仪器分析--分子排阻色谱法

合集下载

仪器分析学习 第6章 色谱法导论-气相色谱

仪器分析学习 第6章 色谱法导论-气相色谱
精选ppt
* 用时间表示 单位: s或cm
(1)保留时间 tR
试样从进样开始到柱后出现峰极大点
时所经历的时间(O´B)
(2)死时间
t 0
不被固定相吸附或溶解的气体(如:空
* 用体积表示 单位:mL
(1)保留体积 VR
从进样开始到出现峰极大所通过的
载气体积。 VR=tRF0 F0:柱出口处载气流速 mL/min
精选ppt
2)评价柱效的参数
理论塔板数(n)
n5.5(4tR )21(6tR)2
W 1/2
W
理论塔板高度(H) 有效理论塔板数
H L n
n有效 5.54 (W tR '1
)2
16 (tR ' )2 W
2
有效理论塔板高度
注意事项:
L H 有效 n有效
(1)n大,柱效高,分离好,前提是两组分分配系数K应有差
H A B /u C gu C luA B /u Cu
由此可知:流动相线速u一定时,仅在A、B、C较小时,塔板高 度H才能较小,柱效才较高;反之柱效较低,色谱 峰将展宽。
这一方程对选择色谱分离条件具有实际指导意义,它指出 了色谱柱填充的均匀程度,填料颗粒的大小,流动相的种 类及流速,固定相的液膜厚度等对柱效的影响。
3) 塔板之间无分子扩散(忽略试样 的纵相扩散)
4) 组分在所有塔板上的分配精选系ppt 数保 持常数
精馏塔示意图
精选ppt
2、塔板理论之推导结论
1) 当组分进入色谱柱后,在每块塔板上进行两相间的分配, 塔板数越多,组分在柱内两相间达到分配平衡的次数也越 多,柱效越高,分离就越好。
n L H
n50 流出曲线呈基本对称的峰形; 当 n 达 103-106 流出曲线趋近于正态分布;

分子排阻柱色谱法

分子排阻柱色谱法

分子排阻柱色谱法
分子排阻柱色谱法是一种用于分离高分子量化合物的色谱技术。

这种色谱法也被称为凝胶色谱法。

它主要应用于大分子化合物,如蛋白质、多糖、核酸等的分离和分析。

以下是分子排阻柱色谱法的基本原理和步骤:
原理:
1.分子排阻效应:分子排阻柱色谱法利用凝胶柱(如琼脂糖或聚
丙烯酰胺凝胶)中的分子排阻效应。

大分子化合物在凝胶中的
排阻效应导致它们在柱上运动速度较慢,而小分子则能够更快
地通过凝胶。

2.大小分子的分离:样品通过柱时,大分子被凝胶阻挡,相对较
小的分子则能够穿过凝胶颗粒的间隙,实现分子的分离。

步骤:
1.样品准备:样品通常需要经过适当的前处理,如蛋白质的变性、
样品的过滤等。

2.柱选择:选择适当的分子排阻柱,柱内填充有凝胶。

凝胶的孔
径大小取决于待分离分子的分子量。

3.载气流动:通常使用溶剂或缓冲液作为载气,通过柱内凝胶,
使样品分子在柱中排阻。

4.检测:使用适当的检测器检测通过柱的化合物,如紫外可见光
检测器、荧光检测器等。

5.数据分析:根据各组分在柱中的保留时间,可以得到样品中各
分子的相对含量和分子量。

分子排阻柱色谱法广泛应用于生物化学、生物医学、生命科学等领域,尤其是在对生物大分子进行分离和纯化方面具有重要意义。

分子排阻色谱法

分子排阻色谱法

测定方法
直接法:在测定淋出液浓度的同时,测定其粘 度或光散射,从而求出其分子量。 间接法:用一组分子量不等的、单分散的试样 为标准样品,分别测定它们的淋出体积(保留 时间),建立保留时间与分子量二者之间的关 系,从而求出其分子量。
间接法
右中检所)
右旋糖酐分子量D1 M 2500 ; 右旋糖酐分子量D2 M 4600 ; 右旋糖酐分子量D3 M 7100; 右旋糖酐分子量D4 M 10000; 右旋糖酐分子量D5 M 21400;右旋糖酐分子量D6 M 41100 ; 右旋糖酐分子量D7 M 84400; 右旋糖酐分子量D8 M 133800; 右旋糖酐分子量D0 M 180; 右旋糖酐分子量D2000 M 2000000
校正原理
用已知相对分子质量的单分散标准聚合物做一条 淋洗体积或淋洗时间和相对分子量对应关系曲线,称 为“校正曲线”。聚合物中几乎找不到单分散的标准 样,一般用窄分布的试样代替。在相同的测试条件下, 做一系列的GPC标准谱图,以重均分子量的对数值 (lgM)对保留时间(t)作图,所得曲线即为“校正曲线”。 通过校正曲线,就能从GPC谱图上计算各种所需相对 分子量与相对分子量分布的信息。
测定方法
色谱条件与系统适用性试验 TSK G PWXL柱 柱温35℃ 进样量20µl 流动相:0.71%硫酸钠溶液(内含0.02%叠氮化钠) 0.5ml/min 取葡萄糖和葡聚糖2000,分别加流动相制成10mg/ml 的溶液,进样,测得保 留时间tT和t0,对照品溶液和供试品溶液的保留时间均应在tT和t0之间,理论板 数按葡萄糖峰计算不小于5000。 对照品溶液:取右旋糖酐分子量对照品(中检所) 适量,分别加流动相制成 10mg/ml 的溶液,室温放置过夜。 供试品溶液: 取供试品适量,加流动相制成10mg/ml 的溶液,室温放置过夜。 测定法:取对照品溶液,进样,用GPC软件计算回归方程。取供试品溶液, 同法测定,用GPC软件算出供试品的重均分子量及分子量分布。

仪器分析4大分析方法

仪器分析4大分析方法

附录V A 紫外-可见分光光度法(4)比色法供试品本身在紫外-可见区没有强吸收,或在紫外区虽有吸收但为了避免干扰或提高灵敏度,可加入适当的显色剂显色后测定,这种方法为比色法。

用比色法测定时,由于显色时影响显色深浅的因素较多,应取供试品与对照品或标准品同时操作。

除另有规定外,比色法所用的空白系指用同体积的溶剂代替对照品或供试品溶液,然后依次加入等量的相应试剂,并用同样方法处理。

在规定的波长处测定对照品和供试品溶液的吸光度后,按上述(1)对照品比较法计算供试品浓度。

当吸光度和浓度关系不呈良好线性时,应取数份梯度量的对照品溶液,用溶剂补充至同一体积,显色后测定各份溶液的吸光度,然后以吸光度与相应的浓度绘制标准曲线,再根据供试品的吸光度在标准曲线上查得其相应的浓度,并求出其含量。

附录ⅧA 电位滴定法与永停滴定法电位滴定法与永停滴定法是容量分析中用以确定终点或选择核对指示剂变色域的方法。

选用适当的电极系统可以作氧化还原法、中和法(水溶液或非水溶液)、沉淀法、重氮化法或水分测定法第一法等的终点指示。

1.电位滴定法选用两支不同的电极。

一支为指示电极,其电极电位随溶液中被分析成分的离子浓度的变化而变化;另一支为参比电极,其电极电位固定不变。

在到达滴定终点时,因被分析成分的离子浓度急剧变化而引起指示电极的电位突减或突增,此转折点称为突跃点。

2.永停滴定法采用两支相同的铂电极,当在电极间加一低电压(例如50mV)时,若电极在溶液中极化,则在未到滴定终点时,仅有很小或无电流通过;但当到达终点时,滴定液略有过剩,使电极去极化,溶液中即有电流通过,电流计指针突然偏转,不再回复。

反之,若电极由去极化变为极化,则电流计指针从有偏转回到零点,也不再变动。

仪器装置电位滴定可用电位滴定仪、酸度计或电位差计,永停滴定可用永停滴定仪。

电流计的灵敏度除另有规定外,测定水分时用10-6A/格,重氮化法用10-9A/格。

方法电极系统说明水溶液氧化还原法铂-饱和甘汞铂电极用加有少量三氯化铁的硝酸或用铬酸清洁液浸洗水溶液中和法玻璃-饱和甘汞非水溶液中和法玻璃-饱和甘汞饱和甘汞电极套管内装氯化钾的饱和无水甲醇溶液。

1.1.2 高效分子排阻色谱法的原理

1.1.2 高效分子排阻色谱法的原理

高效分子排阻色谱法的原理
高效分子排阻色谱法是一种使用高效筛孔固定相进行分离的色谱方法。

其原理基于分子在固定相上的不同排阻效应,即分子与固定相的相互作用程度不同,从而实现分离。

具体原理如下:
1. 高效筛孔固定相:高效分子排阻色谱使用高效筛孔固定相,通常是一种多孔聚合物或硅胶。

固定相具有非常小的孔径和大的比表面积,可以提供较高的分离效果。

2. 排阻效应:在排阻分离过程中,分子在进入和通过固定相孔道的过程中,会与孔道表面发生相互作用。

较大分子大小的分子无法完全进入孔道,因此会以较快的速度通过固定相,而较小分子大小的分子则能够进入孔道,因此通过固定相的速度较慢。

3. 分子分离:基于排阻效应的原理,较大分子和较小分子在固定相上的吸附速度不同,从而实现分离。

较大分子无法进入孔道,流速较快,较小分子能够进入孔道,流速较慢。

4. 分析检测:在色谱柱的出口,通过检测器检测样品分子,根据不同分子的出现时间来判断其相对分子大小。

通常使用紫外可见光检测器或荧光检测器进行检测。

总结起来,高效分子排阻色谱法通过分析分子在高效筛孔固定相上的排阻效应,实现了分子的分离。

较大分子无法进入固定
相孔道,流速较快,而较小分子能够进入孔道,流速较慢,从而实现了分子的分离和检测。

gpc分子排阻色谱法

gpc分子排阻色谱法

gpc分子排阻色谱法
GPC分子排阻色谱法是一种常用的色谱技术,用于分离和测定高分子化合物的分子量分布和平均分子量。

原理是分子在固定填料(凝胶)中的渗透性差异进行分离。

凝胶填料由多孔性材料组成,具有一定的孔径大小范围。

样品溶液中的大分子无法进入较小的孔径,因此在填料中被排除,而小分子可以进入更多的孔径,因此渗透性更高。

样品通过色谱柱时,较大的分子被更快地排除,而较小的分子则渗透更深。

这样,样品中不同分子大小的组分就可以在色谱柱中被分离开来。

适用范围
适用于对未知样品的探索分离,它能很快提供样品按分子大小组成的全面情况,并迅速判断样品是简单的还是复杂的混合合物,并提供样品中各组分的近似分子量。

这种分离方法不宜用于分子大小组成相似或分子大小仅差10%的组分分析,如同分异构体的分离不宜用分子排阻色谱法。

GPC的应用:
1.分子量测定:通过与一系列已知分子量的标准品进行比较,可以确定待测
样品的相对分子量或相对分子量分布。

2.分子量分布:分析样品中分子量的分布情况,得到分子量分布曲线,了解
高分子化合物的多分散性。

3.质量控制:用于确定产品的一致性和稳定性,检测分子量分布的变化。

4.聚合物合成:跟踪聚合反应过程中高分子的分子量变化,评估聚合度和反
应进程。

5.蛋白质研究:分析蛋白质的聚合态、聚集性质和分子量分布。

仪器分析4大分析方法

仪器分析4大分析方法

附录V A 紫外-可见分光光度法(4)比色法供试品本身在紫外-可见区没有强吸收,或在紫外区虽有吸收但为了避免干扰或提高灵敏度,可加入适当的显色剂显色后测定,这种方法为比色法。

用比色法测定时,由于显色时影响显色深浅的因素较多,应取供试品与对照品或标准品同时操作。

除另有规定外,比色法所用的空白系指用同体积的溶剂代替对照品或供试品溶液,然后依次加入等量的相应试剂,并用同样方法处理。

在规定的波长处测定对照品和供试品溶液的吸光度后,按上述(1)对照品比较法计算供试品浓度。

当吸光度和浓度关系不呈良好线性时,应取数份梯度量的对照品溶液,用溶剂补充至同一体积,显色后测定各份溶液的吸光度,然后以吸光度与相应的浓度绘制标准曲线,再根据供试品的吸光度在标准曲线上查得其相应的浓度,并求出其含量。

附录ⅧA 电位滴定法与永停滴定法电位滴定法与永停滴定法是容量分析中用以确定终点或选择核对指示剂变色域的方法。

选用适当的电极系统可以作氧化还原法、中和法(水溶液或非水溶液)、沉淀法、重氮化法或水分测定法第一法等的终点指示。

1.电位滴定法选用两支不同的电极。

一支为指示电极,其电极电位随溶液中被分析成分的离子浓度的变化而变化;另一支为参比电极,其电极电位固定不变。

在到达滴定终点时,因被分析成分的离子浓度急剧变化而引起指示电极的电位突减或突增,此转折点称为突跃点。

2.永停滴定法采用两支相同的铂电极,当在电极间加一低电压(例如50mV)时,若电极在溶液中极化,则在未到滴定终点时,仅有很小或无电流通过;但当到达终点时,滴定液略有过剩,使电极去极化,溶液中即有电流通过,电流计指针突然偏转,不再回复。

反之,若电极由去极化变为极化,则电流计指针从有偏转回到零点,也不再变动。

仪器装置电位滴定可用电位滴定仪、酸度计或电位差计,永停滴定可用永停滴定仪。

电流计的灵敏度除另有规定外,测定水分时用10-6A/格,重氮化法用10-9A/格。

方法电极系统说明水溶液氧化还原法铂-饱和甘汞铂电极用加有少量三氯化铁的硝酸或用铬酸清洁液浸洗水溶液中和法玻璃-饱和甘汞非水溶液中和法玻璃-饱和甘汞饱和甘汞电极套管内装氯化钾的饱和无水甲醇溶液。

排阻色谱法

排阻色谱法

排阻色谱法一、分离原理排阻色谱法(SEC)亦称空间排阻色谱或凝胶渗透色谱法。

是一种根据试样分子的尺寸进行分离的色谱技术。

排阻色谱的分离机理是立体排阻,样品组分与固定相之间不存在相互作用的现象。

色谱柱的填料是凝胶,它是一种表面惰性,含有许多不同尺寸的孔穴或立体网状物质。

凝胶的孔穴大小与被分离的试样大小相当。

仅允许直径小于孔开度的组分分子进入,这些孔对于流动相分子来说是相当大的,以致流动相分子可以自由地扩散出人。

对不同大小的组分分子,可分别渗入到凝胶孔内的不同深度,大个的组分分子可以渗入到凝胶的大孔内,但进不了小孔,甚至于完全被排斥。

小个的组分分子,大孔小孔都可以渗进去,甚至进入很深,一时不易洗脱出来。

因此,大的组分分子在色谱柱中停留时间较短,很快被洗出,它的洗脱体积(即保留时间)很小。

小的组分分子在色谱柱中停留时间较长,洗脱体积卿保留时间)较大,直到所有孔内的最小分子到达柱出口,这种按分子大小而分离的洗脱过程才告完成。

因为分子尺寸一般随分子量的增加而增大,所以根据分子量表达分子尺寸比较方便。

将因分子过大而不能部分地进入某一给走固定相孔内的最小的样品粒子的分子量,定义为该固定相的排阻极限。

如图13-10中A点所相应的相对分子质量(这里,相对分子质量相当于),凡是比A点相应的相对分子质量大的分子,均被排斥于所有的胶孔之外,因而它们将以一个单一的谱带C出现,在保留体积V0时一起被洗脱。

很明显,V0 是柱中凝胶颗粒之间的体积。

随固定相不同,排阻极限范围约在 400至60 X 106之间。

将能够完全进入固定格最小孔内的最大的样品粒子的相对分子质量定义为填料的渗透极限。

如图14-10中B点所相应的相对分子质量(这里相对分子质量为)。

凡是比B点相应的相对分子质量小的分子都可以完全渗入凝胶孔穴中。

同理这些化合物也将以一个单一谱带F在保留体积Vt被洗脱。

可以预料,相对分子质量介于上述两个极限之间的化合物,将根据它们的分子尺寸,进入一部分孔隙,而不能进入另一部分孔隙,其结果使这些化合物按相对分子质量降低的次序被洗脱。

1175《仪器分析》西南大学网教19秋作业答案

1175《仪器分析》西南大学网教19秋作业答案

1175 20192单项选择题1、 水分子有几个红外谱带,波数最高的谱带对应于何种振动 ?.4 个,弯曲 . 2 个,对称伸缩. 2 个,不对称伸缩 .3 个,不对称伸缩2、关于MS ,下面说法正确的是( ). 质量数最大的峰为分子离子峰 . A,B,C 三种说法均不正确. 质量数第二大的峰为分子离子峰 .强度最大的峰为分子离子峰3、 在液相色谱法中,按分离原理分类,液固色谱法属于. 排阻色谱法 . 分配色谱法. 离子交换色谱法 .吸附色谱法4、色谱分析法中的定性参数是( ). 保留值. 半峰宽 .峰面积.基线宽度5、某化合物分子式为C6H14O, 质谱图上出现m/z59(基峰)m/z31以及其它弱峰m/z73,m/z87和m/z102. 则该化合物最大可能为.E. 己醇-2.乙基丁基醚.正己醇.二丙基醚6、为测定某组分的保留指数,气相色谱法一般采取的基准物是.正构烷烃.正丁烷和丁二烯.正庚烷.苯7、分子式为C9H9ClO3的化合物,其不饱和度为(). 4. 6. 5. 28、并不是所有的分子振动形式其相应的红外谱带都能被观察到,这是因为.分子中有些振动能量是简并的.因为分子中有C、H、O 以外的原子存在.分子既有振动运动,又有转动运动,太复杂.分子某些振动能量相互抵消了9、在100MHz仪器中,某质子的化学位移δ=1ppm,其共振频率与TMS相差.C. 100Hz.1Hz.200Hz.50Hz10、在溴己烷的质谱图中,观察到两个强度相等的离子峰,最大可能的是:.m/z 为15 和29.m/z 为29 和95.m/z 为95 和93.m/z 为93 和1511、某一化合物在紫外吸收光谱上未见吸收峰, 在红外光谱的官能团区出现如下吸收峰:1700cm-1左右, 则该化合物可能是.芳香族化合物.酮.醇.烯烃12、下列化合物中,质子化学位移值最大的是().CH3F.CH4.CH3Br.CH3I13、CH3CH2Cl的NMR谱,以下几种预测正确的是.CH2中质子比CH3中质子屏蔽常数大.CH2中质子比CH3中质子外围电子云密度小.CH2中质子比CH3中质子共振磁场高.CH2中质子比CH3中质子共振频率高14、根据范第姆特议程式,指出下面哪种说法是正确的.最佳流速时,塔板高度最大.最佳塔板高度时,流速最小.最佳流速时,塔板高度最小.最佳塔板高度时,流速最大15、下列数据中,哪一组数据所涉及的红外光谱区能够包括CH3CH2COH的吸收带. A. 3300—3010cm-1, 1900—1650cm-l,1000——650cm-1.3000—2700cm-1,1675—1500cm-1,1475—1300cm一1.3000—2700cm-1, 1900—1650cm-1, 1475——1300cm-1.3300—3010cm-1,1675—1500cm-1, 1475—1300cm-116、CH3CH2Cl的NMR谱,以下几种预测正确的是.CH2中质子比CH3中质子外围电子云密度小.CH2中质子比CH3中质子共振磁场高.CH2中质子比CH3中质子屏蔽常数大.CH2中质子比CH3中质子共振频率高17、乙炔分子的平动、转动和振动自由度的数目分别为.2,3,7.3,2,7.2,3,3.3,2,818、在液相色谱中,为了改变色谱柱的选择性,可以进行如下哪些操作?.改变填料的粒度和柱长.改变固定相的种类或柱长.改变固定相的种类和流动相的种类.改变流动相的种类或柱子19、塔板理论不能用于.塔板高度计算.解释色谱流出曲线的形状.塔板数计算.解释色谱流出曲线的宽度与哪些因素有关20、利用大小不同的分子在多孔固定相中的选择渗透而达到分离的色谱分析法称为.吸附色谱法.分配色谱法.分子排阻色谱法.离子交换色谱法21、在含羰基的分子中,增加羰基的极性会使分子中该键的红外吸收带. F. 不移动.向低波数方向移动.稍有振动.向高波数方向移动22、在红外光谱分析中,用KBr制作为试样池,这是因为.KBr 晶体在4000~400cm-1 范围内不会散射红外光.在4000~400 cm-1 范围内,KBr 对红外无反射.KBr 在4000~400 cm-1 范围内有良好的红外光吸收特性.KBr 在4000~400 cm-1 范围内无红外光吸收多项选择题23、液液分配色谱中,对载体的要求是().与固定相之间有着较大吸引力.多孔.惰性.对被测组分有一定吸附力24、LC-MS联用中,可以采用的流动相包括().乙酸铵.甲酸.磷酸.氨水25、质谱中常用的质量分析器有().电磁式双聚焦质量分析器.Q.磁式单聚焦质量分析器.MALDI26、下列现象表明电磁辐射波动性的有().反射.衍射.折射.发射27、常用于衡量色谱柱柱效的物理量是().理论塔板数.塔板高度.色谱峰宽.保留体积28、测试NMR时常用内标为TMS,它具有以下特点().硅的电负性比碳小.结构对称,出现单峰.TMS质子信号比一般有机质子信号处于更高场.沸点低且易溶于有机溶剂29、高效液相色谱中,选择流动相时应注意().对被分离的组分有适宜的溶解度.黏度大.与检测器匹配.与固定相不互溶30、气相色谱中,影响组分容量因子的主要因素有().固定液性质.柱长.柱温.载气种类31、两组分在分配色谱柱上分离的原因是().在固定液中的溶解度不同.结构上的差异.极性不同.相对校正因子不同32、使质子化学位移值出现在低场的原因().形成氢键.去屏蔽效应.屏蔽效应.与电负性大的基团相连33、醇类化合物形成氢键后,vOH吸收峰的特征表现为().峰位向高频移动,且峰强变大.峰位向低频移动,在3300~3500cm-1.形成氢键后vOH变为尖窄的吸收峰.峰强增大,峰形变宽34、能使两组分的相对比移值发生变化的因素有().改变薄层厚度.改变固定相种类.改变展开剂组成.改变固定相的粒度35、气相色谱法中常用的载气有().氦气.氮气.氧气.氢气36、属于色谱-质谱联用的技术是().GC-FTIR.LC-FTIR.LC-MS.CE-MS37、影响电泳速度大小的因素有().电场强度E.毛细管长度.介质特性.粒子离解度38、一个含多种阴阳离子及一种中性分子的混合物,可使用的分离方法是().环糊精电动毛细管色谱法.胶束电动毛细管色谱法.毛细管凝胶电泳法.毛细管区带电泳法39、高效液相色谱中,影响色谱峰扩展的因素是().柱压效应.分子扩散项.涡流扩散项.传质扩散项40、在X射线,紫外光、红外光、无线电波四个电磁波谱区中,关于X 射线的描述正确的是.波长最长.波数最大.波长最短.频率最小41、质谱图中分子离子峰的辨认方法是().分子离子峰的m/z应为偶数.分子离子必须是一个奇数电子离子.分子离子峰与邻近碎片离子峰的质量差应该合理.分子离子峰的质量应服从氮律42、酸度对显色反应影响很大,这是因为酸度的改变可能影响().反应产物的稳定性.显色剂的浓度.反应产物的组成.被显色物的存在状态43、下列化合物中,其红外光谱能出现vC=O吸收峰的有().醇.酮.醛.酯主观题44、在红外光区域内可能有哪些吸收?参考答案:在红外光谱区域内可能有以下吸收:3500~77500px-1,两个不太强的尖峰, NH伸缩振动峰;2960~2870 cm-1,双峰为υCH(-CH3);2930~2850 cm-1至少有两个峰,亚甲基的C-H伸缩振动;2270~2100 cm-1尖锐的峰,炔的C-C伸缩振动;1475~1300 cm-1 δC-H的弯曲振动。

仪器分析复习重修自学预习2色谱法分离原理

仪器分析复习重修自学预习2色谱法分离原理
分离过程
流动相
固定相
检测
与固定相作用
固定相: 在色谱法中,将填入玻璃管或不锈钢管内静止 不动的一相(固体或液体)。
流动相: 携带混合物流经此固定相的流体(一般是气体 或液体)。
色谱柱: 装有固定相的管子(玻璃管或不锈钢管)。
原理:
当流动相中样品混合物经过固定相时,就会与固 定相发生作用(由于各组分在性质和结构上的差 异,与固定相相互作用的类型、强弱也有差异), 因此在同一推动力的作用下,不同组分在固定相 滞留时间长短不同,从而按先后不同的次序从固 定相中流出。
超临界流体——超临界流体色谱(SFC)。
通过化学反应将固定液键合到载体表面,这种化学键合固 定相的色谱又称化学键合相色谱(CBPC)。
2.按组分和固定相之间的作用机理分类:
吸附能力不同称为吸附色谱法 作用机理: 溶解度的不同称为分配色谱法
亲和力大小称为离子交换色谱法 分子尺寸大小称为凝胶色谱法 或尺寸排阻色谱法
1.死时间tM 不被固定相吸附或溶解的物质进入色谱柱时,从进 样到出现峰极大值所需的时间称为死时间,它正比 于色谱柱的空隙体积。
死时间
2. 保留时间tR 试样从进样到柱后出现峰极大点时所经过的时间,称 为保留时间。
保留时间
返回
21
3.调整保留时间tR´ 某组分的保留时间扣除死时间后,称为该组分的调
3. 所有组分开始时存在于第0号塔板上,而且试 样沿轴(纵)向扩散可忽略。
4. 分配系数在所有塔板上是常数,与组分在某 一塔板上的量无关。
1.流动相在往前移动(脉动式ΔVm ):迁移 2.样品在流动相和固定相中分配:平衡(分 配系数)
被固定相保留,分配系数为1 不被固定相保留,分配系数为0

排阻色谱法

排阻色谱法

排阻色谱法
排阻色谱法,又称为凝胶渗透色谱法或凝胶色谱法,是一种常用的分离技术。

其理论基础是溶质分子通过多孔固定相时,按其大小受到不同程度的阻滞,从而实现分离。

在排阻色谱法中,常用的固定相有分子筛、葡聚糖凝胶、微孔聚合物、微孔硅胶或玻璃珠等。

这些固定相具有不同尺寸的孔,能够按照一定的规律分布,并在制造过程中加以控制。

试样中的溶质分子,即溶质的体积,大小不同。

对于齐聚物,分子大小的分布也有一定规律。

当溶质分子通过固定相的孔时,如果分子的直径大于孔的直径,则该分子不能进入孔中,随着流动相迅速流出。

如果分子的直径小于孔的直径,则该分子可以进入孔中,其流出速度较慢。

值得注意的是,即使分子可以进入孔中,由于小分子在孔中扩散的体积较大,而大一点的分子扩散的体积较小,因此小分子将占据较多的孔体积,流出速度最慢;大一点的分子占据较少的体积,先流出。

排阻色谱法的流动相可以分为两部分,一部分在颗粒内部,相当于液液分配色谱中的固定液体积;另一部分在颗粒间,类似于液液分配色谱中的死体积。

排阻色谱法广泛应用于高分子聚合物的分离和纯化,例如蛋白质、多肽、核酸等生物大分子的分离和纯化。

此外,该方法还可用于多肽的脱盐、DNA片段的分离、DNA碱基组成的测定等。

总的来说,排阻色谱法是一种非常有用的分离技术,可用于许多领域的研究和生产。

仪器分析-名词解释

仪器分析-名词解释

一:名词解释1. 色谱法(chromatography):以试样组分在固定相和流动相间的溶解、吸附、分配、离子交换或其他亲和作用的差异为依据而建立起来的各种分离分析方法称色谱法。

2. 基线:在操作条件下,仅有纯流动相进入检测器时的流出曲线。

3. 保留时间:从进样至被测组分出现浓度最大值时所需时间tR。

4. 色谱流出曲线:试样中各组分经色谱柱分离后,按先后次序经过检测器时,检测器就将流动相中各组分浓度变化转变为相应的电信号,由记录仪所记录下的信号——时间曲线或信号——流动相体积曲线,称为色谱流出曲线。

5. 塔板理论:塔板理论认为,一根柱子可以分为n段,在每段内组分在两相间很快达到平衡,把每一段称为一块理论塔板。

设柱长为L,理论塔板高度为H,则:H = L / n 式中n为理论塔板数6. 速率理论认为,单个组分粒子在色谱柱内固定相和流动相间要发生千万次转移,加上分子扩散和运动途径等因素,它在柱内的运动是高度不规则的,是随机的,在柱中随流动相前进的速度是不均一的。

7. 有效塔板数:8. 在一定温度和压力下,组分在固定相和流动相之间分配达到平衡时的质量比,称为容量因子,也称分配比,用k表示。

9. 分配系数:在一定温度和压力下,组分在固定相和流动相间达到分配平衡时的浓度比值,用K表示。

10. 分离度:相邻两色谱峰保留值之差与两组分色谱峰底宽总和之半的比值,用R表示。

分离度可以用来作为衡量色谱峰分离效能的指标。

11. 程序升温:12. 气相色谱检测器:13. 化学键合固定相:是通过化学反应将有机分子键合在担体(硅胶)表面所形成固定相。

14. 反相分配色谱:流动相极性大于固定相极性,极性大的先流出,适于非极性组分分离。

15. 离子选择电极:是对某种特定离子产生选择性响应的一种电化学传感器。

其结构一般由敏感膜、内参比溶液和内参比电极组成。

16. 直接电位法:是将电极插入被测液中构成原电池,根据原电池的电动势与被测离子活度间的函数关系直接测定离子活度的方法。

20春奥鹏西南大学[1175]《仪器分析》答案

20春奥鹏西南大学[1175]《仪器分析》答案

单项选择题1、可用来检测红外光的原件是.热电偶.硅二极管.光电倍增管.光电管2、空心阴极灯内充的气体是.少量的氖或氩等惰性气体.大量的氖或氩等惰性气体.少量的空气.大量的空气3、某化合物受电磁辐射作用后,振动能级发生变化,所产生的光谱波长范围是.紫外光.红外光.可见光.X射线4、质谱图中强度最大的峰,规定其相对丰度为100%,这种峰称为.准分子离子峰.基峰.分子离子峰.亚稳离子峰5、分子的紫外可见吸收光谱呈带状光谱,其原因是.分子振动能级的跃迁伴随着转动能级的跃迁.分子中价电子运动的离域性质.分子中电子能级的跃迁伴随着振动,转动能级的跃迁.分子中价电子能级的相互作用6、关于MS,下面说法正确的是().质量数最大的峰为分子离子峰.A,B,C三种说法均不正确.质量数第二大的峰为分子离子峰.强度最大的峰为分子离子峰7、在化合物CH3CH2CH2Cl中,质子存在的类型共为.二类.无法判断.三类.四类8、色谱流出曲线中,两峰间距离决定于相应两组分在两相间的.理论塔板数.扩散速度.传质阻抗.分配系数9、色谱分析法中的定性参数是().保留值.半峰宽.峰面积.基线宽度10、某化合物分子式为C6H14O, 质谱图上出现m/z59(基峰)m/z31以及其它弱峰m/z73,m/z87和m/z102. 则. E. 己醇-2.乙基丁基醚.正己醇.二丙基醚11、为测定某组分的保留指数,气相色谱法一般采取的基准物是.正构烷烃.正丁烷和丁二烯.正庚烷.苯12、分子式为C9H9ClO3的化合物,其不饱和度为().4.6.5.213、某一含氧化合物的红外吸收光谱中,在3300~2500cm-1处有一个宽,强的吸收峰,下列物质中最可能的是.CH3COCH3.CH3CH2CH2OH.CH3CH2CHO.CH3CH2COOH14、原子吸收光谱产生的原因是.振动能级跃迁.原子最外层电子跃迁.分子中电子能级跃迁.转动能级跃迁15、高效液相色谱中,属于通用型检测器的是.紫外检测器.荧光检测器.电导检测器.示差折光检测器16、下列四种化合物中,在紫外区出现两个吸收带的是. B. 1,5-己二烯. D. 乙醛.2-丁烯醛.乙烯17、在气相色谱中,色谱柱的使用上限温度取决于.固定液的最高使用温度.样品中各组分沸点的平均值.样品中沸点最高组分的温度.固定液的沸点18、在溴己烷的质谱图中,观察到两个强度相等的离子峰,最大可能的是:.m/z 为15 和29.m/z 为29 和95.m/z 为95 和93.m/z 为93 和1519、下列不适宜用核磁共振测定的核种是.12C.15N.31P.19F20、CH3CH2Cl的NMR谱,以下几种预测正确的是.CH2中质子比CH3中质子屏蔽常数大.CH2中质子比CH3中质子外围电子云密度小.CH2中质子比CH3中质子共振磁场高.CH2中质子比CH3中质子共振频率高21、根据范第姆特议程式,指出下面哪种说法是正确的.最佳流速时,塔板高度最大.最佳塔板高度时,流速最小.最佳流速时,塔板高度最小.最佳塔板高度时,流速最大22、利用组分在离子交换剂(固定相)上亲和力不同而达到分离的色谱分析法为.分配色谱法.分子排阻色谱法.吸附色谱法.离子交换色谱法23、在核磁共振中,若外加磁场的强度H0逐渐加大,则使原子核自旋能级的低能态跃迁到高能态所需的能量是.随原核而变.不变.逐渐变大.逐渐变小24、CH3CH2Cl的NMR谱,以下几种预测正确的是.CH2中质子比CH3中质子外围电子云密度小.CH2中质子比CH3中质子共振磁场高.CH2中质子比CH3中质子屏蔽常数大.CH2中质子比CH3中质子共振频率高25、最适于五味子中挥发油成分定性分析的方法是.TLC.LC-MS.CE-MS.GC-MS26、塔板理论不能用于.塔板高度计算.解释色谱流出曲线的形状.塔板数计算.解释色谱流出曲线的宽度与哪些因素有关27、利用大小不同的分子在多孔固定相中的选择渗透而达到分离的色谱分析法称为.吸附色谱法.分配色谱法.分子排阻色谱法.离子交换色谱法28、某化合物在质谱图上出现m/z 29,43,57等离子峰,IR图在1380,1460和1720cm-1位置出现吸收峰,则.烷烃.醛.醛或酮.酮29、若原子吸收的定量方法为标准加入法时,消除的干扰是.基体干扰.光散射.分子吸收.背景吸收30、在红外光谱分析中,用KBr制作为试样池,这是因为.KBr 晶体在4000~400cm-1 范围内不会散射红外光.在4000~400 cm-1 范围内,KBr 对红外无反射.KBr 在4000~400 cm-1 范围内有良好的红外光吸收特性.KBr 在4000~400 cm-1 范围内无红外光吸收31、在以硅胶为固定相的薄层色谱中,若用某种有机溶剂为流动相,则在展开过程中迁移速度慢的组分是.极性大的组分.极性小的组分.挥发性大的组分.挥发性小的组分多项选择题32、液液分配色谱中,对载体的要求是().与固定相之间有着较大吸引力.多孔.惰性.对被测组分有一定吸附力33、质谱中常用的质量分析器有().电磁式双聚焦质量分析器.Q.磁式单聚焦质量分析器.MALDI34、测试NMR时常用内标为TMS,它具有以下特点().硅的电负性比碳小.结构对称,出现单峰.TMS质子信号比一般有机质子信号处于更高场.沸点低且易溶于有机溶剂35、高效液相色谱中,选择流动相时应注意().对被分离的组分有适宜的溶解度.黏度大.与检测器匹配.与固定相不互溶36、气相色谱中,影响组分容量因子的主要因素有().固定液性质.柱长.柱温.载气种类37、使质子化学位移值出现在低场的原因().形成氢键.去屏蔽效应.屏蔽效应.与电负性大的基团相连38、醇类化合物形成氢键后,vOH吸收峰的特征表现为().峰位向高频移动,且峰强变大.峰位向低频移动,在3300~3500cm-1.形成氢键后vOH变为尖窄的吸收峰.峰强增大,峰形变宽39、气相色谱法中常用的载气有().氦气.氮气.氧气.氢气40、属于色谱-质谱联用的技术是().GC-FTIR.LC-FTIR.LC-MS.CE-MS41、高效液相色谱中,影响色谱峰扩展的因素是().柱压效应.分子扩散项.涡流扩散项.传质扩散项42、在X射线,紫外光、红外光、无线电波四个电磁波谱区中,关于X射线的描述正确的是.波长最长.波数最大.波长最短.频率最小主观题43、纸色谱法参考答案:纸色谱法是以滤纸作为载体,以吸着在纸纤维上的水或其他物质做固定液,以有机溶剂为展开剂,根据被分离物质在两相中析法。

分子排阻法方法开发

分子排阻法方法开发

分子排阻法方法开发
分子排阻法是一种根据待测组分的分子大小进行分离的液相色谱技术。

以下是其开发步骤:
1. 确定目标:明确要分离的物质和目标分子量范围。

2. 选择色谱柱:根据目标分子量范围选择合适的色谱柱,通常以亲水硅胶、凝胶或经过修饰的凝胶如葡聚糖凝胶和琼脂糖凝胶等为填充剂。

3. 确定流动相:选择合适的流动相,通常为水溶液或缓冲溶液,根据目标分子量范围调整pH值和有机溶剂的浓度。

4. 优化实验条件:通过实验确定最佳的流速、温度等实验条件,以达到最佳的分离效果。

5. 进行实验:按照确定的实验条件进行实验,记录数据并进行分析。

6. 结果分析:对实验结果进行分析,评估分离效果,并进行必要的调整和优化。

7. 验证方法:验证方法的可靠性和重复性,确保方法的可重复性和可扩展性。

8. 标准化方法:将方法标准化,制定操作规程和注意事项,以便在生产中应用。

9. 应用和评估:在实际生产中应用该方法,并对其效果进行评估和改进。

以上步骤仅供参考,具体开发过程需根据实际情况进行调整和优化。

仪器分析――分子排阻色谱法

仪器分析――分子排阻色谱法

仪器分析――分子排阻色谱法分子排阻色谱法是根据分子大小进行分离的一种液相色谱技术。

分子排阻色谱法的分离原理为凝胶色谱柱的分子筛机制。

色谱柱多以亲水硅胶、凝胶或经修饰凝胶如葡聚糖凝胶Sephadex和聚丙烯酰胺凝胶Sepherose等为填充剂,这些填充剂表面分布着不同尺寸的孔径,药物分子进入色谱柱后,它们中的不同组分按其大小进入相应的孔径内,大小大于所有孔径的分子不能进入填充剂颗粒内部,在色谱过程中不被保留,最早被流动相洗脱至柱外,表现为保留时间较短;大小小于所有孔径的分子能自由进入填充剂表面的所有孔径,在柱子中滞留时间较长,表现为保留时间较长;其余分子则按分子大小依次被洗脱。

1.对仪器的一般要求来源:考试大分子排阻色谱法所需的进样器和检测器同高效液相色谱法,液相色谱泵一般分常压、中压和高压。

在药物分析中尤其是分子量或分子量分布通常采用高效分子排阻色谱法(HPSEC)。

应选用与供试品分子大小相适应的色谱柱填充剂。

使用的流动相通常为水溶液或缓冲液,溶液的pH值不宜超出填充剂的耐受力,一般pH值在2~8范围。

流动相中可进入适量的有机溶剂,但不宜过浓,一般不应超过30%,流速不宜过高,一般为0.5~1.0ml/min.2.系统适用性试验高效分子排阻色谱法的系统适用性试验中(1)色谱柱的理论板数(n)、(2)分离度、(3)重复性、(4)拖尾因子的测定方法,在一般情况下,同高效液相色谱法项下方法,但在高分子杂质检查时,某些药物分子的单体与其二聚体不能达到基线分离时,其分离度的计算公式为:除另有规定外,分离度应小于2.0。

3.测定法(1)分子量测定法按各品种项下规定的方法,一般适用蛋白质多肽的分子量测定。

选用与供试品分子大小相适宜的色谱柱和适宜分子量范围的对照品,除另有规定外,对照品与供试品均需使用二硫苏糖醇(DTT)和十二烷基硫酸钠(SDS)处理,以打开分子内和分子间的二硫键,并使分子的构型与构象趋于一致,经处理的蛋白质和多肽分子通常以线性形式分离,以对照品分子量(MW)的对数对相应的保留时间(tR)制得标准曲线的线性回归方程logMW=a+btR,供试品以保留时间由标准曲线回归方程计算其分子量或亚基的分子量。

分子排阻色谱法标准操作规程

分子排阻色谱法标准操作规程

分子排阻色谱法标准操作规程共2页第1页1目的:建立分子排阻色谱法标标准操作规程,使操作规范、准确。

2范围:适用于药品蛋白质多肽的分子量测定。

3职责:质检员按此规程进行操作。

4引用标准:《中国药典》2010年版。

5工作原理:分子排阻色谱法是根据待测组分的分子大小进行分离的一种液相色谱技术。

分子排阻色谱法的分离原理为凝胶色谱柱的分子筛机制。

色谱柱多以亲水硅胶、凝胶或经修饰凝胶如葡聚糖凝胶(Sephadex)和聚丙烯酰胺凝胶(Sepharose)等为填充剂,这些填充剂表面分布着不同尺寸202文件编号:09—C—083—03 共2页第2页的孔径,药物分子进入色谱柱后,它们中的不同组分按其分子大小进入相应的孔径内,大于所有孔径的分子不能进入填充剂颗粒内部,在色谱过程中不被保留,最早被流动相洗脱至柱外,表现为保留时间较短;小于所有孔径的分子能自由进入填充剂表面的所有孔径,在色谱柱中滞留时间较长,表现为保留时间较长;其余分子则按分子大小依次被洗脱。

6.测定法6.1分子量测定法一般适用于蛋白质多肽的分子量测定。

按各品种项下规定的方法,选用与供试品分子大小相适宜的色谱柱和适宜分子量范围的对照品,除另有规定外,对照品与供试品均需使用二硫苏糖醇(DTT)和十二烷基硫酸钠(S DS)处理,以打开分子内和分子间的二硫键,并使分子的构型与构象趋于一致,经处理的蛋白质和多肽分子通常以线性形式分离,以对照品分子量(Mw)的对数值对相应的保留时间(tR)制得标准曲线的线性回归方程lg Mw=a+btR,供试品以保留时间由标准曲线回归方程计算其分子量或亚基的分子量。

6.2生物大分子聚合物分子量与分子量分布的测定法生物大分子聚合物如多糖、多聚核苷酸和胶原蛋白等具有分子大小不均一的特点,故生物大分子聚合物分子量与分子量分布是控制该类产品的关键指标。

在测定生物大分子聚合物分子量与分子量分布时,选用与供试品分子结构与性质相同或相似的对照品十分重要。

分子排阻色谱法

分子排阻色谱法

分子排阻色谱法
分子排阻色谱法是一种非常有效的离子分离分析技术,它可以检测离子的浓度、活性和离子在系统中的分布。

分子排阻色谱法是一种根据离子的排阻来分离离子的技术,它可以有效地检测离子的浓度,是一种非常有效的离子分离技术。

分子排阻色谱法是一种以离子排阻为基础的技术,它可以有效地检测各种离子的浓度。

离子排阻是一种由离子亲和力所驱动的力,它可以把不同类型和浓度的离子分离开来。

这种技术在检测不同类型和浓度的离子时非常有效。

此外,分子排阻色谱法还能够检测离子的活性,以及离子在系统中的分布。

在实际应用中,分子排阻色谱法可以用于鉴定某些特定的离子,也可以用于检测某些特定的溶液的离子浓度和分布。

例如,可以用分子排阻色谱法来检测水溶液中的钠离子,也可以用来检测某些金属离子在溶液中的浓度,如铜离子、铁离子和锰离子。

此外,它还可以用于检测各种离子的活性,以及检测溶液中各种离子的分布情况。

分子排阻色谱法是一种有效的离子分析技术,它可以检测各种离子的浓度、活性和离子在系统中的分布。

它可以有效地检测不同类型和浓度的离子,并且可以检测离子的活性和离子在系统中的分布。

此外,分子排阻色谱法还可以用于鉴定某些特定的离子,也可以检测某些特定的溶液的离子浓度和分布。

由此可见,分子排阻色谱法在分离离子分析中具有重要的应用价值。

分子排阻色谱法

分子排阻色谱法

校正原理
用已知相对分子质量的单分散标准聚合物做一条 淋洗体积或淋洗时间和相对分子量对应关系曲线,称 为“校正曲线”。聚合物中几乎找不到单分散的标准 样,一般用窄分布的试样代替。在相同的测试条件下, 做一系列的GPC标准谱图,以重均分子量的对数值 (lgM)对保留时间(t)作图,所得曲线即为“校正曲线”。 通过校正曲线,就能从GPC谱图上计算各种所需相对 分子量与相对分子量分布的信息。
测定多糖分子量及其分布
分离原理
凝胶渗透色谱 Gel Permeation Chromatography GPC 也称体积排阻色谱 Size Exclusion Chromatography SEC
让被测量的高聚物溶液通过一根内装不同孔径的色谱柱,柱中可供分子通行 的路径有颗粒间的间隙(较大)和颗粒内的微孔(较小)。当聚合物溶液流经色 谱柱时,大分子物质由于直径较大,不易进入凝胶颗粒的微孔,而只能分布颗粒 之间,所以在洗脱时移动的速度较快(即保留时间短);小分子物质除了可在凝 胶颗粒间隙中扩散外,还可以进入凝胶颗粒的微孔,洗脱时移动的速度要慢得多 (即保留时间长)。经过一定长度的色谱柱,分子根据相对分子大小被分开,这 种现象叫分子筛效应。 分子筛效应。 分子筛效应
谢谢
பைடு நூலகம்
色谱柱
各种色谱柱的孔隙大小分布有一定范围,有最大 极限和最小极限。分子直径比凝胶最大孔隙直径大的, 就会全部被排阻在凝胶颗粒之外,这种情况叫全排阻。 两种全排阻的分子即使大小不同,也不能有分离效果。 直径比凝胶最小孔直径小的分子能进入凝胶的全部孔 隙。如果两种分子都能全部进入凝胶孔隙,即使它们 的大小有差别,也不会有好的分离效果。因此,色谱 柱有一定的使用范围。
测定方法
直接法:在测定淋出液浓度的同时,测定其粘 度或光散射,从而求出其分子量。 间接法:用一组分子量不等的、单分散的试样 为标准样品,分别测定它们的淋出体积(保留 时间),建立保留时间与分子量二者之间的关 系,从而求出其分子量。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

仪器分析--分子排阻色谱法
分子排阻色谱法是根据分子大小进行分离的一种液相色谱技术。

分子排阻色谱法的分离原理为凝胶色谱柱的分子筛机制。

色谱柱多以亲水硅胶、凝胶或经修饰凝胶如葡聚糖凝胶Sephadex和聚丙烯酰胺凝胶Sepherose等为填充剂,这些填充剂表面分布着不同尺寸的孔径,药物分子进入色谱柱后,它们中的不同组分按其大小进入相应的孔径内,大小大于所有孔径的分子不能进入填充剂颗粒内部,在色谱过程中不被保留,最早被流动相洗脱至柱外,表现为保留时间较短;大小小于所有孔径的分子能自由进入填充剂表面的所有孔径,在柱子中滞留时间较长,表现为保留时间较长;其余分子则按分子大小依次被洗脱。

1.对仪器的一般要求来源:考试大
分子排阻色谱法所需的进样器和检测器同高效液相色谱法,液相色谱泵一般分常压、中压和高压。

在药物分析中尤其是分子量或分子量分布通常采用高效分子排阻色谱法(HPSEC)。

应选用与供试品分子大小相适应的色谱柱填充剂。

使用的流动相通常为水溶液或缓冲液,溶液的pH值不宜超出填充剂的耐受力,一般pH值在2~8范围。

流动相中可进入适量的有机溶剂,但不宜过浓,一般不应超过30%,流速不宜过高,一般为0.5~1.0ml/min.
2.系统适用性试验
高效分子排阻色谱法的系统适用性试验中(1)色谱柱的理论板数(n)、(2)分离度、(3)重复性、(4)拖尾因子的测定方法,在一般情况下,同高效液相色谱法项下方法,但在高分子杂质检查时,某些药物分子的单体与其二聚体不能达到基线分离时,其分离度的计算公式为:
除另有规定外,分离度应小于2.0。

3.测定法
(1)分子量测定法
按各品种项下规定的方法,一般适用蛋白质多肽的分子量测定。

选用与供试品分子大小相适宜的色谱柱和适宜分子量范围的对照品,除另有规定外,对照品与供试品均需使用二硫苏糖醇(DTT)和十二烷基硫酸钠(SDS)处理,以打开分子内和分子间的二硫键,并使分子的构型与构象趋于一致,经处理的蛋白质和多肽分子通常以线性形式分离,以对照品分子量(MW)的对数对相应的保留时间(tR)制得标准曲线的线性回归方程logMW=a+b tR,
供试品以保留时间由标准曲线回归方程计算其分子量或亚基的分子量。

(2)生物大分子聚合物分子量与分子量分布的测定法
生物大分子聚合物如多糖、多聚核苷酸和胶原蛋白等具有分子大小不均一的特点,故生物大分子聚合物分子量与分子量分布是控制该类产品的关键指标。

在生物大分子聚合物分子量与分子量分布测定时,选用与供试品分子结构与性质相同或相似的对照品十分重要。

按各品种项下规定的方法,除另有规定外,同样采用分子量对照品和适宜的GPC软件制得对照品重均分子量(MW)的对数对相应的保留时间(tR)制得标准曲线的线性回归方程logMW=a+btR,供试品采用适宜的GPC软件处理结果,并按下列公式计算出供试品的分子量与分子量分布。

Mn=∑RIi/∑(RIi/Mi)
MW=∑(RIiMi)i/∑RI
D=MW/Mn
式中Mn为数均分子量;
MW为重均分子量;
D为分布系数;
RIi为供试品在保留时间i时的峰高;
Mi为供试品在保留时间时的分子量。

(3)高分子杂质测定法
高分子杂质系指药品中分子量大于药物分子的杂质,通常是药物在生产或贮存过程中产生的高分子聚合物和生产过程中未除尽的可能产生过敏反应的高分子物质。

在正文品种规定的色谱条件下进行分离。

定量方法
①主成分自身对照法同高效液相色谱法项下规定。

一般用于高分子杂质含量较低的品种。

②面积归一化法同高效液相色谱法项下规定。

③限量法除另有规定外,规定不得检出保留时间小于对照品保留时间的组分,一般用于混合物中高分子物质的控制。

④自身对照外标法一般用于SephadexG-10凝胶色谱系统中β-内酰胺抗生素中高分子杂质的检查。

在该分离系统中,除部分寡聚物外,β-内酰胺抗生素中高分子杂质在色谱过程中均不保留,即所有的高分子杂质表现为单一的色谱峰,以药物自身为对照品,按外标法
计算药品中高分子杂质的相对百分含量。

[附注]SephadexG-10的处理方法。

色谱柱的填装装柱前先将约15g葡聚糖凝胶SephadexG-10用水浸泡48小时,使之充分溶胀,搅拌除去空气泡,徐徐倾入玻璃柱,一次性装满,然后用水将附着玻璃管壁的SephadexG-10洗下,使色谱柱面平整,新填装的色谱柱要先用水连续冲洗4~6小时,以排出柱中的气泡。

样品的加入进样可以采用自动进样阀,也可以直接将样品加在床的表面(此时,先将床表面的流动相吸干,将样品溶液沿着色谱管壁转圈缓缓加入,注意勿使填充剂翻起,待之随着重力的作用渗入固定相后,再沿着色谱管壁转圈缓缓加入3~5mL流动相,以洗下残留在色谱管壁的样品溶液)。

相关文档
最新文档