稀土分离冶炼工艺流程图
稀土生产与分离工业工艺流程
稀土生产与分离工业工艺流程一、稀土选矿选矿是利用组成矿石的各种矿物之间的物理化学性质的差异,采用不同的选矿方法,借助不同的选矿工艺,不同的选矿设备,把矿石中的有用矿物富集起来,除去有害杂质,并使之与脉石矿物分离的机械加工过程。
当前我国和世界上其它国家开采出来的稀土矿石中,稀土氧化物含量只有百分之几,甚至有的更低,为了满足冶炼的生产要求,在冶炼前经选矿,将稀土矿物与脉石矿物和其它有用矿物分开,以提高稀土氧化物的含量,得到能满足稀土冶金要求的稀土精矿。
稀土矿的选矿一般采用浮选法,并常辅以重选、磁选组成多种组合的选矿工艺流程。
内蒙古白云鄂博矿山的稀土矿床,是铁白云石的碳酸岩型矿床,在主要成分铁矿中伴生稀土矿物(除氟碳铈矿、独居石外,还有数种含铌、稀土矿物)。
采出的矿石中含铁30%左右,稀土氧化物约5%。
在矿山先将大矿石破碎后,用火车运至包头钢铁集团公司的选矿厂。
选矿厂的任务是将Fe2O3从33%提高到55%以上,先在锥形球磨机上磨矿分级,再用圆筒磁选机选得62~65%Fe2O3的一次铁精矿。
其尾矿继续进行浮选与磁选,得到含45%Fe2O3以上的二次铁精矿。
稀土富集在浮选泡沫中,品位达到10~15%。
该富集物可用摇床选出REO 含量为30%的粗精矿,经选矿设备再处理后,可得到REO60%以上的稀土精矿。
二、稀土冶炼方法稀土冶炼方法有两种,即湿法冶金和火法冶金。
湿法冶金属化工冶金方式,全流程大多处于溶液、溶剂之中,如稀土精矿的分解、稀土氧化物、稀土化合物、单一稀土金属的分离和提取过程就是采用沉淀、结晶、氧化还原、溶剂萃取、离子交换等化学分离工艺过程。
现应用较普遍的是有机溶剂萃取法,它是工业分离高纯单一稀土元素的通用工艺。
湿法冶金流程复杂,产品纯度高,该法生产成品应用面广阔。
火法冶金工艺过程简单,生产率较高。
稀土火法冶炼主要包括硅热还原法制取稀土合金,熔盐电解法制取稀土金属或合金,金属热还原法制取稀土合金等。
稀土电解采矿工艺流程
稀土电解采矿工艺流程
1. 矿石破碎和磨矿
- 将开采的稀土矿石进行破碎和磨矿处理,使矿石达到合适的粒度,便于后续浸出。
2. 酸浸出
- 将处理后的矿石加入适当的酸溶液中进行浸出,将稀土元素从矿石中溶解出来。
3. 固液分离
- 通过滤液或离心分离等方式,将浸出液与矿渣分离。
浸出液富集了稀土离子。
4. 溶液纯化
- 对浸出液进行纯化处理,去除杂质离子,提高稀土离子的浓度和纯度。
常用方法包括溶剂萃取、离子交换等。
5. 电解析出
- 将纯化后的稀土离子溶液进行电解,在阴极上析出各种稀土金属。
不同的电解条件可以选择性地析出不同的稀土元素。
6. 产品收集和提纯
- 收集电解析出的稀土金属粉末或块状产物,将其进一步提纯和加工,制成所需的稀土金属或合金产品。
7. 废水处理
- 对电解过程中产生的废水进行适当处理,确保达标排放或回用。
该工艺流程利用电解方法从稀土矿石中高效分离和提取稀土元素,是目前主要的稀土采矿方式之一。
整个过程需严格控制各工序条件,并注重环境保护和资源综合利用。
稀土分离冶炼工艺流程图
白云鄂博矿床的物质成分白云鄂博矿床物质成分极为复杂,已查明有73种元素,170多种矿物。
其中,铌、稀土、钛、锆、钍及铁的矿物共近60种,约占总数的35%。
主要矿石类型有块状铌稀土铁矿石、条带状铌稀土铁矿石、霓石型铌稀土铁矿石、钠闪石型铌稀土铁矿石、白云石型铌稀土铁矿石、黑云母型铌稀土铁矿石、霓石型铌稀土矿石、白云石型铌稀土矿石和透辉石型铌矿石。
稀土生产工艺流程图白云鄂博矿矿石粉碎弱磁、强磁选矿铁精矿强磁中矿、尾矿稀土精矿稀土选矿风力发电机各种发光标牌电动汽车电动核磁共振自行车磁悬浮磁选机稀土精矿硫酸法分解(decomposition of rare earth concentrate by suIphuric acid method)稀土精矿用硫酸处理、生产氯化稀土或其他稀土化合物的稀土精矿分解方法。
本法具有对原料适应性强、生产成本低等优点,是稀土精矿工业上常用的分解方法,广泛用于氟碳铈矿精矿、独居石精矿和白云鄂博混合型稀土矿精矿的分解。
主要有硫酸化焙烧一溶剂萃取法、硫酸分解一复盐沉淀法、氧化焙烧一硫酸浸出法三种工艺。
硫酸化焙烧-溶剂萃取?? 主要用于分解白云鄂博混合型稀土矿精矿生产氯化稀土。
白云鄂博混合型稀土矿精矿成分复杂,属于难处理矿,其典型的主要成分(%)为:RE2O350~55,P2.5~3.5,F7~9,Ca7~8,Ba1~4,Fe3~4,ThO2约0.2。
精矿中放射性元素钍和铀含量低,冶炼的防护要求不高,适于用硫酸化焙烧法分解。
原理?? 经瘩细的稀土精矿与浓硫酸混合后加热焙烧到423~673K温度时,稀土和钍均生成水溶性的硫酸盐。
氟碳铈矿与硫酸的主要反应为:2REFCO3+3H2SO4=RE2(SO4)3+3HF↑+2CO2+2H2O独居石与硫酸的主要反应是:2REPO4+3H2SO4=RE2(SO4)3+2H3PO4Th3(PO4)4+6H2SO4=3Th(SO4)2+4H3PO4铁、钙等杂质也生成相应的硫酸盐。
稀土生产工艺流程
稀土生产工艺流程稀土是指地壳中数量非常稀少的一类金属元素,目前主要用于制造高科技产品和绿色能源设备。
由于其稀少性和广泛应用,稀土的生产工艺流程具有很大的科学性和复杂性。
下面是一种常见的稀土生产工艺流程的简要介绍。
稀土的生产过程通常可以分为开采、选矿、冶炼和纯化四个环节。
首先是开采环节。
开采是从稀土矿石中提取出有用金属元素的过程。
常见的开采方法包括露天开采和地下开采。
露天开采是指直接将矿石从地表开采出来,适用于砂矿和土矿等表层矿石;地下开采是指通过化验,挖掘机,卡车和运送设备等设备组成的整套设备,依靠方式开采矿石。
接下来是选矿环节。
选矿是指根据稀土矿石的化学成分和物理性质进行分选的过程,目的是更好地提取矿石中的稀土金属元素。
根据稀土矿石的性质,常见的选矿方法包括重选、浮选、磁选、电选和化学选矿等。
重选是根据矿石的密度差异进行分选,浮选是通过气泡吸附使稀土矿石浮起来,磁选是根据矿石的磁性差异进行分选,电选是利用数十万伏的电场对矿石进行分离,化学选矿是利用化学反应对矿石进行分选。
然后是冶炼环节。
冶炼是指将选矿得到的稀土矿石提炼成稀土金属元素的过程。
根据稀土矿石的性质和市场需求,常见的冶炼方法包括矿石熔炼法、水热法、浸出法、萃取法和电解法等。
其中,矿石熔炼法是将稀土矿石加热至高温,溶解成稀土金属,然后通过凝固和分离等操作,得到纯净的稀土金属;水热法是将稀土矿石和水进行反应,利用水热条件下稀土金属与其他杂质的不同溶解度进行分离;浸出法是通过酸性溶液将稀土金属溶解出来,再通过沉淀、过滤和烘干等过程得到纯净的稀土金属;萃取法是利用有机溶剂将稀土金属从矿石中分离出来;电解法是利用电解设备对稀土矿石进行电解,将含有稀土金属的阳离子还原成纯净的稀土金属。
最后是纯化环节。
纯化是指对冶炼得到的稀土金属元素进行纯净化处理,去除杂质,提高纯度。
常见的纯化方法包括溶液萃取、电解析、晶体生长法等。
溶液萃取是利用有机溶剂对稀土金属进行分离和纯化;电解析是利用电解设备对稀土金属进行电解,将杂质还原成纯净的稀土金属;晶体生长法是通过不断蒸发溶液,使稀土金属结晶出来,从而提高纯度。
稀土火法冶金
(1)电解质组成的影响 电解质是由稀土氯化物与氯化钾组成。当稀土氯化物浓度过低时,将会使 电位较负的 K 十、NaI、Ca2 十等共同析出;当稀土氯化物浓度过高时,由于稀土金属在自身熔盐中的 溶解度较大,
①水和水不溶物的影响 原料中的水分与稀土氯化物和金属作用产生 REOCl 和 RE2O3,它们以泥渣形式分散在电解质中 或覆盖在金属表面上,使金属不易凝聚。
②电解槽材料的影响 稀土金属可以与电解槽反应 ③非金属杂质的影响 随着电解质中 SO42-,PO43-和 C 的含量增加,电流效率明显下降 ④金属杂质的影响。为了获得较高的电流放率,要求原料中较稀土金属析出电年更正的金属杂 质愈少愈好。 ⑤稀土元素衫、钕的影响 电解质中衫的含量越高电流效率越低 工业生产中要求原料中控制 衫含量愈少愈好。 Nd 在氯化放中的溶解度较高,熔盐中又有多种价态,因此,在钕的熔点以上电 解时,电流效率很低。 ⑥槽型的影响 如前所述,生产混合稀土金属,在 800----1000A 石墨槽的电流效率较高,但也存 在不少缺点;万安规模陶瓷槽产量大、电压低,但电流效率又太低。
3.4 稀土氧化物熔盐电解操作工艺
稀土氧化物熔盐电解生产工艺步骤 (1) 电解槽砌筑 ① 在钢槽底部铺设一定厚度的保温材料; ② 将石墨槽放人钢槽,将周围空隙用石墨粉填实; ③ 将钨柑祸放人石墨槽内,用稀土氧化物或炉底料将缝隙填充; ④安置好顶部绝缘板及阳极导电板 (2) 烘炉 ① 将电解槽内清理干净;
2.5 稀土氯化物熔盐电解操作设备
稀土氯化物熔盐电解制取稀土金属的设备包括三部分,即供电系统、电解槽、电解尾气净化 处理系统。
800A 石墨电解槽和 10000A 陶瓷电解槽的结构示意图分别如图 7—1 和图 7—2 所示。 10000A 电解槽的供电系统是由两套 6000A 硅整流器并联组成,其中包括辅助电源、辅助电源 启动器、高压开关柜、感应调压器、整流变压器和万能空气断路器等。
稀有稀土金属冶炼
稀有稀土金属冶炼稀有稀土金属是指在自然界中含量极少的金属元素,具有重要的战略地位和广泛的应用价值。
由于其含量极少,因此稀有稀土金属的开采、提取和冶炼过程非常复杂,需要采用先进的技术和设备,同时还需要严格遵守环保法规。
一、稀有稀土金属概述1.1 稀有稀土金属的定义稀有稀土金属是指在自然界中含量极少的金属元素,通常包括铈、镧、钕、钐、铽、镝、铒、钆等17种元素和钼、铌等2种元素。
1.2 稀有稀土金属的应用稀有稀土金属具有广泛的应用价值,在现代工业生产中扮演着重要角色。
比如:(1)永磁材料:永磁材料是由镝、钕等元素制成,广泛应用于电机、发电机等领域。
(2)催化剂:催化剂是由钯、铑等元素制成,可用于汽车尾气处理等领域。
(3)光电材料:光电材料是由铈、钇等元素制成,可用于LED照明、太阳能电池等领域。
(4)磁记录材料:磁记录材料是由铽、钆等元素制成,可用于磁带、硬盘等领域。
1.3 稀有稀土金属的开采稀有稀土金属的开采非常困难,因为它们在自然界中的含量极少,通常只有几十个ppm(百万分之几)。
目前世界上大部分稀有稀土金属都来自中国和澳大利亚。
开采过程需要采用先进的技术和设备,同时还需要严格遵守环保法规。
二、稀有稀土金属冶炼2.1 稀有稀土金属提取方法由于稀有稀土金属在自然界中的含量非常少,因此提取方法也非常复杂。
目前主要的提取方法包括:(1)萃取法:萃取法是将含稀土金属的矿物与化学试剂混合后进行反应,使得其中的稀土金属被化学试剂吸附,并通过洗涤、沉淀等步骤将其分离出来。
(2)离子交换法:离子交换法是利用特定的树脂材料对稀土金属进行吸附和分离的方法。
(3)溶剂萃取法:溶剂萃取法是利用溶剂将稀土金属从矿物中提取出来的方法。
2.2 稀有稀土金属冶炼流程稀有稀土金属冶炼的流程非常复杂,需要经过多个步骤才能得到纯度较高的金属。
主要步骤包括:(1)矿物选别:首先需要将含有稀有稀土金属的矿物从其他杂质中分离出来。
(2)浸出:将选别后的矿物放入酸性浸出液中,使得其中的稀土金属被浸出。
稀土是如何提炼出来
立志当早,存高远稀土是如何提炼出来稀土市场是一个多元化的市场,它不只是一个产品,而是15 个稀土元素和钇、钪及其各种化合物从纯度46%的氯化物到99.9999%的单一稀土氧化物及稀土金属,均具有多种多样的用途。
加上相关的化合物和混合物,产品不计其数。
首先从最初的矿石开采起,我们逐一介绍稀土的分离方法和冶炼过程。
稀土选矿选矿是利用组成矿石的各种矿物之间的物理化学性质的差异,采用不同的选矿方法,借助不同的选矿工艺,不同的选矿设备,把矿石中的有用矿物富集起来,除去有害杂质,并使之与脉石矿物分离的机械加工过程。
当前我国和世界上其它国家开采出来的稀土矿石中,稀土氧化物含量只有百分之几,甚至有的更低,为了满足冶炼的生产要求,在冶炼前经选矿,将稀土矿物与脉石矿物和其它有用矿物分开,以提高稀土氧化物的含量,得到能满足稀土冶金要求的稀土精矿。
稀土矿的选矿一般采用浮选法,并常辅以重选、磁选组成多种组合的选矿工艺流程。
内蒙古白云鄂博矿山的稀土矿床,是铁白云石的碳酸岩型矿床,在主要成分铁矿中伴生稀土矿物(除氟碳铈矿、独居石外,还有数种含铌、稀土矿物)。
采出的矿石中含铁30%左右,稀土氧化物约5%。
在矿山先将大矿石破碎后,用火车运至包头钢铁集团公司的选矿厂。
选矿厂的任务是将Fe2O3 从33%提高到55%以上,先在锥形球磨机上磨矿分级,再用圆筒磁选机选得62~65%Fe2O3(氧化铁)的一次铁精矿。
其尾矿继续进行浮选与磁选,得到含45%Fe2O3(氧化铁)以上的二次铁精矿。
稀土富集在浮选泡沫中,品位达到10~15%。
该富集物可用摇床选出REO 含量为30%的粗精矿,经选矿设备再处理后,可得到REO60%以上的稀土精矿。
稀土冶炼方法。
稀土萃取分离技术
稀土溶剂萃取分离技术摘要对目前稀土元素生产中分离过程常用的分离技术进行了综述。
使用较多的是溶剂萃取法和离子交换法。
本文立足于理论与实际详细地分析了溶剂萃取分离法。
关键词稀土分离萃取前言稀土一般是以氧化物状态分离出来的,又很稀少,因而得名为稀土。
“稀土”一词系17种元素的总称。
它包括原子序数57—71的15种镧系元素和原子序数39的钇及21的钪。
由于钪与其余16个元素在自然界共生的关系不大密切,性质差别也比较大,所以一般不把它列入稀土元素之列。
中国、俄罗斯、美国、澳大利亚是世界上四大稀土拥有国,中国名列第一位。
中国是世界公认的最大稀土资源国,不仅储量大,而且元素配分全面。
经过近40余年的发展,中国已建立目前世界上最庞大的稀土工业,成为世界最大稀土生产国,最大稀土消费国和最大稀土供应国。
产品规格门类齐全,市场遍及全球。
产品产量和供应量达到世界总量的80%一90%[1]。
稀土在钢铁工业有色金属合金工业、石油工业、玻璃及陶瓷工业、原子能工业、电子及电器工业、化学工业、农业、医学以及现代化新技术等方面有多种用途。
由于稀土元素及其化合物具有不少独特的光学、磁学、电学性能,使得它们在许多领域中得到了广泛的应用。
但由于稀土元素原子结构相似,使得它们经常紧密结合并共生于相同矿物中,这给单一稀土元素的提取与分离带来了相当大的困难[2]。
常用稀土分离提取技术萃取分离技术:包含溶剂萃取法、膜萃取分离法、温度梯度萃取、超临界萃取、固—液萃取等萃取方法。
液相色谱分离技术:包含离子交换色谱、离子色谱技术、反相离子对色谱技术、萃取色谱技术、纸色谱技术、以及薄层色谱技术。
常用方法为溶剂萃取法和离子交换法[3]。
稀土溶剂萃取分离技术什么是萃取萃取又称溶剂萃取或液液萃取(以区别于固液萃取,即浸取),亦称抽提(通用于石油炼制工业),是一种用液态的萃取剂处理与之不互溶的双组分或多组分溶液,实现组分分离的传质分离过程,是一种广泛应用的单元操作。
稀土冶炼工艺流程
稀土冶炼工艺流程稀土冶炼工艺流程1. 引言稀土元素是一种非常珍贵的资源,广泛应用于各个领域,包括磁性材料、光学材料、医药、环保和新能源等。
稀土冶炼是将稀土矿石中的稀土元素提取出来并分离纯化的过程。
本文将深入探讨稀土冶炼的工艺流程,包括主要的冶炼方法和关键步骤。
2. 稀土矿石的选择和预处理稀土矿石的选择对冶炼工艺的成功非常关键。
常见的稀土矿石包括独居石、矿石和长石矿石等。
在选择稀土矿石时,需要考虑矿石中稀土元素的含量、矿石的物理和化学性质以及开采成本等因素。
在冶炼工艺开始之前,稀土矿石需要经过预处理。
这包括矿石的粉碎、磁选和浮选等步骤,以提高稀土的提取效率和产品质量。
3. 稀土提取和分离稀土提取和分离是稀土冶炼的关键步骤。
目前常用的稀土提取方法包括酸法、碱法和溶剂萃取法。
其中,溶剂萃取法在稀土冶炼中应用最广泛。
溶剂萃取法主要包括两个步骤:提取和分离。
提取是指利用有机溶剂将稀土元素从稀土矿石中提取出来,通常使用的有机溶剂有磷酸酯和磷酸等。
分离是指将提取的稀土元素进行分离,通常采用萃取剂的选择性萃取特定的稀土元素。
4. 稀土纯化和精炼提取和分离后的稀土元素通常需要进行纯化和精炼,以获得高纯度的稀土产品。
常用的纯化方法包括晶体生长、离子交换和萃取等。
晶体生长是指通过溶液中的结晶过程获得高纯度的稀土产品。
离子交换是利用吸附树脂将杂质离子与稀土离子交换,从而实现纯化的方法。
萃取是在溶液中加入适当的萃取剂,分离出稀土元素。
5. 客户定制和加工经过纯化和精炼的稀土产品可以根据客户的要求进行定制和加工。
客户可能需要不同纯度和不同形状的稀土产品。
根据客户的需求,冶炼厂家可以调整工艺流程和生产参数,以达到最终产品的要求。
6. 结论稀土冶炼是一项复杂而精细的工艺,涉及到多个步骤和方法。
在冶炼过程中,选择适宜的稀土矿石、合理的提取和分离方法,以及精细的纯化和精炼技术是取得高质量稀土产品的关键。
通过本文对稀土冶炼工艺流程的介绍,我们可以深入了解稀土的提取和分离过程,以及后续的纯化和精炼步骤。
稀土提取与分离技术 (发)
产业技术情报—————————————————————————————————————————————————————————————2013年12月18日第6期(总第6期)编者按:稀土提取及分离技术的基本内容有如下几个方面:稀土矿物的富集、稀土的提取、稀土富集物的制备、稀土元素的分离与提纯、稀土化合物的制备。
本期通过专利分析,对稀土提取及分离技术的专利数量、专利国家和地区分布、专利技术布局,以及稀土提取与分离技术国家分布、技术主题、核心专利等进行了分析,并得出以下结论。
本期重点:稀土提取与分离技术专利分析●中国在稀土提取与分离技术领域起步较早,但由于我国稀土技术保密规定等原因,文献报道不多,2006年后迅速发展,专利数量跃居世界第一,但专利影响力(核心专利)很小。
●稀土提取与分离技术主要集中在提取与分离过程与方法、分离过程中使用的体系和萃取剂、稀土分离、提取的设备与装置以及对稀土提取过程中废水的处理。
●日本企业为该技术领域的主要专利持有人,专利均集中在从合金或其他混合物中回收稀土元素以及提取与分离过程中所使用的萃取剂。
此外,日本机构还擅长从一些废料(例如荧光粉材料和磁性材料)中回收稀土金属。
●中国有5家高校、科研单位和5家企业专利申请量进入全球Top30,分别为北京大学、北京科技大学、东北大学、内蒙古科技大学、中科院长春应用化学研究所、北京有色金属研究总院、包头稀土研究院、甘肃稀土新材料有限公司等。
============================================================= 主编:刘细文执行主编:贾苹本期策划:徐慧芳陆彩女陈枢舒联系地址:北京北四环西路33号中科院国家科学图书馆区域信息服务部邮编:100190 电话:82625972邮件地址:***************目录【技术趋势】 (3)1、稀土提取技术专利数量及申请人数量年度变化趋势 (4)2、专利国家/地区分布 (6)3、专利技术布局 (7)【核心技术】 (9)1、稀土提取与分离技术国家年度分布分析 (9)2、稀土提取与分离技术主题分析 (10)3、稀土元素提取与分离技术核心专利分析 (12)【重点机构】 (13)【重要人物】 (15)吉林省优秀稀土专家-李德谦 (16)江西省科学院应用化学研究所-田君 (18)【产业动态】 (20)1、产业政策 (20)2、企业动态 (21)【技术趋势】稀土(rare earth)有“工业维生素”的美称。
稀土湿法冶炼基础知识
稀土湿法冶炼基础知识培训资料广东富远稀土新材料股份有限公司二○○四年元月十五日本公司职工上岗培训材料稀土湿法冶炼基础知识(一)广东富远稀土新材料股份有限公司组织编写生产技术部主编:韩旗英编写人员:韩旗英韩新福钟德强张尚兴目录第一章稀土元素简介 (1)第二章稀土冶炼主要过程 (7)第三章离子矿开采 (10)第四章离子矿酸溶 (12)第五章萃取分离 (15)第六章沉淀 (35)第七章灼烧 (38)第八章“三废”处理 (39)附1: 化工材料性质简介 (41)附2: 工艺流程及物料平衡图 (45)第一章稀土元素简介一、稀土名词的由来稀土元素的发现要追溯到1794年从硅铍钇矿中找到“钇土”,限于当时的科学技术水平,没有能够分离成单独元素,只能得到氧化物,由于当时习惯把不溶于水的固体氧化物称为“土”,加上当时认为很稀罕,因此就得到了“Real-earth”稀土这个名词,其实稀土元素并不稀少,在自然界中广泛存在,地壳中储藏量约占地壳的0.016%(135g/T),它们在地壳中的丰度比铅锌还大几倍,比金大三万倍,而且分布极不均匀,一般原子序数为偶数的稀土元素较相印奇数元素的丰度大,但也有例外。
也不是土,而是典型的金属元素(稀土金属),活泼性仅次于碱金属和碱土金属。
二、稀土元素组成稀土元素包括原子序数从57至71的15个镧系元素以及与镧系元素化学性质相似的钪和钇(钇的离子半经在Ho-Er之间共生于稀土矿物中)共17个元素,它们属于周期表申的第ⅢB族,正常原子价为正三价。
钜是17个稀土元素中最后发现的一个,是天然放射性元素,极不稳定,半期为2.7年,当时认为在自然界中没有,直到1947年在铀裂变产物中得到,因为在高品位铀矿中有足够的中子流强度,使之缓慢地进行核裂变,形成了钜,在稀土矿中含量极少,特别在离子吸附型稀土矿中含量更少,习惯不把它列入稀土元素。
钪和镧系元素有共同的特征氧化物,在一些方面有些共同点,但它的化学性质不象钇那样相似于镧系元素,且在镧系矿物中很少发现钪,所以在一般的生产工艺中不把钪放在稀土元素之列。
稀土金属及合金制备
概述稀土火法冶金技术分为三大类:熔盐电解、金属热还原和火法提纯技术。
稀土火法冶金( rare earths pyrometallurgy)技术是指应用高温这一重要的热力学条件,完成还原稀土离子成金属态和金属提纯的过程。
此过程没有水溶液参加,故又称为火法冶金。
火法冶金工艺过程简单,生产率较高。
稀土火法冶炼主要包括硅热还原法制取稀土合金,熔盐电解法制取稀土金属或合金,金属热还原法制取稀土合金等。
火法冶金的共同特点是在高温条件下生产。
稀土金属的制备方法有:①金属热还原法。
常用钙、锂、钠、镁等金属做还原剂,还原稀土金属的卤化物。
②熔盐电解法。
可电解稀土卤化物与碱金属、碱土金属卤化物的熔盐。
进一步纯制可采用真空熔炼法、真空蒸馏法、电迁移法和区域熔炼法。
二:稀土氯化物电解制取稀土金属2.1氯化物熔盐电解的基本原理根据电解质能够发生电离的原理,由RECl:—KCl组成的电解质,在熔融状态下也会发生电离作用,化合物离解为能自由运动的阳离子和阴离子。
氯化稀土将按如下方式离解RECl3=RE3十十3C1—-氯化钾将按如下方式离解:KCl=K十十C1—在直流电场的作用下,电解质中的阳离子K十、RE3十都朝电解槽的阴极运动,而阴离子Cl—则向电解槽的阳极移动,结果在靠近阴极的电解质层中,集中有大量的阳离子,在靠近阳极的电解层中,集中有大量的阴离子。
在稀土氯化物电解条件下,阳离子中的稀土离子RE3+获得电子生成稀土金属,在阴极上的电化学反应为:RE3十十3e一=RE阴离子中的氯离子C1—则在阳极上失去电子,并生成氯气(C12),在阳极上的电化学反应为:2C1—一2e—===Cl23C1——3e—===3/2 C12这样,电解的结果,在阴极上使得到稀土金属,在阳极上放出氯气,而消耗了氯化稀土和直流电。
电解过程中的总反应式可以表示如下:RECl3===RE+3/2 C122.2 稀土氯化物电解原料和电解质稀土氯化物电解原料是把稀土氯化物和氯化钾按一定比例配制(一般氯化稀土重量为35—50%)构成熔盐电解体系。
包头稀土精矿低温焙烧无污染冶炼工艺
包头稀土精矿低温焙烧无污染冶炼工艺包头混合稀土精矿含有独居石、萤石和氟碳铈矿,独居石矿中含有放射性元素钍超过0.2%,属于伴生放射性矿。
处理包头稀土精矿以前和现在大都使用高温浓硫酸焙烧工艺,其工艺特点是把稀土精矿与浓硫酸混和后在500℃左右高温下焙烧,硫酸与精矿发生化学反应,使稀土矿物分解成可溶性盐类,经水浸出得到稀土硫酸盐浸出液,然后进行稀土萃取分离得到稀土氧化物。
高温焙烧时磷酸稀土生成磷酸,其脱水后转变成焦磷酸,焦磷酸与硫酸钍作用生成难溶的焦磷酸钍。
在浸出分离时焦磷酸钍留存于浸出渣中,难以回收,损失了钍资源。
浸出渣放射性比活度达到2.1×105Bq/kg,超过了国家标准GB1887-2002要求浸出渣放射性比活度1×103Bq/kg的豁免要求,应建放射性渣库储存。
如任意存放会给环境造成辐射污染。
高温硫酸焙烧工艺,尾气中含有HF、SiF4、SO3和SO2。
通常处理此类尾气的方法是经三级喷淋塔、用水吸收尾气中的HF、SiF4、SO3和SO2,使有害物质转入水相,经这种方法处理的尾气难以达标排放。
经水吸收后的液体为低浓度氢氟酸、硫酸和氟硅酸的混合物,实现无害化处理费用高,用Ca(OH)2处理后既损失了资源又会造成环境二次污染。
针对包头稀土精矿高温焙烧工艺中存在的不足,低温动态焙烧技术对焙烧工艺进行了改进、创新。
包头稀土精矿浓硫酸低温动态焙烧清洁冶炼工艺采用保温熟化、低温(250℃~260℃)动态(回转窑)焙烧稀土精矿,对硫酸焙烧工艺改进创新,使硫酸稀土和硫酸钍同时进入浸出液,为下一步萃取回收钍创造了条件;尾气用碳酸氢铵分解后产生的氨吸收氟化氢生产氟化氢铵副产品。
中国恩菲(原中国有色工程设计研究总院)在保定稀土材料试验厂稀土精矿低温静态焙烧取得成功的基础上,共同研发包头稀土精矿利用硫酸低温回转窑动态焙烧清洁生产工艺。
经过近两年的研发试验,在高效回收稀土等有价元素的同时,从工艺上解决了高温焙烧分解包头稀土精矿的尾气和放射性渣难以治理的严重污染问题。
广西离子型稀土矿冶炼流程
广西离子型稀土矿冶炼流程
广西离子型稀土矿冶炼流程是指将广西地区开采的稀土矿石通过一系列工艺步
骤进行提纯和分离,以得到高纯度的稀土金属和化合物。
以下是广西离子型稀土矿冶炼的一般流程:
1. 原料准备:将开采得到的稀土矿石进行破碎、磨矿和筛分,使其粒度符合冶
炼要求。
2. 酸浸:采用酸浸法进行矿石的浸出。
将破碎后的矿石与稀硫酸或盐酸溶液反应,使稀土元素溶解于酸液中。
3. 溶液预处理:对酸浸后的稀土溶液进行预处理。
包括过滤、固液分离、中和、氧化等步骤,以去除杂质和调整溶液的性质。
4. 分离提纯:将经过预处理的稀土溶液进一步进行浓缩和分离。
一般采用离子
交换树脂、溶剂萃取或萃取结晶等方法,将稀土元素从溶液中提取出来并分离。
5. 沉淀与烧结:将纯化后的稀土溶液经过沉淀处理,得到稀土氢氧化物或氧化
物沉淀。
将沉淀进行烧结,得到稀土金属或稀土化合物。
6. 精细提纯:通过电解、真空蒸馏、氧化还原等方法对烧结得到的稀土金属或
化合物进行进一步提纯,以获得高纯度的稀土产品。
7. 产品加工:将精炼后的稀土金属或化合物进行加工,包括熔炼、铸造、淬火、压制等工艺步骤,以得到最终的稀土制品。
广西离子型稀土矿冶炼流程的设计和实施涉及多个工艺环节和设备,需严格控
制操作参数和杂质含量,以确保产品质量和生产效率。
这一流程在广西地区的稀土冶金工业中具有重要的应用价值,推动了当地经济的发展和资源的综合利用。
长汀金龙稀土稀土冶炼分离工艺
长汀金龙稀土稀土冶炼分离工艺全文共四篇示例,供读者参考第一篇示例:长汀金龙稀土公司是中国稀土业的知名企业之一,专门致力于稀土的开采、冶炼和分离。
稀土元素是一类重要的战略资源,广泛应用于电子、光学、航空航天等领域。
长汀金龙稀土公司积极采用先进的技术和工艺,不断提高稀土的冶炼和分离效率。
稀土的冶炼和分离工艺是稀土生产过程中至关重要的环节。
在长汀金龙稀土公司,我们采用了一系列先进的工艺流程,以确保稀土可以被高效地提取和分离。
我们从矿石中提取出含稀土的矿物,然后进行矿石的碎磨,将其矿石粉末化。
接着,我们采用一系列的化学方法,包括浸取、萃取和萃取,将混合物中的不同稀土元素分离出来。
在稀土的分离过程中,我们使用了多级的萃取技术,通过调节萃取剂的类型和浓度,有效分离出不同的稀土元素。
我们还利用离子交换树脂、溶液析出等方法,对稀土元素进行进一步的分离和提纯。
通过这些工艺,我们可以获得高纯度的稀土产品,满足不同行业的需求。
长汀金龙稀土公司还注重环保和节能,在稀土冶炼和分离过程中,我们采用了封闭式生产工艺,实现了废气、废水的清洁处理和资源再利用。
我们还优化了生产工艺,减少能源消耗和耗材损耗,提高了生产效率,降低了生产成本。
长汀金龙稀土公司在稀土冶炼和分离工艺方面拥有丰富的经验和先进的技术,不断提高生产效率和产品质量。
我们将继续努力创新,致力于稀土产业的发展,为国家的科技进步和经济发展做出贡献。
第二篇示例:长汀金龙稀土是一家专业从事稀土冶炼的企业,拥有多年的经验和技术积累。
稀土是一类具有特殊性质的化学元素,广泛应用于电子、冶金、催化剂等领域。
稀土矿石的提取和稀土分离是稀土冶炼的核心环节,而长汀金龙稀土在稀土冶炼分离工艺方面有着独特的优势和技术创新。
长汀金龙稀土稀土冶炼工艺采用先进的物理化学方法进行稀土分离。
在稀土矿石的冶炼过程中,通过溶解、萃取、沉淀等步骤,将不同的稀土元素依次分离出来。
长汀金龙稀土具有精密的实验室设备和专业的技术团队,可以精确控制各个步骤的参数,确保每一道工艺流程都能达到最佳效果。
冶炼稀土硅脱硫脱氟工艺流程
冶炼稀土硅脱硫脱氟工艺流程咱就开始唠唠这个冶炼稀土硅脱硫脱氟的工艺流程哈。
一、冶炼稀土硅的基本概念。
咱得先知道啥是冶炼稀土硅呀。
稀土硅呢,可是个很神奇的东西,它在好多高科技领域还有工业生产里都起着超重要的作用呢。
就好比它是一个低调又厉害的小助手,默默在幕后发挥着大能量。
冶炼稀土硅就是把稀土元素和硅元素按照一定的比例混合起来,然后通过特殊的方法让它们变成我们想要的稀土硅产品。
这就像是把不同的食材放在一起,通过独特的烹饪手法做出一道美味佳肴一样有趣。
二、脱硫脱氟的重要性。
那为啥要脱硫脱氟呢?这可太关键啦。
硫和氟就像两个调皮捣蛋的小坏蛋,如果留在稀土硅里,会让稀土硅的质量大打折扣呢。
比如说,会影响它的物理性能,让它变得脆弱或者不耐用。
这就好比一个人的身体里有了坏东西,就会生病一样。
脱硫脱氟就是要把这两个小坏蛋赶出去,让稀土硅变得健健康康、强壮有力,这样才能在各种重要的工作里好好发挥作用。
三、工艺流程之原料准备。
四、冶炼过程中的脱硫脱氟操作。
然后就是在冶炼过程中的脱硫脱氟操作啦。
这可是个技术活呢。
在冶炼的时候,我们会加入一些特殊的添加剂,这些添加剂就像是超级英雄一样,专门去对付硫和氟这两个小坏蛋。
比如说,有的添加剂能够和硫发生化学反应,把硫变成一种可以很容易就被分离出来的物质。
对于氟也是同样的道理。
这个过程就像是一场激烈的战斗,添加剂们奋勇杀敌,把硫和氟从稀土硅的阵营里揪出来。
而且在这个过程中,温度、压力这些条件的控制也非常重要。
就像我们蒸馒头,火候和时间要是不对,馒头就蒸不好啦。
在冶炼的时候,如果温度和压力控制不好,脱硫脱氟的效果就会受到影响呢。
五、产物的后处理。
等脱硫脱氟完成之后呀,我们还不能掉以轻心。
还得对产物进行后处理呢。
这个后处理就像是给刚刚打完仗的战士们做个检查和整理一样。
我们要把冶炼出来的稀土硅进行精炼呀、提纯呀之类的操作,让它的质量更加完美。
比如说,通过一些物理或者化学的方法,把可能还残留的一点点杂质都去除掉。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
白云鄂博矿床的物质成分白云鄂博矿床物质成分极为复杂,已查明有73种元素,170多种矿物。
其中,铌、稀土、钛、锆、钍及铁的矿物共近60种,约占总数的35%。
主要矿石类型有块状铌稀土铁矿石、条带状铌稀土铁矿石、霓石型铌稀土铁矿石、钠闪石型铌稀土铁矿石、白云石型铌稀土铁矿石、黑云母型铌稀土铁矿石、霓石型铌稀土矿石、白云石型铌稀土矿石和透辉石型铌矿石。
稀土生产工艺流程图白云鄂博矿 矿石粉碎 弱磁、强磁选矿 铁精矿强磁中矿、尾矿稀土精矿 稀土选矿碱法生产线酸法生产线 火法生产线汽车尾气净化器 永磁电机 节能灯风力发电机 各种发光标牌 电动汽车 电动核磁共振 自行车磁悬浮磁选机稀土精矿硫酸法分解(decomposition of rare earth concentrate by suIphuric acid method)稀土精矿用硫酸处理、生产氯化稀土或其他稀土化合物的稀土精矿分解方法。
本法具有对原料适应性强、生产成本低等优点,是稀土精矿工业上常用的分解方法,广泛用于氟碳铈矿精矿、独居石精矿和白云鄂博混合型稀土矿精矿的分解。
主要有硫酸化焙烧一溶剂萃取法、硫酸分解一复盐沉淀法、氧化焙烧一硫酸浸出法三种工艺。
硫酸化焙烧-溶剂萃取主要用于分解白云鄂博混合型稀土矿精矿生产氯化稀土。
白云鄂博混合型稀土矿精矿成分复杂,属于难处理矿,其典型的主要成分(%)为:RE2O350~55,P2.5~3.5,F7~9,Ca7~8,Ba1~4,Fe3~4,ThO2约0.2。
精矿中放射性元素钍和铀含量低,冶炼的防护要求不高,适于用硫酸化焙烧法分解。
原理经瘩细的稀土精矿与浓硫酸混合后加热焙烧到423~673K温度时,稀土和钍均生成水溶性的硫酸盐。
氟碳铈矿与硫酸的主要反应为:2REFCO3+3H2SO4=RE2(SO4)3+3HF↑+2CO2+2H2O独居石与硫酸的主要反应是:2REPO4+3H2SO4=RE2(SO4)3+2H3PO4Th3(PO4)4+6H2SO4=3Th(SO4)2+4H3PO4铁、钙等杂质也生成相应的硫酸盐。
分解产物用精矿质量12倍的水浸出,获得含稀土、铁、磷和钍的硫酸盐溶液。
控制不同的焙烧温度、硫酸用量和水浸出的液固比,即可改变分解效果。
当硫酸与稀土精矿的量比为1.5~2.5、分解温度503~523K、水浸出液含RE2O350~70g/L时,钍、稀土、磷、铁等同时进入溶液。
上述焙烧和浸出条件主要用于独居石精矿和白云鄂博混合型稀土矿精矿的分解。
当硫酸与稀土精矿的量比为1.2~1.4、分解温度413~433K、水浸出溶液含游离硫酸50%时,主要是钍进入溶液,大部分稀土则留在渣中。
当硫酸与稀土精矿的量比为1.2~1.4、分解温度573~623K、水浸出液含RE2O350g/L时,则稀土进入溶液,钍和铁等留在渣中。
通过控制焙烧和浸出条件,就可使稀土与主要伴生元素得以初步分离。
工艺过程从稀土精矿到获得氯化稀土,主要经过硫酸化焙烧、浸出除杂质和溶剂萃取转型等过程。
(1)硫酸化焙烧。
白云鄂博混合型稀土矿精矿粉与浓硫酸在螺旋混料机内混合后,送入回转窑进行硫酸化焙烧分解。
控制进料端(窑尾)炉气温度493~,523K,焙烧分解过程中炉料慢慢移向窑前高温带,氟碳铈矿和独居石与硫酸作用生成可溶性的硫酸稀土。
铁、磷、钍等则形成难溶于水的磷酸盐。
炉料随着向高温带移动温度不断升高,过量的硫酸逐渐被蒸发掉。
当炉料运行到炉气温度为11’73K左右的窑前出料端时,炉料温度达到623K左右,并形成5~10mm的小粒炉料,称为焙烧料,从燃烧室侧端排出。
(2)浸出除杂质。
焙烧料含硫酸3%~7%,直接落入水浸槽中溶出稀土,而杂质几乎全部留在渣中与稀土分离。
制得纯净的硫酸稀土溶液含RE2O340g/L、Fe0.03~0.05g/L、P约0.005g/L、Th<0.001g/L,酸0.1~0.15mol/L。
用此溶液生产氯化稀土。
(3)溶剂萃取转型。
用溶剂萃取法使硫酸稀土转变成为氯化稀土的过程。
这种工艺已用于取代传统的硫酸复盐沉淀、碱转化等繁琐转型工艺。
这是中国在20世纪80年代稀土提取流程的一次重大革新。
溶剂萃取转型采用羧酸类(环烷酸、脂肪酸)萃取剂,预先用氨皂化,然后直接从硫酸稀土溶液中萃取稀土离子,稀土负载有机相用含HCl6mol/L溶液反萃稀土,制得氯化稀土溶液。
萃取和反萃取过程采用共流萃取(见溶剂革取)方式。
萃余液pH为7.5~8.0,含RE2O310mg/L 左右,稀土萃取率超过99%。
盐酸反萃液含RE2O3250~270g/L,含游离酸0.1~0.3mol/L。
采用减压浓缩方式将反萃液浓缩制成氯化稀土。
氯化稀土的主要成分(质量分数ω/%)为:RE2O3约46,Fe0.01,P0.003,Th0.0002,SO42-<0.01,Ca1.25,NH4+1~2。
1982年中国用上述流程在甘肃稀土公司建成一条年产氯化稀土约6000t的生产线,经过近十年的生产实践证明,工艺流程稳定、操作简单、经济效益好。
中国研究成功从硫酸化焙烧分解白云鄂博混合型稀土矿精矿产出的硫酸稀土溶液中直接用P204萃取剂萃取分离稀土的新工艺,具有将稀土精矿分解作业和单一稀土萃取分离过程结合起来的特点,即同在硫酸介质中分离钐、铕、钆和钕以及制取稀土氯化物,省去了萃取转型和一些化学分离工序,从而减少了试剂消耗,降低了生产成本。
1986年中国的四家工厂用此工艺改造原有流程,共建立了年处理10000t混合矿的生产线,其简化流程如图1。
钕一钐萃取分组产出的钐铕钆富集物含:Eu2O311%、Sm2O350%。
萃取法生产Na2O3的产品纯度达到99%。
萃取法回收稀土所得氯化稀土溶液含RE2O3250g/1,,残液含RE2O30.2~0.4g/L。
硫酸分解-复盐沉淀主要用于处理独居石精矿。
独居石为磷酸盐矿物,是生产稀土和钍的重要原料,通常含RE2O355%,6、ThO23%~10%、U3O8约0.3%、P2O5约25%,另外还含少量钛、铁、锆、硅等杂质。
独居石主要含轻稀土元素,中稀土、重稀土只占稀土总量的8%~10%,产于澳大利亚、印度、巴西。
中国每年生产独居石约2200t。
硫酸分解一复盐沉淀是从独居石提取稀土的传统工艺,独居石精矿和浓硫酸在铸铁搅拌槽中加热到473K温度后分鳃2~4h,大部分稀土促转化成可溶性的硫酸盐。
用水浸出分解产物所得的硫酸稀土溶液的主要成分为:主要成分 RE2O3 ThO2 U3O8含量(质量浓度p)/g•L-1 约50 6~7 0.4主要成分P2O5 Fe2O3 H+含量(质量浓度p)/g•L-1 25 2~3 2.5mol/L从这种浸出溶液中提取稀土、钍和铀最常用的是硫酸钠复盐沉淀法。
硫酸钠复盐沉淀法是用硫酸钠或氯化钠沉淀剂使稀土和钍以3Na2SO4•RE2(SO4)3•4H2O•0.09Th(SO4)2复盐沉淀析出。
接着用NaOH将稀土和钍转化成氢氧化物,然后用盐酸优先溶出稀土。
所得氯化稀土溶液经减压浓缩、冷却结晶产出氯化稀土(图2)。
钍富集物送提钍处理。
硫酸分解一复盐沉淀工艺可以处理品位较低的独居石精矿,具有对原料适应性强、生产成本低等优点,但放射性元素钍、铀在流程中分散,较难回收。
近来有人用伯胺从硫酸稀土溶液中首先萃取钍,然后再用硫酸复盐沉淀法回收纯净的稀土,这种方法更有利于稀土和钍的提取。
氧化焙烧硫酸浸出主要用于从氟碳铈矿精矿中提取稀土。
中国山东微山湖畔和四川冕宁蕴藏着丰富的氟碳铈矿,与美国芒廷帕斯(Mountain Pass)盛产的氟碳铈矿相似,矿物粒度粗,易选别,精矿中的RE2O3 达60%左右,含磷低,容易提取。
美国钼矿公司(Molycorp Inc.)采用氧化焙烧一盐酸浸出分解氟碳铈矿,生产氯化稀土和铈富集物已有30多年历史,稀土产量占世界稀土总产量的30%以上。
氟碳铈矿(REFCO3)在773~873K温度的氧化焙烧过程中,即分解放出CO2,生成稀土氧化物和氟氧化物,三价铈被氧化为四价,难溶的氟碳铈矿转变成可溶性产物。
盐酸浸出过程中可以利用三价稀土和四价铈的性质差别而将铈作为氟化物和氧化物富集于渣中,富铈渣中的CeO2/RE2O3 可达到85%~90%。
但富铈渣还含有重晶石、萤石和独居石等杂质,用此渣生产铈产品时,因需要除去这些杂质而致使流程复杂化。
美国钼矿公司的产品主要是氧化铕、氧化钐和富镧氢氧化甲物,因此要先除去大量铈,以利于单一稀土的萃取分离。
20世纪60年代中国开发的氧化焙烧一硫酸浸出氟碳铈矿精矿分解工艺(图3),能使稀土全部进入酸浸出液。
在773~873K温度下焙烧氟碳铈矿时,Ce3+被氧化为ce4+。
用含硫酸1.25~1.5mol/L溶液浸出焙烧矿时,焙烧矿中Ce4+与F-形成稳定的配位离子CeF62-进入溶液,Ce4+与F-的结合不但防止了氟化稀土生成沉淀物,还促进了焙烧矿中氟化稀土的溶解。
当溶液中存在CeF62-时,氟起着加速难溶二氧化铈溶解的作用。
以上两种作用互相促进,使焙烧矿中的二氧化钍、重稀土草酸盐送回收钾稀xi铈、氟化稀土、氟氧化稀土和氧化稀土等能很快被稀硫酸全部溶解。
稀土浸出率可达96%~97%。
此法制得的硫酸稀土溶液含RE2O380g/L左右、F8~9g/L酸约1.5mol/L、Fe1g/L以下,铈的氧化率达98%~99%。
所得溶液比较纯净,可以直接用P204萃取法、碳酸钠法或硫酸复盐法生产纯度99%~99.9%的二氧化铈。
→。