上海市2021届高考数学考点全归纳
上海市2021年高考数学压轴卷(含解析)
上海市2021年高考数学压轴卷(含解析)一、填空题(本大题满分54分)本大题共有12题,1-6题每题4分,7-12题每题5分.考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分或5分,否则一律得零分.1.若集合{}|A x y x R==∈,{}|1,B x x x R =≤∈,则AB =________.2.函数()lg 2cos 21y x =-的定义域是______. 3.已知i 为虚数单位,复数z 满足11zi z-=+,则z ________. 4.设数列{}n a 的前n 项和为n S ,且对任意正整数n ,都有01011012nna n S -=-,则1a =___ 5.从总体中抽取6个样本:4,5,6,10,7,4,则总体方差的点估计值为________.6.已知双曲线与椭圆221166x y +=有相同的焦点,且双曲线的渐进线方程为12y x =±,则此双曲线方程为_________7.已知函数()223f x x ax =-++在区间(),4-∞上是增函数,则实数a 的取值范围是______.8.计算:13(2)lim 32n nn nn +→∞--=+_________.9.某微信群中四人同时抢3个红包(金额不同),假设每人抢到的几率相同且每人最多抢一个,则其中甲、乙都抢到红包的概率为 _____.10.向量集合(){},,,S a a x y x y R ==∈,对于任意,S αβ∈,以及任意()0,1λ∈,都有()1S λαλβ+-∈,则称S 为“C 类集”,现有四个命题:①若S 为“C 类集”,则集合{},M a a S R μμ=∈∈也是“C 类集”; ②若S ,T 都是“C 类集”,则集合{},M a b a S b T =+∈∈也是“C 类集”; ③若12,A A 都是“C 类集”,则12A A ⋃也是“C 类集”;④若12,A A 都是“C 类集”,且交集非空,则12A A ⋂也是“C 类集”.其中正确的命题有________(填所有正确命题的序号)11.已知a 、b 、2c 是平面内三个单位向量,若a b ⊥,则4232a c a b c +++-的最小值是________12.已知数列{}n a 的通项公式为52nn a -=,数列{}n b 的通项公式为n b n k =+ ,设,(),()n n n n n n n b a b c a a b ≤⎧=⎨>⎩,若在数列{}n c 中,5n c c ≤对任意*n N ∈恒成立,则实数k 的取值范围是_____;二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案.考生必须在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 13.在直三棱柱111ABC A B C -中,己知AB BC ⊥,2AB BC ==,1CC =直线1AC 与11A B 所成的角为( ) A .30︒B .45︒C .60︒D .90︒14.已知函数()3sin 2,6f x x π⎛⎫=+⎪⎝⎭130,6x π⎡⎤∈⎢⎥⎣⎦,若函数()()2F x f x =-的所有零点依次记为1,x 2,x ,⋅⋅⋅n x ,且12n x x x <<⋅⋅⋅<,则12122n n x x x x -++⋅⋅⋅++=( ) A .2πB .113π C .4π D .223π 15.若实数x ,y 满足22201y x x y y ≤⎧⎪+-≤⎨⎪≥-⎩,则2z x y =-的最大值是( )A .9B .12C .3D .616.对于全集U 的子集A 定义函数()()()1A U x A f x x A ⎧∈⎪=⎨∈⎪⎩为A 的特征函数,设,A B 为全集U 的子集,下列结论中错误的是( ) A .若,A B ⊆则()()A B f x f x ≤ B .()()1R A A f x f x =- C .()()()A BA B f x f x f x =⋅ D .()()()ABA B f x f x f x =+三、解答题(本大题满分76分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.正四棱锥P ABCD -的底面正方形边长是3,O 是在底面上的射影,6PO =,Q 是AC 上的一点,过Q 且与PA 、BD 都平行的截面为五边形EFGHL .(1)在图中作出截面EFGHL ,并写出作图过程; (2)求该截面面积的最大值.18.在ABC 中,内角,,A B C 所对的边长分别是,,a b c . (1)若2,3c C π==,且ABC 的面积3S =,求,a b 的值;(2)若()()sin sin sin 2A B B A A ++-=,试判断ABC 的形状.19.如图所示,某街道居委会拟在EF 地段的居民楼正南方向的空白地段AE 上建一个活动中心,其中30AE =米.活动中心东西走向,与居民楼平行. 从东向西看活动中心的截面图的下部分是长方形ABCD ,上部分是以DC 为直径的半圆. 为了保证居民楼住户的采光要求,活动中心在与半圆相切的太阳光线照射下落在居民楼上的影长GE 不超过2.5米,其中该太阳光线与水平线的夹角θ满足3tan 4θ=.(1)若设计18AB =米,6AD =米,问能否保证上述采光要求?(2)在保证上述采光要求的前提下,如何设计AB 与AD 的长度,可使得活动中心的截面面积最大?(注:计算中π取3)20.已知椭圆C :22221(0)x y a b a b +=>>经过定点21,2E ⎛ ⎝⎭,其左右集点分别为1F ,2F 且1222EF EF +=2F 且与坐标轴不垂直的直线l 与椭圈交于P ,Q 两点.(1)求椭圆C 的方程:(2)若O 为坐标原点,在线段2OF 上是否存在点(,0)M m ,使得以MP ,MQ 为邻边的平行四边形是菱形?若存在,求出m 的取值范围;若不存在,请说明理由.21.已知数列{}n a 的前n 项和为n S ,且满足()13a a a =≠,13n n n a S +=+,设3nn n b S =-,*n ∈N .(Ⅰ)求证:数列{}n b 是等比数列;(Ⅱ)若1n n a a +≥,*n ∈N ,求实数a 的最小值;(Ⅲ)当4a =时,给出一个新数列{}n e ,其中3,1,2n n n e b n =⎧=⎨≥⎩,设这个新数列的前n 项和为n C ,若n C 可以写成p t (t ,*p ∈N 且1t >,1p >)的形式,则称n C 为“指数型和”.问{}n C 中的项是否存在“指数型和”,若存在,求出所有“指数型和”;若不存在,请说明理由.参考答案及解析1.【答案】{}1【解析】 由A中y =10x -,解得:1x ,即{|1}A x x ,由B 中不等式变形得:11x -,即{|11}B x x =-, 则{1}A B ⋂=, 故答案为:{1}.2.【答案】553,,,36666ππππ⎡⎫⎛⎫⎛⎤---⎪ ⎪⎢⎥⎣⎭⎝⎭⎝⎦ 【解析】因为()lg 2cos 21y x =-,所以2902cos 210x x ⎧-≥⎨->⎩,所以331cos 22x x -≤≤⎧⎪⎨>⎪⎩,所以33,66x k x k k Z ππππ-≤≤⎧⎪⎨-<<+∈⎪⎩, 解得536x π-≤<-或66x ππ-<<或536x π<≤. 故答案为:553,,,36666ππππ⎡⎫⎛⎫⎛⎤---⎪ ⎪⎢⎥⎣⎭⎝⎭⎝⎦ 3.【答案】1【解析】因为11zi z -=+,所以21(1)1(1)1(1)(1)i i z z i z i i i i ---=+⇒===-++-,则||1z ==.故答案为:1. 4.【答案】1-【解析】由011101011(2)1021212n n n n n na a a S n n S nn S -=-=++=---,令1n =,得11(2)10a a ++=,解得11a =-。
高考数学考点归纳之 解析几何计算处理技巧
高考数学考点归纳之 解析几何计算处理技巧中学解析几何是将几何图形置于直角坐标系中,用方程的观点来研究曲线,体现了用代数的方法解决几何问题的优越性,但有时运算量过大,或需繁杂的讨论,这些都会影响解题的速度,甚至会中止解题的过程,达到“望题兴叹”的地步.特别是高考过程中,在规定的时间内,保质保量完成解题的任务,计算能力是一个重要的方面.为此,从以下几个方面探索减轻运算量的方法和技巧,合理简化解题过程,优化思维过程.考点一 回归定义,以逸待劳回归定义的实质是重新审视概念,并用相应的概念解决问题,是一种朴素而又重要的策略和思想方法.圆锥曲线的定义既是有关圆锥曲线问题的出发点,又是新知识、新思维的生长点.对于相关的圆锥曲线中的数学问题,若能根据已知条件,巧妙灵活应用定义,往往能达到化难为易、化繁为简、事半功倍的效果.[典例] 如图,F 1,F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是( )A.2B.3C.32D.62[解题观摩] 由已知,得F 1(-3,0),F 2(3,0), 设双曲线C 2的实半轴长为a , 由椭圆及双曲线的定义和已知, 可得⎩⎪⎨⎪⎧|AF 1|+|AF 2|=4,|AF 2|-|AF 1|=2a ,|AF 1|2+|AF 2|2=12,解得a 2=2,故a = 2.所以双曲线C 2的离心率e =32=62. [答案] D [关键点拨]本题巧妙运用椭圆和双曲线的定义建立|AF 1|,|AF 2|的等量关系,从而快速求出双曲线实半轴长a 的值,进而求出双曲线的离心率,大大降低了运算量.[对点训练]1.如图,设抛物线y 2=4x 的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则△BCF 与△ACF 的面积之比是( )A.|BF |-1|AF |-1 B.|BF |2-1|AF |2-1 C.|BF |+1|AF |+1D.|BF |2+1|AF |2+1 解析:选A 由题意可得S △BCF S △ACF =|BC ||AC |=x Bx A=|BF |-p2|AF |-p 2=|BF |-1|AF |-1.2.抛物线y 2=4mx (m >0)的焦点为F ,点P 为该抛物线上的动点,若点A (-m,0),则|PF ||P A |的最小值为________.解析:设点P 的坐标为(x P ,y P ),由抛物线的定义,知|PF |=x P +m ,又|P A |2=(x P +m )2+y 2P =(x P +m )2+4mx P,则⎝⎛⎭⎫|PF ||P A |2=(x P +m )2(x P +m )2+4mx P =11+4mx P (x P +m )2≥11+4mx P (2x P ·m )2=12(当且仅当x P =m 时取等号),所以|PF ||P A |≥22,所以|PF ||P A |的最小值为22.答案:22考点二 设而不求,金蝉脱壳设而不求是解析几何解题的基本手段,是比较特殊的一种思想方法,其实质是整体结构意义上的变式和整体思想的应用.设而不求的灵魂是通过科学的手段使运算量最大限度地减少,通过设出相应的参数,利用题设条件加以巧妙转化,以参数为过渡,设而不求.[典例] 已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的标准方程为( )A.x 245+y 236=1 B.x 236+y 227=1 C.x 227+y 218=1 D.x 218+y 29=1 [解题观摩] 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=2,y 1+y 2=-2,⎩⎨⎧x 21a 2+y 21b2=1,x 22a 2+y22b 2=1,①②①-②得(x 1+x 2)(x 1-x 2)a 2+(y 1+y 2)(y 1-y 2)b 2=0,所以k AB =y 1-y 2x 1-x 2=-b 2(x 1+x 2)a 2(y 1+y 2)=b 2a 2.又k AB =0+13-1=12,所以b 2a 2=12.又9=c 2=a 2-b 2, 解得b 2=9,a 2=18,所以椭圆E 的方程为x 218+y 29=1.[答案] D [关键点拨](1)本题设出A ,B 两点的坐标,却不求出A ,B 两点的坐标,巧妙地表达出直线AB 的斜率,通过将直线AB 的斜率“算两次”建立几何量之间的关系,从而快速解决问题.(2)在运用圆锥曲线问题中的设而不求方法技巧时,需要做到:①凡是不必直接计算就能更简洁地解决问题的,都尽可能实施“设而不求”;①“设而不求”不可避免地要设参、消参,而设参的原则是宜少不宜多.[对点训练]1.已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点,A ,B 分别为C 的左、右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E ,若直线BM 经过OE 的中点,则C 的离心率为( )A.13B.12C.23D.34解析:选A 设OE 的中点为G ,由题意设直线l 的方程为y =k (x +a ), 分别令x =-c 与x =0得|FM |=k (a -c ),|OE |=ka , 由△OBG ∽△FBM ,得|OG ||FM |=|OB ||FB |,即12ka k (a -c )=a a +c, 整理得c a =13,所以椭圆C 的离心率e =13.2.过点M (1,1)作斜率为-12的直线与椭圆C :x 2a 2+y 2b 2=1(a >b >0)相交于A ,B 两点,若M 是线段AB 的中点,则椭圆C 的离心率等于________.解析:设A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧x 21a 2+y 21b 2=1,x 22a 2+y22b 2=1,∴(x 1-x 2)(x 1+x 2)a 2+(y 1-y 2)(y 1+y 2)b 2=0,∴y 1-y 2x 1-x 2=-b 2a 2·x 1+x 2y 1+y 2.∵y 1-y 2x 1-x 2=-12,x 1+x 2=2,y 1+y 2=2,∴-b 2a 2=-12,∴a 2=2b 2.又∵b 2=a 2-c 2,∴a 2=2(a 2-c 2),∴a 2=2c 2,∴c a =22.即椭圆C 的离心率e =22. 答案:22考点三 巧设参数,变换主元换元引参是一种重要的数学方法,特别是解析几何中的最值问题、不等式问题等,利用换元引参使一些关系能够相互联系起来,激活了解题的方法,往往能化难为易,达到事半功倍.常见的参数可以选择点的坐标、直线的斜率、直线的倾斜角等.在换元过程中,还要注意代换的等价性,防止扩大或缩小原来变量的取值范围或改变原题条件.[典例] 设椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A ,B ,点P 在椭圆上且异于A ,B 两点,O 为坐标原点.若|AP |=|OA |,证明直线OP 的斜率k 满足|k |> 3.[解题观摩] 法一:依题意,直线OP 的方程为y =kx ,设点P 的坐标为(x 0,y 0). 由条件得⎩⎪⎨⎪⎧y 0=kx 0,x 20a 2+y 20b 2=1, 消去y 0并整理,得x 20=a 2b 2k 2a 2+b2.①由|AP |=|OA |,A (-a,0)及y 0=kx 0,得(x 0+a )2+k 2x 20=a 2,整理得(1+k 2)x 20+2ax 0=0. 而x 0≠0,于是x 0=-2a 1+k 2,代入①,整理得(1+k 2)2=4k 2⎝⎛⎭⎫a b 2+4. 又a >b >0,故(1+k 2)2>4k 2+4, 即k 2+1>4,因此k 2>3,所以|k |> 3. 法二:依题意,直线OP 的方程为y =kx , 可设点P 的坐标为(x 0,kx 0).由点P 在椭圆上,得x 20a 2+k 2x 20b2=1.因为a >b >0,kx 0≠0,所以x 20a 2+k 2x 20a 2<1,即(1+k 2)x 20<a 2.②由|AP |=|OA |及A (-a,0),得(x 0+a )2+k 2x 20=a 2,整理得(1+k 2)x 20+2ax 0=0,于是x 0=-2a 1+k 2, 代入②,得(1+k 2)·4a 2(1+k 2)2<a 2,解得k 2>3,所以|k |> 3.法三:设P (a cos θ,b sin θ)(0≤θ<2π), 则线段OP 的中点Q 的坐标为⎝⎛⎭⎫a 2cos θ,b2sin θ. |AP |=|OA |⇔A Q ⊥OP ⇔k A Q ×k =-1. 又A (-a,0),所以k A Q =b sin θ2a +a cos θ,即b sin θ-ak A Q cos θ=2ak A Q . 从而可得|2ak A Q |≤ b 2+a 2k 2A Q <a1+k 2A Q ,解得|k A Q |<33,故|k |=1|k A Q |> 3. [关键点拨]求解本题利用椭圆的参数方程,可快速建立各点之间的联系,降低运算量. [对点训练]设直线l 与抛物线y 2=4x 相交于A ,B 两点,与圆C :(x -5)2+y 2=r 2(r >0)相切于点M ,且M 为线段AB 的中点,若这样的直线l 恰有4条,求r 的取值范围.解:当斜率不存在时,有两条,当斜率存在时,不妨设直线l 的方程为x =ty +m ,A (x 1,y 1),B (x 2,y 2),代入抛物线y 2=4x 并整理得y 2-4ty -4m =0, 则有Δ=16t 2+16m >0,y 1+y 2=4t ,y 1y 2=-4m , 那么x 1+x 2=(ty 1+m )+(ty 2+m )=4t 2+2m , 可得线段AB 的中点M (2t 2+m,2t ), 而由题意可得直线AB 与直线MC 垂直, 即k MC ·k AB =-1,可得2t -02t 2+m -5·1t =-1,整理得m =3-2t 2(当t ≠0时),把m =3-2t 2代入Δ=16t 2+16m >0, 可得3-t 2>0,即0<t 2<3, 又由于圆心到直线的距离等于半径, 即d =|5-m |1+t 2=2+2t 21+t 2=21+t 2=r ,而由0<t 2<3可得2<r <4. 故r 的取值范围为(2,4).考点四 数形结合,偷梁换柱著名数学家华罗庚说过:“数与形本是两相倚,焉能分作两边飞.数缺形时少直观,形少数时难入微.”在圆锥曲线的一些问题中,许多对应的长度、数式等都具有一定的几何意义,挖掘题目中隐含的几何意义,采用数形结合的思想方法,可解决一些相应问题.[典例] 已知F 是双曲线C :x 2-y 28=1的右焦点,P 是C 的左支上一点,A (0,66).当△APF 周长最小时,该三角形的面积为________.[解题观摩] 设双曲线的左焦点为F 1,根据双曲线的定义可知|PF |=2a +|PF 1|, 则△APF 的周长为|P A |+|PF |+|AF |=|P A |+2a +|PF 1|+|AF |=|P A |+|PF 1|+|AF |+2a , 由于|AF |+2a 是定值,要使△APF 的周长最小, 则|P A |+|PF 1|最小,即P ,A ,F 1共线, 由于A (0,66),F 1(-3,0),则直线AF 1的方程为x -3+y 66=1,即x =y26-3,代入双曲线方程整理可得 y 2+66y -96=0,解得y =26或y =-86(舍去),所以点P 的纵坐标为26, 所以=12×6×66-12×6×26=12 6. [答案] 126 [关键点拨]要求①APF 的周长的最小值,其实就是转化为求解三角形三边长之和,根据已知条件与双曲线定义加以转化为已知边的长度问题与已知量的等价条件来分析,根据直线与双曲线的位置关系,通过数形结合确定点P 的位置,通过求解点P 的坐标进而利用三角形的面积公式来处理.[对点训练]1.椭圆x 25+y 24=1的左焦点为F ,直线x =m 与椭圆相交于点M ,N ,当△FMN 的周长最大时,△FMN 的面积是( )A.55B.655C.855D.455解析:选C 如图所示,设椭圆的右焦点为F ′,连接MF ′,NF ′.因为|MF |+|NF |+|MF ′|+|NF ′|≥|MF |+|NF |+|MN |,所以当直线x =m 过椭圆的右焦点时,△FMN 的周长最大.此时|MN |=2b 2a =855,又c =a 2-b 2=5-4=1,所以此时△FMN 的面积S =12×2×855=855.故选C.2.设P 为双曲线x 2-y 215=1右支上一点,M ,N 分别是圆C 1:(x +4)2+y 2=4和圆C 2:(x -4)2+y 2=1上的点,设|PM |-|PN |的最大值和最小值分别为m ,n ,则|m -n |=( )A .4 B.5 C .6D .7解析:选C 由题意得,圆C 1:(x +4)2+y 2=4的圆心为(-4,0),半径为r 1=2;圆C 2:(x -4)2+y 2=1的圆心为(4,0),半径为r 2=1.设双曲线x 2-y 215=1的左、右焦点分别为F 1(-4,0),F 2(4,0).如图所示,连接PF 1,PF 2,F 1M ,F 2N ,则|PF 1|-|PF 2|=2.又|PM |max =|PF 1|+r 1,|PN |min =|PF 2|-r 2,所以|PM |-|PN |的最大值m =|PF 1|-|PF 2|+r 1+r 2=5.又|PM |min =|PF 1|-r 1,|PN |max =|PF 2|+r 2,所以|PM |-|PN |的最小值n =|PF 1|-|PF 2|-r 1-r 2=-1,所以|m -n |=6.故选C.考点五 妙借向量,无中生有平面向量是衔接代数与几何的纽带,沟通“数”与“形”,融数、形于一体,是数形结合的典范,具有几何形式与代数形式的双重身份,是数学知识的一个交汇点和联系多项知识的媒介.妙借向量,可以有效提升圆锥曲线的解题方向与运算效率,达到良好效果.[典例] 如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b 2=1(a >b>0)的右焦点,直线y =b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.[解题观摩] 把y =b 2代入椭圆x 2a 2+y 2b 2=1,可得x =±32a ,则B ⎝⎛⎭⎫-32a ,b 2,C ⎝⎛⎭⎫32a ,b 2, 而F (c,0), 则FB =⎝⎛⎭⎫-32a -c ,b 2,FC =⎝⎛⎭⎫32a -c ,b 2,又∠BFC =90°, 故有FB ·FC =⎝⎛⎭⎫-32a -c ,b 2·⎝⎛⎭⎫32a -c ,b 2=c 2-34a 2+14b 2=c 2-34a 2+14(a 2-c 2)=34c 2-12a 2=0,则有3c 2=2a 2,所以该椭圆的离心率e =c a =63.[答案]63[关键点拨]本题通过相关向量坐标的确定,结合∠BFC =90°,巧妙借助平面向量的坐标运算来转化圆锥曲线中的相关问题,从形入手转化为相应数的形式,简化运算.[对点训练] 设直线l 是圆O :x 2+y 2=2上动点P (x 0,y 0)(x 0y 0≠0)处的切线,l 与双曲线x 2-y 22=1交于不同的两点A ,B ,则∠AOB 为( )A .90° B.60° C .45°D .30°解析:选A ∵点P (x 0,y 0)(x 0y 0≠0)在圆O :x 2+y 2=2上,∴x 20+y 20=2,圆在点P (x 0,y 0)处的切线方程为x 0x +y 0y =2.由⎩⎪⎨⎪⎧x 2-y 22=1,x 0x +y 0y =2及x 20+y 20=2得(3x 20-4)x 2-4x 0x +8-2x 20=0.∵切线l 与双曲线交于不同的两点A ,B ,且0<x 20<2,∴3x 20-4≠0,且Δ=16x 20-4(3x 20-4)·(8-2x 20)>0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4x 03x 20-4,x 1x 2=8-2x 203x 20-4.∵OA ·OB =x 1x 2+y 1y 2=x 1x 2+1y 20(2-x 0x 1)(2-x 0x 2)=x 1x 2+12-x 20[4-2x 0(x 1+x 2)+x 20x 1x 2]=8-2x 203x 20-4+12-x 20⎣⎢⎡⎦⎥⎤4-8x 203x 20-4+x 20(8-2x 20)3x 20-4=0,∴∠AOB =90°. 考点六 巧用“根与系数的关系”某些涉及线段长度关系的问题可以通过解方程、求坐标,用距离公式计算长度的方法来解;但也可以利用一元二次方程,使相关的点的同名坐标为方程的根,由根与系数的关系求出两根间的关系或有关线段长度间的关系.后者往往计算量小,解题过程简捷.[典例] 已知椭圆x 24+y 2=1的左顶点为A ,过A 作两条互相垂直的弦AM ,AN 交椭圆于M ,N 两点.(1)当直线AM 的斜率为1时,求点M 的坐标;(2)当直线AM 的斜率变化时,直线MN 是否过x 轴上的一定点?若过定点,请给出证明,并求出该定点;若不过定点,请说明理由.[解题观摩] (1)直线AM 的斜率为1时,直线AM 的方程为y =x +2,代入椭圆方程并化简得5x 2+16x +12=0.解得x 1=-2,x 2=-65,所以M ⎝⎛⎭⎫-65,45. (2)设直线AM 的斜率为k ,直线AM 的方程为y =k (x +2), 联立方程⎩⎪⎨⎪⎧y =k (x +2),x 24+y 2=1,化简得(1+4k 2)x 2+16k 2x +16k 2-4=0. 则x A +x M =-16k 21+4k 2,x M =-x A -16k 21+4k 2=2-16k 21+4k 2=2-8k 21+4k 2.同理,可得x N =2k 2-8k 2+4.由(1)知若存在定点,则此点必为P ⎝⎛⎭⎫-65,0. 证明如下:因为k MP =y M x M +65=k ⎝⎛⎭⎪⎫2-8k 21+4k 2+22-8k 21+4k 2+65=5k4-4k 2, 同理可得k PN =5k4-4k 2. 所以直线MN 过x 轴上的一定点P ⎝⎛⎭⎫-65,0. [关键点拨]本例在第(2)问中可应用根与系数的关系求出x M =2-8k 21+4k 2,这体现了整体思想.这是解决解析几何问题时常用的方法,简单易懂,通过设而不求,大大降低了运算量.[对点训练]已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,且经过点P ⎝⎛⎭⎫1,32,左、右焦点分别为F 1,F 2.(1)求椭圆C 的方程;(2)过F 1的直线l 与椭圆C 相交于A ,B 两点,若△AF 2B 的内切圆半径为327,求以F 2为圆心且与直线l 相切的圆的方程.解:(1)由c a =12,得a =2c ,所以a 2=4c 2,b 2=3c 2,将点P ⎝⎛⎭⎫1,32的坐标代入椭圆方程得c 2=1, 故所求椭圆方程为x 24+y 23=1.(2)由(1)可知F 1(-1,0),设直线l 的方程为x =ty -1, 代入椭圆方程,整理得(4+3t 2)y 2-6ty -9=0, 显然判别式大于0恒成立,设A (x 1,y 1),B (x 2,y 2),△AF 2B 的内切圆半径为r 0, 则有y 1+y 2=6t 4+3t 2,y 1y 2=-94+3t 2,r 0=327,=12r 0(|AF 1|+|BF 1|+|BF 2|+|AF 2|) =12r 0·4a =12×8×327=1227, 所以12t 2+14+3t 2=1227,解得t 2=1, 因为所求圆与直线l 相切,所以半径r =2t 2+1=2, 所以所求圆的方程为(x -1)2+y 2=2.[课时跟踪检测]1.在平面直角坐标系xOy 中,设直线y =-x +2与圆x 2+y 2=r 2(r >0)交于A ,B 两点,O 为坐标原点,若圆上一点C 满足OC ―→=54OA ―→+34OB ―→,则r =( )A .210 B.10 C .25D.5解析:选B 已知OC ―→=54OA ―→+34OB ―→,两边平方化简得OA ―→·OB ―→=-35r 2,所以cos ∠AOB =-35,所以cos ∠AOB 2=55,又圆心O (0,0)到直线的距离为|2|2=2, 所以2r =55,解得r =10. 2.设O 为坐标原点,P 是以F 为焦点的抛物线y 2=2px (p >0)上任意一点,M 是线段PF 上的点,且|PM |=2|MF |,则直线OM 的斜率的最大值为( )A.33B.23C.22D .1解析:选C 如图所示,设P (x 0,y 0)(y 0>0), 则y 20=2px 0,即x 0=y 202p.设M (x ′,y ′),由PM ―→=2MF ―→,得⎩⎪⎨⎪⎧x ′-x 0=2⎝⎛⎭⎫p 2-x ′,y ′-y 0=2(0-y ′),化简可得⎩⎨⎧x ′=p +x 03,y ′=y3.∴直线OM 的斜率k =y 03p +x 03=y 0p +y 202p =2p2p 2y 0+y 0≤2p 22p 2=22(当且仅当y 0=2p 时取等号).故直线OM 的斜率的最大值为22. 3.(2019·惠州调研)设m ,n ∈R ,若直线l :mx +ny -1=0与x 轴相交于点A ,与y 轴相交于点B ,且直线l 与圆x 2+y 2=4相交所得的弦长为2,O 为坐标原点,则△AOB 面积的最小值为( )A .5 B.4 C .3D .2解析:选C 由直线与圆相交所得的弦长为2,得圆心到直线的距离d =1m 2+n 2=3,所以m 2+n 2=13≥2|mn |,当且仅当m =n 时等号成立.所以|mn |≤16,又A ⎝⎛⎭⎫1m ,0,B ⎝⎛⎭⎫0,1n ,所以△AOB 的面积S =12|mn |≥3,故△AOB 面积的最小值为3.4.(2019·兰州模拟)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点P 为双曲线右支上一点,若|PF 1|2=8a |PF 2|,则双曲线C 的离心率的取值范围为( )A .(1,3] B.[3,+∞) C .(0,3)D .(0,3]解析:选A 根据双曲线的定义及点P 在双曲线的右支上,得|PF 1|-|PF 2|=2a ,设|PF 1|=m ,|PF 2|=n ,则m -n =2a ,m 2=8an ,∴m 2-4mn +4n 2=0,∴m =2n ,则n =2a ,m =4a ,依题得|F 1F 2|≤|PF 1|+|PF 2|,∴2c ≤4a +2a ,∴e =ca ≤3,又e >1,∴1<e ≤3,即双曲线C的离心率的取值范围为(1,3].5.过抛物线y 2=2px (p >0)的焦点F ,斜率为43的直线交抛物线于A ,B 两点,若AF ―→=λFB ―→(λ>1),则λ的值为( )A .5 B.4 C.43D.52解析:选B 根据题意设A (x 1,y 1),B (x 2,y 2), 由AF ―→=λFB ―→,得⎝⎛⎭⎫p 2-x 1,-y 1=λ⎝⎛⎭⎫x 2-p 2,y 2, 故-y 1=λy 2,即λ=-y 1y 2.设直线AB 的方程为y =43⎝⎛⎭⎫x -p 2, 联立直线与抛物线方程,消去x ,得y 2-32py -p 2=0.故y 1+y 2=32p ,y 1y 2=-p 2,则(y 1+y 2)2y 1y 2=y 1y 2+y 2y 1+2=-94,即-λ-1λ+2=-94.又λ>1,解得λ=4.6.已知椭圆C :x 24+y 2=1,过椭圆上一点A (0,1)作直线l 交椭圆于另一点B ,P 为线段AB 的中点,若直线AB ,OP 的斜率存在且不为零,则k AB k OP =________.解析:法一:(特殊值法)取B ⎝⎛⎭⎫1,32,则P ⎝ ⎛⎭⎪⎫12,2+34,则k AB =3-22,k OP =2+32, 故k AB ·k OP =3-22×2+32=-14. 法二:由题意,设直线l 的方程为y =kx +1, 联立方程⎩⎪⎨⎪⎧y =kx +1,x 24+y 2=1,消去y 得,(1+4k 2)x 2+8kx =0, 得x B =-8k 1+4k 2,即B ⎝ ⎛⎭⎪⎫-8k 1+4k 2,1-4k 21+4k 2.则P ⎝⎛⎭⎪⎫-4k 1+4k 2,11+4k 2,∴k AB =k ,k OP =-14k ,∴k AB ·k OP =-14.法三:(点差法)设A (x A ,y A ),B (x B ,y B ),P (x 0,y 0),则⎩⎨⎧x 2A4+y 2A =1,x2B4+y 2B=1,两式相减得x 2A -x 2B 4+y 2A -y 2B =0, 化简得y A +y B x A +x B ·y A -y B x A -x B =-14,即y A -y B x A -x B ·y 0x 0=-14,∴k AB ·k OP =-14.答案:-147.已知AB 为圆x 2+y 2=1的一条直径,点P 为直线x -y +2=0上任意一点,则P A ―→·PB ―→的最小值为________.解析:由题意,设A (cos θ,sin θ),P (x ,x +2), 则B (-cos θ,-sin θ),∴P A ―→=(cos θ-x ,sin θ-x -2), PB ―→=(-cos θ-x ,-sin θ-x -2),∴P A ―→·PB ―→=(cos θ-x )(-cos θ-x )+(sin θ-x -2)·(-sin θ-x -2)=x 2+(x +2)2-cos 2θ-sin 2θ=2x 2+4x +3=2(x +1)2+1,当且仅当x =-1,即P (-1,1)时,P A ―→·PB ―→取最小值1. 答案:18.(2019·武汉调研)已知A ,B 分别为椭圆x 29+y 2b 2=1(0<b <3)的左、右顶点,P ,Q 是椭圆上关于x 轴对称的不同两点,设直线AP ,B Q 的斜率分别为m ,n ,若点A 到直线y =1-mn x 的距离为1,则该椭圆的离心率为________.解析:根据椭圆的标准方程x 29+y 2b2=1(0<b <3)知椭圆的中心在原点,焦点在x 轴上,A (-3,0),B (3,0),设P (x 0,y 0),Q (x 0,-y 0),则x 209+y 20b 2=1,k AP =m =y 0x 0+3,k B Q =n =-y 0x 0-3,∴mn =-y 20x 20-9=b 29,∴1-mn =9-b 23,∴直线y =1-mn x =9-b 23x ,即9-b 2x -3y=0.又点A 到直线y =1-mn x 的距离为1,∴|-39-b 2|9-b 2+9=39-b 218-b 2=1,解得b2=638,∴c 2=a 2-b 2=98,∴e =c 2a 2=18=24. 答案:249.已知椭圆C :x 24+y 2=1的右顶点为A ,上顶点为B .设P 为第三象限内一点且在椭圆C 上,直线P A 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值.解:由题意知,A (2,0),B (0,1),设P (x 0,y 0)(x 0<0,y 0<0),则x 20+4y 20=4,所以直线P A 的方程为y =y 0x 0-2(x -2),令x =0,得y M =-2y 0x 0-2,从而|BM |=1-y M =1+2y 0x 0-2,直线PB 的方程为y =y 0-1x 0x +1,令y =0,得x N =-x 0y 0-1,从而|AN |=2-x N =2+x 0y 0-1,所以四边形ABNM 的面积S =12|AN ||BM |=12⎝⎛⎭⎫2+x 0y 0-1⎝⎛⎭⎫1+2y 0x 0-2 =x 20+4y 20+4x 0y 0-4x 0-8y 0+42(x 0y 0-x 0-2y 0+2)=2x 0y 0-2x 0-4y 0+4x 0y 0-x 0-2y 0+2=2,从而四边形ABNM 的面积为定值.10.已知离心率为63的椭圆x 2a 2+y 2b2=1(a >b >0)的一个焦点为F ,过F 且与x 轴垂直的直线与椭圆交于A ,B 两点,|AB |=233. (1)求此椭圆的方程;(2)已知直线y =kx +2与椭圆交于C ,D 两点,若以线段CD 为直径的圆过点E (-1,0),求k 的值.解:(1)设焦距为2c ,∵e =c a =63,a 2=b 2+c 2,∴b a =33.由题意可知b 2a =33,∴b =1,a =3, ∴椭圆的方程为x 23+y 2=1.(2)将y =kx +2代入椭圆方程,得(1+3k 2)x 2+12kx +9=0, 又直线与椭圆有两个交点,所以Δ=(12k )2-36(1+3k 2)>0,解得k 2>1. 设C (x 1,y 1),D (x 2,y 2),则x 1+x 2=-12k 1+3k 2,x 1x 2=91+3k 2. 若以CD 为直径的圆过E 点, 则EC ―→·ED ―→=0,即(x 1+1)(x 2+1)+y 1y 2=0,而y 1y 2=(kx 1+2)(kx 2+2)=k 2x 1x 2+2k (x 1+x 2)+4, 所以(x 1+1)(x 2+1)+y 1y 2 =(k 2+1)x 1x 2+(2k +1)(x 1+x 2)+5 =9(k 2+1)1+3k 2-12k (2k +1)1+3k 2+5=0, 解得k =76,满足k 2>1,所以k =76.。
2021上海高考数学试卷及答案
2021年上海市高考数学试卷2021.06.07一. 填空题〔本大题共12题,总分值54分,第1~6题每题4分,第7~12题每题5分〕 1. 集合(,3)A =-∞,(2,)B =+∞,那么A B =2. z ∈C ,且满足1i 5z =-,求z = 3. 向量(1,0,2)a =,(2,1,0)b =,那么a 与b 的夹角为 4. 二项式5(21)x +,那么展开式中含2x 项的系数为5. x 、y 满足002x y x y ≥⎧⎪≥⎨⎪+≤⎩,求23z x y =-的最小值为6. 函数()f x 周期为1,且当01x <≤,2()log f x x =,那么3()2f =7. 假设,x y +∈R ,且123y x +=,那么yx的最大值为8. 数列{}n a 前n 项和为n S ,且满足2n n S a +=,那么5S =9. 过曲线24y x =的焦点F 并垂直于x 轴的直线分别与曲线24y x =交于A 、B ,A 在B 上 方,M 为抛物线上一点,(2)OM OA OB λλ=+-,那么λ=10. 某三位数密码,每位数字可在0-9这10个数字中任选一个,那么该三位数密码中,恰有 两位数字一样的概率是11. 数列{}n a 满足1n n a a +<〔*n ∈N 〕,假设(,)n n P n a (3)n ≥均在双曲线22162x y -=上, 那么1lim ||n n n P P +→∞=12. 2()||1f x a x =--〔1x >,0a >〕,()f x 与x 轴交点为A ,假设对于()f x 图像 上任意一点P ,在其图像上总存在另一点Q 〔P 、Q 异于A 〕,满足AP AQ ⊥,且||||AP AQ =,那么a =二. 选择题〔本大题共4题,每题5分,共20分〕13. 直线方程20x y c -+=的一个方向向量d 可以是〔 〕A. (2,1)-B. (2,1)C. (1,2)-D. (1,2)14. 一个直角三角形的两条直角边长分别为1和2,将该三角形分别绕其两个直角边旋转得到的两个圆锥的体积之比为〔 〕A. 1B. 2C. 4D. 815. ω∈R ,函数2()(6)sin()f x x x ω=-⋅,存在常数a ∈R ,使得()f x a +为偶函数, 那么ω的值可能为〔 〕 A. 2π B. 3π C. 4π D. 5π16. tan tan tan()αβαβ⋅=+,有以下两个结论:① 存在α在第一象限,β在第三象限;② 存在α在第二象限,β在第四象限;那么〔 〕A. ①②均正确B. ①②均错误C. ①对②错D. ①错②对三. 解答题〔本大题共5题,共14+14+14+16+18=76分〕17. 如图,在长方体1111ABCD A B C D -中,M 为1BB 上一点,2BM =,3CD =,4AD =,15AA =. 〔1〕求直线1AC 与平面ABCD 的夹角; 〔2〕求点A 到平面1A MC 的间隔 .18. 1()1f x ax x =++,a ∈R . 〔1〕当1a =时,求不等式()1(1)f x f x +<+的解集; 〔2〕假设()f x 在[1,2]x ∈时有零点,求a 的取值范围.19. 如图,A B C --为海岸线,AB 为线段,BC 为四分之一圆弧,39.2BD =km ,22BDC ︒∠=,68CBD ︒∠=,58BDA ︒∠=.〔1〕求BC 的长度;〔2〕假设40AB =km ,求D 到海岸线A B C --的最短间隔 . 〔准确到0.001km 〕20. 椭圆22184x y +=,1F 、2F 为左、右焦点,直线l 过2F 交椭圆于A 、B 两点. 〔1〕假设直线l 垂直于x 轴,求||AB ;〔2〕当190F AB ︒∠=时,A 在x 轴上方时,求A 、B 的坐标;〔3〕假设直线1AF 交y 轴于M ,直线1BF 交y 轴于N ,是否存在直线l ,使得11F ABF MNS S=,假设存在,求出直线l 的方程,假设不存在,请说明理由.21. 数列{}n a ()n ∈*N 有100项,1a a =,对任意[2,100]n ∈,存在n i a a d =+,[1,1]i n ∈-,假设k a 与前n 项中某一项相等,那么称k a 具有性质P .〔1〕假设11a =,2d =,求4a 所有可能的值;〔2〕假设{}n a 不是等差数列,求证:数列{}n a 中存在某些项具有性质P ;〔3〕假设{}n a 中恰有三项具有性质P ,这三项和为c ,请用a 、d 、c 表示12100a a a ++⋅⋅⋅+.参考答案一. 填空题 1. (2,3)2. 5i -,155i iz =+=- 3. 2arccos5,2cos 5||||5a b a b θ⋅===⋅⋅ 4. 40,2x 的系数为325240C ⋅=5. 6-,线性规划作图,后求出边界点代入求最值,当0x =,2y =时,min 6z =-6. 1-,2311()()log 1222f f ===- 7.98,法一:132y x =+≥298y x ≤=; 法二:由132y x =-,2(32)23y y y y y x =-⋅=-+〔302y <<〕,求二次最值max 9()8y x =8.3116,由1122(2)n n n n S a S a n --+=⎧⎨+=≥⎩得:112n n a a -=〔2n ≥〕,∴{}n a 为等比数列,且11a =,12q =,∴5511[1()]31211612S ⋅-==- 9. 3,依题意求得:(1,2)A ,(1,2)B -,设M 坐标为(,)M x y ,有:(,)(1,2)(2)(1,2)(22,4)x y λλλ=+-⋅-=-,带入24y x =有:164(22)λ=⋅-, 即3λ=10. 27100,法一:121103932710100C C C P ⋅⋅==〔分子含义:选一样数字⨯选位置⨯选第三个数字〕;法二:131010327110100C P P +=-=〔分子含义:三位数字都一样+三位数字都不同〕11. 22182n a n-=得:n a =(n P n ,1(n P n ++,利用两点间间隔 公式求解极限:1lim ||n n n P P +→∞=法二〔极限法〕:当n →∞时,1nn P P +与渐近线平行,1n n P P +在x 轴投影为1,渐近线斜角θ满足:tan 3θ=∴11cos6n n P P π+==12. a =二. 选择题13. 选D ,依题意:(2,1)-为直线的一个法向量,∴方向向量为(1,2) 14. 选B ,依题意:21142133V ππ=⋅⋅⋅=,22121233V ππ=⋅⋅⋅= 15. 选C ,法一:依次代入选项的值,检验()f x a +的奇偶性;法二:2()(6)sin[()]f x a x a x a ω+=+-⋅+,假设()f x a +为偶函数,那么6a =,且sin[(6)]x ω+也为偶函数〔偶函数⨯偶函数=偶函数〕,∴62k πωπ=+,当1k =时,4πω=16. 选D ,取特殊值检验法:例如:令1tan 3α=和1tan 3α=-,求tan β是否存在〔考试中, 假设有解时那么认为存在,取多组解时发现没有解,那么可认为不存在〕三. 解答题 17.〔1〕4π;〔2〕103. 18.〔1〕(2,1)x ∈--;〔2〕11[,]26a ∈--.19.〔1〕sin 2216.3102224BC R BC BD ππ︒==⋅=⋅⋅≈km ;〔2〕35.752km.20.〔1〕〔2〕(0,2)A ,82(,)33B -;〔3〕20x -=.21.〔1〕3、5、7;〔2〕略;〔3〕974656a d c ++.。
2023高考数学知识点归纳
2023高考数学知识点归纳2023高考数学知识点归纳总结高考数学可以讲究题海战术,但要注意时间调整,不能无限做题,主要是做了题要有总结、理解。
下面给大家分享一些关于2023高考数学知识点归纳总结,希望能够对大家有所帮助。
2023高考数学知识点归纳总结一般地,如果一个数列从第2项起,每一项与它的前一项的`差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做公差,用符号语言表示为an+1-an=d。
等差数列的性质:(1)若公差d>0,则为递增等差数列;若公差d<0,则为递减等差数列;若公差d=0,则为常数列;(2)有穷等差数列中,与首末两端“等距离”的两项和相等,并且等于首末两项之和;(3)m,n∈N____,则am=an+(m-n)d;(4)若s,t,p,q∈N____,且s+t=p+q,则as+at=ap+aq,其中as,at,ap,aq是数列中的项,特别地,当s+t=2p时,高一,有as+at=2ap;(5)若数列{an},{bn}均是等差数列,则数列{man+kbn}仍为等差数列,其中m,k均为常数。
(6)从第二项开始起,每一项是与它相邻两项的等差中项,也是与它等距离的前后两项的等差中项,即对等差数列定义的理解:①如果一个数列不是从第2项起,而是从第3项或某一项起,每一项与它前一项的差是同一个常数,那么此数列不是等差数列,但可以说从第2项或某项开始是等差数列.②求公差d时,因为d是这个数列的后一项与前一项的差,故有还有③公差d∈R,当d=0时,数列为常数列(也是等差数列);当d>0时,数列为递增数列;当d<0时,数列为递减数列;④ 是证明或判断一个数列是否为等差数列的依据;⑤证明一个数列是等差数列,只需证明an+1-an是一个与n无关的常数即可。
等差数列求解与证明的基本方法:(1)学会运用函数与方程思想解题;(2)抓住首项与公差是解决等差数列问题的关键;(3)等差数列的通项公式、前n项和公式涉及五个量:a1,d,n,an,Sn,知道其中任意三个就可以列方程组求出另外两个(俗称“知三求二’).高考数学常考考点向量夹角范围不清致误解题时要全面考虑问题。
2022年上海市高考数学考点大全
2022上海高考数学考点大全1.上海高考数学重难点:重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何。
难点:函数、数列、圆锥曲线。
2.上海高考数学考点:(1)集合与命题:集合的概念与运算、命题、充要条件。
(2)不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用。
(3)函数:函数的定义、函数解析式与定义域、值域与最值、反函数、三大性质、函数的零点、函数图象、指数与指数函数、对数与对数函数、函数的应用。
(4)三角比与三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、万能公式、辅助角公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用、反三角函数、最简三角方程。
(5)平面向量:有关概念与初等运算、线性运算、三点共线、坐标运算、数量积、三角形“四心”及其应用。
(6)数列:数列的有关概念、等差数列、等比数列、通项公式求法、数列求和、数列的应用、数学归纳法、数列的极限与运算、无穷等比数列。
⑺直线和圆的方程:方向向量、法向量、直线的方程、两直线的位置关系、线性规划、圆的方程、直线与圆的位置关系。
(8)圆锥曲线方程:椭圆的方程、双曲线的方程、抛物线的方程、直线与圆锥曲线的位置关系、轨迹问题、中点弦问题、圆锥曲线的应用、参数方程。
(9)立体几何与空间向量:空间直线、直线与平面、平面与平面、棱柱、棱锥、球与球面距离、几何体的三视图与直观图、几何体的表面积与体积、空间向量。
(10)排列、组合:排列、组合应用题、二项式定理及其应用。
(11)概率与统计:古典概型、系统抽样、分层抽样、互斥事件、对立事件、独立事件、平均数、中位数、众数、频率分布直方图。
(12)复数:复数的概念与运算、复数的平方根与立方根计算、实系数一元二次方程。
(13)矩阵与行列式初步:二元线性方程组、矩阵的基本运算、二阶行列式、三阶行列式、对角线法则、余子式与代数余子式。
(14)算法初步:流程图、算法语句、条件语句、循环语句。
上海市春季2021年高考数学试卷含答案解析
2021年上海市春季高考数学试卷一.填空题〔本大题共12题,每题3分,共36分〕1.复数3+4i〔i为虚数单位〕的实部是.2.假设log2〔x+1〕=3,那么x=.3.直线y=x﹣1与直线y=2的夹角为.4.函数的定义域为.5.三阶行列式中,元素5的代数余子式的值为.6.函数的反函数的图象经过点〔2,1〕,那么实数a=.7.在△ABC中,假设A=30°,B=45°,,那么AC=.8.4个人排成一排照相,不同排列方式的种数为〔结果用数值表示〕.9.无穷等比数列{a n}的首项为2,公比为,那么{a n}的各项的和为.10.假设2+i〔i为虚数单位〕是关于x的实系数一元二次方程x2+ax+5=0的一个虚根,那么a=.11.函数y=x2﹣2x+1在区间[0,m]上的最小值为0,最大值为1,那么实数m的取值范围是.12.在平面直角坐标系xOy中,点A,B是圆x2+y2﹣6x+5=0上的两个动点,且满足,那么的最小值为.二.选择题〔本大题共12题,每题3分,共36分〕13.假设sinα>0,且tanα<0,那么角α的终边位于〔〕A.第一象限 B.第二象限 C.第三象限 D.第四象限14.半径为1的球的外表积为〔〕A.πB. C.2πD.4π15.在〔1+x〕6的二项展开式中,x2项的系数为〔〕A.2 B.6 C.15 D.2016.幂函数y=x﹣2的大致图象是〔〕A.B.C.D.17.向量,,那么向量在向量方向上的投影为〔〕A.1 B.2 C.〔1,0〕D.〔0,2〕18.设直线l与平面α平行,直线m在平面α上,那么〔〕A.直线l平行于直线m B.直线l与直线m异面C.直线l与直线m没有公共点 D.直线l与直线m不垂直19.在用数学归纳法证明等式1+2+3+…+2n=2n2+n〔n∈N*〕的第〔ii〕步中,假设n=k时原等式成立,那么在n=k+1时需要证明的等式为〔〕A.1+2+3+…+2k+2〔k+1〕=2k2+k+2〔k+1〕2+〔k+1〕B.1+2+3+…+2k+2〔k+1〕=2〔k+1〕2+〔k+1〕C.1+2+3+…+2k+2k+1+2〔k+1〕=2k2+k+2〔k+1〕2+〔k+1〕D.1+2+3+…+2k+2k+1+2〔k+1〕=2〔k+1〕2+〔k+1〕20.关于双曲线与的焦距和渐近线,以下说法正确的选项是〔〕A.焦距相等,渐近线相同 B.焦距相等,渐近线不相同C.焦距不相等,渐近线相同D.焦距不相等,渐近线不相同21.设函数y=f〔x〕的定义域为R,那么“f〔0〕=0〞是“函数f〔x〕为奇函数〞的〔〕A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件22.以下关于实数a,b的不等式中,不恒成立的是〔〕A.a2+b2≥2ab B.a2+b2≥﹣2ab C.D.23.设单位向量与既不平行也不垂直,对非零向量、有结论:①假设x1y2﹣x2y1=0,那么;②假设x1x2+y1y2=0,那么.关于以上两个结论,正确的判断是〔〕A .①成立,②不成立B .①不成立,②成立C .①成立,②成立D .①不成立,②不成立 24.对于椭圆.假设点〔x 0,y 0〕满足.那么称该点在椭圆C 〔a ,b 〕内,在平面直角坐标系中,假设点A 在过点〔2,1〕的任意椭圆C 〔a ,b 〕内或椭圆C 〔a ,b 〕上,那么满足条件的点A 构成的图形为〔 〕 A .三角形及其内部 B .矩形及其内部 C .圆及其内部 D .椭圆及其内部三.解答题〔本大题共5题,共8+8+8+12+12=48分〕 25.如图,正三棱柱ABC ﹣A 1B 1C 1的体积为,底面边长为3,求异面直线BC 1与AC所成的角的大小.26.函数,求f 〔x 〕的最小正周期及最大值,并指出f 〔x 〕取得最大值时x 的值.27.如图,汽车前灯反射镜与轴截面的交线是抛物线的一局部,灯口所在的圆面与反射镜的轴垂直,灯泡位于抛物线的焦点F 处.灯口直径是24cm ,灯深10cm ,求灯泡与反射镜的顶点O 的距离.28.数列{a n }是公差为2的等差数列. 〔1〕a 1,a 3,a 4成等比数列,求a 1的值;〔2〕设a 1=﹣19,数列{a n }的前n 项和为S n .数列{b n }满足,记〔n ∈N *〕,求数列{c n }的最小项〔即对任意n ∈N *成立〕.29.对于函数f 〔x 〕,g 〔x 〕,记集合D f >g ={x|f 〔x 〕>g 〔x 〕}.〔1〕设f〔x〕=2|x|,g〔x〕=x+3,求D f;>g〔2〕设f1〔x〕=x﹣1,,h〔x〕=0,如果.求实数a的取值范围.二卷一.选择题:30.假设函数f〔x〕=sin〔x+φ〕是偶函数,那么ϕ的一个值是〔〕A.0 B.C.πD.2π31.在复平面上,满足|z﹣1|=4的复数z的所对应的轨迹是〔〕A.两个点B.一条线段 C.两条直线 D.一个圆32.函数y=f〔x〕的图象是折线ABCDE,如图,其中A〔1,2〕,B〔2,1〕,C〔3,2〕,D〔4,1〕,E〔5,2〕,假设直线y=kx+b与y=f〔x〕的图象恰有四个不同的公共点,那么k 的取值范围是〔〕A.〔﹣1,0〕∪〔0,1〕B.C.〔0,1]D.二.填空题:33.椭圆的长半轴的长为.34.圆锥的母线长为10,母线与轴的夹角为30°,那么该圆锥的侧面积为.35.小明用数列{a n}记录某地区2021年12月份31天中每天是否下过雨,方法为:当第k 天下过雨时,记a k=1,当第k天没下过雨时,记a k=﹣1〔1≤k≤31〕,他用数列{b n}记录该地区该月每天气象台预报是否有雨,方法为:当预报第k天有雨时,记b n=1,当预报第k天没有雨时,记b n=﹣1记录完毕后,小明计算出a1b1+a2b2+a3b3+…+a31b31=25,那么该月气象台预报准确的总天数为.三.解答题:36.对于数列{a n}与{b n},假设对数列{c n}的每一项c n,均有c k=a k或c k=b k,那么称数列{c n}是{a n}与{b n}的一个“并数列〞.〔1〕设数列{a n}与{b n}的前三项分别为a1=1,a2=3,a3=5,b1=1,b2=2,b3=3,假设{c n}是{a n}与{b n}一个“并数列〞求所有可能的有序数组〔c1,c2,c3〕;〔2〕数列{a n},{c n}均为等差数列,{a n}的公差为1,首项为正整数t;{c n}的前10项和为﹣30,前20项的和为﹣260,假设存在唯一的数列{b n},使得{c n}是{a n}与{b n}的一个“并数列〞,求t的值所构成的集合.2021年上海市春季高考数学试卷参考答案与试题解析一.填空题〔本大题共12题,每题3分,共36分〕1.复数3+4i〔i为虚数单位〕的实部是3.【考点】复数的根本概念.【分析】根据复数的定义判断即可.【解答】解:复数3+4i〔i为虚数单位〕的实部是3,故答案为:3.2.假设log2〔x+1〕=3,那么x=7.【考点】对数的运算性质;函数的零点.【分析】直接利用对数运算法那么化简求解即可.【解答】解:log2〔x+1〕=3,可得x+1=8,解得x=7.故答案为:7.3.直线y=x﹣1与直线y=2的夹角为.【考点】两直线的夹角与到角问题.【分析】由题意可得直线的斜率,可得倾斜角,进而可得直线的夹角.【解答】解:∵直线y=x﹣1的斜率为1,故倾斜角为,又∵直线y=2的倾斜角为0,故直线y=x﹣1与直线y=2的夹角为,故答案为:.4.函数的定义域为[2,+∞〕.【考点】函数的定义域及其求法.【分析】直接由根式内部的代数式大于等于0求解即可.【解答】解:由x﹣2≥0得,x≥2.∴原函数的定义域为[2,+∞〕.故答案为[2,+∞〕.5.三阶行列式中,元素5的代数余子式的值为8.【考点】高阶矩阵.【分析】根据余子式的定义可知,在行列式中划去第1行第3列后所余下的2阶行列式带上符号〔﹣1〕i+j,求出其表达式的值即可.【解答】解:元素5的代数余子式为:〔﹣1〕1+3||=〔4×2+1×0〕=8.∴元素5的代数余子式的值为8.故答案为:8.6.函数的反函数的图象经过点〔2,1〕,那么实数a=1.【考点】反函数.【分析】由于函数的反函数的图象经过点〔2,1〕,可得函数的图象经过点〔1,2〕,即可得出.【解答】解:∵函数的反函数的图象经过点〔2,1〕,∴函数的图象经过点〔1,2〕,∴2=+a,解得a=1.故答案为:1.7.在△ABC中,假设A=30°,B=45°,,那么AC=.【考点】余弦定理;正弦定理.【分析】利用正弦定理即可计算求解.【解答】解:∵A=30°,B=45°,,∴由正弦定理,可得:AC===2.故答案为:2.8.4个人排成一排照相,不同排列方式的种数为24〔结果用数值表示〕.【考点】计数原理的应用.【分析】根据题意,由排列数公式直接计算即可.【解答】解:4个人排成一排照相,不同排列方式的种数为A44=24种,故答案为:24.9.无穷等比数列{a n}的首项为2,公比为,那么{a n}的各项的和为3.【考点】等比数列的前n项和.【分析】{a n}的各项的和=,即可得出.【解答】解:{a n}的各项的和为:==3.故答案为:3.10.假设2+i〔i为虚数单位〕是关于x的实系数一元二次方程x2+ax+5=0的一个虚根,那么a=﹣4.【考点】复数代数形式的混合运算.【分析】2+i〔i为虚数单位〕是关于x的实系数一元二次方程x2+ax+5=0的一个虚根,那么2﹣i〔i为虚数单位〕也是关于x的实系数一元二次方程x2+ax+5=0的一个虚根,再利用根与系数的关系即可得出.【解答】解:∵2+i〔i为虚数单位〕是关于x的实系数一元二次方程x2+ax+5=0的一个虚根,∴2﹣i〔i为虚数单位〕也是关于x的实系数一元二次方程x2+ax+5=0的一个虚根,∴2+i+〔2﹣i〕=﹣a,解得a=﹣4.那么a=﹣4.故答案为:﹣4.11.函数y=x2﹣2x+1在区间[0,m]上的最小值为0,最大值为1,那么实数m的取值范围是[1,2].【考点】二次函数在闭区间上的最值.【分析】根据二次函数的性质得出,求解即可.【解答】解:∵f〔x〕=x2﹣2x+1=〔x﹣1〕2,∴对称轴x=1,∴f〔1〕=0,f〔2〕=1,f〔0〕=1,∵f〔x〕=x2﹣2x+2在区间[0,m]上的最大值为1,最小值为0,∴,∴1≤m≤2,故答案为:1≤m≤2.12.在平面直角坐标系xOy中,点A,B是圆x2+y2﹣6x+5=0上的两个动点,且满足,那么的最小值为4.【考点】直线与圆的位置关系;向量的三角形法那么.【分析】此题可利用AB中点M去研究,先通过坐标关系,将转化为,用根据AB=2,得到M点的轨迹,由图形的几何特征,求出模的最小值,得到此题答案.【解答】解:设A〔x1,y1〕,B〔x2,y2〕,AB中点M〔x′,y′〕.∵x′=,y′=,∴=〔x1+x2,y1+y2〕=2,∵圆C:x2+y2﹣6x+5=0,∴〔x﹣3〕2+y2=4,圆心C〔3,0〕,半径CA=2.∵点A,B在圆C上,AB=2,∴CA2﹣CM2=〔AB〕2,即CM=1.点M在以C为圆心,半径r=1的圆上.∴OM≥OC﹣r=3﹣1=2.∴||≥2,∴≥4,∴的最小值为4.故答案为:4.二.选择题〔本大题共12题,每题3分,共36分〕13.假设sinα>0,且tanα<0,那么角α的终边位于〔〕A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】象限角、轴线角.【分析】由sinα>0,那么角α的终边位于一二象限,由tanα<0,那么角α的终边位于二四象限,两者结合即可解决问题.【解答】解:∵sinα>0,那么角α的终边位于一二象限,∵由tanα<0,∴角α的终边位于二四象限,∴角α的终边位于第二象限.应选择B.14.半径为1的球的外表积为〔〕A.πB. C.2πD.4π【考点】球的体积和外表积.【分析】利用球的外表积公式S=4πR2解答即可求得答案.【解答】解:半径为1的球的外表积为4π×12=4π,应选:D.15.在〔1+x〕6的二项展开式中,x2项的系数为〔〕A.2 B.6 C.15 D.20【考点】二项式系数的性质.【分析】根据二项展开式的通项公式求出展开式的特定项即可.【解答】解:〔1+x〕6的二项展开式中,通项公式为:T r+1=•16﹣r•x r,令r=2,得展开式中x2的系数为:=15.应选:C.16.幂函数y=x﹣2的大致图象是〔〕A.B.C.D.【考点】函数的图象.【分析】利用负指数幂的定义转换函数,根据函数定义域,利用排除法得出选项.【解答】解:幂函数y=x﹣2=,定义域为〔﹣∞,0〕∪〔0,+∞〕,可排除A,B;值域为〔0,+∞〕可排除D,应选:C.17.向量,,那么向量在向量方向上的投影为〔〕A.1 B.2 C.〔1,0〕D.〔0,2〕【考点】平面向量数量积的运算.【分析】求出,代入向量的投影公式计算.【解答】解:=1,=1,||=,∴向量在向量方向上的投影=1.应选:A.18.设直线l与平面α平行,直线m在平面α上,那么〔〕A.直线l平行于直线m B.直线l与直线m异面C.直线l与直线m没有公共点 D.直线l与直线m不垂直【考点】空间中直线与直线之间的位置关系.【分析】由中直线l与平面α平行,直线m在平面α上,可得直线l与直线m异面或平行,进而得到答案.【解答】解:∵直线l与平面α平行,直线m在平面α上,∴直线l与直线m异面或平行,即直线l与直线m没有公共点,应选:C.19.在用数学归纳法证明等式1+2+3+…+2n=2n2+n〔n∈N*〕的第〔ii〕步中,假设n=k时原等式成立,那么在n=k+1时需要证明的等式为〔〕A.1+2+3+…+2k+2〔k+1〕=2k2+k+2〔k+1〕2+〔k+1〕B.1+2+3+…+2k+2〔k+1〕=2〔k+1〕2+〔k+1〕C.1+2+3+…+2k+2k+1+2〔k+1〕=2k2+k+2〔k+1〕2+〔k+1〕D.1+2+3+…+2k+2k+1+2〔k+1〕=2〔k+1〕2+〔k+1〕【考点】数学归纳法.【分析】由数学归纳法可知n=k时,1+2+3+…+2k=2k2+k,到n=k+1时,左端为1+2+3+…+2k+2k+1+2〔k+1〕,从而可得答案.【解答】解:∵用数学归纳法证明等式1+2+3+…+2n=2n2+n时,当n=1左边所得的项是1+2;假设n=k时,命题成立,1+2+3+…+2k=2k2+k,那么当n=k+1时,左端为1+2+3+…+2k+2k+1+2〔k+1〕,∴从“k→k+1〞需增添的项是2k+1+2〔k+1〕,∴1+2+3+…+2k+2k+1+2〔k+1〕=2〔k+1〕2+〔k+1〕.应选:D.20.关于双曲线与的焦距和渐近线,以下说法正确的选项是〔〕A.焦距相等,渐近线相同 B.焦距相等,渐近线不相同C.焦距不相等,渐近线相同D.焦距不相等,渐近线不相同【考点】双曲线的简单性质.【分析】分别求得双曲线的焦点的位置,求得焦点坐标和渐近线方程,即可判断它们焦距相等,但渐近线不同.【解答】解:双曲线的焦点在x轴上,可得焦点为〔±,0〕,即为〔±2,0〕,渐近线方程为y=±x;的焦点在y轴上,可得焦点为〔0,±2〕,渐近线方程为y=±2x.可得两双曲线具有相等的焦距,但渐近线不同.应选:B.21.设函数y=f〔x〕的定义域为R,那么“f〔0〕=0〞是“函数f〔x〕为奇函数〞的〔〕A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】函数y=f〔x〕的定义域为R,假设函数f〔x〕为奇函数,那么f〔0〕=0,反之不成立,例如f〔x〕=x2.即可判断出结论.【解答】解:函数y=f〔x〕的定义域为R,假设函数f〔x〕为奇函数,那么f〔0〕=0,反之不成立,例如f〔x〕=x2.∴“f〔0〕=0〞是“函数f〔x〕为奇函数〞的必要不充分条件.应选:B.22.以下关于实数a,b的不等式中,不恒成立的是〔〕A.a2+b2≥2ab B.a2+b2≥﹣2ab C.D.【考点】不等式的根本性质.【分析】根据级别不等式的性质分别判断即可.【解答】解:对于A:a2+b2﹣2ab=〔a﹣b〕2≥0,故A恒成立;对于B:a2+b2+2ab=〔a+b〕2≥0,故B恒成立;对于C:﹣ab=≥0,故C恒成立;D不恒成立;应选:D.23.设单位向量与既不平行也不垂直,对非零向量、有结论:①假设x1y2﹣x2y1=0,那么;②假设x1x2+y1y2=0,那么.关于以上两个结论,正确的判断是〔〕A.①成立,②不成立B.①不成立,②成立C.①成立,②成立D.①不成立,②不成立【考点】向量的线性运算性质及几何意义.【分析】①假设存在实数λ使得=,那么=λ,由于向量与既不平行也不垂直,可得x1=λx2,y1=λy2,即可判断出结论.②假设x1x2+y1y2=0,那么=〔〕•=x1x2+y1y2+〔x2y1+x1y2〕=〔x2y1+x1y2〕,无法得到=0,因此不一定正确.【解答】解:①假设存在实数λ使得=,那么=λ,∵向量与既不平行也不垂直,∴x1=λx2,y1=λy2,满足x1y2﹣x2y1=0,因此.②假设x1x2+y1y2=0,那么=〔〕•=x 1x 2+y 1y 2+〔x 2y 1+x 1y 2〕=〔x 2y 1+x 1y 2〕,无法得到=0,因此不一定正确.应选:A .24.对于椭圆.假设点〔x 0,y 0〕满足.那么称该点在椭圆C 〔a ,b 〕内,在平面直角坐标系中,假设点A 在过点〔2,1〕的任意椭圆C 〔a ,b 〕内或椭圆C 〔a ,b 〕上,那么满足条件的点A 构成的图形为〔 〕 A .三角形及其内部 B .矩形及其内部 C .圆及其内部 D .椭圆及其内部 【考点】椭圆的简单性质.【分析】点A 〔x 0,y 0〕在过点P 〔2,1〕的任意椭圆C 〔a ,b 〕内或椭圆C 〔a ,b 〕上,可得=1,+≤1.由椭圆的对称性可知:点B 〔﹣2,1〕,点C 〔﹣2,﹣1〕,点D 〔2,﹣1〕,都在任意椭圆上,即可得出.【解答】解:设点A 〔x 0,y 0〕在过点P 〔2,1〕的任意椭圆C 〔a ,b 〕内或椭圆C 〔a ,b 〕上, 那么=1,+≤1.∴+≤=1,由椭圆的对称性可知:点B 〔﹣2,1〕,点C 〔﹣2,﹣1〕,点D 〔2,﹣1〕,都在任意椭圆上,可知:满足条件的点A 构成的图形为矩形PBCD 及其内部. 应选:B .三.解答题〔本大题共5题,共8+8+8+12+12=48分〕 25.如图,正三棱柱ABC ﹣A 1B 1C 1的体积为,底面边长为3,求异面直线BC 1与AC所成的角的大小.【考点】异面直线及其所成的角.【分析】由正三棱柱ABC﹣A1B1C1的体积求出高,由A1C1与AC平行,得∠BC1A1是异面直线BC1与AC所成的角,由此利用余弦定理能求出异面直线BC1与AC所成的角的大小.【解答】解:∵正三棱柱ABC﹣A1B1C1的体积为,底面边长为3,∴,解得h=4,∵A1C1与AC平行,∴∠BC1A1是异面直线BC1与AC所成的角,在△A1BC1中,A1C1=3,BC1=BA1=5,∴cos∠BC1A1==.∴∠BC1A1=arccos.∴异面直线BC1与AC所成的角的大小为arccos.26.函数,求f〔x〕的最小正周期及最大值,并指出f〔x〕取得最大值时x的值.【考点】两角和与差的正弦函数;正弦函数的图象.【分析】由条件利用两角和的正弦公式化简f〔x〕的解析式,再利用正弦函数的周期性和最大值,得出结论.【解答】解:∵,∴函数的周期为T=2π,函数的最大值为2,且函数取得最大值时,x+=2kπ+,即x=2kπ+,k∈Z.27.如图,汽车前灯反射镜与轴截面的交线是抛物线的一局部,灯口所在的圆面与反射镜的轴垂直,灯泡位于抛物线的焦点F处.灯口直径是24cm,灯深10cm,求灯泡与反射镜的顶点O的距离.【考点】抛物线的简单性质.【分析】先设出抛物线的标准方程y2=2px〔p>0〕,点〔10,12〕代入抛物线方程求得p,进而求得,即灯泡与反光镜的顶点的距离.【解答】解:建立平面直角坐标系,以O为坐标原点,水平方向为x轴,竖直方向为y轴,如下图:那么:设抛物线方程为y2=2px〔p>0〕,点〔10,12〕在抛物线y2=2px上,∴144=2p×10.∴=3.6.∴灯泡与反射镜的顶点O的距离3.6cm.28.数列{a n}是公差为2的等差数列.〔1〕a1,a3,a4成等比数列,求a1的值;〔2〕设a1=﹣19,数列{a n}的前n项和为S n.数列{b n}满足,记〔n∈N*〕,求数列{c n}的最小项〔即对任意n∈N*成立〕.【考点】等差数列的前n项和;等比数列的通项公式.【分析】〔1〕利用等差数列通项公式和等比数列性质能求出首项a1的值.=2n﹣19+2n,由此能求出〔2〕由利用累加法能求出b n=2﹣〔〕n﹣1.从而能求出c n﹣c n﹣1数列{c n}的最小项.【解答】解:〔1〕∵数列{a n}是公差为2的等差数列.a1,a3,a4成等比数列,∴.解得d=2,a1=﹣8〕〔2〕b n=b1+〔b2﹣b1〕+〔b3﹣b2〕+…+〔b n﹣b n﹣1=1+==2﹣〔〕n﹣1.,,=2n﹣19+2n由题意n≥9,上式大于零,即c9<c10<…<c n,进一步,2n+2n是关于n的增函数,∵2×4+24=24>19,2×3+23=14<19,∴c1>c2>c3>c4<c5<…<c9<c10<…<c n,∴.={x|f〔x〕>g〔x〕}.29.对于函数f〔x〕,g〔x〕,记集合D f>g〔1〕设f〔x〕=2|x|,g〔x〕=x+3,求D f;>g〔2〕设f1〔x〕=x﹣1,,h〔x〕=0,如果.求实数a的取值范围.【考点】其他不等式的解法;集合的表示法.【分析】〔1〕直接根据新定义解不等式即可,〔2〕方法一:由题意可得那么在R上恒成立,分类讨论,即可求出a 的取值范围,方法二:够造函数,求出函数的最值,即可求出a的取值范围.={x|x<﹣1或x>3};【解答】解:〔1〕由2|x|>x+3,得D f>g〔2〕方法一:,,由,那么在R上恒成立,令,a>﹣t2﹣t,,∴a≥0时成立.以下只讨论a<0的情况对于,=t>0,t2+t+a>0,解得t<或t>,〔a<0〕又t>0,所以,∴=综上所述:方法二〔2〕,,由a≥0.显然恒成立,即x∈Ra<0时,,在x≤1上恒成立令,,所以,综上所述:.二卷一.选择题:30.假设函数f〔x〕=sin〔x+φ〕是偶函数,那么ϕ的一个值是〔〕A.0 B.C.πD.2π【考点】正弦函数的图象.【分析】由函数的奇偶性可得φ的取值范围,结合选项验证可得.【解答】解:∵函数f〔x〕=sin〔x+φ〕是偶函数,∴f〔﹣x〕=f〔x〕,即sin〔﹣x+φ〕=sin〔x+φ〕,∴〔﹣x+φ〕=x+φ+2kπ或﹣x+φ+x+φ=π+2kπ,k∈Z,当〔﹣x+φ〕=x+φ+2kπ时,可得x=﹣kπ,不满足函数定义;当﹣x+φ+x+φ=π+2kπ时,φ=kπ+,k∈Z,结合选项可得B为正确答案.应选:B.31.在复平面上,满足|z﹣1|=4的复数z的所对应的轨迹是〔〕A.两个点B.一条线段 C.两条直线 D.一个圆【考点】复数的代数表示法及其几何意义.【分析】设z=x+yi,得到|x+yi﹣1|==4,从而求出其运动轨迹.【解答】解:设z=x+yi,那么|x+yi﹣1|==4,∴〔x﹣1〕2+y2=16,∴运动轨迹是圆,应选:D.32.函数y=f〔x〕的图象是折线ABCDE,如图,其中A〔1,2〕,B〔2,1〕,C〔3,2〕,D〔4,1〕,E〔5,2〕,假设直线y=kx+b与y=f〔x〕的图象恰有四个不同的公共点,那么k 的取值范围是〔〕A.〔﹣1,0〕∪〔0,1〕B.C.〔0,1]D.【考点】函数的图象.【分析】根据图象使用特殊值验证,使用排除法得出答案.【解答】解;当k=0,1<b<2时,显然直线y=b与f〔x〕图象交于四点,故k可以取0,排除A,C;作直线BE,那么k BE=,直线BE与f〔x〕图象交于三点,平行移动直线BD可发现直线与f〔x〕图象最多交于三点,即直线y=与f〔x〕图象最多交于三点,∴k≠.排除D.应选B.二.填空题:33.椭圆的长半轴的长为5.【考点】椭圆的简单性质.【分析】利用椭圆性质求解.【解答】解:椭圆中,a=5,∴椭圆的长半轴长a=5.故答案为:5.34.圆锥的母线长为10,母线与轴的夹角为30°,那么该圆锥的侧面积为50π.【考点】旋转体〔圆柱、圆锥、圆台〕.【分析】根据勾股定理得出圆锥的底面半径,代入侧面积公式计算.【解答】解:∵圆锥的母线长为10,母线与轴的夹角为30°,∴圆锥的底面半径为5,∴圆锥的侧面积为π×5×10=50π.故答案为:50π.35.小明用数列{a n}记录某地区2021年12月份31天中每天是否下过雨,方法为:当第k 天下过雨时,记a k=1,当第k天没下过雨时,记a k=﹣1〔1≤k≤31〕,他用数列{b n}记录该地区该月每天气象台预报是否有雨,方法为:当预报第k天有雨时,记b n=1,当预报第k天没有雨时,记b n=﹣1记录完毕后,小明计算出a1b1+a2b2+a3b3+…+a31b31=25,那么该月气象台预报准确的总天数为28.【考点】数列的应用.【分析】由题意,气象台预报准确时a k b k=1,不准确时a k b k=﹣1,根据a1b1+a2b2+a3b3+…+a31b31=25=28﹣3,即可得出结论.【解答】解:由题意,气象台预报准确时a k b k=1,不准确时a k b k=﹣1,∵a1b1+a2b2+a3b3+…+a31b31=25=28﹣3,∴该月气象台预报准确的总天数为28.故答案为:28.三.解答题:36.对于数列{a n}与{b n},假设对数列{c n}的每一项c n,均有c k=a k或c k=b k,那么称数列{c n}是{a n}与{b n}的一个“并数列〞.〔1〕设数列{a n}与{b n}的前三项分别为a1=1,a2=3,a3=5,b1=1,b2=2,b3=3,假设{c n}是{a n}与{b n}一个“并数列〞求所有可能的有序数组〔c1,c2,c3〕;〔2〕数列{a n},{c n}均为等差数列,{a n}的公差为1,首项为正整数t;{c n}的前10项和为﹣30,前20项的和为﹣260,假设存在唯一的数列{b n},使得{c n}是{a n}与{b n}的一个“并数列〞,求t的值所构成的集合.【考点】数列的求和;数列的应用.【分析】〔1〕利用“并数列〞的定义即可得出.〔2〕利用等差数列的通项公式及其前n项和公式可得a n,公差d,c n,通过分类讨论即可得出.【解答】解:〔1〕〔1,2,3〕,〔1,2,5〕,〔1,3,3〕,〔1,3,5〕;〔2〕a n=t+n﹣1,设{c n}的前10项和为T n,T10=﹣30,T20=﹣260,得d=﹣2,c1=6,所以c n=8﹣2n;c k=a k 或c k=b k.,∴k=1,t=6;或k=2,t=3,所以k≥3.k∈N*时,c k=b k,∵数列{b n}唯一,所以只要b1,b2唯一确定即可.显然,t=6,或t=3时,b1,b2不唯一,.2021年7月25日。
2024年上海市高考数学试卷及解析
2024年上海市高考数学试卷一、填空题(本大题共12题,满分54分,第1-6题每题4分,第7-12题每题5分). 1.设全集{}1,2,3,4,5U =,集合{2,4}A =,则A =____________.2.已知0(),(3)1,0x f x f x >==⎪⎩_____________. 3.已知2,230x R x x ∈--<的解集为____________4.已知3(),f x x a x R =+∈,若()f x 是奇函数,则a =_____________.5.已知,(2,5),(6,),//k R a b k a b ∈==,则k 的值为_____________.6.在(1)n x +的二项展开式中,若各项系数和为32,则2x 项的系数为______.7.已知抛物线24y x =上有一点P 到准线的距离为9,那么P 到x 轴的距离为_______.8.某校举办科学竞技比赛,有A B C 、、三种题库,A 题库有5000道题,B 题库有4000道题,C 题库有3000道题.小申已完成所有题,他A 题库的正确率是0.92,B 题库的正确率是0.86,C 题库的正确率是0.72,他从所有题中随机选一题,正确率是________.9.已知虚数z ,其实部为1,Im 0,z ≠且2()z m m R z+=∈,则实数m 为________. 10.设集合A 中的元素皆为无重复数字的三位正整数,且元素中任意两数之积皆为偶数,则集合中元素个数的最大值是____________.11.海面上有两个灯塔O T 、和两艘货船A B 、,其中货船A 在O 正东方向,B 在O 的正北方向,观测知O 到A B 、距离相等,16.5o BTO ∠=,37ATO ︒∠=,则BOT ∠=__________.(精确到0.1度)12.无穷等比数列{}n a 首项10,1a q >>,记集合121{|,[,][,]}n n n I x y x y a a a a +=-∈,若对任意正整数,n n I 都是闭区间,则q 的取值范围是__________.二、选择题(本大题共4题,满分18分,13-14题每题4分,第15-16题每题5分). 13.人们通过统计沿海地区的气候温度和海水表层温度的数据,研究发现两者息息相关,且相关系数为正数,对此描述正确的是(,,,,) A.气候温度高,海水表层温度就高 B.气候温度高,海水表层温度就低C.随着气候温度由低到高,海水表层温度呈上升趋势D.随着气候温度由低到高,海水表层温度呈下降趋势 14.下列函数()f x 的最小正周期是2π的是(,,,,) A.()sin cos f x x x =+B.()sin cos f x x x =C.22()sin cos f x x x =+D.22()sin cos f x x x =-15.定义一个集合Ω,集合中的元素是空间内的点集,任取123,,P P P ∈Ω,存在不全为0的实数123,,λλλ,使得1231230.OP OP OP λλλ++=已知(1,0,0)∈Ω,则(0,0,1)∉Ω的充分条件是(,,,,)A.(0,0,0)∈ΩB.(-1,0,0)∈ΩC.(0,1,0∈Ω)D.(0,0,-1)∈Ω16.定义集合000{|(,),()()}M x x x f x f x =∀∈-∞<,若[1,1]M =-的所有()f x 中,下列成立的是(,,,,) A.存在()y f x =是偶函数B.存在()y f x =在2x =处取最大值C.存在()y f x =是严格增函数D.存在()y f x =在1x =-处取到极小值三、解答题(本大题共5题,第17-19题每题14分,第20,21题每题18分,共78分) 17.如图:正四棱锥,P ABCD O -为底面ABCD 的中心.(1)若5,AP AD ==求POA ∆绕PO 旋转一周形成几何体的体积. (2)若,AP AD E =为棱PD 的中点,求直线BD 与平面AEC 所成角的大小.18.若()log (0,1).a f x x a a =>≠(1)()y f x =过(4,2),求(22)()f x f x -<的解集;(2)存在x 使得(1)f x +,()f ax ,(2)f x +成等差数列,求a 的取值范围.19.为了解某地初中学生体育锻炼时长与学业成绩的关系,从该地区29000名学生中抽取580人,得到日均体育锻炼时长与学业成绩的数据如下表所示:(1)该地区29000名学生中体育锻炼时长大于1小时人数约为多少?(2)估计该地区初中学生日均体育锻炼的时长(精确到0.1)(3)是否有95%的把握认为学业成绩优秀与日均体育锻炼时长不小于1小时且小于2小时有关?附22():,()()()()n ad bca b c d a c b dχ-=++++其中n a b c d=+++2,( 3.841)0.05Pχ≥≈20.双曲线22122:1,(0),,yx b A AbΓ-=>为左右顶点,过点(2,0)M-的直线l交双曲线Γ于,P Q两点.(1)若2e =时,求b 的值(2)若点P 在第一象限,2b MA P =∆为等腰三角形时,求点P 的坐标. (3)过点Q 作OQ 延长线交Γ于点R ,若121A R A R ⋅=,求b 取值范围.21.已知D 是R 的非空子集,()y f x =是定义在R 的函数.对于点(,)M a b ,,令22()()(())s x x a f x b =-+-,若对于00(,())P x f x ,满足()s x 在0x x =处取得最小值,则称P 是M 的f 最近点.(1)对于1(),(0,)f x D x ==+∞,求证:对于点(0,0)M ,存在点M 的f 最近点;(2)对于(),x f x e D R ==,(1,0)M ,若()y f x =上一点P 满足MP 垂直于()y f x =在点P 处的切线,则P 是否是M 的f 最近点?(3),D R =()y f x =是可导的,()y g x =在定义域R 上函数值恒正,已知,t R ∈12(1,()()),(1,()())M t f t g t M t f t g t --++,.若对任意的t R ∈,都存在点P ,满足P 是1M 的f 最近点,也是2M 的f 最近点,试求()y f x =的单调性.2024年上海市高考数学试卷解析一、填空题.1.【答案】{1,3,5}A =2.3.【答案】(-1,3)【解析】223(1)(3)0(1,3)x x x x x --=+-<⇒∈- 4.【答案】0a =【解析】(0)00f a =⇒= 5.【答案】15【解析】//25615a b k k ⇒=⨯⇒= 6.【答案】10【解析】2325n n =⇒=3510C ∴=7.【答案】【解析】198P P x x +=⇒=244832P P P y x y ==⨯=⇒=±所以P 到x 轴的距离为8.【答案】0.85 【解析】5430.920.860.830.85121212⨯+⨯+⨯=9.【答案】2 【解析】设z a bi =+222(1)111(1)(1)bi z bi bi z bi bi bi -+=++=++++-222222211111bi b bi b i b b b -⎛⎫⎛⎫=++=++- ⎪ ⎪+++⎝⎭⎝⎭所以22011bb b b-=⇒=±+ 所以2m = 10.【答案】329【解析】A 中的奇数至多1个A 中的偶数,对于三个数码若个位为0,则有9872⨯=个若个位为2,4,6,8,则有488256⨯⨯=,故A 中最多有329个元素. 11.【答案】7.8o【解析】设BOT α∠=,则90AOT α︒∠=-,53A α︒∠=+OT OT OA OB =sin sin sin(53)sin(16.5)sin sin sin 37sin16.5A B ATO BTO αα︒︒︒︒++∴=⇒=∠∠ sin cos53cos sin 53sin cos16.5cos sin16.5cos53sin16.5o o o oo oαααα++⇒= sin cos tan53sin cot16.5cos o o a a a a ⇒+=+ 7.8o a ⇒≈12.【答案】[2,)+∞【解析】由题意,不妨设x y >,若,x y 均在[]12,a a ,则有x y -[]210,a a ∈-,者,x y 均在[]1,n n a a +,,则有x y -[]10,n n a a +∈-若,x y 分别在两个区间则211[,]n n x y a a a a +-∈--,又因为1q >,总有ln 是闭区间,则21n n n a a a a +-≤-恒成立即可,化简得1(2)0n q q q --+≥,所以有2q ≥恒成立 二、选择题. 13.【答案】C【解析】随着气候温度由低到高,海水表层温度呈上升趋势,相关系数为正数 所以选C 14.【答案】A【解析】A.()cos sin ,24f x x x x T ππ⎛⎫=+=+= ⎪⎝⎭,正确B.(f )sin x =cos x 1sin 2x =2,x T π=错误C.2()sin x f x =2cos x +1=,错误;D.22()sin cos cos 2,,f x x x T π=-=-=错误; 所以选A 15.【答案】C【解析】若(0,1,0)-∈Ω,假设(0,0,1)∈Ω取()()()1231,0,0,0, 1,0,0,0,1,P P P -则1122330OP OP OP λλλ++=1230λλλ∴===矛盾!(∴0,0,1)∉Ω所以选C. 16.【答案】B【解析】1M -∈1x ∴<-时,()(1)f x f <- 1x ∴=-不是极小值点,排除D假设()f x 严格递增,则M R =,矛盾!排除C 任取12,x x ,使得1211x x -≤<≤2x M ∈12()()f x f x ∴<() f x ∴在[]1,1-严格递增,排除A所以选B. 三、解答题17.【答案】(1)12;π(2)4π 【解析】(1)因为P ABCD -是正四棱锥,所以底面ABCD 是正方形,且OP ⊥底面ABCD ,因为AD =,所以3AO OD OB OC ====因为5AP =,所以4PO ==所以POA ∆绕OP 旋转一周形成的几何体是以3为底面半径,4为高的圆锥所以211341233V Sh ππ==⨯⨯=.(2)如图建立空间直角坐标系因为AP AD =,,由题知P ABCD -是正四棱锥,所以该四梭锥各核长相等,设AB =则AO OD OB OC a ====,PO a ==则可得(0,0,0),(0,0,),(0,,0),(,0,0),(0,,0),(,0,0),,0,22aa O P a A a B a C a D a E ⎛⎫-- ⎪⎝⎭故(2,0,0),(0,2,0),,,22aa BD a AC a AE a ⎛⎫=-== ⎪⎝⎭设111(,,)n x y z =为平面AEC 的法向量,则1111200022a y n AC a ax a y z n AE ⋅=⎧⎧⋅=⎪⎪⇒⎨⎨⋅+⋅+⋅=⋅=⎪⎪⎩⎩,,令11x =,,则110,1y z ==-,,所以(1,01)n =-则cos ,22n BD n BD n BDa ⋅-===-⋅ 设直线BD 与面AEC 所成角为θ,因为sin 2cos ,,0,22n BD πθθ⎡⎤==∈⎢⎥⎣⎦,所以.4πθ=18.【答案】(1)(1,2);(2)1a >(1)由()y f x =过(4,2)可得log 42a =,得:242a a =⇒=±, 0a >, 2a ∴=因为2()log f x x =在()0,+∞上是严格增函数()()2202212f x f x x x x -<⇒<-<⇒<<,所以解集为()1,2(2)因为(1)f x +,()f ax ,(2)f x +成等差数列,所以(1)(2)2()f x f x f ax +++=即log (1)log (2)2log ()a a a x x ax +++=有解,化简可得2log (1)(2)log ()a a x x ax ++=得2(1)(2)()x x ax ++=且1020000,1x x x ax a a +>⎧⎪+>⎪⇒>⎨>⎪⎪>≠⎩,则22(1)(2)x x a x ++=在(0,)+∞上有解,又222(1)(2)231311248x x x x x x ++⎛⎫=++=+- ⎪⎝⎭,,故在(0,)+∞上22(1)(2)31,20148x x x ++⎛⎫>+-= ⎪⎝⎭ 即211a a >⇒<-或1,0a a >>,所以 1.a >19.【答案】(1)12500人;(2)0.9h;(3)学业成绩与锻炼时长不小于1小时且小于2两小时有关【解析】(1)580人中体育银炼时长不小于1小时人数占比423113740272558058P +++++==该地区29000名初中学生中体育锻炼时长不小于1小时的人数约为 29000×251250058=人(2)该地区初中学生锻炼平均时长约为:10.50.511 1.5 1.52513444147421373405802222[()()()()+++⨯++⨯++⨯++⨯++2 2.5271270.91229()]+⨯+=≈ (3)①提出原假设0:H 成绩优秀与日均体育锻炼时长不小于1小时且小于2小时无关.②确定显著性水平20.05,( 3.841)0.05P αχ=≥≈③()()()()()225804530817750 3.976 3.84145501773084517750308χ⨯⨯-⨯=≈>+⨯+⨯+⨯+④否定原假设,即学业成绩优秀与日均体育锻炼时长不小于1小时且小于2小时有关.20.【答案】(1)b =(2,P ;(3)10(0,3)3,3b ⎛⎤∈ ⎥⎝⎦【解析】(1)因为22222,2, 4.1,4c c e a c a a=∴∴=∴===因为222a b c +=,所以23b =,所以b =负含). (2)因为2MA P ∆为等腰三角形①若2MA 为底,则点P 在直线12x =-时,与P 在第一象限矛盾,故合去②若2A P 为底,则2MP MA =,与2MP MA >矛盾,故舍去. ③若MP 为底,则22,MA PA =设00(,),P x y 000,0.x y >>3=,即2200(1)9x y -+=,又因为220182y x -= 得22008(1)(1)93x x -+-⨯=,得200116320x x --=,得002,x y ==,即(2,P(3)由1(1,0)A -,设1122(,),(,)P x y Q x y ,则22(,)R x y --,设直线1:2()l x my m b=->联立212222222222212222142()1(1)430,311b m x my m y y b b m b m y b my b y b x y y b b m ⎧⎧=->+=⎪⎪-⎪⎪⎪⎪∴--+=⎨⎨⎪⎪⎪⎪-=⋅=⎪⎪-⎩∴⎩ 122211(1,),(1,)A R x y A P x y =-+-=-,又由121A R A P ⋅=,得2112(1)(1)1x x y y -+--= 即2112(1)(1)1x x y y --+=-,即2112(3)(3)1my my y y --+=-化简后可得到21212(1)3()100m y y m y y +-++=再由韦达定理得2222223(1)1210(1)0b m m b b m +-+-=,化简:2223100b m b +-=所以221010033,b m ⎛⎤=∈ ⎥+⎝⎦222210103311b b b b ≠+=+ 得23,b ≠,10(0,3)3,3b ⎛⎤∴∈ ⎥⎝⎦21.【解析】(l)证明:222211()(0)(0)2s x x x w w =-+-=+≥=,当且仅当221x w =即1x =时取到最小值,所以 对于点(0,0)M 存在点(1,1)P 使得P 是M 在()f x 的最近点(2)设(P 00,xx e ),显然01x ≠00002200000()(),()11011x x x x x MPMP e e f x e f x e k f x k e x x x '''=⇒==∴⋅==-∴+-=-- 设22()1()210x x h x e x h x e '=+-⇒=+>,,则显然()h x 在R 严格增,且0(0)00h x =⇒=(0,1)P ∴()S x =22(1)()2x x e S x '-+⇒=(1)x -222x e +=2(1)x e x +- ()2S x '=(21)00x e x x +->⇒> 2()2(1)00x S x e x x '=⋅+-<⇒<()S x ∴在(,0]-∞递减,[0,)+∞递增0x ∴=是()S x 的最小值点P ∴是M 关于f 的最近点(3)设21()(1)(S x x t =-++()f x -2()()),f t g t +2()(S x =21)(x t --+(f )(x f -)(t g -2))t设(,())t t P x f x由题知,t x 是12(),()S x S x 的最小值点,故()()()()()()()()()2221111t t t S t S x g t x t f x f t g t ≥⇒+≥-++-+()()()()()()2222211()()()t t t S t S x g t x t f x f t g t ≥⇒+≥-++--两式相加得()()22222(1(()))21(()())()t t g t x t f x f t g t ⎦+-++-⎡⎤⎣≥ ()()()()220t t x t f x f t ∴-+-≤⇒t x t =()()1()212()()()()S x x t f x f t g t f x ''=-++-+2()2(1)2(S x x t '=--+()f x -()())f t g t -()f x 't x 是12(),()S x S x 的最小值点12,(),()S x S x 的定义域为R t x ∴是12(),()S x S x 的极小值点121()()01()()0()0()S x S x g t f t f t g t ''''∴==∴+=∴=-< ()f x ∴在R 上严格递减.。
上海市2021年高考[数学]考试真题与答案解析
ADA 1D 1C 1CB 1By z x上海市2021年高考:数学考试真题与答案解析一. 填空题本大题共有12题,16 题每题4分,712 题每题5分. 考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分或5分,否则一律得零分。
1.已知集合{1A =,2,3,}4,{3B =,4,}5,则A B = .2.若排列数6654m P =⨯⨯,则m = .3.不等式11x x->的解集为 .4.已知球的体积为36π,则该球主视图的面积为 .5.已知复数z 满足30z z+=,则||z = .6.设双曲线2221(0)9x y b b -=>的焦点为1F 、2F ,P 为该双曲线上的一点,若1||5PF =,则2||PF =.7.如图所示,以长方体1111ABCD A B C D -的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系,若1DB 的坐标为(4,3,2),则1AC的坐标为 .8.定义在(0,)+∞的函数()y f x =的反函数为1()y f x -=,若函数310()()x x g x f x x ⎧-≤=⎨>⎩为奇函数,则方程1()2f x -=的解为.9.给出四个函数:①y x =-;②1y x=-;③3y x =;④12y x =,从其中任选2个,则事件A :“所选2个函数的图像有且仅有一个公共点”的概率是 .P 4P 2P 3P 110.已知数列{}n a 和{}n b ,其中2()n a n n N *=∈,{}n b 的项是互不相等的正整数,若对于任意n N *∈,数列{}n b 中的第n a 项等于{}n a 中的第n b 项,则148161234()()lg b b b b lg b b b b =.11.已知1α,2R α∈,且满足等式12112222sin sin αα+=++,则12|10|παα--的最小值为 .12.如图,用35个单位正方形拼成一个矩形,点1P 、2P 、3P 、4P 以及四个标记为“#”的点在正方形的顶点处,设集合{1P Ω=,2P ,3P ,}4P ,点P ∈Ω,过P 作直线P l ,使得不在P l 上的“#”的点分布在P l 的两侧. 用1()P D l 和2()P D l 分别表示P l 一侧和另一侧的“#”的点到P l 的距离之和. 若过P 的直线P l 中有且仅有一条满足1()P D l 2()P D l =,则Ω中所有这样的P 为.二. 选择题本大题共有4题,每题有且只有一个正确. 考生应在答题纸的相应编号上,填上正确的答案,选对得5分,否则一律得零分.13.关于x 、y 的二元一次方程组50234x y x y +=⎧⎨+=⎩的系数行列式D =()A.0543 B.1024C. 1523D.605414.在数列{}n a 中,12nn a ⎛⎫=- ⎪⎝⎭,n N *∈,则n n lim a →∞()A. 等于12-B. 等于0C. 等于12D. 不存在15.已知a 、b 、c 为实常数,数列{}n x 的通项2n x an bn c =++,n N *∈,则“存在k N *∈,使得100k x +,200k x +,300k x +成等差数列”的一个必要条件是( )A. 0a ≥B. 0b ≤C. 0c =D. 20a b c -+=16.在平面直角坐标系xOy 中,已知椭圆221:1364x y C +=和222:19y C x +=,P 为1C 上的动点,Q 为2C 上的动点,设ω为OP OQ ⋅的最大值,记集合{(P Ω=,)|Q P 在1C 上,Q 在2C 上,且OP OQ ⋅}ω=,则Ω中元素的个数为( )A. 2个B. 4个C. 8个D. 无数个三. 解答题本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤。
高考数学考点归纳之 直线、平面平行的判定与性质
高考数学考点归纳之 直线、平面平行的判定与性质一、基础知识1.直线与平面平行的判定定理和性质定理⎣⎢⎡⎦⎥⎤❶应用判定定理时,要注意“内”“外”“平行”三个条件必须都具备,缺一不可. 2.平面与平面平行的判定定理和性质定理⎣⎢⎢⎡⎦⎥⎥⎤❷如果一个平面内的两条相交直线分别平行于另一个平面的两条直线,那么这两个平面互相平行.符号表示:a ⊂α,b ⊂α,a ∩b =O ,a ′⊂β,b ′⊂β,a ∥a ′,b ∥b ′⇒α∥β. 二、常用结论平面与平面平行的三个性质(1)两个平面平行,其中一个平面内的任意一条直线平行于另一个平面. (2)夹在两个平行平面间的平行线段长度相等.(3)两条直线被三个平行平面所截,截得的对应线段成比例.考点一 直线与平面平行的判定与性质考法(一) 直线与平面平行的判定[典例] 如图,在直三棱柱ABC A 1B 1C 1中,点M ,N 分别为线段A 1B ,AC 1的中点.求证:MN ∥平面BB 1C 1C .[证明] 如图,连接A 1C .在直三棱柱ABC A 1B 1C 1中,侧面AA 1C 1C 为平行四边形.又因为N 为线段AC 1的中点,所以A 1C 与AC 1相交于点N ,即A 1C 经过点N ,且N 为线段A 1C 的中点.因为M 为线段A 1B 的中点,所以MN ∥BC . 又因为MN ⊄平面BB 1C 1C ,BC ⊂平面BB 1C 1C , 所以MN ∥平面BB 1C 1C .考法(二)线面平行性质定理的应用[典例](2018·豫东名校联考)如图,在四棱柱ABCDA1B1C1D1中,E为线段AD上的任意一点(不包括A,D两点),平面CEC1与平面BB1D交于FG.求证:FG∥平面AA1B1B.[证明]在四棱柱ABCDA1B1C1D1中,BB1∥CC1,BB1⊂平面BB1D,CC1⊄平面BB1D,所以CC1∥平面BB1D.又CC1⊂平面CEC1,平面CEC1与平面BB1D交于FG,所以CC1∥FG.因为BB1∥CC1,所以BB1∥FG.因为BB1⊂平面AA1B1B,FG⊄平面AA1B1B,所以FG∥平面AA1B1B.[题组训练]1.(2018·浙江高考)已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥n”是“m∥α”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:选A∵若m⊄α,n⊂α,且m∥n,由线面平行的判定定理知m∥α,但若m⊄α,n⊂α,且m∥α,则m与n有可能异面,∴“m∥n”是“m∥α”的充分不必要条件.2.如图,在四棱锥PABCD中,AB∥CD,AB=2,CD=3,M为PC上一点,且PM =2MC.求证:BM ∥平面P AD .证明:法一:如图,过点M 作MN ∥CD 交PD 于点N ,连接AN . ∵PM =2MC ,∴MN =23CD .又AB =23CD ,且AB ∥CD ,∴AB 綊MN ,∴四边形ABMN 为平行四边形, ∴BM ∥AN .又BM ⊄平面P AD ,AN ⊂平面P AD , ∴BM ∥平面P AD .法二:如图,过点M 作MN ∥PD 交CD 于点N ,连接BN . ∵PM =2MC ,∴DN =2NC , 又AB ∥CD ,AB =23CD ,∴AB 綊DN ,∴四边形ABND 为平行四边形, ∴BN ∥AD .∵BN ⊂平面MBN ,MN ⊂平面MBN ,BN ∩MN =N , AD ⊂平面P AD ,PD ⊂平面P AD ,AD ∩PD =D , ∴平面MBN ∥平面P AD .∵BM ⊂平面MBN ,∴BM ∥平面P AD .3.如图所示,四边形ABCD 是平行四边形,点P 是平面ABCD 外一点,M 是PC 的中点,在DM 上取一点G ,过G 和P A 作平面P AHG 交平面BMD 于GH .求证:P A ∥GH .证明:如图所示,连接AC 交BD 于点O ,连接MO , ∵四边形ABCD 是平行四边形, ∴O 是AC 的中点,又M 是PC 的中点,∴P A ∥MO . 又MO ⊂平面BMD ,P A ⊄平面BMD , ∴P A ∥平面BMD .∵平面P AHG ∩平面BMD =GH , P A ⊂平面P AHG , ∴P A ∥GH .考点二平面与平面平行的判定与性质[典例]如图,在三棱柱ABCA1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EF A1∥平面BCHG.[证明](1)∵GH是△A1B1C1的中位线,∴GH∥B1C1.又∵B1C1∥BC,∴GH∥BC,∴B,C,H,G四点共面.(2)∵E,F分别为AB,AC的中点,∴EF∥BC,∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.∵A1G綊EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG,∴A1E∥平面BCHG.∵A1E∩EF=E,∴平面EF A1∥平面BCHG.[变透练清]1.(变结论)在本例条件下,若D1,D分别为B1C1,BC的中点,求证:平面A1BD1∥平面AC1D.证明:如图所示,连接A1C,AC1,设交点为M,∵四边形A1ACC1是平行四边形,∴M是A1C的中点,连接MD,∵D为BC的中点,∴A1B∥DM.∵DM⊄平面A1BD1,A1B⊂平面A1BD1,∴DM∥平面A1BD1.又由三棱柱的性质知D1C1綊BD,∴四边形BDC1D1为平行四边形,∴DC1∥BD1.又DC1⊄平面A1BD1,BD1⊂平面A1BD1,∴DC1∥平面A1BD1,又∵DC1∩DM=D,DC1⊂平面AC1D,DM⊂平面AC1D,∴平面A1BD1∥平面AC1D.2.如图,四边形ABCD与四边形ADEF为平行四边形,M,N,G分别是AB,AD,EF的中点,求证:(1)BE∥平面DMF;(2)平面BDE∥平面MNG.证明:(1)如图,连接AE,设DF与GN的交点为O,则AE必过DF与GN的交点O.连接MO,则MO为△ABE的中位线,所以BE∥MO.又BE⊄平面DMF,MO⊂平面DMF,所以BE∥平面DMF.(2)因为N,G分别为平行四边形ADEF的边AD,EF的中点,所以DE∥GN.又DE⊄平面MNG,GN⊂平面MNG,所以DE∥平面MNG.又M为AB中点,所以MN为△ABD的中位线,所以BD∥MN.又BD⊄平面MNG,MN⊂平面MNG,所以BD ∥平面MNG .又DE ⊂平面BDE ,BD ⊂平面BDE ,DE ∩BD =D , 所以平面BDE ∥平面MNG .[课时跟踪检测]A 级1.已知直线a 与直线b 平行,直线a 与平面α平行,则直线b 与α的关系为( ) A .平行 B .相交C .直线b 在平面α内D .平行或直线b 在平面α内解析:选D 依题意,直线a 必与平面α内的某直线平行,又a ∥b ,因此直线b 与平面α的位置关系是平行或直线b 在平面α内.2.若平面α∥平面β,直线a ∥平面α,点B ∈β,则在平面β内且过B 点的所有直线中( )A .不一定存在与a 平行的直线B .只有两条与a 平行的直线C .存在无数条与a 平行的直线D .存在唯一与a 平行的直线解析:选A 当直线a 在平面β内且过B 点时,不存在与a 平行的直线,故选A. 3.在空间四边形ABCD 中,E ,F 分别是AB 和BC 上的点,若AE ∶EB =CF ∶FB =1∶2,则对角线AC 和平面DEF 的位置关系是( )A .平行B .相交C .在平面内D .不能确定解析:选A 如图,由AE EB =CFFB 得AC ∥EF .又因为EF ⊂平面DEF ,AC ⊄平面DEF , 所以AC ∥平面DEF .4.(2019·重庆六校联考)设a ,b 是两条不同的直线,α,β是两个不同的平面,则α∥β的一个充分条件是( )A .存在一条直线a ,a ∥α,a ∥βB .存在一条直线a ,a ⊂α,a ∥βC .存在两条平行直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥αD .存在两条异面直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥α解析:选D 对于选项A ,若存在一条直线a ,a ∥α,a ∥β,则α∥β或α与β相交,若α∥β,则存在一条直线a ,使得a ∥α,a ∥β,所以选项A 的内容是α∥β的一个必要条件;同理,选项B 、C 的内容也是α∥β的一个必要条件而不是充分条件;对于选项D ,可以通过平移把两条异面直线平移到一个平面中,成为相交直线,则有α∥β,所以选项D 的内容是α∥β的一个充分条件.故选D.5.如图,透明塑料制成的长方体容器ABCD A 1B 1C 1D 1内灌进一些水,固定容器底面一边BC 于地面上,再将容器倾斜,随着倾斜度的不同,有下面四个命题:①没有水的部分始终呈棱柱形;②水面EFGH 所在四边形的面积为定值; ③棱A 1D 1始终与水面所在平面平行; ④当容器倾斜如图所示时,BE ·BF 是定值. 其中正确命题的个数是( ) A .1 B .2 C .3D .4解析:选C 由题图,显然①是正确的,②是错误的; 对于③,∵A 1D 1∥BC ,BC ∥FG ,∴A 1D 1∥FG 且A 1D 1⊄平面EFGH ,FG ⊂平面EFGH , ∴A 1D 1∥平面EFGH (水面). ∴③是正确的;对于④,∵水是定量的(定体积V ), ∴S △BEF ·BC =V ,即12BE ·BF ·BC =V .∴BE ·BF =2VBC(定值),即④是正确的,故选C.6.如图,平面α∥平面β,△P AB 所在的平面与α,β分别交于CD ,AB ,若PC =2,CA =3,CD =1,则AB =________.解析:∵平面α∥平面β,∴CD ∥AB , 则PC P A =CDAB ,∴AB =P A ×CD PC =5×12=52. 答案:527.设α,β,γ是三个平面,a ,b 是两条不同直线,有下列三个条件: ①a ∥γ,b ⊂β;②a ∥γ,b ∥β;③b ∥β,a ⊂γ.如果命题“α∩β=a ,b ⊂γ,且________,则a ∥b ”为真命题,则可以在横线处填入的条件是________(填序号).解析:由面面平行的性质定理可知,①正确;当b ∥β,a ⊂γ时,a 和b 在同一平面内,且没有公共点,所以平行,③正确.故应填入的条件为①或③.答案:①或③8.在三棱锥P ABC 中,PB =6,AC =3,G 为△P AC 的重心,过点G 作三棱锥的一个截面,使截面平行于PB 和AC ,则截面的周长为________.解析:如图,过点G 作EF ∥AC ,分别交P A ,PC 于点E ,F ,过点E 作EN ∥PB 交AB 于点N ,过点F 作FM ∥PB 交BC 于点M ,连接MN ,则四边形EFMN 是平行四边形(平面EFMN 为所求截面),且EF =MN =23AC =2,FM =EN =13PB =2,所以截面的周长为2×4=8.答案:89.如图,E ,F ,G ,H 分别是正方体ABCD A 1B 1C 1D 1的棱BC ,CC 1,C 1D 1,AA 1的中点.求证:(1)EG ∥平面BB 1D 1D ; (2)平面BDF ∥平面B 1D 1H .证明:(1)如图,取B 1D 1的中点O ,连接GO ,OB , 因为OG 綊12B 1C 1,BE 綊12B 1C 1,所以BE 綊OG ,所以四边形BEGO 为平行四边形, 故OB ∥EG ,因为OB ⊂平面BB 1D 1D , EG ⊄平面BB 1D 1D , 所以EG ∥平面BB 1D 1D . (2)由题意可知BD ∥B 1D 1.连接HB ,D 1F ,因为BH 綊D 1F , 所以四边形HBFD 1是平行四边形, 故HD 1∥BF .又B 1D 1∩HD 1=D 1,BD ∩BF =B , 所以平面BDF ∥平面B 1D 1H .10.(2019·南昌摸底调研)如图,在四棱锥P ABCD 中,∠ABC = ∠ACD =90°,∠BAC =∠CAD =60°,P A ⊥平面ABCD ,P A =2,AB =1.设M ,N 分别为PD ,AD 的中点.(1)求证:平面CMN ∥平面P AB ; (2)求三棱锥P ABM 的体积.解:(1)证明:∵M ,N 分别为PD ,AD 的中点, ∴MN ∥P A ,又MN ⊄平面P AB ,P A ⊂平面P AB , ∴MN ∥平面P AB .在Rt △ACD 中,∠CAD =60°,CN =AN , ∴∠ACN =60°.又∠BAC =60°,∴CN ∥AB . ∵CN ⊄平面P AB ,AB ⊂平面P AB , ∴CN ∥平面P AB . 又CN ∩MN =N , ∴平面CMN ∥平面P AB .(2)由(1)知,平面CMN ∥平面P AB ,∴点M 到平面P AB 的距离等于点C 到平面P AB 的距离. ∵AB =1,∠ABC =90°,∠BAC =60°,∴BC =3,∴三棱锥P ABM 的体积V =V M P AB =V C P AB =V P ABC =13×12×1×3×2=33.B 级1.如图,四棱锥P ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,P A =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.(1)求证:MN ∥平面P AB ; (2)求四面体N BCM 的体积. 解:(1)证明:由已知得AM =23AD =2.取BP 的中点T ,连接AT ,TN , 由N 为PC 的中点知TN ∥BC , TN =12BC =2.又AD ∥BC ,故TN 綊AM ,四边形AMNT 为平行四边形,于是MN ∥AT . 因为AT ⊂平面P AB ,MN ⊄平面P AB , 所以MN ∥平面P AB .(2)因为P A ⊥平面ABCD ,N 为PC 的中点,所以N 到平面ABCD 的距离为12P A .取BC 的中点E ,连接AE .由AB =AC =3,得AE ⊥BC ,AE =AB 2-BE 2= 5.由AM ∥BC 得M 到BC 的距离为5,故S △BCM =12×4×5=2 5. 所以四面体N BCM 的体积V N BCM =13×S △BCM ×P A 2=453.2.如图所示,几何体E ABCD 是四棱锥,△ABD 为正三角形,CB =CD ,EC ⊥BD .(1)求证:BE =DE ;(2)若∠BCD =120°,M 为线段AE 的中点,求证:DM ∥平面BEC . 证明:(1)如图所示,取BD 的中点O ,连接OC ,OE .∵CB =CD ,∴CO ⊥BD .又∵EC ⊥BD ,EC ∩CO =C ,∴BD ⊥平面OEC ,∴BD ⊥EO .又∵O 为BD 中点.∴OE 为BD 的中垂线,∴BE =DE .(2)取BA 的中点N ,连接DN ,MN .∵M 为AE 的中点,∴MN ∥BE .∵△ABD 为等边三角形,N 为AB 的中点,∴DN ⊥AB .∵∠DCB =120°,DC =BC ,∴∠OBC =30°,∴∠CBN =90°,即BC ⊥AB ,∴DN ∥BC .∵DN ∩MN =N ,BC ∩BE =B ,∴平面MND ∥平面BEC .又∵DM ⊂平面MND ,∴DM ∥平面BEC .。
2021-2022学年上海高一数学下学期满分全攻略第01讲 正弦余弦正切余切(核心考点讲与练)练习版
第01讲 正弦、余弦、正切、余切(核心考点讲与练)1.角的概念的推广(1)正角,负角和零角.用旋转的观点定义角,并规定了旋转的正方向,就出现了正角,负角和零角,这样角的大小就不再限于00到3600的范围.(2)象限角和轴线角.象限角的前提是角的顶点与直角坐标系中的坐标原点重合,始边与x 轴的非负半轴重合,这样当角的终边在第几象限,就说这个角是第几象限的角,若角的终边与坐标轴重合,这个角不属于任一象限,这时也称该角为轴线角.(3)终边相同的角,具有共同的绐边和终边的角叫终边相同的角,所有与角α终边相同的角(包含角α在内)的集合为{}Z k k ∈⋅+=,360 αββ. (4)角α在“ 0到 360”范围内,指 3600<≤α.2.弧度制:弧长等于半径的弧所对的圆心角叫做1弧度的角.用“弧度”作为单位来度量 角的单位制称为弧度制.弧度:长度等于半径的弧所对的圆心角的大小 (1) 角度制与弧度制换算关系:180π︒=弧度3.扇形弧长与面积:记扇形的半径为r ,圆心角为α弧度,弧长为l ,面积为s ,则有4.单位圆:单位圆泛指半径为1个单位的圆.本章中,在平面直角坐标系中,特指出以 原点为圆心、以1为半径的圆为单位圆.5.正弦、余弦、正切及余切的定义:在平面直角坐标系中,将角α的顶点与坐标原点o 重合,始边与x 轴的正半轴重合,在角α的终边上任取异于原点的一点p (x ,y ),就有sin y r α=;cos x r α=;tan yx α=;cot x yα=; 6.任意角的正弦、余弦、正切、余切(1)平方关系:22sin cos 1αα+=(2)商数关系:sin tan (cos 0)cos αααα=≠;cos cot (sin 0)sin αααα=≠; (3)倒数关系:tan cot 1αα⋅=;注意:1) “同角”的概念与角的表达形式无关,如:13cos 3sin 22=+αα,2tan 2cos2sinααα=. 2)上述关系(公式)都必须在定义域允许的范围内成立.3)由一个角的任一三角函数值可求出这个角的其余各三角函数值,且因为利用“平方关系”公式,最终需求平方根,会出现两解,因此应尽可能少用,若使用时,要注意讨论符号.考点一:象限角与终边相同的角【例1】(2020·上海市奉贤区奉城高级中学高一期末)下列各组角中,两个角终边不相同的一组是( ) A .43-与677B .900与1260-C .120-与960D .150与630【例2】(2020·上海市莘庄中学高一月考)终边在y 轴负半轴上的角的集合为___________________【例3】(2020·上海市金山中学高一期中)2019角是第_______象限角. 【例4】(2020·上海浦东新区·高一期中)与4π角终边重合的角的集合是________ 【例5】(2021春•静安区试题)★☆☆☆☆【例6】(2021宝山区校级试题)★★☆☆☆【巩固练习】1.(2021春•黄浦区校级试题)★☆☆☆☆2.(2021春•普陀区校级试题)★☆☆☆☆3.(2020浦东新区校级试题)★★☆☆☆4.在0与360范围内,找出与下列各角终边相同的角,并判断它们是第几象限角?(1)120- (2)640 (3)95012'-考点二:弧度制【例1】.把角6730'化为弧度制.【例2】若两个角的和是1弧度,此两角的差是1,试求这两个角.【例3】指出下列各角所在的象限:(1)517π; (2)π623-.【例4】(教材练习)★☆☆☆☆【例5】(2019春•黄浦区校级试题)★☆☆☆☆【巩固练习】1.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是( )A .2B .C .D .2.一钟表的分针长10 cm ,经过35分钟,分针的端点所转过的长为:( )A .70 cmB .cm C .()cmD . cm 3.与角 1825-的终边相同,且绝对值最小的角的度数是___,合___弧度。
2021-2022学年上海高一数学下学期考试满分全攻略第6章 三角(新文化与压轴30题)(练习版)
第6章 三角(新文化与压轴30题专练)一、单选题1.(2021·上海·高一期末)南宋数学家秦九韶在《数书九章》中提出“三斜求积术”,即“以小斜幂并大斜幂减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂减上,余四约之,为实;一为从隅,开平方得积”,可用公式S a ,b ,c ,S 为三角形的三边和面积)表示,在ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,若2a =,且2cos cos b C c B c -=,则ABC 面积的最大值为( )A .1BCD .2.(2021·上海·高一课时练习)我们把顶角为36︒的等腰三角形称为黄金三角形,它的0.618≈,该三角形被认为是最美的三角形.根据这些信息,可得cos36︒=( )A B C D 3.(2021·上海·高一期末)《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,系统总结了战国、秦、汉时期的数学成就,其中《方田》一章中记载了计算弧田(弧田就是由圆弧和其所对弦所围成弓形)的面积所用的经验公式:弧田面积=12(弦⨯矢+矢⨯矢),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,按照上述经验公式计算所得弧田面积与其实际面积之间存在误差,现有圆心角为23π,弦长为( )平方米(其中3π≈ 1.73≈)A .14B .16C .18D .204.(2021·上海市南洋模范中学高一期中)若[]0,,,,44R ππαπβλ⎡⎤∈∈-∈⎢⎥⎣⎦,满足3cos 202πααλ⎛⎫---= ⎪⎝⎭,34sin cos 0βββλ++=,则cos 2αβ⎛⎫+ ⎪⎝⎭的值是( )A .0B .2C .2-D .15.(2021·上海市延安中学高一期中)当函数3cos 4sin y x x =-取得最大值时,tan x 的值是( ) A .43B .34C .43-D .34-6.(2021·上海·高一课时练习)若24sin 3k x x k -=+,则k 的取值范围是( )A .13,2⎛⎫-- ⎪⎝⎭B .1,2⎡⎫-+∞⎪⎢⎣⎭C .()3,-+∞D .()1,33,2⎛⎤-∞--- ⎥⎝⎦二、填空题7.(2021·上海徐汇·高一期末)赵爽是我国古代数学家、天文学家,约公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方程”亦称“赵爽弦图”,它是由四个全等的直角三角形与一个小正方形拼成的个大正方形,如图是一张弦图已知大正方形的面积为25,小正方形的面积为1,若直角三角形较小的锐角为α,则tan 4πα⎛⎫- ⎪⎝⎭的值为________.8.(2021·上海·高一期末)著名数学家华罗庚先生被誉为“中国现代数学之父”,他倡导的“0.618优选法”在生产和科研实践中得到了非常广泛的应用,黄金分割比t 0.618≈2=___________.9.(2021·上海·华东师范大学第三附属中学高一阶段练习)我国古代数学家秦九韶左《数书九章》中记述了了“一斜求积术”,用现代式子表示即为:在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,则ABC 的面积S =,根据公式cos (3)cos 0c B b a C ⋅++=,且2224c a b --=,则ABC 的面积为________.10.(2021·上海·高一期中)第24届国际数学家大会的会标是以我国古代数学家赵爽的弦图为基础进行设计的.如图,会标是由4个全等的直角三角形与一个小正方形拼成的一个大正方形,若小正方形的面积为4,大正方形的面积为100,设直角三角形中较大的锐角为θ,则tan 4πθ⎛⎫-= ⎪⎝⎭___________.11.(2021·上海·高一课时练习)我国古代数学家秦九韶在《数学九章》中记述了“三斜求积术”,用现代式子表示即为:在ABC 中,,,A B C ∠∠∠所对的边长分别为,,a b c ,则ABC 的面积S =根据此公式若cos (3)cos 0a B b c A ++=,且2222a b c --=,则△ABC 的面积为______________.12.(2019·上海市晋元高级中学高一阶段练习)在△ABC 中,已知2sin sin sin()sin A B C C θλ-=,其中1tan 022πθθ⎛⎫=<< ⎪⎝⎭.若112tan tan tan A B C++为定值,则实数λ=_________.13.(2021·上海市七宝中学高一期中)设ABC 的内角A 、B 、C 满足6cos a bC b a=+,则cot cot A B +的最小值为________.14.(2021·上海·高一期末)设锐角ABC ∆的三个内角、、A B C 的对边分别为a b c 、、,且4c =,2A C =,则ABC ∆的周长的取值范围为______________.15.(2021·上海·高一期末)已知()f x 是定义域为R 的单调函数,且对任意实数x ,都有()32415x f f x ⎡⎤+=⎢⎥+⎣⎦,则217log sin6f π⎛⎫= ⎪⎝⎭______. 16.(2021·上海·高一期末)已知(sin )21f x x =+([,])22x ππ∈-,那么(cos10)f =________17.(2021·上海·高一课时练习)已知sin()sin()m αββα+⋅-=,则22cos cos αβ-的值为________.18.(2021·上海·高一专题练习)下面这道填空题,由于一些原因造成横线上的内容无法认清,现知结论,请在横线上填写原题的一个条件,题目:已知α、β均为锐角,且1sin sin 2αβ-=-,______,则()59cos 72αβ-=.三、解答题19.(2021·上海·高一课时练习)《九章算术》是我国古代数学成就的杰出代表.其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积=(弦´矢+矢2).弧田(如图),由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.按照上述经验公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角为,弦长等于9米的弧田.(1)计算弧田的实际面积;(2)按照《九章算术》中弧田面积的经验公式计算所得结果与(1)中计算的弧田实际面积相差多少平方米?(结果保留两位小数)20.(2021·上海市西南位育中学高一期中)已知函数()|sin ||cos |()f x x x x R =+∈,函数()4sin cos ()g x x x k x R =+∈,设()()()F x f x g x =-. (1)求证:2π是函数f (x )的一个周期; (2)当k =0时,求F (x )在区间,2ππ⎡⎤⎢⎥⎣⎦上的最大值;(3)若函数F (x )在区间(0,)π内恰好有奇数个零点,求实数k 的值.21.(2021·上海·高一专题练习)对于集合{}12,,,n A θθθ=⋅⋅⋅和常数0θ,定义:()()()22210200cos cos cos n nθθθθθθμ-+-++-=为集合A 相对0θ的“余弦方差”.(1)若集合ππ,34A ⎧⎫=⎨⎬⎩⎭,00θ=,求集合A 相对0θ的“余弦方差”;(2)求证:集合π2π,,π33A ⎧⎫=⎨⎬⎩⎭相对任何常数0θ的“余弦方差”是一个与0θ无关的定值,并求此定值;(3)若集合π,,4A αβ⎧⎫=⎨⎬⎩⎭,[)0,πα∈,[)π,2πβ∈,相对任何常数0θ的“余弦方差”是一个与0θ无关的定值,求出α、β.22.(2021·上海·复旦附中高一期中)在非直角三角形ABC 中,角,,A B C 的对边分别为,,a b c .(1)若2a c b +=,且3B π=,判断三角形ABC 的形状;(2)若(1)a c mb m +=>, (i )证明:1tantan 221A C m m -=+;(可能运用的公式有sin sin 2sin cos 22αβαβαβ+-+=) (ii )是否存在函数()m ϕ,使得对于一切满足条件的m ,代数式cos cos ()()cos cos A C m m A Cϕϕ++恒为定值?若存在,请给出一个满足条件的()m ϕ,并证明之;若不存在,请给出一个理由.23.(2021·上海·高一期末)如图是一个“蝴蝶形图案(阴影区域)”,其中AC BD、是过抛物线2y x 的两条互相垂直的弦(点A B 、在第二象限),且AC BD 、交于点10,4F ⎛⎫⎪⎝⎭,点E 为y 轴上一点,EFA α∠=,其中α为锐角(1)设线段AF 的长为m ,将m 表示为关于α的函数(2)求“蝴蝶形图案”面积的最小值,并指出取最小值时α的大小24.(2021·上海·高一专题练习)在ABC 中,已知223sin cossin cos sin 222C A A C B +=. (1)求证:2a c b +=; (2)求角B 的取值范围.25.(2021·上海·高一课时练习)已知关于x 的方程()24210x m x m -++=的两个根恰好是一个直角三角形的两个锐角的余弦,求实数m 的值.26.(2021·上海·高一课时练习)已知函数3sin()cos()tan(2)22()tan()sin()f ππααπαααπαπ-+-=++. (1)化简()f α;(2)若1()()28f f παα⋅+=-,且5342αππ≤≤,求()()2f f παα++的值;(3)若()2()2f f παα+=,求()()2f f παα⋅+的值.27.(2021·上海·高一期末)已知函数()f x ,如果存在给定的实数对(,a b ),使得()()f a x f a x b +⋅-=恒成立,则称()f x 为“S -函数”.(1)判断函数12(),()3xf x x f x ==是否是“S -函数”;(2)若3()tan f x x =是一个“S -函数”,求出所有满足条件的有序实数对(,)a b ; (3)若定义域为R 的函数()f x 是“S -函数”,且存在满足条件的有序实数对(0,1)和(1,4),当[0,1]x ∈时,()f x 的值域为[1,2],求当[2012,2012]x ∈-时函数()f x 的值域.28.(2021·上海·华师大二附中高一阶段练习)如图,某公司要在AB 、两地连线上的定点C 处建造广告牌CD ,其中D 为顶端,AC 长35米,CB 长80米,设AB 、在同一水平面上,从A 和B 看D 的仰角分别为.(1)设计中CD 是铅垂方向,若要求,问CD 的长至多为多少(结果精确到0.01米)?(2)施工完成后.CD 与铅垂方向有偏差,现在实测得求CD 的长(结果精确到0.01米)?29.(2021·上海市复兴高级中学高一期中)如果对于三个数a 、b 、c 能构成三角形的三边,则称这三个数为“三角形数”,对于“三角形数”a 、b 、c ,如果函数()y f x =使得三个数()f a 、()f b 、()f c 仍为“三角形数”,则称()y f x =为“保三角形函数”. (1)对于“三角形数”α、2α、4απ+,其中84ππα<<,若()tan f x x =,判断函数()y f x =是否是“保三角形函数”,并说明理由;(2)对于“三角形数”α、6πα+、3πα+,其中7612ππα<<,若()sin g x x =,判断函数()y g x =是否是“保三角形函数”,并说明理由.30.(2021·上海·高一期末)对于集合{}12,,,n A θθθ=和常数0θ,定义:()()()22210200cos cos cos -+-++-=n nθθθθθθμ为集合A 相对的0θ的“余弦方差”.(1)若集合,34A ππ⎧⎫=⎨⎬⎩⎭,00θ=,求集合A 相对0θ的“余弦方差”;(2)判断集合2,,33A πππ⎧⎫=⎨⎬⎩⎭相对任何常数0θ的“余弦方差”是否为一个与0θ无关的定值,并说明理由;(3)若集合,,4A παβ⎧⎫=⎨⎬⎩⎭,[0,)απ∈,[,2)βππ∈,相对任何常数0θ的“余弦方差”是一个与0θ无关的定值,求出α、β.。
2021年上海市高考数学试卷真题+参考答案+详细解析
2021年上海市高考数学试卷一、填空题(本大题共有12题,第1~6题每题4分,第7~12题每题5分,满分54分) 1.(4分)已知11z i =+,223z i =+,求12z z += . 2.(4分)已知{|21}A x x =,{1,0,1}B =-,则AB = .3.(4分)若22240x y x y +--=,求圆心坐标为 . 4.(4分)如图正方形ABCD 的边长为3,求AB AC ⋅= .5.(4分)已知3()2f x x=+,则1(1)f -= . 6.(4分)已知二项式5()x a +展开式中,2x 的系数为80,则a = . 7.(5分)已知3220380x x y x y ⎧⎪--⎨⎪+-⎩,z x y =-,则z 的最大值为 .8.(5分)已知{}n a 为无穷等比数列,13a =,n a 的各项和为9,2n n b a =,则数列{}n b 的各项和为 . 9.(5分)已知圆柱的底面圆半径为1,高为2,AB 为上底面圆的一条直径,C 是下底面圆周上的一个动点,则ABC ∆的面积的取值范围为 .10.(5分)已知花博会有四个不同的场馆A ,B ,C ,D ,甲、乙两人每人选2个去参观,则他们的选择中,恰有一个馆相同的概率为 .11.(5分)已知抛物线22(0)y px p =>,若第一象限的A ,B 在抛物线上,焦点为F ,||2AF =,||4BF =,||3AB =,求直线AB 的斜率为 .12.(5分)已知*(1i a N i ∈=,2,⋯,9)对任意的*(28)k N k ∈,11k k a a -=+或11k k a a +=-中有且仅有一个成立,16a =,99a =,则19a a +⋯+的最小值为 . 二、选择题(本大题共有4题,每题5分,满分20分) 13.(5分)以下哪个函数既是奇函数,又是减函数( ) A .3y x =-B .3y x =C .3log y x =D .3x y =14.(5分)已知参数方程323421x t ty t t⎧=-⎪⎨=-⎪⎩,[1,1]t ∈-,以下哪个图符合该方程( )A .B .C .D .15.(5分)已知()3sin 2f x x =+,对任意的1[0,]2x π∈,都存在2[0,]2x π∈,使得12()2()2f x f x θ=++成立,则下列选项中,θ可能的值是( ) A .35πB .45π C .65π D .75π 16.(5分)已知两两不相等的1x ,1y ,2x ,2y ,3x ,3y ,同时满足①11x y <,22x y <,33x y <;②112233x y x y x y +=+=+;③1133222x y x y x y +=,以下哪个选项恒成立( )A .2132x x x <+B .2132x x x >+C .2213x x x < D .2213x x x >三、解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图,在长方体1111ABCD A B C D -中,已知2AB BC ==,13AA =. (1)若P 是棱11A D 上的动点,求三棱锥C PAD -的体积; (2)求直线1AB 与平面11ACC A 的夹角大小.18.(14分)在ABC ∆中,已知3a =,2b c =. (1)若23A π=,求ABC S ∆. (2)若2sin sin 1B C -=,求ABC C ∆.19.(14分)已知一企业今年第一季度的营业额为1.1亿元,往后每个季度增加0.05亿元,第一季度的利润为0.16亿元,往后每一季度比前一季度增长4%.(1)求今年起的前20个季度的总营业额;(2)请问哪一季度的利润首次超过该季度营业额的18%?20.(16分)已知22:12x y Γ+=,1F ,2F 是其左、右焦点,直线l 过点(,0)(2)P m m -,交椭圆于A ,B 两点,且A ,B 在x 轴上方,点A 在线段BP 上. (1)若B 是上顶点,11||||BF PF =,求m 的值;(2)若1213F A F A ⋅=,且原点O 到直线l l 的方程;(3)证明:对于任意m <12//F A F B 的直线有且仅有一条.21.(18分)已知1x ,2x R ∈,若对任意的21x x S -∈,21()()f x f x S -∈,则有定义:()f x 是在S 关联的. (1)判断和证明()21f x x =-是否在[0,)+∞关联?是否有[0,1]关联?(2)若()f x 是在{3}关联的,()f x 在[0,3]x ∈时,2()2f x x x =-,求解不等式:2()3f x . (3)证明:()f x 是{1}关联的,且是在[0,)+∞关联的,当且仅当“()f x 在[1,2]是关联的”.2021年上海市高考数学试卷参考答案与试题解析一、填空题(本大题共有12题,第1~6题每题4分,第7~12题每题5分,满分54分) 1.(4分)已知11z i =+,223z i =+,求12z z += 34i + .【解析】因为11z i =+,223z i =+,所以1234z z i +=+.故答案为:34i +. 【评注】本题考查了复数的加法运算,属基础题. 2.(4分)已知{|21}A x x =,{1,0,1}B =-,则A B = {1,0}- .【解析】因为1{|21}{|}2A x x x x==,{1,0,1}B =-,所以{1,0}A B =-.故答案为:{1,0}-.【评注】本题考查了交集及其运算,属基础题.3.(4分)若22240x y x y +--=,求圆心坐标为 (1,2) .【解析】由22240x y x y +--=,可得圆的标准方程为22(1)(2)5x y -+-=,所以圆心坐标为(1,2). 故答案为:(1,2).【评注】本题考查了圆的一般方程和标准方程,考查了转化思想,属于基础题. 4.(4分)如图正方形ABCD 的边长为3,求AB AC ⋅= 9 .【解析】由数量积的定义,可得cos AB AC AB AC BAC ⋅=⨯⨯∠,因为cos AB AC BAC =⨯∠,所以29AB AC AB ⋅==.故答案为:9.【评注】本题主要考查平面向量数量积的定义与计算,属于基础题. 5.(4分)已知3()2f x x=+,则1(1)f -= 3- . 【解析】因为3()2f x x =+,令()1f x =,即321x+=,解得3x =-,故1(1)3f -=-.故答案为:3-. 【评注】本题考查了反函数定义的理解和应用,解题的关键是掌握原函数的定义域即为反函数的值域,考查了运算能力,属于基础题.6.(4分)已知二项式5()x a +展开式中,2x 的系数为80,则a = 2 .【解析】5()x a +的展开式的通项公式为515r r r r T C x a -+=,所以2x 的系数为33580C a =,解得2a =.故答案为:2.【评注】本题主要考查二项式定理,二项展开式的通项公式,考查运算求解能力,属于基础题. 7.(5分)已知3220380x x y x y ⎧⎪--⎨⎪+-⎩,z x y =-,则z 的最大值为 4 .【解析】绘制不等式组表示的平面区域如图所示,目标函数即:y x z =-,其中z 取得最大值时,其几何意义表示直线系在y 轴上的截距的相反数, 据此结合目标函数的几何意义可知目标函数在点B 处取得最大值, 联立直线方程:3380x x y =⎧⎨+-=⎩,可得点的坐标为:(3,1)B -,据此可知目标函数的最大值为:3(1)4max z =--=.故答案为:4.【评注】本题主要考查线性规划的应用,利用线性规划求最值的方法等知识,属于中档题.8.(5分)已知{}n a 为无穷等比数列,13a =,n a 的各项和为9,2n n b a =,则数列{}n b 的各项和为185. 【解析】设{}n a 的公比为q ,由13a =,n a 的各项和为9,可得391q =-,解得23q =,所以123()3n n a -=⨯,21223()3n n n b a -==⨯,可得数列{}n b 是首项为2,公比为49的等比数列,则数列{}n b 的各项和为2184519=-. 故答案为:185. 【评注】本题考查等比数列的通项公式和无穷递缩等比数列的求和公式,考查方程思想和运算能力,属于基础题.9.(5分)已知圆柱的底面圆半径为1,高为2,AB 为上底面圆的一条直径,C 是下底面圆周上的一个动点,则ABC ∆的面积的取值范围为.【解析】如图1,上底面圆心记为O ,下底面圆心记为O ',连接OC ,过点C 作CM AB ⊥,垂足为点M ,则12ABC S AB CM ∆=⨯⨯,根据题意,AB 为定值2,所以ABC S ∆的大小随着CM 的长短变化而变化,如图2所示,当点M 与点O 重合时,CM OC ==ABC S ∆取得最大值为122⨯;如图3所示,当点M 与点B 重合,CM 取最小值2,此时ABC S ∆取得最小值为12222⨯⨯=.综上所述,ABC S ∆的取值范围为.故答案为:.【评注】本题考查了空间中的最值问题,将三角形面积的最值问题转化为求解线段CM 的最值问题进行求解是解题的关键,考查了空间想象能力与逻辑推理能力,属于中档题.10.(5分)已知花博会有四个不同的场馆A ,B ,C ,D ,甲、乙两人每人选2个去参观,则他们的选择中,恰有一个馆相同的概率为23. 【解析】甲选2个去参观,有246C =种,乙选2个去参观,有246C =种,共有6636⨯=种, 若甲乙恰有一个馆相同,则选确定相同的馆有144C =种,然后从剩余3个馆种选2个进行排列,有236A =种,共有4624⨯=种,则对应概率242363P ==,故答案为:23. 【评注】本题主要考查概率的计算,利用古典概型的概率公式是解决本题的关键,是基础题.11.(5分)已知抛物线22(0)y px p =>,若第一象限的A ,B 在抛物线上,焦点为F ,||2AF =,||4BF =,||3AB =,求直线AB 的斜率为. 【解析】如图所示,设抛物线的准线为l ,作AC l ⊥于点C ,BD l ⊥于点D ,AE BD ⊥于点E ,由抛物线的定义,可得2AC AF ==,4BD BF ==,∴422,BE AE =-===∴直线AB 的斜率tan AB AE k ABE BE =∠==. 【评注】本题主要考查直线斜率的定义与计算,抛物线的定义等知识,属于基础题.12.(5分)已知*(1i a N i ∈=,2,⋯,9)对任意的*(28)k N k ∈,11k k a a -=+或11k k a a +=-中有且仅有一个成立,16a =,99a =,则19a a +⋯+的最小值为 31 . 【解析】设1k k k b a a +=-,由题意可得,k b ,1k b -恰有一个为1, 如果135791b b b b b =====,那么16a =,27a =,31a ,4312a a =+, 同样也有,51a ,6512a a =+,71a ,8712a a =+, 全部加起来至少是67121212931++++++++=; 如果24681b b b b ====,那么88a =,21a ,3212a a =+, 同样也有,41a ,52a ,61a ,72a ,全部加起来至少是61212128932++++++++=, 综上所述,最小应该是31.故答案为:31.【评注】本题考查了数列的概念的理解和应用,递推公式的应用,考查了逻辑推理能力与运算能力,属于中档题.二、选择题(本大题共有4题,每题5分,满分20分) 13.(5分)以下哪个函数既是奇函数,又是减函数( ) A .3y x =-B .3y x =C .3log y x =D .3x y =【解析】3y x =-在R 上单调递减且为奇函数,A 符合题意;因为3y x =在R 上是增函数,B 不符合题意;3log y x =,3x y =为非奇非偶函数,C 不符合题意;故选:A .【评注】本题主要考查了基本初等函数的单调性及奇偶性的判断,属于基础题.14.(5分)已知参数方程3342x t ty ⎧=-⎪⎨=⎪⎩,[1,1]t ∈-,以下哪个图符合该方程( )A .B .C .D .【解析】利用特殊值法进行排除,当0y =时,0t =,1,1-, 当0t =时,0x =, 当1t =时,1x =-, 当1t =-时,1x =,故当0y =时,0x =或1或1-,即图象经过(1,0)-,(0,0),(1,0)三个点, 对照四个选项中的图象,只有选项B 符合要求.故选:B .【评注】本题考查了函数图象的识别问题,解题的关键是掌握识别图象的方法:可以从定义域、值域、函数值的正负、特殊点、特殊值、函数的性质等方面进行判断,考查了直观想象能力与逻辑推理能力,属于中档题.15.(5分)已知()3sin 2f x x =+,对任意的1[0,]2x π∈,都存在2[0,]2x π∈,使得12()2()2f x f x θ=++成立,则下列选项中,θ可能的值是( ) A .35πB .45π C .65π D .75π 【解析】1[0,]2x π∈,1sin [0,1]x ∴∈,1()[2,5]f x ∴∈,都存在2[0,]2x π∈,使得12()2()2f x f x θ=++成立,2()0min f x θ∴+,23()2maxf x θ+, ()3sin 2f x x =+,∴22sin()3min x θ+-,21sin()6max x θ+-,sin y x =在3[,]22x ππ∈上单调递减,当35πθ=时,2311[,]510x ππθ+∈,∴21171sin()sin sin 1062x ππθ+=>=-,故A 选项错误, 当45πθ=时,2413[,]510x ππθ+∈,∴21352sin()sinsin 1043min x ππθ+=<=-, 24sin()sin 05max x πθ+=>,故B 选项正确,当65πθ=时,2617[,]510x ππθ+∈,26131sin()sinsin 5126max x ππθ+=<<-,故C 选项错误, 当75πθ=时,2719[,]510x ππθ+∈,219231sin()sinsin 10126max x ππθ+=<=<-,故D 选项错误. 故选:B .【评注】本题考查了三角函数的单调性,以及恒成立问题,需要学生有较综合的知识,属于中档题. 16.(5分)已知两两不相等的1x ,1y ,2x ,2y ,3x ,3y ,同时满足①11x y <,22x y <,33x y <;②112233x y x y x y +=+=+;③1133222x y x y x y +=,以下哪个选项恒成立( )A .2132x x x <+B .2132x x x >+C .2213x x x < D .2213x x x > 【解析】设1122332x y x y x y m +=+=+=,11x m a y m a =-⎧⎨=+⎩,22x m b y m b =-⎧⎨=+⎩,33x m cy m c =-⎧⎨=+⎩,根据题意,应该有,,0a b c a b c ≠≠⎧⎨>⎩,且2222222()0m a m c m b -+-=->,则有222222a c b m b ⎧+=⎨>⎩, 则1322()()2()2()x x x m a m c m b b a c +-=-+---=-+,因为22222(2)()2()()0b a c a c a c -+=+-+>,所以13222()0x x x b a c +-=-+>,所以A 项正确,B 错误.2222132()()()()(2)(2)2a c x x x m a m c mb b ac m ac b b a c m --=----=--+-=---,而上面已证(2)0b a c -->,因为不知道m 的正负,所以该式子的正负无法恒定.故选:A .【评注】本题主要考查不等关系与不等式的应用,考查了方程思想和转化思想,属于中档题. 三、解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图,在长方体1111ABCD A B C D -中,已知2AB BC ==,13AA =. (1)若P 是棱11A D 上的动点,求三棱锥C PAD -的体积;(2)求直线1AB 与平面11ACC A 的夹角大小.【解析】(1)如图,在长方体1111ABCD A B C D -中,1112322332C PAD PAD C PAD V S h -∆-⎛⎫=⋅=⨯⨯⨯⨯= ⎪⎝⎭平面;(2)连接1111AC B D O =,AB BC =,∴四边形1111A B C D 为正方形,则11OB OA ⊥,又11AA OB ⊥,111OA AA A =,1OB ∴⊥平面11ACC A ,∴直线1AB 与平面11ACC A 所成的角为1OAB ∠,∴111sin OB OAB AB ∠===.∴直线1AB 与平面11ACC A所成的角为.【评注】本题考查三棱锥体积的求法,考查线面角的求解,考查推理能力及运算能力,属于中档题. 18.(14分)在ABC ∆中,已知3a =,2b c =. (1)若23A π=,求ABC S ∆. (2)若2sin sin 1B C -=,求ABC C ∆.【解析】(1)由余弦定理得22222159cos 224b c a c A bc c +--=-==,解得297c =,21sin 22ABC S bc A c ∆∴==; (2)2b c =,∴由正弦定理得sin 2sin B C =,又2sin sin 1B C -=,1sin 3C ∴=,2sin 3B =,sin sin C B ∴<,C B ∴<,C ∴为锐角,cos C ∴=. 由余弦定理得:2222cos c a b ab C =+-,又3a =,2b c =,2294c c ∴=+-,得:2390c -+=,解得:c =当c =时,b =3ABC C ∆=+;当c =时,b =3ABC C ∆=+. 【评注】本题考查余正、弦定理应用、三角形面积求法,考查数学运算能力,属于中档题.19.(14分)已知一企业今年第一季度的营业额为1.1亿元,往后每个季度增加0.05亿元,第一季度的利润为0.16亿元,往后每一季度比前一季度增长4%. (1)求今年起的前20个季度的总营业额;(2)请问哪一季度的利润首次超过该季度营业额的18%?【解析】(1)由题意可知,可将每个季度的营业额看作等差数列,则首项1 1.1a =,公差0.05d =, 20120(201)2020 1.110190.0531.52S a d -∴=+=⨯+⨯⨯=,即营业额前20季度的和为31.5亿元. (2)法一:假设今年第一季度往后的第*()n n N ∈季度的利润首次超过该季度营业额的18%, 则0.16(14%)(1.10.05)18%n n ⨯+>+⋅,令()0.16(14%)(1.10.05)18%n f n n =⨯+-+⋅,*()n N ∈,即要解()0f n >, 则当2n 时,1()(1)0.0064(14%)0.009n f n f n ---=⋅+-, 令()(1)0f n f n -->,解得:10n ,即当19n 时,()f n 递减;当10n 时,()f n 递增, 由于(1)0f <,因此()0f n >的解只能在10n 时取得, 经检验,(24)0f <,(25)0f >,所以今年第一季度往后的第25个季度的利润首次超过该季度营业额的18%. 法二:设今年第一季度往后的第*()n n N ∈季度的利润与该季度营业额的比为n a , 则1 1.04(1.050.05) 1.04261.0410.04(1)1.10.052222n n a n a n n n++==-=+-+++, ∴数列{}n a 满足1234567a a a a a a a >>>=<<<⋯⋯,注意到,250.178a =⋯,260.181a =⋯,∴今年第一季度往后的第25个季度利润首次超过该季度营业额的18%.【评注】本题主要考查了函数的实际应用,考查了等差数列的实际应用,同时考查了学生的计算能力,是中档题.20.(16分)已知22:12x y Γ+=,1F ,2F 是其左、右焦点,直线l 过点(,0)(2)P m m -,交椭圆于A ,B 两点,且A ,B 在x 轴上方,点A 在线段BP 上. (1)若B 是上顶点,11||||BF PF =,求m 的值;(2)若1213F A F A ⋅=,且原点O 到直线ll 的方程;(3)证明:对于任意m <12//F A F B 的直线有且仅有一条.【解析】(1)因为Γ的方程:2212x y +=,所以22a =,21b =,所以2221c a b =-=,所以1(1,0)F -,2(1,0)F ,若B 为Γ的上顶点,则(0,1)B ,所以1||BF ==1||1PF m =--,又11||||BF PF =,所以1m =- (2)设点,sin )A θθ,则222121(21)sin 2cos 1sin 3F A F Aθθθθθ⋅=+-+=-+=,因为A 在线段BP 上,横坐标小于0,解得cos θ=,故(A , 设直线l的方程为0)y kx k =+>,由原点O 到直线l则d +==,化简可得231030k k -+=,解得3k =或13k =,故直线l的方程为13y x =3y x =(舍去,无法满足m <,所以直线l 的方程为13y x =+(3)联立方程组2212y kx km x y =-⎧⎪⎨+=⎪⎩,可得22222(12)4220k x k mx k m +-+-=, 设11(),A x y ,22(),B x y ,则222121222422,1212k m k m x x x x k k -+==++, 因为12//F A F B ,所以2112(1)(1)x y x y-=+,又y kxkm =-,故化简为122212x x k-=-+, 又1222||||12x x k -===-+, 两边同时平方可得,2224210k k m -+=,整理可得22142k m =--,当m <221042k m=->-, 因为点A ,B 在x 轴上方,所以k 有且仅有一个解, 故对于任意m <12//F A F B 的直线有且仅有一条.【评注】本题考查了平面向量与圆锥曲线的综合应用,直线与椭圆位置关系的应用,在解决直线与圆锥曲线位置关系的问题时,一般会联立直线与圆锥曲线的方程,利用韦达定理和“设而不求”的方法进行研究,属于难题.21.(18分)已知1x ,2x R ∈,若对任意的21x x S -∈,21()()f x f x S -∈,则有定义:()f x 是在S 关联的. (1)判断和证明()21f x x =-是否在[0,)+∞关联?是否有[0,1]关联?(2)若()f x 是在{3}关联的,()f x 在[0,3]x ∈时,2()2f x x x =-,求解不等式:2()3f x . (3)证明:()f x 是{1}关联的,且是在[0,)+∞关联的,当且仅当“()f x 在[1,2]是关联的”. 【解析】(1)()f x 在[0,)+∞关联,在[0,1]不关联,任取12[0,)x x -∈+∞,则1212()()2()[0,)f x f x x x -=-∈+∞,()f x ∴在[0,)+∞关联; 取11x =,20x =,则121[0,1]x x -=∈,1212()()2()2[0,1]f x f x x x -=-=∉,()f x ∴在[0,1]不关联;(2)()f x 在{3}关联,∴对于任意123x x -=,都有12()()3f x f x -=,∴对任意x ,都有(3)()3f x f x +-=,由[0,3)x ∈时,2()2f x x x =-,得()f x 在[0,3)x ∈的值域为[1,3)-,()f x ∴在[3,6)x ∈的值域为[2,6), 2()3f x ∴仅在[0,3)x ∈或[3,6)x ∈上有解,[0,3)x ∈时,2()2f x x x =-,令2223x x -13x <,[3,6)x ∈时,2()(3)3818f x f x x x =-+=-+,令228183x x -+,解得35x ,∴不等式2()3f x 的解为1,5],(3)证明:①先证明:()f x 是在{1}关联的,且是在[0,)+∞关联的()f x ⇒在[1,2]是关联的, 由已知条件可得,(1)()1f x f x +=+,()()f x n f x n ∴+=+,n Z ∈, 又()f x 是在[0,)+∞关联的,∴任意21x x >,21()()f x f x >成立,若2112x x -,12112x x x ∴++,121(1)()(2)f x f x f x ∴++,即121()1()()2f x f x f x ++, 211()()2f x f x ∴-,()f x ∴是[1,2]关联,②再证明:()f x 在[1,2]是关联的()f x ⇒是在{1}关联的,且是在[0,)+∞关联的, ()f x 在[1,2]是关联的,∴任取12[1,2]x x -∈,都有12()()[1,2]f x f x -∈成立,即满足1212x x -,都有121()()2f x f x -, 下面用反证法证明(1)()1f x f x +-=,若(1)()1f x f x +->,则(2)()(2)(1)(1)()2f x f x f x f x f x f x +-=+-+++->,与()f x 在[1,2]是关联的矛盾,若(1)()1f x f x +-<,而()f x 在[1,2]是关联的,则(1)()1f x f x +-,矛盾, (1)()1f x f x ∴+-=成立,即()f x 是在{1}关联的,再证明()f x 是在[0,)+∞关联的,任取12[,)()x x n n N -∈+∞∈,则存在n N ∈,使得任取12[,1]()x x n n n N -∈+∈, 121(1)2x n x ---,1212[(1)]()()(1)()[1,2]f x n f x f x n f x ∴---=---∈, 12()()[,1][0,)f x f x n n ∴-⊆+⊆+∞,()f x ∴是在[0,)+∞关联的;综上所述,()f x 是{1}关联的,且是在[0,)+∞关联的,当且仅当“()f x 在[1,2]是关联的”,故得证. 【评注】该题考查了函数求解析式,解不等式,函数恒成立的知识,对学生逻辑推理能力提出了很高的要求,属于难题.。
2021年上海市夏季高考数学试卷(word解析版)
2021年上海市夏季高考数学试卷一、填空题(本大题共12题,满分54分,第1~6题每题4分,第7~12题每题5分) 1、已知121i,23i z z =+=+(其中i 为虚数单位),则12z z += . 2、已知{}{}21,1,0,1,A x x B =≤=-则 AB =3、若22240x y x y +--=,则圆心坐标为4、如图边长为3的正方形,ABCD 则AB AC ⋅=5、已知3()2,f x x=+则1(1)f -= 6.已知二项式()5x a +的展开式中,2x 的系数为80,则a =________.7、已知⎪⎩⎪⎨⎧≥-+≥--≤0830223y x y x x ,目标函数y x z -=,则z 的最大值为8、已知无穷递缩等比数列123,,n n a b a =={}n a 的各项和为9,则数列{}n b 的各项和为 9、在圆柱底面半径为1,高为2,AB 为上底底面的直径,点C 是下底底面圆弧上的一个动点,点C 绕着下底底面旋转一周,则ABC ∆面积的范围10.甲、乙两人在花博会的A 、B 、C 、D 不同展馆中各选2个去参观,则两人选择中恰有一个馆相同的概率为________.11、已知抛物线22(0)y px p =>,若第一象限的点、A B 在抛物线上,抛物线焦点为,F2,4,3,AF BF AB ===则直线AB 的斜率为12.已知*(1,2,9)i a i ∈=⋯N ,且对任意()*28k k ∈≤≤N 都有11k k a a -=+或11k k a a +=-中有且仅有一个成立,16a =,99a =,则91a a ++的最小值为________.二、选择题(本大题共有4题,每题5分,满分20分) 13、以下哪个函数既是奇函数,又是减函数( )A.()3f x x =-B. 3()f x x =C.3()log xf x = D.()3x f x = 14、已知参数方程3234[1,1])21x t tt y t t⎧=-⎪∈-⎨=+-⎪⎩,以下哪个图像是该方程的图像 ( )15.已知()3sin 2f x x =+,对于任意的20,2x π⎡⎤∈⎢⎥⎣⎦,都存在10,2x π⎡⎤∈⎢⎥⎣⎦,使得 ()()12+23f x f x θ+=成立,则下列选项中,θ可能的值是( ).A 35π .B 45π .C 65π .D 75π16、已知两两不同的312312,,,,,x y x y x y 满足112233x y x y x y +=+=+,且11x y <,22x y <,33x y <,31122302x y x y x y =>+,则下列选项中恒成立的是( ).A 2132x x x <+ .B 2132x x x >+ .C 2213x x x < .D 2213x x x >三、解答题(本大题共有5题,满分76分,解答下列各题必须写出必要的步骤) 17、如图,在长方体1111ABCD A B C D -中,12,3AB BC AA === (1)若P 是边11A D 的动点,求三棱锥P ADC -的体积; (2)求1AB 与平面11ACC A 所成的角的大小. 18、在ΔABC 中,已知3,2a b c == (1)若2,3A π∠=求ΔABC 的面积;(2)若2sinB sinC 1-=,求ΔABC 的周长.19.已知某企业今年(2021年)第一季度的营业额为1.1亿元,以后每个季度(一年有四个季度)营业额都比前一季度多0.05亿元,该企业第一季度是利润为0.16亿元,以后每一季度的利润都比前一季度增长4%.(1)求2021第一季度起20季度的营业额总和;(2)问哪一年哪个季度的利润首次超过该季度营业额的18%?20、已知2212:1,2、x y F F Γ+=是其左右焦点,(,0)(2)P m m <-,直线l 过点P 交Γ于、A B 两点,且A 在线段BP 上.(1)若B 是上顶点,11,BF PF =求m 的值; (2)若121,3F A F A ⋅=且原点O 到直线l 415求直线l 的方程; (3)证明:证明:对于任意2,m <-总存在唯一一条直线使得12//F A F B .21、如果对任意12,x x ∈使得12x x S -∈都有12()()f x f x S -∈,则称()f x 是S 关联的.(1)判断并证明()21f x x =-是否是[0,)+∞关联?是否是[0,1]关联? (2)()f x 是{}3关联的,在[0,3)上有2()2f x x x =-,解不等式2()3f x ≤≤; (3)“()f x 是{}3关联的,且是[0,)+∞关联”当且仅当“()f x 是[1,2]关联的”.2021年上海市夏季高考数学试卷参考答案与试题解析一、填空题(本大题共12题,满分54分,第1~6题每题4分,第7~12题每题5分) 1.已知121i,23i z z =+=+(其中i 为虚数单位),则12z z += . 【思路分析】复数实部和虚部分别相加 【解析】:1234z z i +=+【归纳总结】本题主要考查了复数的加法运算,属于基础题. 2、已知{}{}21,1,0,1,A x x B =≤=-则 A B =【思路分析】求出集合A,再求出A B【解析】:{}1212A x x x x ⎧⎫=≤=≤⎨⎬⎩⎭,所以{}1,0A B =-【归纳总结】本题主要考查了集合的交集运算,属于基础题. 3、若22240x y x y +--=,则圆心坐标为 【思路分析】将圆一般方程化为标准方程,直接读取圆心坐标【解析】:22240x y x y +--=可以化为22125x y -+-=()()所以圆心为(1,2) 【归纳总结】本题主要考查了圆的方程,属于基础题.4、如图边长为3的正方形,ABCD 则AB AC ⋅= 【思路分析】利用向量投影转化到边上. 【解析】方法一:2=9AB AC AB ⋅=方法二:由已知||3AB =,||32AC =,4AC AB π<>=,则233292AB AC ⋅=⨯=; 【归纳总结】本题考查了平面向量的数量积的定义、正方形的几何性质;基础题; 5、已知3()2,f x x=+则1(1)f -= 【思路分析】利用反函数定义求解.【解析】由题意,得原函数的定义域为:(,0)(0,)-∞+∞,结合反函数的定义,得312x=+, 解得3x =-,所以,1(1)3f -=-;【归纳总结】本题主要考查了反函数的定义的应用,属于基础题. 6.已知二项式()5x a +的展开式中,2x 的系数为80,则a =________.【思路分析】利用二项式展开式通项公式求解.【解析】5331553,80,2r r r r T C a x r C a a -+=⇒===【归纳总结】本题考查了二项式定理的通项公式、组合数公式与指数幂运算;基础题。
高考数学一轮复习考点知识与题型讲解14 等比数列(含解析)
高考数学一轮复习考点知识与题型讲解考点14 等比数列一.等比数列的有关概念定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n =q .二.等比数列的有关公式 1.通项公式:a n =a 1q n-1a n =a m ·q n -m .2.前n 项和公式:1n n 11n na q 1)S a (1q )a a q (q 1)1q1q =⎧⎪=⎨--=≠⎪--⎩( 三.等比数列的性质 1.等比中项(1)如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即G 是a 与b 的等比中项 ⇔a ,G ,b 成等比数列⇒G 2=ab .(2)若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则a m ·a n =a p ·a q =a 2k. 2.前n 项和的性质nn 2n n 3n 2n (1)S S -S S -S ...、、成等比数列,公比q(2){a n }为等比数列,若a 1·a 2·…·a n =T n ,则T n ,T 2n T n ,T 3nT 2n,…成等比数列(3)当q ≠0,q ≠1时,S n =k -k ·q n (k ≠0)是{a n }成等比数列的充要条件,此时k =a 11-q .考点题型分析考点题型一 等比数列基本运算【例1】(1)(2022·重庆九龙坡区·渝西中学高三月考)设等比数列{a n }的前n 项和是S n ,a 2=﹣2,a 5=﹣16,则S 6=(2)(2022·全国高三专题练习)等比数列{}n a 中,15314a a a ==,.记n S 为{}n a 的前n 项和.若63m S =,m =________.(3)(2022·江西高三其他模拟)已知数列{}n a 是正项等比数列,且2414a a =,又2a ,41a +,5a 成等差数列,则{}n a 的通项公式为 【答案】(1)﹣63(2)6(3)12n na【解析】(1)设公比为q ,则352a a q =,即3162q -=-,解得2q,所以211a a q==-, 所以()()661611263112a q S q---===---,故选:A.(2)设{}n a 的公比q ,由534a a =可得2q =±, 当2q =-时,所以12633mmS,即2=188m,此时方程没有正整数解;当2q时,所以12216312mm m S -==-=-,即2=64m ,解得6m =.故答案为:6.A .112n n a -=B .12n n a =C .2nn a =D .(3)由题意,设数列{}n a 的公比为()0q q >, 因为2414a a =,所以24q =,解得2q (负值舍去);又2a ,41a +,5a 成等差数列,所以()42521a a a +=+,即()3411121a q a q a q +=+,则1112(81)216a a a +=+,解得11a =,12n n a -∴=.【举一反三】1.(2022·济南旅游学校)设等比数列{}n a 满足121a a +=-,133a a -=-,则公比q =______. 【答案】2-【解析】由于数列{}n a 是等比数列,故由121a a +=-,133a a -=-可得,1121113a a q a a q +=-⎧⎨-=-⎩,两式作比可得:21113q q +=-,解得13q -=,即2q =-.故答案为:2- 2.(2022·河南高三月考)已知等比数列{}n a 满足3432a a =且22a =,则1a =________. 【答案】43【解析】因为3432a a =,所以4332a q a ==.故由等比数列的通项公式得2124332a a q ===.故答案为:433.(2022·河南高三其他模拟)已知在等比数列{}n a 中,1231a a a =,12311172a a a ++=,则数列{}n a 的通项公式为_______. 【答案】()2*2nn a n -=∈N 或()2*2n nan -=∈N【解析】设等比数列{}n a 的公比为q ,因为1231a a a =,所以321a =,解得21a =,【方法总结】(1)等比数列基本量的运算是等比数列中的一类基本问题,等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)便可迎刃而解.(2)等比数列的前n 项和公式涉及对公比q 的分类讨论,当q =1时,{a n }的前n 项和S n =na 1;当q ≠1时,{a n }的前n 项和S n =a 11-q n 1-q =a 1-a n q1-q.所以131311152a a a a =⎧⎪⎨+=⎪⎩,解得13212a a =⎧⎪⎨=⎪⎩或13122a a ⎧=⎪⎨⎪=⎩. 当112a =时,21a =,所以2q ,即有121222n n n a --=⨯=; 当12a =时,21a =,所以12q =,即有22nn a -=. 故答案为:()2*2nn a n -=∈N 或()2*2n nan -=∈N .4.(2022·上海市三林中学高三期中)数列{}()*n a n N ∈中,数列前n 项和为nS ,若11a =,12n n a a +=,则10S =________. 【答案】1023【解析】因为11a =,12n n a a +=,所以数列{}()*n a n N ∈是首项为1,公比为2的等比数列,所以()1010112102312S ⋅-==-.故答案为:1023.考点题型二 等比数列中项性质【例2】(1)(2022·浙江高三开学考试)已知等比数列{}1n a +,10a =,53a =,则3a =( ) A .3-B .2-C .1-D .1(2)(2022·防城港市防城中学高三月考)等比数列{}n a 中,214a =,2q ,则4a 与8a 的等比中项是( ) A .4±B .4C .14±D .14(3)(2022·广西高三其他模拟)已知各项不为0的等差数列{a n }满足2478230a a a -+=,数列{b n }是等比数列,且b 7=a 7,则b 2b 8b 11等于( ) A .1B .2C .4D .8【答案】(1)D(2)A(3)D【解析】(1)由题意得:()()()23151114a a a +=+⋅+=,由()231110a a q +=+⋅>,得312a +=,3故选:D.(2)∵214a =,2q ,∴44621244a a q =⨯=⨯=.又642816a a a ==.∴4a 与8a 的等比中项是4±.故选:A.(3)因为{an}是各项不为0的等差数列,由2478230a a a -+=可得:()()2222487867868777220,2220220420a a a a a a a a a a a a +-+=-+=⇒+-=⇒-=.解得72a =,所以772b a ==,所以32811211876878b b b b b b b b b b ====,关系存在D【举一反三】1.(2022·广西北海市·高三一模)若数列{}n a 是等比数列,且17138a a a =,则311a a =( ) A .1 B .2 C .4 D .8【答案】C【解析】因为数列{}n a 是等比数列,由17138a a a =,得378a =,所以72a =,因此231174a a a ==.故选:C.2.(2022·河南郑州市·高三月考)正项等比数列{}n a 满足2237610216a a a a a ++=,则28a a +=( ) A .1 B .2 C .4 D .8【答案】C【解析】根据题意,等比数列{}n a 满足2237610216a a a a a ++=,则有222288216a a a a ++=,即()22816a a +=,又由数列{}n a 为正项等比数列,故284a a +=.故选:C .3.(2022·河南高三期中)公差不为0的等差数列{}n a 中,23711220a a a -+=,数列{}n b 是等比数列,且77b a =,则68b b =( ) A .2B .4C .8D .16【解析】等差数列{}n a 中,31172a a a +=,故原式等价于27a -740a =解得70a =或74,a = 各项不为0的等差数列{}n a ,故得到774a b ==,数列{}n b 是等比数列,故2687b b b ==16.故选:D.4.(2022·黑龙江哈尔滨市·哈尔滨三中高三期中)等比数列{}n a 的各项均为正数,且101010113a a =.则313232020log log log a a a +++=( )A .3B .505C .1010D .2022【答案】C【解析】由120202201932018101010113a a a a a a a a =====,所以313232020log log log a a a +++()10103101010113log log 31010a a ===.故选:C5.(2022·石嘴山市第三中学高三期中)在正项等比数列{}n a 中,369lg lg lg 6a a a ++=,则111a a 的值是( ) A .10 B .1000 C .100 D .10000【答案】D【解析】正项等比数列{}n a 中,因为369lg lg lg 6a a a ++=,所以33696lg =lg 6a a a a =,即63lg 6a =,6lg 2a =,故6=100a ,21116==10000a a a .故选:D.6.(2022·黑龙江大庆市·大庆实验中学高三月考)在等比数列{}n a 中,315,a a 是方程2680x x -+=的根,则1179a a a =( ) A.B.- C.± D .2【答案】A【解析】根据题意:3156a a +=,231598a a a ⋅==,故3150,0a a >>,6930a a q =>,故9a =11792999a a a a a a ===故选:A.7.(2022·扬州市新华中学高三月考)已知数列{}n a 是等比数列,数列{}n b是等差数列,若1611a a a ⋅⋅=161134b b b π++=-,则3948tan 1b b a a +-⋅的值是( )A. BC.D .1【答案】D【解析】在等差数列{}n b 中,由16116334b b b b π++==-,得64b π=-,39622b b b π∴+==-, 在等比数列{}n a中,由1611a a a ⋅⋅=36a =,6a =,248112a a ∴-=-=-,则39482tan tantan 1124b b a a ππ-+===-⋅-.故选:D .考点题型三 等比数列的前n 项和性质【例3】(1)(2022·安徽和县)已知等比数列{a n }的前n 项和S n =3n +2+3t ,则t =( ) A .1B .﹣1C .﹣3D .﹣9(2)(2022·广东佛山市·高三月考)等比数列{}n a 的前n 项和为n S ,若482,6S S ==,则16S 为( ) A .18B .30C .54D .14(3)(2022·全国高三专题练习)在等比数列{a n }中,如果a 1+a 2=40,a 3+a 4=60,那么a 7+a 8=( ) A .135 B .100 C .95D .80(4)(2022·山西太原市)已知一个项数为偶数的等比数列{}n a ,所有项之和为所有偶数项之和的4倍,前3项之积为64,则1a =( ). A .11B .12C .13D .14【答案】(1)C(2)B(3)A(4)B【解析】(1)因为等比数列{a n }的前n 项和S n =3n +2+3t ,则a 1=S 1=33+3t =27+3t ,a 2=S 2﹣S 1=(34+3t )﹣(33+3t )=54,a 3=S 3﹣S 2=(35+3t )﹣(34+3t )=162, 则有(27+3t )×162=542,解得t =﹣3,故选:C. (2){}n a 是等比数列,则4841281612,,,S S S S S S S ---也成等比数列,482,6S S ==,844S S ∴-=,1288S S ∴-=,则1214S =,161216S S -=,则1630S =.故选:B.(3)由等比数列前n 项和的性质知,a 1+a 2,a 3+a 4,a 5+a 6,a 7+a 8成等比数列, 其首项为40,公比为603=402,所以a 7+a 8=3340()1352⨯=.故选:A (4)由题意可得所有项之和S S +奇偶是所有偶数项之和的4倍,∴4S S S +=奇偶偶, 设等比数列{}n a 的公比为q ,由等比数列的性质可得S qS =偶奇,即1S S q=奇偶, ∴14S S S q +=偶偶偶,∵0S ≠偶,∴解得13q =, 又前3项之积3123264a a a a ==,解得24a =,∴2112a a q==.故选:B. 【举一反三】1.(2022·四川眉山)已知等比数列{}n a 的前n 项和为n S ,若3212n n t S ++=,则t =( )A .1B .-1C .2D .-2【答案】B【解析】()32111321222n n n t S t ++==⋅+⋅+,所以211t +=-,解得1t =-.故选:B2.(2022·静宁县第一中学高三月考)设等比数列{}n a 的前n 项和为n S ,若23S =,415S =,则6S =( ) A .31 B .32C .63D .64【答案】C【解析】因为n S 为等比数列{}n a 的前n 项和,所以2S ,42S S -,64S S -成等比数列, 所以()()242264S S S S S -=-,即()()62153315-=-S ,解得663S =.故选:C3.(2022·江苏高三专题练习)已知数列{a n }是等比数列,S n 为其前n 项和,若a 1+a 2+a 3=4,a 4+a 5+a 6=8,则S 12=A .40B .60C .32D .50【答案】B【解析】由等比数列的性质可知,数列S 3,S 6−S 3,S 9−S 6,S 12−S 9是等比数列,即数列4,8,S 9−S 6,S 12−S 9是等比数列,因此S 12=4+8+16+32=60,选B . 4.(2022安徽池州市)已知等比数列{}n a 的公比2q,前100项和为10090S =,则其偶数项24100a a a ++⋅⋅⋅+为( )A .15B .30C .45D .60【答案】D【解析】1001210090S a a a =+++=,设1399S a a a =+++,则241002S a a a =+++,所以290S S +=,30S =,故24100260a a a S +++==,故选D.5.(2022·陕西铜川市·高三二模)设等比数列{a n }的前n 项和为S n ,若S 6:S 3=1:2,则S 9:S 3=() A .1:2 B .2:3C .3:4D .1:3【答案】C【解析】∵{a n }为等比数列则S 3,S 6-S 3,S 9-S 6也成等比数列由S 6:S 3=1:2令S 3=x ,则S 6=12x, 6312S S x -=-,则S 3:S 6-S 3=S 6-S 3:S 9-S 6=-1:2 则S 9-S 6=14x 则S 9=34x 则S 9:S 3=34x :x=3:4故选C .6.(2022·全国高三专题练习)设0a >,0b >.是3a 与3b 的等比中项,则12a b+的最小值为( )A .3B .C .2+D .3+【答案】D【解析】3a 与3b 的等比中项,∴2333a b ⋅==,∴1a b +=.∵0a >,0b >.∴()12122333b a a b a b a b a b ⎛⎫+=++=++≥+=+ ⎪⎝⎭,当且仅当2b ==-.∴12a b+的最小值为3+.故选:D.7.(2022·江西南昌二中高三月考)已知等比数列{}n a 中,51189=a a a ,数列{}n b 是等差数列,且88b a =,则313+=b b ( ) A .18 B .9 C .16 D .81【答案】A【解析】由题意可知,对任意的n *∈N ,0n a ≠,由等比中项的性质可得2511889a a a a ==,可得89a =,则889b a ==.由等差中项的性质可得3138218b b b +==.故选:A.8.(2022·全国高三专题练习)已知各项为正数的等比数列{}n a 满足2589a a a =﹐则3334353637log log log log log a a a a a ++++的值为( )A .73B .83C .3D .103【答案】D【解析】已知各项为正数的等比数列{}n a 满足2589a a a =,由等比中项的性质可得3253a =,2353a ∴=,由对数的运算性质可得()3334353637334567log log log log log log a a a a a a a a a a ++++=5210333310log 3log 33⎛⎫=== ⎪⎝⎭.故选:D.考点题型四 等比数列的定义运用【例4】(2022·江苏南京市第二十九中学高三期中节选)已知等差数列{}n a 的前n 项和为n S ,37a =,648S =,数列{}n b 满足122n n b b +=+,13b =.证明:数列{}2n b -是等比数列,并求数列{}n a 与数列{}n b 通项公式;【答案】证明见解析;21n a n =+;1122n n b -⎛⎫=+ ⎪⎝⎭,*n ∈N【解析】()11112221222222n n n n n n b b b b b b ++---===---,所以数列{}2n b -是首项为12b -,公比12q =等比数列, 所以()111112222n n n b b --⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭,即1122n n b -⎛⎫=+ ⎪⎝⎭,*n ∈N ;由316127656482a a d S a d =+=⎧⎪⎨⨯=+=⎪⎩,解得13a =,2d =,所以()1121n a a n d n =+-=+【举一反三】1.(2022·全国高三专题练习)已知数列{}n a 满足12a =-,124n n a a +=+,证明:{}4n a +是等比数列;【答案】见解析;【解析】由题意,数列{}n a 满足12a =-,所以142a +=又因为124n n a a +=+,所以()142824n n n a a a ++=+=+,即1424n n a a ++=+,所以{}4n a +是以2为首项,2为公比的等比数列.2.(2022·江苏省镇江中学高三开学考试)在数列{}n a 中,11a =,121n n a a +=+,求证数列{}1n a +为等比数列,并求n a 关于n 的通项公式;【答案】证明见解析;21nn a =-【解析】()1121n n a a ++=+,∴{}1n a +为等比数列且首项为112a +=,公比为2,∴11222n nn a -+=⋅=,21n n a =-.3.(2022·安徽高三月考)已知正项数列{}n a 满足:1a a =,2211420n n n n a a a a ++-+-=,n *∈N ,判断数列{}n a 是否是等比数列,并说明理由; 【答案】答案不唯一,具体见解析;【解析】∵()()2211114202210n n n n n n n n a a a a a a a a ++++-+-=⇒-++=,又{}n a 是正项数列,可得1210n n a a +++>,∴12n n a a +=, ∴当0a =时,数列{}n a 不是等比数列; 当0a ≠时,易知0n a ≠,故12n na a +=, 所以数列{}n a 是等比数列,首项为a ,公比为2.4.(2022·安徽高三月考)已知数列{}n a 满足:1a =1,11(2)n n n a a n n ++=+.求证:数列1n a n ⎧⎫+⎨⎬⎩⎭是等比数列;【答案】证明见解析【解析】设1nn a b n =+,则1111n n a b n ++=++,∴112112()1211n n n n n nn n a a nb a n n n a a b a n n n+++++++====+++ ∵1112b a =+=,∴数列{}n b 是以2为首项,2为公比的等比数列,即数列1n a n ⎧⎫+⎨⎬⎩⎭是等比数列考点题型五 历史中的数列【例5】(2022·江阴市华士高级中学)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:“一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯多少?”现有类似问题:一座5层塔共挂了363盏灯,且相邻两层中的下一层灯数是上一层灯数的3倍,则塔的中间一层共有灯( ) A .3盏 B .9盏C .27盏D .81盏【答案】C【解析】根据题意,设塔的底层共有x 盏灯,则每层灯的数目构成以x 为首项,13为公比的等比数列,则有51(1)3363113x S ⨯-==-,解可得:243x =,所以中间一层共有灯21243()273⨯=盏.故选:C【举一反三】1.(2022·宁夏吴忠市·吴忠中学)明代数学家程大位编著的《算法统宗》是中国数学史上的一座丰碑.其中有一段著述“远望巍巍塔七层,红光点点倍加增,共灯三百八十一”.注:“倍加增”意为“从塔顶到塔底,相比于上一层,每一层灯的盏数成倍增加”,则该塔正中间一层的灯的盏数为( )A .3B .12C .24D .48【答案】C【解析】根据题意,可知从塔顶到塔底,每层的灯盏数构成公比为2的等比数列,设塔顶灯盏数为1a ,则有()7171238112a S ⋅-==-,解得13a =,中间层灯盏数34124a a q ==,故选:C.2.(2022·安徽高三开学考试)我国古代数学著作《算法统宗》中有这样一个问题(意为):“有一个人要走378里路,第一天健步行走,从第二天起因脚痛每天走的路程为前一天的一半,走了6天后到达目的地.”那么,此人第3天和第4天共走路程是( ) A .72里 B .60里 C .48里 D .36里【答案】A【解析】设这个人第()N n n *∈天所走的路程为n a 里,可知{}n a 是公比12q =的等比数列, 由6378S =,得16161163237813212a a S ⎛⎫- ⎪⎝⎭===-,解得1192a =,23341119219248247222a a ⎛⎫⎛⎫∴+=⨯+⨯=+= ⎪ ⎪⎝⎭⎝⎭.所以此人第3天和第4天共走了72里.故选:A.3.(2022·贵州贵阳一中高三月考)古代数学著作《九章算术》有如下问题:“今有女子善织,日自倍,五日五尺,问日织几何?”意思是:“女子善于织布,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这名女子每天分别织布多少?”某数学兴趣小组依托某制造厂用织布机完全模拟上述情景,则从第一天开始,要使织布机织布的总尺数为165尺,则所需的天数为( ) A .7 B .8 C .9 D .10【答案】D【解析】设该女子第一天织布x 尺,则5天共织布5(12)512x -=-,解得531x =尺,在情境模拟下,设需要n 天织布总尺数达到165尺,则有5(12)3116512n -=-,整理得21024n=,解得10n =.故选:D .。
2021年上海市高考数学一模试卷(理科)含解析答案
2021年上海市高考数学一模试卷(理科)一.填空题(本大题满分56分)本大题共有14小题,考生必须在答题纸的相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得0分.1.(4分)(2021•闵行区一模)已知集合A={x||x﹣|>},U=R,则∁U A=[﹣1,4].【考点】:补集及其运算.【专题】:集合.【分析】:求出A中不等式的解集确定出A,根据全集U=R求出A的补集即可.【解析】:解:由A中不等式变形得:x﹣>或x﹣<﹣,解得:x>4或x<﹣1,即A=(﹣∞,﹣1)∪(4,+∞),∵U=R,∴∁U A=[﹣1,4].故答案为:[﹣1,4]【点评】:此题考查了补集及其运算,熟练掌握补集的定义是解本题的关键.2.(4分)(2021•闵行区一模)若复数z满足(z+2)(1+i)=2i(i为虚数单位),则z=﹣1+i.【考点】:复数代数形式的乘除运算.【专题】:数系的扩充和复数.【分析】:把已知等式变形,然后利用复数代数形式的乘除运算化简求值.【解析】:解:由(z+2)(1+i)=2i,得,∴z=﹣1+i.故答案为:﹣1+i.【点评】:本题考查了复数代数形式的乘除运算,是基础题.3.(4分)(2021•闵行区一模)函数f(x)=xcosx,若f(a)=,则f(﹣a)=﹣.【考点】:函数的值.【专题】:函数的性质及应用.【分析】:由已知得f(a)=acosa=,由此能求出f(﹣a)=﹣acos(﹣a)=﹣acosa=.【解析】:解:∵f(x)=xcosx,f(a)=,∴f(a)=acosa=,∴f(﹣a)=﹣acos(﹣a)=﹣acosa=.故答案为:﹣.【点评】:本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.4.(4分)(2021•闵行区一模)计算=.【考点】:极限及其运算.【专题】:导数的综合应用.【分析】:利用极限的运算法则即可得出.【解析】:解:∵=,∴=.∴原式==.故答案为:.【点评】:本题考查了极限的运算法则,属于基础题.5.(4分)(2021•闵行区一模)设f(x)=4x﹣2x+1(x≥0),则f﹣1(0)=1.【考点】:反函数.【专题】:函数的性质及应用.【分析】:由互为反函数的两个函数的定义域和值域间的关系得到4x﹣2x+1=0,求解x的值得答案.【解析】:解:由4x﹣2x+1=0,得(2x)2﹣2•2x=0,即2x=0(舍)或2x=2,解得x=1.∴f﹣1(0)=1.故答案为:1.【点评】:本题考查了反函数,考查了互为反函数的两个函数的定义域和值域间的关系,是基础题.6.(4分)(2021•闵行区一模)已知θ∈(,π),sin﹣cos=,则cosθ=.【考点】:二倍角的余弦.【专题】:三角函数的求值.【分析】:由θ∈(,π),sin﹣cos=,求出sin2θ,然后求出cos2θ.【解析】:解:∵θ∈(,π),sin﹣cos=,∴1﹣sinθ=,∴sinθ=,∵θ∈(,π),∴cosθ=﹣=﹣.故答案为:.【点评】:本题考查二倍角的余弦,解题时要认真审题,仔细解答,注意三角函数的符号的正确选取.7.(4分)(2011•上海)若圆锥的侧面积为2π,底面面积为π,则该圆锥的体积为.【考点】:棱柱、棱锥、棱台的体积.【专题】:计算题.【分析】:求出圆锥的底面周长,然后利用侧面积求出圆锥的母线,求出圆锥的高,即可求出圆锥的体积.【解析】:解:根据题意,圆锥的底面面积为π,则其底面半径是1,底面周长为2π,又,∴圆锥的母线为2,则圆锥的高,所以圆锥的体积××π=.故答案为.【点评】:本题是基础题,考查圆锥的有关计算,圆锥的侧面积,体积的求法,考查计算能力.8.(4分)(2021•闵行区一模)已知集合M={1,3},在M中可重复的依次取出三个数a,b,c,则“以a,b,c为边长恰好构成三角形”的概率是.【考点】:古典概型及其概率计算公式.【专题】:概率与统计.【分析】:集合M={1,3},在M中可重复的依次取出三个数a,b,c,基本事件总数n=23=8,“以a,b,c为边长恰好构成三角形”包含的基本事件个数m=5,由此能求出“以a,b,c为边长恰好构成三角形”的概率.【解析】:解:集合M={1,3},在M中可重复的依次取出三个数a,b,c,基本事件总数n=23=8,“以a,b,c为边长恰好构成三角形”包含的基本事件个数m=5,∴“以a,b,c为边长恰好构成三角形”的概率:p=.故答案为:.【点评】:本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.9.(4分)(2021•闵行区一模)已知等边△ABC的边长为3,M是△ABC的外接圆上的动点,则的最大值为.【考点】:平面向量数量积的运算.【专题】:平面向量及应用.【分析】:画出图形,==3||cos∠BAM,设OM是外接圆⊙O的半径,则当且同向时,则取得最大值.【解析】:解:如图,==3||cos∠BAM,设OM是外接圆⊙O的半径为3×=,则当且同向时,则取得最大值.所以3||cos∠BAM=3(+OM)=;故答案为:.【点评】:本题考查了向量的数量积运算、向量的投影,考查了推理能力和计算能力,属于难题.10.(4分)(2021•闵行区一模)函数y=|2x|+|x|取最小值时x的取值范围是.【考点】:对数的运算性质.【专题】:函数的性质及应用.【分析】:y=|1+log2x|+|log2x|=f(x).对x分类讨论:当x≥1时,f(x)=1+2log2x;当0<x1时,f(x)=﹣1﹣2log2x;当时,f(x)=1,即可得出.【解析】:解:y=|2x|+|x|=|1+log2x|+|log2x|=f(x).当x≥1时,f(x)=1+2log2x≥1,当且仅当x=1时取等号;当0<x1时,f(x)=﹣1﹣2log2x≥1,当且仅当x=时取等号;当时,f(x)=1,因此时等号成立.综上可得:函数f(x)取最小值1时x的取值范围是.故答案为:.【点评】:本题考查了绝对值函数、对数函数的单调性、分类讨论,考查了推理能力与计算能力,属于中档题.11.(4分)(2021•闵行区一模)已知函数f(x)=()x,g(x)=x,记函数h(x)=,则函数F(x)=h(x)+x﹣5所有零点的和为5.【考点】:函数零点的判定定理.【专题】:函数的性质及应用.【分析】:运用函数f(x)=()x与g(x)=x关于直线y=x对称,可知h(x)关于直线y=x对称.利用y=x与y=5﹣x的交点,结合图求解即可.【解析】:解:∵函数f(x)=()x,g(x)=x,关于直线y=x对称,记函数h(x)=,∴可知h(x)关于直线y=x对称.∵y=x与y=5﹣x,交点为A(2.5,2.5)∴y=5﹣x,与函数h(x)交点关于A对称,x1+x2=2×=5∴函数F(x)=h(x)+x﹣5,的零点.设h(x)与y=5﹣x交点问题,可以解决函数F(x)=h(x)+x﹣5零点问题.故函数F(x)=h(x)+x﹣5所有零点的和为5.故答案为:5.【点评】:本题考查了函数的交点,解决复杂函数的零点问题,反函数的对称问题,12.(4分)(2021•闵行区一模)已知F1、F2是椭圆Γ1:=1和双曲线Γ2:=1的公共焦点,P是它们的一个公共点,且∠F1PF2=,则mn的最大值为.【考点】:双曲线的简单性质;椭圆的简单性质.【专题】:解三角形;不等式的解法及应用;圆锥曲线的定义、性质与方程.【分析】:设|PF1|=s,|PF2|=t,求出焦点,可得c=2,由余弦定理可得s,t的方程,再由椭圆和双曲线的定义可得m,n的关系,再由重要不等式a2+b2≥2ab,即可求得最大值.【解析】:解:设|PF1|=s,|PF2|=t,由题意可得公共焦点为知F1(﹣2,0),F2(2,0),即有c=2,在三角形PF1F2中,由余弦定理可得4c2=s2+t2﹣2stcos60°即s2+t2﹣st=16,由椭圆的定义可得s+t=2m(m>0),由双曲线的定义可得s﹣t=2n(n>0),解得s=m+n,t=m﹣n.即有16=(m+n)2+(m﹣n)2﹣(m+n)(m﹣n)=m2+3n2≥2mn,即有mn≤.当且仅当m=n,取得最大值.故答案为:.【点评】:本题考查椭圆和双曲线的定义、方程和性质,主要考查椭圆和双曲线的定义,同时考查三角形的余弦定理和重要不等式的运用,属于中档题.13.(4分)(2021•闵行区一模)在△ABC中,记角A、B、C所对边的边长分别为a、b、c,设S是△ABC的面积,若2SsinA<(•)sinB,则下列结论中:①a2<b2+c2;②c2>a2+b2;③cosBcosC>sinBsinC;④△ABC是钝角三角形.其中正确结论的序号是①②④.【考点】:余弦定理;三角函数中的恒等变换应用.【专题】:解三角形.【分析】:由题意可得:bcsinAsinA<acsinBcosB,又bsinA=asinB>0,可得cosB>sinA>0,可得A、B均是锐角,从而可得A+B<90°,∠C>90°,由余弦定理及两角和的余弦公式结合三角函数值的符合即可判断得解.【解析】:解:∵2SsinA<(•)sinB,∴2×bcsinA×sinA<cacosBsinB,∴可得:bcsinAsinA<acsinBcosB,又由正弦定理可得:bsinA=asinB>0,则cosB>sinA>0,可得:A、B均是锐角,而cosB=sin(90°﹣B),故有sin(90°﹣B)>sinA,即90°﹣B>A,则A+B<90°,∠C>90°,∴由余弦定理可得:cos∠C=<0,即有:c2>a2+b2,故②正确,∴由余弦定理可得:cos∠A=>0,可得a2<b2+c2,故①正确;∴△ABC是钝角三角形,故④正确;∵cosBcosC﹣sinBsinC=cos(B+C)=﹣cosA<0,故③不正确;故答案为:①②④.【点评】:本题考查了余弦定理,正弦定理,三角形面积公式,两角和的余弦公式等知识的应用,借助考查命题的真假判断,考查三角形形状的判断,属于中档题.14.(4分)(2021•闵行区一模)已知数列f(2x)=af(x)+b满足:对任意n∈N*均有a n+1=pa n+3p ﹣3(p为常数,p≠0且p≠1),若a2,a3,a4,a5∈{﹣19,﹣7,﹣3,5,10,29},则a1所有可能值的集合为{﹣1,﹣3,﹣29}.【考点】:数列递推式.【专题】:等差数列与等比数列.【分析】:从{﹣19,﹣7,﹣3,5,10,29}中任取两值作为a2,a3的值,求出p.从而求出a4,a5,由此能求出a1所有可能值的集合.【解析】:解:(1)取a2=﹣19,a3=﹣7时,﹣7=﹣19p+3p﹣3,解得p=,=﹣4,不成立;(2)取a2=﹣19,a3=﹣3时,﹣3=﹣19p+3p﹣3,解得p=0,a4=﹣3,此时a1=﹣3;(3)取a2=﹣19,a3=5时,5=﹣19p+3p﹣3,解得p=﹣,a4=5×=﹣7,a5=﹣7×=﹣1,不成立;(4)取a2=﹣19,a3=10时,10=﹣19p+3p﹣3,解得p=﹣,a4=10×=﹣,不成立;(5)取a2=﹣19,a3=29时,29=﹣19p+3p﹣3,解得p=﹣2,a4=29×(﹣2)+3×(﹣2)﹣3=﹣67,不成立;(6)取a2=﹣7,a3=﹣3时,﹣3=﹣7p+3p﹣3,解得p=0,a4=﹣3,此时a1=﹣3;(7)取a2=﹣7,a3=5,得5=﹣7p+3p﹣3,解得p=﹣2,∴a4=﹣2×5﹣3×2﹣3=﹣19,a5=﹣19×(﹣2)﹣3×2﹣3=29,∴﹣7=﹣2a1﹣3×2﹣3,解得a1=﹣1;(8)取a2=﹣7,a3=10时,10=﹣7p+3p﹣3,解得p=﹣,=,不成立;(9)取a2=﹣7,a3=29时,29=﹣7p+3p﹣3,解得p=﹣8,a4=29×(﹣8)+3×(﹣8)﹣3=﹣259,不成立;(10)取a2=﹣7,a3=﹣19时,﹣19=﹣7p+3p﹣3,解得p=4,a4=﹣19×4+3×4﹣3=﹣67,不成立;(11)取a2=﹣3,a3=﹣19时,﹣19=﹣3p+3p﹣3,不成立;(12)取a2=﹣3,a3=﹣7时,﹣7=﹣3p+3p﹣3,不成立;(13)取a2=﹣3,a3=5时,5=﹣3p+3p﹣3,不成立;(14)取a2=﹣3,a3=10时,10=﹣3p+3p﹣3,不成立;(15)取a2=﹣5,a3=29时,29=﹣3p+3p﹣3,不成立;(16)取a2=5,a3=﹣19时,﹣19=5p+3p﹣3,解得p=﹣2,a4=﹣19×(﹣2)+3×(﹣2)﹣3=29,a5=29×(﹣2)+3×(﹣2)﹣3=﹣67,不成立;(17)取a2=5,a3=﹣7时,﹣7=5p+3p﹣3,解得p=﹣,=﹣1,不成立;(18)取a2=5,a3=﹣3时,﹣3=5p+3p﹣3,解得p=0,a4=﹣3,此时a1=﹣3;(19)取a2=5,a3=10时,10=5p+3p﹣3,解得p=,=,不成立;(20)取a2=5,a3=29时,29=5p+3p﹣3,解得p=4,a4=29×4+3×4﹣3=125,不成立;(21)取a2=10,a3=﹣19时,﹣19=10p+3p﹣3,解得p=﹣,=﹣,不成立;(22)取a2=10,a3=﹣7时,﹣7=10p+3p﹣3,解得p=﹣,a4=﹣7×=﹣,不成立;(23)取a2=10,a3=﹣3时,﹣3=10p+3p﹣3,解得p=0,a4=﹣3,此时a1=﹣3;(24)取a2=10,a3=5时,5=10p+3p﹣3,解得p=,a4=5×﹣3=,不成立;(25)取a2=10,a3=29时,29=10p+3p﹣3,解得p=,a4=29×+3×=,不成立;(26)取a2=29,a3=﹣19时,﹣19=29p+3p﹣3,解得p=﹣,=5,,29=﹣﹣3×,解得a1=﹣67;(27)取a2=29,a3=﹣7时,﹣7=29p+3p﹣3,解得p=﹣,a4=﹣7×﹣3=﹣,不成立;(28)取a2=29,a3=5时,5=29p+3p﹣3,解得p=,a4==1,不成立;(29)取a2=29,a3=10时,10=29p+3p﹣3,解得p=,a4=10×=,不成立;(30)取a2=29,a3=﹣3时,﹣3=29p+3p﹣3,解得p=0,a4=﹣3,此时a1=﹣3.综上所述,a的集合为{﹣1,﹣3,﹣67}.故答案为:{﹣1,﹣3,﹣67}.【点评】:本题考查满足条件的集合的求法,是基础题,解题时要注意分类讨论思想的合理运用.二.选择题(本大题满分20分)本大题共有4小题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格用铅笔涂黑,选对得5分,否则一律得0分.15.(5分)(2021•闵行区一模)已知圆O:x2+y2=1和直线l:y=kx+,则k=1是圆O与直线l相切的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【考点】:必要条件、充分条件与充要条件的判断;直线与圆的位置关系.【专题】:计算题;直线与圆;简易逻辑.【分析】:圆O与直线l相切,可得圆心到直线的距离d==1,求出k,即可得出结论.【解析】:解:∵圆O与直线l相切,∴圆心到直线的距离d==1,∴k=±1,∴k=1是圆O与直线l相切的充分不必要条件.故选:B.【点评】:本题考查直线与圆的位置关系,考查学生的计算能力,考查充要条件的判断,正确运用点到直线的距离公式是关键.16.(5分)(2021•闵行区一模)(2﹣)8展开式中各项系数的和为()A.﹣1 B.1 C.256 D.﹣256【考点】:二项式系数的性质.【专题】:计算题;二项式定理.【分析】:给二项式中的x赋值1,得到展开式中各项的系数的和.【解析】:解:令二项式(2﹣)8中的x=1,得到展开式中各项的系数的和为(2﹣1)8=1∴展开式中各项的系数的和为1故选:B.【点评】:求二项展开式的各项系数和问题,一般通过观察给二项式中的x赋值求得.17.(5分)(2021•闵行区一模)已知y=f(x)是定义在R上的函数,下列命题正确的是()A.若f(x)在区间[a,b]上的图象是一条连续不断的曲线,且在(a,b)内有零点,则有f(a)•f(b)<0B.若f(x)在区间[a,b]上的图象是一条连续不断的曲线,且有f(a)•f(b)>0,则其在(a,b)内没有零点C.若f(x)在区间(a,b)上的图象是一条连续不断的曲线,且有f(a)•f(b)<0,则其在(a,b)内有零点D.如果函数f(x)在区间[a,b]上的图象是一条连续不断的曲线,且有f(a)•f(b)<0,则其在(a,b)内有零点【考点】:函数零点的判定定理.【专题】:函数的性质及应用.【分析】:据函数零点的定义,函数零点的判定定理,运用特殊函数判断即可.【解析】:解:①y=x2,在(﹣1,1)内有零点,但是f(﹣1)•f(1)>0,故A不正确,②y=x2,f(﹣1)•f(1)>0,在(﹣1,1)内有零点,故B不正确,③若f(x)在区间(a,b)上的图象是一条连续不断的曲线,f(a)=﹣1,f(b)=1,在(a,b)恒成立有f(x)>0,可知满足f(a)•f(b)<0,但是其在(a,b)内没有零点.故C不正确.所以ABC不正确,故选;D【点评】:本题主要考查函数零点的定义,函数零点的判定定理,利用特殊值代入法,排除不符合条件的选项,是一种简单有效的方法,属于基础题18.(5分)(2021•闵行区一模)数列{a n}是公差不为零的等差数列,其前n项和为S n,若记数据a1,a2,a3,…,a2021的方差为λ1,数据的方差为λ2,k=.则()A.k=4.B.k=2.C.k=1.D.k的值与公差d的大小有关.【考点】:等差数列的性质.【专题】:计算题;等差数列与等比数列.【分析】:分别计算平均数与方差,即可得出结论.【解析】:解:由题意,数据a1,a2,a3,…,a2021的平均数为=a1008,所以λ1=[(a1﹣a1008)2+(a2﹣a1008)2+…+(a2021﹣a1008)2]=•(12+22+…+10072).数据,,,…,的平均数为a1+d,所以λ2=[(a1﹣a1﹣d)2+(a2﹣a1﹣d)2+…+(a2021﹣a1﹣d)2]=•(12+22+…+10072).所以k==2,故选:B.【点评】:本题考查等差数列的通项与求和,考查平均数与方差的计算,考查学生的计算能力,正确计算是关键.三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(12分)(2021•闵行区一模)如图,在直三棱柱ABC﹣A1B1C1中,∠ACB=90°,AC=BC=2,直线A1B与平面BB1C1C所成角的大小为arctan.求三棱锥C1﹣A1BC的体积.【考点】:棱柱、棱锥、棱台的体积.【专题】:空间位置关系与距离.【分析】:解法一:利用线面垂直的判定定理可得:A1C1⊥平面BB1C1C,因此∠A1BC1是直线A1B与平面BB1C1C所成的角.利用tan∠A1BC1=即可得出.法二:如图,建立空间直角坐标系,设CC1=y.平面BB1C1C的法向量为.设直线A1B与平面BB1C1C所成的角为θ,利用线面角公式:即可得出.【解析】:解法一:∵A1C1⊥B1C1,A1C1⊥CC1,B1C1∩C1C=C1,∴A1C1⊥平面BB1C1C,∴∠A1BC1是直线A1B与平面BB1C1C所成的角.设CC1=y,,∴,∴.法二:如图,建立空间直角坐标系,设CC1=y.得点B(0,2,0),C1(0,0,y),A1(2,0,y).则,平面BB1C1C的法向量为.设直线A1B与平面BB1C1C所成的角为θ,则,∴.【点评】:本题考查了线面垂直的判定定理、线面角的向量计算公式、直角三角形的边角关系,考查了推理能力与计算能力,属于中档题.20.(14分)(2021•闵行区一模)某公司生产电饭煲,每年需投入固定成本40万元,每生产1万件还需另投入16万元的变动成本,设该公司一年内共生产电饭煲x万件并全部售完,每一万件的销售收入为R(x)万元,且R(x)=﹣,10<x<100,该公司在电饭煲的生产中所获年利润W(万元).(注:利润=销售收入﹣成本)(1)写出年利润W(万元)关于年产量x(万件)的函数解析式;(2)为了让年利润W不低于2760万元,求年产量x的取值范围.【考点】:函数模型的选择与应用.【专题】:计算题;函数的性质及应用.【分析】:(1)当10<x<100时,W=xR(x)﹣(40+16x)=4360﹣﹣16x;(Ⅱ)4360﹣﹣16x≥2760,由此得到年产量x的取值范围.【解析】:解:(1)当10<x<100时,W=xR(x)﹣(40+16x)=4360﹣﹣16x.(2)4360﹣﹣16x≥2760,所以x2﹣100x+2500≤0(x≠0),所以(x﹣50)2≤0,所以x=50.【点评】:本题考查函数的解析式的求法,考查年利润的最大值的求法.属于中档题.21.(14分)(2021•闵行区一模)椭圆Γ:+=1(a>b>0)的左右焦点分别为F1、F2,上顶点为A,已知椭圆Γ过点P(,),且•=0.(1)求椭圆Γ的方程;(2)若椭圆上两点C、D关于点M(1,)对称,求|CD|.【考点】:椭圆的简单性质.【专题】:平面向量及应用;圆锥曲线的定义、性质与方程.【分析】:(1)代入点P,求得a2=2,运用向量的数量积的坐标表示,结合a,b,c的关系,解方程即可得到c,即有椭圆方程;(2)方法一、运用点差法,设出C,D的坐标,代入椭圆方程,作差再由中点坐标公式,求得CD的斜率,得到直线CD的方程,联立椭圆方程,消去y,运用韦达定理和弦长公式,计算即可得到;方法二、运用对称的方法,设出C,D的坐标,再作差,可得直线CD的方程,代入椭圆方程,运用韦达定理和弦长公式,计算即可得到.【解析】:解:(1)由于椭圆Γ过点,即有,解得a2=2,又•=0,则以AP为直径的圆恰好过右焦点F2,又,得,,即有,而b2=a2﹣c2=2﹣c2,所以c2﹣2c+1=0得c=1,故椭圆Γ的方程是.(2)法一:设点C、D的坐标分别为(x1,y1)、(x2,y2),则,且x1+x2=2,y1+y2=1,由,得:(x1+x2)(x1﹣x2)+2(y1+y2)(y1﹣y2)=0,即,所以CD所在直线的方程为,将,代入x2+2y2=2得,即有x1+x2=2,x1x2=..法二:设点C、D的坐标分别为(x1,y1)、(2﹣x1,1﹣y1),则,两等式相减得,将,代入x2+2y2=2得,则有.【点评】:本题考查椭圆的方程和性质,主要考查椭圆方程的运用,同时考查平面向量的数量积的坐标表示和点差法、弦长公式的运用,考查运算能力,属于中档题.22.(16分)(2021•闵行区一模)已知函数f(x)=cos(2x﹣)+sin2x﹣cos2x+.(1)求函数f(x)的最小正周期;(2)若存在t∈[,]满足[f(t)]2﹣2f(t)﹣m>0,求实数m的取值范围;(3)对任意的x1∈[﹣,],是否存在唯一的x2∈[﹣,],使f(x1)•f(x2)=1成立,请说明理由.【考点】:三角函数中的恒等变换应用;三角函数的周期性及其求法.【专题】:三角函数的求值;三角函数的图像与性质.【分析】:(1)首先利用三角函数关系式的恒等变换,把三角函数关系式变形成正弦型函数,进一步求出函数的最小正周期.(2)利用三角函数的定义域求出函数的值域,进一步求出参数的取值范围.(3)利用函数的单调性求出函数的值域,进一步说明函数的单调性问题.【解析】:解:(1)=,函数f(x)的最小正周期T=π,(2)当时,,,存在,满足F(t)﹣m>0的实数m的取值范围为(﹣∞,﹣1).(3)存在唯一的,使f(x1)•f(x2)=1成立.当时,,,设,则a∈[﹣1,1],由,得.所以x2的集合为,∵,∴x2在上存在唯一的值使f(x1)•f(x2)=1成立.【点评】:本题考查的知识要点:三角函数关系式的恒等变换,利用正弦型函数的定义域求函数的值域,函数的存在性问题的应用.23.(18分)(2021•闵行区一模)已知数列{a n}为等差数列,a1=2,其前n和为S n,数列{b n}为等比数列,且a1b1+a2b2+a3b3+…+a n b n=(n﹣1)•2n+2+4对任意的n∈N*恒成立.(1)求数列{a n}、{b n}的通项公式;(2)是否存在p,q∈N*,使得(a2p+2)2﹣b q=2022成立,若存在,求出所有满足条件的p,q;若不存在,说明理由.(3)是否存在非零整数λ,使不等式λ(1﹣)(1﹣)…(1﹣)cos<对一切n∈N*都成立?若存在,求出λ的值;若不存在,说明理由.【考点】:数列与不等式的综合.【专题】:等差数列与等比数列;不等式的解法及应用.【分析】:(1)法1、求数列{a n}、{b n}的通项公式,在于求等差数列的公差和等比数列的首项和公比,设出等差数列{a n}的公差d和等比数列{b n}的公比为q.在已知数列递推式中令n=1,2,3分别得到关于待求量的关系式,然后求解公差和公比,则等差数列的公差和等比数列的公比可求;法2:由已知数列递推式取n=n﹣1(n≥2)得另一递推式,两式作差后得到,由数列{a n}为等差数列,可令a n=kn+b,得,由,得(qk﹣2k)n2+(bq﹣kq﹣2b+2k)n﹣qb=0恒成立,由系数为0求得q,b,k的值得数列{a n}、{b n}的通项公式;(2)假设存在p,q∈N*满足条件,由(4p+4)2﹣2q=2022,得4p2+8p﹣501为奇数,进一步得到2q﹣2为奇数,求得q=2,进一步求出,这与p∈N*矛盾;(3)把数列{a n}的通项公式代入λ(1﹣)(1﹣)…(1﹣)cos整理,设,可得数列{b n}单调递增.则不等式等价于(﹣1)n+1λ<b n,然后假设存在实数λ,使得不等式(﹣1)n+1λ<b n对一切n∈N*都成立,分n为奇数和n为偶数求得,结合λ是非零整数可求得满足条件的λ.【解析】:解(1)法1:设数列{a n}的公差为d,数列{b n}的公比为q.∵a1b1+a2b2+a3b3+…+a n b n=(n﹣1)•2n+2+4,令n=1,2,3分别得a1b1=4,a1b1+a2b2=20,a1b1+a2b2+a3b3=68,又a1=2,∴,即,解得:或.经检验d=2,q=2符合题意,不合题意,舍去.∴.法2:∵①则(n≥2)②①﹣②得,,又a1b1=4,也符合上式,∴,由于{a n}为等差数列,令a n=kn+b,则,∵{b n}为等比数列,则(为常数),即(qk﹣2k)n2+(bq﹣kq﹣2b+2k)n﹣qb=0恒成立,∴q=2,b=0,又a1=2,∴k=2,故;(2)假设存在p,q∈N*满足条件,则(4p+4)2﹣2q=2022,化简得4p2+8p﹣501=2q﹣2,由p∈N*得,4p2+8p﹣501为奇数,∴2q﹣2为奇数,故q=2.得4p2+8p﹣501=1,即2p2+4p﹣251=0,故,这与p∈N*矛盾,∴不存在满足题设的正整数p,q;(3)由a n=2n,得,设,则不等式等价于(﹣1)n+1λ<b n.,∵b n>0,∴b n+1>b n,数列{b n}单调递增.假设存在这样的实数λ,使得不等式(﹣1)n+1λ<b n对一切n∈N*都成立,则①当n为奇数时,得;②当n为偶数时,得,即.综上,,由λ是非零整数,知存在λ=±1满足条件.【点评】:本题考查了数列递推式,考查了等差数列和等比数列的通项公式,考查了数列的函数特性,训练了利用函数的单调性求函数的最值,体现了数学转化、分类讨论、分离参数等数学思想方法,属难题.。
2021高考数学(理)大一轮复习第七篇 立体几何与空间向量第4节 直线、平面平行的判定与性质
跟踪训练3:如图所示,P是△ABC所在平面外的一点,点A′, B′,C′分别是△PBC,△PCA,△PAB的重心. (1)求证:平面ABC∥平面A′B′C′;
(1)证明:分别连接 PA′,PB′,PC′并延长交 BC,AC,AB 于点 D,E,F,连接 DE,EF,DF.
因为点 A′,C′分别是△PBC,△PAB 的重心,所以 PA′= 2 PD,PC′= 2 PF,
第4节 直线、平面平行的判定与性质
[考纲展示]
1.以立体几何的定义、公理和定理 2.能运用公理、定理和已获得的结
为出发点,认识和理解空间中线面 论证明一些有关空间图形的平行关
平行的有关性质与判定定理.
系的简单命题.
知识梳理自测 考点深度剖析 核心素养提升
知识梳理自测
知识梳理
1.直线与平面平行的判定定理和性质定理
多维探究
[例1] 如图,四棱锥S-ABCD中,SD⊥平面ABCD,AB∥CD,AD⊥CD, SD=CD,AB=AD,CD=2AD,M是BC中点,N是SA的中点. 求证:MN∥平面SDC.
证明:法一 如图,取SB的中点T,连接NT,MT. 在△SAB中,SN=NA,ST=TB,所以NT∥AB, 又AB∥CD,所以NT∥CD. 在△SBC中,BM=MC,BT=TS,所以MT∥SC. 又因为NT∩MT=T,SC∩CD=C,所以平面MNT∥平面SDC, 又因为MN⊂平面MNT,所以MN∥平面SDC.
解析:因为a∥平面α,所以直线a与平面α无交点,因此a和平面α内的任意一条直线都 不相交,故选D.
2.若平面α∥平面β,直线a∥平面α,点B∈β,则在平面β内且过B点的所有直线中
(
)A
(A)不一定存在与a平行的直线
2025年上海市数学高考一轮复习重难点 专题1集合与逻辑(考点练+模拟练)含详解
专题01集合与逻辑(考点练+模拟练)一、填空题1.(23-24高三上·上海·期中)已如全集U =R ,集合10,x A x x x ⎧⎫-=≥∈⎨⎬⎩⎭R ,则A =.2.(23-24高三上·上海黄浦·开学考试)“0x ≠或0y ≠”是“220x y +≠”的条件.3.(2023·上海普陀·模拟预测)已知命题p :任意正数x ,恒有()1e 1xx +>,则命题p 的否定为.4.(23-24高三上·上海·期中)已知集合()2,1A =-,()()4,11,2B =-- ,则A B =.5.(22-23高一上·上海复旦附中分校·阶段练习)已知全集U =R ,集合{|1},{|2}A x x B x x =≤=≥,则A B =.6.(23-24高三上·上海奉贤·阶段练习)已知集合{}ln M x y x ==,集合11N y y x ⎧⎫==⎨⎬-⎩⎭,则M N ⋂=.7.(23-24高三上·上海松江·期中)已知2:280,:123p x x q a x a --<-<<-,且p 是q 的充分不必要条件,则实数a 的取值范围是.8.(23-24高三上·上海静安·开学考试)集合{}1,2,A a =,{}21,2B a =-,若集合A B ⋃中有三个元素,则实数=a .9.(23-24高一上·河北邯郸·阶段练习)若集合{}N |12A x x =∈-<≤,{},,B x x ab a b A ==∈,则集合B 的非空真子集的个数为.10.(20-21高三上·上海崇明·阶段练习)已知:31x m α<-或x m >-,:2x β<或4x ≥,若α是β的必要条件,则实数m 的取值范围是.11.(20-21高一上·上海闵行·期中)已知集合M =25|0ax x x a -⎧⎫<⎨⎬-⎩⎭,若3,5M M ∈∉,则实数a 的取值范围是.12.(23-24高三上·上海浦东新·期中)M 是正整数集的子集,满足:1,2022,2023M M M ∈∈∉,并有如下性质:若a 、b M ∈,则222a b M ⎤+∈⎥⎥⎦,其中[]x 表示不超过实数x 的最大整数,则M 的非空子集个数为.二、单选题13.(23-24高三上·上海浦东新·阶段练习)已知集合π,2m A x x m ⎧⎫==∈⎨⎬⎩⎭Z ,集合π,4n B x x n ⎧⎫==∈⎨⎬⎩⎭Z ,则A B = ()A .∅B .AC .BD .{}π,x x k k =∈Z 14.(16-17高一上·上海浦东新·期中)已知集合A ,B ,若A 不是B 的子集,则下列命题中正确的是()A .对任意的a A ∈,都有aB ∉B .对任意的a B ∈,都有a A ∈C .存在0a ,满足0a A ∈,且0a B∉D .存在0a ,满足0a A ∈,且0a B∈15.(21-22高三上·上海浦东新·阶段练习)集合,A B 各有8个元素,A B ⋂有6个元素,若集合C 满足:()()A B C A B ⊆⊆ ,则满足条件的集合C 共有()A .32个B .16个C .8个D .4个16.(20-21高三上·浙江·开学考试)设集合,S T 中至少两个元素,且,S T 满足:①对任意,x y S ∈,若x y ≠,则x y T +∈,②对任意,x y T ∈,若x y ≠,则x y S -∈,下列说法正确的是()A .若S 有2个元素,则S T 有3个元素B .若S 有2个元素,则S T 有4个元素C .存在3个元素的集合S ,满足S T 有5个元素D .存在3个元素的集合S ,满足S T 有4个元素三、解答题17.(23-24高三上·上海静安·阶段练习)设全集()(){}4230,0A x ax x a a =+-+>>,B x y ⎧⎪==⎨⎪⎩.(1)若2a =,求A B ⋂,A B ;(2)若“x B ∈”是“x A ∈”的充分不必要条件,求实数a 的取值范围.18.(22-23高三上·上海青浦·期中)已知集合{}(2)(3)0A x x x =--≤,{}3B x a x a =<<,且0a >.(1)若x A ∈是x B ∈的充分条件,求实数a 的取值范围;(2)若命题“A B ⋂=∅”为假命题,求实数a 的取值范围.19.(22-23高三上·上海崇明·阶段练习)已知R 为全集,集合R 21|1,1x A x x x -⎧⎫=≤∈⎨⎬+⎩⎭,集合{}1,R B x x a x =-≤∈.(1)求集合A ;(2)若B A B ⋂=,求实数a 的取值范围.20.(22-23高三上·上海浦东新·阶段练习)设全集U 为R ,集合{}11A x x =-<,{}2320B x x x =--≥.(1)求A B ;(2)若{}22430C x x ax a A B =-+≥⊇⋃,求a 的取值范围.21.(23-24高一上·上海·期中)集合{}12,,,n A a a a =⋅⋅⋅是由()3n n >个正整数组成的集合,如果任意去掉其中一个元素()1,2,,i a i n =⋅⋅⋅之后,剩余的所有元素组成的集合都能分为两个交集为空的集合,且这两个集合的所有元素之和相等,就称集合A 为“可分集合”.(1)判断集合{}1,2,3,4、{}1,3,5,7,9,11,13是否为“可分集合”(不用说明理由);(2)求证:五个元素的集合{}12345,,,,A a a a a a =一定不是“可分集合”;(3)若集合{}12,,,n A a a a = 是“可分集合”,证明n 是奇数.一、填空题1.(2022·上海·模拟预测)已知集合{}2=|40,A x x x x N *-<∈,则用列举法表示集合A =2.(2022·上海浦东新·模拟预测)已知集合()0,2A =,()1,3B =,则A B ⋃=.3.(2024·上海·三模)已知集合{}0,1,2A =,{}331B x x x =-≤,则A B =4.(2024·上海·三模)已知集合{}1,3,4A =,{},1B a a =+,若A B B = ,则=a .5.(2024·上海·三模)已知集合{}11A x x =-<,11B x x ⎧⎫=<⎨⎬⎩⎭,则A B =.6.(2023·上海静安·二模)若集合{}22,log A a =,{},B a b =,且{}0A B ⋂=,则A B ⋃=.7.(2023·上海青浦·二模)已知集合(){}{}|ln 3,|A x y x B x x a ==-=>,若A B ⋂=∅,则实数a 的取值范围为.8.(2024·上海宝山·二模)已知集合{}2,1,3A a a =++,且1A ∈,则实数a 的值为.9.(2017·上海奉贤·一模)已知互异实数0mn ≠,集合{}{}22,,m n m n =,则m n +=.10.(2023·上海金山·一模)若集合()(){}2,20A x y x y x y =+++-≤,()()(){}222,211B x y x a y a a =-+--≤-,且A B ⋂≠∅,则实数a 的取值范围是.11.(2022·上海青浦·二模)已知集合1,[,1]6A s s t t ⎡⎤=++⎢⎥⎣⎦,其中1A ∉且16s t +<,函数()1xf x x =-,且对任意a A ∈,都有()f a A ∈,则t 的值是.12.(2022·上海普陀·一模)设非空集合Q M ⊆,当Q 中所有元素和为偶数时(集合为单元素时和为元素本身),称Q 是M 的偶子集,若集合{}1,2,3,4,5,6,7=M ,则其偶子集Q 的个数为.二、单选题13.(2022·上海·模拟预测)已知集合(){},2A x y x y =+=,(){},24B x y x y =-=-,则A B = ()A .{}0,2B .()0,2C .∅D .(){}0,214.(2023·上海普陀·二模)设,a b 为实数,则“0a b >>”的一个充分非必要条件是()A>B .22a b >C .11b a>D .a b b a->-15.(2023·上海普陀·一模)设1A 、2A 、3A 、L 、7A 是均含有2个元素的集合,且17A A ⋂=∅,()11,2,3,,6i i A A i +⋂=∅= ,记1237B A A A A =⋃⋃⋃⋃ ,则B 中元素个数的最小值是()A .5B .6C .7D .816.(2021·上海青浦·一模)设函数,()1,x x P f x x Mx-∈⎧⎪=⎨∈⎪⎩,其中,P M 是实数集R 的两个非空子集,又规定()(){},A P y y f x x P ==∈,()(){},A M y y f x x M ==∈,则下列说法:(1)一定有()()A P A M ⋂=∅;(2)若P M R ⋃≠,则()()A P A M R ⋃≠;(3)一定有P M ⋂=∅;(4)若P M R ⋃=,则()()A P A M R ⋃=.其中正确的个数是()A .1B .2C .3D .4三、解答题17.(2017·上海浦东新·三模)数列{}n a 的前n 项12,,,n a a a ⋅⋅⋅()*N n ∈组成集合{}12,,,n n A a a a =⋅⋅⋅,从集合n A 中任取(1,2,3,,)k k n =⋅⋅⋅个数,其所有可能的k 个数的乘积的和为k T (若只取一个数,规定乘积为此数本身),例如:对于数列{21}n -,当1n =时,1{1},A =11;T =2n =时,2{1,3},A =113,T =+213T =⋅;(1)若集合{1,3,5,,21}n A n =⋅⋅⋅-,求当3n =时,1,T 2,T 3T 的值;(2)若集合{}1,3,7,,21nn A =⋅⋅⋅-,证明:n k =时集合k A 的m T 与1n k =+时集合1k A +的m T (为了以示区别,用m T '表示)有关系式()1121k m m m T T T +-'=-+,其中*,N ,m k ∈2m k ≤≤;(3)对于(2)中集合n A .定义12=+++…n n S T T T ,求n S (用n 表示).专题01集合与逻辑(考点练+模拟练)一、填空题1.(23-24高三上·上海·期中)已如全集U =R ,集合10,x A x x x ⎧⎫-=≥∈⎨⎬⎩⎭R ,则A =.【答案】{}01x x ≤<【分析】解出集合A ,利用补集的定义可求得集合A .【解析】由10x x -≥可得()100x x x ⎧-≥⎨≠⎩,解得0x <或1x ≥,则{0A x x =<或}1x ≥,又因为全集U =R ,则{}01A x x =≤<.故答案为:{}01x x ≤<.2.(23-24高三上·上海黄浦·开学考试)“0x ≠或0y ≠”是“220x y +≠”的条件.【答案】充要【分析】利用充分条件、必要条件的定义判断作答.【解析】命题“若0x ≠或0y ≠,则220x y +≠”是真命题,命题“若220x y +≠,则0x ≠或0y ≠”是真命题,所以“0x ≠或0y ≠”是“220x y +≠”的充要条件.故答案为:充要3.(2023·上海普陀·模拟预测)已知命题p :任意正数x ,恒有()1e 1xx +>,则命题p 的否定为.【答案】存在正数0x ,使()001e 1xx +≤【分析】含有全称量词的否定,改成特称量词即可.【解析】由全称命题的否定为特称命题知:存在正数0x ,使()001e 1xx +≤.故答案为:存在正数0x ,使()001e 1xx +≤4.(23-24高三上·上海·期中)已知集合()2,1A =-,()()4,11,2B =-- ,则A B = .【答案】()2,1--【分析】直接由交集的概念、区间的表示即可得解.【解析】因为()2,1A =-,()()4,11,2B =-- ,所以()2,1A B ⋂=--.故答案为:()2,1--.5.(22-23高一上·上海复旦附中分校·阶段练习)已知全集U =R ,集合{|1},{|2}A x x B x x =≤=≥,则A B =.6.(23-24高三上·上海奉贤·阶段练习)已知集合{}ln M x y x ==,集合11N y y x ⎧⎫==⎨⎬-⎩⎭,则M N ⋂=.【答案】()0,∞+【分析】根据函数的定义域及值域结合交集的运算求值即可.【解析】由题意可知()()()0,,,00,M N ∞∞∞=+=-⋃+,所以()0,M N ∞⋂=+.故答案为:()0,∞+7.(23-24高三上·上海松江·期中)已知2:280,:123p x x q a x a --<-<<-,且p 是q 的充分不必要条件,则实数a 的取值范围是.8.(23-24高三上·上海静安·开学考试)集合{}1,2,A a =,{}21,2B a =-,若集合A B ⋃中有三个元素,则实数=a .【答案】2-或1-【分析】集合A B ⋃中有三个元素,则222a -=或22a a -=,解方程并检验即可.【解析】集合{}1,2,A a =,{}21,2B a =-,若集合A B ⋃中有三个元素,则222a -=或22a a -=,若222a -=,解得2a =±,其中2a =与元素互异性矛盾舍去,2a =-满足题意;若22a a -=,解得2a =或1a =-,2a =舍去,1a =-满足题意,所以2a =-或1a =-.故答案为:2-或1-9.(23-24高一上·河北邯郸·阶段练习)若集合{}N |12A x x =∈-<≤,{},,B x x ab a b A ==∈,则集合B 的非空真子集的个数为.10.(20-21高三上·上海崇明·阶段练习)已知:31x m α<-或x m >-,:2x β<或4x ≥,若α是β的必要条件,则实数m 的取值范围是.11.(20-21高一上·上海闵行·期中)已知集合M =2|0x x a -⎧⎫<⎨⎬-⎩⎭,若3,5M M ∈∉,则实数a 的取值范围是.12.(23-24高三上·上海浦东新·期中)M 是正整数集的子集,满足:1,2022,2023M M M ∈∈∉,并有如下性质:若a 、b M ∈,则M ∈,其中[]x 表示不超过实数x 的最大整数,则M 的非空子集个数为.二、单选题13.(23-24高三上·上海浦东新·阶段练习)已知集合π,2m A x x m ⎧⎫==∈⎨⎬⎩⎭Z ,集合π,4n B x x n ⎧⎫==∈⎨⎬⎩⎭Z ,则A B = ()A .∅B .AC .BD .{}π,x x k k =∈Z14.(16-17高一上·上海浦东新·期中)已知集合A ,B ,若A 不是B 的子集,则下列命题中正确的是()A .对任意的a A ∈,都有aB ∉B .对任意的a B ∈,都有a A ∈C .存在0a ,满足0a A ∈,且0a B∉D .存在0a ,满足0a A ∈,且0a B∈【答案】C【分析】根据子集关系结合元素与集合的关系逐项分析判断.【解析】对于选项A 、B :例如{}{}1,2,2,3A B ==,满足A 不是B 的子集,但2,2A B ∈∈,故A 错误;3,3A B ∉∈,故B 错误;对于选项C :对任意的a A ∈,都有a B ∈,则A B ⊆,若A 不是B 的子集,则存在0a ,满足0a A ∈,且0a B ∉,故C 正确;对于选项D :例如{}{}1,2A B ==,满足A 不是B 的子集,但不存在0a ,满足0a A ∈,且0a B ∈,故D 错误;故选:C.15.(21-22高三上·上海浦东新·阶段练习)集合,A B 各有8个元素,A B ⋂有6个元素,若集合C 满足:()()A B C A B ⊆⊆ ,则满足条件的集合C 共有()A .32个B .16个C .8个D .4个【答案】B【分析】根据题意设出集合,A B ,根据()()A B C A B ⊆⊆ 判断集合C 中元素的构成情况,根据子集和集合中元素的个数关系即可得出结果.【解析】解:由题知,A B 各有8个元素,且A B ⋂有6个元素,设{}123456,,,,,c c c c A c c B = ,且{}12123456,,,,,,,,a a c c c c c c A ={}12123456,,,,,,,b bc c c c c B c =,则画Venn 图如下:因为()()A B C A B ⊆⊆ ,所以{}{}1234561212123456,,,,,,,,,,,,,,,c c c c c c C a a b b c c c c c c ⊆⊆所以集合C 中至少有123456,,,,,c c c c c c ,6个元素,最多有1212123456,,,,,,,,,a a b b c c c c c c ,10个元素,只需求出{}1212,,,a a b b 的子集,在每个子集中加入123456,,,,,c c c c c c 6个元素,即可得集合C ,所以集合C 的个数,即是{}1212,,,a a b b 的子集的个数4216=个.故选:B16.(20-21高三上·浙江·开学考试)设集合,S T 中至少两个元素,且,S T 满足:①对任意,x y S ∈,若x y ≠,则x y T +∈,②对任意,x y T ∈,若x y ≠,则x y S -∈,下列说法正确的是()A .若S 有2个元素,则S T 有3个元素B .若S 有2个元素,则S T 有4个元素C .存在3个元素的集合S ,满足S T 有5个元素D .存在3个元素的集合S ,满足S T 有4个元素【答案】A【解析】不妨设{,}S a b =,由②知集合S 中的两个元素必为相反数,设{,}S a a =-,由①得0T ∈,由于集合T 中至少两个元素,得到至少还有另外一个元素m T ∈,分集合T 有2个元素和多于2个元素分类讨论,即可求解.【解析】若S 有2个元素,不妨设{,}S a b =,以为T 中至少有两个元素,不妨设{},x y T ⊆,由②知,x y S y x S -∈-∈,因此集合S 中的两个元素必为相反数,故可设{,}S a a =-,由①得0T ∈,由于集合T 中至少两个元素,故至少还有另外一个元素m T ∈,当集合T 有2个元素时,由②得:m S -∈,则,{0,}m a T a =±=-或{0,}T a =.当集合T 有多于2个元素时,不妨设{0,,}T m n =,其中,,,,,m n m n m n n m S ----∈,由于,0,0m n m n ≠≠≠,所以,m m n n ≠-≠-,若m n =-,则n m =-,但此时2,2m n m m m n n n -=≠-=-≠,即集合S 中至少有,,m n m n -这三个元素,若m n ≠-,则集合S 中至少有,,m n m n -这三个元素,这都与集合S 中只有2个运算矛盾,综上,{0,,}S T a a =- ,故A 正确;当集合S 有3个元素,不妨设{,,}S a b c =,其中a b c <<,则{,,}a b b c c a T +++⊆,所以,,,,,c a c b b a a c b c a b S ------∈,集合S 中至少两个不同正数,两个不同负数,即集合S 中至少4个元素,与{,,}S a b c =矛盾,排除C ,D.故选:A.【点睛】解题技巧:解决以集合为背景的新定义问题要抓住两点:1、紧扣新定义,首先分析新定义的特点,把心定义所叙述的问题的本质弄清楚,应用到具体的解题过程中;2、用好集合的性质,解题时要善于从试卷中发现可以使用的集合的性质的一些因素.三、解答题17.(23-24高三上·上海静安·阶段练习)设全集()(){}4230,0A x ax x a a =+-+>>,B x y ⎧⎪==⎨⎪⎩.(1)若2a =,求A B ⋂,A B ;(2)若“x B ∈”是“x A ∈”的充分不必要条件,求实数a 的取值范围.18.(22-23高三上·上海青浦·期中)已知集合{}(2)(3)0A x x x =--≤,{}3B x a x a =<<,且0a >.(1)若x A ∈是x B ∈的充分条件,求实数a 的取值范围;(2)若命题“A B ⋂=∅”为假命题,求实数a 的取值范围.19.(22-23高三上·上海崇明·阶段练习)已知R 为全集,集合R |1,1A x x x -⎧⎫=≤∈⎨⎬+⎩⎭,集合{}1,R B x x a x =-≤∈.(1)求集合A ;(2)若B A B ⋂=,求实数a 的取值范围.20.(22-23高三上·上海浦东新·阶段练习)设全集U 为R ,集合11A x x =-<,{}2320B x x x =--≥.(1)求A B ;(2)若{}22430C x x ax a A B =-+≥⊇⋃,求a 的取值范围.21.(23-24高一上·上海·期中)集合{}12,,,n A a a a =⋅⋅⋅是由()3n n >个正整数组成的集合,如果任意去掉其中一个元素()1,2,,i a i n =⋅⋅⋅之后,剩余的所有元素组成的集合都能分为两个交集为空的集合,且这两个集合的所有元素之和相等,就称集合A 为“可分集合”.(1)判断集合{}1,2,3,4、{}1,3,5,7,9,11,13是否为“可分集合”(不用说明理由);(2)求证:五个元素的集合{}12345,,,,A a a a a a =一定不是“可分集合”;(3)若集合{}12,,,n A a a a = 是“可分集合”,证明n 是奇数.【答案】(1){}1,2,3,4不是“可分集合”,{}1,3,5,7,9,11,13为“可分集合”(2)证明见解析(3)证明见解析【分析】(1)由“可分集合”的定义判断;(2)不妨设12345a a a a a <<<<,讨论当在集合{}12345,,,,a a a a a 中去掉元素1a 、2a 后,将剩余元素构成的集合,结合“可分集合”的定义进行分拆,得出等式,推出矛盾,即可证得结论成立;(3)根据集合中元素总和与单个元素的奇偶性讨论后证明.【解析】(1)解:对于{}1,2,3,4,去掉3后,{}1,2,4不满足题中条件,故{}1,2,3,4不是“可分集合”,对于{}1,3,5,7,9,11,13,集合{}1,3,5,7,9,11,13所有元素之和为49.当去掉元素1时,剩下的元素之和为48,剩下元素可以组合{}3,5,7,9、{}11,13这两个集合,显然符合题意;当去掉元素3时,剩下的元素之和为46,剩下元素可以组合{}1,9,13、{}5,7,11这两个集合,显然符合题意;当去掉元素5时,剩下的元素之和为44,剩下元素可以组合{}1,3,7,11、{}9,13这两个集合,显然符合题意;当去掉元素7时,剩下的元素之和为42,剩下元素可以组合{}1,9,11、{}3,5,13这两个集合,显然符合题意;当去掉元素9时,剩下的元素之和为40,剩下元素可以组合{}1,3,5,11、{}7,13这两个集合,显然符合题意;当去掉元素11时,剩下的元素之和为38,剩下元素可以组合{}3,7,9、{}1,5,13这两个集合,显然符合题意;当去掉元素13时,剩下的元素之和为36,剩下元素可以组合{}1,3,5,9、{}7,11这两个集合,显然符合题意.综上所述,集合{}1,3,5,7,9,11,13是“可分集合”.(2)证明:不妨设123450a a a a a <<<<<,一、填空题1.(2022·上海·模拟预测)已知集合{}2=|40,A x x x x N *-<∈,则用列举法表示集合A =【答案】{}1,2,3【分析】根据不等式的解法,求得04x <<,进而利用列举法,即可求解.【解析】由不等式240x x -<,可得()40x x -<,解得04x <<,即集合{|04A x x =<<且}{1,2,3}x N *∈=.故答案为:{}1,2,3.2.(2022·上海浦东新·模拟预测)已知集合()0,2A =,()1,3B =,则A B ⋃=.【答案】()0,3【分析】直接根据并集定义求解即可.【解析】因为()0,2A =,()1,3B =,所以()0,3A B ⋃=,故答案为:()0,33.(2024·上海·三模)已知集合{}0,1,2A =,{}331B x x x =-≤,则A B =【答案】{}0,1【分析】把集合中的元素代入不等式331x x -≤检验可求得{0,1}A B = .【解析】当0x =时,303001-⨯=≤,所以0B ∈,当1x =时,313121-⨯=-≤,所以1B ∈,当2x =时,323221-⨯=>,所以2∉B ,所以{0,1}A B = .故答案为:{0,1}.4.(2024·上海·三模)已知集合{}1,3,4A =,{},1B a a =+,若A B B = ,则=a .【答案】3【分析】根据给定条件,利用交集的结果直接列式计算即得.【解析】集合{}1,3,4A =,{},1B a a =+,由A B B = ,得B A ⊆,又11a a +-=,因此143a a +=⎧⎨=⎩,所以3a =.故答案为:35.(2024·上海·三模)已知集合{}11A x x =-<,11B x x ⎧⎫=<⎨⎬⎩⎭,则A B =.6.(2023·上海静安·二模)若集合{}22,log A a =,{},B a b =,且{}0A B ⋂=,则A B ⋃=.【答案】{}0,1,2【分析】依题意可得0A ∈且0B ∈,即可求出a 、b 的值,从而求出集合A 、B ,再根据并集的定义计算可得.【解析】因为{}22,log A a =,{},B a b =,且{}0A B ⋂=,所以0A ∈且0B ∈,显然0a >,所以2log 0a =且0b =,所以1a =,所以{}2,0A =,{}1,0B =,所以{}0,1,2A B = .故答案为:{}0,1,27.(2023·上海青浦·二模)已知集合(){}{}|ln 3,|A x y x B x x a ==-=>,若A B ⋂=∅,则实数a 的取值范围为.【答案】[)3,+∞【分析】求函数的定义域求得集合A ,根据A B ⋂=∅求得a 的取值范围.【解析】由30x ->解得3x <,所以(),3A =-∞,由于A B ⋂=∅,所以3a ≥,所以a 的取值范围是[)3,+∞.故答案为:[)3,+∞8.(2024·上海宝山·二模)已知集合{}2,1,3A a a =++,且1A ∈,则实数a 的值为.9.(2017·上海奉贤·一模)已知互异实数0mn ≠,集合{}{}22,,m n m n =,则m n +=.【答案】-1【分析】分情况讨论2m m =,2n n =,或2n m =,2m n =再计算即可.【解析】互异实数m n ≠,集合{}{}22,,m n m n =,∴2m m =,2n n =,或2n m =,2m n =,0mn ≠,m n ≠.由2m m =,2n n =,0mn ≠,m n ≠,无解.由2n m =,2m n =,0mn ≠,m n ≠.可得22n m m n -=-,解得1m n +=-.故答案为:1-.【点睛】本题主要考查了根据集合的互异性与集合相等求参数的问题,属于基础题型.10.(2023·上海金山·一模)若集合()(){}2,20A x y x y x y =+++-≤,()()(){}222,211B x y x a y a a =-+--≤-,且A B ⋂≠∅,则实数a 的取值范围是.B 其中()()2221x a y a -+--当1a =±时,B 表示点(1,3)当1a ≠±时,B 表示以(M 其圆心在直线21y x =+上,依题意A B ⋂≠∅,即表示圆当1a =-时,显然满足题意,当当1a <-时,因为A B ⋂≠所以d r ≤,即222a a +++所以()()17110a a ++≤,所以1117a -≤<-;当1a >时,因为A B ⋂≠∅11.(2022·上海青浦·二模)已知集合,[,1]6A s s t t ⎡⎤=++⎢⎥⎣⎦ ,其中1A ∉且6s t +<,函数()1xf x x =-,且对任意a A ∈,都有()f a A ∈,则t 的值是.12.(2022·上海普陀·一模)设非空集合Q M ⊆,当Q 中所有元素和为偶数时(集合为单元素时和为元素本身),称Q 是M 的偶子集,若集合{}1,2,3,4,5,6,7=M ,则其偶子集Q 的个数为.【答案】63【分析】对集合Q 中奇数和偶数的个数进行分类讨论,确定每种情况下集合Q 的个数,综合可得结果.【解析】集合Q 中只有2个奇数时,则集合Q 的可能情况为:{}1,3、{}1,5、{}1,7、{}3,5、{}3,7、{}5,7,共6种,若集合Q 中只有4个奇数时,则集合{}1,3,5,7Q =,只有一种情况,若集合Q 中只含1个偶数,共3种情况;若集合Q 中只含2个偶数,则集合Q 可能的情况为{}2,4、{}2,6、{}4,6,共3种情况;若集合Q 中只含3个偶数,则集合{}2,4,6Q =,只有1种情况.因为Q 是M 的偶子集,分以下几种情况讨论:若集合Q 中的元素全为偶数,则满足条件的集合Q 的个数为7;若集合Q 中的元素全为奇数,则奇数的个数为偶数,共7种;若集合Q 中的元素是2个奇数1个偶数,共6318⨯=种;若集合Q 中的元素为2个奇数2个偶数,共6318⨯=种;若集合Q 中的元素为2个奇数3个偶数,共616⨯=种;若集合Q 中的元素为4个奇数1个偶数,共133⨯=种;若集合Q 中的元素为4个奇数2个偶数,共133⨯=种;若集合Q 中的元素为4个奇数3个偶数,共1种.综上所述,满足条件的集合Q 的个数为771818633163+++++++=.故答案为:63.二、单选题13.(2022·上海·模拟预测)已知集合(){},2A x y x y =+=,(){},24B x y x y =-=-,则A B = ()A .{}0,2B .()0,2C .∅D .(){}0,214.(2023·上海普陀·二模)设,a b 为实数,则“0a b >>”的一个充分非必要条件是()A >B .22a b >C .11b a >D .a b b a->-15.(2023·上海普陀·一模)设1A 、2A 、3A 、L 、7A 是均含有2个元素的集合,且17A A ⋂=∅,()11,2,3,,6i i A A i +⋂=∅= ,记1237B A A A A =⋃⋃⋃⋃ ,则B 中元素个数的最小值是()A .5B .6C .7D .8【答案】A 【分析】设1x 、2x 、L 、()4n x n ≥是集合B 互不相同的元素,分析可知4n ≥,然后对n 的取值由小到大进行分析,验证题中的条件是否满足,即可得解.【解析】解:设1x 、2x 、L 、()4n x n ≥是集合B 互不相同的元素,若3n =,则12A A ⋂≠∅,不合乎题意.①假设集合B 中含有4个元素,可设{}112,A x x =,则{}24634,A A A x x ===,{}35712,A A A x x ===,这与17A A ⋂=∅矛盾;②假设集合B 中含有5个元素,可设{}1612,A A x x ==,{}2734,A A x x ==,{}351,A x x =,{}423,A x x =,{}545,A x x =,满足题意.综上所述,集合B 中元素个数最少为5.故选:A.【点睛】关键点点睛:本题考查集合元素个数的最值的求解,解题的关键在于对集合元素的个数由小到大进行分类,对集合中的元素进行分析,验证题中条件是否成立即可.16.(2021·上海青浦·一模)设函数,()1,x x P f x x M x -∈⎧⎪=⎨∈⎪⎩,其中,P M 是实数集R 的两个非空子集,又规定()(){},A P y y f x x P ==∈,()(){},A M y y f x x M ==∈,则下列说法:(1)一定有()()A P A M ⋂=∅;(2)若P M R ⋃≠,则()()A P A M R ⋃≠;(3)一定有P M ⋂=∅;(4)若P M R ⋃=,则()()A P A M R ⋃=.其中正确的个数是()A .1B .2C .3D .4【答案】B【解析】根据分段函数的定义、一次函数和反比例函数的性质,结合集合交集、并集的运算定义进行判断即可.【解析】函数()f x 是分段函数,故P M ⋂=∅一定成立,因此说法(3)正确;对于(1):当{}{}1,1P M =-=时,根据已知的规定,有{}{}()1,()1A P A M ==,显然()(){}1A P A M ⋂=≠∅,因此说法(1)不正确;对于(4):当(,1),[1,)P M =-∞=+∞时,显然满足P M R ⋃=成立,根据已知的规定,有()(1,),()(0,1]A P A M =-+∞=,显然()()(1,)(0,1]A P A M R ⋃=-+∞⋃≠,因此说法(4)不正确;对于(2)来说,当P M R ⋃=时,()()A P A M R ⋃=不一定成立,故当P M R ⋃≠时,显然()()A P A M R ⋃≠一定成立,因此说法(2)正确,所以只有(2)(3)说法正确.故选:B三、解答题17.(2017·上海浦东新·三模)数列{}n a 的前n 项12,,,n a a a ⋅⋅⋅()*N n ∈组成集合{}12,,,n n A a a a =⋅⋅⋅,从集合n A 中任取(1,2,3,,)k k n =⋅⋅⋅个数,其所有可能的k 个数的乘积的和为k T (若只取一个数,规定乘积为此数本身),例如:对于数列{21}n -,当1n =时,1{1},A =11;T =2n =时,2{1,3},A =113,T =+213T =⋅;(1)若集合{1,3,5,,21}n A n =⋅⋅⋅-,求当3n =时,1,T 2,T 3T 的值;(2)若集合{}1,3,7,,21n n A =⋅⋅⋅-,证明:n k =时集合k A 的m T 与1n k =+时集合1k A +的m T (为了以示区别,用m T '表示)有关系式()1121k m m m T T T +-'=-+,其中*,N ,m k ∈2m k ≤≤;(3)对于(2)中集合n A .定义12=+++…n n S T T T ,求n S (用n 表示).。
上海高考数学真题及答案
2021年上海市高考数学试卷参考答案与试题解析一、填空题〔本大题共有12题,总分值54分,第1~6题每题4分,第7~12题每题5分〕考生应在答题纸的相应位置直接填写结果. 1.〔4分〕〔2021•上海〕行列式的值为18 .【考点】:二阶行列式的定义.菁优网版权所有【专题】11 :计算题;49 :综合法;5R :矩阵与变换.【分析】直接利用行列式的定义,计算求解即可.【解答】解:行列式=4×5﹣2×1=18.故答案为:18.【点评】此题考察行列式的定义,运算法那么的应用,是根本知识的考察.2.〔4分〕〔2021•上海〕双曲线﹣y2=1的渐近线方程为±.【考点】:双曲线的性质.菁优网版权所有【专题】11 :计算题.【分析】先确定双曲线的焦点所在坐标轴,再确定双曲线的实轴长与虚轴长,最后确定双曲线的渐近线方程.【解答】解:∵双曲线的2,1,焦点在x轴上而双曲线的渐近线方程为±∴双曲线的渐近线方程为±故答案为:±【点评】此题考察了双曲线的标准方程,双曲线的几何意义,特别是双曲线的渐近线方程,解题时要注意先定位,再定量的解题思想3.〔4分〕〔2021•上海〕在〔1〕7的二项展开式中,x2项的系数为21 〔结果用数值表示〕.【考点】:二项式定理.菁优网版权所有【专题】38 :对应思想;4O:定义法;5P :二项式定理.【分析】利用二项式展开式的通项公式求得展开式中x2的系数.【解答】解:二项式〔1〕7展开式的通项公式为=•,1令2,得展开式中x2的系数为=21.故答案为:21.【点评】此题考察了二项展开式的通项公式的应用问题,是根底题.4.〔4分〕〔2021•上海〕设常数a∈R,函数f〔x〕=12〔〕.假设f 〔x〕的反函数的图象经过点〔3,1〕,那么7 .【考点】4R:反函数.菁优网版权所有【专题】11 :计算题;33 :函数思想;4O:定义法;51 :函数的性质及应用.【分析】由反函数的性质得函数f〔x〕=12〔〕的图象经过点〔1,3〕,由此能求出a.【解答】解:∵常数a∈R,函数f〔x〕=12〔〕.f〔x〕的反函数的图象经过点〔3,1〕,∴函数f〔x〕=12〔〕的图象经过点〔1,3〕,∴2〔1〕=3,解得7.故答案为:7.【点评】此题考察实数值的求法,考察函数的性质等根底知识,考察运算求解能力,考察函数与方程思想,是根底题.5.〔4分〕〔2021•上海〕复数z满足〔1〕1﹣7i〔i是虚数单位〕,那么 5 .【考点】A8:复数的模.菁优网版权所有【专题】38 :对应思想;4A :数学模型法;5N :数系的扩大与复数.【分析】把等式变形,然后利用复数代数形式的乘除运算化简,再由复数求模公式计算得答案.【解答】解:由〔1〕1﹣7i,得,那么.故答案为:5.【点评】此题考察了复数代数形式的乘除运算,考察了复数模的求法,是根底题.6.〔4分〕〔2021•上海〕记等差数列{}的前n项与为,假设a3=0,a67=14,那么S7= 14 .【考点】85:等差数列的前n项与.菁优网版权所有【专题】11 :计算题;34 :方程思想;4O:定义法;54 :等差数列与等比数列.【分析】利用等差数列通项公式列出方程组,求出a1=﹣4,2,由此能求出S7.【解答】解:∵等差数列{}的前n项与为,a3=0,a67=14,解得a1=﹣4,2,∴S7=7a1﹣28+42=14.故答案为:14.【点评】此题考察等差数列的前7项与的求法,考察等差数列的性质等根底知识,考察运算求解能力,考察函数与方程思想,是根底题.7.〔5分〕〔2021•上海〕α∈{﹣2,﹣1,﹣,1,2,3},假设幂函数f〔x〕α为奇函数,且在〔0,+∞〕上递减,那么α=﹣1 .【考点】4U:幂函数的概念、解析式、定义域、值域.菁优网版权所有【专题】11 :计算题;34 :方程思想;4O:定义法;51 :函数的性质及应用.【分析】由幂函数f〔x〕α为奇函数,且在〔0,+∞〕上递减,得到a是奇数,且a<0,由此能求出a的值.【解答】解:∵α∈{﹣2,﹣1,,1,2,3},幂函数f〔x〕α为奇函数,且在〔0,+∞〕上递减,∴a是奇数,且a<0,∴﹣1.故答案为:﹣1.【点评】此题考察实数值的求法,考察幂函数的性质等根底知识,考察运算求解能力,考察函数与方程思想,是根底题.8.〔5分〕〔2021•上海〕在平面直角坐标系中,点A〔﹣1,0〕、B 〔2,0〕,E、F是y轴上的两个动点,且2,那么的最小值为﹣3 .【考点】9O:平面向量数量积的性质及其运算.菁优网版权所有【专题】11 :计算题;35 :转化思想;41 :向量法;5A :平面向量及应用.【分析】据题意可设E〔0,a〕,F〔0,b〕,从而得出﹣2,即2,或2,并可求得,将2带入上式即可求出的最小值,同理将2带入,也可求出的最小值.【解答】解:根据题意,设E〔0,a〕,F〔0,b〕;∴2,或2;且;当2时,;∵b2+2b﹣2的最小值为;∴的最小值为﹣3,同理求出2时,的最小值为﹣3.故答案为:﹣3.【点评】考察根据点的坐标求两点间的距离,根据点的坐标求向量的坐标,以及向量坐标的数量积运算,二次函数求最值的公式.9.〔5分〕〔2021•上海〕有编号互不一样的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,那么这三个砝码的总质量为9克的概率是〔结果用最简分数表示〕.【考点】:古典概型及其概率计算公式.菁优网版权所有【专题】11 :计算题;34 :方程思想;49 :综合法;5I :概率与统计.【分析】求出所有事件的总数,求出三个砝码的总质量为9克的事件总数,然后求解概率即可.【解答】解:编号互不一样的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,3个数中含有1个2;2个2,没有2,3种情况,所有的事件总数为:=10,这三个砝码的总质量为9克的事件只有:5,3,1或5,2,2两个,所以:这三个砝码的总质量为9克的概率是:=,故答案为:.【点评】此题考察古典概型的概率的求法,是根本知识的考察.10.〔5分〕〔2021•上海〕设等比数列{}的通项公式为﹣1〔n∈N*〕,前n项与为.假设=,那么 3 .【考点】8J:数列的极限.菁优网版权所有【专题】11 :计算题;34 :方程思想;35 :转化思想;49 :综合法;55 :点列、递归数列与数学归纳法.【分析】利用等比数列的通项公式求出首项,通过数列的极限,列出方程,求解公比即可.【解答】解:等比数列{}的通项公式为﹣1〔n∈N*〕,可得a1=1,因为=,所以数列的公比不是1,,1.可得,可得3.故答案为:3.【点评】此题考察数列的极限的运算法那么的应用,等比数列求与以及等比数列的简单性质的应用,是根本知识的考察.11.〔5分〕〔2021•上海〕常数a>0,函数f〔x〕=的图象经过点P〔p,〕,Q〔q,〕.假设236,那么 6 .【考点】3A:函数的图象与图象的变换.菁优网版权所有【专题】35 :转化思想;51 :函数的性质及应用.【分析】直接利用函数的关系式,利用恒等变换求出相应的a值.【解答】解:函数f〔x〕=的图象经过点P〔p,〕,Q〔q,〕.那么:,整理得:=1,解得:22,由于:236,所以:a2=36,由于a>0,故:6.故答案为:6【点评】此题考察的知识要点:函数的性质的应用,代数式的变换问题的应用.12.〔5分〕〔2021•上海〕实数x1、x2、y1、y2满足:x1212=1,x2222=1,x1x21y2=,那么+的最大值为+.【考点】7F:根本不等式及其应用;:点到直线的距离公式.菁优网版权所有【专题】35 :转化思想;48 :分析法;59 :不等式的解法及应用.【分析】设A〔x1,y1〕,B〔x2,y2〕,=〔x1,y1〕,=〔x2,y2〕,由圆的方程与向量数量积的定义、坐标表示,可得三角形为等边三角形,1,+的几何意义为点A,B两点到直线﹣1=0的距离d1与d2之与,由两平行线的距离可得所求最大值.【解答】解:设A〔x1,y1〕,B〔x2,y2〕,=〔x1,y1〕,=〔x2,y2〕,由x1212=1,x2222=1,x1x21y2=,可得A,B两点在圆x22=1上,且•=1×1×∠,即有∠60°,即三角形为等边三角形,1,+的几何意义为点A,B两点到直线﹣1=0的距离d1与d2之与,显然A,B在第三象限,所在直线与直线1平行,可设:0,〔t>0〕,由圆心O到直线的距离,可得2=1,解得,即有两平行线的距离为=,即+的最大值为+,故答案为:+.【点评】此题考察向量数量积的坐标表示与定义,以及圆的方程与运用,考察点与圆的位置关系,运用点到直线的距离公式是解题的关键,属于难题.二、选择题〔本大题共有4题,总分值20分,每题5分〕每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.〔5分〕〔2021•上海〕设P是椭圆=1上的动点,那么P 到该椭圆的两个焦点的距离之与为〔〕A.2B.2C.2D.4【考点】K4:椭圆的性质.菁优网版权所有【专题】11 :计算题;49 :综合法;5D :圆锥曲线的定义、性质与方程.【分析】判断椭圆长轴〔焦点坐标〕所在的轴,求出a,接利用椭圆的定义,转化求解即可.【解答】解:椭圆=1的焦点坐标在x轴,,P是椭圆=1上的动点,由椭圆的定义可知:那么P到该椭圆的两个焦点的距离之与为22.应选:C.【点评】此题考察椭圆的简单性质的应用,椭圆的定义的应用,是根本知识的考察.14.〔5分〕〔2021•上海〕a∈R,那么“a>1〞是“<1〞的〔〕A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分又非必要条件【考点】29:充分条件、必要条件、充要条件.菁优网版权所有【专题】11 :计算题;34 :方程思想;4O:定义法;5L :简易逻辑.【分析】“a>1〞⇒“〞,“〞⇒“a>1或a<0〞,由此能求出结果.【解答】解:a∈R,那么“a>1〞⇒“〞,“〞⇒“a>1或a<0〞,∴“a>1〞是“〞的充分非必要条件.应选:A.【点评】此题考察充分条件、必要条件的判断,考察不等式的性质等根底知识,考察运算求解能力,考察函数与方程思想,是根底题.15.〔5分〕〔2021•上海〕?九章算术?中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设1是正六棱柱的一条侧棱,如图,假设阳马以该正六棱柱的顶点为顶点、以1为底面矩形的一边,那么这样的阳马的个数是〔〕A.4 B.8 C.12 D.16【考点】D8:排列、组合的实际应用.菁优网版权所有【专题】11 :计算题;38 :对应思想;4R:转化法;5O :排列组合.【分析】根据新定义与正六边形的性质可得答案.【解答】解:根据正六边形的性质,那么D1﹣A11,D1﹣A11满足题意,而C1,E1,C,D,E,与D1一样,有2×6=12,当A11为底面矩形,有2个满足题意,当A11为底面矩形,有2个满足题意,故有12+2+2=16应选:D.【点评】此题考察了新定义,以及排除组合的问题,考察了棱柱的特征,属于中档题.16.〔5分〕〔2021•上海〕设D是含数1的有限实数集,f〔x〕是定义在D上的函数,假设f〔x〕的图象绕原点逆时针旋转后与原图象重合,那么在以下各项中,f〔1〕的可能取值只能是〔〕A. B.C.D.0【考点】3A:函数的图象与图象的变换.菁优网版权所有【专题】35 :转化思想;51 :函数的性质及应用;56 :三角函数的求值.【分析】直接利用定义函数的应用求出结果.【解答】解:由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转个单位后与下一个点会重合.我们可以通过代入与赋值的方法当f〔1〕=,,0时,此时得到的圆心角为,,0,然而此时0或者1时,都有2个y与之对应,而我们知道函数的定义就是要求一个x只能对应一个y,因此只有当,此时旋转,此时满足一个x只会对应一个y,因此答案就选:B.应选:B.【点评】此题考察的知识要点:定义性函数的应用.三、解答题〔本大题共有5题,总分值76分〕解答以下各题必须在答题纸的相应位置写出必要的步骤.17.〔14分〕〔2021•上海〕圆锥的顶点为P,底面圆心为O,半径为2.〔1〕设圆锥的母线长为4,求圆锥的体积;〔2〕设4,、是底面半径,且∠90°,M为线段的中点,如图.求异面直线与所成的角的大小.【考点】:异面直线及其所成的角;L5:旋转体〔圆柱、圆锥、圆台〕;:棱柱、棱锥、棱台的体积.菁优网版权所有【专题】11 :计算题;31 :数形结合;41 :向量法;5F :空间位置关系与距离;5G :空间角.【分析】〔1〕由圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4能求出圆锥的体积.〔2〕以O为原点,为x轴,为y轴,为z轴,建立空间直角坐标系,利用向量法能求出异面直线与所成的角.【解答】解:〔1〕∵圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4,∴圆锥的体积〔2〕∵4,,是底面半径,且∠90°,M为线段的中点,∴以O为原点,为x轴,为y轴,为z轴,建立空间直角坐标系,P〔0,0,4〕,A〔2,0,0〕,B〔0,2,0〕,M〔1,1,0〕,O〔0,0,0〕,=〔1,1,﹣4〕,=〔0,2,0〕,设异面直线与所成的角为θ,那么θ.∴θ.∴异面直线与所成的角的为.【点评】此题考察圆锥的体积的求法,考察异面直线所成角的正切值的求法,考察空间中线线、线面、面面间的位置关系等根底知识,考察运算求解能力,考察函数与方程思想,是根底题.18.〔14分〕〔2021•上海〕设常数a∈R,函数f〔x〕222x.〔1〕假设f〔x〕为偶函数,求a的值;〔2〕假设f〔〕1,求方程f〔x〕=1﹣在区间[﹣π,π]上的解.【考点】:两角与与差的三角函数;:二倍角的三角函数.菁优网版权所有【专题】11 :计算题;38 :对应思想;4R:转化法;58 :解三角形.【分析】〔1〕根据函数的奇偶性与三角形的函数的性质即可求出,〔2〕先求出a的值,再根据三角形函数的性质即可求出.【解答】解:〔1〕∵f〔x〕222x,∴f〔﹣x〕=﹣222x,∵f〔x〕为偶函数,∴f〔﹣x〕〔x〕,∴﹣222222x,∴220,∴0;〔2〕∵f〔〕1,∴22〔〕11,∴f〔x〕222221=2〔2〕+1,∵f〔x〕=1﹣,∴2〔2〕+1=1﹣,∴〔2〕=﹣,∴2﹣+2kπ,或2π+2kπ,k∈Z,∴﹣ππ,或ππ,k∈Z,∵x∈[﹣π,π],∴或或﹣或﹣【点评】此题考察了三角函数的化简与求值,以及三角函数的性质,属于根底题.19.〔14分〕〔2021•上海〕某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族S中的成员仅以自驾或公交方式通勤.分析显示:当S中〔0<x<100〕的成员自驾时,自驾群体的人均通勤时间为f〔x〕=〔单位:分钟〕,而公交群体的人均通勤时间不受x影响,恒为40分钟,试根据上述分析结果答复以下问题:〔1〕当x在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?〔2〕求该地上班族S的人均通勤时间g〔x〕的表达式;讨论g〔x〕的单调性,并说明其实际意义.【考点】5B:分段函数的应用.菁优网版权所有【专题】12 :应用题;33 :函数思想;4C :分类法;51 :函数的性质及应用.【分析】〔1〕由题意知求出f〔x〕>40时x的取值范围即可;〔2〕分段求出g〔x〕的解析式,判断g〔x〕的单调性,再说明其实际意义.【解答】解;〔1〕由题意知,当30<x<100时,f〔x〕=2﹣90>40,即x2﹣65900>0,解得x<20或x>45,∴x∈〔45,100〕时,公交群体的人均通勤时间少于自驾群体的人均通勤时间;〔2〕当0<x≤30时,g〔x〕=30•40〔1﹣〕=40﹣;当30<x<100时,g〔x〕=〔2﹣90〕•40〔1﹣〕=﹣58;∴g〔x〕=;当0<x<32.5时,g〔x〕单调递减;<x<100时,g〔x〕单调递增;说明该地上班族S中有小于32.5%的人自驾时,人均通勤时间是递减的;有大于32.5%的人自驾时,人均通勤时间是递增的;当自驾人数为32.5%时,人均通勤时间最少.【点评】此题考察了分段函数的应用问题,也考察了分类讨论与分析问题、解决问题的能力.20.〔16分〕〔2021•上海〕设常数t>2.在平面直角坐标系中,点F〔2,0〕,直线l:,曲线Γ:y2=8x〔0≤x≤t,y≥0〕.l与x轴交于点A、与Γ交于点B.P、Q分别是曲线Γ与线段上的动点.〔1〕用t表示点B到点F的距离;〔2〕设3,2,线段的中点在直线上,求△的面积;〔3〕设8,是否存在以、为邻边的矩形,使得点E在Γ上?假设存在,求点P的坐标;假设不存在,说明理由.【考点】:直线与抛物线的位置关系.菁优网版权所有【专题】35 :转化思想;4R:转化法;5D :圆锥曲线的定义、性质与方程.【分析】〔1〕方法一:设B点坐标,根据两点之间的距离公式,即可求得;方法二:根据抛物线的定义,即可求得;〔2〕根据抛物线的性质,求得Q点坐标,即可求得的中点坐标,即可求得直线的方程,代入抛物线方程,即可求得P点坐标,即可求得△的面积;〔3〕设P及E点坐标,根据直线•﹣1,求得直线的方程,求得Q 点坐标,根据,求得E点坐标,那么〔〕2=8〔+6〕,即可求得P点坐标.【解答】解:〔1〕方法一:由题意可知:设B〔t,2t〕,那么2,∴2;方法二:由题意可知:设B〔t,2t〕,由抛物线的性质可知:2,∴2;〔2〕F〔2,0〕,2,3,那么1,∴,∴Q〔3,〕,设的中点D,D〔,〕,﹣,那么直线方程:﹣〔x﹣2〕,联立,整理得:3x2﹣2021=0,解得:,6〔舍去〕,∴△的面积××=;〔3〕存在,设P〔,y〕,E〔,m〕,那么,,直线方程为〔x﹣2〕,∴〔8﹣2〕=,Q〔8,〕,根据,那么E〔+6,〕,∴〔〕2=8〔+6〕,解得:y2=,∴存在以、为邻边的矩形,使得点E在Γ上,且P〔,〕.【点评】此题考察抛物线的性质,直线与抛物线的位置关系,考察转化思想,计算能力,属于中档题.21.〔18分〕〔2021•上海〕给定无穷数列{},假设无穷数列{}满足:对任意n∈N*,都有﹣≤1,那么称{}与{}“接近〞.〔1〕设{}是首项为1,公比为的等比数列,1+1,n∈N*,判断数列{}是否与{}接近,并说明理由;〔2〕设数列{}的前四项为:a1=1,a2=2,a3=4,a4=8,{}是一个与{}接近的数列,记集合{,1,2,3,4},求M中元素的个数m;〔3〕{}是公差为d的等差数列,假设存在数列{}满足:{}与{}接近,且在b2﹣b1,b3﹣b2,…,b201﹣b200中至少有100个为正数,求d 的取值范围.【考点】8M:等差数列与等比数列的综合.菁优网版权所有【专题】34 :方程思想;48 :分析法;54 :等差数列与等比数列.【分析】〔1〕运用等比数列的通项公式与新定义“接近〞,即可判断;〔2〕由新定义可得﹣1≤≤1,求得,1,2,3,4的范围,即可得到所求个数;〔3〕运用等差数列的通项公式可得,讨论公差d>0,0,﹣2<d<0,d≤﹣2,结合新定义“接近〞,推理与运算,即可得到所求范围.【解答】解:〔1〕数列{}与{}接近.理由:{}是首项为1,公比为的等比数列,可得,1+11,那么﹣1﹣1﹣<1,n∈N*,可得数列{}与{}接近;〔2〕{}是一个与{}接近的数列,可得﹣1≤≤1,数列{}的前四项为:a1=1,a2=2,a3=4,a4=8,可得b1∈[0,2],b2∈[1,3],b3∈[3,5],b4∈[7,9],可能b1与b2相等,b2与b3相等,但b1与b3不相等,b4与b3不相等,集合{,1,2,3,4},M中元素的个数3或4;〔3〕{}是公差为d的等差数列,假设存在数列{}满足:{}与{}接近,可得1+〔n﹣1〕d,①假设d>0,取,可得1﹣1﹣>0,那么b2﹣b1,b3﹣b2,…,b201﹣b200中有200个正数,符合题意;②假设0,取1﹣,那么﹣1﹣﹣a1<1,n∈N*,可得1﹣﹣>0,那么b2﹣b1,b3﹣b2,…,b201﹣b200中有200个正数,符合题意;③假设﹣2<d<0,可令b2n﹣12n﹣1﹣1,b221,那么b2n﹣b2n﹣121﹣〔a2n﹣1﹣1〕=2>0,那么b2﹣b1,b3﹣b2,…,b201﹣b200中恰有100个正数,符合题意;④假设d≤﹣2,假设存在数列{}满足:{}与{}接近,即为﹣1≤≤1,1﹣1≤1≤1+1,可得1﹣≤1+1﹣〔﹣1〕=2≤0,b2﹣b1,b3﹣b2,…,b201﹣b200中无正数,不符合题意.综上可得,d的范围是〔﹣2,+∞〕.【点评】此题考察新定义“接近〞的理解与运用,考察等差数列与等比数列的定义与通项公式的运用,考察分类讨论思想方法,以及运算能力与推理能力,属于难题.第21 页。
高考数学考点归纳之 直线与圆、圆与圆的位置关系
高考数学考点归纳之 直线与圆、圆与圆的位置关系一、基础知识1.直线与圆的位置关系(半径为r ,圆心到直线的距离为d )Δ<0 Δ=0 Δ>0 2.圆与圆的位置关系(两圆半径为r 1,r 2,d =|O 1O 2|)|r -r |<d <二、常用结论(1)圆的切线方程常用结论①过圆x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程为x 0x +y 0y =r 2.②过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的圆的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2.③过圆x 2+y 2=r 2外一点M (x 0,y 0)作圆的两条切线,则两切点所在直线方程为x 0x +y 0y =r 2.(2)直线被圆截得的弦长弦心距d 、弦长l 的一半12l 及圆的半径r 构成一直角三角形,且有r 2=d 2+⎝⎛⎭⎫12l 2. 考点一 直线与圆的位置关系考法(一) 直线与圆的位置关系的判断[典例] 直线l :mx -y +1-m =0与圆C :x 2+(y -1)2=5的位置关系是( ) A .相交B .相切C .相离D .不确定[解析] 法一:由⎩⎪⎨⎪⎧mx -y +1-m =0,x 2+(y -1)2=5, 消去y ,整理得(1+m 2)x 2-2m 2x +m 2-5=0, 因为Δ=16m 2+20>0, 所以直线l 与圆相交.法二:由题意知,圆心(0,1)到直线l 的距离d =|m |m 2+1<1<5,故直线l 与圆相交. 法三:直线l :mx -y +1-m =0过定点(1,1),因为点(1,1)在圆x 2+(y -1)2=5的内部,所以直线l 与圆相交.[答案] A[解题技法] 判断直线与圆的位置关系的常见方法 (1)几何法:利用d 与r 的关系.(2)代数法:联立方程组,消元得一元二次方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交. [提醒] 上述方法中最常用的是几何法. 考法(二) 直线与圆相切的问题[典例] (1)过点P (2,4)作圆(x -1)2+(y -1)2=1的切线,则切线方程为( ) A .3x +4y -4=0 B .4x -3y +4=0 C .x =2或4x -3y +4=0 D .y =4或3x +4y -4=0(2)(2019·成都摸底)已知圆C :x 2+y 2-2x -4y +1=0上存在两点关于直线l :x +my +1=0对称,经过点M (m ,m )作圆C 的切线,切点为P ,则|MP |=________.[解析] (1)当斜率不存在时,x =2与圆相切;当斜率存在时,设切线方程为y -4=k (x -2),即kx -y +4-2k =0,则|k -1+4-2k |k 2+1=1,解得k =43,则切线方程为4x -3y +4=0,故切线方程为x =2或4x -3y +4=0.(2)圆C :x 2+y 2-2x -4y +1=0的圆心为C (1,2),半径为2.因为圆上存在两点关于直线l :x +my +1=0对称,所以直线l :x +my +1=0过点(1,2),所以1+2m +1=0,解得m =-1,所以|MC |2=13,|MP |=13-4=3.[答案] (1)C (2)3 考法(三) 弦长问题[典例] (1)若a 2+b 2=2c 2(c ≠0),则直线ax +by +c =0被圆x 2+y 2=1所截得的弦长为( )A.12 B .1 C.22D.2(2)(2019·海口一中模拟)设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=23,则圆C 的面积为( )A .4πB .2πC .9πD .22π[解析] (1)因为圆心(0,0)到直线ax +by +c =0的距离d =|c |a 2+b 2=|c |2|c |=22,因此根据直角三角形的关系,弦长的一半就等于1-⎝⎛⎭⎫222=22,所以弦长为 2. (2)易知圆C :x 2+y 2-2ay -2=0的圆心为(0,a ),半径为a 2+2.圆心(0,a )到直线y =x +2a 的距离d =|a |2,由直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,|AB |=23,可得a 22+3=a 2+2,解得a 2=2,故圆C 的半径为2,所以圆C 的面积为4π,故选A.[答案] (1)D (2)A[题组训练]1.已知圆的方程是x 2+y 2=1,则经过圆上一点M ⎝⎛⎭⎫22,22的切线方程是________. 解析:因为M ⎝⎛⎭⎫22,22是圆x 2+y 2=1上的点,所以圆的切线的斜率为-1,则设切线方程为x +y +a =0,所以22+22+a =0,得a =-2,故切线方程为x +y -2=0. 答案:x +y -2=02.若直线kx -y +2=0与圆x 2+y 2-2x -3=0没有公共点,则实数k 的取值范围是________.解析:由题知,圆x 2+y 2-2x -3=0可写成(x -1)2+y 2=4,圆心(1,0)到直线kx -y +2=0的距离d >2,即|k +2|k 2+1>2,解得0<k <43.答案:⎝⎛⎭⎫0,43 3.设直线y =kx +1与圆x 2+y 2+2x -my =0相交于A ,B 两点,若点A ,B 关于直线l :x +y =0对称,则|AB |=________.解析:因为点A ,B 关于直线l :x +y =0对称,所以直线y =kx +1的斜率k =1,即y =x +1.又圆心⎝⎛⎭⎫-1,m2在直线l :x +y =0上,所以m =2,则圆心的坐标为(-1,1),半径r =2,所以圆心到直线y =x +1的距离d =22,所以|AB |=2r 2-d 2= 6. 答案:6考点二 圆与圆的位置关系[典例] (2016·山东高考)已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( )A .内切B .相交C .外切D .相离[解析] 法一:由⎩⎪⎨⎪⎧x 2+y 2-2ay =0,x +y =0,得两交点为(0,0),(-a ,a ). ∵圆M 截直线所得线段长度为22, ∴a 2+(-a )2=2 2.又a >0,∴a =2.∴圆M 的方程为x 2+y 2-4y =0, 即x 2+(y -2)2=4,圆心M (0,2),半径r 1=2.又圆N :(x -1)2+(y -1)2=1,圆心N (1,1),半径r 2=1, ∴|MN |=(0-1)2+(2-1)2= 2. ∵r 1-r 2=1,r 1+r 2=3,1<|MN |<3, ∴两圆相交.法二:由题知圆M :x 2+(y -a )2=a 2(a >0),圆心(0,a )到直线x +y =0的距离d =a2,所以2a 2-a 22=22,解得a =2.圆M ,圆N 的圆心距|MN |=2,两圆半径之差为1,两圆半径之和为3,故两圆相交.[答案] B [变透练清]1.(2019·太原模拟)若圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0外切,则m =( )A .21B .19C .9D .-11解析:选C 圆C 1的圆心为C 1(0,0),半径r 1=1,因为圆C 2的方程可化为(x -3)2+(y -4)2=25-m ,所以圆C 2的圆心为C 2(3,4),半径r 2=25-m (m <25).从而|C 1C 2|=32+42=5.由两圆外切得|C 1C 2|=r 1+r 2,即1+25-m =5,解得m =9,故选C.2.(变结论)若本例两圆的方程不变,则两圆的公共弦长为________.解析:联立两圆方程⎩⎪⎨⎪⎧x 2+y 2-4y =0,(x -1)2+(y -1)2=1,两式相减得,2x -2y -1=0,因为N (1,1),r =1,则点N 到直线2x -2y -1=0的距离d =|-1|22=24,故公共弦长为21-⎝⎛⎭⎫242=142.答案:142[解题技法]几何法判断圆与圆的位置关系的3步骤(1)确定两圆的圆心坐标和半径长;(2)利用平面内两点间的距离公式求出圆心距d ,求r 1+r 2,|r 1-r 2|; (3)比较d ,r 1+r 2,|r 1-r 2|的大小,写出结论.[课时跟踪检测]A 级1.若直线2x +y +a =0与圆x 2+y 2+2x -4y =0相切,则a 的值为( ) A .±5 B .±5 C .3D .±3解析:选B 圆的方程可化为(x +1)2+(y -2)2=5,因为直线与圆相切,所以有|a |5=5,即a =±5.故选B.2.与圆C 1:x 2+y 2-6x +4y +12=0,C 2:x 2+y 2-14x -2y +14=0都相切的直线有( )A .1条B .2条C .3条D .4条解析:选A 两圆分别化为标准形式为C 1:(x -3)2+(y +2)2=1,C 2:(x -7)2+(y -1)2=36,则两圆圆心距|C 1C 2|=(7-3)2+[1-(-2)]2=5,等于两圆半径差,故两圆内切.所以它们只有一条公切线.故选A.3.(2019·南宁、梧州联考)直线y =kx +3被圆(x -2)2+(y -3)2=4截得的弦长为23,则直线的倾斜角为( )A.π6或5π6 B .-π3或π3C .-π6或π6D.π6解析:选A 由题知,圆心(2,3),半径为2,所以圆心到直线的距离为d =22-(3)2=1.即d =|2k |1+k 2=1,所以k =±33,由k =tan α,得α=π6或5π6.故选A.4.过点(3,1)作圆(x -1)2+y 2=r 2的切线有且只有一条,则该切线的方程为( ) A .2x +y -5=0 B .2x +y -7=0 C .x -2y -5=0D .x -2y -7=0解析:选B 由题意知点(3,1)在圆上,代入圆的方程可得r 2=5,圆的方程为(x -1)2+y 2=5,则过点(3,1)的切线方程为(x -1)·(3-1)+y (1-0)=5,即2x +y -7=0.故选B.5.(2019·重庆一中模拟)若圆x 2+y 2+2x -6y +6=0上有且仅有三个点到直线x +ay +1=0的距离为1,则实数a 的值为( )A .±1B .±24 C .± 2D .±32解析:选B 由题知圆的圆心坐标为(-1,3),半径为2,由于圆上有且仅有三个点到直线的距离为1,故圆心(-1,3)到直线x +ay +1=0的距离为1,即|-1+3a +1|1+a 2=1,解得a =±24. 6.(2018·嘉定二模)过点P (1,-2)作圆C :(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则AB 所在直线的方程为( )A .y =-34B .y =-12C .y =-32D .y =-14解析:选B 圆(x -1)2+y 2=1的圆心为C (1,0),半径为1,以|PC |=(1-1)2+(-2-0)2=2为直径的圆的方程为(x -1)2+(y +1)2=1,将两圆的方程相减得AB 所在直线的方程为2y +1=0,即y =-12.故选B.7.在平面直角坐标系xOy 中,直线x +2y -3=0被圆(x -2)2+(y +1)2=4截得的弦长为________.解析:易知圆心(2,-1),半径r =2,故圆心到直线的距离d =|2+2×(-1)-3|12+22=355,弦长为2r 2-d 2=2555. 答案:25558.若P (2,1)为圆(x -1)2+y 2=25的弦AB 的中点,则直线AB 的方程为________. 解析:因为圆(x -1)2+y 2=25的圆心为(1,0),所以直线AB 的斜率等于-11-02-1=-1,由点斜式得直线AB 的方程为y -1=-(x -2),即x +y -3=0.答案:x +y -3=09.过点P (-3,1),Q (a,0)的光线经x 轴反射后与圆x 2+y 2=1相切,则a 的值为________. 解析:因为P (-3,1)关于x 轴的对称点的坐标为P ′(-3,-1), 所以直线P ′Q 的方程为y =-1-3-a (x -a ),即x -(3+a )y -a =0, 圆心(0,0)到直线的距离d =|-a |1+(3+a )2=1,所以a =-53.答案:-5310.点P 在圆C 1:x 2+y 2-8x -4y +11=0上,点Q 在圆C 2:x 2+y 2+4x +2y +1=0上,则|P Q |的最小值是________.解析:把圆C 1、圆C 2的方程都化成标准形式,得(x -4)2+(y -2)2=9,(x +2)2+(y +1)2=4.圆C 1的圆心坐标是(4,2),半径长是3; 圆C 2的圆心坐标是(-2,-1),半径是2.圆心距d =(4+2)2+(2+1)2=35>5.故圆C 1与圆C 2相离, 所以|P Q |的最小值是35-5.答案:35-511.已知圆C 1:x 2+y 2-2x -6y -1=0和圆C 2:x 2+y 2-10x -12y +45=0. (1)求证:圆C 1和圆C 2相交;(2)求圆C 1和圆C 2的公共弦所在直线的方程和公共弦长. 解:(1)证明:圆C 1的圆心C 1(1,3),半径r 1=11, 圆C 2的圆心C 2(5,6),半径r 2=4,两圆圆心距d =|C 1C 2|=5,r 1+r 2=11+4, |r 1-r 2|=4-11,∴|r 1-r 2|<d <r 1+r 2,∴圆C 1和圆C 2相交. (2)圆C 1和圆C 2的方程相减,得4x +3y -23=0, ∴两圆的公共弦所在直线的方程为4x +3y -23=0.圆心C 2(5,6)到直线4x +3y -23=0的距离d =|20+18-23|16+9=3,故公共弦长为216-9=27.12.已知圆C 经过点A (2,-1),和直线x +y =1相切,且圆心在直线y =-2x 上. (1)求圆C 的方程;(2)已知直线l 经过原点,并且被圆C 截得的弦长为2,求直线l 的方程. 解:(1)设圆心的坐标为C (a ,-2a ), 则(a -2)2+(-2a +1)2=|a -2a -1|2.化简,得a 2-2a +1=0,解得a =1.∴C (1,-2),半径r =|AC |=(1-2)2+(-2+1)2= 2. ∴圆C 的方程为(x -1)2+(y +2)2=2.(2)①当直线l 的斜率不存在时,直线l 的方程为x =0,此时直线l 被圆C 截得的弦长为2,满足条件.②当直线l 的斜率存在时,设直线l 的方程为y =kx , 由题意得|k +2|1+k 2=1,解得k =-34,∴直线l 的方程为y =-34x ,即3x +4y =0.综上所述,直线l 的方程为x =0或3x +4y =0.B 级1.过圆x 2+y 2=1上一点作圆的切线,与x 轴、y 轴的正半轴相交于A ,B 两点,则|AB |的最小值为( )A. 2B.3 C .2D .3解析:选C 设圆上的点为(x 0,y 0),其中x 0>0,y 0>0,则有x 20+y 20=1,且切线方程为x 0x +y 0y =1.分别令y =0,x =0得A ⎝⎛⎭⎫1x 0,0,B ⎝⎛⎭⎫0,1y 0,则|AB |=⎝⎛⎭⎫1x 02+⎝⎛⎭⎫1y 02=1x 0y 0≥1x 20+y 202=2,当且仅当x 0=y 0时,等号成立.2.(2018·江苏高考)在平面直角坐标系xOy 中,A 为直线l :y =2x 上在第一象限内的点,B (5,0),以AB 为直径的圆C 与直线l 交于另一点D .若AB ―→·CD ―→=0,则点A 的横坐标为________.解析:因为AB ―→·CD ―→=0,所以AB ⊥CD ,又点C 为AB 的中点,所以∠BAD =π4,设直线l 的倾斜角为θ,直线AB 的斜率为k ,则tan θ=2,k =tan ⎝⎛⎭⎫θ+π4=-3.又B (5,0),所以 直线AB 的方程为y =-3(x -5),又A 为直线l :y =2x 上在第一象限内的点,联立直线AB 与直线l 的方程,得⎩⎪⎨⎪⎧ y =-3(x -5),y =2x ,解得⎩⎪⎨⎪⎧x =3,y =6,所以点A 的横坐标为3. 答案:33.(2018·安顺摸底)已知圆C :x 2+(y -a )2=4,点A (1,0). (1)当过点A 的圆C 的切线存在时,求实数a 的取值范围; (2)设AM ,AN 为圆C 的两条切线,M ,N 为切点,当|MN |=455时,求MN 所在直线的方程.解:(1)过点A 的切线存在,即点A 在圆外或圆上, ∴1+a 2≥4,∴a ≥3或a ≤- 3.(2)设MN 与AC 交于点D ,O 为坐标原点. ∵|MN |=455,∴|DM |=255.又|MC |=2,∴|CD |=4-2025=45, ∴cos ∠MCA =452=25,|AC |=|MC |cos ∠MCA =225=5,∴|OC|=2,|AM|=1,∴MN是以点A为圆心,1为半径的圆A与圆C的公共弦,圆A的方程为(x-1)2+y2=1,圆C的方程为x2+(y-2)2=4或x2+(y+2)2=4,∴MN所在直线的方程为(x-1)2+y2-1-x2-(y-2)2+4=0,即x-2y=0或(x-1)2+y2-1-x2-(y+2)2+4=0,即x+2y=0,因此MN所在直线的方程为x-2y=0或x+2y=0.。
2021-2022学年上海高一数学下学期满分全攻略第06讲 解三角形的实际应用(考点讲与练)练习版
第06讲 解三角形的实际应用(核心考点讲与练)1.正弦定理应用范围:①已知两角和任一边,求其他两边及一角. ②已知两边和其中一边对角,求另一边的对角.③几何作图时,存在多种情况.如已知a 、b 及A ,求作三角形时,要分类讨论,确定解的个数.已知两边和其中一边的对角解三角形,有如下的情况: (1)A 为锐角a=bsin A bsin A<a<b a b 一解 两解 一解 (2)A 为锐角或钝角:当a>b 时有一解. 2.余弦定理应用范围:(1)已知三角形的三条边长,可求出三个内角; (2)已知三角形的两边及夹角,可求出第三边.3. 利用正弦定理或余弦定理判断三角形形状,可以将三角形中的边用角表示,也可将角用边来表示.从中找到三角形中的边角关系,判断出三角形的形状.考点一:距离、角度求解问题【例1】(2020·上海高一课时练习)如图所示,AC 是一山坡,它与地面所成的角为75,B 为山坡AC 上一点,它和点A 的距离是200m ,从A 和B 测得平地上点D 的俯角分别为60和30,求点C 和点D 之间的距离.BAA BC【例2】.(2020·上海市沪新中学高一期中)如图,为测量山高MN,选择水平地面上一点A和另一座山的山顶C为测量观测点,从A点测得M点的仰角60∠=,C点MAN︒的仰角45MCA︒∠=.已知山高∠=;从C点测得60MAC︒∠=以及75CAB︒=,求山高MN.BC m100【例3】(2021·上海市奉贤中学高一期中)★★☆☆☆10方向的20方向的处沿直线行驶入港,甲、乙两船距离为海里,经过处,求此时甲、乙两船相距多少海里?甲在乙的什么方向?【例4】(2020·上海静安·高三一模)★★★☆☆(1)O、A相距多少公里?(精确到小数点后两位)【例5】(2021·上海高一课时练习)★★★☆☆(1)若260αβ==,问该船有无触礁危险?如果没有,请说明理由;如果处向东航行多少距离后会有触礁危险?满足什么条件时,该船没有触礁危险?【巩固训练】1.(2020·上海高一课时练习)如图,某市郊外景区内一条笔直的公路a 经过三个景点A 、B 、C ,景区管委会又开发了风景优美的景点D ,经测量景点D 位于景点A 的北偏东30方向8km处,位于景点B的正北方向,还位于景点C的北偏西75︒方向上,已知=.AB km5(1)景区管委会准备由景点D向景点B修建一条笔直的公路,不考虑其他因素,求出这条公路的长;(结果精确到0.1km)(2)求景点C与景点D之间的距离.(结果精确到0.1km)2.(2020·上海浦东新区·华师大二附中高一月考)钓鱼岛及其附属岛屿是中国固有领土,如图:点A、B、C分别表示钓鱼岛、南小岛、黄尾屿,点C在点A的北偏东47°方向,点B在点C的南偏西36°方向,点B在点A的南偏东79°方向,且A、B两点的距离约为3海里.(1)求A、C两点间的距离;(精确到0.01)(2)某一时刻,我国一渔船在A点处因故障抛锚发出求救信号.一艘R国舰艇正从点C正东10海里的点P处以18海里/小时的速度接近渔船,其航线为P→C→A(直线行进),而我东海某渔政船正位于点A南偏西60°方向20海里的点Q处,收到信号后赶往救助,其航线为先向正北航行8海里至点M处,再折向点A直线航行,航速为22海里/小时.渔政船能否先于R国舰艇赶到进行救助?说明理由.3.(2021·上海浦东新·上外浦东附中高一期中)★★★☆☆4.(2021·上海黄浦·格致中学)★★★☆☆5.(2018·上海市宝山中学高一期中)★★★☆☆6.(2016·长宁区·上海市延安中学高三期中)★★★★☆α考点二:最值问题【例1】(2019·上海浦东新·华师大二附中高三期中)★★☆☆☆【例2】(2020·上海外国语大学嘉定外国语实验高级中学高一期中)如图所示,某区有一块空地OAB ∆,其中4OA km =,OB =,AOB 90∠=.当地区政府规划将这块空地改造成一个旅游景点,拟在中间挖一个人工湖OMN ∆,其中,M N 都在边AB 上,且30MON ∠=,挖出的泥土堆放在OAM ∆地带上形成假山,剩下的OBN ∆地带开设儿童游乐场.为安全起见,需在OAN ∆的周围安装防护网.(1)当2AM km =时,求防护网的总长度;(2)若要求挖人工湖用地OMN ∆的面积是堆假山用地OAM ∆AOM ∠的大小;∆的面积要尽可能小,问如何设计施工方案,可使(3)为节省投入资金,人工湖OMN∆的面积最小?最小面积是多少?OMN【例3】(2018·上海长宁区·高二期末)★★★☆☆1)出发才能【例4】(2021·上海市金山中学)★★★☆☆(1)求BD的长;【例5】(2017·上海浦东新区·高三二模)★★★★☆2π【巩固训练】1.(2020·宝山·上海交大附中高三模拟预测)★★★☆☆(1)求停车场面积S关于θ的函数关系式,并指出θ的取值范围;2.(2020·上海市莘庄中学高一月考)如图,游客从某旅游景区的景点A处下上至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B 沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50/min m .在甲出发2min 后,乙从A 乘缆车到B ,在B 处停留1min 后,再从B 匀速步行到C ,假设缆车匀速直线运动的速度为130/min m ,山路AC 长为1260m ,经测量12cos 13A =,3cos 5C =.(1)求索道AB 的长;(2)问:乙出发多少min 后,乙在缆车上与甲的距离最短?(3)为使两位游客在C 处互相等待的时间不超过3min ,乙步行的速度应控制在什么范围内?分层提分题组A 基础过关练一、填空题1.(2020·上海高一课时练习)若船在A处发现灯塔B位于北偏东40°处,灯塔C位于船的∠=_________.南偏东45°处,则BAC2.(2020·上海浦东新区·高一期中)某高一学生骑车行驶,开始看见塔在南偏东30°方向,沿南偏东60°方向骑行2千米后,看见塔在正西方向,则此时这名学生与塔的距离大约为________千米(结果保留两位有效数字)3.(2020·上海高一课时练习)山上有一塔,高50m,自山下地面某点测得塔顶仰角为75°,测得塔底仰角为45°,则山高_______m.4.(2020·上海高一课时练习)一船沿北偏西30°方向,以30n mile/h的速度航行,灯塔P原在船的北偏东10°处,40min后,灯塔P在船的北偏东70°处,则船和灯塔原来的距离为____________n mile(精确到0.1nmile).5.(2020·上海高一课时练习)某人从某处出发向正东方向走x米后,向右转150°,然后向前行走3千米,结果他与出发点相距1732米,则x=___________(结果精确到1米).6.(2020·上海高一课时练习)若汽车自A地出发以60km/h的速度向南偏东45°方向行驶2h后,又按原速度折向正南方向行驶3h后到达B地,则A,B两地的实际距离为_________km(精确到1km).7.(2020·上海高一课时练习)若圆内接正五边形的边长为1,则圆的半径为___________(答案保留两位小数).三、解答题8.(2020·上海高一课时练习)某观测站在城A南偏西20°方向的C处,由城A出发的一条公路,走向是南偏东40°,距C处31千米的B处有一人正沿公路向城A走去,走了20千米后到达D处,此时C,D间的距离为21千米,问这人还要走多少千米可到达城A?9.(2020·上海高一课时练习)在地面某处测得塔顶的仰角为θ,由此向塔底沿直线走3km,测得塔顶的仰角为2θ,测得塔顶仰角为4θ(三个测量点都在塔的同一侧),试求θ与塔高.10.(2020·上海高一课时练习)已知三角形两边之和是8,其夹角为60︒,求这个三角形周长的最小值和面积的最大值.11.(2020·上海高一课时练习)某船在海面A处测得灯塔C在北偏东30方向,与A相距B在北偏西75︒方向,与A相距A向正北方向航行到D处,测得灯塔B在南偏西60︒方向,这时灯塔C与D相距多少海里?C在D的什么方向?题组B 能力提升练一、选择题1、(2021·上海高一期末)★★★☆☆⎣角形的三边和面积)表示,在ABC中,2,则ABC面积的最大值为(C.二、填空题h的铁塔AB,从塔顶A和塔底B分1.(2020·上海高一课时练习)在山顶上有一座高为m别测得地面上一点C的俯角为α和β,则山高为________m.2、(2021·上海市市西中学高一期中)★★☆☆☆3、(2018·上海市七宝中学高三开学考试)★★★☆☆30的方向上,行驶75的方30,则此山的高度二、解答题1.(2018·上海静安区·高一期末)如图是一景区的截面图,AB 是可以行走的斜坡,已知2AB =百米,BC 是没有人行路(不能攀登)的斜坡,CD 是斜坡上的一段陡峭的山崖.假设你(看做一点)在斜坡AB 上,身上只携带着量角器(可以测量以你为顶点的角).(1)请你设计一个通过测量角可以计算出斜坡BC 的长的方案,用字母表示所测量的角,计算出BC 的长,并化简;(2)设3BC =百米,AC 2DBA π∠=,BAD ∠=,求山崖CD 的长.(精确到米)2.(2018·上海普陀区·曹杨二中高一期中)如图,学校升旗仪式上,主持人站在主席台前沿D 处,测得旗杆AB 顶部的仰角为α,俯角最后一排学生C 的俯角为β,最后一排学生C 测得旗杆顶部的仰角为γ,旗杆底部与学生在一个水平面上,并且不计学生身高.(1)设CD x =米,试用αβγ、、和x 表示旗杆的高度AB (米);(2)测得x =301560αβγ=︒=︒=︒,,,若国歌长度约为50秒,国旗班升旗手应以多大的速度匀速升旗才能是国旗到达旗杆顶点时师生的目光刚好停留在B 处?3、(2021·上海高三专题练习)★★★★☆ 120,D 为对角线为圆心分别画圆弧,一段弧与12A A 12A A D ∠(1)若两段圆弧组成“甬路”L (宽度忽略不计),求L 的长(结果精确到14、(2021·上海徐汇·位育中学高一期中)★★★★☆(1)如图1,主办方在该区域内铺设了一条由线段AB和弧BN组成的道路,线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021上海高考数学考点笔记大全1.上海高考数学重难点:重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何。
难点:函数、数列、圆锥曲线。
2.上海高考数学考点:(1)集合与命题:集合的概念与运算、命题、充要条件。
(2)不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用。
(3)函数:函数的定义、函数解析式与定义域、值域与最值、反函数、三大性质、函数的零点、函数图象、指数与指数函数、对数与对数函数、函数的应用。
(4)三角比与三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、万能公式、辅助角公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用、反三角函数、最简三角方程。
(5)平面向量:有关概念与初等运算、线性运算、三点共线、坐标运算、数量积、三角形“四心”及其应用。
(6)数列:数列的有关概念、等差数列、等比数列、通项公式求法、数列求和、数列的应用、数学归纳法、数列的极限与运算、无穷等比数列。
⑺直线和圆的方程:方向向量、法向量、直线的方程、两直线的位置关系、线性规划、圆的方程、直线与圆的位置关系。
(8)圆锥曲线方程:椭圆的方程、双曲线的方程、抛物线的方程、直线与圆锥曲线的位置关系、轨迹问题、中点弦问题、圆锥曲线的应用、参数方程。
(9)立体几何与空间向量:空间直线、直线与平面、平面与平面、棱柱、棱锥、球与球面距离、几何体的三视图与直观图、几何体的表面积与体积、空间向量。
(10)排列、组合:排列、组合应用题、二项式定理及其应用。
(11)概率与统计:古典概型、系统抽样、分层抽样、互斥事件、对立事件、独立事件、平均数、中位数、众数、频率分布直方图。
(12)复数:复数的概念与运算、复数的平方根与立方根计算、实系数一元二次方程。
(13)矩阵与行列式初步:二元线性方程组、矩阵的基本运算、二阶行列式、三阶行列式、对角线法则、余子式与代数余子式。
(14)算法初步:流程图、算法语句、条件语句、循环语句。
第一章 集合和命题1. 集合及其表示法能够确切指定的一些对象组成的整体叫做集合,简称集;集合中的各个对象叫做这个集合的元素;集合的元素具有确定性、互异性和无序性;集合常用大写字母A B C 、、…表示,集合中的元素用小写字母a b c 、、…表示;如果a 是集合A 的元素,就 记作a A ∈,读作“a 属于A ”;如果a 不是集合A 的元素,就记作a A ∉,读作“a 不属于A ”;数的集合简称数集;全体自然数组成的集合,即自然数集,记作Ν,不包括零的自然数组成的集合,记作*Ν;全体整数组成的集合即整数集,记作Z ;全体有理数组成的集合即有理数集,记作Q ;全体实数组成的集合即实数集,记作R ;另外正整数集、负整数集、正有理数集、负有理数集、正实数集、负实数集分别表示为+-+-+-Z Z Q Q R R 、、、、、;点的集合简称点集,即以直角坐标平面内的点作为元素构成的集合; 含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集;规定空集不含元素,记作∅.集合的表示方法常用列举法和描述法;将集合中的元素一一列出来,并且写在大括号内,这种表示集合的方法 叫做列举法;在大括号内先写出这个集合的元素的一般形式,再划一条竖线,在竖线后面写上集合中元素所共同具有的特性,即{|A x x =满足性质}p ,这种表示集合的方法叫做描述法.2. 集合之间的关系对于两个集合A 和B ,如果集合A 中任何一个元素都属于集合B ,那么集合A 叫做集合B 的子集,记作A B ⊆或B A ⊇,读作“A 包含于B ”或“B 包含A ”;空集包含于任何一个集合,空集是任何集合的子集,是任何非空集合的真子集;所以若A B ⊆,不要遗漏A =∅的情况;对于一个含有n 个元素的集合P ,它的子集个数为2n ,真子集个数为21n -,非空子集个数为21n -,非空真子集的个数为22n -;用平面区域来表示集合之间关系的方法叫做集合的图示法,所用图叫做文氏图;对于两个集合A 和B ,如果A B ⊆且B A ⊆,那么叫做集合A 与集合B 相等,记作A B =,读作“集合A 等于 集合B ”,因此,如果两个集合所含的元素完全相等,那么这两个集合相等;对于两个集合A 和B ,如果A B ⊆,并且B 中至少有一个元素不属于A ,那么集合A 叫做集合B 的真子集,记作A ⊂≠B 或B ⊃≠A ,读作“A 真包含于B ”或“B 真包含A ”; 对于数集N Z Q R 、、、来说,有N ⊂≠Z ⊂≠Q ⊂≠R ;3. 集合的运算 一般地,由集合A 和集合B 的所有公共元素组成的集合叫做A 与B 的交集,记作A B ,读作“A 交B ”,即{AB x x A =∈且}x B ∈;由所有属于集合A 或者属于集合B 的元素组成的集合叫做集合A 、B 的并集,记作A B ,读作“A 并B ”,即{AB x x A =∈或}x B ∈;在研究集合与集合之间的关系时,这些集合往往是某个给定集合的子集,这个确定的集合叫做全集,常用符合U 表示;即全集含有我们所要研究的各个集合的全部元素;设U 为全集,A 是U 的子集,则由U 中所有不属于A 的元素组成的集合叫做集合A 在全集U 中的补集,记作U C A ,读作“A 补”,即{},U C A x x U x A =∈∉;德摩根定律:()U U U C AB C A C B =;()U U U C A B C A C B =;容斥原理:用||A 表示集合A 的元素个数,则||||||||A B A B A B =+-;||||||||||||||||A B C A B C A B B C CA ABC =++---+;4. 命题 可以判断真假的语句叫做命题,命题通常用陈述句表述,正确的命题叫做真命题,错误的命题叫做假命题;如果命题α成立可以推出命题β也成立,那么就说由α可以推出β,记作αβ⇒,读作“α推出β”,换言之,αβ⇒表示以α为条件、β为结论的命题是真命题;如果αβ⇒,并且βα⇒,那么记作αβ⇔,叫做α与β等价;推出关系满足传递性:αβ⇒,βγ⇒,那么αγ⇒;一个数学命题用条件α,结论β表示就是“如果α,那么β”,如果把结论和条件互相交换,就得到一个新命题“如果β,那么α”,这个命题叫做原命题的逆命题;一个命题的条件与结论分别是另一个命题的条件的否定与结论的否定,我们把这样两个命题叫做互否命题,如果其中一个叫原命题,那么另一个命题就叫做原命题的否命题;如果把α、β的否定分别记作α、β,那么命题 “如果α,那么β”的否命题就是“如果α,那么β”;如果把原命题“如果α,那么β”结论的否定作条件,把条件的否定作结论,那么就可得到一个新命题, 我们把它叫做原命题的逆否命题,即“如果β,那么α”;如果A 、B 是两个命题,A B ⇒,B A ⇒, 那么A 、B 叫做等价命题; 原命题与逆否命题是等价命题;不含逻辑联结词的命题叫做简单命题,由简单命题和逻辑联结词构成的命题叫做复合命题;复合命题有三类:p 或q ,p 且q ,非p ;一些常用结论的否定形式:5. 充要条件 一般地,用、分别表示两个命题,如果命题成立,可以推出也成立,即β,那么α叫做β的充分条件,β叫做α的必要条件;一般地,用α、β分别表示两个命题,如果既有αβ⇒,又有βα⇒,即αβ⇔,那么α既是β的充分条件,又是β的必要条件,这时我们就说,α是β的充分必要条件,简称充要条件;设具有性质p 的对象组成集合A ,具有性质q 的对象组成集合B ,则 ① 若A B ⊆,则p 是q 的充分条件; ② 若A ⊂≠B ,则p 是q 的充分非必要条件; ③ 若A B ⊇,则p 是q 的必要条件; ④ 若A ⊃≠B ,则p 是q 的必要非充分条件; ⑤ 若A B =,则,p q 互为充要条件; 等价关系:“p q ⇒”⇔“A B ⊆”⇔“AB A =”⇔“A B B =”⇔“U U C B C A ⊆”⇔“U A C B =∅”⇔“U C A B U =”(注意考虑A =∅的情况);第二章 不等式1. 不等式的基本性质性质1 如果,a b b c >>,那么a c >; 性质2 如果a b >,那么a c b c +>+;性质3 如果a b >,0c >,那么ac bc >;如果a b >,0c <,那么ac bc <; 性质4 如果,a b c d >>,那么a c b d +>+; 性质5 如果0,0a b c d >>>>,那么ac bd >;性质6 如果0a b >>,那么110a b <<; 性质7 如果0a b >>,那么n na b >(*)n ∈N ;性质8 如果0a b >>n na b >(*,1)n n ∈>N ;2. 不等式的解法(1)一元二次不等式 对于一个整式不等式,它只含有一个未知数,并且未知数的最高次数是二次,这样的不等式叫做一元二次不等式,它的一般形式是20ax bx c ++>或20ax bx c ++<(0a ≠);一般地,设一元二次不等式为20ax bx c ++>或20ax bx c ++<(0a >),当对应的一元二次方程20ax bx c ++=的根的判别式240b ac ∆=->时,先求出方程20ax bx c ++=的两个实数根12,x x (不妨设12x x <),于是不等式20ax bx c ++>的解集为1{|x x x <或2}x x >,不等式20ax bx c ++<的解集为12{|}x x x x <<;不等式的解集经常用区间来表示,设,a b 都为实数,并且a b <,我们规定:① 集合{|}x a x b ≤≤叫做闭区间,表示为[,]a b ; ② 集合{|}x a x b <<叫做开区间,表示为(,)a b ; ③ 集合{|}x a x b ≤<或{|}x a x b <≤叫做半开半闭区间,分别表示为[,)a b 或(,]a b ;④ 实数集R 表示为(,)-∞+∞,集合{|}x x a ≥、{|}x x a >、{|}x x b ≤和{|}x x b <分别用区间[,)a +∞、(,)a +∞、(,]b -∞和(,)b -∞表示;a 与b 也叫做区间的端点,“+∞”读作“正无穷大”,“-∞”读作“负无穷大”;前面讨论的是判别式0∆>的情形,当0∆<时,抛物线2y ax bx c =++(0)a >与x 轴没有交点,整个图像都在x 轴的上方,于是不等式20ax bx c ++>的解集为实数集R ,不等式20ax bx c ++<的解集为空集∅;当0∆=时,抛物线2y ax bx c =++(0)a >与x 轴两个交点重合,即122bx x a==-, 除了这一个点外,抛物线的其余部分都在x 轴的上方,于是不等式20ax bx c ++>的解集为(,)(,)22b ba a-∞--+∞,不等式20ax bx c ++<的解集为空集∅;(2)高次不等式高次不等式常用“数轴标根法”来解,其步骤是:① 等价变形后的不等式一边是零,一边是各因式的积(未知数系数一定是正数); ② 把各因式的根标在数轴上; ③ 从右上角起,用曲线穿根(奇次根穿透,偶次根不穿透),看图像写出解集; 如图:123()()()0x x x x x x ---≥(假设123x x x <<)的解为123[,][,)x x x x ∈+∞;(3)分式不等式型如()0()f x x ϕ>(或0≥)或()0()f x x ϕ<(或0≤)(其中()f x 、()x ϕ为整式且()0x ϕ≠) 的不等式称为分式不等式;解分式不等式的关键是转化为整式不等式;()0()()0()f x f x x x ϕϕ>⇔⋅>,()0()()0()f x f x x x ϕϕ<⇔⋅<; ()0()f x x ϕ≥(或0≤)()()0f x x ϕ⇔⋅≥(或0≤)且()0x ϕ≠; (4)含绝对值不等式 ||x 表示实数x 在数轴上所对应的点到原点的距离;所以,不等式||x a <(0)a >的解集为(,)a a -,类似地,不等式||x a >(0)a >的解集为(,)(,)a a -∞-+∞;解绝对值不等式的关键在于去掉绝对值,一般有如下方法:① 定义法;② 零点分段法;③ 平方法;④ 数形结合法;绝对值不等式的性质:||||||||||a b a b a b -≤±≤+ (5)无理不等式只含有一个未知数,并且未知数在根号中的不等式叫做无理不等式;解无理不等式,关键是转化为有理不等式;()0,()0,()()f x g x f x g x >⇔≥≥>;2()()0,()0,()[()]g x f x g x f x g x >⇔≥≥>或()0,()0f x g x ≥<;(6)指数对数不等式解指数对数不等式的关键是化成相同的底数,然后同时去掉底数; ① 当1a >时,()()()()f x g x aa f x g x >⇔>,log ()log ()()()0a a f x g x f x g x >⇔>>;② 当01a <<时,()()()()f x g x aa f x g x >⇔<,log ()log ()0()()a a f x g x f x g x >⇔<<3. 基本不等式基本不等式1 对任意实数a 和b ,有222a b ab +≥,当且仅当a b =时等号成立; 基本不等式2 对任意正数a 和b,有2a b+≥,当且仅当a b =时等号成立; 推论1 若,,a b c +∈R ,则3333a b c abc ++≥,当且仅当a b c ==时等号成立; 推论2 若,,a b c +∈R,则3a b c ++≥a b c ==时等号成立; 推论312n a a a n+++≥…*,,1i n a i n +∈∈≤≤N R ;均值不等式2112a b a b+≥≥+,,a b +∈R ;柯西不等式 22222()()()a b c d ac bd ++≥+;注意:一正二定三相等;和定积最大,积定和最小;4. 不等式的证明(1)比较法要证明a b >,只要证明0a b ->,同样,要证明a b <,只要证明0a b -<,这种证明不等式的方法叫做比较法; 用比较法证明不等式的一般步骤是:先作出要求证的不等式两边的差,通过对这个差的变形,确定其值是正的还是负的,从而证明不等式成立; (2)分析法从要求证的结论出发,经过适当的变形,分析出使这个结论成立的条件,把证明结论转化为判定这些条件是否成立的问题,如果能够判定这些条件都成立,那么就可以断定原结论成立,这种证明方法叫做分析法;(3)综合法从已知条件出发,利用各种已知的命题和运算性质作为依据,推导出要求证的结论,这种方法叫做综合法; (4)放缩法在证明过程中,根据不等式传递性,常采用舍去(或添加)一些项而使不等式的各项之和变小(或变大),或 把某些项换成较大(或较小)的数,或在分式中扩大(或缩小)分式的分子(或分母),从而达到证明的目的,这种证明不等式的方法叫做放缩法; (5)换元法根据证明需要进行一些等量代换,选择适当的辅助参数简化问题的一种方法; (6)判别式法根据证明需要,通过构造一元二次方程,利用关于某一变量的二次三项式有实根时的判别式的取值范围来证明不等式; (7)分解法按照一定的法则,把一个数(或式)分解为几个数(或式),使复杂的问题转化为简单易解的基本问题,然后各个击破,从而证明不等式的一种方法; (8)反证法 (9)数学归纳法5. 线性规划在线性规划问题中,,x y 所应满足的条件叫做线性约束条件,要求最值的函数叫做线性目标函数,把在线性约束条件下寻求线性目标函数的最大(小)值的问题叫做线性规划问题;建立线性规划模型的一般步骤如下:① 根据题意设未知量,,x y z 等;② 建立线性目标函数;③ 找出未知量满足的不等式,得未知量的线性约束条件;在线性规划问题中,满足线性约束条件的解(,)x y 叫做可行解,所有可行解构成的区域叫做可行域;它是二元一次不等式组的解集所表示的一个平面区域;在线性规划问题中,使目标函数达到最大(小)值的可行解叫做最优解;例 求满足下列约束条件的目标函数f x y =+的最小值:24230,0x y x y x y +≥⎧⎪+≥⎨⎪≥≥⎩⑴二元一次不等式所表示的平面区域的判断: 法一:取点定域法:由于直线0Ax By C ++=的同一侧的所有点的坐标代入Ax By C ++后所得的实数的符号相同.所以,在实际判断时,往往只需在直线某一侧任取一特殊点00(,)x y (如原点),由00Ax By C ++的正负即可判断出0Ax By C ++>(或0)<表示直线哪一侧的平面区域.即:直线定边界,分清虚实;选点定区域,常选原点.法二:根据0Ax By C ++>(或0)<,观察B 的符号与不等式开口的符号,若同号,0Ax By C ++>(或0)<表示直线上方的区域;若异号,则表示直线上方的区域⑵二元一次不等式组所表示的平面区域:不等式组表示的平面区域是各个不等式所表示的平面区域的公共部分. ⑶利用线性规划求目标函数z Ax By =+(,A B 为常数)的最值: 法一:角点法:如果目标函数z Ax By =+ (x y 、即为公共区域中点的横坐标和纵坐标)的最值存在,则这些最值都在该公共区域的边界角点处取得,将这些角点的坐标代入目标函数,得到一组对应z 值,最大的那个数为目标函数z 的最大值,最小的那个数为目标函数z 的最小值 法二:画——移——定——求: 第一步,在平面直角坐标系中画出可行域;第二步,作直线0:0l Ax By += ,平移直线0l (据可行域,将直线0l 平行移动)确定最优解;第三步,求出最优解(,)x y ;第四步,将最优解(,)x y 代入目标函数z Ax By =+即可求出最大值或最小值 .第二步中最优解的确定方法:利用z 的几何意义:A z y x B B =-+,zB为直线的纵截距. ①若0,B >则使目标函数z Ax By =+所表示直线的纵截距最大的角点处,z 取得最大值,使直线的纵截距最小的角点处,z 取得最小值;②若0,B <则使目标函数z Ax By =+所表示直线的纵截距最大的角点处,z 取得最小值,使直线的纵截距最小的角点处,z 取得最大值.⑷常见的目标函数的类型:①“截距”型:;z Ax By =+ ②“斜率”型:y z x =或;y bz x a-=-③“距离”型:22z x y =+或z =22()()z x a y b =-+-或z =在求该“三型”的目标函数的最值时,可结合线性规划与代数式的几何意义求解,从而使问题简单化.第三章 函数的基本性质1. 函数概念与运算 (1)函数概念在某个变化过程中有两个变量,x y ,如果对于x 在某个实数集合D 内的每一个确定的值,按照某个对应法则f ,y 都有唯一确定的实数值与它对应,那么y 就是x 的函数,记作()y f x =,x D ∈,x 叫做自变量,y 叫做因变量,x 的取值范围D 叫做函数的定义域,和x 的值相对应的y 的值叫做函数值,函数值的集合叫做函数的值域;求函数定义域时,主要考虑以下因素:① 分母不为零;② 偶次方根号内大于等于零;③ 真数大于零;④ 实际意义;求定义域时,遵循“括号内范围一致”原则;当我们要用数学方法解决实际问题时,首先要把问题中的有关变量及其关系用数学的形式表示出来,通常这个过程叫做建模; (2)函数的和与积一般地,已知两个函数1()()y f x x D =∈,2()()y g x x D =∈,设12D D D =,并且D ≠∅,那么当x D∈时,()y f x =与()y g x =都有意义,于是把函数()()y f x g x =+()x D ∈叫做函数()y f x =与()y g x =的和;类似于求两个函数的和,我们也可以求两个函数的积,同样考虑两函数的公共定义域后,可以定义两个函数的积;2. 函数的基本性质(1)奇偶性一般地,如果对于函数()y f x =的定义域D 内的任意实数x ,都有()()f x f x -=,那么就把函数()y f x = 叫做偶函数;如果函数()y f x =()x D ∈是偶函数,那么()y f x =的图像关于y 轴成轴对称图形,反过来,如果 一个函数的图像关于y 轴成轴对称图形,那么这个函数必是偶函数;如果对于函数()y f x =的定义域D 内的任意实数x ,都有()()f x f x -=-,那么就把函数()y f x =叫做 奇函数;如果函数()y f x =()x D ∈是奇函数,那么()y f x =的图像关于原点成中心对称图形,反过来,如果一个函数的图像关于原点成中心对称图形,那么这个函数必是奇函数; 由上可知,函数定义域D 关于原点对称是这个函数有奇偶性的必要非充分条件;奇偶性分类:① 奇函数;② 偶函数;③ 既是奇函数又是偶函数;④ 非奇非偶函数;奇偶性常用性质结论:① 奇函数()y f x =在0x =处有意义(0)0f ⇒=;② 奇函数关于原点对称;偶函数关于y 轴对称; ③ 对于多项式函数12()nn f x ax bxcx dx e -=+++++…;若()f x 是奇函数()f x ⇔偶次项的系数全为零; 若()f x 是偶函数()f x ⇔奇次项的系数全为零;④ ()y f x a =+为奇函数()()f x a f x a ⇔-+=-+; ()y f x a =+为偶函数()()f x a f x a ⇔-+=+; ⑤ ()y f x =为奇函数()()f x a f x a ⇔+=---; ()y f x =为偶函数()()f x a f x a ⇔+=--; ⑥ 任意一个定义域关于原点对称的函数都可以表示成一个奇函数和一个偶函数的和; 即:()()()()()22f x f x f x f x f x --+-=+; 复合函数奇偶性:① 对于(())f g x ,同奇则奇,有偶则偶;② 奇±奇=奇;偶±偶=偶;奇×奇=偶;奇÷奇=偶;偶×偶=偶;偶÷偶=偶;奇×偶=奇;奇÷偶=奇; (2)单调性一般地,对于给定区间I 上的函数()y f x =:如果对于属于这个区间I 的自变量的任意两个值12,x x ,当12x x <时,都有12()()f x f x <,那么就说函数()y f x =在这个区间上是单调增函数,简称增函数;如果对于属于这个区间I 的自变量的任意两个值12,x x ,当12x x <时,都有12()()f x f x >,那么就说函数()y f x =在这个区间上是单调减函数,简称减函数;如果函数()y f x =在某个区间I 上是增(减)函数,那么说函数()y f x =在区间I 上是单调函数,区间I 叫做函数()y f x =的单调区间;证明单调性步骤:① 在定义域上任取12x x <;② 作差12()()f x f x -;③ 变形判断; 单调性常用性质结论:① 在对称的两个区间上,奇函数单调性相同,偶函数单调性相反;② 互为反函数的两个函数有相同的单调性复合函数单调性:① 对于(())f g x ,同增异减;② 增+增=增;减+减=减;增-减=增;减-增=减; 注意:单调性是函数局部的性质,奇偶性是整体的性质; (3)最值一般地,设函数()y f x =在0x 处的函数值是0()f x ,如果对于定义域内任意x ,不等式0()()f x f x ≥都成立,那么0()f x 叫做函数()y f x =的最小值,记作min 0()y f x =;如果对于定义域内任意x ,不等式0()()f x f x ≤都 成立,那么0()f x 叫做函数()y f x =的最大值,记作max 0()y f x =; 求函数最值的方法:① 利用基本初等函数的值域:反比例函数、一次函数、二次函数、幂指对函数等; ② 配方法:主要用于二次函数求最值;③ 换元法:无理函数,复合函数等,包括三角换元,注意新变量的取值范围; ④ 数形结合法:利用函数图像求最值,或根据几何意义(斜率、距离等); ⑤ 单调性法:结合函数单调性求最值;⑥ 不等式法:利用常见的基本不等式,注意一正二定三相等; ⑦ 分离常数法:分式函数;⑧ 判别式法:定义域为R ,有二次项的分式方程,⑨ 转化法:利用某些式子的有界性进行转化求最值;或转化成求反函数的定义域; ⑩ 其他法:包括向量法、构造法、平方法、导数法等; (4)零点一般地,对于函数()y f x =()x D ∈,如果存在实数c ()c D ∈,当x c =时,()0f c =,那么就把x c =叫做 函数()y f x =()x D ∈的零点;实际上,函数()y f x =的零点就是方程()0f x =的解,也就是函数()y f x =的 图像与x 轴的交点的横坐标;通过每次把()y f x =的零点所在的小区间收缩一半的方法,使区间的两个端点逐步 逼近函数的零点,以求得零点的近似值,这种方法叫做二分法;零点定理:若()()0f m f n <,则方程()0f x =在区间(,)m n 内至少有一个实根; (5)周期性一般地,对于函数()f x ,如果存在一个常数T (0)T ≠,使得当x 取定义域D 内的任意值时,都有()()f x T f x +=成立,那么函数()f x 叫做周期函数,常数T 叫做函数()f x 的周期,对于一个周期函数()f x 来说,如果在所有的周期中存在一个最小正数,那么这个最小正数就叫做函数()f x 的最小正周期; 周期性的判断:① ()()f x a f x a +=-,2T a =;()()f x a f x b +=+,T a b =-;② ()()f x a f x +=-,1()()f x a f x +=±,1()()1()f x f x a f x -+=+,2T a =; ③ 1()1()f x a f x +=-或1()1()f x f x a =-+,3T a =;④ 1()()1()f x f x a f x -+=-+,1()()1()f x f x a f x ++=-,4T a =;⑤ ()()()()f x f x a f x f x a ++=+,2T a =;()()(2)()()(2)f x f x a f x a f x f x a f x a ++++=++,3T a =;1()()()()()()n f x f x a f x na f x f x a f x na ++++++=⋅++项……,(1)T n a =+;(6)对称性 ① 一个函数的对称性对于函数()y f x =,若()()f a x f a x +=-或()(2)f x f a x =-恒成立,则函数对称轴是x a =;若()()f a x f b x +=-恒成立,则函数对称轴是2a bx +=; 若()()0f a x f a x ++-=或()(2)0f x f a x +-=恒成立,则函数对称中心是(,0)a ;若()()2f a x f a x b ++-=,则函数的对称中心是(,)a b ;注意:括号内相减得常数,一般有周期性;括号内相加得常数,一般有对称性; ② 两个函数的对称性函数()y f x =与函数(2)y f a x =-的图像关于直线x a =对称; 函数()y f x a =+与函数()y f b x =-的图像关于直线2b ax -=对称; 函数()y f x =与函数2(2)b y f a x -=-的图像关于点(,)a b 对称;3. 函数的图像变换(1)平移变换① 左加右减 ()()a y f x y f x a =−−−−−→=+左移个单位;()()a y f x y f x a =−−−−−→=-右移个单位; ② 上加下减 ()()b y f x y f x b =−−−−−→=+上移个单位;()()b y f x y f x b =−−−−−→=-下移个单位; (2)伸缩变换① 1()()y f x y f x ωω=−−−−−−−−−−→=纵坐标不变,横坐标变为原来的倍(0)ω>; ② ()()A y f x y Af x =−−−−−−−−−−→=横坐标不变,纵坐标变为原来的倍(0)A >; (3)翻折变换① ()|()|y f x y f x =→=;函数()y f x =图像在x 轴上方的部分保持不变,将函数()y f x =图像在x 轴下方的部分对称翻折到x 轴上方;② ()(||)y f x y f x =→=;保留()y f x =图像在y 轴右边的部分,并将y 轴右边的部分沿y 轴对称翻折到y 轴左边,替代原有的y 轴左边图像; (4)对称变换函数()y f x =与函数()y f x =-的图像关于y 轴对称; 函数()y f x =与函数()y f x =-的图像关于x 轴对称;函数()y f x =与函数()y f x =--的图像关于原点对称; 函数()y f x =与函数(2)y f a x =-的图像关于直线x a =对称;函数()y f x a =+与函数()y f b x =-的图像关于直线2b ax -=对称; 函数()y f x =与函数2(2)b y f a x -=-的图像关于点(,)a b 对称;第四章 幂函数、指数函数和对数函数1. 幂函数一般地,函数ky x =(k 为常数,k ∈Q )叫做幂函数; 幂函数ky x =(k ∈Q )的性质:① 幂函数的图像最多只能同时出现在两个象限,且不经过第四象限;如果与坐标轴相交,则交点一定是原点; ② 所有幂函数在(0,)+∞上都有定义,并且图像都经过点(1,1);③ 若0k >,幂函数图像都经过点(0,0)和(1,1),在第一象限内递增;若0k <,幂函数图像只经过点(1,1),在第一象限内递减;注意:画幂函数图像时,先画第一象限的部分,再根据奇偶性完成整个图像;2. 指数函数一般地,函数xy a =(0a >且1)a ≠叫做指数函数,自变量x 叫做指数,a 叫做底数,函数的定义域是R ;指数运算法则:x y x y a a a+⋅=(0,,)a x y >∈R ; ()x y xy a a =(0,,)a x y >∈R ;()xxxa b a b ⋅=⋅(,0,)a b x >∈R ;一般地,指数函数xy a =在底数1a >及01a <<这两种情况下的图像如图所示:指数函数有下列性质:性质1 指数函数xy a =的函数值恒大于零,定义域为R ,值域(0,)+∞; 性质2 指数函数x y a =的图像经过点(0,1);性质3 函数xy a =(1)a >在R 上递增,函数xy a =(01)a <<在R 上递减;3. 对数及其运算一般地,如果a (0,1)a a >≠的b 次幂等于N ,即ba N =,那么b 叫做以a 为底N 的对数,记作log a N b =,其中a 叫做对数的底数,N 叫做真数;根据对数定义,可知:①零和负数没有对数,真数大于零;②1的对数为0,即log 10a =;③底的对数等于1,即log 1a a =;④对数恒等式:log a NaN =成立;通常将以10为底的对数叫做常用对数,常用对数10log N 简记作lg N ;以无理数 2.71828...e =为底的对数叫做自然对数,自然对数log e N 简记作ln N ;对数运算性质:如果0,1,0,0a a M N >≠>>,那么:log log log ()a a a M N MN +=;log log log a a aM M N N-=;log log na a M n M =; 对数换底公式:log log log ab a NN b=(其中0,1,0,1,0a a b b N >≠>≠>);常用恒等式:① log a NaN =;② log N a a N =;③ log log 1a b b a ⋅=;④ log log log log a b c a b c d d ⋅⋅=;⑤ log log m na a nb b m=; 4. 反函数一般地,对于函数()y f x =,设它的定义域为D ,值域为A ,如果对A 中任意一个值y ,在D 中总有唯一确定的x 值与它对应,且满足()y f x =,这样得到的x 关于y 的函数叫做()y f x =的反函数,记作1()x f y -=,在习惯上,自变量常用x 表示,而函数用y 表示,所以把它改写为1()y fx -=()x A ∈;反函数的判定:① 反函数存在的条件是原函数为一一对应函数;定义域上的单调函数必有反函数; ② 周期函数不存在反函数;定义域为非单元素的偶函数不存在反函数; 反函数的性质:① 原函数()y f x =和反函数1()y fx -=的图像关于直线y x =对称;若点(,)a b 在原函数()y f x =上,则点(,)b a 必在其反函数1()y fx -=上;② 函数()y f x =与1()y fx -=互为反函数;原函数()y f x =的定义域是它反函数1()y f x -=的值域;原函数()y f x =的值域是它反函数1()y f x -=的定义域;③ 原函数与反函数具有对应相同的单调性;奇函数的反函数也是奇函数; 求反函数步骤:① 用y 表示x ,即求出1()x fy -=;② ,x y 互换,即写出1()y f x -=;③ 确定反函数定义域;注意事项:若函数()y f ax b =+存在反函数,则其反函数为11[()]y f x b a-=-,而不是1()y f ax b -=+,函数1()y f ax b -=+是1[()]y f x b a =-的反函数;5. 对数函数一般地,对数函数log a y x =(0a >且1)a ≠就是指数函数x y a =(0a >且1)a ≠的反函数;因为xy a =的值域是(0,)+∞,所以,函数log a y x =的定义域是(0,)+∞;对数函数log a y x =(0a >且1)a ≠在1a >及01a <<两种情形下的图像如图所示:对数函数log a y x =(0a >且1)a ≠的性质:性质1 对数函数log a y x =的图像都在y 轴的右方,定义域(0,)+∞,值域为R ; 性质2 对数函数log a y x =的图像都经过点(1,0);性质3 对数函数log a y x =(1)a >,当1x >时,0y >;当01x <<时,0y <; 对数函数log a y x = (01)a <<,当1x >时,0y <;当01x <<时,0y >;性质4 对数函数log a y x =(1)a >在(0,)+∞上是增函数,log a y x = (01)a <<在(0,)+∞上是减函数;。