【材料力学】第五章 截面的几何性质习题答案
(材料力学)截面几何性质习题及参考答案
截面几何性质 作业专业班级 姓名 学号1. 判断题(1)任意平面图形至少有1对形心主惯性轴,等边三角形有3对形心主惯性轴。
( × ) (2)平面图形的几何性质中,静矩和惯性矩的值可正、可负、可为零。
( × ) (3)平面图形中,使静矩为零的轴必为对称轴。
( × ) 2. 选择题(1)若截面图形有对称轴,则该图形对其对称轴的( A )。
A. 静矩为零,惯性矩不为零B. 静矩和惯性矩均不为零C. 静矩和惯性矩均为零D. 静矩不为零,惯性矩为零(2)设图形具有三个以上(含三个)对称轴时,对某一形心轴的惯性矩I 1 ,对某一对正交形心轴的惯性积为I 2。
则当形心轴绕形心旋转时( A )。
A. I 1值不变,I 2恒等于零B. I 1 值不变,I 2不恒等于零C. I 1值变化,I 2恒等于零D. I 1值变化,I 2不恒等于零(3)任意图形的面积为A ,x C 轴通过形心C ,x 1轴和x C 轴平行,并相距a ,已知图形对x 1轴的惯性矩是I 1,则对x C 轴的惯性矩为( A )。
A. 21xC I I Aa =-B. 0xC I =C. 21xC I I Aa =+D. 1xC I I Aa =+C x 1(4)图示等底等高的矩形和平行四边形,对其形心轴y 的惯性矩I a 和I b 满足( A )。
A. I a = I bB. I a > I bC. I a < I bD. 不能确定(a )(b )(5)设矩形对其对称轴z 的惯性矩为I ,当其长宽比保持不变,面积增加1倍时,该矩形对其对称轴z 的惯性矩将变为( A )。
A. 4IB. 2IC. 8ID. 16I(6)图示任意形状图形,形心轴z 将图形分为两部分,则一定成立的是( A )。
A. S z 1 + S z 2 = 0B. I z 1 = I z 2C. A 1 = A 2D. S z 1 = S z 2(7)图形对通过某点的所有轴的惯性矩中,图形对主惯性轴的惯性矩一定( A )。
材料力学习题解答[第五章]
5-1构件受力如图5-26所示。
试:(1)确定危险点的位置;(2)用单元体表示危险点的应力状态(即用纵横截面截取危险点的单元体,并画出应力)。
题5-1图解:a) 1) 危险点的位置:每点受力情况相同,均为危险点;2)用单元体表示的危险点的应力状态见下图。
b) 1) 危险点的位置:外力扭矩3T与2T作用面之间的轴段上表面各点;2)应力状态见下图。
c) 1) 危险点:A点,即杆件最左端截面上最上面或最下面的点;2)应力状态见下图。
d) 1)危险点:杆件表面上各点;2)应力状态见下图。
5-2试写出图5-27所示单元体主应力σ1、σ2和σ3的值,并指出属于哪一种应力状态(应力单位为MPa)。
10题5-2图解:a)1σ=50 MPa,2σ=3σ=0,属于单向应力状态AAT (a)(c)(d)364dFlπτ=a) b) c) d)a) b) c)b) 1σ=40 MPa, 2σ=0, 3σ=-30 MPa ,属于二向应力状态 c) 1σ=20 MPa, 2σ=10 MPa, 3σ=-30 MPa ,属于三向应力状态5-3已知一点的应力状态如图5-28所示(应力单位为MPa )。
试用解析法求指定斜截面上的正应力和切应力。
题5-3图解:a) 取水平轴为x 轴,则根据正负号规定可知: x σ=50MPa , y σ=30MPa , x τ=0, α=-30 带入式(5-3),(5-4)得 ατασσσσσα2sin 2cos 22x yx yx --++==45MPaατασστα2cos 2sin 2x yx +-== -8.66MPab) 取水平轴为x 轴,根据正负号规定:x σ= -40MPa , y σ=0 , x τ=20 MPa , α=120带入公式,得:240sin 20240cos 20402040---++-=ασ=7.32MPa x τ= 240cos 20240sin 2040+--=7.32MPac) 取水平轴为x 轴,则x σ= -10MPa , y σ=40MPa , x τ= -30MPa,α=30代入公式得:60sin )30(60cos 2401024010----++-=ασ=28.48MPa x τ= 60cos 3060sin 24010---=-36.65MPa5-4已知一点的应力状态如图5-29所示(应力状态为MPa )。
材料力学 中国建筑工业出版社 第五章 截面的几何性质 习题解答
5-1 试用积分法确定图示平面图形的形心位置。
解:(1)建立极坐标极坐标(α,ρ),取微面积dA d d ραρ=⋅。
则cos y ρα=, (2)求形心位置222322cos ()cos 43434rrACd d d d ydA r r r y AArππραρραρρααπππ⋅⋅⋅⋅=====⎰⎰⎰⎰⎰由对称性可知:43C rz π=。
图形形心为(43r π,43r π)。
700图题5-1b 图题5-2b5-2 确定图示平面图形力的形心位置。
解:(1)选取通过矩形I 的形心C 1,矩形II 形心C 2,矩形III 形心C 3 (2)求形心位置 由于截面左右对称,故:400mm Cz =。
3131150400150150800200400150500150700222mm=305mm 150800200400500150i Cii C ii A yy A==⎛⎫⎛⎫⨯⨯+⨯⨯++⨯⨯- ⎪ ⎪⎝⎭⎝⎭==⨯+⨯++⨯∑∑图形形心为(305,400)。
5-4(a)题5-4图解:(1)矩形341212z bh a I ==(2)箱形箱形与方形面积,即:22226 5.4 5.4a a bt at t ==→=333322224(0.9)(1.8)(0.9)(1.8)()(2)()(2)5.4 5.4 5.4 5.4121212120.4567z a a a a a a a a b t b t b t b t I a ++--++--=-=-= (3)工字形截,即:面23332 1.62 5.2a a at at t =⨯+→= 工字形截面方形面积33333341.6(22)(1.6)81.6(22)(1.6)8 5.2 5.2121212120.8695z a a a a a a a a t a t aI a +⨯-+-=-=-=10.45670.869515.4810.4312z z z I I I ==工方箱::::::5-8图示矩形h=2b=200mm ,(1)试求矩形通过坐标原点O 1的主惯性轴的位置及主惯性矩。
《材料力学 第2版》_顾晓勤第05章第3节 惯性矩的平行移轴公式
13500)mm4
2.04104 m4
I y0
2
I i1 iy0
30 3003 12
270 503 12
mm4
7.03105 m4
0 13500 150 9000 13500
mm
90mm
i 1
(2)计算 T 形截面对于 x0 轴和 y0 轴的惯性矩
查表 5-1,得到矩形Ⅰ、Ⅱ对y0 轴的惯性矩:
I1 y0
30 300 3 12
mm 4
I2 y0
270 503 12
mm4
第 3 节 惯性矩的平行移轴公式
第五章 截面的几何性质
第 3 节 惯性矩的平行移轴公式
第五章 截面的几何性质
已知任意形状的截面如 图所示,C 为此截面的形心,
xC 、yC 为一对通过形心的坐
标轴。则定义图形对于形心
轴 xC 和 yC 的惯性矩为
I xC A yC2 dA I yC A xC2 dA
若 x 轴 // xC 轴,且相距为a;若 y 轴// yC 轴,且相距为b
第五章 截面的几何性质
(1)在C1xy 坐标系计算整个截面的形心坐标 xC 和 yC
矩形Ⅰ:A1 300 30 9000 mm 2 , xC1 0, yC1 0
矩形Ⅱ:A2 50 270 13500 mm 2, xC2 0, yC2 150
2
xC 0,
yC
i1 Ai yCi
2
Ai
第 3 节 惯性矩的平行移轴公式
第五章 截面的几何性质
例 5-5 T 形截面几何尺寸如图所示,现取质心坐
标系 Cx0 y0 ,其中 x0轴沿水平方向,y0 轴沿垂直方向。 试计算 T 形截面对于 x0轴和 y0轴的惯性矩。
第26讲第五章 材料力学(九)
第五节截面图形的几何性质一、静矩与形心对图所示截面静矩的量纲为长度的三次方。
对于由几个简单图形组成的组合截面形心坐标显然,若z轴过形心,y c=0,则有S z=0,反之亦然:若y轴过形心,z c=0,则有S y=0,反之亦然。
【真题解析】5—30(2007年真题)图所示矩形截面,m-m线以上部分和以下部分对形心轴z的两个静矩( )。
(A)绝对值相等,正负号相同(B)绝对值相等,正负号不同(c)绝对值不等,正负号相同(D)绝对值不等,正负号不同解:根据静矩定义,图示矩形截面的静矩等于m-m线以上部分和以下部分静矩之和,即,又由于z轴是形心轴,Sz=0,故答案:(B)二、惯性矩、惯性半径、极惯性矩、惯性积对图所示截面,对z轴和y轴的惯性矩为惯性矩总是正值,其量纲为长度的四次方,也可写成i z、i y称为截面对z、y轴的惯性半径,其量纲为长度的一次方。
截面对0点的极惯性矩为因=y2+z2,故有I p=I z+I y,显然I p也恒为正值,其量纲为长度的四次方。
截面对y、z轴的惯性积为I yz可以为正值,也可以为负值,也可以是零,其量纲为长度的四次方。
若y、z两坐标轴中有一个为截面的对称轴,则其惯性积I yz恒等于零。
例6图(a)、(b)所示的两截面,其惯性矩关系应为哪一种?A.(I y)1>(I y)2,(I z)1=(I z)2B. (I y)1=(I y)2, (I z)1>(I z)2C.(I y)1=(I y)2,(I z)1<(I z)2D. (I y)1<(I y)2,(I z)1=(I z)2解:两截面面积相同,但图 (a)截面分布离z轴较远,故I z较大。
对y轴惯性矩相同。
答案:B2016—63真题面积相同的两个如图所示,对各自水平形心轴 z 的惯性矩之间的关系为()。
提示:图( a )与图( b )面积相同,面积分布的位置到 z 轴的距离也相同,故惯性矩I za=I zb而图( c )虽然面积与( a )、( b )相同,但是其面积分布的位置到 z 轴的距离小,所以惯性矩I zc也小。
材料力学课后习题答案5章
保留有限量,略去一阶和二阶微量后,得
足标 C 系指梁微段右端面的形心,对题图(b)亦同。 根据题图 b,由
∑F
略去微量 qdx 后,得
y
=0 ,FS左 + qdx − FS右 = 0
FS右 = FS左
仍据题图 b,由
(c)
∑M
C
=0 ,M 右 − M e − qdx(
dx ) − FS左 dx − M 左 = 0 2
11l 处有 FS2 = 0 , M 2 有极大值,其值为 24 121 2 M 2 max = M max = ql 1152
(d)解:1.建立剪力、弯矩方程
8
图 5-9d 坐标如图 5-9d(1)所示,由截面法易得剪力、弯矩方程分别为
q( x1 ) ⋅ x1 qx 2 =− 1 2 l ql FS2 = − + qx2 4 qx 3 M1 = − 1 3l q 2 ql l M 2 = x2 − ⋅ ( + x2 ) 2 4 6 FS1 = −
2 q0l q 0 x2 FS = − + 4 l q x3 ql M = 0 x2 − 0 2 4 3l
l (0 ≤ x2 ≤ ) 2 l (0 ≤ x2 ≤ ) 2
(e) (f)
3.画剪力、弯矩图 依据式(c)和(e)可绘剪力图,如图 5-9b(2)所示;依据式(d)和(f)可绘弯矩图,如图 5-9b(3) 所示。 (c)解:1.求支反力
=0 ,FS左 + F + qdx − FS右 = 0
保留有限量,略去微量 qdx 后,得
FS右 − FS左 = F
为了更一般地反映 F 作用处剪力的突变情况(把向下的 F 也包括在内) ,可将上式改写为
(完整版)材料力学课后习题答案
8-1 试求图示各杆的轴力,并指出轴力的最大值。
(2) 取1-1(3) 取2-2(4) 轴力最大值: (b)(1) 求固定端的约束反力; (2) 取1-1(3) 取2-2(4) (c)(1) 用截面法求内力,取1-1、2-2、3-3截面;(2) 取1-1(3) 取2-2 (4) 取3-3截面的右段;(5) 轴力最大值: (d)(1) 用截面法求内力,取1-1、(2) 取1-1(2) 取2-2(5) 轴力最大值: 8-2 试画出8-1解:(a) (b) (c) (d) 8-5与BC 段的直径分别为(c) (d)F RN 2F N 3 F N 1F F Fd 1=20 mm 和d 2=30 mm ,如欲使AB 与BC 段横截面上的正应力相同,试求载荷F 2之值。
解:(1) 用截面法求出(2) 求1-1、2-28-6 题8-5段的直径d 1=40 mm ,如欲使AB 与BC 段横截面上的正应力相同,试求BC 段的直径。
解:(1)用截面法求出1-1、2-2截面的轴力;(2) 求1-1、2-2截面的正应力,利用正应力相同;8-7 图示木杆,承受轴向载荷F =10 kN 作用,杆的横截面面积A =1000 mm 2,粘接面的方位角θ= 450,试计算该截面上的正应力与切应力,并画出应力的方向。
解:(1) (2) 8-14 2=20 mm ,两杆F =80 kN 作用,试校核桁架的强度。
解:(1) 对节点A(2) 列平衡方程 解得: (2) 8-15 图示桁架,杆1A 处承受铅直方向的载荷F 作用,F =50 kN ,钢的许用应力[σS ] =160 MPa ,木的许用应力[σW ] =10 MPa 。
解:(1) 对节点A (2) 84 mm 。
8-16 题8-14解:(1) 由8-14得到的关系;(2) 取[F ]=97.1 kN 。
8-18 图示阶梯形杆A 2=100 mm 2,E =200GPa ,试计算杆AC 的轴向变形 解:(1) (2) AC 8-22 图示桁架,杆1与杆2的横截面面积与材料均相同,在节点A 处承受载荷F 作用。
材料力学练习册答案
第二章 轴向拉伸和压缩2.1 求图示杆11-、22-、及33-截面上的轴力。
解:11-截面,取右段如)(a 由0=∑x F ,得 01=N F22-截面,取右段如)(b由0=∑x F ,得 P F N -=233-截面,取右段如)(c由0=∑x F ,得 03=N F2.2 图示杆件截面为正方形,边长cm a 20=,杆长m l 4=,kN P 10=,比重3/2m kN =γ。
在考虑杆本身自重时,11-和22-截面上的轴力。
解:11-截面,取右段如)(a 由0=∑xF,得kN la F N 08.04/21==γ22-截面,取右段如)(b由0=∑xF,得kN P la F N 24.104/322=+=γ2.3 横截面为210cm 的钢杆如图所示,已知kN P 20=,kN Q 20=。
试作轴力图并求杆的总伸长及杆下端横截面上的正应力。
GPa E 200=钢。
解:轴力图如图。
杆的总伸长:m EA l F l N59102001.0102001.02000022-⨯-=⨯⨯⨯-⨯==∆ 杆下端横截面上的正应力:MPa A F N 20100020000-=-==σ 2.4 两种材料组成的圆杆如图所示,已知直径mm d 40=,杆的总伸长cm l 21026.1-⨯=∆。
试求荷载P 及在P 作用下杆内的最大正应力。
(GPa E 80=铜,GPa E 200=钢)。
解:由∑=∆EAl F l N ,得)104010806.0410********.04(1026.16296294---⨯⨯⨯⨯⨯+⨯⨯⨯⨯⨯=⨯ππP4/4/4/4/)(a )(b )(c 2N1N )(a kNkN 图NF cm cmcm解得: kN P 7.16= 杆内的最大正应力:MPa A F N 3.13401670042=⨯⨯==πσ 2.5 在作轴向压缩试验时,在试件的某处分别安装两个杆件变形仪,其放大倍数各为1200=A k ,1000=B k ,标距长为cm s 20=,受压后变形仪的读数增量为mm n A 36-=∆,mm n B 10=∆,试求此材料的横向变形系数ν(即泊松比)。
《材料力学》第五章课后习题参考答案
错误原因及避免方法
错误原因
1. 对材料力学的基本原理理解不深入,导致选择错误的公式或方法进行 计算。
2. 计算过程中出现数值错误或单位不统一等问题,导致结果偏差较大。
错误原因及避免方法
• 对计算结果缺乏分析和讨论,无法判断其 合理性和准确性。
错误原因及避免方法
01
避免方法
02
03
04
1. 加强对材料力学基本原理 的学习和理解,掌握各种公式 和方法的适用范围和条件。
题目一
分析并比较不同材料在拉伸过程中的力学行为差异。
题目二
讨论材料疲劳破坏的机理及影响因素。
要求
掌握材料在拉伸过程中的应力-应变曲线,理解弹性模量 、屈服强度、抗拉强度等概念,能够运用所学知识分析不 同材料的力学行为。
要求
了解材料疲劳破坏的基本概念,掌握疲劳破坏的机理和影 响因素,能够运用所学知识分析实际工程中的疲劳破坏问 题。
知识点综合运用
弹性力学基础
运用弹性力学的基本原理,分析 材料在弹性阶段的力学行为,计
算弹性模量等参数。
塑性力学基础
运用塑性力学的基本原理,分析材 料在塑性阶段的力学行为,理解屈 服强度、抗拉强度等概念。
疲劳破坏理论
运用疲劳破坏的基本理论,分析材 料在交变应力作用下的力学行为, 讨论疲劳破坏的机理和影响因素。
加强实践应用
除了理论学习外,我还计划通过 实践应用来加深对材料力学的理 解。例如,可以尝试利用所学知 识解决实际工程问题,或者参加 相关的实验和课程设计等。
拓展相关学科领域
材料力学是一门基础学科,与其他学 科领域有着密切的联系。因此,我计 划拓展相关学科领域的学习,如结构 力学、弹性力学等,以便更全面地了 解材料的力学性能和工程应用。
材料力学 截面的几何性质
O1 O 2
O
x
O3
x 1
C
课堂练习
I.
&
任意图形,若对某一对正交坐标轴的惯性积为零, 则这一对坐标轴一定是该图形的( )。
B
A. 形心轴; B. 主轴 C. 主形心轴 D. 对称轴 在图示开口薄壁截面图形中,当( 为一对主轴。
y
)时,y-z轴始终保持
A. y轴不动,x轴平移; B. x轴不动,y轴平移; C. x轴不动,y轴任意移动;
y b C 1x C 2x O a x
æ 1 öæ 2 ö æ 1 öæ h ö = ç bh ÷ç h ÷ + ç ah ÷ç ÷ è 2 øè 3 ø è 2 øè 3 ø
h 2 = (a + 2 b ) 6
形心位置
h
x = 0
h 2 (a + 2 b ) h a + 2 b S x y = = பைடு நூலகம்· = 6 A h 3 a + b (a + b ) 2
主惯性矩:
图形对主轴的惯性矩,称主惯性矩
形心主轴:
过形心的主轴称为形心主轴
形心主矩:
图形对形心主轴的惯性矩称为形心主矩
课堂练习
I.
&
在下列关于平面图形的结论中,(
)是错误的。
A.图形的对称轴必定通过形心; B.图形两个对称轴的交点必为形心; C.图形对对称轴的静矩为零; D.使静矩为零的轴必为对称轴。 在平面图形的几何性质中,(
y
dA y
ü2、惯性矩和极惯矩永远为正,
惯性积可能为正、为负、为零。
x 1
ü3、任何平面图形对于通过其形
材料力学第五章习题选及其解答
5-1. 矩形截面悬臂梁如图所示,已知l =4m ,h/b=2/3,q=10kN/m ,[σ]=10MPa ,试确定此梁横截面的尺寸。
解:(1)画梁的弯矩图由弯矩图知:22max ql M =(2)计算抗弯截面模量96326332h hbh W ===(3)强度计算mmb mm ql h h ql h ql WM 277416][29][12992323232maxmax ≥=≥∴≤⋅===σσσ5-2. 20a 工字钢梁的支承和受力情况如图所示,若[σ]=160MPa ,试求许可载荷。
解:(1)画梁的弯矩图qNo20aql 2x由弯矩图知:32max P M =(2)查表得抗弯截面模量3610237m W -⨯=(3)强度计算kNW P P WW PW M 88.562][3][3232max max =≤∴≤⋅===σσσ 取许可载荷kN P 57][=5-3. 图示圆轴的外伸部分系空心轴。
试作轴弯矩图,并求轴内最大正应力。
解:(1)画梁的弯矩图由弯矩图知:可能危险截面是C 和B 截面 (2)计算危险截面上的最大正应力值x1.34kNmxC 截面:MPa d MW M CC C C C 2.63323max ===πσ B 截面:MPa D d D M W M BB BBB B B 1.62)1(32443max =-==πσ (3)轴内的最大正应力值MPaC 2.63max max ==σσ5-8. 压板的尺寸和载荷如图所示。
材料为45钢,σs =380MPa ,取安全系数n=1.5。
试校核压板的强度。
解:(1)画梁的弯矩图由弯矩图知:危险截面是A 截面,截面弯矩是Nm M A 308=(2)计算抗弯截面模量3633210568.1)1(6m Hh bH W -⨯=-=(3)强度计算许用应力A-AxMPa nS253][==σσ强度校核][196max σσ MPa WM A==压板强度足够。
材料力学习题(00001)
材料力学习题仿真习题5.1 力学性能时,试件将( )。
5-1 当低碳钢试件的试验应力σ=σs(A)完全失去承载能力 (B)破断(C)发生局部颈缩现象 (D)产生很大的塑性变形5-2 图示为三种金属材料拉伸时的σ—ε曲线,则有( )。
(A)b强度高,c刚度大,a塑性好(B)a强度高,b刚度大,c塑性好(C)c强度高,b刚度大,a塑性好(D)无法判断5.2 拉伸和压缩5-3 图示轴向受力杆件,杆内最大拉力为( )。
(A)8kN (B)4kN(C)5kN (D)3kN=400mm2,CD部分5-4 在图示阶梯形杆件中,BC及DE部分的横截面面积A1=200mm2,杆内最大正应力为( )。
的横截面面积A2(A)125MPa (B)100MPa(C)200MPa (D)150MPa5-5 图示桁架,在外力P作用下,节点B的垂直位移和水平位移分别为( )。
5-6 如图,两根受拉杆件,若材料相同,杆长L2=2L1,横截面积A2=2A1,则两杆的伸长△L和轴向线应变ε之间的关系应为( )。
(A)△L2=△L1,ε2=ε1(B)△L2=2△L1,ε2=ε1(C)△L2=2△L1,ε2=2ε1(D)5-7 变截面杆受集中力P作用,如图所示。
设F1、F2和F3分别表示杆件中截面1-1、2-2和3-3上沿轴线方向的内力值,则下列结论中正确的是( )。
(A)F1=F2=F3(B)F1=F2≠F3(C)F1≠F2=F3(D)F1≠F2≠F35-8 等截面直杆受力P作用发生轴向拉伸变形。
已知横截面面积为A,则横截面上的正应力和45°斜截面上的正应力分别为( )。
5-9 图示受力杆件的轴力图有以下四种,其中正确的是( )。
5-10 一等截面直杆的材料为低碳钢,E=2×105MPa,杆的横截面面积A=500mm2,杆长L=1m,加轴向拉力P=150kN后,测得伸长△L=4mm,则卸载后杆的残余变形为( )。
(A)0 (B)1.5mm (C)2.5mm (D)5.5m5-11 图示结构中二杆的材料相同,横截面面积分别为A和2A,则该结构的许用载荷[P]为( )。
长沙理工大学材料力学练习册答案1-5章
材料力学 分析与思考题集第一章 绪论和基本概念一、选择题1.关于确定截面内力的截面法的适用范围,有下列四种说法:【D.适用于不论等截面或变截面、直杆或曲杆、基本变形或组合变形、横截面或任意截面的普通情况。
2.关于下列结论的正确性:【C 1.同一截面上正应力τσ与剪应力必须相互垂直3.同一截面上各点的剪应力必相互平行。
】3.下列结论中那个是正确的:【B.若物体各点均无位移,则该物体必定无变形】4.根据各向同性假设,可认为构件的下列量中的某一种量在各方向都相同:【B 材料的弹性常数】5.根据均匀性假设,可认为构件的下列量中的某个量在各点处都相同:【C 材料的弹性常数】6.关于下列结论:【C 1.应变分为线应变ε和切应变γ 2.应变为无量纲量 3.若物体的各部分均无变形,则物体内各点的应变均为零】7.单元体受力后,变形如图虚线所示,则切应变γ为【B 2α】二、填空题1.根据材料的主要性能作如下三个基本假设 连续性假设 , 均匀性假设 和 各向同性假设 。
2.构件的承载能力包括强度、刚度和稳定性三个方面。
3.图示结构中,杆1发生轴向拉伸变形,杆2发生轴向压缩变形,杆3发生弯曲变形。
4.图示为构件内A 点处取出的单元体,构件受力后单元体的位置为虚线表示,则称dx du /为A 点沿x 方向的线应变,dy dv /为【A 点沿y 方向的线应变】,)(21a a +为【A 在xy 平面内的角应变】。
5.认为固体在其整个几何空间内无间隙地充满了物质,这样的假设称为连续性假设。
根据这一假设,构件的应力、应变和位移就可以用坐标的连续性函数来表示。
6.在拉(压)杆斜截面上某点处分布内力集度称为应力(或全应力),它沿着截面法线方向的分量称为正应力,而沿截面切线方向的分量称为切应力。
第二章 杆件的内力分析一、选择题1.单位宽度的薄壁圆环受力如图所示,p 为径向压强,其n-n 截面上的内力N F 有四个答案:【B 2/pD 】2.梁的内力符号与坐标系的关系是:【B 剪力、弯矩符号与坐标系无关】3.梁的受载情况对于中央截面为反对称(如图)。
材料力学课后习题答案
8-1 试求图示各杆的轴力,并指出轴力的最大值。
解:(a)(1) 用截面法求内力,取1-1、2-2截面;(2) 取1-1截面的左段;110 0 xN N FF F F F =-==∑(3) 取2-2截面的右段;(a(b)(c(d220 0 0xN N FF F =-==∑(4) 轴力最大值:max N F F=(b)(1) 求固定端的约束反力;0 20 xR R FF F F F F =-+-==∑(2) 取1-1截面的左段;110 0 xN N FF F F F =-==∑(3) 取2-2截面的右段;112220 0 xN R N R FF F F F F =--==-=-∑(4) 轴力最大值:max N F F=(c)(1) 用截面法求内力,取1-1、2-2、3-3截面;(2) 取1-1截面的左段;110 20 2 xN N FF F kN =+==-∑(3) 取2-2截面的左段;220 230 1 xN N FF F kN =-+==∑(4) 取3-3截面的右段;11330 30 3 xN N FF F kN =-==∑(5) 轴力最大值:max 3 N F kN=(d)(1) 用截面法求内力,取1-1、2-2截面;(2) 取1-1截面的右段;110 210 1 xN N FF F kN =--==∑(2) 取2-2截面的右段;312220 10 1 xN N FF F kN =--==-∑(5) 轴力最大值:max 1 N F kN =8-2 试画出8-1所示各杆的轴力图。
解:(a)(b)(c)F(d)8-5 图示阶梯形圆截面杆,承受轴向载荷F 1=50 与F 2作用,与段的直径分别为d 1=20 mm 和d 2=30 mm ,如欲使与段横截面上的正应力相同,试求载荷F 2之值。
解:(1) 用截面法求出1-1、2-2截面的轴力;11212 N N F F F F F ==+(2) 求1-1、2-2截面的正应力,利用正应力相同;311215010159.210.024N F MPa A σπ⨯===⨯⨯132221225010159.210.034N F F MPa A σσπ⨯+====⨯⨯262.5F kN ∴=8-6 题8-5图所示圆截面杆,已知载荷F 1=200 ,F 2=100 ,段的直径d 1=40 mm ,如欲使与段横截面上的正应力相同,试求段的直径。
【材料力学】第五章 截面的几何性质习题答案
5-1 试用积分法确定图示平面图形的形心位置。
解:(1)建立极坐标极坐标(α,ρ),取微面积dA d d ραρ=⋅。
则cos yρα=,(2)求形心位置222322cos ()cos 43434r r AC d d d d ydA rrr y AA rππραρραρρααπππ⋅⋅⋅⋅=====⎰⎰⎰⎰⎰由对称性可知:43Cr z π=。
图形形心为(43r π,43r π)。
y700图题5-1b 图题5-2b5-2 确定图示平面图形力的形心位置。
解:(1)选取通过矩形I 的形心C 1,矩形II 形心C 2,矩形III 形心C 3 (2)求形心位置 由于截面左右对称,故:400m mCz=。
3131150400150150800200400150500150700222m m =305m m150800200400500150i C ii C ii A y y A ==⎛⎫⎛⎫⨯⨯+⨯⨯++⨯⨯- ⎪ ⎪⎝⎭⎝⎭==⨯+⨯++⨯∑∑图形形心为(305,400)。
5-4(a)题5-4图解:(1)矩形341212z bhaI ==(2)箱形箱形与方形面积,即:22226 5.4 5.4a a bt at t ==→=333322224(0.9)(1.8)(0.9)(1.8)()(2)()(2)5.45.45.45.4121212120.4567z a a a a a a a a b t b t b t b t I a++--++--=-=-=(3)工字形截,即:面23332 1.62 5.2a a at at t =⨯+→=工字形截面方形面积33333341.6(22)(1.6)81.6(22)(1.6)8 5.25.2121212120.8695z a aa a a aa a t a t aI a+⨯-+-=-=-=10.45670.869515.4810.4312z z z I I I ==工方箱::::::5-8图示矩形h=2b=200mm ,(1)试求矩形通过坐标原点O 1的主惯性轴的位置及主惯性矩。
材料力学 截面性质
(Ai 和xi , yi分别为第i个简单图形的面积及其形心坐标)
5. 组合截面的形心坐标公式
n
将 S y Ai xi i1
n
S x Ai yi i1
代入 S y A x Sx A y
解得组合截面的形心坐标公式为:
n
Ai xi
x
i 1 n
Ai
i 1
n
Ai yi
y
i 1 n
Ai
i 1
(注:被“减去”部分图形的面积应代入负值)
例 试计算图示三角形截面对x轴的静矩。
y
dy
h
b(y)
y
O
b
x
解:取平行于x轴的狭长条,易求 b( y) b (h y)
因此 d A b (h y) d y
ห้องสมุดไป่ตู้
h
所以对x轴的静矩为
h hb
bh2
S x
y d A (h y)y d y
A
0h
6
2
4
I2 xc yc
x
I x1 A y12 d A
y
Ix1
cos2
y2 d A sin2
A
x2 d A
A
2sin cos A xy d A
I x cos2 I y sin2 2I xy sin cos
利用二倍角函数代入上式,得转轴公式 :
I x1
Ix
2
Iy
Ix
Iy 2
cos2
I xy sin 2
n
Ix
i1
I
xi
n
Iy
i1
I
yi
n
I xy I i1 xyi
《材料力学 第2版》_顾晓勤第05章第2节 截面的惯性矩、惯性积和惯性半径
2 2 2 22
64
第 2 节 截面的惯性矩、惯性积和惯性半径 第五章 截面的几何性质
例 5-4 如图所示,计算圆形截面对于 x 轴和 y轴
的惯性矩、惯性半径,以及极惯性矩、第一象限部
分对 x、y轴的惯性积。
解 取平行于 x 轴的狭
长条作为微面积 dA,则
dA b(y)dy 2 d 22 y2dy
dy
dA bdy
y
矩形截面对于 x 轴的惯性矩为
H
Ix A y2dA 2h2 y2bdy 2 2b [( H )3 ( h )3 ] 32 2 b (H 3 h3) 12
第 2 节 截面的惯性矩、惯性积和惯性半径 第五章 截面的几何性质
矩形截面对于 x 轴的惯性半径为
ix
Ix A
b 12
圆形截面对于 x 轴的惯性矩为
Ix A y2dA
d2
d 2
y2
2
d 2 2 y2 dy
πd 4 64
第 2 节 截面的惯性矩、惯性积和惯性半径 第五章 截面的几何性质
圆形截面对于 x 轴的惯性半径为
ix
Ix A
πd 4 πd 2
64 4
d 4
x 轴和 y 轴都与圆的直径重合,由
于对称的原因,有
第 2 节 截面的惯性矩、惯性积和惯性半径 第五章 截面的几何性质
设任意平面图形其面积
为A。x 轴和 y 轴为图形所在 平面内的坐标轴。在 ( x ,y )
处取微面积 dA,则定义图形
对于x 轴和 y轴 y2dA I y A x2dA
注意
由于 x2 和 y 2总是正的,所以 I x 和 I y 也恒
是正值。
惯性矩的量纲为长度的四次方。
材料力学-截面的几何性质
1 2
(
I
y
Iz)
1 2
(
I
y
Iz )cos 2
I yz sin
2
I z1
1 2
(
I
y
Iz)
1 2
(
I
y
Iz )cos 2
I yz sin
2
(a)
I y1z1
1 2
(
I
y
Iz )sin
2
I yz sin
2
4.2 主惯性轴和主惯性矩(principal moment of inertia)
A
y2dA
A
z2dA
A
Iz Iy
此式说明了极惯性矩与轴惯性矩之间的关系。
z y
o
A dA
z y
惯性积
定义
I yz
yzdA
A
z A
y
dA
为图形对y、z轴的惯性积 。
z
o
y
惯性积的数值可正,可负,也可为零。惯性积的量纲是[长 度]4 ,常用单位为m4和mm4。
定理:若有一个轴是图形的对称轴,则图形对这对轴 的惯性积必然为零。
例题 试求图示图形对形心轴的惯性矩和 惯性积。
解:将图形看作是两个矩形的结合。 形心坐标为
yc 0
zc
A1z1 A1
A2 z2 A2
103.3mm
z 100
20
I CI
C
140
CII
103.3
II
a1 a2 y
y
20
求图形对y、z轴的惯性矩
z 100
I z I zI I zII
201003 140 203
材料力学截面的几何性质答案
材料力学截面的几何性质答案(总5页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--15-1(I-8) 试求图示三角形截面对通过顶点A并平行于底边BC的轴的惯性矩。
解:已知三角形截面对以BC边为轴的惯性矩是,利用平行轴定理,可求得截面对形心轴的惯性矩所以再次应用平行轴定理,得返回15-2(I-9) 试求图示的半圆形截面对于轴的惯性矩,其中轴与半圆形的底边平行,相距1 m。
解:知半圆形截面对其底边的惯性矩是,用平行轴定理得截面对形心轴的惯性矩再用平行轴定理,得截面对轴的惯性矩返回15-3(I-10) 试求图示组合截面对于形心轴的惯性矩。
解:由于三圆直径相等,并两两相切。
它们的圆心构成一个边长为的等边三角形。
该等边三角形的形心就是组合截面的形心,因此下面两个圆的圆心,到形心轴的距离是上面一个圆的圆心到轴的距离是。
利用平行轴定理,得组合截面对轴的惯性矩如下:返回15-4(I-11) 试求图示各组合截面对其对称轴的惯性矩。
解:(a)22a号工字钢对其对称轴的惯性矩是。
利用平行轴定理得组合截面对轴的惯性矩(b)等边角钢的截面积是,其形心距外边缘的距离是 mm,求得组合截面对轴的惯性矩如下:返回15-5(I-12) 试求习题I-3a图所示截面对其水平形心轴的惯性矩。
关于形心位置,可利用该题的结果。
解:形心轴位置及几何尺寸如图所示。
惯性矩计算如下:返回15-6(I-14) 在直径的圆截面中,开了一个的矩形孔,如图所示,试求截面对其水平形心轴和竖直形心轴的惯性矩和。
解:先求形心主轴的位置即返回15-7(I-16) 图示由两个20a号槽钢组成的组合截面,若欲使截面对两对称轴的惯性矩和相等,则两槽钢的间距应为多少解:20a号槽钢截面对其自身的形心轴、的惯性矩是,;横截面积为;槽钢背到其形心轴的距离是。
根据惯性矩定义和平行轴定理,组合截面对,轴的惯性矩分别是;若即等式两边同除以2,然后代入数据,得于是所以,两槽钢相距。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5-1 试用积分法确定图示平面图形的形心位置。
解:(1)建立极坐标极坐标(α,ρ),取微面积dA d d ραρ
=⋅。
则cos y
ρα
=,
(2)求形心位置
2
223
2
2
cos ()
cos 43
4
34
r r A
C d d d d ydA r
r
r y A
A r
π
π
ραρραρραα
ππ
π⋅⋅⋅⋅=
=
=
=
=
⎰⎰
⎰
⎰⎰
由对称性可知:43C
r z π
=。
图形形心为(
43r π
,
43r π
)。
y
700
图题5-1b 图题5-2b
5-2 确定图示平面图形力的形心位置。
解:(1)选取通过矩形I 的形心C 1,矩形II 形心C 2,矩形III 形心C 3 (2)求形心位置 由于截面左右对称,故:400m m
C
z
=。
3
1
3
1
150
400150150800200400150500150700222m m =305m m
150800200400500150
i C i
i C i
i A y y A ==⎛⎫⎛
⎫⨯⨯
+⨯⨯++⨯⨯- ⎪ ⎪⎝⎭⎝
⎭=
=⨯+⨯++⨯∑
∑
图形形心为(305,400)。
5-4
(a)
题5-4图
解:(1)矩形
3
4
12
12
z bh
a
I =
=
(2)箱形
箱形与方形面积,即:22226 5.4 5.4
a a bt at t ==→=
3
3
3
3
22224
(0.9)(1.8)
(0.9)(1.8)
()(2)
()(2)
5.4
5.4
5.4
5.4
12
12
12
12
0.4567z a a a a a a a a b t b t b t b t I a
++--++--=
-
=
-
=
(3)工字形截,即:面23332 1.62 5.2
a a at at t =⨯+→=
工字形截面方形面积
3
3
3
3
334
1.6(22)
(1.6)81.6(22)
(1.6)8 5.2
5.2
12
12
12
12
0.8695z a a
a a a a
a a t a t a
I a
+⨯-+-=
-
=
-
=
10.45670.869515.4810.4312
z z z I I I =
=工方箱::::::
5-8图示矩形h=2b=200mm ,(1)试求矩形通过坐标原点O 1的主惯性轴的位置及
主惯性矩。
(2)试确定矩形通过坐标原点O 2的主惯性轴的位置及主惯性矩I x0 、I y0。
题5-8图
解:(1)求矩形通过坐标原点O1的主惯性轴的位置及主惯性矩y C是矩形的对称轴,故通过O1的xy C是主惯性轴
33
54
33
54
0.10.2
6.6710
1212
0.20.1
6.6710
33
yC
x
bh
I m
hb
I m
-
-
⨯
===⨯
⨯
===⨯
(2)确定矩形通过坐标原点O2的主惯性轴的位置及主惯性矩I x0 1)求矩形对y、x轴的惯性矩
3234
2
34
22
4
8
12433
2
33
224
y yC
x
xy
bh h bh b
I I Aa bh
hb b
I
h b b h
I bh b
=+=+⋅==
==
-
=-⨯==
2)求矩形对过坐标原点O2的主惯性轴的位置及主惯性矩I x0 0
4
44
2
1
()
2
121225
1112.5
28
222
33
yx
y x
I
arctg
I I
b
arctg arctg
b b
α=-
-
⎛⎫
⎪
⨯
=-===
⎪
⎪
-
⎪
⎝⎭
02024
4
4
4444
54
2823
3
2
4
133250.13
3.081102.52510y y x
x I I I I b b b b m m
--⎫+⎪=
±⎬⎪⎭
+=
±
⎛⎫=+±⨯ ⎪⎝⎭
⎛=±
⎝⎧⨯⎪=⎨
⨯⎪⎩
5-12 图示砌体T 形截面,当B=1200mm,b=370mm ,D=490mm 时,(1)试计算图形的形心位置参数12,y y ;(2)试计算图形对形心轴和y 轴的惯性矩及其相应的回转半径。
图题5-12
解:(1)计算图形的形心位置参数12,y y 建立图示1x y 坐标,则图形的形心在y 轴上。
1122
11
250
370250(2402401200120
+2m m =179.6m m 3702502401200
C A y A y y y y A
⨯⨯+⨯⨯==
=
=⨯+⨯+)
21490490179.63104m m
y y =-=-=.
(2)计算图形对形心轴惯性矩及其回转半径
3
3
122
294
1200240
240370250
2501200240(1796370250(3104606710mm
12
2
12
2
z z
z
I I I
⨯⨯=+=
+⨯⨯-
+
+⨯⨯-
=⨯))...3m m
z i =
=
.
2
2
12104
2401200
(490240(1852356210mm
12
12
y y
y
I I I
⨯-⨯⨯=+=
+
=⨯))
.
3059m m
y i =
=
=.
补充1: 已知:图形尺寸如图所示。
求:图形的形心主矩
解 :1.将所给图形分解为简单图形的组合 2.建立初始坐标,确定形心位置
()
3
333
1
3
3333
1
027010501015010
m =90m m 300103010270105010i
C i
i C i
i A y
y A
---=----=⎡⎤+⨯⨯⨯⨯⨯⎢⎥=
=⨯⨯⨯+⨯⨯⨯⎢⎥⎣⎦
∑∑3. 确定形心主惯性矩
I y0=I y0(Ⅰ)+I y0(II)
-33-9-33-9
4
301030010270105010m 1212⎡⎤⨯⨯⨯⨯⨯⨯=+
⎢⎥⎦
⎣
5474
7.0310m 7.0310mm -=⨯=⨯
I z0=I z0(Ⅰ)+I z0(Ⅱ)
44842.0410m 2.0410mm -=⨯=⨯
-33-930010301012⎡⨯⨯⨯=⎢
⎣
()26-3-3
9010300103010-+⨯⨯⨯⨯⨯-33-9
50102701012
⨯⨯⨯+()26-3-34
6010270105010m
-⎤+⨯⨯⨯⨯⨯⎦
补充2: 已知: I y ,I z ,I yz 。
求: I y1,I z1,I y1z1
y 1=y +a z 1=z +b
2
112
111111d d d y A
z A
y z A I z A I y A
I y z A
==
=
⎰⎰
⎰
()
()()()2
12111d d d y A z A
y z A
I z b A
I y a A I y a z b A =
+=+=++⎰⎰⎰ 2
12
11122y y y z z z y z yz y z I I bS b A
I I aS a A I I aS bS abA ⎫=++⎪⎪=++⎬⎪
=+++⎪⎭
如果y 、z 轴通过图形形心,上述各式中的S y =S z =02
12
111y y z z y z yz I I b A
I I a A I I abA ⎫
=+⎪⎪=+⎬⎪
=+⎪⎭。