行使的路程低于13km的该型号汽车的辆数;(3)从被抽取的耗油1L所行使路程在12≤x<12.5,14≤x<14.5这两个范围内的4辆汽车中,任意抽取2辆,求抽取的2辆汽车来自同一范围的概率.21.(7分)某校举办“创建全国文明城市”知识竞赛,计划购买甲、乙两种奖品共30件.其中甲种奖品每件30元,乙种奖品每件20元.(1)如果购买甲、乙两种奖品共花费800元,那么这两种奖品分别购买了多少件?(2)若购买乙种奖品的件数不超过甲种奖品件数的3倍.如何购买甲、乙两种奖品,使得总花费最少?五、本大题共2个小题,每小题8分,共16分.22.(8分)如图,在平面直角坐标系xOy中,已知一次函数y=32x+b的图象与反比例函数y=12x的图象相交于A,B两点,且点A的坐标为(a,6).(1)求该一次函数的解析式;(2)求△AOB的面积.23.(8分)如图,为了测量某条河的对岸边C,D两点间的距离.在河的岸边与CD平行的直线EF上取两点A,B,测得∠BAC=45°,∠ABC=37°,∠DBF=60°,量得AB长为70米.求C,D两点间的距离(参考数据:sin37°≈35,cos37°≈45,tan37°≈34).六、本大题共2个小题,每小题12分,共24分.24.(12分)如图,AB是⊙O的直径,点D在⊙O上,AD的延长线与过点B的切线交于点C,E为线段AD上的点,过点E的弦FG⊥AB于点H.(1)求证:∠C=∠AGD;(2)已知BC=6.CD=4,且CE=2AE,求EF的长.25.(12分)如图,已知抛物线y=ax2+bx+c经过A(﹣2,0),B(4,0),C(0,4)三点.(1)求该抛物线的解析式;(2)经过点B的直线交y轴于点D,交线段AC于点E,若BD=5DE.①求直线BD的解析式;②已知点Q在该抛物线的对称轴l上,且纵坐标为1,点P是该抛物线上位于第一象限的动点,且在l右侧,点R是直线BD上的动点,若△PQR是以点Q为直角顶点的等腰直角三角形,求点P的坐标.2020年四川省泸州市中考数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的). 1.(3分)2的倒数是( ) A .12B .−12C .2D .﹣2【解答】解:2的倒数是12. 故选:A .2.(3分)将867000用科学记数法表示为( ) A .867×103B .8.67×104C .8.67×105D .8.67×106【解答】解:867000=8.67×105, 故选:C .3.(3分)如图所示的几何体的主视图是( )A .B .C .D .【解答】解:从正面看是一个矩形,矩形的中间有一条纵向的实线. 故选:B .4.(3分)在平面直角坐标系中,将点A (﹣2,3)向右平移4个单位长度,得到的对应点A '的坐标为( ) A .(2,7)B .(﹣6,3)C .(2,3)D .(﹣2,﹣1)【解答】解:∵将点A (﹣2,3)先向右平移4个单位, ∴点A 的对应点A ′的坐标是(﹣2+4,3),即(2,3). 故选:C .5.(3分)下列正多边形中,不是中心对称图形的是( )A.B.C.D.【解答】解:A.正方形是中心对称图形,故本选项不合题意;B.正五边形不是中心对称图形,故本选项符合题意;C.正六边形是中心对称图形,故本选项不合题意;D.正八边形是中心对称图形,故本选项不合题意;故选:B.6.(3分)下列各式运算正确的是()A.x2+x3=x5B.x3﹣x2=x C.x2•x3=x6D.(x3)2=x6【解答】解:A.x2与x3不是同类项,所以不能合并,故本选项不合题意;B.x3与﹣x2不是同类项,所以不能合并,故本选项不合题意;C.x2•x3=x5,故本选项不合题意;D.(x3)2=x6,故本选项符合题意.故选:D.7.(3分)如图,⊙O中,AB̂=AĈ,∠ABC=70°.则∠BOC的度数为()A.100°B.90°C.80°D.70°【解答】解:∵AB̂=AĈ,∴∠ABC=∠ACB=70°,∴∠A=180°﹣70°﹣70°=40°,∴∠BOC=2∠A=80°.故选:C.8.(3分)某语文教师调查了本班10名学生平均每天的课外阅读时间,统计结果如下表所示:课外阅读时间(小时)0.51 1.52人数 2 3 4 1那么这10名学生平均每天的课外阅读时间的平均数和众数分别是( ) A .1.2和1.5B .1.2和4C .1.25和1.5D .1.25 和4【解答】解:10名学生的每天阅读时间的平均数为0.5×2+1×3+1.4×4+2×12+3+4+1=1.2;学生平均每天阅读时间出现次数最多的是1.5小时,共出现4次,因此众数是1.5; 故选:A .9.(3分)下列命题是假命题的是( ) A .平行四边形的对角线互相平分B .矩形的对角线互相垂直C .菱形的对角线互相垂直平分D .正方形的对角线互相垂直平分且相等【解答】解:A 、平行四边形的对角线互相平分,是真命题; B 、矩形的对角线互相相等,不是垂直,原命题是假命题; C 、菱形的对角线互相垂直平分,是真命题;D 、正方形的对角线互相垂直平分且相等,是真命题; 故选:B .10.(3分)已知关于x 的分式方程m x−1+2=−31−x 的解为非负数,则正整数m 的所有个数为( ) A .3B .4C .5D .6【解答】解:去分母,得:m +2(x ﹣1)=3, 移项、合并,得:x =5−m2, ∵分式方程的解为非负数, ∴5﹣m ≥0且5−m 2≠1,解得:m ≤5且m ≠3,∴正整数解有1,2,4,5共4个, 故选:B .11.(3分)古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点G 将一线段MN 分为两线段MG ,GN ,使得其中较长的一段MG 是全长MN 与较短的一段GN 的比例中项,即满足MGMN=GN MG=√5−12,后人把√5−12这个数称为“黄金分割”数,把点G 称为线段MN 的“黄金分割”点.如图,在△ABC 中,已知AB =AC =3,BC =4,若D ,E 是边BC 的两个“黄金分割”点,则△ADE 的面积为( )A .10﹣4√5B .3√5−5C .5−2√52D .20﹣8√5【解答】解:作AH ⊥BC 于H ,如图, ∵AB =AC ,∴BH =CH =12BC =2,在Rt △ABH 中,AH =√32−22=√5, ∵D ,E 是边BC 的两个“黄金分割”点, ∴BE =√5−12BC =2(√5−1)=2√5−2,∴HE =BE ﹣BH =2√5−2﹣2=2√5−4, ∴DE =2HE =4√5−8∴S △ADE =12×(4√5−8)×√5=10﹣4√5. 故选:A .12.(3分)已知二次函数y =x 2﹣2bx +2b 2﹣4c (其中x 是自变量)的图象经过不同两点A (1﹣b ,m ),B (2b +c ,m ),且该二次函数的图象与x 轴有公共点,则b +c 的值为( ) A .﹣1B .2C .3D .4【解答】解:由二次函数y =x 2﹣2bx +2b 2﹣4c 的图象与x 轴有公共点, ∴(﹣2b )2﹣4×1×(2b 2﹣4c )≥0,即b 2﹣4c ≤0 ①,由抛物线的对称轴x =−−2b2=b ,抛物线经过不同两点A (1﹣b ,m ),B (2b +c ,m ), b =1−b+2b+c2,即,c =b ﹣1 ②,②代入①得,b 2﹣4(b ﹣1)≤0,即(b ﹣2)2≤0,因此b =2, c =b ﹣1=2﹣1=1, ∴b +c =2+1=3, 故选:C .二、填空题(本大题共4个小题,每小题3分,共12分). 13.(3分)函数y =√x −2的自变量x 的取值范围是 x ≥2 . 【解答】解:根据题意得,x ﹣2≥0, 解得x ≥2. 故答案为:x ≥2.14.(3分)若x a +1y 3与12x 4y 3是同类项,则a 的值是 3 .【解答】解:∵x a +1y 3与12x 4y 3是同类项,∴a +1=4, 解得a =3, 故答案为:3.15.(3分)已知x 1,x 2是一元二次方程x 2﹣4x ﹣7=0的两个实数根,则x 12+4x 1x 2+x 22的值是 2 .【解答】解:根据题意得则x 1+x 2=4,x 1x 2=﹣7 所以,x 12+4x 1x 2+x 22=(x 1+x 2)2+2x 1x 2=16﹣14=2 故答案为2.16.(3分)如图,在矩形ABCD 中,E ,F 分别为边AB ,AD 的中点,BF 与EC 、ED 分别交于点M ,N .已知AB =4,BC =6,则MN 的长为43.【解答】解:延长CE 、DA 交于Q ,如图1,∵四边形ABCD 是矩形,BC =6, ∴∠BAD =90°,AD =BC =6,AD ∥BC , ∵F 为AD 中点, ∴AF =DF =3,在Rt △BAF 中,由勾股定理得:BF =√AB 2+AF 2=√42+32=5, ∵AD ∥BC , ∴∠Q =∠ECB ,∵E 为AB 的中点,AB =4, ∴AE =BE =2, 在△QAE 和△CBE 中 {∠QEA =∠BEC∠Q =∠ECB AE =BE∴△QAE ≌△CBE (AAS ), ∴AQ =BC =6, 即QF =6+3=9, ∵AD ∥BC , ∴△QMF ∽△CMB , ∴FM BM=QF BC=96,∵BF =5,∴BM =2,FM =3,延长BF 和CD ,交于W ,如图2,同理AB =DM =4,CW =8,BF =FM =5, ∵AB ∥CD , ∴△BNE ∽△WND , ∴BN NF=BE DW,∴BN 5−BN+5=24,解得:BN =103, ∴MN =BN ﹣BM =103−2=43, 故答案为:43.三、本大题共3个小题,每小题6分,共18分.17.(6分)计算:|﹣5|﹣(π﹣2020)0+2cos60°+(13)﹣1.【解答】解:原式=5﹣1+2×12+3 =5﹣1+1+3 =8.18.(6分)如图,AC 平分∠BAD ,AB =AD .求证:BC =DC .【解答】证明:∵AC 平分∠BAD ,∴∠BAC =∠DAC , 又∵AB =AD ,AC =AC , ∴△ABC ≌△ADC (SAS ), ∴BC =CD . 19.(6分)化简:(x+2x+1)÷x 2−1x. 【解答】解:原式=2x+2x ×x (x+1)(x−1)=2(x+1)x ×x (x+1)(x−1)=2x−1. 四、本大题共2个小题,每小题7分,共14分.20.(7分)某汽车公司为了解某型号汽车在同一条件下的耗油情况,随机抽取了n 辆该型号汽车耗油1L 所行使的路程作为样本,并绘制了如图不完整的频数分布直方图和扇形统计图.根据题中已有信息,解答下列问题:(1)求n 的值,并补全频数分布直方图;(2)若该汽车公司有600辆该型号汽车.试估计耗油1L 所行使的路程低于13km 的该型号汽车的辆数;(3)从被抽取的耗油1L 所行使路程在12≤x <12.5,14≤x <14.5这两个范围内的4辆汽车中,任意抽取2辆,求抽取的2辆汽车来自同一范围的概率. 【解答】解:(1)12÷30%=40,即n =40, B 组的车辆为:40﹣2﹣16﹣12﹣2=8(辆), 补全频数分布直方图如图:(2)600×2+840=150(辆),即估计耗油1L所行使的路程低于13km的该型号汽车的辆数为150辆;(3)设行使路程在12≤x<12.5范围内的2辆车记为为A、B,行使路程在14≤x<14.5范围内的2辆车记为C、D,画树状图如图:共有12个等可能的结果,抽取的2辆汽车来自同一范围的结果有4个,∴抽取的2辆汽车来自同一范围的概率为412=1 3.21.(7分)某校举办“创建全国文明城市”知识竞赛,计划购买甲、乙两种奖品共30件.其中甲种奖品每件30元,乙种奖品每件20元.(1)如果购买甲、乙两种奖品共花费800元,那么这两种奖品分别购买了多少件?(2)若购买乙种奖品的件数不超过甲种奖品件数的3倍.如何购买甲、乙两种奖品,使得总花费最少?【解答】解:(1)设甲种奖品购买了x件,乙种奖品购买了(30﹣x)件,根据题意得30x+20(30﹣x)=800,解得x=20,则30﹣x=10,答:甲种奖品购买了20件,乙种奖品购买了10件;(2)设甲种奖品购买了x件,乙种奖品购买了(30﹣x)件,设购买两种奖品的总费用为w元,根据题意得30﹣x≤3x,解得x≥7.5,w=30x+20(30﹣x)=10x+600,∵10>0,∴w随x的增大而减小,∴x=8时,w有最小值为:w=10×8+600=680.答:当购买甲种奖品8件、乙种奖品22件时,总花费最小,最小费用为680元.五、本大题共2个小题,每小题8分,共16分.22.(8分)如图,在平面直角坐标系xOy 中,已知一次函数y =32x +b 的图象与反比例函数y =12x的图象相交于A ,B 两点,且点A 的坐标为(a ,6). (1)求该一次函数的解析式; (2)求△AOB 的面积.【解答】解:(1)如图,∵点A (a ,6)在反比例函数y =12x 的图象上, ∴6a =12, ∴a =2, ∴A (2,6),把A (2,6)代入一次函数y =32x +b 中得:32×2+b =6,∴b =3,∴该一次函数的解析式为:y =32x +3; (2)由{y =32x +3y =12x 得:{x 1=−4y 1=−3,{x 2=2y 2=6, ∴B (﹣4,﹣3),当x =0时,y =3,即OC =3,∴△AOB 的面积=S △ACO +S △BCO =12×3×2+12×3×4=9.23.(8分)如图,为了测量某条河的对岸边C,D两点间的距离.在河的岸边与CD平行的直线EF上取两点A,B,测得∠BAC=45°,∠ABC=37°,∠DBF=60°,量得AB长为70米.求C,D两点间的距离(参考数据:sin37°≈35,cos37°≈45,tan37°≈34).【解答】解:过点C、D分别作CM⊥EF,DN⊥EF,垂足为M、N,在Rt△AMC中,∵∠BAC=45°,∴AM=MC,在Rt△BMC中,∵∠ABC=37°,tan∠ABC=CM BM,∴BM=CMtan37°=43CM,∵AB=70=AM+BM=CM+43CM,∴CM=30=DN,在Rt△BDN中,∵∠DBN=60°,∴BN=DNtan60°=303=10√3,∴CD=MN=MB+BN=43×30+10√3=40+10√3,答:C,D两点间的距离为(40+10√3)米,六、本大题共2个小题,每小题12分,共24分.24.(12分)如图,AB是⊙O的直径,点D在⊙O上,AD的延长线与过点B的切线交于点C,E为线段AD上的点,过点E的弦FG⊥AB于点H.(1)求证:∠C=∠AGD;(2)已知BC=6.CD=4,且CE=2AE,求EF的长.【解答】(1)证明:连接BD , ∵AB 是⊙O 的直径, ∴∠ADB =90°, ∴∠DAB +∠DBA =90°, ∵BC 是⊙O 的切线, ∴∠ABC =90°, ∴∠C +∠CAB =90°, ∴∠C =∠ABD , ∵∠AGD =∠ABD , ∴∠AGD =∠C ;(2)解:∵∠BDC =∠ABC =90°,∠C =∠C , ∴△ABC ∽△BDC , ∴BC AC =CD BC ,∴6AC=46,∴AC =9,∴AB =√AC 2−BC 2=3√5, ∵CE =2AE , ∴AE =3,CE =6, ∵FH ⊥AB , ∴FH ∥BC , ∴△AHE ∽△ABC , ∴AH AB =EH BC =AE AC ,∴3√5=EH 6=39,∴AH=√5,EH=2,连接AF,BF,∵AB是⊙O的直径,∴∠AFB=90°,∴∠AEH+∠BFH=∠AFH+∠F AH=90°,∴∠F AH=∠BFH,∴△AFH∽△FBH,∴FHAH =BHFH,∴√5=2√5FH,∴FH=√10,∴EF=√10−2.25.(12分)如图,已知抛物线y=ax2+bx+c经过A(﹣2,0),B(4,0),C(0,4)三点.(1)求该抛物线的解析式;(2)经过点B的直线交y轴于点D,交线段AC于点E,若BD=5DE.①求直线BD的解析式;②已知点Q在该抛物线的对称轴l上,且纵坐标为1,点P是该抛物线上位于第一象限的动点,且在l右侧,点R是直线BD上的动点,若△PQR是以点Q为直角顶点的等腰直角三角形,求点P的坐标.【解答】解:(1)∵抛物线y =ax 2+bx +c 经过A (﹣2,0),B (4,0), ∴设抛物线的解析式为y =a (x +2)(x ﹣4),将点C 坐标(0,4)代入抛物线的解析式为y =a (x +2)(x ﹣4)中,得﹣8a =4, ∴a =−12,∴抛物线的解析式为y =−12(x +2)(x ﹣4)=−12x 2+x +4;(2)①如图1,设直线AC 的解析式为y =kx +b ',将点A (﹣2,0),C (0,4),代入y =kx +b '中,得{−2k +b ′=0b′=4,∴{k =2b′=4, ∴直线AC 的解析式为y =2x +4, 过点E 作EF ⊥x 轴于F , ∴OD ∥EF , ∴△BOD ∽△BFE , ∴OB BF=BD BE,∵B (4,0), ∴OB =4, ∵BD =5DE , ∴BD BE=BD BD+DE=5DE 5DE+BE=56,∴BF =BEBD ×OB =65×4=245, ∴OF =BF ﹣OB =245−4=45,将x=−45代入直线AC:y=2x+4中,得y=2×(−45)+4=125,∴E(−45,125),设直线BD的解析式为y=mx+n,∴{4m+n=0−45m+n=125,∴{m=−12 n=2,∴直线BD的解析式为y=−12x+2;②Ⅰ、当点R在直线l右侧时,∵抛物线与x轴的交点坐标为A(﹣2,0)和B(4,0),∴抛物线的对称轴为直线x=1,∴点Q(1,1),如图2,设点P(x,−12x2+x+4)(1<x<4),过点P作PG⊥l于G,过点R作RH⊥l于H,∴PG=x﹣1,GQ=−12x2+x+4﹣1=−12x2+x+3,∵PG⊥l,∴∠PGQ=90°,∴∠GPQ+∠PQG=90°,∵△PQR是以点Q为直角顶点的等腰直角三角形,∴PQ=RQ,∠PQR=90°,∴∠PQG+∠RQH=90°,∴∠GPQ=∠HQR,∴△PQG≌△QRH(AAS),∴RH=GQ=−12x2+x+3,QH=PG=x﹣1,∴R(−12x2+x+4,2﹣x),由①知,直线BD的解析式为y=−12x+2,∴−12(−12x2+x+4)+2=2﹣x,∴x=2或x=4(舍),当x=2时,y=−12x2+x+4=−12×4+2+4=4,∴P(2,4),Ⅱ、当点R在直线l左侧时,记作R',设点P'(x,−12x2+x+4)(1<x<4),过点P'作P'G'⊥l于G',过点R'作R'H'⊥l于H,∴P'G'=x﹣1,G'Q=−12x2+x+4﹣1=−12x2+x+3,同Ⅰ的方法得,△P'QG'≌△QR'H'(AAS),∴R'H'=G'Q=−12x2+x+3,QH'=P'G'=x﹣1,∴R'(12x2﹣x﹣2,x),由①知,直线BD的解析式为y=−12x+2,∴−12(12x2﹣x﹣2)+2=x,∴x=﹣1+√13或x=﹣1−√13(舍),当x=﹣1+√13时,y=−12x2+x+4=2√13−4,∴P'(﹣1+√13,2√13−4),即满足条件的点P的坐标为(2,4)或(﹣1+√13,2√13−4).。
泸州2020年中考数学试题含答案
泸州市2020年初中毕业考试暨高中阶段学校招生统一考试数学试卷(考试时间:只完成A卷90分钟,完成A、B卷120分钟)说明:1.本次考试试卷分为A、B卷,只参加毕业考试的考生只需完成A卷,要参加升学考试的学生必须加试8卷。
2.A卷分为第I卷和第Ⅱ卷两部分.第I卷(1至2页)为选择题,第Ⅱ卷(3至6页)为非选择题,满分l00分;B卷(7至l0页)为非选择题,满分50分。
A、B卷满分共150分。
3.本卷中非选择题部分的试题,除题中设计有横线的题目外,解答过程都必须有必要的文字说明、演算步骤或推理证明。
A 卷第Ⅰ卷选择题(共30分)注意事项:1第I卷共2页,答第I卷前.考生务必将自己的姓名、准考证号、考试科目填写在答题卡上。
考试结束后,监考人员将试卷和答题卡一并收回。
2.每小题选出答案后,用28铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦擦干净后再选潦其它答案。
不能答在试卷上。
一、选择题(本大题l0个小题,共30分.每小题3分)在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在5,3,1 .0.001这四个数中,小于0的数是()222.如图1,四边形ABCD是正方形,E是边CD上一点,若△AFB经过逆时针旋转角0后与△AED重合,则θ的取值可能为()A. 90°B.60° C. 45° D. 30°图13.据媒体报道,5月l5日,参观上海世博会的人数突破330000,该数用科学记数法表示为()A.4⨯ D. 73.310⨯0.3310⨯ C. 6⨯ B. 53.31033104.某校八年级甲、乙两班学生在一学期里的多次检测中,其数学成绩的平均分相等,但两班成绩的方差不等,那么能够正确评价他们的数学学习情况的是()A.学习水平一样B. 成绩虽然一样,但方差大的班学生学习潜力大C.虽然平均成绩一样,但方差小的班学习成绩稳定D. 方差较小的学习成绩不稳定,忽高忽低5.计算422÷的结果是()a a()A.2aB. 5a C.6a D. 7a6.在△ABC中,AB=6,AC=8,BC=10,则该三角形为()A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形7.若2+-=的解,则m的值为()x=是关于x的方程2310x m38.已知⊙1O ,与⊙2O 的半径分别为2和3,若两圆相交.则两圆的圆心距m 满足( )A. 5m = B .1m = C. 5m > D. 15m <<9.已知函数y kx =的函数值随x 的增大而增大,则函数的图象经过( ) A.第一、二象限 B .第一、三象限 C .第二、三象限 D .第二、四象限10.已知O 为圆锥的顶点,M 为底面圆周上一点,点P 在OM 上,一只蚂蚁从点P 出发绕圆锥侧面爬行回到点P 时所经过的最短路径的痕迹如图2,若沿OM 将圆锥侧面剪开并展平,所得侧面展开图是( )第Ⅱ卷(非选择题共70分)注意事项:1. 第Ⅱ卷共4页,用钢笔或圆珠笔直接答在试卷上。
2020年四川省泸州市中考数学试卷(含详细解析)
4.在平面直角坐标系中,将点 向右平移4个单位长度,得到的对应点 的坐标为()
A. B. C. D.
5.下列正多边形中,不是中心对称图形的是()
A. B. C. D.
6.下列各式运算正确的是()
A. B. C. D.
7.如图, 中, , .则 的度数为()
A.100°B.90°C.80°D.70°
【详解】
解:867000=8.67×105,
故选:C.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
3.B
【解析】
【分析】
根据主视图的意义和几何体得出即可.
【详解】
解:几何体的主视图是:
故选:B.
【点睛】
本题考查了简单几何体的三视图的应用,能理解三视图的意义是解此题的关键.
4.C
【解析】
【分析】
根据横坐标,右移加,左移减可得点A(-2,3)向右平移4个单位长度后得到的对应点A′的坐标为(-2+4,3).
【详解】
解:点A(-2,3)向右平移4个单位长度后得到的对应点A′的坐标为(-2+4,3),
即(2,3),
故选:C.
【点睛】
此题主要考查了坐标与图形的变化—平移,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.
5.B
【解析】
【分析】
根据中心对称图形的概念求解.
【详解】
解:A、是中心对称图形,故此选项错误;
B、不是中心对称图形,故此选项正确;
C、是中心对称图形,故此选项错误;
D、是中心对称图形,故此选项错误;
2020年四川省泸州中考数学试卷-答案
2020年四川省泸州市初中学业水平考试数学答案解析一、 1.【答案】A【解析】根据倒数的概念求解.2的倒数是12.故选:A . 【考点】倒数的定义 2.【答案】C【解析】科学记数法的表示形式为10n a ⨯的形式,其中11|0|a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.故选:C . 【考点】科学计数法的表示形式 3.【答案】B【解析】找到从几何体的正面看所得到的图形即可.从正面看是一个矩形,矩形的中间有一条纵向的实线.故选:B .【考点】几何体的结构 4.【答案】C【解析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.因为将点)(23A -,先向右平移4个单位,所提点A 的对应点'A 的坐标是(243)-+,,即(23),.故选:C .【考点】平移中点的变化规律 5.【答案】B【解析】根据中心对称图形的概念结合选项的图形进行判断即可.A .正方形是中心对称图形,故本选项不合题意;B .正五边形不是中心对称图形,故本选项符合题意;C .正六边形是中心对称图形,故本选项不合题意;D .正八边形是中心对称图形,故本选项不合题意;故选:B . 【考点】中心对称图形的概念 6.【答案】D【解析】分别根据合并同类项法则,同底数幂的除法法则以及幂的乘方运算法则逐一判断即可.解:A .2x 与3x 不是同类项,所以不能合并,故本选项不合题意;B .3x 与2x -不是同类项,所以不能合并,故本选项不合题意;C .235•x x x =,故本选项不合题意;D .326x x =(),故本选项符合题意.故选:D .【考点】合并同类项法则 7.【答案】C【解析】先根据圆周角定理得到70ABC ACB ∠=∠=︒,再利用三角形内角和计算出40A ∠=︒,然后根据圆周角定理得到BOC ∠的度数. 解:AB AC =,70ABC ACB ∠∴∠==︒,180707040A ∠=︒-︒-︒=∴︒,280BOC A ∠=∠=∴︒.故选:C .【考点】圆周角定理 8.【答案】A【解析】根据中位数、众数的计算方法求出结果即可. 解:10名学生的每天阅读时间的平均数为0.5213 1.44211.22341⨯+⨯+⨯+⨯=+++;学生平均每天阅读时间出现次数最多的是1.5小时,共出现4次,因此众数是1.5;故选:A . 【考点】中位数、众数的应用 9.【答案】B【解析】根据平行四边形、矩形、菱形和正方形的性质判断即可.解:A 、平行四边形的对角线互相平分,是真命题;B 、矩形的对角线互相相等,不是垂直,原命题是假命题;C 、菱形的对角线互相垂直平分,是真命题;D 、正方形的对角线互相垂直平分且相等,是真命题;故选:B .【考点】平行四边形、矩形、菱形和正方形的性质 10.【答案】C【解析】根据解分式方程,可得分式方程的解,根据分式方程的解为负数,可得不等式,解不等式,可得答案.解:去分母,得:2(1)3m x +-=,移项、合并,得:52mx -=,分式方程的解为非负数,所以50m -且512m-≠,解得:5m ≤且3m ≠,所以整数解有0,1,2,4,5共5个,故选:C . 【考点】解分式方程的应用 11.【答案】A【解析】作AH BC ⊥于H ,如图,根据等腰三角形的性质得到122BH CH BC ===,则根据勾股定理可计算出AH =,接着根据线段的“黄金分割”点的定义得到2BE BC ==,则计算出4HE =,然后根据三角形面积公式计算.解:作AH BC ⊥于H ,如图,AB AC =,122BH CH BC ∴===,在Rt ABH △中,AH =,,D E 是边BC 的两个“黄金分割”点,11)22BE BC ∴===,224HE BE BH ∴=-=-=,28DE HE ∴==,18)102ADES ∴=⨯=-A .【考点】等腰三角形的性质和三角形计算面积公式 12.【答案】C【解析】求出抛物线的对称轴x b =,再由抛物线的图象经过不同两点(1,),(2,)A b m B b c m -+,也可以得到对称轴为123b b c-++,可得1b c +=,再根据二次函数的图象与x 轴有公共点,得到240b c -≤,进而求出,b c 的值.解:由二次函数22224y x bx b c +--=的图象与x 轴有公共点,()22(2)41240b b c ∴--⨯⨯-≥,即240b c -≤①,由抛物线的对称轴22bx b -=-=,抛物线经过不同两点(1,), (2,)A b m B b c m -+,122b bc b -++=,即,1c b =-②,②代入①得24(1)0b b --≤,即2(2)0b -≤,因此2b =,1211c b =-=-=,213b c ∴+=+=,故选:C .【考点】抛物线的性质 二、13.【答案】2x ≥【解析】根据被开方数大于等于0列式计算即可得解. 解:根据题意得,20x -≥,解得2x ≥.故答案为:2x ≥. 【考点】根号的性质 14.【答案】3【解析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项,据此可得a 的值. 解:13a x y +与4312x y 是同类项,14a ∴+=,解得3a =,故答案为:3.【考点】同类项的定义 15.【答案】2【解析】根据根与系数的关系求解.解:根据题意得则124=x x +,127x x =-.所以,222112212124216142x x x x x x x x =++++-=(=)故答案为2.【考点】根与系数的关系应用16.【答案】43【解析】延长CE DA 、交于Q ,延长BF 和CD ,交于W ,根据勾股定理求出BF ,根据矩形的性质求出AD ,根据全等三角形的性质得出AQ BC =,AB CW =,根据相似三角形的判定得出QMF CMB △∽△,BNE WND △∽△,根据相似三角形的性质得出比例式,求出BN 和BM 的长,即可得出答案. 解:延长CE DA 、交于Q ,如图1,四边形ABCD 是矩形,6BC =,=90BAD ∴∠︒,==6AD BC ,AD BC ∥,F 为AD 中点,==3AF DF ∴,在Rt BAF △中,由勾股定理得:5BF ===,AD BC ∥,=Q ECB ∴∠∠,E 为AB 的中点,4AB =,2AE BE ∴==,在QAE △和CBE △中,QEA BEC Q ECB AE BE ∠=∠⎧⎪∠=∠⎨⎪=⎩,QAE CBEAAS ∴△≌△(), ==6AQ BC ∴,即639QF =+=,AD BC ∥,QMF CMB ∴△∽△,96FM QF BM BC ∴==,5BF =,2BM ∴=,3FM =,延长BF 和CD ,交于W ,如图2,同理==4,=8,==5AB DM CW BF FM ,AB CD ∥,BNE WND ∴△∽△,BN BENF DW∴=,2554BN BN ∴=-+,解得:103BN =,104233MN BN BM ∴=-=-=,故答案为:43.【考点】勾股定理,全等三角形,相似三角形,矩形的性质 三、17.【答案】解:原式151232=-+⨯+ =5113-++ 8=.【解析】直接利用绝对值以及零指数幂的性质和特殊角的三角函数值、负整数指数幂的性质分别化简得出答案.【考点】绝对值以及零指数幂的性质 【考查能力】运算18.【答案】解:证明:AC 平分BAD ∠,BAC DAC ∴∠∠=,又AB AD =,AC AC =,ABC ADC SAS ∴△≌△(),BC CD ∴=. 【解析】由“SAS ”可证ABC ADC △≌△,可得=BC DC . 【考点】全等三角形的性质【考查能力】推理,空间观念与几何直观 19.【答案】 解:原式222(1)2(1)(1)(1)(1)1x x x x x x x x x x x ++=⨯=⨯=+-+-- 【解析】根据分式的运算法则即可求出答案.具体解题过程参照答案. 四、20.【答案】(1)1230%=40÷,即=40n ,B 组的车辆为:402161228----=(辆),补全频数分布直方图如图:(2)2860015040+⨯=(辆),即估计耗油1,L 所行使的路程低于13 km 的该型号汽车的辆数为150辆. (3)设行使路程在1212.5x ≤<范围内的2辆车记为为A B 、,行使路程在1414.5x ≤<范围内的2辆车记为C D 、,画树状图如图:共有12个等可能的结果,抽取的2辆汽车来自同一范围的结果有4个,∴抽取的2辆汽车来自同一范围的概率为41123=. 【解析】(1)由D 组的车辆数及其所占百分比求得n 的值;求出B 组的车辆数,补全频数分布直方图即可. (2)由总车辆数乘以360乘以耗油1,L 所行使的路程低于13 km 的汽车的辆数所占的比例即可. (3)画出树状图,由概率公式求解即可. 【考点】统计图的应用 【考查能力】运算,应用意识21.【答案】(1)设甲种奖品购买了x 件,乙种奖品购买了()30x -件,根据题意得3020(30)800x x +-=, 解得20x =,则3010x -=,答:甲种奖品购买了20件,乙种奖品购买了10件.(2)设甲种奖品购买了x 件,乙种奖品购买了()30x -件,设购买两种奖品的总费用为w 元,根据题意得303x x -≤,解得7.5x ≥,3020(30)10600w x x x =+-=+,100>,w ∴随x 的增大而减小, 8x ∴=时,w 有最小值为:108600680w =⨯+=.答:当购买甲种奖品8件、乙种奖品22件时,总花费最小,最小费用为680元.【解析】(1)设甲种奖品购买了x 件,乙种奖品购买了()30x -件,利用购买甲、乙两种奖品共花费了800元列方程3020(30)800x x +-=,然后解方程求出x ,再计算30x -即可;(2)设甲种奖品购买了x 件,乙种奖品购买了()30x -件,设购买两种奖品的总费用为w 元,由购买乙种奖品的件数不超过甲种奖品件数的3倍,可得出关于m 的一元一次不等式,解之可得出m 的取值范围,再由总价=单价×数量,可得出w 关于x 的函数关系式,利用一次函数的性质即可解决最值问题. 【考点】一次函数的性质的应用 【考查能力】运算,推理,函数的理解 五、22.【答案】(1)如图,点(, 6)A a 在反比例函数12y x=的图象上,612a ∴=,2a ∴=,(2,6)A ∴,把(2,6)A 代入一次函数32y x b =+中得:3262b ⨯+=,3b ∴=,∴该一次函数的解析式为:233y x =+.(2)由33212y x y x ⎧=+⎪⎪⎨⎪=⎪⎩得:1143x y =-⎧⎨=-⎩,2226x y =⎧⎨=⎩,(4,3)B ∴--,当0x =时,3y =,即3OC =,AOB∴△的面积11=3234922S ACO S BCO +=⨯⨯+⨯⨯=△△.【解析】(1)根据反比例函数12y x =可得点A 的坐标,把(2,6)A 代入一次函数32y x b =+中可得b 的值,从而得一次函数的解析式.(2)利用面积和可得AOB △的面积. 【考点】一次函数和三角形面积的应用【考查能力】计算,推理23.【答案】解:过点C D 、分别作,CM EF DN EF ⊥⊥,垂足为M N 、,在Rt AMC △中,45BAC ∠︒=,=AM MC ∴,在Rt BMC△中,∵37,tan CMABC ABC BM︒∠=∠=,4tan 373CM BM CM ︒∴==,4703AB AM BM CM CM ==+=+,30CM DN ∴==,在Rt BDN △中,=60DBN ∠︒,tan 60DN BN ︒∴===430403CD MN MB BN ∴==+=⨯+=+,C D 两点间的距离为(40+米,【解析】通过作辅助线,在三个直角三角形中,根据边角关系,分别求出CM BM DN BN 、、、,进而求出答案.【考点】尺规作图,三角形边角关系【考查能力】推理,空间观念与几何直观,化归与转化思想 六、24.【答案】(1)证明:连接BD ,AB 是O 的直径,=90ADB ∴∠︒,=90DAB DBA ∴∠+∠︒,BC是O 的切线,=90ABC ∴∠︒,=90C CAB ∴∠+∠︒,=C ABD ∴∠∠,=AGD ABD ∠∠,AGD C ∴∠=∠.(2)解:90,BDC ABC C C ∠=∠=︒∠=∠,ABC BDC ∴△∽△,BC CD AC BC ∴=,646AC ∴=,9AC ∴=,AB ∴==,2CE AE =,3AE ∴=,6CE =,FH AB ⊥,FH BC ∴∥,AHE ABC ∴△∽△,AH EH AEAB BC AC∴==,369EH ==,AH ∴=2EH =,连接,AF BF ,AB 是O 的直径,90AFB ∴∠︒=,90AEH BFH AFH FAH ∴∠+∠∠+∠︒==,FAH BFH ∴∠∠=,AFH FBH ∴△∽△,FH BH AH FH ∴=,FH=,FH ∴=2FH ∴=.【解析】((1)连接BD ,根据圆周角定理得到90ADB ∠︒=,根据切线的性质得到90ABC ∠︒=,得到C ABD ∠∠=,根据圆周角定理即可得到结论.(2)根据相似三角形的判定和性质以及勾股定理即可得到结论. 【考点】三角形内角与外角的关系,相似三角形的判定与性质【考查能力】推理,化归与转化思想25.【答案】(1)抛物线2y ax bx c =++经过(2,0)A -,(4,0)B ,∴设抛物线的解析式为(2)(4)y a x x =+-,将点C 坐标04(,)代入抛物线的解析式为(2)(4)y a x x =+-中,得84a -=,12a ∴=-,∴抛物线的解析式为()211(4)2242y x x x x =--=-+++.(2)①如图1,设直线AC 的解析式为y kx b '=+,将点(2,0)A -,(0,4)C ,代入y kx b '=+中,得204k b b '-+=⎧⎨'=⎩,24k b =⎧∴⎨'=⎩,∴直线AC 的解析式为24y x =+,过点E 作EF x ⊥轴于F ,OD EF ∴∥,BOD BFE∴△∽△,OB BDBF BE∴=,(4,0)B ,4OB ∴=,5BD DE =,5556BD BD DE BE BD DE DE BE ∴===++,624455BE BF OB BD ∴=⨯=⨯=,244455OF BF OB ∴=-=-=, 将45x =-代入直线AC :24y x =+中,得4122455y ⎛⎫=⨯-+= ⎪⎝⎭,412,55E ⎛⎫∴- ⎪⎝⎭,设直线BD 的解析式为=y mx n +,4041255m n m n +=⎧⎪∴⎨-+=⎪⎩,122m n ⎧=-⎪∴⎨⎪=⎩,∴直线BD 的解析式为122y x =-+;②抛物线与x 轴的交点坐标为(2,0)A -和(4,0)B ,∴抛物线的对称轴为直线1x =,∴点Q(1,1),如图2,设点21,4(14)2P x x x x ⎛⎫-++ ⎪⎝⎭<<,过点P 作PG l ⊥于G ,过点R 作RH l ⊥于H ,1PG x ∴=-,221141322GQ x x x x =-++-=-++,PG l ⊥,=90PGQ ∴∠︒,=90GPQ PQG ∴∠+∠︒,PQR △是以点Q 为直角顶点的等腰直角三角形,=PQ RQ ∴,=90PQR ∠︒,=90PQG RQH ∴∠+∠︒,=GPQ HQR ∴∠∠,PQG QRH AAS ∴△≌△(),2132RH GQ x x ∴==-++,1QH PG x ==-,214,22R x x x ⎛⎫∴-++- ⎪⎝⎭,由①知,直线BD 的解析式为122y x =-+,2x ∴=或4x =(舍),当2x =时,2114424422y x x =-++=-⨯++=,(2,4)P ∴.【解析】(1)根据交点式设出抛物线的解析式,再将点C 坐标代入抛物线交点式中,即可求出a ,即可得出结论;(2)①先利用待定系数法求出直线AC 的解析式,再利用相似三角形得出比例式求出BF ,进而得出点E 坐标,最后用待定系数法,即可得出结论;②先确定出点Q 的坐标,设点21,4(14)2P x x x x ⎛⎫-++⎪⎝⎭<<,得出1PG x =-,2132GQ x x =-++,再利用三垂线构造出PQG QRH AAS △≌△(),得出2132RH GQ x x ==-++,1QH PG x ==-,进而得出214,22R x x x ⎛⎫-++- ⎪⎝⎭,最后代入直线BD 的解析式中,即可求出x 的值,即可得出结论. 【考点】一次函数和二次函数的图象与性质,相似三角形的性质与判定,三角形面积【考查能力】运算,推理,空间观念与几何直观,创新意识,函数与方程思想,数形结合思想,化归与转化思想,分类与整合思想。
2020年泸州市中考数学试题、试卷(解析版)
2020年泸州市中考数学试题、试卷(解析版)一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.(3分)2的倒数是( )A .12B .−12C .2D .﹣22.(3分)将867000用科学记数法表示为( )A .867×103B .8.67×104C .8.67×105D .8.67×1063.(3分)如图所示的几何体的主视图是( )A .B .C .D .4.(3分)在平面直角坐标系中,将点A (﹣2,3)向右平移4个单位长度,得到的对应点A '的坐标为( )A .(2,7)B .(﹣6,3)C .(2,3)D .(﹣2,﹣1)5.(3分)下列正多边形中,不是中心对称图形的是( )A .B .C .D .6.(3分)下列各式运算正确的是( )A .x 2+x 3=x 5B .x 3﹣x 2=xC .x 2•x 3=x 6D .(x 3)2=x 67.(3分)如图,⊙O 中,AB̂=AC ̂,∠ABC =70°.则∠BOC 的度数为( )A .100°B .90°C .80°D .70°8.(3分)某语文教师调查了本班10名学生平均每天的课外阅读时间,统计结果如下表所示:课外阅读时间(小时)0.5 1 1.5 2人数 2 3 4 1 那么这10名学生平均每天的课外阅读时间的平均数和众数分别是( )A .1.2和1.5B .1.2和4C .1.25和1.5D .1.25 和49.(3分)下列命题是假命题的是( )A .平行四边形的对角线互相平分B .矩形的对角线互相垂直C .菱形的对角线互相垂直平分D .正方形的对角线互相垂直平分且相等10.(3分)已知关于x 的分式方程m x−1+2=−31−x的解为非负数,则正整数m 的所有个数为( )A .3B .4C .5D .6 11.(3分)古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点G 将一线段MN 分为两线段MG ,GN ,使得其中较长的一段MG 是全长MN 与较短的一段GN 的比例中项,即满足MG MN =GN MG =√5−12,后人把√5−12这个数称为“黄金分割”数,把点G 称为线段MN 的“黄金分割”点.如图,在△ABC 中,已知AB =AC =3,BC =4,若D ,E 是边BC 的两个“黄金分割”点,则△ADE 的面积为( )A .10﹣4√5B .3√5−5C .5−2√52D .20﹣8√512.(3分)已知二次函数y =x 2﹣2bx +2b 2﹣4c (其中x 是自变量)的图象经过不同两点A(1﹣b ,m ),B (2b +c ,m ),且该二次函数的图象与x 轴有公共点,则b +c 的值为( )A .﹣1B .2C .3D .4二、填空题(本大题共4个小题,每小题3分,共12分).13.(3分)函数y =√x −2的自变量x 的取值范围是 .14.(3分)若x a +1y 3与12x 4y 3是同类项,则a 的值是 . 15.(3分)已知x 1,x 2是一元二次方程x 2﹣4x ﹣7=0的两个实数根,则x 12+4x 1x 2+x 22的值是 .16.(3分)如图,在矩形ABCD 中,E ,F 分别为边AB ,AD 的中点,BF 与EC 、ED 分别交于点M ,N .已知AB =4,BC =6,则MN 的长为 .三、本大题共3个小题,每小题6分,共18分.17.(6分)计算:|﹣5|﹣(π﹣2020)0+2cos60°+(13)﹣1. 18.(6分)如图,AC 平分∠BAD ,AB =AD .求证:BC =DC .19.(6分)化简:(x+2x +1)÷x 2−1x. 四、本大题共2个小题,每小题7分,共14分.20.(7分)某汽车公司为了解某型号汽车在同一条件下的耗油情况,随机抽取了n 辆该型号汽车耗油1L 所行使的路程作为样本,并绘制了如图不完整的频数分布直方图和扇形统计图.根据题中已有信息,解答下列问题:(1)求n 的值,并补全频数分布直方图;(2)若该汽车公司有600辆该型号汽车.试估计耗油1L所行使的路程低于13km的该型号汽车的辆数;(3)从被抽取的耗油1L所行使路程在12≤x<12.5,14≤x<14.5这两个范围内的4辆汽车中,任意抽取2辆,求抽取的2辆汽车来自同一范围的概率.21.(7分)某校举办“创建全国文明城市”知识竞赛,计划购买甲、乙两种奖品共30件.其中甲种奖品每件30元,乙种奖品每件20元.(1)如果购买甲、乙两种奖品共花费800元,那么这两种奖品分别购买了多少件?(2)若购买乙种奖品的件数不超过甲种奖品件数的3倍.如何购买甲、乙两种奖品,使得总花费最少?五、本大题共2个小题,每小题8分,共16分.22.(8分)如图,在平面直角坐标系xOy中,已知一次函数y=32x+b的图象与反比例函数y=12x的图象相交于A,B两点,且点A的坐标为(a,6).(1)求该一次函数的解析式;(2)求△AOB的面积.23.(8分)如图,为了测量某条河的对岸边C,D两点间的距离.在河的岸边与CD平行的直线EF上取两点A,B,测得∠BAC=45°,∠ABC=37°,∠DBF=60°,量得AB长为70米.求C,D两点间的距离(参考数据:sin37°≈35,cos37°≈45,tan37°≈34).六、本大题共2个小题,每小题12分,共24分.24.(12分)如图,AB是⊙O的直径,点D在⊙O上,AD的延长线与过点B的切线交于点C,E为线段AD上的点,过点E的弦FG⊥AB于点H.(1)求证:∠C=∠AGD;(2)已知BC=6.CD=4,且CE=2AE,求EF的长.25.(12分)如图,已知抛物线y=ax2+bx+c经过A(﹣2,0),B(4,0),C(0,4)三点.(1)求该抛物线的解析式;(2)经过点B的直线交y轴于点D,交线段AC于点E,若BD=5DE.①求直线BD的解析式;②已知点Q在该抛物线的对称轴l上,且纵坐标为1,点P是该抛物线上位于第一象限的动点,且在l右侧,点R是直线BD上的动点,若△PQR是以点Q为直角顶点的等腰直角三角形,求点P的坐标.2020年四川省泸州市中考数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.(3分)2的倒数是( )A .12B .−12C .2D .﹣2 【解答】解:2的倒数是12.故选:A .2.(3分)将867000用科学记数法表示为( )A .867×103B .8.67×104C .8.67×105D .8.67×106【解答】解:867000=8.67×105,故选:C .3.(3分)如图所示的几何体的主视图是( )A .B .C .D .【解答】解:从正面看是一个矩形,矩形的中间有一条纵向的实线.故选:B .4.(3分)在平面直角坐标系中,将点A (﹣2,3)向右平移4个单位长度,得到的对应点A '的坐标为( )A .(2,7)B .(﹣6,3)C .(2,3)D .(﹣2,﹣1)【解答】解:∵将点A (﹣2,3)先向右平移4个单位,∴点A 的对应点A ′的坐标是(﹣2+4,3),即(2,3).故选:C .5.(3分)下列正多边形中,不是中心对称图形的是( )A.B.C.D.【解答】解:A.正方形是中心对称图形,故本选项不合题意;B.正五边形不是中心对称图形,故本选项符合题意;C.正六边形是中心对称图形,故本选项不合题意;D.正八边形是中心对称图形,故本选项不合题意;故选:B.6.(3分)下列各式运算正确的是()A.x2+x3=x5B.x3﹣x2=x C.x2•x3=x6D.(x3)2=x6【解答】解:A.x2与x3不是同类项,所以不能合并,故本选项不合题意;B.x3与﹣x2不是同类项,所以不能合并,故本选项不合题意;C.x2•x3=x5,故本选项不合题意;D.(x3)2=x6,故本选项符合题意.故选:D.7.(3分)如图,⊙O中,AB̂=AĈ,∠ABC=70°.则∠BOC的度数为()A.100°B.90°C.80°D.70°【解答】解:∵AB̂=AĈ,∴∠ABC=∠ACB=70°,∴∠A=180°﹣70°﹣70°=40°,∴∠BOC=2∠A=80°.故选:C.8.(3分)某语文教师调查了本班10名学生平均每天的课外阅读时间,统计结果如下表所示:课外阅读时间(小时)0.51 1.52人数 2 3 4 1那么这10名学生平均每天的课外阅读时间的平均数和众数分别是( )A .1.2和1.5B .1.2和4C .1.25和1.5D .1.25 和4【解答】解:10名学生的每天阅读时间的平均数为0.5×2+1×3+1.4×4+2×12+3+4+1=1.2; 学生平均每天阅读时间出现次数最多的是1.5小时,共出现4次,因此众数是1.5; 故选:A .9.(3分)下列命题是假命题的是( )A .平行四边形的对角线互相平分B .矩形的对角线互相垂直C .菱形的对角线互相垂直平分D .正方形的对角线互相垂直平分且相等【解答】解:A 、平行四边形的对角线互相平分,是真命题;B 、矩形的对角线互相相等,不是垂直,原命题是假命题;C 、菱形的对角线互相垂直平分,是真命题;D 、正方形的对角线互相垂直平分且相等,是真命题;故选:B .10.(3分)已知关于x 的分式方程m x−1+2=−31−x 的解为非负数,则正整数m 的所有个数为( )A .3B .4C .5D .6 【解答】解:去分母,得:m +2(x ﹣1)=3,移项、合并,得:x =5−m 2, ∵分式方程的解为非负数,∴5﹣m ≥0且5−m 2≠1,解得:m ≤5且m ≠3,∴正整数解有1,2,4,5共4个,故选:B .11.(3分)古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点G 将一线段MN 分为两线段MG ,GN ,使得其中较长的一段MG 是全长MN 与较短的一段GN 的比例中项,即满足MG MN =GN MG =√5−12,后人把√5−12这个数称为“黄金分割”数,把点G 称为线段MN 的“黄金分割”点.如图,在△ABC 中,已知AB =AC =3,BC =4,若D ,E 是边BC 的两个“黄金分割”点,则△ADE 的面积为( )A .10﹣4√5B .3√5−5C .5−2√52D .20﹣8√5【解答】解:作AH ⊥BC 于H ,如图,∵AB =AC ,∴BH =CH =12BC =2,在Rt △ABH 中,AH =√32−22=√5,∵D ,E 是边BC 的两个“黄金分割”点,∴BE =√5−12BC =2(√5−1)=2√5−2,∴HE =BE ﹣BH =2√5−2﹣2=2√5−4,∴DE =2HE =4√5−8∴S △ADE =12×(4√5−8)×√5=10﹣4√5.故选:A .12.(3分)已知二次函数y =x 2﹣2bx +2b 2﹣4c (其中x 是自变量)的图象经过不同两点A(1﹣b ,m ),B (2b +c ,m ),且该二次函数的图象与x 轴有公共点,则b +c 的值为( )A .﹣1B .2C .3D .4【解答】解:由二次函数y =x 2﹣2bx +2b 2﹣4c 的图象与x 轴有公共点,∴(﹣2b )2﹣4×1×(2b 2﹣4c )≥0,即b 2﹣4c ≤0 ①,由抛物线的对称轴x =−−2b 2=b ,抛物线经过不同两点A (1﹣b ,m ),B (2b +c ,m ), b =1−b+2b+c 2,即,c =b ﹣1 ②,②代入①得,b 2﹣4(b ﹣1)≤0,即(b ﹣2)2≤0,因此b =2,c =b ﹣1=2﹣1=1,∴b +c =2+1=3,故选:C .二、填空题(本大题共4个小题,每小题3分,共12分).13.(3分)函数y =√x −2的自变量x 的取值范围是 x ≥2 .【解答】解:根据题意得,x ﹣2≥0,解得x ≥2.故答案为:x ≥2.14.(3分)若x a +1y 3与12x 4y 3是同类项,则a 的值是 3 . 【解答】解:∵x a +1y 3与12x 4y 3是同类项, ∴a +1=4,解得a =3,故答案为:3.15.(3分)已知x 1,x 2是一元二次方程x 2﹣4x ﹣7=0的两个实数根,则x 12+4x 1x 2+x 22的值是 2 .【解答】解:根据题意得则x 1+x 2=4,x 1x 2=﹣7所以,x 12+4x 1x 2+x 22=(x 1+x 2)2+2x 1x 2=16﹣14=2故答案为2.16.(3分)如图,在矩形ABCD 中,E ,F 分别为边AB ,AD 的中点,BF 与EC 、ED 分别交于点M ,N .已知AB =4,BC =6,则MN 的长为 43 .【解答】解:延长CE 、DA 交于Q ,如图1,∵四边形ABCD 是矩形,BC =6,∴∠BAD =90°,AD =BC =6,AD ∥BC ,∵F 为AD 中点,∴AF =DF =3,在Rt △BAF 中,由勾股定理得:BF =√AB 2+AF 2=√42+32=5,∵AD ∥BC ,∴∠Q =∠ECB ,∵E 为AB 的中点,AB =4,∴AE =BE =2,在△QAE 和△CBE 中{∠QEA =∠BEC ∠Q =∠ECBAE =BE∴△QAE ≌△CBE (AAS ),∴AQ =BC =6,即QF =6+3=9,∵AD ∥BC ,∴△QMF ∽△CMB ,∴FM BM =QF BC =96, ∵BF =5,∴BM =2,FM =3,延长BF 和CD ,交于W ,如图2,同理AB =DM =4,CW =8,BF =FM =5,∵AB ∥CD ,∴△BNE ∽△WND ,∴BN NF =BE DW , ∴BN 5−BN+5=24,解得:BN =103, ∴MN =BN ﹣BM =103−2=43, 故答案为:43. 三、本大题共3个小题,每小题6分,共18分.17.(6分)计算:|﹣5|﹣(π﹣2020)0+2cos60°+(13)﹣1. 【解答】解:原式=5﹣1+2×12+3=5﹣1+1+3=8.18.(6分)如图,AC 平分∠BAD ,AB =AD .求证:BC =DC .【解答】证明:∵AC 平分∠BAD ,∴∠BAC =∠DAC ,又∵AB =AD ,AC =AC ,∴△ABC ≌△ADC (SAS ),∴BC =CD .19.(6分)化简:(x+2x +1)÷x 2−1x. 【解答】解:原式=2x+2x ×x (x+1)(x−1)=2(x+1)x ×x (x+1)(x−1)=2x−1. 四、本大题共2个小题,每小题7分,共14分.20.(7分)某汽车公司为了解某型号汽车在同一条件下的耗油情况,随机抽取了n 辆该型号汽车耗油1L 所行使的路程作为样本,并绘制了如图不完整的频数分布直方图和扇形统计图.根据题中已有信息,解答下列问题:(1)求n 的值,并补全频数分布直方图;(2)若该汽车公司有600辆该型号汽车.试估计耗油1L 所行使的路程低于13km 的该型号汽车的辆数;(3)从被抽取的耗油1L 所行使路程在12≤x <12.5,14≤x <14.5这两个范围内的4辆汽车中,任意抽取2辆,求抽取的2辆汽车来自同一范围的概率.【解答】解:(1)12÷30%=40,即n =40,B 组的车辆为:40﹣2﹣16﹣12﹣2=8(辆),补全频数分布直方图如图:(2)600×2+840=150(辆),即估计耗油1L所行使的路程低于13km的该型号汽车的辆数为150辆;(3)设行使路程在12≤x<12.5范围内的2辆车记为为A、B,行使路程在14≤x<14.5范围内的2辆车记为C、D,画树状图如图:共有12个等可能的结果,抽取的2辆汽车来自同一范围的结果有4个,∴抽取的2辆汽车来自同一范围的概率为412=1 3.21.(7分)某校举办“创建全国文明城市”知识竞赛,计划购买甲、乙两种奖品共30件.其中甲种奖品每件30元,乙种奖品每件20元.(1)如果购买甲、乙两种奖品共花费800元,那么这两种奖品分别购买了多少件?(2)若购买乙种奖品的件数不超过甲种奖品件数的3倍.如何购买甲、乙两种奖品,使得总花费最少?【解答】解:(1)设甲种奖品购买了x件,乙种奖品购买了(30﹣x)件,根据题意得30x+20(30﹣x)=800,解得x=20,则30﹣x=10,答:甲种奖品购买了20件,乙种奖品购买了10件;(2)设甲种奖品购买了x件,乙种奖品购买了(30﹣x)件,设购买两种奖品的总费用为w元,根据题意得30﹣x≤3x,解得x≥7.5,w=30x+20(30﹣x)=10x+600,∵10>0,∴w随x的增大而减小,∴x=8时,w有最小值为:w=10×8+600=680.答:当购买甲种奖品8件、乙种奖品22件时,总花费最小,最小费用为680元.五、本大题共2个小题,每小题8分,共16分.22.(8分)如图,在平面直角坐标系xOy 中,已知一次函数y =32x +b 的图象与反比例函数y =12x 的图象相交于A ,B 两点,且点A 的坐标为(a ,6). (1)求该一次函数的解析式;(2)求△AOB 的面积.【解答】解:(1)如图,∵点A (a ,6)在反比例函数y =12x 的图象上,∴6a =12,∴a =2,∴A (2,6),把A (2,6)代入一次函数y =32x +b 中得:32×2+b =6, ∴b =3,∴该一次函数的解析式为:y =32x +3;(2)由{y =32x +3y =12x得:{x 1=−4y 1=−3,{x 2=2y 2=6, ∴B (﹣4,﹣3),当x =0时,y =3,即OC =3,∴△AOB 的面积=S △ACO +S △BCO =12×3×2+12×3×4=9.23.(8分)如图,为了测量某条河的对岸边C,D两点间的距离.在河的岸边与CD平行的直线EF上取两点A,B,测得∠BAC=45°,∠ABC=37°,∠DBF=60°,量得AB长为70米.求C,D两点间的距离(参考数据:sin37°≈35,cos37°≈45,tan37°≈34).【解答】解:过点C、D分别作CM⊥EF,DN⊥EF,垂足为M、N,在Rt△AMC中,∵∠BAC=45°,∴AM=MC,在Rt△BMC中,∵∠ABC=37°,tan∠ABC=CM BM,∴BM=CMtan37°=43CM,∵AB=70=AM+BM=CM+43CM,∴CM=30=DN,在Rt△BDN中,∵∠DBN=60°,∴BN=DNtan60°=303=10√3,∴CD=MN=MB+BN=43×30+10√3=40+10√3,答:C,D两点间的距离为(40+10√3)米,六、本大题共2个小题,每小题12分,共24分.24.(12分)如图,AB是⊙O的直径,点D在⊙O上,AD的延长线与过点B的切线交于点C,E为线段AD上的点,过点E的弦FG⊥AB于点H.(1)求证:∠C=∠AGD;(2)已知BC=6.CD=4,且CE=2AE,求EF的长.【解答】(1)证明:连接BD ,∵AB 是⊙O 的直径,∴∠ADB =90°,∴∠DAB +∠DBA =90°,∵BC 是⊙O 的切线,∴∠ABC =90°,∴∠C +∠CAB =90°,∴∠C =∠ABD ,∵∠AGD =∠ABD ,∴∠AGD =∠C ;(2)解:∵∠BDC =∠ABC =90°,∠C =∠C ,∴△ABC ∽△BDC ,∴BC AC =CD BC , ∴6AC =46,∴AC =9,∴AB =√AC 2−BC 2=3√5,∵CE =2AE ,∴AE =3,CE =6,∵FH ⊥AB ,∴FH ∥BC ,∴△AHE ∽△ABC ,∴AH AB =EH BC =AE AC , ∴3√5=EH 6=39,∴AH=√5,EH=2,连接AF,BF,∵AB是⊙O的直径,∴∠AFB=90°,∴∠AEH+∠BFH=∠AFH+∠F AH=90°,∴∠F AH=∠BFH,∴△AFH∽△FBH,∴FHAH =BHFH,∴√5=2√5FH,∴FH=√10,∴EF=√10−2.25.(12分)如图,已知抛物线y=ax2+bx+c经过A(﹣2,0),B(4,0),C(0,4)三点.(1)求该抛物线的解析式;(2)经过点B的直线交y轴于点D,交线段AC于点E,若BD=5DE.①求直线BD的解析式;②已知点Q在该抛物线的对称轴l上,且纵坐标为1,点P是该抛物线上位于第一象限的动点,且在l右侧,点R是直线BD上的动点,若△PQR是以点Q为直角顶点的等腰直角三角形,求点P的坐标.【解答】解:(1)∵抛物线y =ax 2+bx +c 经过A (﹣2,0),B (4,0),∴设抛物线的解析式为y =a (x +2)(x ﹣4),将点C 坐标(0,4)代入抛物线的解析式为y =a (x +2)(x ﹣4)中,得﹣8a =4, ∴a =−12,∴抛物线的解析式为y =−12(x +2)(x ﹣4)=−12x 2+x +4;(2)①如图1,设直线AC 的解析式为y =kx +b ',将点A (﹣2,0),C (0,4),代入y =kx +b '中,得{−2k +b ′=0b′=4, ∴{k =2b′=4, ∴直线AC 的解析式为y =2x +4,过点E 作EF ⊥x 轴于F ,∴OD ∥EF ,∴△BOD ∽△BFE ,∴OB BF =BD BE ,∵B (4,0),∴OB =4,∵BD =5DE ,∴BD BE =BD BD+DE =5DE 5DE+BE =56, ∴BF =BE BD ×OB =65×4=245,∴OF =BF ﹣OB =245−4=45,将x=−45代入直线AC:y=2x+4中,得y=2×(−45)+4=125,∴E(−45,125),设直线BD的解析式为y=mx+n,∴{4m+n=0−45m+n=125,∴{m=−12 n=2,∴直线BD的解析式为y=−12x+2;②Ⅰ、当点R在直线l右侧时,∵抛物线与x轴的交点坐标为A(﹣2,0)和B(4,0),∴抛物线的对称轴为直线x=1,∴点Q(1,1),如图2,设点P(x,−12x2+x+4)(1<x<4),过点P作PG⊥l于G,过点R作RH⊥l于H,∴PG=x﹣1,GQ=−12x2+x+4﹣1=−12x2+x+3,∵PG⊥l,∴∠PGQ=90°,∴∠GPQ+∠PQG=90°,∵△PQR是以点Q为直角顶点的等腰直角三角形,∴PQ=RQ,∠PQR=90°,∴∠PQG+∠RQH=90°,∴∠GPQ=∠HQR,∴△PQG≌△QRH(AAS),∴RH=GQ=−12x2+x+3,QH=PG=x﹣1,∴R(−12x2+x+4,2﹣x),由①知,直线BD的解析式为y=−12x+2,∴−12(−12x2+x+4)+2=2﹣x,∴x=2或x=4(舍),当x=2时,y=−12x2+x+4=−12×4+2+4=4,∴P(2,4),Ⅱ、当点R在直线l左侧时,记作R',设点P'(x,−12x2+x+4)(1<x<4),过点P'作P'G'⊥l于G',过点R'作R'H'⊥l于H,∴P'G'=x﹣1,G'Q=−12x2+x+4﹣1=−12x2+x+3,同Ⅰ的方法得,△P'QG'≌△QR'H'(AAS),∴R'H'=G'Q=−12x2+x+3,QH'=P'G'=x﹣1,∴R'(12x2﹣x﹣2,x),由①知,直线BD的解析式为y=−12x+2,∴−12(12x2﹣x﹣2)+2=x,∴x=﹣1+√13或x=﹣1−√13(舍),当x=﹣1+√13时,y=−12x2+x+4=2√13−4,∴P'(﹣1+√13,2√13−4),即满足条件的点P的坐标为(2,4)或(﹣1+√13,2√13−4).。
2020年四川省泸州中考数学试卷及答案解析
2020年四川省泸州中考数学试卷及答案解析2020年四川省泸州市初中学业水平考试数学部分共分为第Ⅰ卷和第Ⅱ卷,全卷共6页,满分120分,考试时间为120分钟。
在答题前,考生需在答题卡上填写姓名、准考证号和座位号,并在考试结束时一并交回。
选择题需使用2B铅笔在答题卡上涂黑对应题目的答案标号,非选择题需使用.5毫米黑色墨迹铅笔在答题卡上对应题号位置作答。
第Ⅰ卷(选择题共36分)共有12道小题,每小题3分。
其中,第一题是求2的倒数,正确答案为B。
-1/2;第二题是将用科学记数法表示,正确答案为C。
8.67×10^5;第三题是找出几何体的主视图,答案为D。
ABCD;第四题是在平面直角坐标系中将点A(-2,3)向右平移4个单位长度,得到的对应点A'的坐标为A。
(2,7);第五题是找出不是中心对称图形的正多边形,正确答案为A。
ABCD;第六题是判断各式运算的正确性,正确答案为B。
x-x=x;第七题是求出角BOC的度数,正确答案为C。
80°;第八题是根据给定数据求出10名学生平均每天的课外阅读时间的平均数和众数,正确答案为D。
1.25和4;第九题是判断假命题,正确答案为C。
菱形的对角线互相垂直平分;第十题是求解分式方程的正整数解个数,正确答案为D。
6;第十一题是关于分线段的“中末比”问题,无明显错误;第十二题是求解不等式,无明显错误。
G将一线段MN分为两线段MG、GN,使得其中较长的一段MG是全长MN与较短的一段GN的比例中项,即满足$MG/GN=(\sqrt{5}+1)/2$,后人把这个数称为“黄金分割”数,把点G称为线段MN的“黄金分割”点。
如图,在△ABC中,已知$AB=AC=3$,$BC=4$,若D、E是边BC的两个“黄金分割”点,则△ADE的面积为()解:首先,根据已知条件,可以求出$AB=AC=3$,$BC=4$,因此△ABC是一个等腰直角三角形,且$AB=AC<BC$。
2020年四川省泸州市中考数学试题和答案
2020年四川省泸州市中考数学试卷一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.(3分)2的倒数是()A.B.﹣C.2D.﹣22.(3分)将867000用科学记数法表示为()A.867×103B.8.67×104C.8.67×105D.8.67×106 3.(3分)如图所示的几何体的主视图是()A.B.C.D.4.(3分)在平面直角坐标系中,将点A(﹣2,3)向右平移4个单位长度,得到的对应点A'的坐标为()A.(2,7)B.(﹣6,3)C.(2,3)D.(﹣2,﹣1)5.(3分)下列正多边形中,不是中心对称图形的是()A.B.C.D.6.(3分)下列各式运算正确的是()A.x2+x3=x5B.x3﹣x2=x C.x2•x3=x6D.(x3)2=x6 7.(3分)如图,⊙O中,=,∠ABC=70°.则∠BOC的度数为()A.100°B.90°C.80°D.70°8.(3分)某语文教师调查了本班10名学生平均每天的课外阅读时间,统计结果如下表所示:课外阅读时0.51 1.52间(小时)人数2341那么这10名学生平均每天的课外阅读时间的平均数和众数分别是()A.1.2和1.5B.1.2和4C.1.25和1.5D.1.25 和4 9.(3分)下列命题是假命题的是()A.平行四边形的对角线互相平分B.矩形的对角线互相垂直C.菱形的对角线互相垂直平分D.正方形的对角线互相垂直平分且相等10.(3分)已知关于x 的分式方程+2=﹣的解为非负数,则正整数m的所有个数为()A.3B.4C.5D.611.(3分)古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点G将一线段MN分为两线段MG,GN,使得其中较长的一段MG是全长MN与较短的一段GN的比例中项,即满足==,后人把这个数称为“黄金分割”数,把点G称为线段MN的“黄金分割”点.如图,在△ABC中,已知AB=AC=3,BC=4,若D,E是边BC的两个“黄金分割”点,则△ADE的面积为()A.10﹣4B.3﹣5C.D.20﹣8 12.(3分)已知二次函数y=x2﹣2bx+2b2﹣4c(其中x是自变量)的图象经过不同两点A(1﹣b,m),B(2b+c,m),且该二次函数的图象与x轴有公共点,则b+c的值为()A.﹣1B.2C.3D.4二、填空题(本大题共4个小题,每小题3分,共12分).13.(3分)函数y=的自变量x的取值范围是.14.(3分)若x a+1y3与x4y3是同类项,则a的值是.15.(3分)已知x1,x2是一元二次方程x2﹣4x﹣7=0的两个实数根,则x12+4x1x2+x22的值是.16.(3分)如图,在矩形ABCD中,E,F分别为边AB,AD的中点,BF与EC、ED分别交于点M,N.已知AB=4,BC=6,则MN的长为.三、本大题共3个小题,每小题6分,共18分.17.(6分)计算:|﹣5|﹣(π﹣2020)0+2cos60°+()﹣1.18.(6分)如图,AC平分∠BAD,AB=AD.求证:BC=DC.19.(6分)化简:(+1)÷.四、本大题共2个小题,每小题7分,共14分.20.(7分)某汽车公司为了解某型号汽车在同一条件下的耗油情况,随机抽取了n辆该型号汽车耗油1L所行使的路程作为样本,并绘制了如图不完整的频数分布直方图和扇形统计图.根据题中已有信息,解答下列问题:(1)求n的值,并补全频数分布直方图;(2)若该汽车公司有600辆该型号汽车.试估计耗油1L所行使的路程低于13km的该型号汽车的辆数;(3)从被抽取的耗油1L所行使路程在12≤x<12.5,14≤x<14.5这两个范围内的4辆汽车中,任意抽取2辆,求抽取的2辆汽车来自同一范围的概率.21.(7分)某校举办“创建全国文明城市”知识竞赛,计划购买甲、乙两种奖品共30件.其中甲种奖品每件30元,乙种奖品每件20元.(1)如果购买甲、乙两种奖品共花费800元,那么这两种奖品分别购买了多少件?(2)若购买乙种奖品的件数不超过甲种奖品件数的3倍.如何购买甲、乙两种奖品,使得总花费最少?五、本大题共2个小题,每小题8分,共16分.22.(8分)如图,在平面直角坐标系xOy中,已知一次函数y=x+b 的图象与反比例函数y=的图象相交于A,B两点,且点A的坐标为(a,6).(1)求该一次函数的解析式;(2)求△AOB的面积.23.(8分)如图,为了测量某条河的对岸边C,D两点间的距离.在河的岸边与CD平行的直线EF上取两点A,B,测得∠BAC=45°,∠ABC=37°,∠DBF=60°,量得AB长为70米.求C,D两点间的距离(参考数据:sin37°≈,cos37°≈,tan37°≈).六、本大题共2个小题,每小题12分,共24分.24.(12分)如图,AB是⊙O的直径,点D在⊙O上,AD的延长线与过点B的切线交于点C,E为线段AD上的点,过点E的弦FG⊥AB于点H.(1)求证:∠C=∠AGD;(2)已知BC=6.CD=4,且CE=2AE,求EF的长.25.(12分)如图,已知抛物线y=ax2+bx+c经过A(﹣2,0),B(4,0),C(0,4)三点.(1)求该抛物线的解析式;(2)经过点B的直线交y轴于点D,交线段AC于点E,若BD =5DE.①求直线BD的解析式;②已知点Q在该抛物线的对称轴l上,且纵坐标为1,点P是该抛物线上位于第一象限的动点,且在l右侧,点R是直线BD上的动点,若△PQR是以点Q为直角顶点的等腰直角三角形,求点P的坐标.2020年四川省泸州市中考数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.参考答案解:2的倒数是.故选:A.2.参考答案解:867000=8.67×105,故选:C.3.参考答案解:从正面看是一个矩形,矩形的中间有一条纵向的实线.故选:B.4.参考答案解:∵将点A(﹣2,3)先向右平移4个单位,∴点A的对应点A′的坐标是(﹣2+4,3),即(2,3).故选:C.5.参考答案解:A.正方形是中心对称图形,故本选项不合题意;B.正五边形不是中心对称图形,故本选项符合题意;C.正六边形是中心对称图形,故本选项不合题意;D.正八边形是中心对称图形,故本选项不合题意;故选:B.6.参考答案解:A.x2与x3不是同类项,所以不能合并,故本选项不合题意;B.x3与﹣x2不是同类项,所以不能合并,故本选项不合题意;C.x2•x3=x5,故本选项不合题意;D.(x3)2=x6,故本选项符合题意.故选:D.7.参考答案解:∵=,∴∠ABC=∠ACB=70°,∴∠A=180°﹣70°﹣70°=40°,∴∠BOC=2∠A=80°.故选:C.8.参考答案解:10名学生的每天阅读时间的平均数为=1.2;学生平均每天阅读时间出现次数最多的是1.5小时,共出现4次,因此众数是1.5;故选:A.9.参考答案解:A、平行四边形的对角线互相平分,是真命题;B、矩形的对角线互相相等,不是垂直,原命题是假命题;C、菱形的对角线互相垂直平分,是真命题;D、正方形的对角线互相垂直平分且相等,是真命题;故选:B.10.参考答案解:去分母,得:m+2(x﹣1)=3,移项、合并,得:x=,∵分式方程的解为非负数,∴5﹣m≥0且≠1,解得:m≤5且m≠3,∴正整数解有1,2,4,5共4个,故选:B.11.参考答案解:作AH⊥BC于H,如图,∵AB=AC,∴BH=CH=BC=2,在Rt△ABH中,AH==,∵D,E是边BC的两个“黄金分割”点,∴BE=BC=2(﹣1)=2﹣2,∴HE=BE﹣BH=2﹣2﹣2=2﹣4,∴DE=2HE=4﹣8∴S △ADE=×(4﹣8)×=10﹣4.故选:A.12.参考答案解:由二次函数y=x2﹣2bx+2b2﹣4c的图象与x轴有公共点,∴(﹣2b)2﹣4×1×(2b2﹣4c)≥0,即b2﹣4c≤0 ①,由抛物线的对称轴x=﹣=b,抛物线经过不同两点A(1﹣b,m),B(2b+c,m),b=,即,c=b﹣1 ②,②代入①得,b2﹣4(b﹣1)≤0,即(b﹣2)2≤0,因此b=2,c=b﹣1=2﹣1=1,∴b+c=2+1=3,故选:C.二、填空题(本大题共4个小题,每小题3分,共12分).13.参考答案解:根据题意得,x﹣2≥0,解得x≥2.故答案为:x≥2.14.参考答案解:∵x a+1y3与x4y3是同类项,∴a+1=4,解得a=3,故答案为:3.15.参考答案解:根据题意得x1+x2=4,x1x2=﹣7所以,x12+4x1x2+x22=(x1+x2)2+2x1x2=16﹣14=2故答案为2.16.参考答案解:延长CE、DA交于Q,如图1,∵四边形ABCD是矩形,BC=6,∴∠BAD=90°,AD=BC=6,AD∥BC,∵F为AD中点,∴AF=DF=3,在Rt△BAF中,由勾股定理得:BF===5,∵AD∥BC,∴∠Q=∠ECB,∵E为AB的中点,AB=4,∴AE=BE=2,在△QAE和△CBE中∴△QAE≌△CBE(AAS),∴AQ=BC=6,即QF=6+3=9,∵AD∥BC,∴△QMF∽△CMB,∴==,∵BF=5,∴BM=2,FM=3,延长BF和CD,交于W,如图2,同理AB=DW=4,CW=8,BF=FM=5,∵AB∥CD,∴△BNE∽△WND,∴=,∴=,解得:BN=,∴MN=BN﹣BM=﹣2=,故答案为:.三、本大题共3个小题,每小题6分,共18分.17.参考答案解:原式=5﹣1+2×+3=5﹣1+1+3=8.18.参考答案证明:∵AC平分∠BAD,∴∠BAC=∠DAC,又∵AB=AD,AC=AC,∴△ABC≌△ADC(SAS),∴BC=CD.19.参考答案解:原式=.四、本大题共2个小题,每小题7分,共14分.20.参考答案解:(1)12÷30%=40,即n=40,B组的车辆为:40﹣2﹣16﹣12﹣2=8(辆),补全频数分布直方图如图:(2)600×=150(辆),即估计耗油1L所行使的路程低于13km的该型号汽车的辆数为150辆;(3)设行使路程在12≤x<12.5范围内的2辆车记为为A、B,行使路程在14≤x<14.5范围内的2辆车记为C、D,画树状图如图:共有12个等可能的结果,抽取的2辆汽车来自同一范围的结果有4个,∴抽取的2辆汽车来自同一范围的概率为=.21.参考答案解:(1)设甲种奖品购买了x件,乙种奖品购买了(30﹣x)件,根据题意得30x+20(30﹣x)=800,解得x=20,则30﹣x=10,答:甲种奖品购买了20件,乙种奖品购买了10件;(2)设甲种奖品购买了x件,乙种奖品购买了(30﹣x)件,设购买两种奖品的总费用为w元,根据题意得30﹣x≤3x,解得x≥7.5,w=30x+20(30﹣x)=10x+600,∵10>0,∴w随x的增大而减小,∴x=8时,w有最小值为:w=10×8+600=680.答:当购买甲种奖品8件、乙种奖品22件时,总花费最小,最小费用为680元.五、本大题共2个小题,每小题8分,共16分.22.参考答案解:(1)如图,∵点A(a,6)在反比例函数y=的图象上,∴6a=12,∴a=2,∴A(2,6),把A(2,6)代入一次函数y=x+b中得:=6,∴b=3,∴该一次函数的解析式为:y=x+3;(2)由得:,,∴B(﹣4,﹣3),当x=0时,y=3,即OC=3,∴△AOB的面积=S△ACO+S△BCO==9.23.参考答案解:过点C、D分别作CM⊥EF,DN⊥EF,垂足为M、N,在Rt△AMC中,∵∠BAC=45°,∴AM=MC,在Rt△BMC中,∵∠ABC=37°,tan∠ABC=,∴BM==CM,∵AB=70=AM+BM=CM+CM,∴CM=30=DN,在Rt△BDN中,∵∠DBN=60°,∴BN===10,∴CD=MN=MB+BN=×30+10=40+10,答:C,D两点间的距离为(40+10)米,六、本大题共2个小题,每小题12分,共24分.24.参考答案(1)证明:如图1,连接BD,∵AB是⊙O的直径,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∵BC是⊙O的切线,∴∠ABC=90°,∴∠C+∠CAB=90°,∴∠C=∠ABD,∵∠AGD=∠ABD,∴∠AGD=∠C;(2)解:∵∠BDC=∠ABC=90°,∠C=∠C,∴△ABC∽△BDC,∴,∴=,∴AC=9,∴AB==3,∵CE=2AE,∴AE=3,CE=6,∵FH⊥AB,∴FH∥BC,∴△AHE∽△ABC,∴,∴==,∴AH=,EH=2,如图2,连接AF,BF,∵AB是⊙O的直径,∴∠AFB=90°,∴∠AEH+∠BFH=∠AFH+∠FAH=90°,∴∠FAH=∠BFH,∴△AFH∽△FBH,∴=,∴=,∴FH=,∴EF=﹣2.25.参考答案解:(1)∵抛物线y=ax2+bx+c经过A(﹣2,0),B(4,0),∴设抛物线的解析式为y=a(x+2)(x﹣4),将点C坐标(0,4)代入抛物线的解析式为y=a(x+2)(x﹣4)中,得﹣8a=4,∴a=﹣,∴抛物线的解析式为y=﹣(x+2)(x﹣4)=﹣x2+x+4;(2)①如图1,设直线AC的解析式为y=kx+b',将点A(﹣2,0),C(0,4),代入y=kx+b'中,得,∴,∴直线AC的解析式为y=2x+4,过点E作EF⊥x轴于F,∴OD∥EF,∴△BOD∽△BFE,∴,∵B(4,0),∴OB=4,∵BD=5DE,∴==,∴BF=×OB=×4=,∴OF=BF﹣OB=﹣4=,将x=﹣代入直线AC:y=2x+4中,得y=2×(﹣)+4=,∴E(﹣,),设直线BD的解析式为y=mx+n,∴,∴,∴直线BD的解析式为y=﹣x+2;②Ⅰ、当点R在直线l右侧时,∵抛物线与x轴的交点坐标为A(﹣2,0)和B(4,0),∴抛物线的对称轴为直线x=1,∴点Q(1,1),如图2,设点P(x,﹣x2+x+4)(1<x<4),过点P作PG⊥l于G,过点R作RH⊥l于H,∴PG=x﹣1,GQ=﹣x2+x+4﹣1=﹣x2+x+3,∵PG⊥l,∴∠PGQ=90°,∴∠GPQ+∠PQG=90°,∵△PQR是以点Q为直角顶点的等腰直角三角形,∴PQ=RQ,∠PQR=90°,∴∠PQG+∠RQH=90°,∴∠GPQ=∠HQR,∴△PQG≌△QRH(AAS),∴RH=GQ=﹣x2+x+3,QH=PG=x﹣1,∴R(﹣x2+x+4,2﹣x)由①知,直线BD的解析式为y=﹣x+2,∴﹣(﹣x2+x+4)+2=2﹣x,∴x=2或x=4(舍),当x=2时,y=﹣x2+x+4=﹣×4+2+4=4,∴P(2,4),Ⅱ、当点R在直线l左侧时,记作R',设点P'(x,﹣x2+x+4)(1<x<4),过点P'作P'G'⊥l于G',过点R'作R'H'⊥l于H,∴P'G'=x﹣1,G'Q=﹣x2+x+4﹣1=﹣x2+x+3,同Ⅰ的方法得,△P'QG'≌△QR'H'(AAS),∴R'H'=G'Q=﹣x2+x+3,QH'=P'G'=x﹣1,∴R'(x2﹣x﹣2,x),由①知,直线BD的解析式为y=﹣x+2,∴﹣(x2﹣x﹣2)+2=x,∴x=﹣1+或x=﹣1﹣(舍),当x=﹣1+时,y=﹣x2+x+4=2﹣4,∴P'(﹣1+,2﹣4),即满足条件的点P的坐标为(2,4)或(﹣1+,2﹣4).。
2020年四川省泸州市中考数学试卷
2020年四川省泸州市中考数学试卷一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.(3分)2的倒数是( )A .12B .−12C .2D .﹣22.(3分)将867000用科学记数法表示为( )A .867×103B .8.67×104C .8.67×105D .8.67×1063.(3分)如图所示的几何体的主视图是( )A .B .C .D .4.(3分)在平面直角坐标系中,将点A (﹣2,3)向右平移4个单位长度,得到的对应点A '的坐标为( )A .(2,7)B .(﹣6,3)C .(2,3)D .(﹣2,﹣1)5.(3分)下列正多边形中,不是中心对称图形的是( )A .B .C .D .6.(3分)下列各式运算正确的是( )A .x 2+x 3=x 5B .x 3﹣x 2=xC .x 2•x 3=x 6D .(x 3)2=x 67.(3分)如图,⊙O 中,AB̂=AC ̂,∠ABC =70°.则∠BOC 的度数为( )A .100°B .90°C .80°D .70°8.(3分)某语文教师调查了本班10名学生平均每天的课外阅读时间,统计结果如下表所示:课外阅读时间(小时)0.5 1 1.5 2人数 2 3 4 1 那么这10名学生平均每天的课外阅读时间的平均数和众数分别是( )A .1.2和1.5B .1.2和4C .1.25和1.5D .1.25 和49.(3分)下列命题是假命题的是( )A .平行四边形的对角线互相平分B .矩形的对角线互相垂直C .菱形的对角线互相垂直平分D .正方形的对角线互相垂直平分且相等10.(3分)已知关于x 的分式方程m x−1+2=−31−x的解为非负数,则正整数m 的所有个数为( )A .3B .4C .5D .6 11.(3分)古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点G 将一线段MN 分为两线段MG ,GN ,使得其中较长的一段MG 是全长MN 与较短的一段GN 的比例中项,即满足MG MN =GN MG =√5−12,后人把√5−12这个数称为“黄金分割”数,把点G 称为线段MN 的“黄金分割”点.如图,在△ABC 中,已知AB =AC =3,BC =4,若D ,E 是边BC 的两个“黄金分割”点,则△ADE 的面积为( )A .10﹣4√5B .3√5−5C .5−2√52D .20﹣8√512.(3分)已知二次函数y =x 2﹣2bx +2b 2﹣4c (其中x 是自变量)的图象经过不同两点A (1﹣b ,m ),B (2b +c ,m ),且该二次函数的图象与x 轴有公共点,则b +c 的值为( )A .﹣1B .2C .3D .4二、填空题(本大题共4个小题,每小题3分,共12分).13.(3分)函数y =√x −2的自变量x 的取值范围是 .14.(3分)若x a +1y 3与12x 4y 3是同类项,则a 的值是 . 15.(3分)已知x 1,x 2是一元二次方程x 2﹣4x ﹣7=0的两个实数根,则x 12+4x 1x 2+x 22的值是 .16.(3分)如图,在矩形ABCD 中,E ,F 分别为边AB ,AD 的中点,BF 与EC 、ED 分别交于点M ,N .已知AB =4,BC =6,则MN 的长为 .三、本大题共3个小题,每小题6分,共18分.17.(6分)计算:|﹣5|﹣(π﹣2020)0+2cos60°+(13)﹣1. 18.(6分)如图,AC 平分∠BAD ,AB =AD .求证:BC =DC .19.(6分)化简:(x+2x +1)÷x 2−1x. 四、本大题共2个小题,每小题7分,共14分.20.(7分)某汽车公司为了解某型号汽车在同一条件下的耗油情况,随机抽取了n 辆该型号汽车耗油1L 所行使的路程作为样本,并绘制了如图不完整的频数分布直方图和扇形统计图.根据题中已有信息,解答下列问题:(1)求n的值,并补全频数分布直方图;(2)若该汽车公司有600辆该型号汽车.试估计耗油1L所行使的路程低于13km的该型号汽车的辆数;(3)从被抽取的耗油1L所行使路程在12≤x<12.5,14≤x<14.5这两个范围内的4辆汽车中,任意抽取2辆,求抽取的2辆汽车来自同一范围的概率.21.(7分)某校举办“创建全国文明城市”知识竞赛,计划购买甲、乙两种奖品共30件.其中甲种奖品每件30元,乙种奖品每件20元.(1)如果购买甲、乙两种奖品共花费800元,那么这两种奖品分别购买了多少件?(2)若购买乙种奖品的件数不超过甲种奖品件数的3倍.如何购买甲、乙两种奖品,使得总花费最少?五、本大题共2个小题,每小题8分,共16分.22.(8分)如图,在平面直角坐标系xOy中,已知一次函数y=32x+b的图象与反比例函数y=12x的图象相交于A,B两点,且点A的坐标为(a,6).(1)求该一次函数的解析式;(2)求△AOB的面积.23.(8分)如图,为了测量某条河的对岸边C,D两点间的距离.在河的岸边与CD平行的直线EF上取两点A,B,测得∠BAC=45°,∠ABC=37°,∠DBF=60°,量得AB长为70米.求C,D两点间的距离(参考数据:sin37°≈35,cos37°≈45,tan37°≈34).六、本大题共2个小题,每小题12分,共24分.24.(12分)如图,AB是⊙O的直径,点D在⊙O上,AD的延长线与过点B的切线交于点C,E为线段AD上的点,过点E的弦FG⊥AB于点H.(1)求证:∠C=∠AGD;(2)已知BC=6.CD=4,且CE=2AE,求EF的长.25.(12分)如图,已知抛物线y=ax2+bx+c经过A(﹣2,0),B(4,0),C(0,4)三点.(1)求该抛物线的解析式;(2)经过点B的直线交y轴于点D,交线段AC于点E,若BD=5DE.①求直线BD的解析式;②已知点Q在该抛物线的对称轴l上,且纵坐标为1,点P是该抛物线上位于第一象限的动点,且在l右侧,点R是直线BD上的动点,若△PQR是以点Q为直角顶点的等腰直角三角形,求点P的坐标.2020年四川省泸州市中考数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.(3分)2的倒数是( )A .12B .−12C .2D .﹣2 【解答】解:2的倒数是12.故选:A .2.(3分)将867000用科学记数法表示为( )A .867×103B .8.67×104C .8.67×105D .8.67×106【解答】解:867000=8.67×105,故选:C .3.(3分)如图所示的几何体的主视图是( )A .B .C .D .【解答】解:从正面看是一个矩形,矩形的中间有一条纵向的实线.故选:B .4.(3分)在平面直角坐标系中,将点A (﹣2,3)向右平移4个单位长度,得到的对应点A '的坐标为( )A .(2,7)B .(﹣6,3)C .(2,3)D .(﹣2,﹣1)【解答】解:∵将点A (﹣2,3)先向右平移4个单位,∴点A 的对应点A ′的坐标是(﹣2+4,3),即(2,3).故选:C .5.(3分)下列正多边形中,不是中心对称图形的是()A.B.C.D.【解答】解:A.正方形是中心对称图形,故本选项不合题意;B.正五边形不是中心对称图形,故本选项符合题意;C.正六边形是中心对称图形,故本选项不合题意;D.正八边形是中心对称图形,故本选项不合题意;故选:B.6.(3分)下列各式运算正确的是()A.x2+x3=x5B.x3﹣x2=x C.x2•x3=x6D.(x3)2=x6【解答】解:A.x2与x3不是同类项,所以不能合并,故本选项不合题意;B.x3与﹣x2不是同类项,所以不能合并,故本选项不合题意;C.x2•x3=x5,故本选项不合题意;D.(x3)2=x6,故本选项符合题意.故选:D.̂=AĈ,∠ABC=70°.则∠BOC的度数为()7.(3分)如图,⊙O中,ABA.100°B.90°C.80°D.70°̂=AĈ,【解答】解:∵AB∴∠ABC=∠ACB=70°,∴∠A=180°﹣70°﹣70°=40°,∴∠BOC=2∠A=80°.故选:C.8.(3分)某语文教师调查了本班10名学生平均每天的课外阅读时间,统计结果如下表所示:课外阅读时间(小时)0.5 1 1.5 2 人数 2 3 4 1那么这10名学生平均每天的课外阅读时间的平均数和众数分别是( )A .1.2和1.5B .1.2和4C .1.25和1.5D .1.25 和4【解答】解:10名学生的每天阅读时间的平均数为0.5×2+1×3+1.4×4+2×12+3+4+1=1.2; 学生平均每天阅读时间出现次数最多的是1.5小时,共出现4次,因此众数是1.5; 故选:A .9.(3分)下列命题是假命题的是( )A .平行四边形的对角线互相平分B .矩形的对角线互相垂直C .菱形的对角线互相垂直平分D .正方形的对角线互相垂直平分且相等【解答】解:A 、平行四边形的对角线互相平分,是真命题;B 、矩形的对角线互相相等,不是垂直,原命题是假命题;C 、菱形的对角线互相垂直平分,是真命题;D 、正方形的对角线互相垂直平分且相等,是真命题;故选:B .10.(3分)已知关于x 的分式方程m x−1+2=−31−x 的解为非负数,则正整数m 的所有个数为( )A .3B .4C .5D .6 【解答】解:去分母,得:m +2(x ﹣1)=3,移项、合并,得:x =5−m 2, ∵分式方程的解为非负数,∴5﹣m ≥0且5−m 2≠1,解得:m ≤5且m ≠3,∴正整数解有1,2,4,5共4个,故选:B .11.(3分)古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点G 将一线段MN 分为两线段MG ,GN ,使得其中较长的一段MG 是全长MN 与较短的一段GN 的比例中项,即满足MG MN =GN MG =√5−12,后人把√5−12这个数称为“黄金分割”数,把点G 称为线段MN 的“黄金分割”点.如图,在△ABC 中,已知AB =AC =3,BC =4,若D ,E 是边BC 的两个“黄金分割”点,则△ADE 的面积为( )A .10﹣4√5B .3√5−5C .5−2√52D .20﹣8√5【解答】解:作AH ⊥BC 于H ,如图,∵AB =AC ,∴BH =CH =12BC =2,在Rt △ABH 中,AH =√32−22=√5,∵D ,E 是边BC 的两个“黄金分割”点,∴BE =√5−12BC =2(√5−1)=2√5−2,∴HE =BE ﹣BH =2√5−2﹣2=2√5−4,∴DE =2HE =4√5−8∴S △ADE =12×(4√5−8)×√5=10﹣4√5. 故选:A .12.(3分)已知二次函数y =x 2﹣2bx +2b 2﹣4c (其中x 是自变量)的图象经过不同两点A (1﹣b ,m ),B (2b +c ,m ),且该二次函数的图象与x 轴有公共点,则b +c 的值为( )A .﹣1B .2C .3D .4【解答】解:由二次函数y =x 2﹣2bx +2b 2﹣4c 的图象与x 轴有公共点,∴(﹣2b )2﹣4×1×(2b 2﹣4c )≥0,即b 2﹣4c ≤0 ①,由抛物线的对称轴x =−−2b 2=b ,抛物线经过不同两点A (1﹣b ,m ),B (2b +c ,m ), b =1−b+2b+c 2,即,c =b ﹣1 ②, ②代入①得,b 2﹣4(b ﹣1)≤0,即(b ﹣2)2≤0,因此b =2,c =b ﹣1=2﹣1=1,∴b +c =2+1=3,故选:C .二、填空题(本大题共4个小题,每小题3分,共12分).13.(3分)函数y =√x −2的自变量x 的取值范围是 x ≥2 .【解答】解:根据题意得,x ﹣2≥0,解得x ≥2.故答案为:x ≥2.14.(3分)若x a +1y 3与12x 4y 3是同类项,则a 的值是 3 . 【解答】解:∵x a +1y 3与12x 4y 3是同类项,∴a +1=4,解得a =3,故答案为:3.15.(3分)已知x 1,x 2是一元二次方程x 2﹣4x ﹣7=0的两个实数根,则x 12+4x 1x 2+x 22的值是 2 .【解答】解:根据题意得则x 1+x 2=4,x 1x 2=﹣7所以,x 12+4x 1x 2+x 22=(x 1+x 2)2+2x 1x 2=16﹣14=2故答案为2.16.(3分)如图,在矩形ABCD 中,E ,F 分别为边AB ,AD 的中点,BF 与EC 、ED 分别交于点M ,N .已知AB =4,BC =6,则MN 的长为 43 .【解答】解:延长CE 、DA 交于Q ,如图1,∵四边形ABCD 是矩形,BC =6,∴∠BAD =90°,AD =BC =6,AD ∥BC ,∵F 为AD 中点,∴AF =DF =3,在Rt △BAF 中,由勾股定理得:BF =√AB 2+AF 2=√42+32=5,∵AD ∥BC ,∴∠Q =∠ECB ,∵E 为AB 的中点,AB =4,∴AE =BE =2,在△QAE 和△CBE 中{∠QEA =∠BEC ∠Q =∠ECB AE =BE∴△QAE ≌△CBE (AAS ),∴AQ =BC =6,即QF =6+3=9,∵AD ∥BC ,∴△QMF ∽△CMB ,∴FM BM =QF BC =96, ∵BF =5,∴BM =2,FM =3,延长BF 和CD ,交于W ,如图2,同理AB =DM =4,CW =8,BF =FM =5,∵AB ∥CD ,∴△BNE ∽△WND ,∴BN NF =BE DW , ∴BN 5−BN+5=24,解得:BN =103, ∴MN =BN ﹣BM =103−2=43, 故答案为:43. 三、本大题共3个小题,每小题6分,共18分.17.(6分)计算:|﹣5|﹣(π﹣2020)0+2cos60°+(13)﹣1. 【解答】解:原式=5﹣1+2×12+3=5﹣1+1+3=8.18.(6分)如图,AC 平分∠BAD ,AB =AD .求证:BC =DC .【解答】证明:∵AC 平分∠BAD ,∴∠BAC =∠DAC ,又∵AB =AD ,AC =AC ,∴△ABC ≌△ADC (SAS ),∴BC =CD .19.(6分)化简:(x+2x +1)÷x 2−1x. 【解答】解:原式=2x+2x ×x (x+1)(x−1)=2(x+1)x ×x (x+1)(x−1)=2x−1. 四、本大题共2个小题,每小题7分,共14分.20.(7分)某汽车公司为了解某型号汽车在同一条件下的耗油情况,随机抽取了n 辆该型号汽车耗油1L 所行使的路程作为样本,并绘制了如图不完整的频数分布直方图和扇形统计图.根据题中已有信息,解答下列问题:(1)求n 的值,并补全频数分布直方图;(2)若该汽车公司有600辆该型号汽车.试估计耗油1L 所行使的路程低于13km 的该型号汽车的辆数;(3)从被抽取的耗油1L 所行使路程在12≤x <12.5,14≤x <14.5这两个范围内的4辆汽车中,任意抽取2辆,求抽取的2辆汽车来自同一范围的概率.【解答】解:(1)12÷30%=40,即n =40,B 组的车辆为:40﹣2﹣16﹣12﹣2=8(辆),补全频数分布直方图如图:(2)600×2+840=150(辆),即估计耗油1L所行使的路程低于13km的该型号汽车的辆数为150辆;(3)设行使路程在12≤x<12.5范围内的2辆车记为为A、B,行使路程在14≤x<14.5范围内的2辆车记为C、D,画树状图如图:共有12个等可能的结果,抽取的2辆汽车来自同一范围的结果有4个,∴抽取的2辆汽车来自同一范围的概率为412=1 3.21.(7分)某校举办“创建全国文明城市”知识竞赛,计划购买甲、乙两种奖品共30件.其中甲种奖品每件30元,乙种奖品每件20元.(1)如果购买甲、乙两种奖品共花费800元,那么这两种奖品分别购买了多少件?(2)若购买乙种奖品的件数不超过甲种奖品件数的3倍.如何购买甲、乙两种奖品,使得总花费最少?【解答】解:(1)设甲种奖品购买了x件,乙种奖品购买了(30﹣x)件,根据题意得30x+20(30﹣x)=800,解得x=20,则30﹣x=10,答:甲种奖品购买了20件,乙种奖品购买了10件;(2)设甲种奖品购买了x件,乙种奖品购买了(30﹣x)件,设购买两种奖品的总费用为w元,根据题意得30﹣x≤3x,解得x≥7.5,w=30x+20(30﹣x)=10x+600,∵10>0,∴w随x的增大而减小,∴x=8时,w有最小值为:w=10×8+600=680.答:当购买甲种奖品8件、乙种奖品22件时,总花费最小,最小费用为680元.五、本大题共2个小题,每小题8分,共16分.22.(8分)如图,在平面直角坐标系xOy中,已知一次函数y=32x+b的图象与反比例函数y=12x的图象相交于A,B两点,且点A的坐标为(a,6).(1)求该一次函数的解析式;(2)求△AOB的面积.【解答】解:(1)如图,∵点A(a,6)在反比例函数y=12x的图象上,∴6a=12,∴a=2,∴A(2,6),把A(2,6)代入一次函数y=32x+b中得:32×2+b=6,∴b=3,∴该一次函数的解析式为:y =32x +3;(2)由{y =32x +3y =12x得:{x 1=−4y 1=−3,{x 2=2y 2=6, ∴B (﹣4,﹣3),当x =0时,y =3,即OC =3,∴△AOB 的面积=S △ACO +S △BCO =12×3×2+12×3×4=9.23.(8分)如图,为了测量某条河的对岸边C ,D 两点间的距离.在河的岸边与CD 平行的直线EF 上取两点A ,B ,测得∠BAC =45°,∠ABC =37°,∠DBF =60°,量得AB 长为70米.求C ,D 两点间的距离(参考数据:sin37°≈35,cos37°≈45,tan37°≈34).【解答】解:过点C 、D 分别作CM ⊥EF ,DN ⊥EF ,垂足为M 、N ,在Rt △AMC 中,∵∠BAC =45°,∴AM =MC ,在Rt △BMC 中,∵∠ABC =37°,tan ∠ABC =CM BM ,∴BM =CM tan37°=43CM ,∵AB =70=AM +BM =CM +43CM ,∴CM =30=DN ,在Rt △BDN 中,∵∠DBN =60°,∴BN =DN tan60°=30√3=10√3, ∴CD =MN =MB +BN =43×30+10√3=40+10√3, 答:C ,D 两点间的距离为(40+10√3)米,六、本大题共2个小题,每小题12分,共24分.24.(12分)如图,AB 是⊙O 的直径,点D 在⊙O 上,AD 的延长线与过点B 的切线交于点C ,E 为线段AD 上的点,过点E 的弦FG ⊥AB 于点H .(1)求证:∠C =∠AGD ;(2)已知BC =6.CD =4,且CE =2AE ,求EF 的长.【解答】(1)证明:连接BD ,∵AB 是⊙O 的直径,∴∠ADB =90°,∴∠DAB +∠DBA =90°,∵BC 是⊙O 的切线,∴∠ABC =90°,∴∠C +∠CAB =90°,∴∠C =∠ABD ,∵∠AGD =∠ABD ,∴∠AGD =∠C ;(2)解:∵∠BDC =∠ABC =90°,∠C =∠C ,∴△ABC ∽△BDC ,∴BC AC =CD BC , ∴6AC =46,∴AC =9,∴AB =√AC 2−BC 2=3√5,∵CE =2AE ,∴AE =3,CE =6,∵FH ⊥AB ,∴FH ∥BC ,∴△AHE ∽△ABC ,∴AH AB =EH BC =AE AC , ∴3√5=EH6=39,∴AH =√5,EH =2,连接AF ,BF ,∵AB 是⊙O 的直径,∴∠AFB =90°,∴∠AEH +∠BFH =∠AFH +∠F AH =90°,∴∠F AH =∠BFH ,∴△AFH ∽△FBH ,∴FH AH =BH FH , ∴√5=2√5FH, ∴FH =√10,∴EF =√10−2.25.(12分)如图,已知抛物线y =ax 2+bx +c 经过A (﹣2,0),B (4,0),C (0,4)三点.(1)求该抛物线的解析式;(2)经过点B 的直线交y 轴于点D ,交线段AC 于点E ,若BD =5DE .①求直线BD 的解析式;②已知点Q 在该抛物线的对称轴l 上,且纵坐标为1,点P 是该抛物线上位于第一象限的动点,且在l 右侧,点R 是直线BD 上的动点,若△PQR 是以点Q 为直角顶点的等腰直角三角形,求点P 的坐标.【解答】解:(1)∵抛物线y =ax 2+bx +c 经过A (﹣2,0),B (4,0),∴设抛物线的解析式为y =a (x +2)(x ﹣4),将点C 坐标(0,4)代入抛物线的解析式为y =a (x +2)(x ﹣4)中,得﹣8a =4, ∴a =−12,∴抛物线的解析式为y =−12(x +2)(x ﹣4)=−12x 2+x +4;(2)①如图1,设直线AC 的解析式为y =kx +b ',将点A (﹣2,0),C (0,4),代入y =kx +b '中,得{−2k +b ′=0b′=4, ∴{k =2b′=4, ∴直线AC 的解析式为y =2x +4,过点E 作EF ⊥x 轴于F ,∴OD ∥EF ,∴△BOD ∽△BFE ,∴OB BF =BD BE ,∵B (4,0),∴OB =4,∵BD =5DE ,∴BD BE =BD BD+DE =5DE 5DE+BE =56, ∴BF =BE BD ×OB =65×4=245,∴OF =BF ﹣OB =245−4=45, 将x =−45代入直线AC :y =2x +4中,得y =2×(−45)+4=125,∴E (−45,125),设直线BD 的解析式为y =mx +n ,∴{4m +n =0−45m +n =125, ∴{m =−12n =2, ∴直线BD 的解析式为y =−12x +2;②Ⅰ、当点R 在直线l 右侧时,∵抛物线与x 轴的交点坐标为A (﹣2,0)和B (4,0), ∴抛物线的对称轴为直线x =1,∴点Q (1,1),如图2,设点P (x ,−12x 2+x +4)(1<x <4),过点P 作PG ⊥l 于G ,过点R 作RH ⊥l 于H ,∴PG =x ﹣1,GQ =−12x 2+x +4﹣1=−12x 2+x +3,∵PG ⊥l ,∴∠PGQ =90°,∴∠GPQ +∠PQG =90°,∵△PQR 是以点Q 为直角顶点的等腰直角三角形,∴PQ =RQ ,∠PQR =90°,∴∠PQG +∠RQH =90°,∴∠GPQ=∠HQR,∴△PQG≌△QRH(AAS),∴RH=GQ=−12x2+x+3,QH=PG=x﹣1,∴R(−12x2+x+4,2﹣x),由①知,直线BD的解析式为y=−12x+2,∴−12(−12x2+x+4)+2=2﹣x,∴x=2或x=4(舍),当x=2时,y=−12x2+x+4=−12×4+2+4=4,∴P(2,4),Ⅱ、当点R在直线l左侧时,记作R',设点P'(x,−12x2+x+4)(1<x<4),过点P'作P'G'⊥l于G',过点R'作R'H'⊥l于H,∴P'G'=x﹣1,G'Q=−12x2+x+4﹣1=−12x2+x+3,同Ⅰ的方法得,△P'QG'≌△QR'H'(AAS),∴R'H'=G'Q=−12x2+x+3,QH'=P'G'=x﹣1,∴R'(12x2﹣x﹣2,x),由①知,直线BD的解析式为y=−12x+2,∴−12(12x2﹣x﹣2)+2=x,∴x=﹣1+√13或x=﹣1−√13(舍),当x=﹣1+√13时,y=−12x2+x+4=2√13−4,∴P'(﹣1+√13,2√13−4),即满足条件的点P的坐标为(2,4)或(﹣1+√13,2√13−4).。
2020年四川省泸州市中考数学试卷
A'的坐标为( )
A.(2,7)
B.(﹣6,3)
C.(2,3)
D.(﹣2,﹣1)
5.(3 分)下列正多边形中,不是中心对称图形的是( )
A.
B.
C.
D.
6.(3 分)下列各式运算正确的是( )
A.x2+x3=x5
B.x3﹣x2=x
C.x2•x3=x6
D.(x3)2=x6
7.(3 分)如图,⊙O 中,
———————欢迎下载,祝您学习进步,成绩提升———————
(1)求 n 的值,并补全频数分布直方图; (2)若该汽车公司有 600 辆该型号汽车.试估计耗油 1L 所行使的路程低于 13km 的该型 号汽车的辆数; (3)从被抽取的耗油 1L 所行使路程在 12≤x<12.5,14≤x<14.5 这两个范围内的 4 辆 汽车中,任意抽取 2 辆,求抽取的 2 辆汽车来自同一范围的概率. 21.(7 分)某校举办“创建全国文明城市”知识竞赛,计划购买甲、乙两种奖品共 30 件.其 中甲种奖品每件 30 元,乙种奖品每件 20 元. (1)如果购买甲、乙两种奖品共花费 800 元,那么这两种奖品分别购买了多少件? (2)若购买乙种奖品的件数不超过甲种奖品件数的 3 倍.如何购买甲、乙两种奖品,使 得总花费最少? 五、本大题共 2 个小题,每小题 8 分,共 16 分. 22.(8 分)如图,在平面直角坐标系 xOy 中,已知一次函数 y x+b 的图象与反比例函数 y 的图象相交于 A,B 两点,且点 A 的坐标为(a,6). (1)求该一次函数的解析式; (2)求△AOB 的面积.
D.4
13.(3 分)函数 y
的自变量 x 的取值范围是
.
14.(3 分)若 xa+1y3 与 x4y3 是同类项,则 a 的值是
2020年四川省泸州市中考数学试卷及答案
2020年四川省泸州市中考数学试卷及答案一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.(3分)2的倒数是()A.B.C.2D.﹣22.(3分)将867000用科学记数法表示为()A.867×103B.8.67×104C.8.67×105D.8.67×106 3.(3分)如图所示的几何体的主视图是()A.B.C.D.4.(3分)在平面直角坐标系中,将点A(﹣2,3)向右平移4个单位长度,得到的对应点A'的坐标为()A.(2,7)B.(﹣6,3)C.(2,3)D.(﹣2,﹣1)5.(3分)下列正多边形中,不是中心对称图形的是()A.B.C.D.6.(3分)下列各式运算正确的是()A.x2+x3=x5B.x3﹣x2=x C.x2•x3=x6D.(x3)2=x6 7.(3分)如图,⊙O中,,∠ABC=70°.则∠BOC的度数为()A.100°B.90°C.80°D.70°8.(3分)某语文教师调查了本班10名学生平均每天的课外阅读时间,统计结果如下表所示:0.51 1.52课外阅读时间(小时)人数2341那么这10名学生平均每天的课外阅读时间的平均数和众数分别是()A.1.2和1.5B.1.2和4C.1.25和1.5D.1.25 和4 9.(3分)下列命题是假命题的是()A.平行四边形的对角线互相平分B.矩形的对角线互相垂直C.菱形的对角线互相垂直平分D.正方形的对角线互相垂直平分且相等10.(3分)已知关于x 的分式方程2的解为非负数,则正整数m的所有个数为()A.3B.4C.5D.611.(3分)古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点G将一线段MN分为两线段MG,GN,使得其中较长的一段MG是全长MN与较短的一段GN 的比例中项,即满足,后人把这个数称为“黄金分割”数,把点G称为线段MN的“黄金分割”点.如图,在△ABC中,已知AB=AC =3,BC=4,若D,E是边BC的两个“黄金分割”点,则△ADE的面积为()A.10﹣4B.35C.D.20﹣812.(3分)已知二次函数y=x2﹣2bx+2b2﹣4c(其中x是自变量)的图象经过不同两点A (1﹣b,m),B(2b+c,m),且该二次函数的图象与x轴有公共点,则b+c的值为()A.﹣1B.2C.3D.4二、填空题(本大题共4个小题,每小题3分,共12分).13.(3分)函数y的自变量x的取值范围是.14.(3分)若x a+1y3与x4y3是同类项,则a的值是.15.(3分)已知x1,x2是一元二次方程x2﹣4x﹣7=0的两个实数根,则x12+4x1x2+x22的值是.16.(3分)如图,在矩形ABCD中,E,F分别为边AB,AD的中点,BF与EC、ED分别交于点M,N.已知AB=4,BC=6,则MN的长为.三、本大题共3个小题,每小题6分,共18分.17.(6分)计算:|﹣5|﹣(π﹣2020)0+2cos60°+()﹣1.18.(6分)如图,AC平分∠BAD,AB=AD.求证:BC=DC.19.(6分)化简:(1).四、本大题共2个小题,每小题7分,共14分.20.(7分)某汽车公司为了解某型号汽车在同一条件下的耗油情况,随机抽取了n辆该型号汽车耗油1L所行使的路程作为样本,并绘制了如图不完整的频数分布直方图和扇形统计图.根据题中已有信息,解答下列问题:(1)求n的值,并补全频数分布直方图;(2)若该汽车公司有600辆该型号汽车.试估计耗油1L所行使的路程低于13km的该型号汽车的辆数;(3)从被抽取的耗油1L所行使路程在12≤x<12.5,14≤x<14.5这两个范围内的4辆汽车中,任意抽取2辆,求抽取的2辆汽车来自同一范围的概率.21.(7分)某校举办“创建全国文明城市”知识竞赛,计划购买甲、乙两种奖品共30件.其中甲种奖品每件30元,乙种奖品每件20元.(1)如果购买甲、乙两种奖品共花费800元,那么这两种奖品分别购买了多少件?(2)若购买乙种奖品的件数不超过甲种奖品件数的3倍.如何购买甲、乙两种奖品,使得总花费最少?五、本大题共2个小题,每小题8分,共16分.22.(8分)如图,在平面直角坐标系xOy中,已知一次函数y x+b的图象与反比例函数y的图象相交于A,B两点,且点A的坐标为(a,6).(1)求该一次函数的解析式;(2)求△AOB的面积.23.(8分)如图,为了测量某条河的对岸边C,D两点间的距离.在河的岸边与CD平行的直线EF上取两点A,B,测得∠BAC=45°,∠ABC=37°,∠DBF=60°,量得AB长为70米.求C,D两点间的距离(参考数据:sin37°,cos37°,tan37°).六、本大题共2个小题,每小题12分,共24分.24.(12分)如图,AB是⊙O的直径,点D在⊙O上,AD的延长线与过点B的切线交于点C,E为线段AD上的点,过点E的弦FG⊥AB于点H.(1)求证:∠C=∠AGD;(2)已知BC=6.CD=4,且CE=2AE,求EF的长.25.(12分)如图,已知抛物线y=ax2+bx+c经过A(﹣2,0),B(4,0),C(0,4)三点.(1)求该抛物线的解析式;(2)经过点B的直线交y轴于点D,交线段AC于点E,若BD=5DE.①求直线BD的解析式;②已知点Q在该抛物线的对称轴l上,且纵坐标为1,点P是该抛物线上位于第一象限的动点,且在l右侧,点R是直线BD上的动点,若△PQR是以点Q为直角顶点的等腰直角三角形,求点P的坐标.2020年四川省泸州市中考数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.(3分)2的倒数是()A.B.C.2D.﹣2【解答】解:2的倒数是.故选:A.2.(3分)将867000用科学记数法表示为()A.867×103B.8.67×104C.8.67×105D.8.67×106【解答】解:867000=8.67×105,故选:C.3.(3分)如图所示的几何体的主视图是()A.B.C.D.【解答】解:从正面看是一个矩形,矩形的中间有一条纵向的实线.故选:B.4.(3分)在平面直角坐标系中,将点A(﹣2,3)向右平移4个单位长度,得到的对应点A'的坐标为()A.(2,7)B.(﹣6,3)C.(2,3)D.(﹣2,﹣1)【解答】解:∵将点A(﹣2,3)先向右平移4个单位,∴点A的对应点A′的坐标是(﹣2+4,3),即(2,3).故选:C.5.(3分)下列正多边形中,不是中心对称图形的是()A.B.C.D.【解答】解:A.正方形是中心对称图形,故本选项不合题意;B.正五边形不是中心对称图形,故本选项符合题意;C.正六边形是中心对称图形,故本选项不合题意;D.正八边形是中心对称图形,故本选项不合题意;故选:B.6.(3分)下列各式运算正确的是()A.x2+x3=x5B.x3﹣x2=x C.x2•x3=x6D.(x3)2=x6【解答】解:A.x2与x3不是同类项,所以不能合并,故本选项不合题意;B.x3与﹣x2不是同类项,所以不能合并,故本选项不合题意;C.x2•x3=x5,故本选项不合题意;D.(x3)2=x6,故本选项符合题意.故选:D.7.(3分)如图,⊙O中,,∠ABC=70°.则∠BOC的度数为()A.100°B.90°C.80°D.70°【解答】解:∵,∴∠ABC=∠ACB=70°,∴∠A=180°﹣70°﹣70°=40°,∴∠BOC=2∠A=80°.故选:C.8.(3分)某语文教师调查了本班10名学生平均每天的课外阅读时间,统计结果如下表所示:课外阅读时间0.51 1.52(小时)人数2341那么这10名学生平均每天的课外阅读时间的平均数和众数分别是()A.1.2和1.5B.1.2和4C.1.25和1.5D.1.25 和4【解答】解:10名学生的每天阅读时间的平均数为 1.2;学生平均每天阅读时间出现次数最多的是1.5小时,共出现4次,因此众数是1.5;故选:A.9.(3分)下列命题是假命题的是()A.平行四边形的对角线互相平分B.矩形的对角线互相垂直C.菱形的对角线互相垂直平分D.正方形的对角线互相垂直平分且相等【解答】解:A、平行四边形的对角线互相平分,是真命题;B、矩形的对角线互相相等,不是垂直,原命题是假命题;C、菱形的对角线互相垂直平分,是真命题;D、正方形的对角线互相垂直平分且相等,是真命题;故选:B.10.(3分)已知关于x 的分式方程2的解为非负数,则正整数m的所有个数为()A.3B.4C.5D.6【解答】解:去分母,得:m+2(x﹣1)=3,移项、合并,得:x,∵分式方程的解为非负数,∴5﹣m≥0且1,解得:m≤5且m≠3,∴正整数解有1,2,4,5共4个,故选:B.11.(3分)古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点G将一线段MN分为两线段MG,GN,使得其中较长的一段MG是全长MN与较短的一段GN的比例中项,即满足,后人把这个数称为“黄金分割”数,把点G称为线段MN的“黄金分割”点.如图,在△ABC中,已知AB=AC =3,BC=4,若D,E是边BC的两个“黄金分割”点,则△ADE的面积为()A.10﹣4B.35C.D.20﹣8【解答】解:作AH⊥BC于H,如图,∵AB=AC,∴BH=CH BC=2,在Rt△ABH中,AH,∵D,E是边BC的两个“黄金分割”点,∴BE BC=2(1)=22,∴HE=BE﹣BH=22﹣2=24,∴DE=2HE=48∴S△ADE(48)10﹣4.故选:A.12.(3分)已知二次函数y=x2﹣2bx+2b2﹣4c(其中x是自变量)的图象经过不同两点A (1﹣b,m),B(2b+c,m),且该二次函数的图象与x轴有公共点,则b+c的值为()A.﹣1B.2C.3D.4【解答】解:由二次函数y=x2﹣2bx+2b2﹣4c的图象与x轴有公共点,∴(﹣2b)2﹣4×1×(2b2﹣4c)≥0,即b2﹣4c≤0 ①,由抛物线的对称轴x b,抛物线经过不同两点A(1﹣b,m),B(2b+c,m),b,即,c=b﹣1 ②,②代入①得,b2﹣4(b﹣1)≤0,即(b﹣2)2≤0,因此b=2,c=b﹣1=2﹣1=1,∴b+c=2+1=3,故选:C.二、填空题(本大题共4个小题,每小题3分,共12分).13.(3分)函数y的自变量x的取值范围是x≥2.【解答】解:根据题意得,x﹣2≥0,解得x≥2.故答案为:x≥2.14.(3分)若x a+1y3与x4y3是同类项,则a的值是3.【解答】解:∵x a+1y3与x4y3是同类项,∴a+1=4,解得a=3,故答案为:3.15.(3分)已知x1,x2是一元二次方程x2﹣4x﹣7=0的两个实数根,则x12+4x1x2+x22的值是2.【解答】解:根据题意得则x1+x2=4,x1x2=﹣7所以,x12+4x1x2+x22=(x1+x2)2+2x1x2=16﹣14=2故答案为2.16.(3分)如图,在矩形ABCD中,E,F分别为边AB,AD的中点,BF与EC、ED分别交于点M,N.已知AB=4,BC=6,则MN的长为.【解答】解:延长CE、DA交于Q,如图1,∵四边形ABCD是矩形,BC=6,∴∠BAD=90°,AD=BC=6,AD∥BC,∵F为AD中点,∴AF=DF=3,在Rt△BAF中,由勾股定理得:BF5,∵AD∥BC,∴∠Q=∠ECB,∵E为AB的中点,AB=4,∴AE=BE=2,在△QAE和△CBE中∴△QAE≌△CBE(AAS),∴AQ=BC=6,即QF=6+3=9,∵AD∥BC,∴△QMF∽△CMB,∴,∵BF=5,∴BM=2,FM=3,延长BF和CD,交于W,如图2,同理AB=DM=4,CW=8,BF=FM=5,∵AB∥CD,∴△BNE∽△WND,∴,∴,解得:BN,∴MN=BN﹣BM2,故答案为:.三、本大题共3个小题,每小题6分,共18分.17.(6分)计算:|﹣5|﹣(π﹣2020)0+2cos60°+()﹣1.【解答】解:原式=5﹣1+23=5﹣1+1+3=8.18.(6分)如图,AC平分∠BAD,AB=AD.求证:BC=DC.【解答】证明:∵AC平分∠BAD,∴∠BAC=∠DAC,又∵AB=AD,AC=AC,∴△ABC≌△ADC(SAS),∴BC=CD.19.(6分)化简:(1).【解答】解:原式.四、本大题共2个小题,每小题7分,共14分.20.(7分)某汽车公司为了解某型号汽车在同一条件下的耗油情况,随机抽取了n辆该型号汽车耗油1L所行使的路程作为样本,并绘制了如图不完整的频数分布直方图和扇形统计图.根据题中已有信息,解答下列问题:(1)求n的值,并补全频数分布直方图;(2)若该汽车公司有600辆该型号汽车.试估计耗油1L所行使的路程低于13km的该型号汽车的辆数;(3)从被抽取的耗油1L所行使路程在12≤x<12.5,14≤x<14.5这两个范围内的4辆汽车中,任意抽取2辆,求抽取的2辆汽车来自同一范围的概率.【解答】解:(1)12÷30%=40,即n=40,B组的车辆为:40﹣2﹣16﹣12﹣2=8(辆),补全频数分布直方图如图:(2)600150(辆),即估计耗油1L所行使的路程低于13km的该型号汽车的辆数为150辆;(3)设行使路程在12≤x<12.5范围内的2辆车记为为A、B,行使路程在14≤x<14.5范围内的2辆车记为C、D,画树状图如图:共有12个等可能的结果,抽取的2辆汽车来自同一范围的结果有4个,∴抽取的2辆汽车来自同一范围的概率为.21.(7分)某校举办“创建全国文明城市”知识竞赛,计划购买甲、乙两种奖品共30件.其中甲种奖品每件30元,乙种奖品每件20元.(1)如果购买甲、乙两种奖品共花费800元,那么这两种奖品分别购买了多少件?(2)若购买乙种奖品的件数不超过甲种奖品件数的3倍.如何购买甲、乙两种奖品,使得总花费最少?【解答】解:(1)设甲种奖品购买了x件,乙种奖品购买了(30﹣x)件,根据题意得30x+20(30﹣x)=800,解得x=20,则30﹣x=10,答:甲种奖品购买了20件,乙种奖品购买了10件;(2)设甲种奖品购买了x件,乙种奖品购买了(30﹣x)件,设购买两种奖品的总费用为w元,根据题意得30﹣x≤3x,解得x≥7.5,w=30x+20(30﹣x)=10x+600,∵10>0,∴w随x的增大而减小,∴x=8时,w有最小值为:w=10×8+600=680.答:当购买甲种奖品8件、乙种奖品22件时,总花费最小,最小费用为680元.五、本大题共2个小题,每小题8分,共16分.22.(8分)如图,在平面直角坐标系xOy中,已知一次函数y x+b的图象与反比例函数y的图象相交于A,B两点,且点A的坐标为(a,6).(1)求该一次函数的解析式;(2)求△AOB的面积.【解答】解:(1)如图,∵点A(a,6)在反比例函数y的图象上,∴6a=12,∴a=2,∴A(2,6),把A(2,6)代入一次函数y x+b中得:6,∴b=3,∴该一次函数的解析式为:y x+3;(2)由得:,,∴B(﹣4,﹣3),当x=0时,y=3,即OC=3,∴△AOB的面积=S△ACO+S△BCO9.23.(8分)如图,为了测量某条河的对岸边C,D两点间的距离.在河的岸边与CD平行的直线EF上取两点A,B,测得∠BAC=45°,∠ABC=37°,∠DBF=60°,量得AB长为70米.求C,D两点间的距离(参考数据:sin37°,cos37°,tan37°).【解答】解:过点C、D分别作CM⊥EF,DN⊥EF,垂足为M、N,在Rt△AMC中,∵∠BAC=45°,∴AM=MC,在Rt△BMC中,∵∠ABC=37°,tan∠ABC,∴BM CM,∵AB=70=AM+BM=CM CM,∴CM=30=DN,在Rt△BDN中,∵∠DBN=60°,∴BN10,∴CD=MN=MB+BN30+1040+10,答:C,D两点间的距离为(40+10)米,六、本大题共2个小题,每小题12分,共24分.24.(12分)如图,AB是⊙O的直径,点D在⊙O上,AD的延长线与过点B的切线交于点C,E为线段AD上的点,过点E的弦FG⊥AB于点H.(1)求证:∠C=∠AGD;(2)已知BC=6.CD=4,且CE=2AE,求EF的长.【解答】(1)证明:连接BD,∵AB是⊙O的直径,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∵BC是⊙O的切线,∴∠ABC=90°,∴∠C+∠CAB=90°,∴∠C=∠ABD,∵∠AGD=∠ABD,∴∠AGD=∠C;(2)解:∵∠BDC=∠ABC=90°,∠C=∠C,∴△ABC∽△BDC,∴,∴,∴AC=9,∴AB3,∵CE=2AE,∴AE=3,CE=6,∵FH⊥AB,∴FH∥BC,∴△AHE∽△ABC,∴,∴,∴AH,EH=2,连接AF,BF,∵AB是⊙O的直径,∴∠AFB=90°,∴∠AEH+∠BFH=∠AFH+∠F AH=90°,∴∠F AH=∠BFH,∴△AFH∽△FBH,∴,∴,∴FH,∴EF2.25.(12分)如图,已知抛物线y=ax2+bx+c经过A(﹣2,0),B(4,0),C(0,4)三点.(1)求该抛物线的解析式;(2)经过点B的直线交y轴于点D,交线段AC于点E,若BD=5DE.①求直线BD的解析式;②已知点Q在该抛物线的对称轴l上,且纵坐标为1,点P是该抛物线上位于第一象限的动点,且在l右侧,点R是直线BD上的动点,若△PQR是以点Q为直角顶点的等腰直角三角形,求点P的坐标.【解答】解:(1)∵抛物线y=ax2+bx+c经过A(﹣2,0),B(4,0),∴设抛物线的解析式为y=a(x+2)(x﹣4),将点C坐标(0,4)代入抛物线的解析式为y=a(x+2)(x﹣4)中,得﹣8a=4,∴a,∴抛物线的解析式为y(x+2)(x﹣4)x2+x+4;(2)①如图1,设直线AC的解析式为y=kx+b',将点A(﹣2,0),C(0,4),代入y=kx+b'中,得,∴,∴直线AC的解析式为y=2x+4,过点E作EF⊥x轴于F,∴OD∥EF,∴△BOD∽△BFE,∴,∵B(4,0),∴OB=4,∵BD=5DE,∴,∴BF OB4,∴OF=BF﹣OB4,将x代入直线AC:y=2x+4中,得y=2×()+4,∴E(,),设直线BD的解析式为y=mx+n,∴,∴,∴直线BD的解析式为y x+2;②Ⅰ、当点R在直线l右侧时,∵抛物线与x轴的交点坐标为A(﹣2,0)和B(4,0),∴抛物线的对称轴为直线x=1,∴点Q(1,1),如图2,设点P(x,x2+x+4)(1<x<4),过点P作PG⊥l于G,过点R作RH⊥l于H,∴PG=x﹣1,GQ x2+x+4﹣1x2+x+3,∵PG⊥l,∴∠PGQ=90°,∴∠GPQ+∠PQG=90°,∵△PQR是以点Q为直角顶点的等腰直角三角形,∴PQ=RQ,∠PQR=90°,∴∠PQG+∠RQH=90°,∴∠GPQ=∠HQR,∴△PQG≌△QRH(AAS),∴RH=GQ x2+x+3,QH=PG=x﹣1,∴R(x2+x+4,2﹣x),由①知,直线BD的解析式为y x+2,∴(x2+x+4)+2=2﹣x,∴x=2或x=4(舍),当x=2时,y x2+x+44+2+4=4,∴P(2,4),Ⅱ、当点R在直线l左侧时,记作R',设点P'(x,x2+x+4)(1<x<4),过点P'作P'G'⊥l于G',过点R'作R'H'⊥l于H,∴P'G'=x﹣1,G'Q x2+x+4﹣1x2+x+3,同Ⅰ的方法得,△P'QG'≌△QR'H'(AAS),∴R'H'=G'Q x2+x+3,QH'=P'G'=x﹣1,∴R'(x2﹣x﹣2,x),由①知,直线BD的解析式为y x+2,∴(x2﹣x﹣2)+2=x,∴x=﹣1或x=﹣1(舍),当x=﹣1时,y x2+x+4=24,∴P'(﹣1,24),即满足条件的点P的坐标为(2,4)或(﹣1,24).。
四川省泸州市2020年中考数学试卷
四川省泸州市2020年中考数学试卷一、单选题(共12题;共24分)1.2的倒数是()A. 2B.C.D. -22.将867000用科学记数法表示为()A. B. C. D.3.如下图所示的几何体的主视图是()A. B. C. D.4.在平面直角坐标系中,将点向右平移4个单位长度,得到的对应点的坐标为()A. B. C. D.5.下列正多边形中,不是中心对称图形的是()A. B. C. D.6.下列各式运算正确的是()A. B. C. D.7.如图,中,,.则的度数为()A. 100°B. 90°C. 80°D. 70°8.某语文教师调查了本班10名学生平均每天的课外阅读时间,统计结果如下表所示:那么这10名学生平均每天的课外阅读时间的平均数和众数分别是()A. 1.2和1.5B. 1.2和4C. 1.25和1.5D. 1.25和49.下列命题是假命题的是()A. 平行四边形的对角线互相平分B. 矩形的对角线互相垂直C. 菱形的对角线互相垂直平分D. 正方形的对角线互相垂直平分且相等10.已知关于x的分式方程的解为非负数,则正整数m的所有个数为()A. 3B. 4C. 5D. 611.古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点G将一线段分为两线段,,使得其中较长的一段是全长与较短的段的比例中项,即满足,后人把这个数称为“黄金分割”数,把点G称为线段的“黄金分割”点.如图,在中,已知,,若D,E是边的两个“黄金分割”点,则的面积为()A. B. C. D.12.已知二次函数(其中x是自变量)的图象经过不同两点,,且该二次函数的图象与x轴有公共点,则的值()A. -1B. 2C. 3D. 4二、填空题(共4题;共4分)13.函数y= 中,自变量x的取值范围是________;实数2﹣的倒数是________.14.若与是同类项,则a的值是________.15.已知是一元二次方程的两个实数根,则的值是________.16.如图,在矩形中,分别为边,的中点,与,分别交于点M,N.已知,,则的长为________.三、解答题(共9题;共75分)17.计算:.18.如图,AB平分∠CAD,AC=AD.求证:BC=BD.19.化简:.20.某汽车公司为了解某型号汽车在同一条件下的耗油情况,随机抽取了n辆该型号汽车耗油所行使的路程作为样本,并绘制了以下不完整的频数分布直方图和扇形统计图.根据题中已有信息,解答下列问题:(1)求n的值,并补全频数分布直方图;(2)若该汽车公司有600辆该型号汽车,试估计耗油所行使的路程低于的该型号汽车的辆数;(3)从被抽取的耗油所行使路程在,这两个范围内的4辆汽车中,任意抽取2辆,求抽取的2辆汽车来自同一范围的概率.21.某校举办“创建全国文明城市”知识竞赛,计划购买甲、乙两种奖品共30件.其中甲种奖品每件30元,乙种奖品每件20元.(1)如果购买甲、乙两种奖品共花费800元,那么这两种奖品分别购买了多少件?(2)若购买乙种奖品的件数不超过甲种奖品件数的3倍,如何购买甲、乙两种奖品,使得总花费最少?22.如图,在平面直角坐标系中,已知一次函数的图象与反比例函数的图象相交于A,B两点.且点A的坐标为.(1)求该一次函数的解析式;(2)求的面积.23.如图,为了测量某条河的对岸边C,D两点间的距离,在河的岸边与平行的直线上取两点A ,B,测得,,量得长为70米.求C,D两点间的距离(参考数据:,,).24.如图,是的直径,点D在上,的延长线与过点B的切线交于点C,E为线段上的点,过点E的弦于点H.(1)求证:;(2)已知,,且,求的长.25.如图,已知抛物线经过,,三点.(1)求该抛物线的解析式;(2)经过点B的直线交y轴于点D,交线段于点E,若.①求直线的解析式;②已知点Q在该抛物线的对称轴l上,且纵坐标为1,点P是该抛物线上位于第一象限的动点,且在l右侧.点R是直线上的动点,若是以点Q为直角顶点的等腰直角三角形,求点P的坐标.答案解析部分一、单选题1.【解析】【解答】∵2× =1,∴2的倒数是,故答案为:B .【分析】倒数定义:乘积为1的两个数互为倒数,由此即可得出答案2.【解析】【解答】解:867000=8.67×105,故答案为:C.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.3.【解析】【解答】解:几何体的主视图是:故答案为:B.【分析】根据主视图的意义和几何体得出即可.4.【解析】【解答】解:点A(-2,3)向右平移4个单位长度后得到的对应点A′的坐标为(-2+4,3),即(2,3),故答案为:C.【分析】根据横坐标,右移加,左移减可得点A(-2,3)向右平移4个单位长度后得到的对应点A′的坐标为(-2+4,3).5.【解析】【解答】解:A、是中心对称图形,故此选项不符合题意;B、不是中心对称图形,故此选项符合题意;C、是中心对称图形,故此选项不符合题意;D、是中心对称图形,故此选项不符合题意;故答案为:B.【分析】根据中心对称图形的概念求解.6.【解析】【解答】解:A、,A不合题意;B、,B不合题意;C 、,C不合题意;D、,符合题意,D符合题意.故答案为:D.【分析】分别根据合并同类项的法则,同底数幂的乘法法则,幂的乘方运算法则逐一判断即可.7.【解析】【解答】解:∵,∴AB=AC,∴∠ABC=∠ACB=70°,∴∠A=180°-70°×2=40°,∵圆O是△ABC的外接圆,∴∠BOC=2∠A=40°×2=80°,故答案为:C.【分析】首先根据弧、弦、圆心角的关系得到AB=AC,再根据等腰三角形的性质可得∠A的度数,然后根据圆周角定理可得∠BOC=2∠A,进而可得答案.8.【解析】【解答】解:在这一组数据中1.5是出现次数最多的,故众数是1.5,平均数= =1.2,故答案为:A.【分析】根据平均数和众数的定义即可得出答案.9.【解析】【解答】解:A、平行四边形的对角线互相平分,不符合;B、应该是矩形的对角线相等且互相平分,符合;C、菱形的对角线互相垂直且平分,不符合;D、正方形的对角线相等且互相垂直平分,不符合;故答案为:B.【分析】利用平行四边形、矩形、菱形、正方形的性质解题即可.10.【解析】【解答】解:去分母,得:m+2(x-1)=3,移项、合并,解得:x= ,∵分式方程的解为非负数,∴≥0且≠1,解得:m≤5且m≠3,∵m为正整数∴m=1,2,4,5,共4个,故答案为:B.【分析】根据解分式方程,可得分式方程的解,根据分式方程的解为负数,可得不等式,解不等式,即可解题.11.【解析】【解答】解:过点A作AF⊥BC,∵AB=AC,∴BF= BC=2,在Rt ,AF= ,∵D是边的两个“黄金分割”点,∴即,解得CD= ,同理BE= ,∵CE=BC-BE=4-( -2)=6- ,∴DE=CD-CE=4 -8,∴S△ABC= = = ,故答案为:A.【分析】作AF⊥BC,根据等腰三角形ABC的性质求出AF的长,再根据黄金分割点的定义求出BE、CD的长度,得到中DE的长,利用三角形面积公式即可解题.12.【解析】【解答】解:∵二次函数的图像经过,,∴对称轴x= ,即x= ,∵对称轴x=b,∴=b,化简得c=b-1,∵该二次函数的图象与x轴有公共点,∴△====∴b=2,c=1,∴b+c=3,故答案为:C.【分析】根据二次函数的图像经过,,可得到二次函数的对称轴x= ,又根据对称轴公式可得x=b,由此可得到b与c的数量关系,然后由该二次函数的图象与x轴有公共点列出不等式解答即可二、填空题13.【解析】【解答】解:y= 中,自变量x的取值范围是x≥2;实数2﹣的倒数是2+ ,故答案为:x≥2,2+ .【分析】根据被开方数是非负数,倒数的定义,可得答案.14.【解析】【解答】解:∵与是同类项,∴a-1=4,∴a=5,故答案为:5.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出a的值.15.【解析】【解答】解:∵是一元二次方程的两个实数根,∴=4,= -7,∴===2,故答案为:2.【分析】由已知结合根与系数的关系可得:=4,= -7,= ,代入可得答案.16.【解析】【解答】解:过点E作EH∥AD,交点BF于点G,交CD于点H,由题意可知:EH∥BC,∴△BEG∽△BAF,∴,∵AB=4,BC=6,点E为AB中点,F为AD中点,∴BE=2,AF=3,∴,∴EG= ,∵EH∥BC,∴△EGN∽△DFN,△EGM∽△CBM,∴,,∴,,即,,∴,,∵E为AB中点,EH∥BC,∴G为BF中点,∴BG=GF= BF= ,∴NG= = ,MG= BG= ,∴MN=NG+MG= ,故答案为:.【分析】过点E作EH∥AD,交点BF于点G,交CD于点H,证明△BEG∽△BAF,求出EG的长,再证明△EGN∽△DFN,△EGM∽△CBM,得出,,再求出BG=GF= BF= ,从而求出NG和MG,可得MN的长.三、解答题17.【解析】【分析】根据绝对值的化简、零指数幂、特殊角的三角函数值以及负整数指数幂的计算方法运算.18.【解析】【分析】由AB平分∠CAD可知∠BAC=∠BAD,再根据AC=AD,AB=AB可判断出△ABC≌△ABD,从而得到BC=BD.19.【解析】【分析】首先进行通分运算,进而利用因式分解变形,再约分化简分式.20.【解析】【分析】(1)根据D所占的百分比以及频数,即可得到n的值;(2)根据A,B所占的百分比之和乘上该汽车公司有600辆该型号汽车的总数,即可得到结果.(3)从被抽取的耗油所行使路程在的有2辆,记为A,B,行使路程在的有2辆,记为1,2,任意抽取2辆,利用列举法即可求出抽取的2辆汽车来自同一范围的概率.21.【解析】【分析】(1)设甲购买了x件乙购买了y件,利用购买甲、乙两种奖品共花费了800元列方程组,然后解方程组计算即可;(2)设甲种奖品购买了a件,乙种奖品购买了(30-a)件,利用购买乙种奖品的件数不超过甲种奖品件数的3倍,然后列不等式后确定x的范围即可得到该校的购买方案.22.【解析】【分析】(1)由点A在反比例函数图像上,求出a的值得到点A坐标,代入一次函数解析式即可;(2)联立两个函数的解析式,即可求得点B的坐标,然后由S△AOB=S△AOC+S△BOC求得答案.23.【解析】【分析】过点C作CH⊥AB,垂足为点H,过点D作DG⊥AB,垂足为点G,,先求出CH的长,然后在Rt△BCH中求得BH的长,则CD=GH=BH+BG即可求出24.【解析】【分析】(1)根据题意得到∠ODA=∠OAD,∠ABC=90°,再利用三角形内角和得到∠C=∠AGD;(2)连接BD,求出BD的长,证明△BOD≌AOG,得到AG=BD= ,再证明△AEG≌△DCB,得到EG=BC=6,AE=CD=4,再利用面积法求出AH,再求出HG,最后用EF=FG-EG求出结果.25.【解析】【分析】(1)根据待定系数法求解即可;(2)①过点E作EG⊥x轴,垂足为G,设直线BD 的表达式为:y=k(x-4),求出直线AC的表达式,和BD联立,求出点E坐标,证明△BDO∽△BEG,得到,根据比例关系求出k值即可;②根据题意分点R在y轴右侧时,点R在y轴左侧时两种情况,利用等腰直角三角形的性质求解即可.。
四川省泸州市2020年中考数学试题(word版,含答案)
泸州市二0一七年高中阶段学校招生考试数学试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.7-的绝对值为( ) A .7 B .7- C .17 D .17- 2. “五一”期间,某市共接待海内外游客约567000人次,将567000用科学记数法表示为( ) A .356710⨯ B .456.710⨯ C .55.6710⨯ D .60.56710⨯ 3. 下列各式计算正确的是( )A .236x x x ⋅=B .32x x x -=C .2(2)4x x =D .623x x x ÷= 4. 下图是一个由4个相同的正方体组成的立体图形,它的左视图是( )5. 已知点(,1)A a 与点(4,)B b -关于原点对称,则a b +的值为( ) A .5 B .5- C .3 D .3-6. 如图,AB 是O 的直径,CD AB ⊥于点E ,若8,1AB AE ==,则弦CD 的长是( ) A .7 B .27 C .6 D .87. 列命题是真命题的是( ) A .四边都相等的四边形是矩形 B .菱形的对角线相等C .对角线互相垂直的平行四边形是正方形D .对角线相等的平行四边形是矩形8. 下列曲线中不能表示y 是x 的函数的是( )9. 已知三角形的三遍长分别为,,a b c ,求其面积问题,中外数学家曾经进行过深入的研究,故希腊的几何学甲海伦给出求其面积的海伦公式()()()S p p a p b p c =---,其中2a b cp ++=;我国南宋时期数学家秦九韶(约1202-1261)曾提出利用三角形的三边求其面积的秦九韶公式222221()22a b c S a b +-=-,若一个三角的三边分别为错误!未找到引用源。
,其面积是 ( ) A .315 B .315 C .315 D .1511.如图,在矩形ABCD 中,点E 是边BC 的中点,AE BD ⊥,垂足为F ,则tan BDE ∠的值是 ( ) A .24 B .14C .13 D .2312. 已知抛物线214y x =具有如下性质:给抛物线上任意一点到定点(0,2)F 的距离与到x 轴的距离相等,如图,点M 的坐标为3,3),P 是抛物线2114y x =+上一动点,则PMF ∆周长的最小值是( )A .3B .4C .5D .6 第Ⅱ卷(共90分)二、填空题(每题4分,满分12分,将答案填在答题纸上)13.在一个不透明的袋子中赚够4个红球和2个白球,这些球除了颜色外无其他差别,从袋子中随机摸出一个球,则摸出白球的概率是 . 14.分解因式:228m -= . 15.关于x 的分式方程2322x m mx x++=--的解为正实数,则实数m 的取值范围是 . 16.在ABC ∆中,已知BD 和CE 分别是边,AC AB 上的中线,且BD CE ⊥,垂足为O , 若2,4OD cm OE cm ==,则线段AO 的长为 cm .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 计算:200(3)201718sin 45-+-⨯18. 如图,点,,,A F C D 在同一直线上,已知,,//AF DC A D BC EF =∠=∠,.求证:AB DE =.19.化简:2225(1)14x x x x -+⋅++- . 四、本大题共2小题,每小题7分,共14分20. 某单位750名职工积极参加项贫困地区学校捐书活动,为了解职工的捐书量,采用随机抽样的方法抽取30名职工作为样本,对他们的捐书量进行统计,统计结果共有4本、5本、6本、7本、8本五类,分别用,,,,A B C D E 表示,根据统计数据绘制了如图所示的不完整的条形统计图,由图中给出的信息解答下列问题:(1)补全条形统计图;(2)求这30名职工捐书本数的平均数、众数和中位数; (3)估计该单位750名职工共捐书多少本?21.某种为打造书香校园,计划购进甲乙两种规格的书柜放置新苟静的图书,调查发现,若购买甲种书柜3个,乙种书柜2个,共需要资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元.(1)甲乙两种书柜每个的价格分别是多少元?(2)若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多提供资金4320元,请设计几种购买方案供这个学校选择.五、本大题共2小题,每小题8分,共16分.22.如图,海中一渔船在A 处且与小岛C 相距70nmile ,若该渔船 由西向东航行30nmile 到达B 处,此时测得小岛C 位于B 的 北偏东 30方向上;求该渔船此时与小岛C 之间的距离. [来源:学#科#网Z#X#X#K]23.一次函数)0(≠+=k b kx y 的图象经过点)6,2(-A ,且与反比例函数xy 12-=的图象 交于点)4,(a B(1)求一次函数的解析式;(2)将直线AB 向上平移10个单位后得到直线l :),0(1111≠+=k b x k y l 与反比例函数xy 62=的图象相交,求使21y y <成立的x 的取值范围.六、本大题共两个小题,每小题12分,共24分24.如图,⊙O 与ABC Rt ∆的直角边AC 和斜边AB 分别相切于 点;,D C 与边BC 相交于点F ,OA 与CD 相交于点E , 连接FE 并延长交AC 边于点G . (1)求证:DF //AO(2)若,10,6==AB AC 求CG 的长. [来源:学|科|网Z|X|X|K]25.如图,已知二次函数)0(2≠++=a c bx ax y 的图象经过)2,0(),0,4(),0,1(C B A -三点. (1)求该二次函数的解析式;(2)点D 是该二次函数图象上的一点,且满足CAO DBA ∠=∠(O 是坐标原点),求点D 的坐标;(3)点P 是该二次函数图象上位于一象限上 的一动点,连接PA 分别交y BC ,轴与点,,F E若CEF PEB ∆∆,的面积分别为,,21S S 求21S S -的最大值.泸州市二0一七年高中阶段学校招生考试数学试题参考答案 一.选择题答案二.填空题13. 3114. )2)(2(2-+m m 15. 26≠<m m 且 16. 54三.17.解:原式=9+172223=⨯- 18.证明: BC //EF⎪⎩⎪⎨⎧∠=∠=∠=∠∆∆=+=+∴=∠=∠∴DFE ACB DE AC D A DEF ABC DF AC FCDC FC AF DCAF DFE ACB 中与在即:又DEAB ASA DEF ABC =∴∆≅∆∴)(21)2)(2()1(12)4524(12.19222++=+-+⋅+-=-++-⋅+-=x x x x x x x x x x x x 解:原式 四.20.解(1)捐D 累书的人数为:8396430=---- 补图如上题号 1 2 3 4 5 6 7 8 9 10 11 12 选项 A CBDCBDCBDAC(2)众数为:6 中位数为:6 平均数为:6)3887966544(301=⨯+⨯+⨯+⨯+⨯=x 45006750:)3(=⨯21.(1)解:设甲种书柜单价为x 元,乙种书柜的单价为y 元,由题意得:⎩⎨⎧=+=+144034102023y x y x 解之得:⎩⎨⎧==240180y x 答:设甲种书柜单价为180元,乙种书柜的单价为240元.(2)设甲种书柜购买m 个,则乙种书柜购买(m -20)个;由题意得:⎩⎨⎧≤-+≥-4320)20(24018020m m m m 解之得:108≤≤m 因为m 取整数,所以m 可以取的值为:8,9,10 即:学校的购买方案有以下三种: 方案一:甲种书柜8个,乙种书柜12个, 方案二:甲种书柜9个,乙种书柜11个, 方案三:甲种书柜10个,乙种书柜10个. 五.22.解:过点C 作AB CD ⊥于点D ,由题意得: ,30 =∠BCD 设,x BC =则:x BC BD BCD Rt 2130sin ==∆ 中:在,x BC CD 2330cos == ; x AD 2130+=∴ 222t AC CD AD ACD R =+∆∴中,在,即:22270)23()230(=++x x解之得:)(80,5021舍去-==x x答:渔船此时与C 岛之间的距离为50海里.23.(1)解:由题意得:3,124-=-=a a 即:)4,3(-∴B,4362⎩⎨⎧=+--=+∴b k b k 解之得:⎩⎨⎧-=-=22b k 所以一次函数的解析式为:22--=x y(2)直线AB 向上平移10个单位后得直线l 的解析式为:82+-=x y ;⎪⎩⎪⎨⎧=+-=x y x y 682联立:得:x x 682=+-; 解之得:3,121==x x由图可知:21y y <成立的x 的取值范围为:310><<x x 或24.(1)证明:AB 与o Θ相切与点D BDF BCD ∠=∠∴ (弦切角定理) 又AC 与o Θ相切与点C由切线长定理得:;,DAO CAO AD AC ∠=∠=AO CD ⊥∴,;BDF DAO DAO CAO BCD ∠=∠∴∠=∠=∠∴即:DF //AO(2):过点E 作OC EM ⊥与M88,622=-=∴==AC AB BC AB AC4,6=-=∴==AD AB BD AC AD∴由切割线定理得:BC BF BD ⋅=2,解得:;2=BF;321,6===-=∴FC OC BF BC FC [来源:] 5322=+=∴OC AC OA由射影定理得:553,2=⋅=OE OA OE OC 解之得: 235;5366.3;518;56,53;51==∴===∴=+===∴===∴EM CG FC FM CG EM OM OF FM EM OM OA OE OC OM AC EM25.解(1)由题意得:设抛物线的解析式为:)4)(1(-+=x x a y ; 因为抛物线图像过点)2,0(C ,,24=-∴a 解得21-=a所以抛物线的解析式为:)4)(1(21-+-=x x y即:223212++-=x x y(2)设BD 直线与y 轴的交点为),0(t M8,24;2tan tan ;,±==∴=∠=∠∴∠=∠∴∠=∠t t CAO MBA CAO MBA CAO DBA 即:当8=t 时,直线BD 解析式为:82+-=x y⎩⎨⎧==⎩⎨⎧==⎪⎩⎪⎨⎧++-=+-=23,04,223218222112y x y x x x y x y 解得:联立 所以,点)2,3(D当8-=t 时,直线BD 解析式为:82-=x y⎩⎨⎧-=-=⎩⎨⎧==⎪⎩⎪⎨⎧++-=-=185,04,223218222112y x y x x x y x y 解得:联立 所以,点)18,5(--D综上:满足条件的点D 有:),2,3(1D )18,5(2--D [来源:](3):过点P 作PH//y 轴交BC 直线于点H ,设)22321,(2++-y t t PBC 直线的解析式为221+-=x y 故:)221,(+-t t H;2212t t y y PH H p +-=-=∴AP 直线的解析式为:;2120),1)(221(t y x x t y -==++-=得:取故:;21)212(2),212,0(t t CF t F =--=-;5,221)1)(22(t t x x y x t y E -=⎪⎩⎪⎨⎧+-=+-=解之得:联立)55)(221(21))((2121t t t t x x y y S E B H P --+-=--=∴;ttt S -⋅⋅=52212 ttt t t t t S S ----+-=-∴5221)55)(221(21221 即:;625)35(235232221+--=+-=-t t t S S所以,当35=t 时,21S S -有最大值,最大值为:625.【素材积累】1、冬天,一层薄薄的白雪,像巨大的轻软的羊毛毯子,覆盖摘摘这广漠的荒原上,闪着寒冷的银光。
2020泸州中考数学试题及参考答案
泸州市2020年高中阶段学校招生考试数学试卷全卷满分120分,考试时间120分钟.第Ⅰ卷 (选择题 共36分)一、选择题(本大题共12个小题,每小题3分,共36分)在每小题给出的四个选项中,有且只有一个是正确的,请将正确选项的字母填涂在答题卡相应的位置上. 1.2的倒数是23456C .236x x x ⋅= D .326()x x = 7.如图,⊙O 中,AB AC =,∠ABC=70°,∠BOC 的度数为 A .100° B .90° C .80° D .70°8A .1.2和1.5B .1.2和4C .1.25和1.5D .1.25和4 9.下列命题是假命题的是A .平行四边形的对角线互相平分B .矩形的对角线互相垂直C .菱形的对角线互相垂直平分D .正方形的对角线互相垂直平分且相等 2的值是 .15.已知1x ,2x 是一元二次方程2470x x --=的两实数根,则2211224x x x x ++的值是 .16.如图,在矩形ABCD 中,E ,F 分别为边AB ,AD 的中点,BF 与EC ,ED 分别交于点M ,N .已知AB=4,BC=6,则MN 的长为 .三、(每小题6分,共18分)17. 计算:011|5|(2020)2cos60()3π----+︒+.18.如图,AC 平分∠BAD ,AB=AD .求证:BC=DC .辆汽车中,任意抽取2辆,求抽取的2辆汽车来自同一范围的概率.21.某校举办“创建全国文明城市”知识竞赛,计划购买甲、乙两种奖品共30件,其中甲种奖品每件30元,乙种奖品每件20元.(1)如果购买甲、乙两种奖品共花费800元,那么这两种奖品分别购买了多少件? (2)若购买乙种奖品的件数不超过甲种奖品件数的3倍,如何购买甲、乙两种奖品,使得总花费最少?FEDCB A六、(每小题12分,共24分)24.如图,AB是⊙O的直径,点D在⊙O上,AD的延长线与过点B的切线交于点C,E 为线段AD上的点,过点E的弦FG⊥AB于点H.(1)求证:∠C=∠AGD;25.如图,已知抛物线2y ax bx c =++经过A(-2,0),B(4,0),C(0,4)三点.(1)求该抛物线的解析式;(2)经过点B 的直线交y 轴于点D ,交线段AC 于点E ,若BD=5DE .①求直线BD 的解析式;②已知点Q 在该抛物线的对称轴l 上,且纵坐标为1,点P 是该抛物线上位于第一象限的动点,且在l 右侧.点R 是直线BD 上的动点,若△PQR 是以点Q 为直角顶点的等腰直角三角形,求点P 的坐标.。
2020年四川省泸州中考数学试卷含答案
数学试卷第1页(共18页)数学试卷第2页(共18页)绝密★启用前2020年四川省泸州市初中学业水平考试数 学全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选排题)两部分,共6页。
全卷满分120分。
考试时间共120分钟。
注意事项:1.答题前,请考生务必在答题卡上正确填写自己的姓名,准考证号和座位号。
考试结束,将试卷和答题卡一并交回。
2.选择题每小题选出的答案须用2B 铅笔在答题卡上把对应题目的答案标号涂黑。
如需改动,用橡皮擦净后,再选涂其它答案。
非选择题须用0.5毫米黑色墨迹铅笔在答题卡上对应题号位置作答,在试卷上作答无效。
第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.2的倒数是( ) A .12B .12-C .2D .2- 2.将867000用科学记数法表示为( )A .386710⨯ B .48.6710⨯ C .58.6710⨯D .68.6710⨯ 3.如图所示的几何体的主视图是( )ABCD4.在平面直角坐标系中,将点()2,3A -向右平移4个单位长度,得到的对应点A '的坐标为( )A .()2,7B .()6,3-C .()2,3D .()2,1-- 5.下列正多边形中,不是中心对称图形的是( ) AB CD6.下列各式运算正确的是( )A .235x x x += B .32x x x -=C .236x x x ⋅=D .326x x =() 7.如图,O 中,AB AC =,70ABC ∠︒=。
则BOC ∠的度数为( )A .100︒B .90︒C .80︒D .70︒8.某语文教师调查了本班10名学生平均每天的课外阅读时间,统计结果如下表所示:课外阅读时间(小时)0.5 1 1.5 2 人数2341 那么这10名学生平均每天的课外阅读时间的平均数和众数分别是( )A .1.2和1.5B .1.2和4C .1.25和1.5D .1.25和4 9.下列命题是假命题的是( )A .平行四边形的对角线互相平分B .矩形的对角线互相垂直C .菱形的对角线互相垂直平分D .正方形的对角线互相垂直平分且相等-------------在------------------此------------------卷------------------上-------------------答-------------------题-------------------无-------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷第3页(共18页)数学试卷第4页(共18页)10.已知关于x 的分式方程3211m x x+=---的解为非负数,则正整数m 的所有个数为( )A .3B .4C .5D .611.古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点G 将一线段MN 分为两线段MG ,GN ,使得其中较长的一段MG 是全长MN 与较短的一段GN 的比例中项,即满足2MG GN MN MG ==,后人把2这个数称为“黄金分割”数,把点G 称为线段MN 的“黄金分割”点.如图,在ABC △中,已知3AB AC ==,4BC =,若,D E 是边BC 的两个“黄金分割”点,则ADE △的面积为( )A.10- B.5 C.52-D.20-12.已知二次函数22=224y x bx b c +--(其中x 是自变量)的图象经过不同两点()()1,,2,A b m B b c m -+,且该二次函数的图象与x 轴有公共点,则b c +的值为( )A .1-B .2C .3D .4第Ⅱ卷(非选择题共84分)注意事项:用0.5毫米黑色墨迹签字笔在答题卡上对应题号位置作答,在试卷上作答无效.二、填空题(本大题共4个小题,每小题3分,共12分)13.函数y 的自变量x 的取值范围是________. 14.若13a x y +与4312x y 是同类项,则a 的值是________. 15.已知12,x x 是一元二次方程247=0x x --的两个实数根,则2211224x x x x ++的值是________.16.如图,在矩形ABCD 中,,E F 分别为边,AB AD 的中点,BF 与EC ED 、分别交于点,M N .已知4AB =,6BC =,则MN 的长为________.三、本大题共3个小题,每小题6分,共18分.17.计算:1152020)2cos60()3π--+︒+︒﹣-(.18.如图,AC 平分BAD ∠,AB AD =.求证:BC DC =.19.化简:2211x x x x +-⎛⎫+÷ ⎪⎝⎭. 四、本大题共2个小题,每小题7分,共14分.20.某汽车公司为了解某型号汽车在同一条件下的耗油情况,随机抽取了n 辆该型号汽车耗油1 L 所行使的路程作为样本,并绘制了以下不完整的频数分布直方图和扇形统计图.根据题中已有信息,解答下列问题:(1)求n 的值,并补全频数分布直方图;数学试卷第5页(共18页)数学试卷第6页(共18页)(2)若该汽车公司有600辆该型号汽车.试估计耗油1 L 所行使的路程低于13 km 的该型号汽车的辆数;(3)从被抽取的耗油1 L 所行使路程在1212.5x ≤<,1414.5x ≤<这两个范围内的4辆汽车中,任意抽取2辆,求抽取的2辆汽车来自同一范围的概率.21.某校举办“创建全国文明城市”知识竞赛,计划购买甲、乙两种奖品共30件.其中甲种奖品每件30元,乙种奖品每件20元.(1)如果购买甲、乙两种奖品共花费800元,那么这两种奖品分别购买了多少件? (2)若购买乙种奖品的件数不超过甲种奖品件数的3倍.如何购买甲、乙两种奖品,使得总花费最少?五、本大题共2个小题,每小题8分,共16分.22.如图,在平面直角坐标系xOy 中,已知一次函数3=2y x b +的图象与反比例函数12=y x的图象相交于,A B 两点,且点A 的坐标为(),6a .(1)求该一次函数的解析式; (2)求AOB △的面积.23.如图,为了测量某条河的对岸边,C D 两点间的距离.在河的岸边与CD 平行的直线EF 上取两点,A B ,测得45BAC ∠=︒,37ABC ∠=︒,60DBF ∠=︒,量得AB长为70米.求,D C 两点间的距离(参考数据:3sin375︒≈,4cos375︒≈,3tan374︒≈).六、本大题共2个小题,每小题12分,共24分.24.如图,AB 是O 的直径,点D 在O 上,AD 的延长线与过点B 的切线交于点C ,E 为线段AD 上的点,过点E 的弦FG AB ⊥于点H .(1)求证:C AGD ∠=∠;(2)已知6BC =,4CD =,且2CE AE =,求EF 的长.25.如图,已知抛物线2=y ax bx c ++经过()2,0A -,()4,0B ,()0,4C 三点. (1)求该抛物线的解析式;(2)经过点B 的直线交y 轴于点D ,交线段AC 于点E ,若5BD DE =.①求直线BD 的解析式;②已知点Q 在该抛物线的对称轴l 上,且纵坐标为1,点P 是该抛物线上位于第一象限的动点,且在l 右侧,点R 是直线BD 上的动点,若PQR △是以点Q 为直角顶点的等腰直角三角形,求点P 的坐标.2020年四川省泸州市初中学业水平考试数学答案解析一、毕业学校_____________ 姓名________________ 考生号________________________________ _____________-------------在------------------此------------------卷------------------上-------------------答-------------------题-------------------无-------------------效----------------数学试卷第7页(共18页)数学试卷第8页(共18页)1.【答案】A【解析】根据倒数的概念求解.2的倒数是12.故选:A . 【考点】倒数的定义 2.【答案】C【解析】科学记数法的表示形式为10na ⨯的形式,其中11|0|a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.故选:C . 【考点】科学计数法的表示形式 3.【答案】B【解析】找到从几何体的正面看所得到的图形即可.从正面看是一个矩形,矩形的中间有一条纵向的实线.故选:B . 【考点】几何体的结构 4.【答案】C【解析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.因为将点)(23A -,先向右平移4个单位,所提点A 的对应点'A 的坐标是(243)-+,,即(23),.故选:C . 【考点】平移中点的变化规律 5.【答案】B【解析】根据中心对称图形的概念结合选项的图形进行判断即可.A .正方形是中心对称图形,故本选项不合题意;B .正五边形不是中心对称图形,故本选项符合题意;C .正六边形是中心对称图形,故本选项不合题意;D .正八边形是中心对称图形,故本选项不合题意;故选:B . 【考点】中心对称图形的概念 6.【答案】D【解析】分别根据合并同类项法则,同底数幂的除法法则以及幂的乘方运算法则逐一判断即可.解:A .2x 与3x 不是同类项,所以不能合并,故本选项不合题意;B .3x 与2x -不是同类项,所以不能合并,故本选项不合题意;C .235•x x x =,故本选项不合题意;D .326x x =(),故本选项符合题意.故选:D . 【考点】合并同类项法则 7.【答案】C【解析】先根据圆周角定理得到70ABC ACB ∠=∠=︒,再利用三角形内角和计算出40A ∠=︒,然后根据圆周角定理得到BOC ∠的度数.解:AB AC =,70ABC ACB ∠∴∠==︒,180707040A ∠=︒-︒-︒=∴︒,280BOC A ∠=∠=∴︒.故选:C . 【考点】圆周角定理 8.【答案】A【解析】根据中位数、众数的计算方法求出结果即可. 解:10名学生的每天阅读时间的平均数为0.5213 1.44211.22341⨯+⨯+⨯+⨯=+++;学生平均每天阅读时间出现次数最多的是1.5小时,共出现4次,因此众数是1.5;故选:A . 【考点】中位数、众数的应用 9.【答案】B【解析】根据平行四边形、矩形、菱形和正方形的性质判断即可.解:A 、平行四边形的对角线互相平分,是真命题;B 、矩形的对角线互相相等,不是垂直,原命题是假命题;C 、菱形的对角线互相垂直平分,是真命题;D 、正方形的对角线互相垂直平分且相等,是真命题;故选:B . 【考点】平行四边形、矩形、菱形和正方形的性质 10.【答案】C【解析】根据解分式方程,可得分式方程的解,根据分式方程的解为负数,可得不等式,解不等式,可得答案.解:去分母,得:2(1)3m x +-=,移项、合并,得:52mx -=,分式方程的解为非负数,所以50m-且512m-≠,解得:5m ≤且3m ≠,所以整数解有0,1,2,4,5共5个,故选:C . 【考点】解分式方程的应用 11.【答案】A【解析】作AH BC ⊥于H ,如图,根据等腰三角形的性质得到122BH CH BC ===,则根据勾股定理可计算出AH =,接着根据线段的“黄金分割”点的定义得到122BE BC ==,则计算出4HE =,然后根据三角形面积公式计算.解:作AH BC ⊥于H ,如图,AB AC =,122BH CH BC ∴===,在Rt ABH △中,AH ,,D E是边BC的两个“黄金分割”点,1)2 BE BC∴===,224 HE BE BH∴=-=-=,28DE HE∴==,18)102ADES∴=⨯=-A.【考点】等腰三角形的性质和三角形计算面积公式12.【答案】C【解析】求出抛物线的对称轴x b=,再由抛物线的图象经过不同两点(1,),(2,)A b mB b c m-+,也可以得到对称轴为123b b c-++,可得1b c+=,再根据二次函数的图象与x轴有公共点,得到240b c-≤,进而求出,b c的值.解:由二次函数22224y x bx b c+--=的图象与x轴有公共点,()22(2)41240b b c∴--⨯⨯-≥,即240b c-≤①,由抛物线的对称轴22bx b-=-=,抛物线经过不同两点(1,),(2,)A b mB b c m-+,122b b cb-++=,即,1c b=-②,②代入①得24(1)0b b--≤,即2(2)0b-≤,因此2b=,1211c b=-=-=,213b c∴+=+=,故选:C.【考点】抛物线的性质二、13.【答案】2x ≥【解析】根据被开方数大于等于0列式计算即可得解.解:根据题意得,20x-≥,解得2x ≥.故答案为:2x ≥.【考点】根号的性质14.【答案】3【解析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项,据此可得a的值.解:13ax y+与4312x y是同类项,14a∴+=,解得3a=,故答案为:3.【考点】同类项的定义15.【答案】2【解析】根据根与系数的关系求解.解:根据题意得则124=x x+,127x x=-.所以,222112212124216142x x x x x x x x=++++-=(=)故答案为2.【考点】根与系数的关系应用16.【答案】43【解析】延长CE DA、交于Q,延长BF和CD,交于W,根据勾股定理求出BF,根据矩形的性质求出AD,根据全等三角形的性质得出AQ BC=,AB CW=,根据相似三角形的判定得出QMF CMB△∽△,BNE WND△∽△,根据相似三角形的性质得出比例式,求出BN和BM的长,即可得出答案.解:延长CE DA、交于Q,如图1,四边形ABCD是矩形,6BC=,=90BAD∴∠︒,==6AD BC,AD BC∥,F为AD中点,==3AF DF∴,在Rt BAF△中,由勾股定理得:5BF===,AD BC∥,=Q ECB∴∠∠,E为AB的中点,4AB=,2AE BE∴==,在QAE△和CBE△中,QEA BECQ ECBAE BE∠=∠⎧⎪∠=∠⎨⎪=⎩,QAE CBE AAS∴△≌△(),==6AQ BC∴,即639QF=+=,AD BC∥,QMF CMB∴△∽△,96FM QFBM BC∴==,5BF =,2BM∴=,3FM=,延长BF和CD,交于W,如图2,数学试卷第9页(共18页)数学试卷第10页(共18页)数学试卷第11页(共18页)数学试卷第12页(共18页)同理==4,=8,==5AB DM CW BF FM ,AB CD ∥,BNE WND ∴△∽△,BN BE NF DW ∴=,2554BN BN ∴=-+,解得:103BN =,104233MN BN BM ∴=-=-=,故答案为:43.【考点】勾股定理,全等三角形,相似三角形,矩形的性质 三、17.【答案】解:原式151232=-+⨯+ =5113-++ 8=.【解析】直接利用绝对值以及零指数幂的性质和特殊角的三角函数值、负整数指数幂的性质分别化简得出答案. 【考点】绝对值以及零指数幂的性质 【考查能力】运算18.【答案】解:证明:AC 平分BAD ∠,BAC DAC ∴∠∠=,又AB AD =,AC AC =,ABC ADC SAS ∴△≌△(),BC CD ∴=. 【解析】由“SAS ”可证ABC ADC △≌△,可得=BC DC . 【考点】全等三角形的性质【考查能力】推理,空间观念与几何直观 19.【答案】解:原式222(1)2(1)(1)(1)(1)1x x x x x x x x x x x ++=⨯=⨯=+-+-- 【解析】根据分式的运算法则即可求出答案.具体解题过程参照答案. 四、20.【答案】(1)1230%=40÷,即=40n ,B 组的车辆为:402161228----=(辆),补全频数分布直方图如图:(2)2860015040+⨯=(辆),即估计耗油1L 所行使的路程低于13 km 的该型号汽车的辆数为150辆.(3)设行使路程在1212.5x ≤<范围内的2辆车记为为A B 、,行使路程在1414.5x ≤<范围内的2辆车记为C D 、,画树状图如图:共有12个等可能的结果,抽取的2辆汽车来自同一范围的结果有4个,∴抽取的2辆汽车来自同一范围的概率为41123=. 【解析】(1)由D 组的车辆数及其所占百分比求得n 的值;求出B 组的车辆数,补全频数分布直方图即可.(2)由总车辆数乘以360乘以耗油1 L 所行使的路程低于13 km 的汽车的辆数所占的比例即可.(3)画出树状图,由概率公式求解即可. 【考点】统计图的应用 【考查能力】运算,应用意识21.【答案】(1)设甲种奖品购买了x 件,乙种奖品购买了()30x -件,根据题意得3020(30)800x x +-=,解得20x =,则3010x -=,答:甲种奖品购买了20件,乙种奖品购买了10件. (2)设甲种奖品购买了x 件,乙种奖品购买了()30x -件,设购买两种奖品的总费用为w元,根据题意得303x x -≤,解得7.5x ≥,3020(30)10600w x x x =+-=+,100>,w ∴随x 的增大而减小,8x ∴=时,w 有最小值为:108600680w =⨯+=.答:当购买甲种奖品8件、乙种数学试卷第13页(共18页)数学试卷第14页(共18页)奖品22件时,总花费最小,最小费用为680元.【解析】(1)设甲种奖品购买了x 件,乙种奖品购买了()30x -件,利用购买甲、乙两种奖品共花费了800元列方程3020(30)800x x +-=,然后解方程求出x ,再计算30x -即可;(2)设甲种奖品购买了x 件,乙种奖品购买了()30x -件,设购买两种奖品的总费用为w元,由购买乙种奖品的件数不超过甲种奖品件数的3倍,可得出关于m 的一元一次不等式,解之可得出m 的取值范围,再由总价=单价×数量,可得出w 关于x 的函数关系式,利用一次函数的性质即可解决最值问题. 【考点】一次函数的性质的应用 【考查能力】运算,推理,函数的理解 五、22.【答案】(1)如图,点(, 6)A a 在反比例函数12y x =的图象上,612a ∴=,2a ∴=,(2,6)A ∴,把(2,6)A 代入一次函数32y x b =+中得:3262b ⨯+=,3b ∴=,∴该一次函数的解析式为:233y x =+.(2)由33212y x y x ⎧=+⎪⎪⎨⎪=⎪⎩得:1143x y =-⎧⎨=-⎩,2226x y =⎧⎨=⎩,(4,3)B ∴--,当0x =时,3y =,即3OC =,AOB ∴△的面积11=3234922S ACO S BCO +=⨯⨯+⨯⨯=△△.【解析】(1)根据反比例函数12y x=可得点A 的坐标,把(2,6)A 代入一次函数32y x b =+中可得b 的值,从而得一次函数的解析式.(2)利用面积和可得AOB △的面积.【考点】一次函数和三角形面积的应用【考查能力】计算,推理23.【答案】解:过点C D 、分别作,CM EF DN EF ⊥⊥,垂足为M N 、,在Rt AMC△中,45BAC ∠︒=,=AM MC ∴,在Rt BMC △中,∵37,tan CM ABC ABC BM ︒∠=∠=,4tan 373CM BM CM ︒∴==,4703AB AM BM CM CM ==+=+,30CM DN ∴==,在Rt BDN △中,=60DBN ∠︒,tan 60DN BN ︒∴===,430403CD MN MB BN ∴==+=⨯+=+,答:,C D 两点间的距离为(40+米,【解析】通过作辅助线,在三个直角三角形中,根据边角关系,分别求出CM BM DN BN 、、、,进而求出答案.【考点】尺规作图,三角形边角关系【考查能力】推理,空间观念与几何直观,化归与转化思想 六、24.【答案】(1)证明:连接BD ,AB 是O 的直径,=90ADB ∴∠︒,=90DAB DBA ∴∠+∠︒,BC 是O 的切线,=90ABC ∴∠︒,=90C CAB ∴∠+∠︒,=C ABD ∴∠∠,=AGD ABD ∠∠,AGD C ∴∠=∠.(2)解:90,BDC ABC C C ∠=∠=︒∠=∠,ABC BDC ∴△∽△,BC CDAC BC∴=,646AC ∴=,9AC ∴=,AB ∴==2CE AE =,3AE ∴=,6CE =,FH AB ⊥,FH BC ∴∥,AHE ABC ∴△∽△,AH EH AE AB BC AC∴==,369EH ==,AH ∴=2EH =,连接,AF BF ,AB 是O 的直径,90AFB ∴∠︒=,90AEH BFH AFH FAH ∴∠+∠∠+∠︒==,FAH BFH ∴∠∠=,AFH FBH∴△∽△,FH BH AH FH ∴=,FH=,数学试卷第15页(共18页)数学试卷第16页(共18页)FH ∴=2FH ∴=.【解析】((1)连接BD ,根据圆周角定理得到90ADB ∠︒=,根据切线的性质得到90ABC ∠︒=,得到C ABD ∠∠=,根据圆周角定理即可得到结论.(2)根据相似三角形的判定和性质以及勾股定理即可得到结论. 【考点】三角形内角与外角的关系,相似三角形的判定与性质【考查能力】推理,化归与转化思想25.【答案】(1)抛物线2y ax bx c =++经过(2,0)A -,(4,0)B ,∴设抛物线的解析式为(2)(4)y a x x =+-,将点C 坐标04(,)代入抛物线的解析式为(2)(4)y a x x =+-中,得84a -=,12a ∴=-,∴抛物线的解析式为()211(4)2242y x x x x =--=-+++. (2)①如图1,设直线AC 的解析式为y kx b '=+,将点(2,0)A -,(0,4)C ,代入y kx b '=+中,得204k b b '-+=⎧⎨'=⎩,24k b =⎧∴⎨'=⎩,∴直线AC 的解析式为24y x =+,过点E 作EF x ⊥轴于F ,OD EF ∴∥,BOD BFE ∴△∽△,OB BDBF BE∴=,(4,0)B ,4OB ∴=,5BD DE =,5556BD BD DE BE BD DE DE BE ∴===++,624455BE BF OB BD ∴=⨯=⨯=,244455OF BF OB ∴=-=-=,将45x =-代入直线AC :24y x =+中,得4122455y ⎛⎫=⨯-+= ⎪⎝⎭,412,55E ⎛⎫∴- ⎪⎝⎭,设直线BD 的解析式为=y mx n +,4041255m n m n +=⎧⎪∴⎨-+=⎪⎩,122m n ⎧=-⎪∴⎨⎪=⎩,∴直线BD 的解析式为122y x =-+;②抛物线与x 轴的交点坐标为(2,0)A -和(4,0)B ,∴抛物线的对称轴为直线1x =,∴点Q(1,1),如图2,设点21,4(14)2P x x x x ⎛⎫-++ ⎪⎝⎭<<,过点P 作PG l ⊥于G ,过点R 作RH l ⊥于H ,1PG x ∴=-,221141322GQ x x x x =-++-=-++,PG l ⊥,=90PGQ ∴∠︒,=90GPQ PQG ∴∠+∠︒,PQR △是以点Q 为直角顶点的等腰直角三角形,=PQ RQ ∴,=90PQR ∠︒,=90PQG RQH ∴∠+∠︒,=GPQ HQR ∴∠∠,PQG QRH AAS ∴△≌△(),2132RH GQ x x ∴==-++,1QH PG x ==-,214,22R x x x ⎛⎫∴-++- ⎪⎝⎭,由①知,直线BD 的解析式为122y x =-+,2x ∴=或4x =(舍),当2x =时,2114424422y x x =-++=-⨯++=,(2,4)P ∴.【解析】(1)根据交点式设出抛物线的解析式,再将点C 坐标代入抛物线交点式中,即可求出a ,即可得出结论;(2)①先利用待定系数法求出直线AC 的解析式,再利用相似三角形得出比例式求出BF ,进而得出点E 坐标,最后用待定系数法,即可得出结论;数学试卷第17页(共18页)数学试卷第18页(共18页)②先确定出点Q 的坐标,设点21,4(14)2P x x x x ⎛⎫-++ ⎪⎝⎭<<,得出1PG x =-,2132GQ x x =-++,再利用三垂线构造出PQG QRH AAS △≌△(),得出2132RH GQ x x ==-++,1QH PG x ==-,进而得出214,22R x x x ⎛⎫-++- ⎪⎝⎭,最后代入直线BD 的解析式中,即可求出x 的值,即可得出结论.【考点】一次函数和二次函数的图象与性质,相似三角形的性质与判定,三角形面积 【考查能力】运算,推理,空间观念与几何直观,创新意识,函数与方程思想,数形结合思想,化归与转化思想,分类与整合思想。
2020年四川省泸州市中考数学试卷-含详细解析
2020年四川省泸州市中考数学试卷副标题题号一二三总分得分一、选择题(本大题共12小题,共36.0分)1.2的倒数是()A. 12B. −12C. 2D. −22.将867000用科学记数法表示为()A. 867×103B. 8.67×104C. 8.67×105D. 8.67×1063.如图所示的几何体的主视图是()A.B.C.D.4.在平面直角坐标系中,将点A(−2,3)向右平移4个单位长度,得到的对应点A′的坐标为()A. (2,7)B. (−6,3)C. (2,3)D. (−2,−1)5.下列正多边形中,不是中心对称图形的是()A. B. C. D.6.下列各式运算正确的是()A. x2+x3=x5B. x3−x2=xC. x2⋅x3=x6D. (x3)2=x67.如图,⊙O中,AB⏜=AC⏜,∠ABC=70°.则∠BOC的度数为()A. 100°B. 90°C. 80°D. 70°8.小时)人数2341那么这名学生平均每天的课外阅读时间的平均数和众数分别是A. 1.2和1.5B. 1.2和4C. 1.25和1.5D. 1.25和49.下列命题是假命题的是()A. 平行四边形的对角线互相平分B. 矩形的对角线互相垂直C. 菱形的对角线互相垂直平分D. 正方形的对角线互相垂直平分且相等10.已知关于x的分式方程mx−1+2=−31−x的解为非负数,则正整数m的所有个数为()A. 3B. 4C. 5D. 611.古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点G将一线段MN分为两线段MG,GN,使得其中较长的一段MG是全长MN与较短的一段GN的比例中项,即满足MGMN =GNMG=√5−12,后人把√5−12这个数称为“黄金分割”数,把点G称为线段MN的“黄金分割”点.如图,在△ABC中,已知AB=AC=3,BC=4,若D,E是边BC的两个“黄金分割”点,则△ADE的面积为()A. 10−4√5B. 3√5−5C. 5−2√52D. 20−8√512.已知二次函数y=x2−2bx+2b2−4c(其中x是自变量)的图象经过不同两点A(1−b,m),B(2b+c,m),且该二次函数的图象与x轴有公共点,则b+c的值为()A. −1B. 2C. 3D. 4二、填空题(本大题共4小题,共12.0分)13.函数y=√x−2的自变量x的取值范围是______.14.若x a+1y3与12x4y3是同类项,则a的值是______.15.已知x1,x2是一元二次方程x2−4x−7=0的两个实数根,则x12+4x1x2+x22的值是______.16.如图,在矩形ABCD中,E,F分别为边AB,AD的中点,BF与EC、ED分别交于点M,N.已知AB=4,BC=6,则MN的长为______.三、解答题(本大题共9小题,共72.0分)17.计算:|−5|−(π−2020)0+2cos60°+(13)−1.18.如图,AC平分∠BAD,AB=AD.求证:BC=DC.19.化简:(x+2x +1)÷x2−1x.20.某汽车公司为了解某型号汽车在同一条件下的耗油情况,随机抽取了n辆该型号汽车耗油1L所行使的路程作为样本,并绘制了如图不完整的频数分布直方图和扇形统计图.根据题中已有信息,解答下列问题:(1)求n的值,并补全频数分布直方图;(2)若该汽车公司有600辆该型号汽车.试估计耗油1L所行使的路程低于13km的该型号汽车的辆数;(3)从被抽取的耗油1L所行使路程在12≤x<12.5,14≤x<14.5这两个范围内的4辆汽车中,任意抽取2辆,求抽取的2辆汽车来自同一范围的概率.21. 某校举办“创建全国文明城市”知识竞赛,计划购买甲、乙两种奖品共30件.其中甲种奖品每件30元,乙种奖品每件20元.(1)如果购买甲、乙两种奖品共花费800元,那么这两种奖品分别购买了多少件? (2)若购买乙种奖品的件数不超过甲种奖品件数的3倍.如何购买甲、乙两种奖品,使得总花费最少? 22. 如图,在平面直角坐标系xOy 中,已知一次函数y =32x +b的图象与反比例函数y =12x的图象相交于A ,B 两点,且点A 的坐标为(a,6).(1)求该一次函数的解析式; (2)求△AOB 的面积.23. 如图,为了测量某条河的对岸边C ,D 两点间的距离.在河的岸边与CD 平行的直线EF 上取两点A ,B ,测得∠BAC =45°,∠ABC =37°,∠DBF =60°,量得AB 长为70米.求C ,D 两点间的距离(参考数据:sin37°≈35,cos37°≈45,tan37°≈34).24.如图,AB是⊙O的直径,点D在⊙O上,AD的延长线与过点B的切线交于点C,E为线段AD上的点,过点E的弦FG⊥AB于点H.(1)求证:∠C=∠AGD;(2)已知BC=6.CD=4,且CE=2AE,求EF的长.25.如图,已知抛物线y=ax2+bx+c经过A(−2,0),B(4,0),C(0,4)三点.(1)求该抛物线的解析式;(2)经过点B的直线交y轴于点D,交线段AC于点E,若BD=5DE.①求直线BD的解析式;②已知点Q在该抛物线的对称轴l上,且纵坐标为1,点P是该抛物线上位于第一象限的动点,且在l右侧,点R是直线BD上的动点,若△PQR是以点Q为直角顶点的等腰直角三角形,求点P的坐标.答案和解析1.【答案】A.【解析】解:2的倒数是12故选:A.根据倒数的概念求解.主要考查倒数的定义,要求熟练掌握.需要注意的是倒数的性质:负数的倒数是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.【答案】C【解析】解:867000=8.67×105,故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】B【解析】解:从正面看是一个矩形,矩形的中间有一条纵向的实线.故选:B.找到从几何体的正面看所得到的图形即可.此题主要考查了简单几何体的三视图,关键是掌握主视图所看的位置.4.【答案】C【解析】解:∵将点A(−2,3)先向右平移4个单位,∴点A的对应点A′的坐标是(−2+4,3),即(2,3).故选:C.直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.本题考查坐标与图形变化−平移,平移中点的变化规律是:左右移动改变点的横坐标,左减、右加;上下移动改变点的纵坐标,下减、上加.5.【答案】B【解析】解:A.正方形是中心对称图形,故本选项不合题意;B.正五边形不是中心对称图形,故本选项符合题意;C.正六边形是中心对称图形,故本选项不合题意;D.正八边形是中心对称图形,故本选项不合题意;故选:B.根据中心对称图形的概念结合选项的图形进行判断即可.本题考查了中心对称图形的知识,要注意中心对称图形是要寻找对称中心,旋转180度后重合.6.【答案】DC.x2⋅x3=x5,故本选项不合题意;D.(x3)2=x6,故本选项符合题意.故选:D.分别根据合并同类项法则,同底数幂的除法法则以及幂的乘方运算法则逐一判断即可.本题主要考查了合并同类项,同底数幂的乘法以及幂的乘方,熟记相关运算法则是解答本题的关键.7.【答案】C【解析】解:∵AB⏜=AC⏜,∴∠ABC=∠ACB=70°,∴∠A=180°−70°−70°=40°,∴∠BOC=2∠A=80°.故选:C.先根据圆周角定理得到∠ABC=∠ACB=70°,再利用三角形内角和计算出∠A=40°,然后根据圆周角定理得到∠BOC的度数.本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.8.【答案】A=1.2;【解析】解:10名学生的每天阅读时间的平均数为0.5×2+1×3+1.4×4+2×12+3+4+1学生平均每天阅读时间出现次数最多的是1.5小时,共出现4次,因此众数是1.5;故选:A.根据中位数、众数的计算方法求出结果即可.本题考查平均数、众数的意义和计算方法,掌握平均数的计算方法是正确计算的前提.9.【答案】B【解析】解:A、平行四边形的对角线互相平分,是真命题;B、矩形的对角线互相相等,不是垂直,原命题是假命题;C、菱形的对角线互相垂直平分,是真命题;D、正方形的对角线互相垂直平分且相等,是真命题;故选:B.根据平行四边形、矩形、菱形和正方形的性质判断即可.本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.10.【答案】C【解析】解:去分母,得:m+2(x−1)=3,,移项、合并,得:x=5−m2∵分式方程的解为非负数,≠1,∴5−m≥0且5−m2解得:m≤5且m≠3,∴整数解有0,1,2,4,5共5个,式,可得答案.本题考查了分式方程的解,先求出分式方程的解,再求出不等式的解.11.【答案】A【解析】解:作AH⊥BC于H,如图,∵AB=AC,∴BH=CH=1BC=2,2在Rt△ABH中,AH=√32−22=√5,∵D,E是边BC的两个“黄金分割”点,BC=2(√5−1)=2√5−2,∴BE=√5−12∴HE=BE−BH=2√5−2−2=2√5−4,∴DE=2HE=4√5−8∴S△ADE=1×(4√5−8)×√5=10−4√5.2故选:A.BC=2,则根据勾股作AH⊥BC于H,如图,根据等腰三角形的性质得到BH=CH=12BC=定理可计算出AH=√5,接着根据线段的“黄金分割”点的定义得到BE=√5−122√5−2,则计算出HE=2√5−4,然后根据三角形面积公式计算.本题考查了黄金分割:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段ABAB≈0.618AB,并且线段AB的黄金分割点有两个.也的黄金分割点.其中AC=√5−12考查了等腰三角形的性质.12.【答案】C【解析】解:由二次函数y=x2−2bx+2b2−4c的图象与x轴有公共点,∴(−2b)2−4×1×(2b2−4c)≥0,即b2−4c≤0①,=b,抛物线经过不同两点A(1−b,m),B(2b+c,m),由抛物线的对称轴x=−−2b2b=1−b+2b+c,即,c=b−1②,2②代入①得,b2−4(b−1)≤0,即(b−2)2≤0,因此b=2,c=b−1=2−1=1,∴b+c=2+1=3,故选:C.求出抛物线的对称轴x=b,再由抛物线的图象经过不同两点A(1−b,m),B(2b+c,m),,可得b=c+1,再根据二次函数的图象与x轴有公共点,也可以得到对称轴为1−b+2b+c2得到b2−4c≤0,进而求出b、c的值.本题考查二次函数的图象和性质,理解抛物线的对称性、二次函数与一元二次方程的关系是解决问题的关键.13.【答案】x≥2【解析】解:根据题意得,x−2≥0,解得x≥2.故答案为:x≥2.根据被开方数大于等于0列式计算即可得解.本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负数.14.【答案】3【解析】解:∵x a+1y3与12x4y3是同类项,∴a+1=4,解得a=3,故答案为:3.所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项,据此可得a的值.本题考查了同类项的概念,同类项与系数的大小无关;同类项与它们所含的字母顺序无关.15.【答案】2【解析】解:根据题意得则x1+x2=4,x1x2=−7所以,x12+4x1x2+x22=(x1+x2)2+2x1x2=16−14=2故答案为2.根据根与系数的关系求解.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=−ba ,x1⋅x2=ca.16.【答案】43【解析】解:延长CE、DA交于Q,如图1,∵四边形ABCD是矩形,BC=6,∴∠BAD=90°,AD=BC=6,AD//BC,∵F为AD中点,∴AF=DF=3,在Rt△BAF中,由勾股定理得:BF=√AB2+AF2=√42+32=5,∵AD//BC,∴∠Q=∠ECB,∵E为AB的中点,AB=4,∴AE=BE=2,{∠QEA=∠BEC ∠Q=∠ECB AE=BE∴△QAE≌△CBE(AAS),∴AQ=BC=6,即QF=6+3=9,∵AD//BC,∴△QMF∽△CMB,∴FMBM =QFBC=96,∵BF=5,∴BM=2,FM=3,延长BF和CD,交于W,如图2,同理AB=DM=4,CW=8,BF=FM=5,∵AB//CD,∴△BNE∽△WND,∴BNNF =BEDW,∴BN5−BN+5=24,解得:BN=103,∴MN=BN−BM=103−2=43,故答案为:43.延长CE、DA交于Q,延长BF和CD,交于W,根据勾股定理求出BF,根据矩形的性质求出AD,根据全等三角形的性质得出AQ=BC,AB=CW,根据相似三角形的判定得出△QMF∽△CMB,△BNE∽△WND,根据相似三角形的性质得出比例式,求出BN 和BM的长,即可得出答案.本题考查了矩形的性质,全等三角形的性质和判定,勾股定理,相似三角形的性质和判定,能综合运用定理进行推理是解此题的关键.17.【答案】解:原式=5−1+2×12+3=5−1+1+3=8.【解析】直接利用绝对值以及零指数幂的性质和特殊角的三角函数值、负整数指数幂的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.18.【答案】证明:∵AC平分∠BAD,∴∠BAC=∠DAC,又∵AB=AD,AC=AC,∴△ABC≌△ADC(SAS),∴BC=CD.【解析】由“SAS”可证△ABC≌△ADC,可得BC=DC.本题考查了全等三角形的判定和性质,证明△ABC≌△ADC是本题的关键.19.【答案】解:原式=2x+2x ×x(x+1)(x−1)=2(x+1)x×x(x+1)(x−1)=2x−1.【解析】根据分式的混合运算顺序和运算法则进行计算.本题主要考查了分式的混合运算,熟记分式混合运算的顺序和各类运算法则是解题的关键.20.【答案】解:(1)12÷30%=40,即n=40,B组的车辆为:40−2−16−12−2=8(辆),补全频数分布直方图如图:(2)600×2+840=150(辆),即估计耗油1L所行使的路程低于13km的该型号汽车的辆数为150辆;(3)设行使路程在12≤x<12.5范围内的2辆车记为为A、B,行使路程在14≤x<14.5范围内的2辆车记为C、D,画树状图如图:共有12个等可能的结果,抽取的2辆汽车来自同一范围的结果有4个,∴抽取的2辆汽车来自同一范围的概率为412=13.【解析】(1)由D组的车辆数及其所占百分比求得n的值;求出B组的车辆数,补全频数分布直方图即可;(2)由总车辆数乘以360°乘以耗油1L所行使的路程低于13km的汽车的辆数所占的比例即可;(3)画出树状图,由概率公式求解即可.本题考查了列表法或画树状图法、频数分布直方图和扇形统计图的有关知识.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比. 21.【答案】解:(1)设甲种奖品购买了x 件,乙种奖品购买了(30−x)件, 根据题意得30x +20(30−x)=800,解得x =20,则30−x =10,答:甲种奖品购买了20件,乙种奖品购买了10件;(2)设甲种奖品购买了x 件,乙种奖品购买了(30−x)件,设购买两种奖品的总费用为w 元,根据题意得30−x ≤3x ,解得x ≥7.5,w =30x +20(30−x)=10x +600,∵10>0,∴w 随x 的增大而减小,∴x =8时,w 有最小值为:w =10×8+600=680.答:当购买甲种奖品8件、乙种奖品22件时,总花费最小,最小费用为680元.【解析】(1)设甲种奖品购买了x 件,乙种奖品购买了(30−x)件,利用购买甲、乙两种奖品共花费了800元列方程30x +20(30−x)=800,然后解方程求出x ,再计算30−x 即可;(2)设甲种奖品购买了x 件,乙种奖品购买了(30−x)件,设购买两种奖品的总费用为w 元,由购买乙种奖品的件数不超过甲种奖品件数的3倍,可得出关于m 的一元一次不等式,解之可得出m 的取值范围,再由总价=单价×数量,可得出w 关于x 的函数关系式,利用一次函数的性质即可解决最值问题.本题考查了一元一次不等式组的应用:对具有多种不等关系的问题,考虑列一元一次不等式组,并求解;一元一次不等式组的应用主要是列一元一次不等式组解应用题, 22.【答案】解:(1)如图,∵点A(a,6)在反比例函数y =12x 的图象上,∴6a =12,∴a =2,∴A(2,6), 把A(2,6)代入一次函数y =32x +b 中得:32×2+b =6,∴b =3,∴该一次函数的解析式为:y =32x +3;(2)由{y =32x +3y =12x得:{x 1=−4y 1=−3,{x 2=2y 2=6, ∴B(−4,−3),当x=0时,y=3,即OC=3,∴△AOB的面积=S△ACO+S△BCO=12×3×2+12×3×4=9.【解析】(1)根据反比例函数y=12x 可得点A的坐标,把A(2,6)代入一次函数y=32x+b中可得b的值,从而得一次函数的解析式;(2)利用面积和可得△AOB的面积.本题主要考查了反比例函数与一次函数交点问题,解题时注意:反比例函数与一次函数交点坐标同时满足反比例函数与一次函数解析式.解决问题的关键是确定一次函数的解析式.23.【答案】解:过点C、D分别作CM⊥EF,DN⊥EF,垂足为M、N,在Rt△AMC中,∵∠BAC=45°,∴AM=MC,在Rt△BMC中,∵∠ABC=37°,tan∠ABC=CMBM,∴BM=CMtan37∘=43CM,∵AB=70=AM+BM=CM+43CM,∴CM=30=DN,在Rt△BDN中,∵∠DBN=60°,∴BN=DNtan60∘=√3=10√3,∴CD=MN=MB+BN=43×30+10√3=40+10√3,答:C,D两点间的距离为(40+10√3)米,【解析】通过作辅助线,在三个直角三角形中,根据边角关系,分别求出CM、BM、DN、BN,进而求出答案.本题考查直角三角形的边角关系的应用,掌握直角三角形的边角关系以及几个直角三角形之间的关系是正确解答的关键.24.【答案】(1)证明:连接BD,∵AB是⊙O的直径,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∵BC是⊙O的切线,∴∠ABC=90°,∴∠C+∠CAB=90°,∴∠C=∠ABD,∵∠AGD=∠ABD,∴∠AGD=∠C;(2)解:∵∠BDC=∠ABC=90°,∠C=∠C,∴△ABC∽△BDC,∴BCAC =CDBC,∴6AC =46,∴AC=9,∴AB=√AC2−BC2=3√5,∵CE=2AE,∴AE=3,CE=6,∵FH⊥AB,∴FH//BC,∴△AHE∽△ABC,∴AHAB =EHBC=AEAC,∴AH3√5=EH6=39,∴AH=√5,EH=2,连接AF,BF,∵AB是⊙O的直径,∴∠AFB=90°,∴∠AEH+∠BFH=∠AFH+∠FAH=90°,∴∠FAH=∠BFH,∴△AFH∽△FBH,∴FHAH =BHFH,∴FH√5=2√5FH,∴FH=√10,∴EF=√10−2.【解析】(1)连接BD,根据圆周角定理得到∠ADB=90°,根据切线的性质得到∠ABC= 90°,得到∠C=∠ABD,根据圆周角定理即可得到结论;(2)根据相似三角形的判定和性质以及勾股定理即可得到结论.本题考查了切线的性质,相似三角形的判定和性质,圆周角定理,勾股定理,正确的作出辅助线是解题的关键.25.【答案】解:(1)∵抛物线y=ax2+bx+c经过A(−2,0),B(4,0),∴设抛物线的解析式为y=a(x+2)(x−4),将点C坐标(0,4)代入抛物线的解析式为y=a(x+2)(x−4)中,得−8a=4,∴a=−12,∴抛物线的解析式为y=−12(x+2)(x−4)=−12x2+x+4;(2)①如图1,设直线AC的解析式为y=kx+b′,将点A(−2,0),C(0,4),代入y=kx+b′中,得{−2k+b′=0b′=4,∴{k=2b′=4,∴直线AC的解析式为y=2x+4,过点E 作EF ⊥x 轴于F ,∴OD//EF ,∴△BOD∽△BFE , ∴OB BF =BD BE , ∵B(4,0), ∴OB =4, ∵BD =5DE ,∴BD BE =BD BD+DE =5DE 5DE+BE =56,∴BF =BE BD ×OB =65×4=245, ∴OF =BF −OB =245−4=45, 将x =−45代入直线AC :y =2x +4中,得y =2×(−45)+4=125,∴E(−45,125), 设直线BD 的解析式为y =mx +n ,∴{4m +n =0−45m +n =125,∴{m =−12n =2, ∴直线BD 的解析式为y =−12x +2;②∵抛物线与x 轴的交点坐标为A(−2,0)和B(4,0),∴抛物线的对称轴为直线x =1,∴点Q(1,1),如图2,设点P(x,−12x 2+x +4)(1<x <4),过点P 作PG ⊥l 于G ,过点R 作RH ⊥l 于H ,∴PG =x −1,GQ =−12x 2+x +4−1=−12x 2+x +3, ∵PG ⊥l ,∴∠PGQ =90°,∴∠GPQ +∠PQG =90°,∵△PQR 是以点Q 为直角顶点的等腰直角三角形,∴PQ =RQ ,∠PQR =90°,∴∠PQG +∠RQH =90°,∴∠GPQ =∠HQR ,∴△PQG≌△QRH(AAS),∴RH =GQ =−12x 2+x +3,QH =PG =x −1,∴R(−12x 2+x +4,2−x),由①知,直线BD的解析式为y=−12x+2,∴x=2或x=4(舍),当x=2时,y=−12x2+x+4=−12×4+2+4=4,∴P(2,4).【解析】(1)根据交点式设出抛物线的解析式,再将点C坐标代入抛物线交点式中,即可求出a,即可得出结论;(2)①先利用待定系数法求出直线AC的解析式,再利用相似三角形得出比例式求出BF,进而得出点E坐标,最后用待定系数法,即可得出结论;②先确定出点Q的坐标,设点P(x,−12x2+x+4)(1<x<4),得出PG=x−1,GQ=−12x2+x+3,再利用三垂线构造出△PQG≌△QRH(AAS),得出RH=GQ=−12x2+x+3,QH=PG=x−1,进而得出R(−12x2+x+4,2−x),最后代入直线BD的解析式中,即可求出x的值,即可得出结论.此题是二次函数综合题,主要考查了待定系数法,相似三角形的判定和性质,全等三角形的判定和性质,构造出全等三角形是解本题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
泸州市二○二○年初中学业水平考试数学试题全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页.全卷满分120分.考试时间共120分钟.注意事项:1.答题前,请考生务必在答题卡上正确填写自己的姓名、准考证号和座位号.考试结束,将试卷和答题卡一并交回.2.选择题每小题选出的答案须用2B 铅笔在答题卡上把对应题目的答案标号涂黑.如需改动,用橡皮擦擦净后,再选涂其它答案.非选择题须用0.5毫米黑色墨迹签字笔在答题卡上对应题号位置作答,在试题上作答无效.第Ⅰ卷(选择题 共36分)一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.2的倒数是( )A. 2B. 12C. 12-D. -22.将867000用科学记数法表示为( )A. 386710⨯B. 48.6710⨯C. 58.6710⨯D. 68.6710⨯ 3.如下图所示的几何体的主视图是( )A. B. C. D. 4.在平面直角坐标系中,将点(2,3)A -向右平移4个单位长度,得到的对应点A '的坐标为( )A. ()2,7B. ()6,3-C. ()2,3D. ()2,1-- 5.下列正多边形中,不是中心对称图形的是( )A. B. C. D.6.下列各式运算正确的是( )A. 235x x x +=B. 32x x x -=C. 236x x x ⋅=D. ()236x x = 7.如图,O 中,AB AC =,70ABC ∠=︒.则BOC ∠的度数为( )A. 100°B. 90°C. 80°D. 70°8.某语文教师调查了本班10名学生平均每天的课外阅读时间,统计结果如下表所示:那么这10名学生平均每天的课外阅读时间的平均数和众数分别是( )A. 1.2和1.5B. 1.2和4C. 1.25和1.5D. 1.25和49.下列命题是假命题的是( )A. 平行四边形的对角线互相平分B. 矩形的对角线互相垂直C. 菱形对角线互相垂直平分D. 正方形的对角线互相垂直平分且相等10.已知关于x 的分式方程3211m x x +=---的解为非负数,则正整数m 的所有个数为( ) A. 3 B. 4 C. 5D. 611.古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点G 将一线段MN 分为两线段MG ,GN ,使得其中较长的一段MG 是全长MN 与较短的段GN 的比例中项,即满足12MG GN MN MG ==,后人把12这个数称为“黄金分割”数,把点G 称为线段MN 的“黄金分割”点.如图,在ABC 中,已知3AB AC ==,4BC =,若D ,E 是边BC 的两个“黄金分割”点,则ADE的面积为( )的A. 10-B. 5C. 52-D. 20-12.已知二次函数22224y x bx b c =-+-(其中x 是自变量)图象经过不同两点(1,)A b m -,(2,)B b c m +,且该二次函数的图象与x 轴有公共点,则b c +的值( )A. 1-B. 2C. 3D. 4 第Ⅱ卷(非选择题 共84分)注意事项:用0.5毫米黑色墨迹签字笔在答题卡上对应题号位置作答,在试卷上作答无效.二、填空题(本大题共4个小题,每小题3分,共12分)13.函数y =x 的取值范围是_____.14.若13a x y -与4312x y 是同类项,则a 值是___________. 15.已知12,x x 是一元二次方程2470x x --=的两个实数根,则2211224x x x x ++的值是_________.16.如图,在矩形ABCD 中,,E F 分别为边AB ,AD 的中点,BF 与EC ,ED 分别交于点M ,N .已知4AB =,6BC =,则MN 的长为_________.三、本大题共3个小题,每小题6分,共18分.17.计算:101|5|(2020)2cos603π-⎛⎫--+ ⎝︒-+⎪⎭. 18 如图,AB 平分∠CAD,AC =AD .求证:BC =BD .19.化简:2211x x x x +-⎛⎫+÷ ⎪⎝⎭. 的的.四、本大题共2个小题,每小题7分,共14分.20.某汽车公司为了解某型号汽车在同一条件下的耗油情况,随机抽取了n 辆该型号汽车耗油1L 所行使的路程作为样本,并绘制了以下不完整的频数分布直方图和扇形统计图.根据题中已有信息,解答下列问题:(1)求n 的值,并补全频数分布直方图;(2)若该汽车公司有600辆该型号汽车,试估计耗油1L 所行使的路程低于13km 的该型号汽车的辆数; (3)从被抽取的耗油1L 所行使路程在1212.5x ≤<,1414.5x ≤<这两个范围内的4辆汽车中,任意抽取2辆,求抽取的2辆汽车来自同一范围的概率.21.某校举办“创建全国文明城市”知识竞赛,计划购买甲、乙两种奖品共30件.其中甲种奖品每件30元,乙种奖品每件20元.(1)如果购买甲、乙两种奖品共花费800元,那么这两种奖品分别购买了多少件?(2)若购买乙种奖品的件数不超过甲种奖品件数的3倍,如何购买甲、乙两种奖品,使得总花费最少?五、本大题共2个小题,每小题8分,共16分.22.如图,在平面直角坐标系xOy 中,已知一次函数32y x b =+的图象与反比例函数12y x=的图象相交于A ,B 两点.且点A 的坐标为(),6a .(1)求该一次函数的解析式;(2)求AOB 的面积.23.如图,为了测量某条河的对岸边C ,D 两点间的距离,在河的岸边与CD 平行的直线EF 上取两点A ,B ,测得45BAC ∠=︒,37ABC ∠=︒,60DBF ∠=︒,量得AB 长为70米.求C ,D 两点间的距离(参考数据:3sin 375︒≈,4cos375≈︒,3tan 374︒≈).六、本大题共2个小题,每小题12分,共24分.24.如图,AB 是O 的直径,点D 在O 上,AD 的延长线与过点B 的切线交于点C ,E 为线段AD 上的点,过点E 的弦FG AB ⊥于点H .(1)求证:C AGD ∠=∠;(2)已知6BC =,4CD =,且2CE AE =,求EF 的长.25.如图,已知抛物线2y ax bx c =++经过(2,0)A -,(4,0)B ,(0,4)C 三点.(1)求该抛物线的解析式;(2)经过点B 直线交y 轴于点D ,交线段AC 于点E ,若5BD DE =.①求直线BD 的解析式;②已知点Q在该抛物线的对称轴l上,且纵坐标为1,点P是该抛物线上位于第一象限的动点,且在l右侧.点R是直线BD上的动点,若PQR是以点Q为直角顶点的等腰直角三角形,求点P的坐标.参考答案第Ⅰ卷(选择题 共36分)一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1-5 BCBCB 6-10 DCABB 11-12 AC第Ⅱ卷(非选择题 共84分)注意事项:用0.5毫米黑色墨迹签字笔在答题卡上对应题号位置作答,在试卷上作答无效.二、填空题(本大题共4个小题,每小题3分,共12分)13.【答案】2x ≥14.【答案】515.【答案】216.【答案】43三、本大题共3个小题,每小题6分,共18分.17.计算:101|5|(2020)2cos603π-⎛⎫--+ ⎝︒-+⎪⎭. 解:原式=5-1+122⨯+3=5-1+1+3=818.证明:)AB 平分)CAD ,))BAC =)BAD .)AC =AD , AB =AB ,))ABC))ABD (SAS ).)BC =BD .19.化简:2211x x x x +-⎛⎫+÷ ⎪⎝⎭.解:原式=221x x xx x ++⨯-=()()()2111x xx x x +⨯+- =21x -四、本大题共2个小题,每小题7分,共14分.20.解:(1)n=12÷30%=40(辆),B :40-2-16-12-2=8,补全频数分布直方图如下:(2)2860040+⎛⎫⨯ ⎪⎝⎭=150(辆), 答:耗油1L 所行使的路程低于13km 的该型号汽车的有150辆;(3)从被抽取的耗油1L 所行使路程在1212.5x ≤<的有2辆,记为A ,B ,行使路程在1414.5x ≤<的有2辆,记为1,2,任意抽取2辆的可能结果有6种,分别为:(A ,1),(A ,2),(A ,B ),(B ,1),(B ,2),(1,2)其中抽取的2辆汽车来自同一范围的的结果有2种,所以抽取的2辆汽车来自同一范围的的概率P=26=13. 21.解:(1)设甲购买了x 件,乙购买了y 件,303020800x y x y +=⎧⎨+=⎩, 解得2010x y =⎧⎨=⎩, 答:甲购买了20件,乙购买了10件;(2)设购买甲奖品为a 件.则乙奖品为(30-a )件,根据题意可得:30-a≤3a ,解得a≥152, 又∵甲种奖品每件30元,乙种奖品每件20元,总花费=30a+20(30-a )=10a+600,总花费随a 的增大而增大∴当a=8时,总花费最少,答:购买甲奖品8件,乙奖品22件,总费用最少.五、本大题共2个小题,每小题8分,共16分.22.解:∵点A 在反比例函数12y x =上, ∴126a=,解得a=2, ∴A 点坐标()2,6,∵点A 在一次函数32y x b =+上, ∴3262b ⨯+=,解得b=3, ∴该一次函数的解析式为332y x =+; (2)设直线与x 轴交于点C , 令3302x +=,解得x=- 2,∴一次函数与x 轴的交点坐标C (- 2,0), ∵33212y x y x ⎧=+⎪⎪⎨⎪=⎪⎩, 解得1143x y =-⎧⎨=-⎩或2226x y =⎧⎨=⎩, ∴B (- 4,-3),∴S △AOB =S △AOC +S △BOC , =121122OC h OC h ⨯⨯+⨯⨯ =()1212OC h h ⨯⨯+=()12632⨯⨯+ =923.解:过点C 作CH ⊥AB ,垂足为点H ,过点D 作DG ⊥AB ,垂足为点G ,在△ACH 中,tan ∠A =CH AH ,得AH=CH , 同理可得BH=43CH , ∵AH+BH=AB , ∴43CH+CH=70.解得CH =30, 在△BCH 中,tan ∠ABC=CH BH, 即3304BH =,解得BH=40, 又∵DG=CH=30,同理可得∴,答:C 、D 两点之间的距离约等于米.六、本大题共2个小题,每小题12分,共24分.24.解:(1)∵OA=OD ,∴∠ODA=∠OAD ,∵BC 和AB 相切,∴∠ABC=90°,∵DG 为圆O 直径,∴∠DAG=90°,∵∠C=180°-∠CAB -∠ABC ,∠AGD=180°-∠DAG -∠ADO , ∴∠C=∠AGD ;(2)连接BD ,∵AB 为直径,∴∠ADB=∠CDB=90°,∵6BC =,4CD =,∴=∵OA=OB=OD=OG ,∠AOG=∠BOD ,∴△BOD ≌AOG (SAS ),∴AG=BD=∵FG ⊥AB ,BC ⊥AB ,∴FG ∥BC ,∴∠AEG=∠C ,∵∠EAG=∠CDB=90°,AG=BD ,∴△AEG ≌△DCB (AAS ),∴EG=BC=6,AE=CD=4,∵AH ⊥FG ,AB 为直径,∴AH=AE ×AG ÷,FH=GH ,∴103, ∴FG=2HG=203, ∴EF=FG -EG=203-6=23)25.解:(1)∵抛物线2y ax bx c =++经过点(2,0)A -,(4,0)B ,(0,4)C ,代入,∴42016404a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得:1214a b c ⎧=-⎪⎪=⎨⎪=⎪⎩, ∴抛物线表达式为:2142y x x =-++; (2)①过点E 作EG ⊥x 轴,垂足为G ,∵B (4,0),设直线BD 的表达式为:y=k (x -4),设AC 表达式为:y=mx+n ,将A 和C 代入,得:204m n n -+=⎧⎨=⎩,解得:24m n =⎧⎨=⎩, ∴直线AC 的表达式为:y=2x+4,联立:()424y k x y x ⎧=-⎨=+⎩, 解得:442122k x k k y k +⎧=⎪⎪-⎨⎪=⎪-⎩, ∴E (442k k +-,122k k -), ∴G (442k k +-,0), ∴BG=122k --, ∵EG ⊥x 轴,∴△BDO ∽△BEG , ∴BD BO BE BG=, ∵5BD DE =, ∴56BD BO BE BG ==, ∴451262k =--,解得:k=12-,∴直线BD 的表达式为:122y x =-+;②由题意:设P (s ,2142s s -++),1<s <4, ∵△PQR 是以点Q 为直角顶点的等腰直角三角形, ∴∠PQR=90°,PQ=RQ ,当点R 在y 轴右侧时,如图,分别过点P ,R 作l 的垂线,垂足为M 和N , ∵∠PQR=90°,∴∠PQM+∠RQN=90°,∵∠MPQ+∠PQM=90°,∴∠RQN=∠MPQ ,又PQ=RQ ,∠PMQ=∠RNQ=90°, ∴△PMQ ≌△QNR ,∴MQ=NR ,PM=QN ,∵Q 在抛物线对称轴l 上,纵坐标为1,∴Q (1,1),∴QN=PM=1,MQ=RN ,则点P 的横坐标为2,代入抛物线得:y=4, ∴P (2,4);当点R 在y 轴左侧时,如图,分别过点P ,R 作l 的垂线,垂足为M 和N ,同理:△PMQ≌△QNR,∴NR=QM,NQ=PM,设R(t,122t-+),∴RN=1121122t t-+-=-+=QM,NQ=1-t=PM,∴P(122t-+,2-t),代入抛物线,解得:t=6-或6(舍),∴点P1,4),综上:点P的坐标为(2,41,4).。