热力学定律(一)

热力学定律(一)

热力学定律(一)

物理化学热力学第一定律总结

热一定律总结 一、 通用公式 ΔU = Q + W 绝热: Q = 0,ΔU = W 恒容(W ’=0):W = 0,ΔU = Q V 恒压(W ’=0):W =-p ΔV =-Δ(pV ),ΔU = Q -Δ(pV ) → ΔH = Q p 恒容+绝热(W ’=0) :ΔU = 0 恒压+绝热(W ’=0) :ΔH = 0 焓的定义式:H = U + pV → ΔH = ΔU + Δ(pV ) 典型例题:3.11思考题第3题,第4题。 二、 理想气体的单纯pVT 变化 恒温:ΔU = ΔH = 0 变温: 或 或 如恒容,ΔU = Q ,否则不一定相等。如恒压,ΔH = Q ,否则不一定相等。 C p , m – C V , m = R 双原子理想气体:C p , m = 7R /2, C V , m = 5R /2 单原子理想气体:C p , m = 5R /2, C V , m = 3R /2 典型例题:3.18思考题第2,3,4题 书2.18、2.19 三、 凝聚态物质的ΔU 和ΔH 只和温度有关 或 典型例题:书2.15 ΔU = n C V , m d T T 2 T 1 ∫ ΔH = n C p, m d T T 2 T 1 ∫ ΔU = nC V , m (T 2-T 1) ΔH = nC p, m (T 2-T 1) ΔU ≈ ΔH = n C p, m d T T 2 T 1 ∫ ΔU ≈ ΔH = nC p, m (T 2-T 1)

四、可逆相变(一定温度T 和对应的p 下的相变,是恒压过程) ΔU ≈ ΔH –ΔnRT (Δn :气体摩尔数的变化量。如凝聚态物质之间相变,如熔化、凝固、转晶等,则Δn = 0,ΔU ≈ ΔH 。 101.325 kPa 及其对应温度下的相变可以查表。 其它温度下的相变要设计状态函数 不管是理想气体或凝聚态物质,ΔH 1和ΔH 3均仅为温度的函数,可以直接用C p,m 计算。 或 典型例题:3.18作业题第3题 五、化学反应焓的计算 其他温度:状态函数法 Δ H m (T ) = ΔH 1 +Δ H m (T 0) + ΔH 3 α β β α Δ H m (T ) α β ΔH 1 ΔH 3 Δ H m (T 0) α β 可逆相变 298.15 K: ΔH = Q p = n Δ H m α β Δr H m ? =Δf H ?(生) – Δf H ?(反) = y Δf H m ?(Y) + z Δf H m ?(Z) – a Δf H m ?(A) – b Δf H m ?(B) Δr H m ? =Δc H ?(反) – Δc H ?(生) = a Δc H m ?(A) + b Δc H m ?(B) –y Δc H m ?(Y) – z Δc H m ?(Z) ΔH = nC p, m (T 2-T 1) ΔH = n C p, m d T T 2 T 1 ∫

2.2热力学第一定律对理想气体的应用

§2.2 热力学第一定律对理想气体的应用 2.2.1、等容过程 气体等容变化时,有=T P 恒量,而且外界对气体做功0=?-=V p W 。根据 热力学第一定律有△E=Q 。在等容过程中,气体吸收的热量全部用于增加内能,温度升高;反之,气体放出的热量是以减小内能为代价的,温度降低。 p V i T C n E Q V ???= ??=?=2 式中 R i T E v T Q C V ?=??=?=2)(。 2.2.1、等压过程 气体在等压过程中,有=T V 恒量,如容器中的活塞在大气环境中无摩擦地自 由移动。 根据热力学第一定律可知:气体等压膨胀时,从外界吸收的热量Q ,一部分用来增加内能,温度升高,另一部分用于对外作功;气体等压压缩时,外界对气体做的功和气体温度降低所减少的内能,都转化为向外放出的热量。且有 T nR V p W ?-=?-= T nC Q p ?= V p i T nC E v ??=?=?2 定压摩尔热容量p C 与定容摩尔热容量V C 的关系有R C C v p +=。该式表明:1mol 理想气体等压升高1K 比等容升高1k 要多吸热8.31J ,这是因为1mol 理想气体等压膨胀温度升高1K 时要对外做功8.31J 的缘故。 2.2.3、等温过程 气体在等温过程中,有pV =恒量。例如,气体在恒温装置内或者与大热源想

接触时所发生的变化。 理想气体的内能只与温度有关,所以理想气体在等温过程中内能不变,即△E =0,因此有Q=-W 。即气体作等温膨胀,压强减小,吸收的热量完全用来对外界做功;气体作等温压缩,压强增大,外界的对气体所做的功全部转化为对外放出的热量。 2.2.4、绝热过程 气体始终不与外界交换热量的过程称之为绝热过程,即Q=0。例如用隔热良好的材料把容器包起来,或者由于过程进行得很快来不及和外界发生热交换,这些都可视作绝热过程。 理想气体发生绝热变化时,p 、V 、T 三量会同时发生变化,仍遵循=T pV 恒 量。根据热力学第一定律,因Q=0,有 )(21122V p V p i T nC E W v -=?=?= 这表明气体被绝热压缩时,外界所作的功全部用来增加气体内能,体积变小、温度升高、压强增大;气体绝热膨胀时,气体对外做功是以减小内能为代价的,此时体积变大、温度降低、压强减小。气体绝热膨胀降温是液化气体获得低温的重要方法。 例:0.020kg 的氦气温度由17℃升高到27℃。若在升温过程中,①体积保持不变,②压强保持不变;③不与外界交换热量。试分别求出气体内能的增量,吸收的热量,外界对气体做的功。 气体的内能是个状态量,且仅是温度的函数。在上述三个过程中气体内能的增量是相同的且均为: J T nC E v 6231031.85.15=???=?=?

热力学第一定律及其思考

热力学第一定律及其思考 摘要:在19世纪早期,不少人沉迷于一种神秘机械——第一类永动机的制造,因为这种设想中的机械可以使系统不断的经历状态变化后又回到原来状态,而不消耗系统的内能,同时又不需要外界提供任何能量,但却可以不断地对外界做功。在热力学第一定律提出之前,人们经过无数次尝试后,所有的种种企图最后都以失败而告终。直至热力学第一定律发现后,第一类永动机的神话才不攻自破。本文就这一伟大的应用于生产生活多方面的定律的建立过程、具体表述、及生活中的应用——热机,进行简单展开。 关键字:内能;热力学;效率;热机 1.热力学第一定律的产生 1.1历史渊源与科学背景 火的发明和利用是人类支配自然力的伟大开端,是人类文明进步的里程碑。18世纪中期,苏格兰科学家布莱克等人提出了热质说。这种理论认为,热是由一种特殊的没有重量的流体物质,即热质(热素)所组成,并用以较圆满地解释了诸如由热传导从而导致热平衡、相变潜热和量热学等热现象,因而这种学说为当时一些著名科学家所接受,成为十八世纪热力学占统治地位的理论。 十九世纪以来热之唯动说渐渐地为更多的人们所注意。特别是英国化学家和物理学家克鲁克斯(M.Crookes,1832—1919),所做的风车叶轮旋转实验,证明了热的本质就是分子无规则运动的结论。热动说较好地解释了热质说无法解释的现象,如摩擦生热等。使人们对热的本质的认识大大地进了一步。戴维以冰块摩擦生热融化为例而写成的名为《论热、光及光的复合》的论文,为热功提供了有相当说服力的实例,激励着更多的人去探讨这一问题。 1.2热力学第一定律的建立过程 19世纪初,由于蒸汽机的进一步发展,迫切需要研究热和功的关系,对蒸汽机“出力”作出理论上的分析。所以热与机械功的相互转化得到了广泛的研究。1836年,俄国的赫斯:“不论用什么方式完成化合,由此发出的热总是恒定的”。1830年,法国萨迪·卡诺:“准确地说,它既不会创生也不会消灭,实际上,它只改变了它的形式”。这时能量转化与守恒思想的已经开始萌发,但卡诺的这一思想,在1878年才公开发表,此时热力学第一定律已建立了。 德国医生、物理学家迈尔在1841-1843年间提出了热与机械运动之间相互转化的观点,这是热力学第一定律的第一次提出。迈尔在一次驶往印度尼西亚的航行中,给生病的船员做手术时,发现血的颜色比温带地区的新鲜红亮,这引起了迈尔的沉思。他认为,食物中含有的化学能,可转化为热能,在热带情况下,机体中燃烧过程减慢,因而留下了较多的氧。迈尔的结论是:“因此力(能量)是不灭的,而是可转化的,不可称量的客体”。并在1841年、1842年撰文发表了他的观点,在1845年的论文中,更明确写道:“无不能生有,有不能变无。”“在死的或活的自然界中,这个力(能)永远处于循环和转化之中。” 焦耳设计了实验测定了电热当量和热功当量,用实验确定了热力学第一定律,补充了迈尔的论证。1845年,焦耳为测定机械功和热之间的转换关系,设计了“热功当量实验仪”,并反复改进,反复实验。1849年发表《论热功当量》,1878年发表《热功当量的新测定》,最后得到的数值为423.85公斤·米/千卡,焦耳测热功当量用了三十多年,实验了400多次,

热力学第一定律

热力学第一定律 功:δW =δW e +δW f (1)膨胀功 δW e =p 外dV 膨胀功为正,压缩功为负。 (2)非膨胀功δW f =xdy 非膨胀功为广义力乘以广义位移。如δW (机械功)=fdL ,δW (电功)=EdQ ,δW (表面功)=rdA 。 热 Q :体系吸热为正,放热为负。 热力学第一定律: △U =Q —W 焓 H =U +pV 理想气体的内能和焓只是温度的单值函数。 热容 C =δQ/dT (1)等压热容:C p =δQ p /dT = (?H/?T )p (2)等容热容:C v =δQ v /dT = (?U/?T )v 常温下单原子分子:C v ,m =C v ,m t =3R/2 常温下双原子分子:C v ,m =C v ,m t +C v ,m r =5R/2 等压热容与等容热容之差: (1)任意体系 C p —C v =[p +(?U/?V )T ](?V/?T )p (2)理想气体 C p —C v =nR 理想气体绝热可逆过程方程: pV γ=常数 TV γ-1=常数 p 1-γT γ=常数 γ=C p / C v 理想气体绝热功:W =C v (T 1—T 2)=1 1 -γ(p 1V 1—p 2V 2) 理想气体多方可逆过程:W =1 nR -δ(T 1—T 2) 热机效率:η= 2 1 2T T T - 冷冻系数:β=-Q 1/W 可逆制冷机冷冻系数:β= 1 21 T T T - 焦汤系数: μ J -T =H p T ???? ????=-()p T C p H ?? 实际气体的ΔH 和ΔU : ΔU =dT T U V ??? ????+dV V U T ??? ???? ΔH =dT T H P ??? ????+dp p H T ? ??? ???? 化学反应的等压热效应与等容热效应的关系:Q p =Q V +ΔnRT 当反应进度 ξ=1mol 时, Δr H m =Δr U m +∑B B γRT 化学反应热效应与温度的关系:()()()dT B C T H T H 2 1 T T m p B 1m r 2m r ? ∑??,+=γ 热力学第二定律

热力学第二定律 概念及公式总结

热力学第二定律 一、 自发反应-不可逆性(自发反应乃是热力学的不可逆过程) 一个自发反应发生之后,不可能使系统和环境都恢复到原来的状态而不留下任何影响,也就是说自发反应是有方向性的,是不可逆的。 二、 热力学第二定律 1. 热力学的两种说法: Clausius:不可能把热从低温物体传到高温物体,而不引起其它变化 Kelvin :不可能从单一热源取出热使之完全变为功,而不发生其他的变化 2. 文字表述: 第二类永动机是不可能造成的(单一热源吸热,并将所吸收的热完全转化为功) 功 热 【功完全转化为热,热不完全转化为功】 (无条件,无痕迹,不引起环境的改变) 可逆性:系统和环境同时复原 3. 自发过程:(无需依靠消耗环境的作用就能自动进行的过程) 特征:(1)自发过程单方面趋于平衡;(2)均不可逆性;(3)对环境做功,可从自发过程获得可用功 三、 卡诺定理(在相同高温热源和低温热源之间工作的热机) ηη≤ηη (不可逆热机的效率小于可逆热机) 所有工作于同温热源与同温冷源之间的可逆机,其热机效率都相同,且与工作物质无关 四、 熵的概念 1. 在卡诺循环中,得到热效应与温度的商值加和等于零:ηηηη+η ηηη=η 任意可逆过程的热温商的值决定于始终状态,而与可逆途径无关 热温商具有状态函数的性质 :周而复始 数值还原 从物理学概念,对任意一个循环过程,若一个物理量的改变值的总和为0,则该物理量为状态函数 2. 热温商:热量与温度的商 3. 熵:热力学状态函数 熵的变化值可用可逆过程的热温商值来衡量 ηη :起始的商 ηη :终态的熵 ηη=(ηηη)η (数值上相等) 4. 熵的性质: (1)熵是状态函数,是体系自身的性质 是系统的状态函数,是容量性质 (2)熵是一个广度性质的函数,总的熵的变化量等于各部分熵的变化量之和 (3)只有可逆过程的热温商之和等于熵变 (4)可逆过程热温商不是熵,只是过程中熵函数变化值的度量 (5)可用克劳修斯不等式来判别过程的可逆性 (6)在绝热过程中,若过程是可逆的,则系统的熵不变 (7)在任何一个隔离系统中,若进行了不可逆过程,系统的熵就要增大,所以在隔离系统中,一切能自动进行的过程都引起熵的增大。若系统已处于平衡状态,则其中的任何过程一定是可逆的。 五、克劳修斯不等式与熵增加原理 不可逆过程中,熵的变化量大于热温商 ηηη→η?(∑ηηηηηηη)η>0 1. 某一过程发生后,体系的热温商小于过程的熵变,过程有可能进行不可逆过程 2. 某一过程发生后,热温商等于熵变,则该过程是可逆过程

热力学第一定律

1.热力学第一定律 热力学第一定律的主要内容,就是能量守恒原理。能量可以在一物体与其他物体之间传递,可以从一种形式转化成另一种形式,但是不能无中生有,也不能自行消失。而不同形式的能量在相互转化时永远是数量相当的。这一原理,在现在看来似乎是顺理成章的,但他的建立却经历了许多失败和教训。一百多年前西方工业革命,发明了蒸汽机,人们对改进蒸汽机产生了浓厚的兴趣。总想造成不供能量或者少供能量而多做功的机器,曾兴起过制造“第一类永动机”的热潮。所谓第一类永动机就是不需供给热量,不需消耗燃料而能不断循环做工的机器。设计方案之多,但是成千上万份的设计中,没有一个能实现的。人们从这类经验中逐渐认识到,能量是不能无中生有的,自生自灭的。第一类永动机是不可能制成的,这就是能量守恒原理。到了1840年,由焦耳和迈尔作了大量试验,测量了热和功转换过程中,消耗多少功会得到多少热,证明了热和机械功的转换具有严格的不变的当量关系。想得到1J的机械功,一定要消耗0.239卡热,得到1卡热,一定要消耗4.184J的功,这就是著名的热功当量。1cal = 4.1840J 热功当量的测定试验,给能量守恒原理提供了科学依据,使这一原理得到了更为普遍的承认,牢牢的确立起来。至今,无论是微观世界中物质的运动,还是宏观世界中的物质变化都无一例外的符合能量守恒原理。把这一原理运用到宏观的热力学体系,就形成了热力学第一定律。2.热力学第二定律 能量守恒和转化定律就是热力学第一定律,或者说热力学第一定律是能量守恒和转化定律在热力学上的表现。它指明热是物质运动的一种形式,物质系统从外界吸收的热量等于这个能的增加量和它对外所作的功的总和。 也就是说想制造一种不消耗任何能量就能永远作功的机器,即“第一种永动机”,是不可能的。 人们继续研究热机效率问题,试图从单一热源吸取能量去制作会永远作功的机器,这种机器并不违背能量守恒定律,只需将热源降温而利用其能量推动机器不断运转。 这种机器就是“第二类永动机”。然而这种机器屡遭失败,不能成功,这就需要从理论上进一步探索。 前面说过,卡诺已经接近发现了热力学第一定律和热力学第二定律,但他受热质说的影响,不能把它们表述出来。 1850年,德国物理学家克劳胥斯在研究卡诺理论的基础上,提出“一个自行动作的机器,不可能把热从低温物体传到高温物体中去”。这就是热力学第二定律的“克劳胥斯表述”。1851年,英国物理学家威廉·汤姆生,即凯尔文勋爵也独立地从卡诺的工作中发现了热力学第二定律。 汤姆生,1824年生于英国贝尔发斯特城。父亲是皇家学院的数学教授,治学勤奋,对子女要求也很严格,1832年被聘到母校格拉斯哥大学任教,全家也迁往该城。 当这位新来的教授开始上第一堂课时,同学们发现教室多了两个漂亮的小男孩,也在津津有味地听着,他们就是8岁的汤姆生和他10岁的哥哥。 汤姆生10岁时,和哥哥正式进格拉斯哥大学预科学习,这可能是当时最小的大学生。汤姆生天资聪明,学习勤奋,表现出杰出的才能。15岁,他获得学校的物理学奖,第二年获天文学奖。17岁时,他在剑桥大学的数学杂志上发表了一篇论文,名震全校。 此后几年中,汤姆生发表了一连串的研究论文,内容包括数学、热力学和电学。 1846年,年仅22岁的汤姆生击败30多位教师候选人,获得了格拉斯哥大学的教授职位。1847年6月,焦耳在牛津大学举行的学术会议上,阐明机械能可以定量地转化为热能,各种形式的能都可以相互转化。 汤姆生出席了这次会议,他也是传统的热质说的拥护者,认为能量不可能转化,准备反驳焦

02章 热力学第一定律及其应用

第二章热力学第一定律及其应用 1. 如果一个体重为70kg的人能将40g巧克力的燃烧热(628 kJ) 完全转变为垂直位移所要作的功 ,那么这点热量可支持他爬多少高度? 2. 在291K和下,1 mol Zn(s)溶于足量稀盐酸中,置换出1 mol H2并放热152 kJ。若以Zn和盐酸为体系,求该反应所作的功及体系内能的变化。 3.理想气体等温可逆膨胀,体积从V1胀大到10V1,对外作了41.85 kJ的功,体系的起始压力为202.65 kPa。 (1)求V1。 (2)若气体的量为2 mol ,试求体系的温度。 4.在101.325 kPa及423K时,将1 mol NH3等温压缩到体积等于10 dm3, 求最少需作多少功? (1)假定是理想气体。 (2)假定服从于范德华方程式。 已知范氏常数a=0.417 Pa·m6·mol-2, b=3.71× m3/mol. 5.已知在373K和101.325 kPa时,1 kg H2O(l)的体积为1.043 dm3,1 kg水气的体积为1677 dm3,水的 =40.63 kJ/mol 。当1 mol H2O(l),在373 K 和外压为时完全蒸发成水蒸气时,求 (1)蒸发过程中体系对环境所作的功。 (2)假定液态水的体积忽略而不计,试求蒸发过程中的功,并计算所得结果的百分误差。 (3)假定把蒸汽看作理想气体,且略去液态水的体积,求体系所作的功。(4)求(1)中变化的和。 (5)解释何故蒸发热大于体系所作的功? 6.在273.16K 和101.325 kPa时,1 mol的冰熔化为水,计算过程中的功。

已知在该情况下冰和水的密度分别为917 kg·m-3和1000 kg·m-3。 7.10mol的气体(设为理想气体),压力为1013.25 kPa,温度为300 K,分别求出等温时下列过程的功: (1)在空气中(压力为101.325 kPa)体积胀大1 dm3。 (2)在空气中膨胀到气体压力也是101.325 kPa。 (3)等温可逆膨胀至气体的压力为101.325 kPa。 8.273.2K,压力为5×101.325 kPa的N2气2 dm3,在外压为101.325 kPa下等温膨胀,直到N2气的压力也等于101.325 kPa为止。 求过程中的W,ΔU ,ΔH 和Q。假定气体是理想气体。 9.0.02kg乙醇在其沸点时蒸发为气体。已知蒸发热为858kJ/kg.蒸汽的比容为0.607 m3/kg。 试求过程的ΔU ,ΔH,Q,W(计算时略去液体的体积)。 10. 1× kg水在373K,101.325 kPa压力时,经下列不同的过程变为373 K, 压力的汽,请分别求出各个过程的W,ΔU ,ΔH 和Q 值。 (1)在373K,101.325 kPa压力下变成同温,同压的汽。 (2)先在373K,外压为0.5×101.325 kPa下变为汽,然后加压成373K,101.325 kPa压力的汽。 (3)把这个水突然放进恒温373K的真空箱中,控制容积使终态为101.325 kPa 压力的汽。 已知水的汽化热为2259 kJ/kg。 11. 一摩尔单原子理想气体,始态为2×101.325 kPa,11.2 dm3,经pT=常数的可逆过程压缩到终态为4×101.325 kPa,已知C(V,m)=3/2 R。求: (1)终态的体积和温度。 (2)ΔU 和ΔH 。 (3)所作的功。

热力学第一定律主要公式

热力学第一定律主要公式 1.?U 与?H 的计算 对封闭系统的任何过程 ?U=Q+W 2111()H U p V pV ?=?-- (1) 简单状态变化过程 1) 理想气体 等温过程 0T U ?= 0T H ?= 任意变温过程 ,21()V m U nC T T ?=- ,21()p m H nC T T ?=- 等容变温过程 H U V p ?=?+? (V U Q ?=) 等压变温过程 p U Q p V ?=-? ()p H Q ?= 绝热过程 ,21()V m U W nC T T ?==- ,21()p m H nC T T ?=- 2)实际气体van derWaals 气体等温过程 2 1 211U n a V V ?? ? ??? ?=- 2 22111 211()H U pV n a p V pV V V ?? ? ??? ?=?+?=-+- (2) 相变过程 等温等压相变过程 p tra H Q ?= (p Q 为相变潜热) p tra tra U Q p V ?=-? (3)无其她功的化学变化过程

绝热等容反应 0r U ?= 绝热等压反应 0r H ?= 等温等压反应 r p H Q ?= r r U H p V ?=?-? 等温等压凝聚相反应 r r U H ?≈? 等温等压理想气体相反应 ()r r U H n RT ?=?-? 或 r r B B H U RT ν?=?-∑ 由生成焓计算反应热效应 f ()(,)r m m B B H T H T B θθν?=?∑ 由燃烧焓计算反应热效应 c ()(,)r m m B B H T H T B θν?=-?∑ 由键焓估算反应热效应 ,,()(,(i m i i m i i i H T n H T n H ?=??∑∑反应物)-生成物) 式中:i n 为i 种键的个数;n i 为i 种键的键焓。 不同温度下反应热效应计算 2 1 21()()d T r m r m r p T H T H T C T ?=?+?? 2、体积功W 的计算 任意变化过程 W= d e p V -∑ 任意可逆过程 2 1 W= d V V p V -? 自由膨胀与恒容过程 W=0 恒外压过程 21()e W p V V =-- 等温等压→l g 相变过程(设蒸气为理想气体) 1()g g g W p V V pV n RT =--≈-=- 等温等压化学变化 ()W p V n RT =-?=? (理想气体反应) 0W ≈ (凝聚相反应) 理想气体等温可逆过程

热力学第一定律基本概念和重点总结

本章内容: 介绍有关热力学第一定律的一些基本概念,热、功、状态函数,热力学第一定律、热力学能和焓,明确准静态过程与可逆过程的意义,进一步介绍热化学。 第一节热力学概论 ?热力学研究的目的、内容 ?热力学的方法及局限性 ?热力学基本概念 一.热力学研究的目的和内容 目的:热力学是研究热和其它形式能量之间相互转换以及转换过程中所应遵循的规律的科学。内容:热力学第零定律、第一定律、第二定律和本世纪初建立的热力学第三定律。其中第一、第二定律是热力学的主要基础。 把热力学中最基本的原理用来研究化学现象和化学有关的物理现象,称为化学热力学。 化学热力学的主要内容是: 1.利用热力学第一定律解决化学变化的热效应问题; 2.利用热力学第二律解决指定的化学及物理变化实现的可能性、方向和限度问题,建 立相平衡、化学平衡理论; 3.利用热力学第三律可以从热力学的数据解决有关化学平衡的计算问题 二、热力学的方法及局限性 方法: 以热力学第一定律和第二定律为基础,演绎出有特定用途的状态函数,通过计算某变化过程的有关状态函数改变值,来解决这些过程的能量关系和自动进行的方向、限度。 而计算状态函数的改变只需要根据变化的始、终态的一些可通过实验测定的宏观性质,并不涉及物质结构和变化的细节。 优点: ?研究对象是大数量分子的集合体,研究宏观性质,所得结论具有统计意义。 ?只考虑变化前后的净结果,不考虑物质的微观结构和反应机理,简化了处理方法。局限性: 1.只考虑变化前后的净结果,只能对现象之间的联系作宏观的了解,而不能作微观的 说明或给出宏观性质的数据。 例如:热力学能给出蒸汽压和蒸发热之间的关系,但不能给出某液体的实际蒸汽压的数值是多少。 2.只讲可能性,不讲现实性,不知道反应的机理、速率。 三、热力学中的一些基本概念 1.系统与环境 系统:用热力学方法研究问题时,首先要确定研究的对象,将所研究的一部分物质或空间,从其余的物质或空间中划分出来,这种划定的研究对象叫体系或系统 (system)。 环境:系统以外与系统密切相关的其它部分称环境(surrounding 注意: 1.体系内可有一种或多种物质,可为单相或多相,其空间范围可以是固定或 随过程而变。 2.体系和环境之间有分界,这个分界可以是真实的,也可以是虚构的,既可 以是静止的也可以是运动的。 根据体系与环境的关系将体系区分为三种:

热力学第一定律的内容及应用

目录 摘要 (1) 关键字 (1) Abstract: ...................................................................................... 错误!未定义书签。Key words .................................................................................... 错误!未定义书签。引言 (1) 1.热力学第一定律的产生 (1) 1.1历史渊源与科学背景 (1) 1.2热力学第一定律的建立过程 (2) 2.热力学第一定律的表述 (3) 2.1热力学第一定律的文字表述 (3) 2.2数学表达式 (3) 3.热力学第一定律的应用 (4) 3.1焦耳实验 (4) 3.2热机及其效率 (5) 总结 (7) 参考文献 (7)

热力学第一定律的内容及应用 摘要:热力学第一定律亦即能量转换与守恒定律,广泛地应用于各个学科领域。本文回顾了其建立的背景及经过,它的准确的文字表述和数学表达式,及它在理想气体、热机的应用。 关键字:热力学第一定律;内能定理;焦耳定律;热机;热机效率 引言 在19世纪早期,不少人沉迷于一种神秘机械——第一类永动机的制造,因为这种设想中的机械只需要一个初始的力量就可使其运转起来,之后不再需要任何动力和燃料,却能自动不断地做功。在热力学第一定律提出之前,人们一直围绕着制造永动机的可能性问题展开激烈的讨论。直至热力学第一定律发现后,第一类永动机的神话才不攻自破。本文就这一伟大的应用于生产生活多方面的定律的建立过程、具体表述、及生活中的应用——热机,进行简单展开。 1.热力学第一定律的产生 1.1历史渊源与科学背景 人类使用热能为自己服务有着悠久的历史,火的发明和利用是人类支配自然力的伟大开端,是人类文明进步的里程碑。中国古代就对火热的本性进行了探讨,殷商时期形成的“五行说”——金、木、水、火、土,就把火热看成是构成宇宙万物的五种元素之一。 北宋时刘昼更明确指出“金性苞水,木性藏火,故炼金则水出,钻木而生火。”古希腊米利都学派的那拉克西曼德(Anaximander,约公元前611—547) 把火看成是与土、水、气并列的一种原素,它们都是由某种原始物质形成的世界四大主要元素。恩培多克勒(Empedocles,约公元前500—430)更明确提出四元素学说,认为万物都是水、火、土、气四元素在不同数量上不同比例的配合,与我国的五行说十分相似。但是人类对热的本质的认识却是很晚的事情。18世纪中期,苏格兰科学家布莱克等人提出了热质说。这种理论认为,热是由一种特殊的没有重量的流体物质,即热质(热素)所组成,并用以较圆满地解释了诸如由热传导从而导致热平衡、相变潜热和量热学等热现象,因而这种学说为当时一些著名科学家所接受,成为十八世纪热力学占统治地位的

大学物理化学1-热力学第一定律课后习题及答案

热力学第一定律课后习题 一、是非题 下列各题中的叙述是否正确?正确的在题后括号内画“√”,错误的画“?”。 1.在定温定压下,CO 2 由饱和液体转变为饱和蒸气,因温度不变,CO2的热力学能和焓也不变。( ) 2. d U = nC V,m d T这个公式对一定量的理想气体的任何pVT过程均适用。( ) 3. 一个系统从始态到终态,只有进行可逆过程才有熵变。( ) 4. 25℃时H2(g)的标准摩尔燃烧焓等于25℃时H2O(g)的标准摩尔生成焓。( ) 5. 稳定态单质的?f H(800 K) = 0。( ) 二、选择题 选择正确答案的编号,填在各题后的括号内: 1. 理想气体定温自由膨胀过程为:()。 (A)Q > 0;(B)?U < 0;(C)W <0;(D)?H = 0。 2. 对封闭系统来说,当过程的始态和终态确定后,下列各项中没有确定的值的是:( )。 ( A ) Q;( B ) Q+W;(C ) W( Q = 0 );( D ) Q( W = 0 )。 3. pVγ = 常数(γ = C p,m/C V,m)适用的条件是:( ) (A)绝热过程;( B)理想气体绝热过程; ( C )理想气体绝热可逆过程;(D)绝热可逆过程。 4. 在隔离系统内:( )。 ( A ) 热力学能守恒,焓守恒;( B ) 热力学能不一定守恒,焓守恒; (C ) 热力学能守恒,焓不一定守恒;( D) 热力学能、焓均不一定守恒。 5. 从同一始态出发,理想气体经可逆与不可逆两种绝热过程:( )。 ( A )可以到达同一终态;( B )不可能到达同一终态; ( C )可以到达同一终态,但给环境留下不同影响。 6. 当理想气体反抗一定的压力作绝热膨胀时,则:( )。 ( A )焓总是不变;(B )热力学能总是增加; ( C )焓总是增加;(D )热力学能总是减少。 7. 已知反应H2(g) +1 2 O2(g) ==== H2O(g)的标准摩尔反应焓为?r H(T),下列说法中不 正确的是:()。 (A)?r H(T)是H2O(g)的标准摩尔生成焓; (B)?r H(T)是H2O(g)的标准摩尔燃烧焓; (C)?r H(T)是负值; (D)?r H(T)与反应的?r U数值不等。 三、计算题 习题1 10 mol理想气体由25℃,1.0 MPa膨胀到25℃,0.1 MPa,设过程为:

热力学第一定律的应用

大连理工大学 化工热力学论文(大作业) 题目:热力学第一定律的应用 姓名: 专业:化学工程 学号:31307022 指导教师:张乃文

摘要 热现象是人类最早接触到的自然现象之一。人类从远古时期开始就已经开始知道了如何利用摩擦、燃烧、爆炸等热现象来达到生产和生活的目的。 在过去的一个多世纪里面,经典热力学的发展取得了巨大的进步,从最初的模糊的热的概念逐步演变发展成为一门科学、严谨、庞大的学科。经典热力学的发展历史是人类对热的本质及能量转换规律的认识、掌握和运用的历史。经典热力学是一实验为基础的宏观理论,具有高度的可靠性和普遍性。它研究的内容决定了物理、化学反应进行的方向和限度,对于化工生产的发展意义重大。它决定设计分离过程、化学反应器所需要的化学反应平衡和平衡的数据、参数和状态。能够判断化工生产中一些新的合成工艺是否可行,以及在什么条件下可行,节省了化工开发过程中的人力、物力和研发时间;同时在化工设计、生产过程中的多元平衡数据都需要通过热力学的方法来确定。它在冷凝、汽化、闪蒸、液相节流、蒸馏、吸收、萃取和吸附等单元操作中应用也十分普遍。可以说经典热力学是化工设计、化工生产的基础。 热力学第一定律即能量守恒及转换定律,它是自然界的一条普遍定律,是19世纪的三大发现(进化论、细胞学说和能量守恒及转化定律)之一,在学科的各个领域均得到广泛的应用。热力学第一定律的文字表述是:自然界一切物质都具有能量,能量有各种不同的形式,可以从一种形式转化为另外一种形式,从一个物体传递到另外一个物体,在传递与转化中能量的数量不变。从中可知,能量既不会消失也不会无中生有,转化的过程中具有不灭性,而做功必须由能量转化而来,所以,永动机是不可能实现的。 能量守恒和转化定律的发现是人类认识自然的一个伟大进步,它揭示自然界是一个互相联系、互相转化的统一体,第一次在空前广阔的领域里把自然界各种运动形式联系起来。在理论上,这个定律的发现对自然科学的发展和建立辩证唯物主义自然观提供了坚实的基础。在实践上,它对于永动机之不可能实现,给予了科学上的最后判决,使人们走出幻想的境界,从而致力于研究各种能量形式相互转化的具体条件,以求最有效地利用自然界提供的各种各样的能源。热力学第一定律的建立,为自然科学领域增添了崭新的内容,同时也大大推动了哲学理论的前进。现在,随着自然科学的不断发展,能量守恒和转化定律经受了一次又一次的考验,并且在新的科学事实面前不断得到新的充实与发展。特别是相对论中质能关系式的总结,使人们对这一定律的认识又大大地深化了一步,即在能量和质量之间也能发生转换。 化工热力学也是应用在生活的各个角落,与我们的生活息息相关。并且化工热力学第一定律的发现极大促进了社会的发展。

热力学第一定律主要公式

热力学第一定律主要公式 1.U 与H得计算 对封闭系统得任何过程 U=Q+W (1) 简单状态变化过程 1) 理想气体 等温过程 任意变温过程 等容变温过程 () 等压变温过程 绝热过程 2)实际气体van derWa als 气体等温过程 222111211()H U pV n a p V pV V V ?? ? ????=?+?=-+- (2) 相变过程 等温等压相变过程 (3)无其她功得化学变化过程 绝热等容反应

绝热等压反应 等温等压反应 等温等压凝聚相反应 等温等压理想气体相反应 或 由生成焓计算反应热效应 由燃烧焓计算反应热效应 由键焓估算反应热效应 ,,()(,(i m i i m i i i H T n H T n H ?=??∑∑反应物)- 生成物) 式中:为种键得个数;为种键得键焓。 不同温度下反应热效应计算 2、体积功W得计算 任意变化过程 任意可逆过程 自由膨胀与恒容过程 W=0 恒外压过程 等温等压相变过程(设蒸气为理想气体) 等温等压化学变化 (理想气体反应) (凝聚相反应) 理想气体等温可逆过程 理想气体绝热过程

,212122111()()()11 V m nR W U nC T T T T p V pV γγ=?=-= -=--- 理想气体多方可逆过程 van der W aal s 气体等温可逆过程 3、Q 得计算 (1)简单状态变化过程 等压变温过程 等压变温过程 (2) 等温等压相变过程 Joule-Thomson 系数 表示节流膨胀后温度升高。 表示节流膨胀后温度不变(理想气体得),时得温度成为倒转温度; 表示节流膨胀后温度降低(常用于气体得液化);表示节流膨胀后温度升高。

1 热力学第一定律

热力学第一定律练习题一、是非题,下列各题的叙述是否正确,对的画√错的画× 1、已知温度T时反应H2(g) + 1 2O 2 (g) == H2O(g) 的?rH,则?rH即为温度为T时H2(g)的?C H。 () 2、不同物质在它们相同的对应状态下,具有相同的压缩性,即具有相同的压缩因子Z。( )。 3、d U = nC V,m d T这个公式对一定量的理想气体的任何p,V,T过程均适用,( ) 4、物质的量为n的理想气体,由T1,p1绝热膨胀到T2,p2,该过程的焓变化?H n C T p T T =?,m d 1 2 。() 5、理想气体的热力学能和焓均只是温度的函数,而与压力或体积无关。() 6、在定温定压下,CO2由饱和液体转变为饱和蒸气,因温度不变,CO2的内能和焓也不变。( ) 7、25℃?f H(S ,单斜) = 0 。()。 8、理想气体在恒定的外压力下绝热膨胀到终态。因为是恒压,所以?H = Q;又因为是绝热,Q = 0,故?H = 0。( ) 9、500 K时H2(g)的?f H= 0 。() 10、在临界点,饱和液体与饱和蒸气的摩尔体积相等。( ) 11、?f H(C ,石墨, 298 K) = 0 。() 12、热力学标准状态的温度指定为25℃。() 13、100℃时,1 mol H2O(l)向真空蒸发变成1mol H2O(g),这个过程的热量即为H2O( l )在100℃的摩尔汽化焓。() 14、处在对应状态的两种不同气体,各自对于理想气体行为的偏离程度相同。( ) 15、CO2(g)的?f H(500 K) = ?f H(298 K) + C T p,m2 K K (CO)d 298 500 ? 。() 16、在p = p(环) = 定值下电解水制氢气和氧气 则Q = ?H。() 17、系统从同一始态出发,经绝热不可逆到达的终态,若经绝热可逆过程,则一定达不到此状态。() 18、化学反应热Q p其大小只取决于系统始终态;( ) 19、凡是化学反应的等压热必大于等容热;( ) 20、理想气体等容过程的焓变为 2 1 ,m d() T V T H nC T V p ?=+? ? ;( ) 二、选择题 1、对一个化学反应,若知其∑νB C p, m(B) > 0 ,则:()。

第一章热力学第一定律

第一章热力学第一定律 本章主要内容 1.1热力学概论 1.2热力学第一定律 1.3 可逆过程和最大功 1.4 焓 1.5 热容 1.6 热力学第一定律对理想气体的应用1.7实际气体 1.8热化学 1.9化学反应热效应的求算方法 1.10反应热与温度的关系——基尔霍夫定律

§1.1热力学概论 1.1.1热力学的研究对象 (1)研究热、功和其他形式能量之间的相互转换及其转换过程中所遵循的规律; (2)研究各种物理变化和化学变化过程中所发生的能量效应; (3)研究化学变化的方向和限度。 1.1.2 热力学的方法和局限性 热力学方法: 热力学在解决问题是使用严格的数理逻辑推理方法,其研究对象是大量质点的集合体,所观察的是宏观系统的平均行为,并不考虑个别分子或质点,所得结论具有统计意义。 优点:只须知道宏观系统变化的始终态及外部条件,无须知道物质的微观结构和变化的细节即可进行有关的定量计算。 局限性: (1)对所得的结论只知其然而不知所以然; (2)不能给出变化的实际过程,没有时间的概念,也不能推测实际进行的可能性。 (3)只能适应用于人们所了解的物质世界,而不能任意推广到整个宇宙。 1.1.3 几个基本概念: 1、系统与环境 系统(System)——把一部分物质与其余分开作为研究对象,这这种被划定的研究对象称为系统,亦称为物系或系统。 环境(surroundings)——与系统密切相关、有相互作用或影响所能及的部分称为环境。 (1)敞开系统(open system) -系统与环境之间既有物质交换,又有能量交换。 (2)封闭系统(closed system)-系统与环境之间无物质交换,但有能量交换。

项目工程热力学基本概念及其重要定律公式

第一章基本概念 1.基本概念 热力系统:用界面将所要研究的对象与周围环境分隔开来,这种人为分隔的研究对象,称为热力系统,简称系统。 边界:分隔系统与外界的分界面,称为边界。 外界:边界以外与系统相互作用的物体,称为外界或环境。 闭口系统:没有物质穿过边界的系统称为闭口系统,也称控制质量。 开口系统:有物质流穿过边界的系统称为开口系统,又称控制体积,简称控制体,其界面称为控制界面。 绝热系统:系统与外界之间没有热量传递,称为绝热系统。 孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立系统。 单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。 复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。 单元系:由一种化学成分组成的系统称为单元系。 多元系:由两种以上不同化学成分组成的系统称为多元系。 均匀系:成分和相在整个系统空间呈均匀分布的为均匀系。 非均匀系:成分和相在整个系统空间呈非均匀分布,称非均匀系。 热力状态:系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。 平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变化,系统内外同时建立了热的和力的平衡,这时系统的状态称为热力平衡状态,简称为平衡状态。 状态参数:描述工质状态特性的各种物理量称为工质的状态参数。如温度(T)、压力(P)、比容(υ)或密度(ρ)、内能(u)、焓(h)、熵(s)、自由能(f)、自由焓(g)等。 基本状态参数:在工质的状态参数中,其中温度、压力、比容或密度可以直接或间接地用仪表测量出来,称为基本状态参数。 温度:是描述系统热力平衡状况时冷热程度的物理量,其物理实质是物质内部大量微观分子热运动的强弱程度的宏观反映。 热力学第零定律:如两个物体分别和第三个物体处于热平衡,则它们彼此之间也必然处于热平衡。 压力:垂直作用于器壁单位面积上的力,称为压力,也称压强。 相对压力:相对于大气环境所测得的压力。如工程上常用测压仪表测定系统中工质的压

热力学第一定律及其应用

热力学第一定律及其应用 §2. 1热力学概论 热力学的基本内容 热力学是研究热功转换过程所遵循的规律的科学。它包含系统变化所引起的物理量的变化或当物理量变化时系统的变化。 热力学研究问题的基础是四个经验定律(热力学第一定律,第二定律和第三定律,还有热力学第零定律),其中热力学第三定律是实验事实的推论。这些定律是人们经过大量的实验归纳和总结出来的,具有不可争辩的事实根据,在一定程度上是绝对可靠的。 热力学的研究在解决化学研究中所遇到的实际问题时是非常重要的,在生产和科研中发挥着重要的作用。如一个系统的变化的方向和变化所能达的限度等。热力学研究方法和局限性 研究方法: 热力学的研究方法是一种演绎推理的方法,它通过对研究的系统(所研究的对象)在转化过程中热和功的关系的分析,用热力学定律来判断该转变是否进行以及进行的程度。 特点: 首先,热力学研究的结论是绝对可靠的,它所进行推理的依据是实验总结的热力学定律,没有任何假想的成分。另外,热力学在研究问题的时,只是从系统变化过程的热功关系入手,以热力学定律作为标准,从而对系统变化过程的方向和限度做出判断。不考虑系统在转化过程中,物质微粒是什么和到底发生了什么变化。 局限性: 不能回答系统的转化和物质微粒的特性之间的关系,即不能对系统变化的具体过程和细节做出判断。只能预示过程进行的可能性,但不能解决过程的现实性,即不能预言过程的时间性问题。 §2. 2热平衡和热力学第零定律-温度的概念为了给热力学所研究的对象-系统的热冷程度确定一个严格概念,需要定义温度。 温度概念的建立以及温度的测定都是以热平衡现象为基础。一个不受外界影

响的系统,最终会达到热平衡,宏观上不再变化,可以用一个状态参量来描述它。当把两个系统已达平衡的系统接触,并使它们用可以导热的壁接触,则这两个系统之间在达到热平衡时,两个系统的这一状态参量也应该相等。这个状态参量就称为温度。 那么如何确定一个系统的温度呢?热力学第零定律指出:如果两个系统分别和处于平衡的第三个系统达成热平衡,则这两个系统也彼此也处于热平衡。热力学第零定律是是确定系统温度和测定系统温度的基础,虽然它发现迟于热力学第一、二定律,但由于逻辑的关系,应排在它们的前边,所以称为热力学第零定律。 温度的科学定义是由热力学第零定律导出的,当两个系统接触时,描写系统的性质的状态函数将自动调节变化,直到两个系统都达到平衡,这就意味着两个系统有一个共同的物理性质,这个性质就是“温度”。 热力学第零定律的实质是指出了温度这个状态函数的存在,它非但给出了温度的概念,而且还为系统的温度的测定提供了依据。 §2. 3热力学的一些基本概念 系统与环境 系统:物理化学中把所研究的对象称为系统 环境:和系统有关的以外的部分称为环境。 根据系统与环境的关系,可以将系统分为三类: (1)孤立系统:系统和环境之间无物质和能量交换者。 (2)封闭系统:系统和环境之间无物质交换,但有能量交换者。 (3)敞开系统:系统和环境之间既有物质交换,又有能量交换 系统的性质 系统的状态可以用它的可观测的宏观性质来描述。这些性质称为系统的性质,系统的性质可以分为两类: (1)广度性质(或容量性质)其数值与系统的量成正比,具有加和性,整个体系的广度性质是系统中各部分这种性质的总和。如体积, 质量,热力学能等。 (2)强度性质其数值决定于体系自身的特性,不具有加和性。如温度,压力,密度等。 通常系统的一个广度性质除以系统中总的物质的量或质量之后得到一个强度性质。 热力学平衡态 当系统的各种性质不随时间变化时,则系统就处于热力学的平衡态,所谓热力学的平衡,应包括如下的平衡。

相关文档
最新文档