高一数学函数习题(练习题以及答案
高一数学函数经典练习题(答案)
《函 数》复习题一、 求函数的定义域1、求下列函数的定义域:⑴y =⑵y =⑶01(21)111y x x =+-++-2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x+的定义域为 。
4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。
二、求函数的值域5、求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥⑸y = ⑹ 225941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =-⑼ y ⑽ 4y = ⑾y x =-6、已知函数222()1x ax bf x x ++=+的值域为[1,3],求,a b 的值。
三、求函数的解析式1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。
2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。
3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。
4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+,则当(,0)x ∈-∞时()f x =____ _()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式四、求函数的单调区间6、求下列函数的单调区间:⑴ 223y x x =++ ⑵y = ⑶ 261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是8、函数236xy x -=+的递减区间是 ;函数y =五、综合题9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g =; ⑷x x f =)(, ()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。
高一数学函数专题(含答案)
函 数 练 习 题一、 求函数的定义域1、求下列函数的定义域:⑴y = ⑵y =2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;3、若函数(1)f x +的定义域为[]-23,,则(21)f x -的定义域是 ;1(2)f x+的定义域为 。
4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。
二、求函数的值域5、求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥⑸ y = ⑹ 225941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =-⑼ y = ⑽ 4y = ⑾y x =6、已知函数222()1x ax bf x x ++=+的值域为[1,3],求,a b 的值。
三、求函数的解析式1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。
2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。
3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。
4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =,则当(,0)x ∈-∞时()f x = ()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式四、求函数的单调区间6、求下列函数的单调区间:⑴ 223y x x =++ ⑵y = ⑶ 261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是8、函数236x y x -=+的递减区间是 ;函数y =的递减区间是 五、综合题9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g =; ⑷x x f =)(, ()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。
高一数学函数与极限分析练习题及答案
高一数学函数与极限分析练习题及答案一、选择题1. 设函数$f(x)=\sqrt{1-x^2}$,其定义域为$[-1,1]$,关于该函数,下列说法正确的是:A. $f(x)$在$[-1,1]$上单调递增B. $f(x)$在$[-1,1]$上单调递减C. $f(x)$在$x=\frac{\pi}{4}$处取得最大值D. $f(x)$在$x=0$处取得最大值答案:D2. 设函数$f(x)=\frac{1}{x}$,下列说法正确的是:A. $f(x)$在$x=0$处连续B. $f(x)$在$x=0$处可导C. $f(x)$在$x=0$处极限存在D. $f(x)$在$x=0$处极限不存在答案:D3. 设函数$f(x)=e^x$,下列说法正确的是:A. $f(x)$在$x=0$处连续B. $f(x)$在$x=0$处可导C. $f(x)$在$x=0$处极限存在D. $f(x)$在$x=0$处极限不存在答案:A、B、C4. 设函数$f(x)=\sin x$,下列说法正确的是:A. $f(x)$在$x=\frac{\pi}{2}$处连续B. $f(x)$在$x=\frac{\pi}{2}$处可导C. $f(x)$在$x=\frac{\pi}{2}$处极限存在D. $f(x)$在$x=\frac{\pi}{2}$处极限不存在答案:B、C5. 设函数$f(x)=x^3$,下列说法正确的是:A. $f(x)$在$x=0$处连续B. $f(x)$在$x=0$处可导C. $f(x)$在$x=0$处极限存在D. $f(x)$在$x=0$处极限不存在答案:A、B、C二、填空题1. 函数$f(x)=\sin x$在$x=\frac{\pi}{2}$处的导数为______。
答案:12. 函数$f(x)=\frac{1}{x}$在$x=0$处的极限为______。
答案:无穷大或$+\infty$3. 函数$f(x)=e^x$在$x=0$处的连续性、可导性、极限存在性均为______。
高一数学函数习题及答案
1 函 数 练 习 题一、 求函数的定义域 1、求下列函数的定义域:⑴y =⑵y =⑶01(21)111y x x =+-+-2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x+的定义域为 。
4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。
2 二、求函数的值域 5、求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥⑸y =⑹ 225941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =-⑼y ⑽4y =⑾y x =-6、已知函数222()1x ax bf x x ++=+的值域为[1,3],求,a b 的值。
3三、求函数的解析式 1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。
2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。
3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。
4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时,()(1f x x =,则当(,0)x ∈-∞时()f x =____ _ ()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式4四、求函数的单调区间 6、求下列函数的单调区间:⑴ 223y x x =++⑵y = ⑶ 261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是 8、函数236xy x -=+的递减区间是;函数y =的递减区间是五、综合题59、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(,()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。
高一数学函数经典练习题(含答案)
精心整理《函数》复习题一、 求函数的定义域1、求下列函数的定义域:⑴y =⑵y =01(21)111y x x =+-+-2为34、 求实数5⑴y =⑸y =⑼y =6三、求函数的解析式1、已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。
2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。
3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x =。
4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时,()(1f x x =+,则当(,0)x ∈-∞时()f x =_____()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式 四、求函数的单调区间6、求下列函数的单调区间:⑴223y x x =++⑵y =261y x x =--789⑴1=y ⑶x f (。
A 10 A 1112 (A)02x << (B)0x <或2x > (C)1x <或3x > (D)11x -<<13、函数()f x =A 、[2,2]-B 、(2,2)-C 、(,2)(2,)-∞-+∞D 、{2,2}-14、函数1()(0)f x x x x=+≠是()A 、奇函数,且在(0,1)上是增函数B 、奇函数,且在(0,1)上是减函数C 、偶函数,且在(0,1)上是增函数D 、偶函数,且在(0,1)上是减函数15、函数22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,若()3f x =,则x =16、已知函数的定义域是,则的定义域为。
高一函数练习题及答案
高一函数练习题及答案高一函数练习题及答案高一阶段是学习数学的重要时期,其中函数是一个重要的内容。
函数作为数学的一个基础概念,对于学生来说是一个相对抽象的概念。
因此,通过练习题的方式来巩固和提高对函数的理解和运用能力是非常必要的。
本文将为大家提供一些高一函数练习题及答案,希望能够帮助大家更好地掌握函数的知识。
一、选择题1. 设函数f(x) = 2x + 3,那么f(4)的值是多少?A. 7B. 11C. 9D. 8答案:B. 11解析:将x = 4代入函数f(x) = 2x + 3中,得到f(4) = 2 × 4 + 3 = 8 + 3 = 11。
2. 已知函数g(x) = x^2 + 3x - 2,求g(-1)的值是多少?A. -6B. -2C. 2D. 6答案:C. 2解析:将x = -1代入函数g(x) = x^2 + 3x - 2中,得到g(-1) = (-1)^2 + 3 × (-1) - 2 = 1 - 3 - 2 = -4。
3. 函数h(x) = 3x^2 - 2x + 1,求h(2)的值是多少?A. 9B. 11C. 15D. 19答案:A. 9解析:将x = 2代入函数h(x) = 3x^2 - 2x + 1中,得到h(2) = 3 × 2^2 - 2 × 2 + 1 = 3 × 4 - 4 + 1 = 12 - 4 + 1 = 9。
二、填空题1. 设函数f(x) = 2x + 3,求f(-1)的值是多少?答案:1解析:将x = -1代入函数f(x) = 2x + 3中,得到f(-1) = 2 × (-1) + 3 = -2 + 3 = 1。
2. 已知函数g(x) = x^2 + 3x - 2,求g(0)的值是多少?答案:-2解析:将x = 0代入函数g(x) = x^2 + 3x - 2中,得到g(0) = 0^2 + 3 × 0 - 2 = 0 - 2 = -2。
高一数学函数经典练习题(含答案详细)
高一数学函数经典练习题(含答案详细)一、求函数的定义域1、求下列函数的定义域:⑴ $y=\frac{x^2-2x-15}{x+3-3}$答案:首先化简得到 $y=\frac{x^2+2x-15}{x}$。
然后根据分式的定义,分母不能为零,即 $x\neq0$。
同时,分子中有$x-5$ 和 $x+3$ 两个因式,因此 $x\leq-3$ 或 $x\geq5$。
综合起来得到定义域为 $\{x|x\leq-3 \text{ 或 } x\geq5 \text{ 或 }x\neq0\}$。
⑵ $y=1-\frac{x-1}{2x+2}$答案:首先化简得到 $y=\frac{x+1}{2x+2}$。
然后根据分式的定义,分母不能为零,即 $x\neq-1$。
同时,分子中有 $x-1$ 和 $x+1$ 两个因式,因此 $x\geq0$。
综合起来得到定义域为 $\{x|x\geq0 \text{ 且 } x\neq-1\}$。
2、设函数 $f(x)$ 的定义域为 $[0,1]$,则函数 $f(x^2)$ 的定义域为 _。
_。
_;函数 $x-2f(x-2)$ 的定义域为答案:对于 $f(x^2)$,$x^2\in[0,1]$,因此 $x\in[-1,1]$。
综合起来得到定义域为 $\{x|-1\leq x\leq1\}$。
对于 $x-2f(x-2)$,$x-2(x-2)\in[0,1]$,即 $2\leq x\leq3$。
因此定义域为 $\{x|2\leq x\leq3\}$。
3、若函数 $f(x+1)$ 的定义域为 $[-2,3]$,则函数 $f(2x-1)$ 的定义域是;函数 $f(\frac{x+2}{x})$ 的定义域为。
答案:对于 $f(2x-1)$,$2x-1\in[-2,3]$,因此 $-1\leqx\leq2$。
综合起来得到定义域为 $\{x|-1\leq x\leq2\}$。
对于 $f(\frac{x+2}{x})$,$x\neq0$ 且 $\frac{x+2}{x}\in[-2,3]$,即 $-2x\leq x+2\leq3x$,解得 $-3\leq x\leq-1$ 或$x\geq2$。
高一数学函数经典题目及答案
1 函数解析式的特殊求法例 1 已知f(x) 是一次函数, 且f[f(x)]=4x 1, 求f(x) 的解析式例2 若f( x 1) x 2 x ,求f(x)例 3 已知 f ( x 1) x 2 x ,求 f (x 1)例4已知:函数y x2 x与y g( x)的图象关于点( 2,3) 对称,求g(x)的解析式例 5 已知f(x)满足2f (x) f(1) 3x,求 f (x)x2 函数值域的特殊求法2例1. 求函数y x 2x 5,x [ 1,2]的值域。
1 x x2 y2 例 2. 求函数 1 x2的值域。
例3 求函数y=(x+1)/(x+2) 的值域y e x1例 4. 求函数y e x1的值域。
例 1 下列各组中的两个函数是否为相同的函数?① y1(x 3)(x 5) x3 ② y1 x 1 x 1 y2x 5y2 (x 1)(x 1)③ f1(x) ( 2x 5)2f2 (x) 2x 52 若函数f(x) 的图象经过(0, 1),那么 f (x 4)的反函数图象经过点(A) (4, 1) (B) ( 1, 4) (C) ( 4, 1) (D) (1, 4) 例3已知函数f (x) 对任意的a、b R满足:f(a b) f(a) f(b) 6,当a 0时, f(a) 6;f( 2) 12。
(1)求:f (2) 的值;(2)求证:f (x)是R上的减函数;(3)若f(k 2) f (2k) 3,求实数k的取值范围。
例 4 已知A {( x,y)|x n, y an b,n Z} ,B {( x,y)|x m,y 3m2 15,m Z},C {( x,y)|x2 y2≤14} ,问是否存在实数a,b ,使得(1) A B ,(2)(a,b) C同时成立.证明题1 已知二次函数f (x) ax2 bx c 对于x 1、x 2 R,且x 1< x 2 时1f(x1) f (x2) ,求证:方程f(x)=12[f (x1) f (x2)]有不等实根,且必有一根属于区间x 1,x 2)( 2,3) 的对称点x x2 yy 3则 2 ,解得:点M (x ,y )在 y g(x)上x x 4 把 y 6 y 代入得:2整理得 y x 2 7x 6答案1 解:设 f(x)=kx+b 则 k(kx+b)+b=4x 1bk 21 或 3 k 2 4 (k 1)b 1 ∴ f(x) 2x 1或 f (x) 2x 13k2 b12 换元法:已知复合函数 f [ g(x)]的表达式时, 还可以用换元法求 f (x) 的解析式。
高一数学函数经典练习题(含答案详细)
《函 数》复习题一、 求函数的定义域1、求下列函数的定义域:答案:x²又⑵y =答案:2111x x -⎛⎫≤ ⎪+⎝⎭, ()()22111x x -≤+, ()()2211x x -≤+,222121x x x x -+≤++,-4x ≤0, ∴x ≥0{|0}x x ≥⑶01(21)111y x x =+-+-答案:211011011210210104022x x x x x x x x x ⎧+≠⇒-≠-⇒≠⎪-⎪⎪-≠⇒≠⎨⎪-≠⇒≠⎪≥⇒-≥⇒-≤≤∴1{|220,,1}2x x x x x -≤≤≠≠≠且2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _2 f x ()-2的定义域为________;答案:函数f(x)的定义域为[0.1], 则0≤x ≤1于是0≤x ²≤1 解得-1≤x ≤1所以函数f x ()2的定义域为[-1,1]f∴4≤x ≤93、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1x 1(2)f x+的定义域为 。
答案:y=f(x+1)的定义域是【-2,3】注:y=f(x+1)的定义域是【-2,3】 指的是里面X 的定义域 不是括号内整体的定义域 即-2<=x<=3∴-1<=x+1<=4 ∴x+1 的范围为 [-1,4] f(x)括号内的范围相等y=f(2x-1)f(4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。
答案解1:知函数f(x)的定义域为[-1.1],则对函数F (X )=f(m+x)-f(x-m)来说 -1≤m+x ≤1 -1≤x-m ≤11. 由-1≤m+x 和x-m ≤1 两式相加-1+x-m ≤m+x+1 解得2m ≥-2 m ≥-12. 由m+x ≤1和-1≤x-m 两式相加 m+x-1≤x-m+12m ≤2 解得m ≤1综上:-1≤m ≤1答案解2: -1<x+m<1 →→-1-m < x<1-m-1<x-m<1 → -1+m<x<1+m定义域存在,两者的交集不为空集,(注:则只需(-m-1,1-m )与(m-1,1-m )有交集即可。
高一数学函数试题及答案
函数与基本初等函数一、选择题1.下列函数中,在其定义域内既是奇函数又是减函数的是( )A .y =-x 3,x ∈R B .y =sin x ,x ∈RC .y =x ,x ∈RD .y =(12)x ,x ∈R2.若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,且f (2)=1,则f (x )=( )A .log 2x B.12x C .log 12x D .2x -23.已知函数f (x )=ax 3+bx 2+c 是奇函数,则( )A .b =c =0B .a =0C .b =0,a ≠0D .c =0 4.函数f (x +1)为偶函数,且x <1时,f (x )=x 2+1, 则x >1时,f (x )的解析式为( )A .f (x )=x 2-4x +4B .f (x )=x 2-4x +5C .f (x )=x 2-4x -5D .f (x )=x 2+4x +55.函数f (x )=3x 21-x+lg(3x +1)的定义域是( )A .(-13,+∞)B .(-13,1)C .(-13,13) D .(-∞,-13) 6.若定义在R 上的函数f (x )满足:对任意x 1,x 2∈R 有f (x 1+x 2)=f (x 1)+f (x 2)+1,则下列说法一定正确的是( )A .f (x )为奇函数B .f (x )为偶函数C .f (x )+1为奇函数D .f (x )+1为偶函数7.设奇函数f (x )在(0,+∞)内为增函数,且f (1)=0,则不等式f (x )-f (-x )x<0的解集为( )A .(-1,0)∪(1,+∞)B .(-∞,-1)∪(0,1)C .(-∞,-1)∪(1,+∞)D .(-1,0)∪(0,1)8.设a ,b ,c 均为正数,且2a =log 12a ,(12)b =log 12b ,(12)c =log 2c ,则( )A .a <b <cB .c <b <aC .c <a <bD .b <a <c二、填空题9.函数y =log 12x +2的定义域是____________.10.已知函数f (x )=a x +b 的图象经过点(-2,134),其反函数y =f -1(x )的图象经过点(5,1),则f (x )的解析式是________.11.函数f (x )=ln 1+ax1+2x(a ≠2)为奇函数,则实数a 等于________.12.方程x 2-2ax +4=0的两根均大于1,则实数a 的范围是________.13.若函数f (x )=(x +a )(bx +2a )(常数a ,b ∈R )是偶函数,且它的值域为(-∞,4],则该函数的解析式f (x )=________.14.函数f (x )=log 0.5(3x 2-ax +5)在(-1,+∞)上是减函数,则实数a 的取值范围是________. 三、解答题15.设f (x )是奇函数,g (x )是偶函数,并且f (x )-g (x )=x 2-x ,求f (x ),g (x ).16.设不等式2(log 12x )2+9(log 12x )+9≤0的解集为M ,求当x ∈M 时,函数f (x )=(log 2x 2)(log 2x8)的最大、最小值.17.已知函数f (x )的图象与函数h (x )=x +1x+2的图象关于点A (0,1)对称.18.设函数f (x )=ax 2+1bx +c是奇函数(a ,b ,c 都是整数),且f (1)=2,f (2)<3.(1)求a ,b ,c 的值;(2)当x <0,f (x )的单调性如何?用单调性定义证明你的结论.参考答案1 B 在其定义域内是奇函数但不是减函数;C 在其定义域内既是奇函数又是增函数;D 在其定义域内不是奇函数,只是减函数;故选A.2 函数y =a x (a >0,且a ≠1)的反函数是f (x )=log a x ,又f (2)=1,即log a 2=1,所以,a =2,故f (x )=log 2x ,选A.3 ∵f (x )是奇函数,∴f (0)=0,∴c =0.∴-ax 3-bx 2=-ax 3+bx 2,∴b =0,故选A. 4 因为f (x +1)为偶函数,所以f (-x +1)=f (x +1),即f (x )=f (2-x );当x >1时,2-x <1,此时,f (2-x )=(2-x )2+1,即f (x )=x 2-4x +5. 5 ⎩⎨⎧1-x >03x +1>0,解得-13<x<1.故选B.6 令x =0,得f (0)=2f (0)+1,f (0)=-1,所以f (x -x )=f (x )+f (-x )+1=-1,而f (x )+f (-x )+1+1=0,即 f (x )+1=-,所以f (x )+1为奇函数,故选C. 7因为f (x )是奇函数,所以f (-x )=-f (x ),于是不等式变为2f (x )x<0,根据函数的单调性和奇偶性,画出函数的示意图(图略),可知不等式2f (x )x <0的解集为(-1,0)∪(0,1). 8如下图:∴a <b <c . A9 (0,4] 10 f (x )=2x +3 11依题意有f (-x )+f (x )=ln1-ax1-2x+ln 1+ax 1+2x =0,即1-ax 1-2x ·1+ax 1+2x =1,故1-a 2x 2=1-4x 2,解得a 2=4,但a ≠2,故a =-2.12 解法一:利用韦达定理,设方程x 2-2ax +4=0的两根为x 1、x 2,则⎩⎨⎧(x 1-1)(x 2-1)>0,(x 1-1)+(x 2-1)>0,解之得2≤a <52. 13 f (x )=(x +a )(bx +2a )=bx 2+(2a +ab )x +2a 2是偶函数,则其图象关于y 轴对称.∴2a +ab =0⇒b =-2,∴f (x )=-2x 2+2a 2,且值域为(-∞,4],∴2a 2=4,∴f (x )=-2x 2+4. -2x 2+414设g (x )=3x 2-ax +5,已知⎩⎨⎧a 6≤-1,g (-1)≥0,解得-8≤a ≤-6.15 f (x )为奇函数,∴f (-x )=-f (x );g (x )为偶数,∴g (-x )=g (x ).f (x )-g (x )=x 2-x∴f (-x )-g (-x )=x 2+x从而-f (x )-g (x )=x 2+x ,即f (x )+g (x )=-x 2-x ,16 ∵2(log 12x )2+9(log 12x )+9≤0,∴(2log 12x +3)(log 12x +3)≤0.∴-3≤log 12x ≤-32.即log 12(12)-3≤log 12x ≤log 12(12)-32∴(12)-32≤x ≤(12)-3,即22≤x ≤8.从而M =.又f (x )=(log 2x -1)(log 2x -3)=log 22x -4log 2x +3=(log 2x -2)2-1.∵22≤x ≤8,∴32≤log 2x ≤3.∴当log 2x =2,即x =4时y min =-1;当log 2x =3,即x =8时,y max =0.⎩⎨⎧ f (x )-g (x )=x 2-x f (x )+g (x )=-x 2-x ⇒⎩⎨⎧f (x )=-xg (x )=-x 2 17 (1)求f (x )的解析式;(2)若g (x )=f (x )·x +ax ,且g (x )在区间(0,2]上为减函数,求实数a 的取值范围.(1)设f (x )图象上任意一点的坐标为(x ,y ),点(x ,y )关于点A (0,1)的对称点(-x,2-y )在h (x )的图象上.∴2-y =-x +1-x +2,∴y =x +1x ,即f (x )=x +1x .(2)g (x )=(x +1x )·x +ax ,即g (x )=x 2+ax +1.g (x )在(0,2]上递减⇒-a 2≥2,∴a ≤-4.18 (1)由f (x )=ax 2+1bx +c是奇函数,得f (-x )=-f (x )对定义域内x 恒成立,则a (-x )2+1b (-x )+c =-ax 2+1bx +c ⇒-bx +c =-(bx +c )对定义域内x 恒成立,即c =0.又⎩⎨⎧f (1)=2f (2)<3⇒⎩⎪⎨⎪⎧a +1b =2 ①4a +12b <3 ②由①得a =2b -1代入②得2b -32b<0⇒0<b <32,又a ,b ,c 是整数,得b =a =1.(2)由(1)知,f (x )=x 2+1x =x +1x,当x <0,f (x )在(-∞,-1]上单调递增,在上单调递增.同理,可证f (x )在[-1,0)上单调递减.。
高一数学函数经典习题及答案
函 数 练 习 题班级 姓名一、 求函数的定义域 1、求下列函数的定义域:⑴33y x =+-⑵y =⑶01(21)111y x x =+-++-2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x+的定义域为 。
4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。
二、求函数的值域 5、求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥⑸ y = ⑹ 225941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =-⑼y ⑽ 4y = ⑾y x =6、已知函数222()1x ax bf x x ++=+的值域为[1,3],求,a b 的值。
三、求函数的解析式1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。
2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。
3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。
4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+,则当(,0)x ∈-∞时()f x =____ _()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式四、求函数的单调区间 6、求下列函数的单调区间:⑴ 223y x x =++ ⑵y = ⑶ 261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是8、函数236xy x -=+的递减区间是 ;函数y =间是 五、综合题9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(, ()g x =; ⑸21)52()(-=x x f ,52)(2-=x x f 。
高一数学函数试题及答案
高一数学函数试题及答案一、选择题(每题4分,共40分)1. 函数f(x) = 2x^2 - 3x + 1在区间[-1, 2]上的最大值是:A. 1B. 7C. 9D. 112. 若函数g(x) = x^3 - 2x^2 + x - 2的零点是x0,则x0的取值范围是:A. (-∞, 1)B. (1, 2)C. (2, 3)D. (3, +∞)3. 函数h(x) = sin(x) + cos(x)的值域是:A. [-1, 0]B. [-1, 1]C. [0, 1]D. [1, 2]...20. 若函数f(x) = log_a(x)(a > 0,a ≠ 1)在区间(0, 1)上是增函数,则a的取值范围是:A. (0, 1)B. (1, +∞)C. (0, 1/e)D. (1/e, 1)二、填空题(每题3分,共15分)1. 若函数f(x) = x^2 - 4x + 4的图像关于x轴对称,则x的取值是________。
2. 函数y = 2^x的反函数是________。
3. 若函数f(x) = 1/x在点(1, 1)处的切线斜率为-1,则该切线方程是________。
...5. 若函数f(x) = x^3 - 6x^2 + 9x + 2的极小值点为x0,则x0的值为________。
三、解答题(共45分)1. 已知函数f(x) = x^3 - 3x^2 - 9x + 5,求证f(x)在(-∞, -1)上单调递增。
(10分)2. 求函数y = x^2 - 2x + 3在区间[1, 3]上的值域。
(10分)3. 已知函数f(x) = x^2 + 2x + 1,x ∈ R,求f(x)的最小值。
(10分)4. 解不等式:|x - 1| + |x - 3| ≤ 2。
(10分)5. 已知函数f(x) = log_2(x),x ∈ (0, +∞),求f(x)的值域。
(5分)四、附加题(10分)1. 已知函数f(x) = 2x - 1,g(x) = 3x + 2,求f(g(x))的表达式。
高一数学函数试题及答案
4.二次函数的图象经过三点 A(1 , 3), B(1,3),C(2,3) ,则这个二次函数的 24
解析式为
。
5.已知函数
f
(x)
x2
1
(x 0) ,若 f (x) 10 ,则 x
。
2x (x 0)
三、解答题
1.求函数 y x 1 2x 的值域。 2.利用判别式方法求函数 y 2x2 2x 3 的值域。
A.1 B. 0
C. 0 或1
D.1或 2
3.已知集合 A 1, 2,3, k, B 4,7, a4, a2 3a ,且 a N*, x A, y B
使 B 中元素 y 3x 1 和 A 中的元素 x 对应,则 a, k 的值分别为( )
A. 2,3 B. 3, 4 C. 3,5 D. 2,5
函数及其表示[提高训练 C 组]
一、选择题
1.若集合 S y | y 3x 2, x R,T y | y x2 1, x R ,
则 S T 是( )
A. S
B. T
C.
D.有限集
2.已知函数 y f (x) 的图象关于直线 x 1对称,且当 x (0,) 时,
x2
,
0 x
0
的图象是抛物线,
其中正确的命题个数是____________。
三、解答题
1.判断一次函数 y kx b, 反比例函数 y k ,二次函数 y ax2 bx c 的 x
单调性。
2.已知函数 f (x) 的定义域为 1,1 ,且同时满足下列条件:(1) f (x) 是奇函数;
二、填空题
1.函数 f (x) (a 2)x2 2(a 2)x 4 的定义域为 R ,值域为 ,0 ,
高一数学函数单元测试题及答案
高一数学函数单元测试题及答案单元测试题一、填空题1、设全集U=Z,集合A={-1,1,2},B={-1,1,2},从A到B的一个映射为x→y=f(x)=x/|x|,其中x∈A,y∈B,P={y|y=f(x)},则B∩(C∪P)={-1,1}。
2、已知x1是方程x+lgx=3的根,x2是方程x+10=3的根,则x1+x2值为2.3、已知函数y=f(x)的图象关于直线x=-1对称,且当x>0时f(x)=x/1,则当x<-2时f(x)=-x/1.4、函数y=f(x)的反函数y=f^-1(x)的图像与y轴交于点P(0,2),则方程f(x)=0在[1,4]上的根是x=2.5、设f(x)=2log(x-1),x≥2;f(x)=3x-1,x<2,则f(f(2))的值为1.6、从甲城市到乙城市m分钟的电话费由函数f(m)=1.06×([m]+44)给出,其中[m]表示不大于m的最大整数(如[3]=3,[3.9]=3,[3.1]=3),则从甲城市到乙城市5.8分钟的电话费为7.7、函数f(x)=2-2/(x-1),x≤2;f(x)=1-x/2,x>2,则f(0)=-1.8、函数y=(1-x)/(1+x),x≠-1,的值域为(-1,1)。
9、若f(5/2x-1)=x-2,则f(125)=48.10、已知映射f:A→B,其中A=B=R,对应法则为f:x→y=x+2x+3.若对实数k∈B,在集合A中不存在原象,则k 的取值范围是(-3/2,-3)∪(-3,-2)∪(-2,-3/2)。
11、偶函数f(x)在(-∞,0)上是减函数,若f(-1)<f(lgx),则实数x的取值范围是(1,e)。
12、关于x的方程|x-4x+3|-a=0有三个不相等的实数根,则实数a的值是1/2.13、关于x的方程(2x-1)/(x+2)+a=1有正根,则实数a的取值范围是(-∞,1/2)。
二、改写后的答案1、已知集合A={-1,1,2},B={-1,1,2},全集U=Z,映射f:A→B,f(x)=x/|x|,其中x∈A,y∈B,P={y|y=f(x)},求B∩(C∪P)的值。
(word完整版)高一数学必修一函数练习习题及答案
高中数学必修一函数试题(一)一、选择题: 1、若()f x =(3)f = ( )A 、2B 、4 C、 D 、10 2、对于函数()y f x =,以下说法正确的有 ( )①y 是x 的函数;②对于不同的,x y 的值也不同;③()f a 表示当x a =时函数()f x 的值,是一个常量;④()f x 一定可以用一个具体的式子表示出来。
A 、1个B 、2个C 、3个D 、4个 3、下列各组函数是同一函数的是( )①()f x =与()g x =;②()f x x =与2()g x =;③0()f x x =与01()g x x=;④2()21f x x x =--与2()21g t t t =--。
A 、①②B 、①③C 、③④D 、①④4、二次函数245y x mx =-+的对称轴为2x =-,则当1x =时,y 的值为 ( ) A 、7- B 、1 C 、17 D 、25 5、函数y =的值域为 ( )A 、[]0,2B 、[]0,4C 、(],4-∞D 、[)0,+∞ 6、下列四个图像中,是函数图像的是 ( )A 、(1)B 、(1)、(3)、(4)C 、(1)、(2)、(3)D 、(3)、(4)(1)(2)(3)(4)7、若:f A B →能构成映射,下列说法正确的有 ( )(1)A 中的任一元素在B 中必须有像且唯一;(2)B 中的多个元素可以在A 中有相同的原像;(3)B 中的元素可以在A 中无原像;(4)像的集合就是集合B 。
A 、4个B 、3个C 、2个D 、1个 8、)(x f 是定义在R 上的奇函数,下列结论中,不正确...的是( ) A 、()()0f x f x -+= B 、()()2()f x f x f x --=- C 、()()0f x f x -g ≤ D 、()1()f x f x =-- 9、如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上是减少的,那么实数a 的取值范围是( ) A 、3a -≤ B 、3a -≥ C 、a ≤5 D 、a ≥5 10、设函数()(21)f x a x b =-+是R 上的减函数,则有 ( )A 、12a >B 、12a <C 、12a ≥D 、12a ≤ 11、定义在R 上的函数()f x 对任意两个不相等实数,ab ,总有()()0f a f b a b->-成立,则必有( )A 、函数()f x 是先增加后减少B 、函数()f x 是先减少后增加C 、()f x 在R 上是增函数D 、()f x 在R 上是减函数 12、下列所给4个图象中,与所给3件事吻合最好的顺序为 ( )(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学; (2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。
高一数学函数试题答案及解析
高一数学函数试题答案及解析1.·等于A.-B.-C.D.【答案】A【解析】主要考查根式的运算、根式与分数指数幂的关系。
解:·=a·(-a)=-(-a)=-(-a).2.在f1(x)=x,f2(x)=x2,f3(x)=2x,f4(x)=log x四个函数中,x1>x2>1时,能使[f(x1)+f(x2)]<f()成立的函数是A.f1(x)=x B.f2(x)=x2C.f3(x)=2x D.f4(x)=log x【答案】A【解析】主要考查基本初等函数的图象和性质。
由图形可直观得到:只有f1(x)=x为“上凸”的函数.3.甲、乙两人解关于的方程:甲写错了常数b,得到根为,乙写错了常数c,得到根为.求方程的真正根。
【答案】4或8【解析】主要考查对数方程解法。
解:原方程可变形为:4.已知,若,则的值是()A.B.或C.,或D.【答案】D【解析】该分段函数的三段各自的值域为,而∴∴;5.·等于A.-B.-C.D.【答案】A【解析】主要考查根式的运算、根式与分数指数幂的关系。
解:·=a·(-a)=-(-a)=-(-a).6.若方程有解,则a的取值范围是()A.a>0或a≤-8B.a>0C.D.【答案】D【解析】主要考查解指数方程的换元法,一元二次方程根的分布讨论。
解答过程中巧妙地转化为求函数的值域。
解:方程有解,等价于求的值域∵∴,则a的取值范围为,故选D。
7.函数(1),(2) ,(3) ,(4) 中在上为增函数的有[ ]A.(1)和(2)B.(2)和(3)C.(3)和(4)D.(1)和(4)【答案】C【解析】主要考查函数单调性的概念及函数单调性判定方法。
解:当时为减函数。
为④两函数在(-∞,0)上是增函数.8.如果函数在区间(-∞,4]上是减函数,那么实数a的取值范围是()A.a≥-3B.a≤-3C.a≤5D.a≥3【答案】B【解析】主要考查函数单调性的概念及二次函数单调区间判定方法。
高一数学函数与方程练习题及答案
高一数学函数与方程练习题及答案1. 题目:已知函数f(x) = 2x - 3,求f(4)的值。
解答:将x = 4代入函数f(x),得到f(4) = 2(4) - 3 = 8 - 3 = 5。
答案:f(4) = 5。
2. 题目:已知函数g(x) = x^2 - 4x + 3,求g(2)的值。
解答:将x = 2代入函数g(x),得到g(2) = (2)^2 - 4(2) + 3 = 4 - 8 + 3 = -1。
答案:g(2) = -1。
3. 题目:已知函数h(x) = 3x + 2,求满足h(x) = 10的x的值。
解答:将h(x) = 10转化为方程3x + 2 = 10,然后解方程得到x = (10 - 2) / 3 = 8 / 3。
答案:x = 8 / 3。
4. 题目:已知函数k(x) = x^2 - 6x + 8,求满足k(x) = 0的x的值。
解答:将k(x) = 0转化为方程x^2 - 6x + 8 = 0,然后解方程得到x = 2 或 x = 4。
答案:x = 2或 x = 4。
5. 题目:已知函数m(x) = 2x^2 - 3x + 1,求m(3)的值。
解答:将x = 3代入函数m(x),得到m(3) = 2(3)^2 - 3(3) + 1 = 18 - 9 + 1 = 10。
答案:m(3) = 10。
通过以上练习题的解答,我们巩固了高一数学中关于函数与方程的知识。
在解题过程中,我们学会了如何代入特定的x值来求函数的值,以及如何解方程来求满足特定条件的x值。
这些知识将在数学学习中起到重要的作用,为我们解决实际问题提供了基础。
通过不断的练习和实践,我们将更加熟练地运用这些知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、 求函数的定义域
1、求下列函数的定义域:
⑴y =
⑵y =
⑶01
(21)111
y x x =+-++
-
2、
_ _ _;
________;
3、若函数(1)f x
+(21)f x -的定义域是 ;函数1
(2)f x
+的定义域为 。
4、 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。
二、求函数的值域
5、求下列函数的值域:
⑴2
23y x x =+- ()x R ∈ ⑵2
23y x x =+- [1,2]x ∈ ⑶311x y x -=
+ ⑷31
1
x y x -=+
(5)x ≥ ⑸ y = ⑹ 22
5941x x y x +=-+ ⑺31y x x =-++
⑻2y x x =- ⑼
y ⑽ 4y =
⑾y x =-
6、已知函数222()1
x ax b
f x x ++=+的值域为[1,3],求,a b 的值。
三、求函数的解析式
1、 已知函数2
(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。
2、 已知()f x 是二次函数,且2
(1)(1)24f x f x x x ++-=-,求()f x 的解析式。
3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。
4
、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+
,则当(,0)x ∈-∞时()f x =____ _
()f x 在R 上的解析式为
5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1
()()1
f x
g x x +=-,求()f x 与()g x 的解析表达式
四、求函数的单调区间
6、求下列函数的单调区间:
⑴ 2
23y x x =++ ⑵y = ⑶ 2
61y x x =--
7、函数()f x 在[0,)+∞上是单调递减函数,则2
(1)f x -的单调递增区间是
8、函数236
x
y x -=
+的递减区间是 ;函数y =的递减区间是
五、综合题
9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3
)
5)(3(1+-+=
x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;
⑶x x f =)(, 2)(x x g =
; ⑷x x f =)(, ()g x =; ⑸2
1)52()(-=x x f , 52)(2-=x x f 。
A 、⑴、⑵
B 、 ⑵、⑶
C 、 ⑷
D 、 ⑶、⑸
10、若函数()f x = 3
44
2
++-mx mx x 的定义域为R ,则实数m 的取值范围是 ( )
A 、(-∞,+∞)
B 、(0,43]
C 、(43,+∞)
D 、[0, 4
3
)
11、若函数()f x =的定义域为R ,则实数m 的取值范围是( )
(A)04m << (B) 04m ≤≤ (C) 4m ≥ (D) 04m <≤ 12、对于11a -≤≤,不等式2
(2)10x a x a +-+->恒成立的x 的取值范围是( )
(A) 02x << (B) 0x <或2x > (C) 1x <或3x > (D) 11x -<<
13、函数()f x = ) A 、[2,2]-
B 、(2,2)-
C 、(,2)
(2,)-∞-+∞ D 、{2,2}-
14、函数1
()(0)f x x x x
=+
≠是( ) A 、奇函数,且在(0,1)上是增函数 B 、奇函数,且在(0,1)上是减函数
C 、偶函数,且在(0,1)上是增函数
D 、偶函数,且在(0,1)上是减函数
15、函数2
2(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩
,若()3f x =,则x =
16
的定义域为 。
17、已知函数2
1mx n
y x +=
+的最大值为4,最小值为 —1 ,则m = ,n = 18、把函数1
1
y x =+的图象沿x 轴向左平移一个单位后,得到图象C ,则C 关于原点对称的图象的解析式为
19、求函数12)(2
--=ax x x f 在区间[ 0 , 2 ]上的最值.
23、定义在R 上的函数(),(0)0y f x f =≠且,当0x >时,()1f x >,且对任意,a b R ∈,()()()f a b f a f b +=。
⑴求(0)f ; ⑵求证:对任意,()0x R f x ∈>有;⑶求证:()f x 在R 上是增函数; ⑷若2
()(2)1f x f x x ->,
求x 的取值范围。
函 数 练 习 题 答 案
一、函数定义域:
1、(1){|536}x x x x ≥≤-≠-或或 (2){|0}x x ≥ (3)1
{|220,,1}2
x x x x x -≤≤≠≠
≠且 2、[1,1]-; [4,9] 3、5[0,];2 11(,][,)32
-∞-+∞ 4、11m -≤≤
二、函数值域:
5、(1){|4}y y ≥- (2)[0,5]y ∈ (3){|3}y y ≠ (4)7
[,3)3
y ∈ (5)[3,2)y ∈- (6)1{|5}2
y y y ≠≠且 (7){|4}y y ≥ (8)y R ∈ (9)[0,3]y ∈ (10)[1,4]y ∈ (11)1{|}2
y y ≤ 6、2,2a b =±= 三、函数解析式:
1、2()23f x x x =-- ; 2(21)44f x x +=-
2、2
()21f x x x =-- 3、4()33
f x x =+
4
、()(1f x x =-
;(10)()(10)
x x f x x x ⎧≥⎪=⎨<⎪⎩ 5、21()1f x x =- 2()1x g x x =-
四、单调区间:
6、(1)增区间:[1,)-+∞ 减区间:(,1]-∞- (2)增区间:[1,1]- 减区间:[1,3] (3)增区间:[3,0],[3,)-+∞ 减区间:[0,3],(,3]-∞-
7、[0,1]
8、(,2),(2,)-∞--+∞ (2,2]- 五、综合题:
C D B B D B
14
15、(,1]a a -+ 16、4m =± 3n = 17、1
2
y x =
- 18、解:对称轴为x a = (1)0a ≤时,min ()(0)1f x f ==- , max ()(2)34f x f a ==-
(2)01a <≤时,2
min ()()1f x f a a ==-- ,max ()(2)34f x f a ==- (3)12a <≤时,2
min ()()1f x f a a ==-- ,max ()(0)1f x f ==-
(4)2a >时 ,min ()(2)34f x f a ==- ,max ()(0)1f x f ==-
19、解:221(0)()1(01)22(1)t t g t t t t t ⎧+≤⎪
=<<⎨⎪-+≥⎩
(,0]t ∈-∞时,2
()1g t t =+为减函数
∴
在[3,2]--上,2
()1g t t =+也为减函数
∴
min ()(2)5g t g =-=, max ()(3)10g t g =-=。