专题27 实践操作问题-决胜2018中考数学压轴题全揭秘精品(解析版)

合集下载

2018济南中考数学解答题详细解析

2018济南中考数学解答题详细解析

提示:我们判断四边形ADMQ是平行四 边形首先证明两条对边平行, 用到平行线的判定定理。
式y=1 ������2 − 3x + 4 得D(6,4)。
2
∴DH=4,AH=OH-OA=6-2=4
y
C
MD
P E
Q OA
┌┐ BG H
x
N
(3)如上图所示,过点A,P的直线 与y轴交于点N,过点P作PM⊥CD垂足 为点M,直线MN与x轴交于点Q,试判 断四边形ADMQ的形状,并说明理由。
求tan ∠ACB的值;
首先过点A作AE⊥BC垂足为E如图所示
∵0A=2;0B=4 ∴AB=2
∵点C在y轴的抛物线上,设点C(0,y)
带入抛物线表达式
y=1 ������2 − 3x + 4 得 y=4
2
∴C(0,4)即 0C=4
∵OB=4,OC=4
∴△COA是等腰直角三角形
∴BC=4 2 ∵∠CBA=45。;∠AEB=90。
解:∵点A(2,0),B(4,0)带入
x
抛物线 Y=a������2+bx+4得
a=1
2
b=-3
∴抛物线的表达式为:
y=1
2
������2

3x
+
4
y
C
D
E
OA
B
x
(1)求抛物线的表达式和 ∠ACB的正切值
提示:第二问考点是首先要知道
正切的公式tan∠������������������
=
对边 临边
解:如图(2),过点P 作PF⊥CD垂足为F
已知点P的横坐标为m,且点P在抛物线上,
根据表达式y=1 ������2 − 3x + 4 ,将m带入得

2018年全国各地中考数学压轴题汇编:选择、填空(浙江专版)(解析卷)

2018年全国各地中考数学压轴题汇编:选择、填空(浙江专版)(解析卷)

2018年全国各地中考数学压轴题汇编(浙江专版)选择、填空参考答案与试题解析一•选择题(共18小题)1. (2018?杭州)如图,已知点P是矩形ABCD内一点(不含边界),设/ PAD=0i, / PBA=0 2,Z PCB=0 3,Z PDC=0 4,若/ APB=8C°,/ CPD=50,贝9()A .( 0i+M) — (伦+依)=30°B.(他+M) — ( 0i+釘=40C. ( 0i+ E2)-( (3+ (4) =70°D. ( 0i+ E2) + ( (3+(4) =180解:••• AD // BC,Z APB=80,•••/ CBP=Z APB -Z DAP=80 -(,ABC( 2+80 —(,又•••△ CDP 中,Z DCP=180 —Z CPD—Z CDP=130 —(,•••Z BCD( 3+130°—(,又•••矩形ABCD 中,Z ABC + Z BCD=180,•- (+800— (+(+130°- (=180°即((+() — ( (+() =30°,故选:A.2.(2018?宁波)如图,在△ ABC 中,Z ACB=90,Z A=30°,AB=4,以点B 为圆心,BC 长为半径画弧,交边AB 于点D ,贝A 匚的长为( )•••/ B=60°, BC=2故选:C .(2018?嘉兴)如图,点C 在反比例函数y±(x >0)的图象上,过点C 的直 A ,B ,且AB=BC ,△ AOB 的面积为1,贝U k 的值为B. 2 C . 3 D . 4解:设点A 的坐标为(a ,0), •••过点C 的直线与x 轴,y 轴分别交于点A, B ,且AB=BC ,△ AOB 的面积为1, k•••点 C (-a , —), •••点B 的坐标为(0, “二)解得,k=4, 故选:D .X2 27T180 = _5•••「的长为B .y解:•••/ ACB=90 , AB=4,/ A=30° , D 'J n3. 线与x 轴,y 轴分别交于点A .吉nA . 14.(2018?杭州)如图,在△ ABC 中,点D 在AB 边上,DE // BC ,与边AC 交 于点E ,连结BE .记△ ADE , △ BCE 的面积分别为S i , S 2 ()A .若 2AD >AB ,贝U 3S i >2S 2 B .若 2AD >AB ,贝U 3S iv 2S 2C .若 2AD v AB ,贝U 3S i > 2S 2D .若 2AD v AB ,贝U 3S i v 2S 2解:•••如图,在△ ABC 中,DE // BC ,AD(「)此时3S i > S2+S^BDE ,而S2+S^BDE v 2S 2.但是不能确定3S i 与2S 2的大小, 故选项A 不符合题意,选项B 不符合题意.若 2AD v AB '即需 v 寺时,S I + S Q +S ARDF <書, 此时 3S i v S 2+S/DE v 2S 2,故选项C 不符合题意,选项D 符合题意. 故选:D .一k 1k?5. ( 20i8?r 波)如图,平行于x 轴的直线与函数尸‘ (ki > 0, x > 0), 7(k 2>0, x >0)的图象分别相交于A , B 两点,点A 在点B 的右侧,C 为x 轴上Si •••若2AD > AB ,即卡〉〒时,的一个动点,若△ ABC 的面积为4,则ki - k 2的值为(C. 4解:••• AB // x 轴, ••• A , B 两点纵坐标相同.设 A (a, h ), B (b , h ),贝U ah=k i , bh=k 2.I 1 ii. Ilt S A ABc =—AB?y A 右(a - b ) h 右(ah- bh ) 右 (k i - k 2) =4, z z z z • k i — k 2=8.故选:A .6. (2018?杭州)四位同学在研究函数 y=x 2+bx+c (b , c 是常数)时,甲发现当 x=i 时,函数有最小值;乙发现-1是方程x 2+bx+c=0的一个根;丙发现函数的最 小值为3; 丁发现当x=2时,y=4,已知这四位同学中只有一位发现的结论是错误 的,则该同学是( ) A .甲B .乙解:假设甲和丙的结论正确,贝U•抛物线的解析式为y=x 2 - 2x+4. 当 x= - 1 时,y=x 2 - 2x+4=7, •乙的结论不正确; 当 x=2 时,y=x 2 - 2x+4=4, • 丁的结论正确.•••四位同学中只有一位发现的结论是错误的,C .丙D .丁B .— 8•••假设成立.故选:B.7. (2018?温州)我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a=3, b=4,则该矩形的面积为(8. (2018?宁波)在矩形ABCD内,将两张边长分别为a和b (a>b)的正方形B. 249953V D • —解:设小正方形的边长为X,•.•a=3, b=4,••• AB=3+4=7,在Rt A ABC 中,AC2+BC2=AB2,即(3+x) 2+ (x+4) 2=72,整理得,x2+7x - 12=0,—7 97 T 97解得X=- 或x= (舍去),~2~2•I该矩形的面积=(了+3)(+4) =24,C.故选:B.B纸片按图1图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S i,图2中阴影部分的面积为S2•当AD - AB=2时,S2 - S i的值为()A . 2a B. 2b C. 2a- 2b D . - 2b解:S i= (AB —a) ?申(CD —b) (AD —a) = (AB —a) ?an (AB —b) (AD —a), S2=AB (AD —a) + (a—b)(AB —a),S2 —S i=AB (AD —a) + (a —b)( AB —a) — ( AB —a) ?a—( AB —b)( AD —a) = (AD —a) (AB —AB +b) + (AB —a) (a— b —a) =b?AD —ab-b?AB+ab=b(AD —AB ) =2b.故选:B.9. (2018?温州)如图,点A , B在反比例函数yy (x >0)的图象上,点C, D在反比例函数y=±(k>0)的图象上,AC // BD // y轴,已知点A , B的横坐标分A. 4B. 3C. 2 D .-;解:•••点A , B在反比例函数y=—(x >0)的图象上,点A , B的横坐标分别为1, 2,•••点A的坐标为(1, 1),点B的坐标为(2, f-),••• AC // BD // y 轴,则k的值为(•••点C , D 的横坐标分别为1, 2,•••点C ,D 在反比例函数y 二丄(k >0)的图象上, •••点C 的坐标为(1,k ),点D 的坐标为(2,丄-),解得:k=3.10. ( 2018?嘉兴)某届世界杯的小组比赛规则:四个球队进行单循环比赛(每两 队赛一场),胜一场得3分,平一场得1分,负一场得分,某小组比赛结束后, 甲、乙、丙、丁四队分别获得第一、二、三、四名,各队的总得分恰好是四个连 续奇数,则与乙打平的球队是( ) A .甲B .甲与丁C .丙D .丙与丁解:•••甲、乙、丙、丁四队分别获得第一、二、三、四名,各队的总得分恰好是 四个连续奇数,•••甲得分为7分,2胜1平,乙得分5分,1胜2平,丙得分3分,1胜0平,丁 得分1分,0胜1平,•••甲、乙都没有输球,•甲一定与乙平,•••丙得分3分,1胜0平,乙得分5分,1胜2平, •与乙打平的球队是甲与丁. 故选:B .11. ( 2018?湖州)如图,已知在厶ABC 中,/ BAC >90°点D 为BC 的中点, 点E 在AC 上,将△ CDE 沿DE 折叠,使得点C 恰好落在BA 的延长线上的点F 处,连结AD ,则下列结论不一定正确的是(S MBD =*二 X(2 - 1)=—,AC=k S A OACC .△ ADF和厶ADE的面积相等B. AB=2DED . △ ADE和厶FDE的面积相等解:如图,连接CF,•••点D是BC中点,••• BD=CD ,由折叠知,/ ACB= / DFE, CD=DF ,••• BD=CD=DF ,•••△BFC是直角三角形,•••/ BFC=90,••• BD=DF,•••/ B= / BFD,•••/ EAF= / B+Z ACB= / BFD + Z DFE= / AFE,••• AE=EF,故A 正确,由折叠知,EF=CE,••• AE=CE,••• BD=CD,••• DE是厶ABC的中位线,••• AB=2DE,故B 正确,••• AE=CE,--S A ADE=S A CDE,由折叠知,△CDE^AA FDE,二S A CDE=S A FDE,S A ADE=S A FDE,故D 正确,当AD==AC时,△ ADF和厶ADE的面积相等12. ( 2018?召兴)利用如图1的二维码可以进行身份识别•某校建立了一个身份 识别系统,图2是某个学生的识别图案,黑色小正方形表示 1,白色小正方形表 示0,将第一行数字从左到右依次记为 a ,b ,c ,d ,那么可以转换为该生所在班 级序号,其序号为a x 23+b x 22+C X 21+d x 20,如图2第一行数字从左到右依次为0,1,0,1,序号为0X 23+1 X 22+0X 21+1 X 20=5,表示该生为5班学生.表示6 班学生的识别图案是( )20=10,不符合题意; B 、 第一行数字从左到右依次为 0, 1, 1, 0,序号为0X 23+1 X 22+1 X 21+0X20=6, 符合题意;C 、 第一行数字从左到右依次为1, 0, 0, 1,序号为1X 23+0 X 22+0 X 21+1 X 20=9, 不符合题意;D 、 第一行数字从左到右依次为0, 1, 1, 1,序号为0 X 23+1 X 22+1X 21+1 X 20=7, 不符合题意;••• C选项不一定正确, 解:A 、第一行数字从左到右依次为 1、0、 1、0,序号为 1x 23+0X 22+1 X 21+0x13.(2018?湖州)尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通过下 列尺规作图考他的大臣:① 将半径为r 的。

专题27 实践操作问题-决胜2018中考数学压轴题全揭秘精品(解析版)

专题27 实践操作问题-决胜2018中考数学压轴题全揭秘精品(解析版)

一、选择题1.(2017江苏省南通市,第9题,3分)已知∠AOB,作图.步骤1:在OB上任取一点M,以点M为圆心,MO长为半径画半圆,分别交OA、OB于点P、Q;步骤2:过点M作PQ的垂线交PQ于点C;步骤3:画射线OC.则下列判断:①PC CQ=;②MC∥OA;③OP=PQ;④OC平分∠AOB,其中正确的个数为()A.1B.2C.3D.4【答案】C.【分析】由OQ为直径可得出OA⊥PQ,结合MC⊥PQ可得出OA∥MC,结论②正确;根据平行线的性质可得出∠P AO=∠CMQ,结合圆周角定理可得出∠COQ=12∠POQ=∠BOQ,进而可得出PC CQ=,OC平分∠AOB,结论①④正确;由∠AOB的度数未知,不能得出OP=PQ,即结论③错误.综上即可得出结论.点睛:本题考查了作图中的复杂作图、角平分线的定义、圆周角定理以及平行线的判定及性质,根据作图的过程逐一分析四条结论的正误是解题的关键.考点:作图—复杂作图;圆周角定理.2.(2017河北,第16题,2分)已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB边重合,如图所示,按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转;…在这样连续6次旋转的过程中,点B,M间的距离可能是()A.1.4B.1.1C.0.8D.0.5点睛:本题考查正六边形、正方形的性质等知识,解题的关键作出点M的运动轨迹,利用图象解决问题,题目有一定的难度.考点:正多边形和圆;旋转的性质;操作型;综合题.3.(2017湖北省武汉市,第10题,3分)如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4B.5C.6D.7【答案】D.【分析】①以B为圆心,BC长为半径画弧,交AB于点D,△BCD就是等腰三角形;②以A为圆心,AC长为半径画弧,交AB于点E,△ACE就是等腰三角形;③以C为圆心,BC长为半径画弧,交AC于点F,△BCF就是等腰三角形;④作AC的垂直平分线交AB于点H,△ACH就是等腰三角形;⑤作AB的垂直平分线交AC于G,则△AGB是等腰三角形;⑥作BC的垂直平分线交AB于I,则△BCI是等腰三角形.⑦以C为圆心,BC长为半径画弧,交AB于点K,△BCK就是等腰三角形;【解析】如图:故选D.点睛:本题考查了等腰三角形的判定的应用,主要考查学生的理解能力和动手操作能力.考点:等腰三角形的判定与性质;分类讨论;综合题;操作型.学科.网4.(2016四川省达州市)如图,将一张等边三角形纸片沿中位线剪成4个小三角形,称为第一次操作;然后,将其中的一个三角形按同样方式再剪成4个小三角形,共得到7个小三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成4个小三角形,共得到10个小三角形,称为第三次操作;…根据以上操作,若要得到100个小三角形,则需要操作的次数是()A.25B.33C.34D.50【答案】B.【分析】由第一次操作后三角形共有4个、第二次操作后三角形共有(4+3)个、第三次操作后三角形共有(4+3+3)个,可得第n次操作后三角形共有4+3(n﹣1)=3n+1个,根据题意得3n+1=100,求得n的值即可.【解析】∵第一次操作后,三角形共有4个;第二次操作后,三角形共有4+3=7个;第三次操作后,三角形共有4+3+3=10个;…∴第n次操作后,三角形共有4+3(n﹣1)=3n+1个;当3n+1=100时,解得:n=33,故选B.考点:规律型:图形的变化类;操作型.5.(2016山东省淄博市)小明用计算器计算(a+b)c的值,其按键顺序和计算器显示结果如表:这时他才明白计算器是先做乘法再做加法的,于是他依次按键:从而得到了正确结果,已知a是b的3倍,则正确的结果是()A.24B.39C.48D.96【答案】C.【分析】根据题意得出关于a,b,c的方程组,进而解出a,b,c的值,进而得出答案.【解析】由题意可得:21393a bcb aca b+=⎧⎪+=⎨⎪=⎩,则:321339b bcb bc+=⎧⎨+=⎩,解得:934abc=⎧⎪=⎨⎪=⎩,故(9+3)×4=48.故选C.考点:计算器—基础知识;操作型.6.(2016江苏省扬州市)如图,矩形纸片ABCD中,AB=4,BC=6.将该矩形纸片剪去3个等腰直角三角形,所有剪法中剩余部分面积的最小值是()A.6B.3C.2.5D.2【答案】C.【分析】以BC为边作等腰直角三角形△EBC,延长BE交AD于F,得△ABF是等腰直角三角形,作EG⊥CD 于G,得△EGC是等腰直角三角形,在矩形ABCD中剪去△ABF,△BCE,△ECG得到四边形EFDG,此时剩余部分面积的最小【解析】如图以BC为边作等腰直角三角形△EBC,延长BE交AD于F,得△ABF是等腰直角三角形,作EG⊥CD于G,得△EGC是等腰直角三角形,在矩形ABCD中剪去△ABF,△BCE,△ECG得到四边形EFDG,此时剩余部分面积的最小=4×6﹣12×4×4﹣12×3×6﹣12×3×3=2.5.故选C.考点:矩形的性质;等腰直角三角形;操作型;最值问题;几何问题的最值.7.(2016福建省莆田市)如图,在平面直角坐标系中,点A(0,2),在x轴上任取一点M,完成以下作图步骤:①连接AM.作线段AM的垂直平分线l1,过点M作x轴的垂线l2,记l1,l2的交点为P;②在x轴上多次改变点M的位置,用①的方法得到相应的点P,把这些点用平滑的曲线顺次连接起来,得到的曲线是()A.直线B.抛物线C.双曲线D.双曲线的一支【答案】B.【分析】按照给定的作图步骤作图,根据图形中曲线的特征即可得出该曲线为抛物线.【解析】根据作图步骤作图,如图所示.由此即可得出该曲线为抛物线.故选B.考点:二次函数图象上点的坐标特征;线段垂直平分线的性质;作图—基本作图.8.(2016黑龙江省绥化市)把一张正方形纸片如图①、图②对折两次后,再按如图③挖去一个三角形小孔,则展开后图形是()A.B.C.D.【答案】C.【分析】结合空间思维,分析折叠的过程及剪三角形的位置,注意图形的对称性,易知展开的形状.【解析】当正方形纸片两次沿对角线对折成为一直角三角形时,在直角三角形中间的位置上剪三角形,则直角顶点处完好,即原正方形中间无损,且三角形关于对角线对称,三角形的AB边平行于正方形的边.再结合C点位置可得答案为C.故选C.考点:剪纸问题;操作型.9.(2016黑龙江省龙东地区)为了丰富学生课外小组活动,培养学生动手操作能力,王老师让学生把5m 长的彩绳截成2m或1m的彩绳,用来做手工编织,在不造成浪费的前提下,你有几种不同的截法()A.1B.2C.3D.4【答案】C.【分析】截下来的符合条件的彩绳长度之和刚好等于总长9米时,不造成浪费,设截成2米长的彩绳x根,1米长的y根,由题意得到关于x与y的方程,求出方程的正整数解即可得到结果.【解析】截下来的符合条件的彩绳长度之和刚好等于总长5米时,不造成浪费,设截成2米长的彩绳x根,1米长的y根,由题意得,2x+y=5,因为x,y都是正整数,所以符合条件的解为:5 xy=⎧⎨=⎩,13xy=⎧⎨=⎩,21xy=⎧⎨=⎩,则共有3种不同截法,故选C.考点:二元一次方程的应用;方案型;操作型.10.(2015荆州)如图所示,将正方形纸片三次对折后,沿图中AB线剪掉一个等腰直角三角形,展开铺平得到的图形是()A.B.C.D.【答案】A.【解析】试题分析:找一张正方形的纸片,按上述顺序折叠、裁剪,然后展开后得到的图形如图所示:故选A.考点:剪纸问题.11.(2015深圳)如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得P A+PC=BC,则下列选项正确的是()A.B.C.D.【答案】D.考点:作图—复杂作图.12.(2015三明)如图,在△ABC中,∠ACB=90°,分别以点A和B为圆心,以相同的长(大于12AB)为半径作弧,两弧相交于点M和N,作直线MN交AB于点D,交BC于点E,连接CD,下列结论错误的是()A.AD=BD B.BD=CD C.∠A=∠BED D.∠ECD=∠EDC【答案】D.【解析】试题分析:∵MN为AB的垂直平分线,∴AD=BD,∠BDE=90°;∵∠ACB=90°,∴CD=BD;∵∠A+∠B=∠B+∠BED=90°,∴∠A=∠BED;∵∠A≠60°,AC≠AD,∴EC≠ED,∴∠ECD≠∠EDC.故选D.考点:1.作图—基本作图;2.线段垂直平分线的性质;3.直角三角形斜边上的中线.13.(2015潍坊)如图,在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点A、D为圆心,以大于12AD的长为半径在AD两侧作弧,交于两点M、N;第二步,连接MN分别交AB、AC于点E、F;第三步,连接DE、DF.若BD=6,AF=4,CD=3,则BE的长是()A.2B.4C.6D.8【答案】D.考点:1.平行线分线段成比例;2.菱形的判定与性质;3.作图—基本作图.学科.网14.(2015嘉兴)数学活动课上,四位同学围绕作图问题:“如图,已知直线l和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”分别作出了下列四个图形.其中作法错误的是()A.B.C.D.【答案】A.【解析】试题分析:A.根据作法无法判定PQ⊥l;B.以P为圆心大于P到直线l的距离为半径画弧,交直线l,于两点,再以两点为圆心,大于它们的长为半径画弧,得出其交点,进而作出判断;C.根据直径所对的圆周角等于90°作出判断;D.根据全等三角形的判定和性质即可作出判断.从以上分析可知,选项B、C、D都能够得到PQ⊥l于点Q;选项A不能够得到PQ⊥l于点Q.故选A.考点:作图—基本作图.二、填空题15.(2017北京市,第16题,3分)图1是“作已知直角三角形的外接圆”的尺规作图过程已知:Rt△ABC,∠C=90°,求作Rt△ABC的外接圆.作法:如图2.(1)分别以点A和点B为圆心,大于12的长为半径作弧,两弧相交于P,Q两点;(2)作直线PQ,交AB于点O;(3)以O为圆心,OA为半径作⊙O.⊙O即为所求作的圆.请回答:该尺规作图的依据是.【答案】到线段两端点的距离相等的点在这条线段的垂直平分线上;90°的圆周角所的弦是直径.点睛:本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.考点:作图—复杂作图;三角形的外接圆与外心;作图题.16.(2017天津,第18题,3分)如图,在每个小正方形的边长为1的网格中,点A ,B ,C 均在格点上.(1)AB 的长等于 ;(2)在△ABC 的内部有一点P ,满足S △P S △P S △PCA =1:2:3,请在如图所示的网格中,用无刻度...的直尺,画出点P ,并简要说明点P 的位置是如何找到的(不要求证明)【答案】(117;(2)答案见解析.【分析】(1)利用勾股定理即可解决问题;(2)如图AC 与网格相交,得到点D 、E ,取格点F ,连接FB 并且延长,与网格相交,得到M ,N ,G .连接DN ,EM ,DG ,DN 与EM 相交于点P ,点P 即为所求.【解析】(1)AB 2214 1717.(2)如图AC 与网格相交,得到点D 、E ,取格点F ,连接FB 并且延长,与网格相交,得到M ,N ,G .连接DN ,EM ,DG ,DN 与EM 相交于点P ,点P 即为所求.理由:平行四边形ABME的面积:平行四边形CDNB的面积:平行四边形DEMG的面积=1:2:3,△P AB的面积=12平行四边形ABME的面积,△PBC的面积=12平行四边形CDNB的面积,△P AC的面积=△PNG的面积=12△DGN的面积=12平行四边形DEMG的面积,∴S△P S△P S△PCA=1:2:3.点睛:本题考查作图﹣应用与设计、勾股定理、三角形的面积等知识,解题的关键是利用数形结合的思想解决问题,求出△P AB,△PBC,△P AC的面积,属于中考常考题型.考点:作图—应用与设计作图;勾股定理;综合题.17.(2017安徽省,第14题,5分)在三角形纸片ABC中,∠A=90°,∠C=30°,AC=30cm,将该纸片沿过点B的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD(如图1),减去△CDE后得到双层△BDE(如图2),再沿着过△BDE某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为cm.【答案】40或33.【分析】解直角三角形得到AB=3∠ABC=60°,根据折叠的性质得到∠ABD=∠EBD=12∠ABC=30°,BE=AB=3求得DE=10,BD=20,如图1,平行四边形的边是DF,BF,如图2,平行四边形的边是DE,EG,于是得到结论.【解析】∵∠A=90°,∠C=30°,AC=30cm,∴AB=103ABC=60°,∵△ADB≌△EDB,∴∠ABD=∠EBD=12∠ABC=30°,BE=AB=103,∴DE=10,BD=20,如图1,平行四边形的边是DF,BF,且DF=BF=2033,∴平行四边形的周长=8033;如图2,平行四边形的边是DE,EG,且DF=BF=10,∴平行四边形的周长=40.综上所述:平行四边形的周长为40或8033,故答案为:40或8033.点睛:本题考查了剪纸问题,平行四边形的性质,解直角三角形,正确的理解题意是解题的关键.考点:剪纸问题;操作型;分类讨论;综合题.18.(2017山东省烟台市,第18题,3分)如图1,将一圆形纸片向右、向上两次对折后得到如图2所示的扇形AOB.已知OA=6,取OA的中点C,过点C作CD⊥OA交AB于点D,点F是AB上一点.若将扇形BOD沿OD翻折,点B恰好与点F重合,用剪刀沿着线段BD,DF,F A依次剪下,则剪下的纸片(形状同阴影图形)面积之和为.【答案】36π﹣108.【分析】先求出∠ODC=∠BOD=30°,作DE⊥OB可得DE=12OD=3,先根据S弓形BD=S扇形BOD﹣S△BOD求得弓形的面积,再利用折叠的性质求得所有阴影部分面积.【解析】如图,∵CD⊥OA,∴∠DCO=∠AOB=90°,∵OA=OD=OB=6,OC=12OA=12OD,∴∠ODC=∠BOD=30°,作DE⊥OB于点E,则DE=12OD=3,∴S弓形BD=S扇形BOD﹣S△BOD=2306360π⨯﹣12×6×3=3π﹣9,则剪下的纸片面积之和为12×(3π﹣9)=36π﹣108,故答案为:36π﹣108.点睛:本题主要考查扇形面积的计算,熟练掌握扇形的面积计算公式及折叠的性质是解题的关键. 考点:扇形面积的计算;剪纸问题;操作型.19.(2017黑龙江省绥化市,第21题,3分)如图,顺次连接腰长为2的等腰直角三角形各边中点得到第1个小三角形,再顺次连接所得的小三角形各边中点得到第2个小三角形,如此操作下去,则第n 个小三角形的面积为 .【答案】2112n -.【分析】记原来三角形的面积为s ,第一个小三角形的面积为s 1,第二个小三角形的面积为s 2,…,求出s 1,s 2,s 3,探究规律后即可解决问题.【解析】记原来三角形的面积为s ,第一个小三角形的面积为s 1,第二个小三角形的面积为s 2,…,∵ s 1=14•s =212•s ,s 2=14•14s =412 •s ,s 3=612•s ,∴s n =212n •s =2211222n ⋅⋅=2112n -,故答案为:2112n -. 点睛:本题考查三角形的中位线定理,三角形的面积等知识,解题的关键是循环从特殊到一般的探究方法,寻找规律,利用规律即可解决问题.考点:三角形中位线定理;等腰直角三角形;综合题;规律型;操作型.20.(2017黑龙江省齐齐哈尔市,第16题,3分)如图,在等腰三角形纸片ABC 中,AB =AC =10,BC =12,沿底边BC 上的高AD 剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是 .【答案】10cm ,73,13.【分析】利用等腰三角形的性质,进而重新组合得出平行四边形,进而利用勾股定理求出对角线的长.【解析】如图:,过点A 作AD ⊥BC 于点D ,∵△ABC 边AB =AC =10cm ,BC =12cm ,∴BD =DC =6cm ,∴AD =8cm ,如图①所示:可得四边形ACBD 是矩形,则其对角线长为:10cm ,如图②所示:AD =8cm ,连接BC ,过点C 作CE ⊥BD 于点E ,则EC =8cm ,BE =2BD =12cm ,则BC =413cm ,如图③所示:BD =6cm ,由题意可得:AE =6cm ,EC =2BE =16cm ,故AC =22616 =273cm ,故答案为:10cm ,273cm ,413cm .点睛:此题主要考查了图形的剪拼以及勾股定理和等腰三角形的性质等知识,利用分类讨论得出是解题关键.考点:图形的剪拼;分类讨论;操作型.学科.网21.(2016北京市)下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程:已知:直线l 和l 外一点P .(如图1)求作:直线l 的垂线,使它经过点P .作法:如图2(1)在直线l 上任取两点A ,B ;(2)分别以点A ,B 为圆心,AP ,BP 长为半径作弧,两弧相交于点Q ;(3)作直线PQ .所以直线PQ 就是所求的垂线.请回答:该作图的依据是 .【答案】到线段两个端点的距离相等的点在线段的垂直平分线上(A、B都在线段PQ的垂直平分线上).【分析】只要证明直线AB是线段PQ的垂直平分线即可.【解析】到线段两个端点的距离相等的点在线段的垂直平分线上(A、B都在线段PQ的垂直平分线上),理由:如图,∵P A=PQ,PB=PB,∴点A、点B在线段PQ的垂直平分线上,∴直线AB垂直平分线段PQ,∴PQ⊥AB.考点:作图—基本作图.22.(2016天津市)如图,在每个小正方形的边长为1的网格中,A,E为格点,B,F为小正方形边的中点,C为AE,BF的延长线的交点.(1)AE的长等于________;(2)若点P在线段AC上,点Q在线段BC上,且满足AP = PQ = QB,请在如图所示的网格中,用无刻度的直尺,画出线段PQ,并简要说明点P,Q的位置是如何找到的(不要求证明)________.【答案】(1)5;(2)答案见解析. 【分析】(1)利用格点,根据勾股定理求出AB 的长;(2)如图,AC 与网格线相交,得点P ;取个点M ,连接AM 并延长与BC 相交,得点Q ,连接PQ 即可.【解析】(1)AE =2212+=5;(2)如图,AC 与网格线相交,得点P ;取个点M ,连接AM 并延长与BC 相交,得点Q ,连接PQ .线段PQ 即为所求.证明如下:以A 为坐标原点建立直角坐标系,使点B 、C 都在第一象限.则A (0,0),P (1.5,3),M (3,3),B (6,1.5),F (5,3.5).可求出直线AM 的解析式为:y =x ,直线BF 的解析式为:y =-2x +13.5,则由213.5y x y x =⎧⎨=-+⎩,得:x =y =4.5,∴Q (4.5,4.5),则AP =221.53+=352, PQ =22(4.5 1.5)(4.53)-+-=352,QB =22(6 4.5)(1.5 4.5)-+-=352,∴AP = PQ = QB .考点:勾股定理;作图题.23.(2016山东省青岛市)如图,以边长为20cm 的正三角形纸板的各顶点为端点,在各边上分别截取4cm 长的六条线段,过截得的六个端点作所在边的垂线,形成三个有两个直角的四边形.把它们沿图中 虛线剪掉,用剩下的纸板折成一个底为正三角形的无盖柱形盒子,则它的容积为 cm 3.【答案】1443.【分析】由题意得出△ABC为等边三角形,△OPQ为等边三角形,得出∠A=∠B=∠C=60°,AB=BC=AC.∠POQ=60°,连结AO,作QM⊥OP于M,在Rt△AOD中,∠OAD=∠OAK=30°,得出OD 的长,求出OP,无盖柱形盒子的容积=底面积×高,即可得出结果.【解析】如图由题意得:△ABC为等边三角形,△OPQ为等边三角形,AD=AK=BE=BF=CG=CH=4CM,∴∠A=∠B=∠C=60°,AB=BC=AC,∠POQ=60°,∴∠ADO=∠AKO=90°.连结AO,作QM⊥OP于M,在Rt△AOD中,∠OAD=∠OAK=30°,∴OD=33AD=433cm,∵PQ=OP=DE=20﹣2×4=12(cm),∴QM=OP•sin60°=12×32=63(cm),∴无盖柱形盒子的容积=1126342⨯⨯⨯=1443(cm3);故答案为:1443.考点:剪纸问题.24.(2016广东省深圳市)如图,在▱ABCD中,AB=3,BC=5,以点B的圆心,以任意长为半径作弧,分别交BA、BC于点P、Q,再分别以P、Q为圆心,以大于12PQ的长为半径作弧,两弧在∠ABC内交于点M,连接BM并延长交AD于点E,则DE的长为.【答案】2.【分析】根据作图过程可得得AE平分∠ABC;再根据角平分线的性质和平行四边形的性质可证明∠AEB=∠CBE,证出AE=AB=3,即可得出DE的长.【解析】根据作图的方法得:A E平分∠ABC,∴∠ABE=∠CBE∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=5,∴∠AEB=∠CBE,∴∠ABE=∠AEB,∴AE=AB=3,∴DE=AD﹣AE=5﹣3=2;故答案为:2.考点:平行四边形的性质;等腰三角形的判定;作图—复杂作图;操作型.25.(2016浙江省湖州市)如图,在Rt △ABC 中,∠ACB =90°,BC =6,AC =8,分别以点A ,B 为圆心,大于线段AB 长度一半的长为半径作弧,相交于点E ,F ,过点E ,F 作直线EF ,交AB 于点D ,连结CD ,则CD 的长是 .【答案】5.【分析】首先说明AD =DB ,利用直角三角形斜边中线等于斜边一半,即可解决问题.【解析】由题意EF 是线段AB 的垂直平分线,∴AD =DB ,Rt △ABC 中,∵∠ACB =90°,BC =6,AC =8,∴AB =22AC BC +=2268+=10,∵AD =DB ,∠ACB =90°,∴CD =12AB =5.故答案为:5.考点:作图—基本作图;直角三角形斜边上的中线;勾股定理.学科.网26.(2016山东省淄博市)由一些相同的小正方体搭成的几何体的左视图和俯视图如图所示,请在网格中涂出一种该几何体的主视图,且使该主视图是轴对称图形.【答案】答案见解析.【分析】根据俯视图和左视图可知,该几何体共两层,底层有9个正方体,上层中间一行有正方体,若使主视图为轴对称图形可使中间一行、中间一列有一个小正方体即可.【解析】如图所示:考点:作图-三视图;轴对称图形;由三视图判断几何体.27.(2016四川省眉山市)已知:如图△ABC三个顶点的坐标分别为A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形网格中,每个小正方形的边长是1个单位长度.(1)画出△ABC向上平移6个单位得到的△A1B1C1;(2)以点C为位似中心,在网格中画出△A2B2C2,使△A2B2C2与△ABC位似,且△A2B2C2与△ABC的位似比为2:1,并直接写出点A2的坐标.【答案】(1)作图见解析;(2)作图见解析,A2坐标(﹣2,﹣2).【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用位似图形的性质得出对应点位置进而得出.【解析】(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求,A2坐标(﹣2,﹣2).考点:作图-平移变换;作图-位似变换.28.(2016四川省达州市)如图,在▱ABCD中,已知AD>AB.(1)实践与操作:作∠BAD的平分线交BC于点E,在AD上截取AF=AB,连接EF;(要求:尺规作图,保留作图痕迹,不写作法)(2)猜想并证明:猜想四边形ABEF的形状,并给予证明.【答案】(1)作图见解析;(2)四边形ABEF是菱形.【分析】(1)由角平分线的作法容易得出结果,在AD上截取AF=AB,连接EF;画出图形即可;(2)由平行四边形的性质和角平分线得出∠BAE=∠AEB,证出BE=AB,由(1)得:A F=AB,得出BE=AF,即可得出结论.考点:平行四边形的性质;作图—基本作图.29.(2016山东省枣庄市)P n 表示n 边形的对角线的交点个数(指落在其内部的交点),如果这些交点都不重合,那么P n 与n 的关系式是:P n =2(1)()24n n n an b -⋅-+(其中a ,b 是常数,n ≥4) (1)通过画图,可得:四边形时,P 4= ;五边形时,P 5= ;(2)请根据四边形和五边形对角线交点的个数,结合关系式,求a ,b 的值.【答案】(1)1;5;(2)a =5,b =6.【分析】(1)依题意画出图形,数出图形中对角线交点的个数即可得出结论;(2)将(1)中的数值代入公式可得出关于a 、b 的二元一次方程组,解方程组即可得出结论.【解析】(1)画出图形如下.由画形,可得:当n =4时,P 4=1;当n =5时,P 5=5.故答案为:1;5.(2)将(1)中的数值代入公式,得:224(41)1(44)245(51)5(55)24a b a b ⨯-⎧=⋅-+⎪⎪⎨⨯-⎪=⋅-+⎪⎩,解得:a =5,b =6.考点:作图—应用与设计作图;二元一次方程的应用;多边形的对角线.30.(2016山东省聊城市)如图,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为A (﹣3,5),B (﹣2,1),C (﹣1,3).(1)若△ABC 经过平移后得到△A 1B 1C 1,已知点C 1的坐标为(4,0),写出顶点A 1,B 1的坐标;(2)若△ABC 和△A 1B 2C 2关于原点O 成中心对称图形,写出△A 1B 2C 2的各顶点的坐标;(3)将△ABC 绕着点O 按顺时针方向旋转90°得到△A 2B 3C 3,写出△A 2B 3C 3的各顶点的坐标.【答案】(1)A1(2,2),B1(3,﹣2);(2)A2(3,﹣5),B2(2,﹣1),C2(1,﹣3);(3)A3(5,3),B3(1,2),C3(3,1).【分析】(1)利用点C和点C1的坐标变化得到平移的方向与距离,然后利用此平移规律写出顶点A1,B1的坐标;(2)根据关于原点对称的点的坐标特征求解;(3)利用网格和旋转的性质画出△A2B3C3,然后写出△A2B3C3的各顶点的坐标.【解析】(1)如图,△A1B1C1为所作,因为点C(﹣1,3)平移后的对应点C1的坐标为(4,0),所以△ABC 先向右平移5个单位,再向下平移3个单位得到△A1B1C1,所以点A1的坐标为(2,2),B1点的坐标为(3,﹣2);(2)因为△ABC和△A1B2C2关于原点O成中心对称图形,所以A2(3,﹣5),B2(2,﹣1),C2(1,﹣3);(3)如图,△A2B3C3为所作,A3(5,3),B3(1,2),C3(3,1);考点:坐标与图形变化-旋转;坐标与图形变化-平移;作图题.31.(2016山东省青岛市)已知:线段a及∠ACB.求作:⊙O,使⊙O在∠ACB的内部,CO=a,且⊙O与∠ACB的两边分别相切.【答案】作图见解析.【分析】首先作出∠ACB的平分线CD,再截取CO=a得出圆心O,作OE⊥CA,由角平分线的性质和切线的判定作出圆即可.【解析】①作∠ACB的平分线CD,②在CD上截取CO=a,③作OE⊥CA于E,以O我圆心,OE长为半径作圆;如图所示:⊙O即为所求.考点:作图—复杂作图.学科.网32.(2016山西省)综合与实践问题情境在综合与实践课上,老师让同学们以“菱形纸片的剪拼”为主题开展数学活动,如图1,将一张菱形纸片ABCD(∠BAD>90°)沿对角线AC剪开,得到△ABC和△ACD.操作发现(1)将图1中的△ACD以A为旋转中心,按逆时针方向旋转角α,使α=∠BAC,得到如图2所示的△AC′D,分别延长BC和DC′交于点E,则四边形ACEC′的形状是;(2)创新小组将图1中的△ACD以A为旋转中心,按逆时针方向旋转角α,使α=2∠BAC,得到如图3所示的△AC′D,连接DB,C′C,得到四边形BCC′D,发现它是矩形,请你证明这个结论;实践探究(3)缜密小组在创新小组发现结论的基础上,量得图3中BC=13cm,AC=10cm,然后提出一个问题:将△AC′D沿着射线DB方向平移acm,得到△A′C′D′,连接BD′,CC′,使四边形BCC′D恰好为正方形,求a的值,请你解答此问题;(4)请你参照以上操作,将图1中的△ACD 在同一平面内进行一次平移,得到△A ′C ′D ,在图4中画出平移后构造出的新图形,标明字母,说明平移及构图方法,写出你发现的结论,不必证明.【答案】(1)菱形;(2)证明见解析;(3)7113或40913;(4)答案见解析. 【分析】(1)利用旋转的性质结合菱形的性质得出:∠1=∠2,∠2=∠3,∠1=∠4,AC =AC ′,进而利用菱形的判定方法得出答案;(2)利用旋转的性质结合菱形的性质得出,四边形BCC ′D 是平行四边形,进而得出四边形BCC ′D 是矩形;(3)首先求出CC ′的长,分别利用①点C ″在边C ′C 上,②点C ″在C ′C 的延长线上,求出a 的值;(4)利用平移的性质以及平行四边形的判定方法得出答案.【解析】(1)如图2,由题意可得:∠1=∠2,∠2=∠3,∠1=∠4,AC =AC ′,故AC ′∥EC ,AC ∥C ′E ,则四边形ACEC ′是平行四边形,故四边形ACEC ′的形状是菱形;故答案为:菱形;(2)证明:如图3,作AE ⊥CC ′于点E ,由旋转得:A C ′=AC ,则∠CAE =∠C ′AE =12α=∠BAC ,∵四边形ABCD 是菱形,∴BA =BC ,∴∠BCA =∠BAC ,∴∠CAE =∠BCA ,∴AE ∥BC ,同理可得:A E ∥DC ′,∴BC ∥DC ′,则∠BCC ′=90°,又∵BC =DC ′,∴四边形BCC ′D 是平行四边形,∵∠BCC ′=90°,∴四边形BCC ′D 是矩形;(3)如图3,过点B 作BF ⊥AC ,垂足为F ,∵BA =BC ,∴CF =AF =12AC =12×10=5,在Rt △BCF 中,BF 22BC CF -22135-12,在△ACE 和△CBF 中,∵∠CAE =∠BCF ,∠CEA =∠BFC =90°,∴△ACE ∽△CBF ,∴CE AC BF BC =,即101213CE =,解得:EC =12013,∵AC =AC ′,AE ⊥CC ′,∴CC ′=2CE =2×12013=24013,当四边形BCC ′D ′恰好为正方形时,分两种情况: ①点C ″在边C ′C 上,a =C ′C ﹣13=24013﹣13=7113; ②点C ″在C ′C 的延长线上,a =C ′C +13=24013+13=40913.综上所述:a 的值为:7113或40913; (4)答案不唯一,例:如图4,画出正确图形,平移及构图方法:将△ACD 沿着射线CA 方向平移,平移距离为12AC 的长度,得到△A ′C ′D ′,连接A ′B ,D ′C ,结论:∵BC =A ′D ′,BC ∥A ′D ′,∴四边形A ′BCD ′是平行四边形.考点:几何变换综合题;操作型;分类讨论;压轴题.33.(2016山西省)综合与探究如图,在平面直角坐标系中,已知抛物线28y ax bx =+-与x 轴交于A ,B 两点,与y 轴交于点C ,直线l 经过坐标原点O ,与抛物线的一个交点为D ,与抛物线的对称轴交于点E ,连接CE ,已知点A ,D 的坐标分别为(﹣2,0),(6,﹣8).(1)求抛物线的函数表达式,并分别求出点B 和点E 的坐标;(2)试探究抛物线上是否存在点F ,使△FOE ≌△FCE ?若存在,请直接写出点F 的坐标;若不存在,请说明理由;(3)若点P 是y 轴负半轴上的一个动点,设其坐标为(0,m ),直线PB 与直线l 交于点Q ,试探究:当m 为何值时,△OPQ 是等腰三角形.【答案】(1)21382y x x =--,B (8,0),E (3,﹣4);(2)(317+,﹣4)或(3174);(3)m =83-或323-. 【分析】(1)根据待定系数法求出抛物线解析式即可求出点B 坐标,求出直线OD 解析式即可解决点E 坐。

2018年中考数学挑战压轴题(含答案)

2018年中考数学挑战压轴题(含答案)

2017 挑战压轴题中考数学精讲解读篇因动点产生的相似三角形问题1.如图,在平面直角坐标系xOy中,将抛物线y=x2的对称轴绕着点P(0,2)顺时针旋转45°后与该抛物线交于A、B两点,点Q是该抛物线上一点.(1)求直线AB的函数表达式;(2)如图①,若点Q在直线AB的下方,求点Q到直线AB的距离的最大值;(3)如图②,若点Q在y轴左侧,且点T(0,t)(t<2)是射线PO上一点,当以P、B、Q为顶点的三角形与△PAT相似时,求所有满足条件的t的值.2.如图,已知BC是半圆O的直径,BC=8,过线段BO上一动点D,作AD⊥BC交半圆O于点A,联结AO,过点B作BH⊥AO,垂足为点H,BH的延长线交半圆O于点F.(1)求证:AH=BD;(2)设BD=x,BE•BF=y,求y关于x的函数关系式;(3)如图2,若联结FA并延长交CB的延长线于点G,当△FAE与△FBG相似时,求BD的长度.3.如图,在平面直角坐标系xOy中,直线AB过点A(3,0)、B(0,m)(m>0),tan∠BAO=2.(1)求直线AB的表达式;(2)反比例函数y=的图象与直线AB交于第一象限内的C、D两点(BD<BC),当AD=2DB时,求k的值;1(3)设线段AB的中点为E,过点E作x轴的垂线,垂足为点M,交反比例函数y=的图象于点F,的值.分别联结OE、OF,当△OEF∽△OBE时,请直接写出满足条件的所有k24.如图,在Rt△ABC中,∠ACB=90°,AC=1,BC=7,点D是边CA延长线的一点,AE⊥BD,垂足为点E,AE的延长线交CA的平行线BF于点F,连结CE交AB于点G.(1)当点E是BD的中点时,求tan∠AFB的值;(2)CE•AF的值是否随线段AD长度的改变而变化?如果不变,求出CE•AF的值;如果变化,请说明理由;(3)当△BGE和△BAF相似时,求线段AF的长.5.如图,平面直角坐标系xOy中,已知B(﹣1,0),一次函数y=﹣x+5的图象与x轴、y轴分别第1页(共114页)交于点A、C两点,二次函数y=﹣x2+bx+c的图象经过点A、点B.(1)求这个二次函数的解析式;(2)点P是该二次函数图象的顶点,求△APC的面积;(3)如果点Q在线段AC上,且△ABC与△AOQ相似,求点Q的坐标.6.已知:半圆O的直径AB=6,点C在半圆O上,且tan∠ABC=2,点D为弧AC上一点,联结DC (如图)(1)求BC的长;(2)若射线DC交射线AB于点M,且△MBC与△MOC相似,求CD的长;(3)联结OD,当OD∥BC时,作∠DOB的平分线交线段DC于点N,求ON的长.7.如图,已知二次函数y=x2+bx+c(b,c为常数)的图象经过点A(3,﹣1),点C(0,﹣4),顶点为点M,过点A作AB∥x轴,交y轴与点D,交该二次函数图象于点B,连结BC.(1)求该二次函数的解析式及点M的坐标;(2)若将该二次函数图象向上平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△ABC的内部(不包含△ABC的边界),求m的取值范围;(3)点P时直线AC上的动点,若点P,点C,点M所构成的三角形与△BCD相似,请直接写出所有点P的坐标(直接写出结果,不必写解答过程).因动点产生的等腰三角形问题8.如图1,在△ABC中,∠ACB=90°,∠BAC=60°,点E是∠BAC角平分线上一点,过点E作AE 的垂线,过点A作AB的垂线,两垂线交于点D,连接DB,点F是BD的中点,DH⊥AC,垂足为H,连接EF,HF.(1)如图1,若点H是AC的中点,AC=2,求AB,BD的长;(2)如图1,求证:HF=EF;(3)如图2,连接CF,CE.猜想:△CEF是否是等边三角形?若是,请证明;若不是,说明理由.9.已知,一条抛物线的顶点为E(﹣1,4),且过点A(﹣3,0),与y轴交于点C,点D是这条抛物线上一点,它的横坐标为m,且﹣3<m<﹣1,过点D作DK⊥x轴,垂足为K,DK分别交线段AE、AC于点G、H.(1)求这条抛物线的解析式;(2)求证:GH=HK;(3)当△CGH是等腰三角形时,求m的值.第2页(共114页)10.如图,已知在Rt△ABC中,∠ACB=90°,AB=5,sinA=,点P是边BC上的一点,PE⊥AB,垂足为E,以点P为圆心,PC为半径的圆与射线PE相交于点Q,线段CQ与边AB交于点D.(1)求AD的长;(2)设CP=x,△PCQ的面积为y,求y关于x的函数解析式,并写出定义域;(3)过点C作CF⊥AB,垂足为F,联结PF、QF,如果△PQF是以PF为腰的等腰三角形,求CP的长.11.如图(1),直线y=﹣x+n交x轴于点A,交y轴于点C(0,4),抛物线y=x2+bx+c经过点A,交y轴于点B(0,﹣2).点P为抛物线上一个动点,过点P作x轴的垂线PD,过点B作BD⊥PD于点D,连接PB,设点P的横坐标为m.(1)求抛物线的解析式;(2)当△BDP为等腰直角三角形时,求线段PD的长;(3)如图(2),将△BDP绕点B逆时针旋转,得到△BD′P′,当旋转角∠PBP′=∠OAC,且点P 的对应点P′落在坐标轴上时,请直接写出点P的坐标.12.综合与探究如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣8与x轴交于A,B两点,与y轴交于点C,直线l经过坐标原点O,与抛物线的一个交点为D,与抛物线的对称轴交于点E,连接CE,已知点A,D的坐标分别为(﹣2,0),(6,﹣8).(1)求抛物线的函数表达式,并分别求出点B和点E的坐标;(2)试探究抛物线上是否存在点F,使△FOE≌△FCE?若存在,请直接写出点F的坐标;若不存在,请说明理由;(3)若点P是y轴负半轴上的一个动点,设其坐标为(0,m),直线PB与直线l交于点Q,试探究:当m为何值时,△OPQ是等腰三角形.因动点产生的直角三角形问题13.已知,如图1,在梯形ABCD中,AD∥BC,∠BCD=90°,BC=11,CD=6,tan∠ABC=2,点E在AD 边上,且AE=3ED,EF∥AB交BC于点F,点M、N分别在射线FE和线段CD上.(1)求线段CF的长;(2)如图2,当点M在线段FE上,且AM⊥MN,设FM•cos∠EFC=x,CN=y,求y关于x的函数解析式,并写出它的定义域;第3页(共114页)(3)如果△AMN为等腰直角三角形,求线段FM的长.14.如图,在矩形ABCD中,点O为坐标原点,点B的坐标为(4,3),点A、C在坐标轴上,点P在BC边上,直线l1:y=2x+3,直线l2:y=2x﹣3.(1)分别求直线l1与x轴,直线l2与AB的交点坐标;(2)已知点M在第一象限,且是直线l2上的点,若△APM是等腰直角三角形,求点M的坐标;(3)我们把直线l1和直线l2上的点所组成的图形为图形F.已知矩形ANPQ的顶点N在图形F上,Q是坐标平面内的点,且N点的横坐标为x,请直接写出x的取值范围(不用说明理由).因动点产生的平行四边形问题15.如图,在平面直角坐标系xOy中,抛物线y=ax2﹣2ax﹣3a(a<0)与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)直接写出点A的坐标,并求直线l的函数表达式(其中k,b用含a的式子表示);(2)点E是直线l上方的抛物线上的一点,若△ACE 的面积的最大值为,求a的值;(3)设P是抛物线对称轴上的一点,点Q在抛物线上,以点A,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.16.如图,在矩形OABC中,OA=5,AB=4,点D为边AB上一点,将△BCD沿直线CD折叠,使点B 恰好落在OA边上的点E处,分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系.(1)求点E坐标及经过O,D,C三点的抛物线的解析式;(2)一动点P从点C出发,沿CB以每秒2 个单位长的速度向点B运动,同时动点Q从E点出发,沿EC以每秒1个单位长的速度向点C运动,当点P到达点B时,两点同时停止运动.设运动时间为t秒,当t为何值时,DP=DQ;(3)若点N在(2)中的抛物线的对称轴上,点M在抛物线上,是否存在这样的点M与点N,使得以M,N,C,E为顶点的四边形是平行四边形?若存在,请求出M点的坐标;若不存在,请说明理由.17.如图,抛物线y=﹣x2+2x+3与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D和点C关于抛物线的对称轴对称,直线AD与y轴交于点E.(1)求直线AD的解析式;(2)如图1,直线AD上方的抛物线上有一点F,过点F作FG⊥AD于点G,作FH平行于x轴交直线AD于点H,求△FGH周长的最大值;第4页(共114页)(3)点M是抛物线的顶点,点P是y轴上一点,点Q是坐标平面内一点,以A,M,P,Q为顶点的四边形是以AM为边的矩形.若点T和点Q关于AM所在直线对称,求点T的坐标.18.如图,点A和动点P在直线l上,点P关于点A的对称点为Q,以AQ为边作Rt△ABQ,使∠BAQ=90°,AQ:AB=3:4,作△ABQ的外接圆O.点C在点P右侧,PC=4,过点C作直线m⊥l,过点O作OD⊥m 于点D,交AB右侧的圆弧于点E.在射线CD上取点F,使DF=CD,以DE,DF为邻边作矩形DEGF.设AQ=3x.(1)用关于x的代数式表示BQ,DF.(2)当点P在点A右侧时,若矩形DEGF的面积等于90,求AP的长.(3)在点P的整个运动过程中,①当AP为何值时,矩形DEGF是正方形?②作直线BG交⊙O于点N,若BN的弦心距为1,求AP的长(直接写出答案).19.在平面直角坐标系xOy(如图)中,经过点A(﹣1,0)的抛物线y=﹣x2+bx+3与y轴交于点C,点B与点A、点D与点C分别关于该抛物线的对称轴对称.(1)求b的值以及直线AD与x轴正方向的夹角;(2)如果点E是抛物线上一动点,过E作EF平行于x轴交直线AD于点F,且F在E的右边,过点E作EG⊥AD与点G,设E的横坐标为m,△EFG的周长为l,试用m表示l;(3)点M是该抛物线的顶点,点P是y轴上一点,Q是坐标平面内一点,如果以点A、M、P、Q为顶点的四边形是矩形,求该矩形的顶点Q的坐标.20.如图,直线y=mx+4与反比例函数y=(k>0)的图象交于点A、B,与x轴、y轴分别交于D、C,tan∠CDO=2,AC:CD=1:2.(1)求反比例函数解析式;(2)联结BO,求∠DBO的正切值;(3)点M在直线x=﹣1上,点N在反比例函数图象上,如果以点A、B、M、N为顶点的四边形是平行四边形,求点N的坐标.21.如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为(2,9),与y轴交于点A(0,5),与x轴交于点E、B.(1)求二次函数y=ax2+bx+c的表达式;(2)过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点(点P在AC上方),作PD 第5页(共114页)平行于y轴交AB于点D,问当点P在何位置时,四边形APCD的面积最大?并求出最大面积;(3)若点M在抛物线上,点N在其对称轴上,使得以A、E、N、M为顶点的四边形是平行四边形,且AE为其一边,求点M、N的坐标.因动点产生的梯形问题22.如图,在平面直角坐标系xOy中,二次函数y=+bx+c的图象与y轴交于点A,与双曲线y=有一个公共点B,它的横坐标为4,过点B作直线l∥x轴,与该二次函数图象交于另一个点C,直线AC在y轴上的截距是﹣6.(1)求二次函数的解析式;(2)求直线AC的表达式;(3)平面内是否存在点D,使A、B、C、D为顶点的四边形是等腰梯形?如果存在,求出点D坐标;如果不存在,说明理由.23.如图,矩形OMPN的顶点O在原点,M、N分别在x轴和y轴的正半轴上,OM=6,ON=3,反比例函数y=的图象与PN交于C,与PM交于D,过点C作CA⊥x轴于点A,过点D作DB⊥y轴于点B,AC与BD交于点G.(1)求证:AB∥CD;(2)在直角坐标平面内是否若存在点E,使以B、C、D、E为顶点,BC为腰的梯形是等腰梯形?若存在,求点E的坐标;若不存在请说明理由.因动点产生的面积问题24.如图,边长为8的正方形OABC的两边在坐标轴上,以点C为顶点的抛物线经过点A,点P是抛物线上点A,C间的一个动点(含端点),过点P作PF⊥BC于点F,点D、E的坐标分别为(0,6),(﹣4,0),连接PD、PE、DE.(1)请直接写出抛物线的解析式;(2)小明探究点P的位置发现:当P与点A或点C重合时,PD与PF的差为定值,进而猜想:对于任意一点P,PD与PF的差为定值,请你判断该猜想是否正确,并说明理由;(3)小明进一步探究得出结论:若将“使△PDE的面积为整数”的点P记作“好点”,则存在多个“好点”,且使△PDE的周长最小的点P也是一个“好点”.请直接写出所有“好点”的个数,并求出△PDE周长最小时“好点”的坐标.25.如图,四边形OABC是边长为4的正方形,点P为OA边上任意一点(与点O、A不重合),连接第6页(共114页)CP,过点P作PM⊥CP交AB于点D,且PM=CP,过点M作MN∥OA,交BO于点N,连接ND、BM,设OP=t.(1)求点M的坐标(用含t的代数式表示).(2)试判断线段MN的长度是否随点P的位置的变化而改变?并说明理由.(3)当t为何值时,四边形BNDM的面积最小.26.在数学兴趣小组活动中,小明进行数学探究活动,将边长为2的正方形ABCD与边长为2的正方形AEFG按图1位置放置,AD与AE在同一直线上,AB与AG在同一直线上.(1)小明发现DG⊥BE,请你帮他说明理由.(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长.(3)如图3,小明将正方形ABCD绕点A继续逆时针旋转,线段DG与线段BE将相交,交点为H,写出△GHE与△BHD面积之和的最大值,并简要说明理由.27.在平面直角坐标系中,O为原点,直线y=﹣2x﹣1与y轴交于点A,与直线y=﹣x交于点B,点B关于原点的对称点为点C.(1)求过A,B,C三点的抛物线的解析式;(2)P为抛物线上一点,它关于原点的对称点为Q.①当四边形PBQC为菱形时,求点P的坐标;②若点P的横坐标为t(﹣1<t<1),当t为何值时,四边形PBQC面积最大?并说明理由.28.如图,在平面直角坐标系中,点A(10,0),以OA为直径在第一象限内作半圆,B为半圆上一点,连接AB并延长至C,使BC=AB,过C作CD⊥x轴于点D,交线段OB于点E,已知CD=8,抛物线经过O、E、A三点.(1)∠OBA= °.(2)求抛物线的函数表达式.(3)若P为抛物线上位于第一象限内的一个动点,以P、O、A、E为顶点的四边形面积记作S,则S取何值时,相应的点P有且只有3个?29.如图1,关于x的二次函数y=﹣x2+bx+c经过点A(﹣3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,E在x轴上.(1)求抛物线的解析式;(2)DE上是否存在点P到AD的距离与到x轴的距离相等?若存在求出点P,若不存在请说明理由;第7页(共114页)(3)如图2,DE的左侧抛物线上是否存在点F,使2S△FBC =3S△EBC?若存在求出点F的坐标,若不存在请说明理由.30.已知抛物线y=mx2+(1﹣2m)x+1﹣3m与x轴相交于不同的两点A、B (1)求m的取值范围;(2)证明该抛物线一定经过非坐标轴上的一点P,并求出点P的坐标;(3)当<m≤8时,由(2)求出的点P和点A,B构成的△ABP的面积是否有最值?若有,求出该最值及相对应的m值.31.问题提出(1)如图①,已知△ABC,请画出△ABC关于直线AC对称的三角形.问题探究(2)如图②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.问题解决(3)如图③,有一矩形板材ABCD,AB=3米,AD=6米,现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,EF=FG=米,∠EHG=45°,经研究,只有当点E、F、G分别在边AD、AB、BC上,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能裁出符合要求的部件,试问能否裁得符合要求的面积尽可能大的四边形EFGH部件?若能,求出裁得的四边形EFGH 部件的面积;若不能,请说明理由.32.如图,在平面直角坐标系中,矩形OCDE的顶点C和E分别在y轴的正半轴和x轴的正半轴上,OC=8,OE=17,抛物线y=x2﹣3x+m与y轴相交于点A,抛物线的对称轴与x轴相交于点B,与CD 交于点K.(1)将矩形OCDE沿AB折叠,点O恰好落在边CD上的点F处.①点B的坐标为(、),BK的长是,CK的长是;②求点F的坐标;③请直接写出抛物线的函数表达式;(2)将矩形OCDE沿着经过点E的直线折叠,点O恰好落在边CD上的点G处,连接OG,折痕与OG 相交于点H,点M是线段EH上的一个动点(不与点H重合),连接MG,MO,过点G作GP⊥OM于点P,交EH于点N,连接ON,点M从点E开始沿线段EH向点H运动,至与点N重合时停止,△MOG第8页(共114页)和△NOG的面积分别表示为S1和S2,在点M的运动过程中,S1•S2(即S1与S2的积)的值是否发生变化?若变化,请直接写出变化范围;若不变,请直接写出这个值.温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.33.如图,已知▱ABCD的三个顶点A(n,0)、B(m,0)、D(0,2n)(m>n>0),作▱ABCD关于直线AD的对称图形AB1C 1 D(1)若m=3,试求四边形CC1B1B面积S的最大值;(2)若点B1恰好落在y 轴上,试求的值.因动点产生的相切问题34.如图,已知在平面直角坐标系xOy中,抛物线y=ax2+2x+c与x轴交于点A(﹣1,0)和点B,与y轴相交于点C(0,3),抛物线的对称轴为直线l.(1)求这条抛物线的关系式,并写出其对称轴和顶点M的坐标;(2)如果直线y=kx+b经过C、M两点,且与x轴交于点D,点C关于直线l的对称点为N,试证明四边形CDAN是平行四边形;(3)点P在直线l上,且以点P为圆心的圆经过A、B两点,并且与直线CD相切,求点P的坐标.35.如图,在Rt△ABC中,∠C=90°,AC=14,tanA=,点D是边AC上一点,AD=8,点E是边AB 上一点,以点E为圆心,EA为半径作圆,经过点D,点F是边AC上一动点(点F不与A、C重合),作FG⊥EF,交射线BC于点G.(1)用直尺圆规作出圆心E,并求圆E的半径长(保留作图痕迹);(2)当点G的边BC上时,设AF=x,CG=y,求y关于x的函数解析式,并写出它的定义域;(3)联结EG,当△EFG与△FCG相似时,推理判断以点G为圆心、CG为半径的圆G与圆E可能产生的各种位置关系.36.如图,线段PA=1,点D是线段PA延长线上的点,AD=a(a>1),点O是线段AP延长线上的点,OA2=OP•OD,以O为圆心,OA为半径作扇形OAB,∠BOA=90°.点C是弧AB上的点,联结PC、DC.(1)联结BD交弧AB于E,当a=2时,求BE的长;(2)当以PC为半径的⊙P和以CD为半径的⊙C相切时,求a的值;(3)当直线DC经过点B,且满足PC•OA=BC•OP时,求扇形OAB的半径长.37.如图,在矩形ABCD中,AB=6cm,AD=8cm,点P从点B出发,沿对角线BD向点D匀速运动,速第9页(共114页)度为4cm/s,过点P作PQ⊥BD交BC于点Q,以PQ为一边作正方形PQMN,使得点N落在射线PD上,点O从点D出发,沿DC向点C匀速运动,速度为3cm/s,以O为圆心,0.8cm为半径作⊙O,点P 与点O同时出发,设它们的运动时间为t(单位:s)(0<t <).(1)如图1,连接DQ平分∠BDC时,t的值为;(2)如图2,连接CM,若△CMQ是以CQ为底的等腰三角形,求t的值;(3)请你继续进行探究,并解答下列问题:①证明:在运动过程中,点O始终在QM所在直线的左侧;②如图3,在运动过程中,当QM与⊙O相切时,求t的值;并判断此时PM与⊙O是否也相切?说明理由.38.如图,抛物线y=﹣x2+mx+n的图象经过点A(2,3),对称轴为直线x=1,一次函数y=kx+b 的图象经过点A,交x轴于点P,交抛物线于另一点B,点A、B位于点P的同侧.(1)求抛物线的解析式;(2)若PA:PB=3:1,求一次函数的解析式;(3)在(2)的条件下,当k>0时,抛物线的对称轴上是否存在点C,使得⊙C同时与x轴和直线AP都相切,如果存在,请求出点C的坐标,如果不存在,请说明理由.因动点产生的线段和差问题39.如图,抛物线y=x2﹣4x与x轴交于O,A两点,P为抛物线上一点,过点P的直线y=x+m与对称轴交于点Q.(1)这条抛物线的对称轴是,直线PQ与x轴所夹锐角的度数是;(2)若两个三角形面积满足S△POQ =S△PAQ,求m的值;(3)当点P在x轴下方的抛物线上时,过点C(2,2)的直线AC与直线PQ交于点D,求:①PD+DQ 的最大值;②PD•DQ的最大值.40.抛物线y=ax2+bx+4(a≠0)过点A(1,﹣1),B(5,﹣1),与y轴交于点C.(1)求抛物线的函数表达式;(2)如图1,连接CB,以CB为边作▱CBPQ,若点P在直线BC上方的抛物线上,Q为坐标平面内的一点,且▱CBPQ的面积为30,求点P的坐标;(3)如图2,⊙O1过点A、B、C三点,AE为直径,点M 为上的一动点(不与点A,E重合),∠第10页(共114页)MBN为直角,边BN与ME的延长线交于N,求线段BN长度的最大值.41.如图,在每一个四边形ABCD中,均有AD∥BC,CD⊥BC,∠ABC=60°,AD=8,BC=12.(1)如图①,点M是四边形ABCD边AD上的一点,则△BMC的面积为;(2)如图②,点N是四边形ABCD边AD上的任意一点,请你求出△BNC周长的最小值;(3)如图③,在四边形ABCD的边AD上,是否存在一点P,使得cos∠BPC的值最小?若存在,求出此时cos∠BPC的值;若不存在,请说明理由.42.如图,把△EFP按图示方式放置在菱形ABCD中,使得顶点E、F、P分别在线段AB、AD、AC上,已知EP=FP=4,EF=4,∠BAD=60°,且AB>4.(1)求∠EPF的大小;(2)若AP=6,求AE+AF的值;(3)若△EFP的三个顶点E、F、P分别在线段AB、AD、AC上运动,请直接写出AP长的最大值和最小值.43.如图,在平面直角坐标系中,抛物线y=﹣x2﹣x+2与x轴交于B、C两点(点B在点C的左侧),与y轴交于点A,抛物线的顶点为D.(1)填空:点A的坐标为(,),点B的坐标为(,),点C的坐标为(,),点D的坐标为(,);(2)点P是线段BC上的动点(点P不与点B、C重合)①过点P作x轴的垂线交抛物线于点E,若PE=PC,求点E的坐标;②在①的条件下,点F是坐标轴上的点,且点F到EA和ED的距离相等,请直接写出线段EF的长;③若点Q是线段AB上的动点(点Q不与点A、B重合),点R是线段AC上的动点(点R不与点A、C重合),请直接写出△PQR周长的最小值.44.如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积;(3)当射线BN交线段CD于点F时,求DF的最大值.45.如图,半圆O的直径AB=4,以长为2的弦PQ为直径,向点O方向作半圆M,其中P 点在上且不与A点重合,但Q点可与B点重合.发现:的长与的长之和为定值l,求l:第11页(共114页)思考:点M与AB的最大距离为,此时点P,A间的距离为;点M与AB的最小距离为,此时半圆M的弧与AB所围成的封闭图形面积为;探究:当半圆M与AB 相切时,求的长.(注:结果保留π,cos35°=,cos55°=)46.(1)发现:如图1,点A为线段BC外一动点,且BC=a,AB=b.填空:当点A位于时,线段AC的长取得最大值,且最大值为(用含a,b的式子表示)(2)应用:点A为线段BC外一动点,且BC=3,AB=1,如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.①请找出图中与BE相等的线段,并说明理由;②直接写出线段BE长的最大值.(3)拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P 为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,请直接写出线段AM长的最大值及此时点P的坐标.47.如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a<0)经过点B.(1)求该抛物线的函数表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值;(3)在(2)的条件下,当S取得最大值时,动点M相应的位置记为点M′.①写出点M′的坐标;②将直线l绕点A按顺时针方向旋转得到直线l′,当直线l′与直线AM′重合时停止旋转,在旋转过程中,直线l′与线段BM′交于点C,设点B、M′到直线l′的距离分别为d1、d2,当d1+d2最大时,求直线l′旋转的角度(即∠BAC的度数).48.如图,在平面直角坐标系xOy中,将二次函数y=x2﹣1的图象M沿x轴翻折,把所得到的图象向右平移2个单位长度后再向上平移8个单位长度,得到二次函数图象N.(1)求N的函数表达式;(2)设点P(m,n)是以点C(1,4)为圆心、1为半径的圆上一动点,二次函数的图象M与x轴第12页(共114页)相交于两点A、B,求PA2+PB2的最大值;(3)若一个点的横坐标与纵坐标均为整数,则该点称为整点.求M与N所围成封闭图形内(包括边界)整点的个数.49.如图,顶点为A (,1)的抛物线经过坐标原点O,与x轴交于点B.(1)求抛物线对应的二次函数的表达式;(2)过B作OA的平行线交y轴于点C,交抛物线于点D,求证:△OCD≌△OAB;(3)在x轴上找一点P,使得△PCD的周长最小,求出P点的坐标.第13页(共114页)2017 挑战压轴题中考数学精讲解读篇参考答案与试题解析一.解答题(共36小题)1.如图,在平面直角坐标系xOy中,将抛物线y=x2的对称轴绕着点P(0,2)顺时针旋转45°后与该抛物线交于A、B两点,点Q是该抛物线上一点.(1)求直线AB的函数表达式;(2)如图①,若点Q在直线AB的下方,求点Q到直线AB的距离的最大值;(3)如图②,若点Q在y轴左侧,且点T(0,t)(t<2)是射线PO上一点,当以P、B、Q为顶点的三角形与△PAT相似时,求所有满足条件的t的值.【分析】(1)根据题意易得点M、P的坐标,利用待定系数法来求直线AB的解析式;(2)如图①,过点Q作x轴的垂线QC,交AB于点C,再过点Q作直线AB的垂线,垂足为D,构建等腰直角△QDC,利用二次函数图象上点的坐标特征和二次函数最值的求法进行解答;(3)根据相似三角形的对应角相等推知:△PBQ中必有一个内角为45°;需要分类讨论:∠PBQ=45°和∠PQB=45°;然后对这两种情况下的△PAT是否是直角三角形分别进行解答.另外,以P、B、Q 为顶点的三角形与△PAT相似也有两种情况:△Q″PB∽△PAT、△Q″BP∽△PAT.【解答】解:(1)如图①,设直线AB与x轴的交点为M.∵∠OPA=45°,∴OM=OP=2,即M(﹣2,0).设直线AB的解析式为y=kx+b(k≠0),将M(﹣2,0),P(0,2)两点坐标代入,得,解得.故直线AB的解析式为y=x+2;(2)如图①,过点Q作x轴的垂线QC,交AB于点C,再过点Q作直线AB的垂线,垂足为D,根据条件可知△QDC为等腰直角三角形,则QD=QC.设Q(m,m2),则C(m,m+2).∴QC=m+2﹣m2=﹣(m ﹣)2+,第14页(共114页)QD=QC=[﹣(m ﹣)2+].故当m=时,点Q到直线AB 的距离最大,最大值为;(3)∵∠APT=45°,∴△PBQ中必有一个内角为45°,由图知,∠BPQ=45°不合题意.①如图②,若∠PBQ=45°,过点B作x轴的平行线,与抛物线和y轴分别交于点Q′、F.此时满足∠PBQ′=45°.∵Q′(﹣2,4),F(0,4),∴此时△BPQ′是等腰直角三角形,由题意知△PAT也是等腰直角三角形.(i)当∠PTA=90°时,得到:PT=AT=1,此时t=1;(ii)当∠PAT=90°时,得到:PT=2,此时t=0.②如图③,若∠PQB=45°,①中是情况之一,答案同上;先以点F为圆心,FB为半径作圆,则P、B、Q′都在圆F上,设圆F与y轴左侧的抛物线交于另一点Q″.则∠PQ″B=∠PQ′B=45°(同弧所对的圆周角相等),即这里的交点Q″也是符合要求.设Q″(n,n2)(﹣2<n<0),由FQ″=2,得n2+(4﹣n2)2=22,即n4﹣7n2+12=0.解得n2=3或n2=4,而﹣2<n<0,故n=﹣,即Q″(﹣,3).可证△PFQ″为等边三角形,所以∠PFQ″=60°,又PQ″=PQ″,所以∠PBQ″=∠PFQ″=30°.则在△PQ″B中,∠PQ″B=45°,∠PBQ″=30°.(i)若△Q″PB∽△PAT,则过点A作y轴的垂线,垂足为E.则ET=AE=,OE=1,所以OT=﹣1,解得t=1﹣;(ii)若△Q″BP∽△PAT,则过点T作直线AB垂线,垂足为G.设TG=a,则PG=TG=a,AG=TG=a,AP=,∴a+a=,第15页(共114页)解得PT=a=﹣1,∴OT=OP﹣PT=3﹣,∴t=3﹣.综上所述,所求的t的值为t=1或t=0或t=1﹣或t=3﹣.2.如图,已知BC是半圆O的直径,BC=8,过线段BO上一动点D,作AD⊥BC交半圆O于点A,联结AO,过点B作BH⊥AO,垂足为点H,BH的延长线交半圆O于点F.(1)求证:AH=BD;(2)设BD=x,BE•BF=y,求y关于x的函数关系式;(3)如图2,若联结FA并延长交CB的延长线于点G,当△FAE与△FBG相似时,求BD的长度.【分析】(1)由AD⊥BC,BH⊥AO,利用垂直的定义得到一对直角相等,再由一对公共角,且半径相等,利用AAS得到三角形ADO与三角形BHO全等,利用全等三角形对应边相等得到OH=OD,利用等式的性质化简即可得证;(2)连接AB,AF,如图1所示,利用HL得到直角三角形ADB与直角三角形BHA全等,利用全等三角形对应角相等得到一对角相等,再由公共角相等得到三角形ABE与三角形AFB相似,由相似得比例即可确定出y与x的函数解析式;(3)连接OF,如图2所示,利用两对角相等的三角形相似得到三角形AFO与三角形FOG相似,由相似得比例求出BD的长即可.【解答】(1)证明:∵AD⊥BC,BH⊥AO,∴∠ADO=∠BHO=90°,在△ADO与△BHO中,,∴△ADO≌△BHO(AAS),∴OH=OD,又∵OA=OB,∴AH=BD;(2)解:连接AB、AF,如图1所示,∵AO是半径,AO⊥弦BF,∴∴AB=AF,第16页(共114页)。

决胜2018中考数学压轴题全揭秘精品:(压轴题)专题22 动态几何之动点形成的四边形存

决胜2018中考数学压轴题全揭秘精品:(压轴题)专题22 动态几何之动点形成的四边形存

(3)在(2)的条件下,过点 P 作 PF⊥x 轴于点 F,G 为抛物线上一动点,M 为 x 轴上一动点,N 为直线 PF 上一
动点,当以
F、M、G
为顶点的四边形是正方WW.ziyua nku.co m
16.(2016 内蒙古呼伦贝尔市,第 26 题,13 分)如图,抛物线 y x2 2x 3 与 x 轴相交的于 A,B 两点(点 A
在点 B 的左侧),与 y 轴相交于点 C,顶点为 D. (1)直接写出 A,B,C 三点的坐标和抛物线的对称轴; (2)连接 BC,与抛物线的对称轴交于点 E,点 P 为线段 BC 上的一个动点(P 不与 C,B 两点重合),过点 P 作 PF∥DE 交抛物线于点 F,设点 P 的横坐标为 m. ①用含 m 的代数式表示线段 PF 的长,并求出当 m 为何值时,四边形 PEDF 为平行四边形. ②设△BCF 的面积为 S,求 S 与 m 的函数关系式;当 m 为何值时,S 有最大值.
4
11.(2016 山东省东营市)在平面直角坐标系中,平行四边形 ABOC 如图放置,点 A、C 的坐标分别是(0,4)、 (﹣1,0),将此平行四边形绕点 O 顺时针旋转 90°,得到平行四边形 A′B′OC′. (1)若抛物线经过点 C、A、A′,求此抛物线的解析式; (2)点 M 是第一象限内抛物线上的一动点,问:当点 M 在何处时,△AMA′的面积最大?最大面积是多少?并求 出此时 M 的坐标; (3)若 P 为抛物线上一动点,N 为 x 轴上的一动点,点 Q 坐标为(1,0),当 P、N、B、Q 构成平行四边形时, 求点 P 的坐标,当这个平行四边形为矩形时,求点 N 的坐标.
C 三点,其中点 A 的坐标为(0,8),点 B 的坐标为(﹣4,0). (1)求该二次函数的表达式及点 C 的坐标; (2)点 D 的坐标为(0,4),点 F 为该二次函数在第一象限内图象上的动点,连接 CD、CF,以 CD、CF 为邻边 作平行四边形 CDEF,设平行四边形 CDEF 的面积为 S.$来&源: ①求 S 的最大值; ②在点 F 的运动过程中,当点 E 落在该二次函数图象上时,请直接写出此时 S 的值.

2018中考数学试题及解析

2018中考数学试题及解析

2018中考数学试题及解析第一篇:2018中考数学试题及解析2018中考数学试题及解析科学安排、合理利用,在这有限的时间内中等以上的学生成绩就会有明显的提高,为了复习工作能够科学有效,为了做好中考复习工作全面迎接中考,下文为各位考生准备了中考数学试题及解析。

A级基础题1.(2018年浙江丽水)若二次函数y=ax2的图象经过点P(-2,4),则该图象必经过点()A.(2,4)B.(-2,-4)C.(-4,2)D.(4,-2)2.抛物线y=x2+bx+c的图象先向右平移2个单位长度,再向下平移3个单位长度,所得图象的函数解析式为y=(x-1)2-4,则b,c的值为()A.b=2,c=-6B.b=2,c=0C.b=-6,c=8D.b=-6,c=23.(2018年浙江宁波)如图3-4-11,二次函数y=ax2+bx+c的图象开口向上,对称轴为直线x=1,图象经过(3,0),下列结论中,正确的一项是()A.abc0;②b>a>c;③若-1图3-4-1312.(2018年广东)已知二次函数y=x2-2mx+m2-1.(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;(2)如图3-4-14,当m=2时,该抛物线与y轴交于点C,顶点为D,求C,D两点的坐标;(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P点的坐标;若P点不存在,请说明理由.C级拔尖题13.(2018年黑龙江绥化)如图3-4-15,已知抛物线y=1a(x-2)(x+a)(a>0)与x轴交于点B,C,与y轴交于点E,且点B在点C的左侧.(1)若抛物线过点M(-2,-2),求实数a的值;(2)在(1)的条件下,解答下列问题;①求出△BCE的面积;②在抛物线的对称轴上找一点H,使CH+EH的值最小,直接写出点H的坐标.14.(2018年广东肇庆)已知二次函数y=mx2+nx+p图象的顶点横坐标是2,与x轴交于A(x1,0),B(x2,0),x10且二次函数图象与直线y=x+3仅有一个交点时,求二次函数的最大值.15.(2018年广东湛江)如图3-4-16,在平面直角坐标系中,顶点为(3,4)的抛物线交y轴于A点,交x轴与B,C两点(点B在点C的左侧),已知A点坐标为(0,-5).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴与⊙C的位置关系,并给出证明;(3)在抛物线上是否存在一点P,使△ACP是以AC为直角边的直角三角形.若存在,求点P的坐标;若不存在,请说明理由.参考答案:1.A2.B 解析:利用反推法解答,函数y=(x-1)2-4的顶点坐标为(1,-4),其向左平移2个单位长度,再向上平移3个单位长度,得到函数y=x2+bx+c,又∵1-2=-1,-4+3=-1,∴平移前的函数顶点坐标为(-1,-1),函数解析式为y=(x+1)2-1,即y=x2+2x,∴b=2,c=0.3.D4.C5.C6.B7.k=0或k=-1 8.y=x2+1(答案不唯一)9.解:(1)∵抛物线y=-x2+bx+c经过点A(3,0),B(-1,0),∴抛物线的解析式为y=-(x-3)(x+1),即y=-x2+2x+3.(2)∵y=-x2+2x+3=-(x-1)2+4,∴抛物线的顶点坐标为(1,4).10.B 11.①③④12.解:(1)将点O(0,0)代入,解得m=±1,二次函数关系式为y=x2+2x或y=x2-2x.(2)当m=2时,y=x2-4x+3=(x-2)2-1,∴D(2,-1).当x=0时,y=3,∴C(0,3).(3)存在.接连接C,D交x轴于点P,则点P为所求.由C(0,3),D(2,-1)求得直线CD为y=-2x+3.当y=0时,x=32,∴P32,0.13.解:(1)将M(-2,-2)代入抛物线解析式,得-2=1a(-2-2)(-2+a),解得a=4.(2)①由(1),得y=14(x-2)(x+4),当y=0时,得0=14(x-2)(x+4),解得x1=2,x2=-4.∵点B在点C的左侧,∴B(-4,0),C(2,0).当x=0时,得y=-2,即E(0,-2).∴S△BCE=12×6×2=6.②由抛物线解析式y=14(x-2)(x+4),得对称轴为直线x=-1,根据C与B关于抛物线对称轴x=-1对称,连接BE,与对称轴交于点H,即为所求.设直线BE的解析式为y=kx+b,将B(-4,0)与E(0,-2)代入,得-4k+b=0,b=-2,解得k=-12,b=-2.∴直线BE的解析式为y=-12x-2.将x=-1代入,得y=12-2=-32,则点H-1,-32.希望为大家提供的中考数学试题及解析的内容,能够对大家有用,更多相关内容,请及时关注!第二篇:大连市2015年中考数学试题(含解析)辽宁省大连市20XX年中考数学试题(word版含解析)2015辽宁省大连市中考数学试卷(解析版)(满分150分,考试时间120分钟)一、选择题(本大题共10小题,每小题3分,满分24分,在每小题给出的四个选项中,只有一项是符合题目要求的。

2018年中考数学挑战压轴题(含答案)

2018年中考数学挑战压轴题(含答案)

》2017 挑战压轴题中考数学精讲解读篇因动点产生的相似三角形问题1.如图,在平面直角坐标系xOy中,将抛物线y=x2的对称轴绕着点P(0,2)顺时针旋转45°后与该抛物线交于A、B两点,点Q是该抛物线上一点.(1)求直线AB的函数表达式;(2)如图①,若点Q在直线AB的下方,求点Q到直线AB的距离的最大值;-(3)如图②,若点Q在y轴左侧,且点T(0,t)(t<2)是射线PO上一点,当以P、B、Q为顶点的三角形与△PAT相似时,求所有满足条件的t的值.2.如图,已知BC是半圆O的直径,BC=8,过线段BO上一动点D,作AD⊥BC交半圆O于点A,联结AO,过点B作BH⊥AO,垂足为点H,BH的延长线交半圆O 于点F.(1)求证:AH=BD;(2)设BD=x,BE•BF=y,求y关于x的函数关系式;(3)如图2,若联结FA并延长交CB的延长线于点G,当△FAE与△FBG相似时,求BD的长度.3.如图,在平面直角坐标系xOy中,直线AB过点A(3,0)、B(0,m)(m>0),tan∠BAO=2."(1)求直线AB的表达式;(2)反比例函数y=的图象与直线AB交于第一象限内的C、D两点(BD<BC),当AD=2DB时,求k的值;1(3)设线段AB的中点为E,过点E作x轴的垂线,垂足为点M,交反比例函数y=的图象于点F,分别联结OE、OF,当△OEF∽△OBE时,请直接写出满足条的值.件的所有k24.如图,在Rt△ABC中,∠ACB=90°,AC=1,BC=7,点D是边CA延长线的一点,AE⊥BD,垂足为点E,AE的延长线交CA的平行线BF于点F,连结CE交AB于点G.(1)当点E是BD的中点时,求tan∠AFB的值;(2)CE•AF的值是否随线段AD长度的改变而变化如果不变,求出CE•AF的值;如果变化,请说明理由;<(3)当△BGE和△BAF相似时,求线段AF的长.5.如图,平面直角坐标系xOy中,已知B(﹣1,0),一次函数y=﹣x+5的图象与x轴、y轴分别交于点A、C两点,二次函数y=﹣x2+bx+c的图象经过点A、点B.(1)求这个二次函数的解析式;(2)点P是该二次函数图象的顶点,求△APC的面积;<(3)如果点Q在线段AC上,且△ABC与△AOQ相似,求点Q的坐标.6.已知:半圆O的直径AB=6,点C在半圆O上,且tan∠ABC=2,点D为弧AC上一点,联结DC(如图)(1)求BC的长;(2)若射线DC交射线AB于点M,且△MBC与△MOC相似,求CD的长;(3)联结OD,当OD∥BC时,作∠DOB的平分线交线段DC于点N,求ON的长.;7.如图,已知二次函数y=x2+bx+c(b,c为常数)的图象经过点A(3,﹣1),点C(0,﹣4),顶点为点M,过点A作AB∥x轴,交y轴与点D,交该二次函数图象于点B,连结BC.'(1)求该二次函数的解析式及点M的坐标;(2)若将该二次函数图象向上平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△ABC的内部(不包含△ABC的边界),求m的取值范围;(3)点P时直线AC上的动点,若点P,点C,点M所构成的三角形与△BCD相似,请直接写出所有点P的坐标(直接写出结果,不必写解答过程).因动点产生的等腰三角形问题8.如图1,在△ABC中,∠ACB=90°,∠BAC=60°,点E是∠BAC角平分线上一点,过点E作AE的垂线,过点A作AB的垂线,两垂线交于点D,连接DB,点F 是BD的中点,DH⊥AC,垂足为H,连接EF,HF.)(1)如图1,若点H是AC的中点,AC=2,求AB,BD的长;(2)如图1,求证:HF=EF;(3)如图2,连接CF,CE.猜想:△CEF是否是等边三角形若是,请证明;若不是,说明理由.9.已知,一条抛物线的顶点为E(﹣1,4),且过点A(﹣3,0),与y轴交于点C,点D是这条抛物线上一点,它的横坐标为m,且﹣3<m<﹣1,过点D作DK ⊥x轴,垂足为K,DK分别交线段AE、AC于点G、H.(1)求这条抛物线的解析式;(2)求证:GH=HK;(3)当△CGH是等腰三角形时,求m的值.:10.如图,已知在Rt△ABC中,∠ACB=90°,AB=5,sinA=,点P是边BC上的一点,PE⊥AB,垂足为E,以点P为圆心,PC为半径的圆与射线PE相交于点Q,线段CQ与边AB交于点D.(1)求AD的长;(2)设CP=x,△PCQ的面积为y,求y关于x的函数解析式,并写出定义域;(3)过点C作CF⊥AB,垂足为F,联结PF、QF,如果△PQF是以PF为腰的等腰三角形,求CP的长.;11.如图(1),直线y=﹣x+n交x轴于点A,交y轴于点C(0,4),抛物线y=x2+bx+c 经过点A,交y轴于点B(0,﹣2).点P为抛物线上一个动点,过点P作x轴的垂线PD,过点B作BD⊥PD于点D,连接PB,设点P的横坐标为m.(1)求抛物线的解析式;(2)当△BDP为等腰直角三角形时,求线段PD的长;(3)如图(2),将△BDP绕点B逆时针旋转,得到△BD′P′,当旋转角∠PBP′=∠OAC,且点P的对应点P′落在坐标轴上时,请直接写出点P的坐标.)12.综合与探究如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣8与x轴交于A,B两点,与y轴交于点C,直线l经过坐标原点O,与抛物线的一个交点为D,与抛物线的对称轴交于点E,连接CE,已知点A,D的坐标分别为(﹣2,0),(6,﹣8).(1)求抛物线的函数表达式,并分别求出点B和点E的坐标;(2)试探究抛物线上是否存在点F,使△FOE≌△FCE若存在,请直接写出点F 的坐标;若不存在,请说明理由;(3)若点P是y轴负半轴上的一个动点,设其坐标为(0,m),直线PB与直线l交于点Q,试探究:当m为何值时,△OPQ是等腰三角形.因动点产生的直角三角形问题)13.已知,如图1,在梯形ABCD中,AD∥BC,∠BCD=90°,BC=11,CD=6,tan ∠ABC=2,点E在AD边上,且AE=3ED,EF∥AB交BC于点F,点M、N分别在射线FE和线段CD上.(1)求线段CF的长;(2)如图2,当点M在线段FE上,且AM⊥MN,设FM•cos∠EFC=x,CN=y,求y 关于x的函数解析式,并写出它的定义域;(3)如果△AMN为等腰直角三角形,求线段FM的长.14.如图,在矩形ABCD中,点O为坐标原点,点B的坐标为(4,3),点A、C在坐标轴上,点P在BC边上,直线l1:y=2x+3,直线l2:y=2x﹣3.@(1)分别求直线l1与x轴,直线l2与AB的交点坐标;(2)已知点M在第一象限,且是直线l2上的点,若△APM是等腰直角三角形,求点M的坐标;(3)我们把直线l1和直线l2上的点所组成的图形为图形F.已知矩形ANPQ的顶点N在图形F上,Q是坐标平面内的点,且N点的横坐标为x,请直接写出x的取值范围(不用说明理由).因动点产生的平行四边形问题15.如图,在平面直角坐标系xOy中,抛物线y=ax2﹣2ax﹣3a(a<0)与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)直接写出点A的坐标,并求直线l的函数表达式(其中k,b用含a的式子表示);【(2)点E是直线l上方的抛物线上的一点,若△ACE的面积的最大值为,求a 的值;(3)设P是抛物线对称轴上的一点,点Q在抛物线上,以点A,D,P,Q为顶点的四边形能否成为矩形若能,求出点P的坐标;若不能,请说明理由.16.如图,在矩形OABC中,OA=5,AB=4,点D为边AB上一点,将△BCD沿直线CD折叠,使点B恰好落在OA边上的点E处,分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系.(1)求点E坐标及经过O,D,C三点的抛物线的解析式;(2)一动点P从点C出发,沿CB以每秒2 个单位长的速度向点B运动,同时动点Q从E点出发,沿EC以每秒1个单位长的速度向点C运动,当点P到达点B时,两点同时停止运动.设运动时间为t秒,当t为何值时,DP=DQ;(3)若点N在(2)中的抛物线的对称轴上,点M在抛物线上,是否存在这样的点M与点N,使得以M,N,C,E为顶点的四边形是平行四边形若存在,请求出M 点的坐标;若不存在,请说明理由.、17.如图,抛物线y=﹣x2+2x+3与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D和点C关于抛物线的对称轴对称,直线AD与y轴交于点E.(1)求直线AD的解析式;(2)如图1,直线AD上方的抛物线上有一点F,过点F作FG⊥AD于点G,作FH 平行于x轴交直线AD于点H,求△FGH周长的最大值;(3)点M是抛物线的顶点,点P是y轴上一点,点Q是坐标平面内一点,以A,M,P,Q为顶点的四边形是以AM为边的矩形.若点T和点Q关于AM所在直线对称,求点T的坐标.18.如图,点A和动点P在直线l上,点P关于点A的对称点为Q,以AQ为边作Rt△ABQ,使∠BAQ=90°,AQ:AB=3:4,作△ABQ的外接圆O.点C在点P右侧,PC=4,过点C作直线m⊥l,过点O作OD⊥m于点D,交AB右侧的圆弧于点E.在射线CD上取点F,使DF=CD,以DE,DF为邻边作矩形DEGF.设AQ=3x.(1)用关于x的代数式表示BQ,DF.(2)当点P在点A右侧时,若矩形DEGF的面积等于90,求AP的长.](3)在点P的整个运动过程中,①当AP为何值时,矩形DEGF是正方形②作直线BG交⊙O于点N,若BN的弦心距为1,求AP的长(直接写出答案).19.在平面直角坐标系xOy(如图)中,经过点A(﹣1,0)的抛物线y=﹣x2+bx+3与y轴交于点C,点B与点A、点D与点C分别关于该抛物线的对称轴对称.(1)求b的值以及直线AD与x轴正方向的夹角;(2)如果点E是抛物线上一动点,过E作EF平行于x轴交直线AD于点F,且F 在E的右边,过点E作EG⊥AD与点G,设E的横坐标为m,△EFG的周长为l,试用m表示l;(3)点M是该抛物线的顶点,点P是y轴上一点,Q是坐标平面内一点,如果以点A、M、P、Q为顶点的四边形是矩形,求该矩形的顶点Q的坐标.'20.如图,直线y=mx+4与反比例函数y=(k>0)的图象交于点A、B,与x轴、y轴分别交于D、C,tan∠CDO=2,AC:CD=1:2.(1)求反比例函数解析式;(2)联结BO,求∠DBO的正切值;(3)点M在直线x=﹣1上,点N在反比例函数图象上,如果以点A、B、M、N 为顶点的四边形是平行四边形,求点N的坐标.21.如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为(2,9),与y轴交于点A(0,5),与x轴交于点E、B.(1)求二次函数y=ax2+bx+c的表达式;?(2)过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点(点P 在AC上方),作PD平行于y轴交AB于点D,问当点P在何位置时,四边形APCD 的面积最大并求出最大面积;(3)若点M在抛物线上,点N在其对称轴上,使得以A、E、N、M为顶点的四边形是平行四边形,且AE为其一边,求点M、N的坐标.因动点产生的梯形问题22.如图,在平面直角坐标系xOy中,二次函数y=+bx+c的图象与y轴交于点A,与双曲线y=有一个公共点B,它的横坐标为4,过点B作直线l∥x轴,与该二次函数图象交于另一个点C,直线AC在y轴上的截距是﹣6.(1)求二次函数的解析式;)(2)求直线AC的表达式;(3)平面内是否存在点D,使A、B、C、D为顶点的四边形是等腰梯形如果存在,求出点D坐标;如果不存在,说明理由.23.如图,矩形OMPN的顶点O在原点,M、N分别在x轴和y轴的正半轴上,OM=6,ON=3,反比例函数y=的图象与PN交于C,与PM交于D,过点C作CA⊥x轴于点A,过点D作DB⊥y轴于点B,AC与BD交于点G.(1)求证:AB∥CD;(2)在直角坐标平面内是否若存在点E,使以B、C、D、E为顶点,BC为腰的梯形是等腰梯形若存在,求点E的坐标;若不存在请说明理由.因动点产生的面积问题>24.如图,边长为8的正方形OABC的两边在坐标轴上,以点C为顶点的抛物线经过点A,点P是抛物线上点A,C间的一个动点(含端点),过点P作PF⊥BC 于点F,点D、E的坐标分别为(0,6),(﹣4,0),连接PD、PE、DE.(1)请直接写出抛物线的解析式;(2)小明探究点P的位置发现:当P与点A或点C重合时,PD与PF的差为定值,进而猜想:对于任意一点P,PD与PF的差为定值,请你判断该猜想是否正确,并说明理由;(3)小明进一步探究得出结论:若将“使△PDE的面积为整数”的点P记作“好点”,则存在多个“好点”,且使△PDE的周长最小的点P也是一个“好点”.请直接写出所有“好点”的个数,并求出△PDE周长最小时“好点”的坐标.25.如图,四边形OABC是边长为4的正方形,点P为OA边上任意一点(与点O、A不重合),连接CP,过点P作PM⊥CP交AB于点D,且PM=CP,过点M作MN∥OA,交BO于点N,连接ND、BM,设OP=t.(1)求点M的坐标(用含t的代数式表示).|(2)试判断线段MN的长度是否随点P的位置的变化而改变并说明理由.(3)当t为何值时,四边形BNDM的面积最小.26.在数学兴趣小组活动中,小明进行数学探究活动,将边长为2的正方形ABCD 与边长为2的正方形AEFG按图1位置放置,AD与AE在同一直线上,AB与AG 在同一直线上.(1)小明发现DG⊥BE,请你帮他说明理由.(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG 上时,请你帮他求出此时BE的长.(3)如图3,小明将正方形ABCD绕点A继续逆时针旋转,线段DG与线段BE将相交,交点为H,写出△GHE与△BHD面积之和的最大值,并简要说明理由.]27.在平面直角坐标系中,O为原点,直线y=﹣2x﹣1与y轴交于点A,与直线y=﹣x交于点B,点B关于原点的对称点为点C.(1)求过A,B,C三点的抛物线的解析式;(2)P为抛物线上一点,它关于原点的对称点为Q.①当四边形PBQC为菱形时,求点P的坐标;②若点P的横坐标为t(﹣1<t<1),当t为何值时,四边形PBQC面积最大并说明理由.28.如图,在平面直角坐标系中,点A(10,0),以OA为直径在第一象限内作半圆,B为半圆上一点,连接AB并延长至C,使BC=AB,过C作CD⊥x轴于点D,交线段OB于点E,已知CD=8,抛物线经过O、E、A三点.(1)∠OBA= °.^(2)求抛物线的函数表达式.(3)若P为抛物线上位于第一象限内的一个动点,以P、O、A、E为顶点的四边形面积记作S,则S取何值时,相应的点P有且只有3个29.如图1,关于x的二次函数y=﹣x2+bx+c经过点A(﹣3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,E在x轴上.(1)求抛物线的解析式;(2)DE上是否存在点P到AD的距离与到x轴的距离相等若存在求出点P,若不存在请说明理由;(3)如图2,DE的左侧抛物线上是否存在点F,使2S△FBC =3S△EBC若存在求出点F的坐标,若不存在请说明理由.,30.已知抛物线y=mx2+(1﹣2m)x+1﹣3m与x轴相交于不同的两点A、B(1)求m的取值范围;(2)证明该抛物线一定经过非坐标轴上的一点P,并求出点P的坐标;(3)当<m≤8时,由(2)求出的点P和点A,B构成的△ABP的面积是否有最值若有,求出该最值及相对应的m值.31.问题提出(1)如图①,已知△ABC,请画出△ABC关于直线AC对称的三角形.问题探究(2)如图②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小若存在,求出它周长的最小值;若不存在,请说明理由..问题解决(3)如图③,有一矩形板材ABCD,AB=3米,AD=6米,现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,EF=FG=米,∠EHG=45°,经研究,只有当点E、F、G分别在边AD、AB、BC上,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能裁出符合要求的部件,试问能否裁得符合要求的面积尽可能大的四边形EFGH部件若能,求出裁得的四边形EFGH部件的面积;若不能,请说明理由.32.如图,在平面直角坐标系中,矩形OCDE的顶点C和E分别在y轴的正半轴和x轴的正半轴上,OC=8,OE=17,抛物线y=x2﹣3x+m与y轴相交于点A,抛物线的对称轴与x轴相交于点B,与CD交于点K.(1)将矩形OCDE沿AB折叠,点O恰好落在边CD上的点F处.①点B的坐标为(、),BK的长是,CK的长是;②求点F的坐标;③请直接写出抛物线的函数表达式;【(2)将矩形OCDE沿着经过点E的直线折叠,点O恰好落在边CD上的点G处,连接OG,折痕与OG相交于点H,点M是线段EH上的一个动点(不与点H重合),连接MG,MO,过点G作GP⊥OM于点P,交EH于点N,连接ON,点M从点E开始沿线段EH向点H运动,至与点N重合时停止,△MOG和△NOG的面积分别表示为S 1和S2,在点M的运动过程中,S1•S2(即S1与S2的积)的值是否发生变化若变化,请直接写出变化范围;若不变,请直接写出这个值.温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.33.如图,已知▱ABCD的三个顶点A(n,0)、B(m,0)、D(0,2n)(m>n>0),作▱ABCD关于直线AD的对称图形AB1C 1 D(1)若m=3,试求四边形CC1B1B面积S的最大值;(2)若点B1恰好落在y轴上,试求的值.因动点产生的相切问题!34.如图,已知在平面直角坐标系xOy中,抛物线y=ax2+2x+c与x轴交于点A (﹣1,0)和点B,与y轴相交于点C(0,3),抛物线的对称轴为直线l.(1)求这条抛物线的关系式,并写出其对称轴和顶点M的坐标;(2)如果直线y=kx+b经过C、M两点,且与x轴交于点D,点C关于直线l的对称点为N,试证明四边形CDAN是平行四边形;(3)点P在直线l上,且以点P为圆心的圆经过A、B两点,并且与直线CD相切,求点P的坐标.35.如图,在Rt△ABC中,∠C=90°,AC=14,tanA=,点D是边AC上一点,AD=8,点E是边AB上一点,以点E为圆心,EA为半径作圆,经过点D,点F是边AC上一动点(点F不与A、C重合),作FG⊥EF,交射线BC于点G.(1)用直尺圆规作出圆心E,并求圆E的半径长(保留作图痕迹);(2)当点G的边BC上时,设AF=x,CG=y,求y关于x的函数解析式,并写出它的定义域;[(3)联结EG,当△EFG与△FCG相似时,推理判断以点G为圆心、CG为半径的圆G与圆E可能产生的各种位置关系.36.如图,线段PA=1,点D是线段PA延长线上的点,AD=a(a>1),点O是线段AP延长线上的点,OA2=OP•OD,以O为圆心,OA为半径作扇形OAB,∠BOA=90°.点C是弧AB上的点,联结PC、DC.(1)联结BD交弧AB于E,当a=2时,求BE的长;(2)当以PC为半径的⊙P和以CD为半径的⊙C相切时,求a的值;(3)当直线DC经过点B,且满足PC•OA=BC•OP时,求扇形OAB的半径长.》37.如图,在矩形ABCD中,AB=6cm,AD=8cm,点P从点B出发,沿对角线BD 向点D匀速运动,速度为4cm/s,过点P作PQ⊥BD交BC于点Q,以PQ为一边作正方形PQMN,使得点N落在射线PD上,点O从点D出发,沿DC向点C匀速运动,速度为3cm/s,以O为圆心,为半径作⊙O,点P与点O同时出发,设它们的运动时间为t(单位:s)(0<t<).(1)如图1,连接DQ平分∠BDC时,t的值为;(2)如图2,连接CM,若△CMQ是以CQ为底的等腰三角形,求t的值;(3)请你继续进行探究,并解答下列问题:①证明:在运动过程中,点O始终在QM所在直线的左侧;②如图3,在运动过程中,当QM与⊙O相切时,求t的值;并判断此时PM与⊙O 是否也相切说明理由.:38.如图,抛物线y=﹣x2+mx+n的图象经过点A(2,3),对称轴为直线x=1,一次函数y=kx+b的图象经过点A,交x轴于点P,交抛物线于另一点B,点A、B 位于点P的同侧.(1)求抛物线的解析式;(2)若PA:PB=3:1,求一次函数的解析式;(3)在(2)的条件下,当k>0时,抛物线的对称轴上是否存在点C,使得⊙C 同时与x轴和直线AP都相切,如果存在,请求出点C的坐标,如果不存在,请说明理由.因动点产生的线段和差问题|39.如图,抛物线y=x2﹣4x与x轴交于O,A两点,P为抛物线上一点,过点P 的直线y=x+m与对称轴交于点Q.(1)这条抛物线的对称轴是,直线PQ与x轴所夹锐角的度数是;(2)若两个三角形面积满足S△POQ =S△PAQ,求m的值;(3)当点P在x轴下方的抛物线上时,过点C(2,2)的直线AC与直线PQ交于点D,求:①PD+DQ的最大值;②PD•DQ的最大值.40.抛物线y=ax2+bx+4(a≠0)过点A(1,﹣1),B(5,﹣1),与y轴交于点C.(1)求抛物线的函数表达式;(2)如图1,连接CB,以CB为边作▱CBPQ,若点P在直线BC上方的抛物线上,Q为坐标平面内的一点,且▱CBPQ的面积为30,求点P的坐标;((3)如图2,⊙O过点A、B、C三点,AE为直径,点M为上的一动点(不与1点A,E重合),∠MBN为直角,边BN与ME的延长线交于N,求线段BN长度的最大值.41.如图,在每一个四边形ABCD中,均有AD∥BC,CD⊥BC,∠ABC=60°,AD=8,BC=12.(1)如图①,点M是四边形ABCD边AD上的一点,则△BMC的面积为;(2)如图②,点N是四边形ABCD边AD上的任意一点,请你求出△BNC周长的最小值;(3)如图③,在四边形ABCD的边AD上,是否存在一点P,使得cos∠BPC的值最小若存在,求出此时cos∠BPC的值;若不存在,请说明理由.42.如图,把△EFP按图示方式放置在菱形ABCD中,使得顶点E、F、P分别在线段AB、AD、AC上,已知EP=FP=4,EF=4,∠BAD=60°,且AB>4.—(1)求∠EPF的大小;(2)若AP=6,求AE+AF的值;(3)若△EFP的三个顶点E、F、P分别在线段AB、AD、AC上运动,请直接写出AP长的最大值和最小值.43.如图,在平面直角坐标系中,抛物线y=﹣x2﹣x+2与x轴交于B、C两点(点B在点C的左侧),与y轴交于点A,抛物线的顶点为D.(1)填空:点A的坐标为(,),点B的坐标为(,),点C的坐标为(,),点D的坐标为(,);(2)点P是线段BC上的动点(点P不与点B、C重合)①过点P作x轴的垂线交抛物线于点E,若PE=PC,求点E的坐标;,②在①的条件下,点F是坐标轴上的点,且点F到EA和ED的距离相等,请直接写出线段EF的长;③若点Q是线段AB上的动点(点Q不与点A、B重合),点R是线段AC上的动点(点R不与点A、C重合),请直接写出△PQR周长的最小值.44.如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM 对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积;(3)当射线BN交线段CD于点F时,求DF的最大值.$45.如图,半圆O的直径AB=4,以长为2的弦PQ为直径,向点O方向作半圆M,其中P点在上且不与A点重合,但Q点可与B点重合.发现:的长与的长之和为定值l,求l:思考:点M与AB的最大距离为,此时点P,A间的距离为;点M与AB的最小距离为,此时半圆M的弧与AB所围成的封闭图形面积为;探究:当半圆M与AB相切时,求的长.(注:结果保留π,cos35°=,cos55°=)46.(1)发现:如图1,点A为线段BC外一动点,且BC=a,AB=b.,填空:当点A位于时,线段AC的长取得最大值,且最大值为(用含a,b的式子表示)(2)应用:点A为线段BC外一动点,且BC=3,AB=1,如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.①请找出图中与BE相等的线段,并说明理由;②直接写出线段BE长的最大值.(3)拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,请直接写出线段AM长的最大值及此时点P的坐标.47.如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a<0)经过点B.(1)求该抛物线的函数表达式;¥(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值;(3)在(2)的条件下,当S取得最大值时,动点M相应的位置记为点M′.①写出点M′的坐标;②将直线l绕点A按顺时针方向旋转得到直线l′,当直线l′与直线AM′重合时停止旋转,在旋转过程中,直线l′与线段BM′交于点C,设点B、M′到直线l′的距离分别为d1、d2,当d1+d2最大时,求直线l′旋转的角度(即∠BAC的度数).48.如图,在平面直角坐标系xOy中,将二次函数y=x2﹣1的图象M沿x轴翻折,把所得到的图象向右平移2个单位长度后再向上平移8个单位长度,得到二次函数图象N.(1)求N的函数表达式;(2)设点P(m,n)是以点C(1,4)为圆心、1为半径的圆上一动点,二次函数的图象M与x轴相交于两点A、B,求PA2+PB2的最大值;:(3)若一个点的横坐标与纵坐标均为整数,则该点称为整点.求M与N所围成封闭图形内(包括边界)整点的个数.49.如图,顶点为A(,1)的抛物线经过坐标原点O,与x轴交于点B.(1)求抛物线对应的二次函数的表达式;(2)过B作OA的平行线交y轴于点C,交抛物线于点D,求证:△OCD≌△OAB;(3)在x轴上找一点P,使得△PCD的周长最小,求出P点的坐标.—2017 挑战压轴题中考数学精讲解读篇参考答案与试题解析一.解答题(共36小题)1.如图,在平面直角坐标系xOy中,将抛物线y=x2的对称轴绕着点P(0,2)顺时针旋转45°后与该抛物线交于A、B两点,点Q是该抛物线上一点.(1)求直线AB的函数表达式;](2)如图①,若点Q在直线AB的下方,求点Q到直线AB的距离的最大值;(3)如图②,若点Q在y轴左侧,且点T(0,t)(t<2)是射线PO上一点,当以P、B、Q为顶点的三角形与△PAT相似时,求所有满足条件的t的值.【分析】(1)根据题意易得点M、P的坐标,利用待定系数法来求直线AB的解析式;(2)如图①,过点Q作x轴的垂线QC,交AB于点C,再过点Q作直线AB的垂线,垂足为D,构建等腰直角△QDC,利用二次函数图象上点的坐标特征和二次函数最值的求法进行解答;(3)根据相似三角形的对应角相等推知:△PBQ中必有一个内角为45°;需要分类讨论:∠PBQ=45°和∠PQB=45°;然后对这两种情况下的△PAT是否是直角三角形分别进行解答.另外,以P、B、Q为顶点的三角形与△PAT相似也有两种情况:△Q″PB∽△PAT、△Q″BP∽△PAT.【解答】解:(1)如图①,设直线AB与x轴的交点为M.∵∠OPA=45°,?∴OM=OP=2,即M(﹣2,0).设直线AB的解析式为y=kx+b(k≠0),将M(﹣2,0),P(0,2)两点坐标代入,得,解得.故直线AB的解析式为y=x+2;(2)如图①,过点Q作x轴的垂线QC,交AB于点C,再过点Q作直线AB的垂线,垂足为D,根据条件可知△QDC为等腰直角三角形,则QD=QC.设Q(m,m2),则C(m,m+2).、∴QC=m+2﹣m2=﹣(m﹣)2+,QD=QC=[﹣(m﹣)2+].故当m=时,点Q到直线AB的距离最大,最大值为;(3)∵∠APT=45°,∴△PBQ中必有一个内角为45°,由图知,∠BPQ=45°不合题意.①如图②,若∠PBQ=45°,过点B作x轴的平行线,与抛物线和y轴分别交于点Q′、F.此时满足∠PBQ′=45°.∵Q′(﹣2,4),F(0,4),^∴此时△BPQ′是等腰直角三角形,由题意知△PAT也是等腰直角三角形.(i)当∠PTA=90°时,得到:PT=AT=1,此时t=1;(ii)当∠PAT=90°时,得到:PT=2,此时t=0.②如图③,若∠PQB=45°,①中是情况之一,答案同上;先以点F为圆心,FB为半径作圆,则P、B、Q′都在圆F上,设圆F与y轴左侧的抛物线交于另一点Q″.则∠PQ″B=∠PQ′B=45°(同弧所对的圆周角相等),即这里的交点Q″也是符合要求.设Q″(n,n2)(﹣2<n<0),由FQ″=2,得n2+(4﹣n2)2=22,即n4﹣7n2+12=0.【解得n2=3或n2=4,而﹣2<n<0,故n=﹣,即Q″(﹣,3).可证△PFQ″为等边三角形,所以∠PFQ″=60°,又PQ″=PQ″,所以∠PBQ″=∠PFQ″=30°.则在△PQ″B中,∠PQ″B=45°,∠PBQ″=30°.(i)若△Q″PB∽△PAT,则过点A作y轴的垂线,垂足为E.则ET=AE=,OE=1,所以OT=﹣1,"解得t=1﹣;(ii)若△Q″BP∽△PAT,则过点T作直线AB垂线,垂足为G.设TG=a,则PG=TG=a,AG=TG=a,AP=,∴a+a=,解得PT=a=﹣1,∴OT=OP﹣PT=3﹣,∴t=3﹣.综上所述,所求的t的值为t=1或t=0或t=1﹣或t=3﹣./2.如图,已知BC是半圆O的直径,BC=8,过线段BO上一动点D,作AD⊥BC交半圆O于点A,联结AO,过点B作BH⊥AO,垂足为点H,BH的延长线交半圆O 于点F.(1)求证:AH=BD;(2)设BD=x,BE•BF=y,求y关于x的函数关系式;(3)如图2,若联结FA并延长交CB的延长线于点G,当△FAE与△FBG相似时,求BD的长度.@【分析】(1)由AD⊥BC,BH⊥AO,利用垂直的定义得到一对直角相等,再由一对公共角,且半径相等,利用AAS得到三角形ADO与三角形BHO全等,利用全等三角形对应边相等得到OH=OD,利用等式的性质化简即可得证;(2)连接AB,AF,如图1所示,利用HL得到直角三角形ADB与直角三角形BHA 全等,利用全等三角形对应角相等得到一对角相等,再由公共角相等得到三角形ABE与三角形AFB相似,由相似得比例即可确定出y与x的函数解析式;(3)连接OF,如图2所示,利用两对角相等的三角形相似得到三角形AFO与三角形FOG相似,由相似得比例求出BD的长即可.【解答】(1)证明:∵AD⊥BC,BH⊥AO,∴∠ADO=∠BHO=90°,在△ADO与△BHO中,,!∴△ADO≌△BHO(AAS),∴OH=OD,又∵OA=OB,∴AH=BD;(2)解:连接AB、AF,如图1所示,∵AO是半径,AO⊥弦BF,∴∴AB=AF,|∴∠ABF=∠AFB,在Rt△ADB与Rt△BHA中,。

2018年中考数学挑战压轴题(含答案)

2018年中考数学挑战压轴题(含答案)

2017挑战压轴题中考数学精讲解读篇因动点产生的相似三角形问题1. 如图,在平面直角坐标系xOy中,将抛物线y=x2的对称轴绕着点P( 0,2)顺时针旋转45°后与该抛物线交于A、B两点,点Q是该抛物线上一点.(1)求直线AB的函数表达式;(2)如图①,若点Q在直线AB的下方,求点Q到直线AB的距离的最大值;(3)如图②,若点Q在y轴左侧,且点T (0,t) (t V2)是射线PO上一点, 当以P、B、Q为顶点的三角形与△ PAT相似时,求所有满足条件的t的值.图①图②备用图2. 如图,已知BC是半圆O的直径,BC=8过线段BO上一动点D,作AD丄BC 交半圆O于点A,联结AO,过点B作BH丄AO,垂足为点H,BH的延长线交半圆O于点F.(1)求证:AH=BD(2)设BD=x, BE?BF=y求y关于x的函数关系式;(3)如图2,若联结FA并延长交CB的延长线于点G,当厶卩人丘与厶FBG相似时,求BD的长度.3•如图,在平面直角坐标系xOy中,直线AB过点A (3, 0)、B (0, m) (m>0), tan / BAO=2(1)求直线AB的表达式;(2)反比例函数y= 的图象与直线AB交于第一象限内的C、D两点(BD v BC),x当AD=2DB时,求&的值;(3)设线段AB的中点为E,过点E作x轴的垂线,垂足为点M,交反比例函数y的图象于点F,分别联结OE OF,当厶OE2A OBE时,请直接写出满足条x4. 如图,在Rt A ABC中,/ ACB=90, AC=1, BC=7,点D是边CA延长线的一点,AE丄BD,垂足为点E, AE的延长线交CA的平行线BF于点F,连结CE交AB于点G.(1)当点E是BD的中点时,求tan / AFB的值;(2)CE?AF的值是否随线段AD长度的改变而变化?如果不变,求出CE?AF的值; 如果变化,请说明理由;(3)当△BGE和△ BAF相似时,求线段AF的长.5. 如图,平面直角坐标系xOy中,已知B (- 1, 0), —次函数y=-x+5的图象与x 轴、y轴分别交于点A、C两点,二次函数y=-x2+bx+c的图象经过点A、点B.(1)求这个二次函数的解析式;(2)点P是该二次函数图象的顶点,求△ APC的面积;(3)如果点Q在线段AC上,且△ ABC与厶AOQ相似,求点Q的坐标.6 .已知:半圆O的直径AB=6,点C在半圆O上,且tan / ABC=2匚,点D为弧AC 上一点,联结DC (如图)(1)求BC的长;(2)若射线DC交射线AB于点M,且△ MBC与厶MOC相似,求CD的长;(3)联结OD,当OD// BC时,作/ DOB的平分线交线段DC于点N,求ON的长.7•如图,已知二次函数y=«+bx+c(b, c为常数)的图象经过点A (3,- 1), 点C (0,- 4),顶点为点M,过点A作AB// x轴,交y轴与点D,交该二次函数图象于点B,连结BC.(1)求该二次函数的解析式及点M的坐标;(2)若将该二次函数图象向上平移m (m > 0)个单位,使平移后得到的二次函数图象的顶点落在△ ABC的内部(不包含厶ABC的边界),求m的取值范围;(3)点P时直线AC上的动点,若点P,点C,点M所构成的三角形与△ BCD相似,请直接写出所有点P的坐标(直接写出结果,不必写解答过程)•备用医I因动点产生的等腰三角形问题8 .如图1,在厶ABC中,/ ACB=90, / BAC=60,点E是/BAC角平分线上一点,过点E作AE的垂线,过点A作AB的垂线,两垂线交于点D,连接DB,点F是BD的中点,DH丄AC,垂足为H,连接EF, HF.(1)如图1,若点H是AC的中点,AC=2「,求AB, BD的长;(2)如图1,求证:HF=EF(3)如图2,连接CF, CE猜想:△ CEF是否是等边三角形?若是,请证明;若不是,说明理由.9 •已知,一条抛物线的顶点为E (- 1,4),且过点A (-3, 0),与y轴交于点C,点D是这条抛物线上一点,它的横坐标为m,且-3v m v- 1,过点D作DK 丄x轴,垂足为K, DK分别交线段AE、AC于点G、H.(1) 求这条抛物线的解析式;(2) 求证:GH=HK10.如图,已知在Rt A ABC中,/ ACB=90, AB=5, si nA丄,点P是边BC上的5一点,PEI AB,垂足为E,以点P为圆心,PC为半径的圆与射线PE相交于点Q, 线段CQ与边AB交于点D.(1) 求AD的长;(2) 设CP=x △ PCQ的面积为y,求y关于x的函数解析式,并写出定义域;(3) 过点C作CF丄AB,垂足为F,联结PF、QF,如果△ PQF是以PF为腰的等腰三角形,求CP的长.C C11 •如图(1),直线y=- x+n交x轴于点A,交y轴于点(0,4),抛物线y=「x2+bx+c3 3经过点A,交y轴于点B (0,-2).点P为抛物线上一个动点,过点P作x轴的垂线PD,过点B作BD丄PD于点D,连接PB,设点P的横坐标为m.(1)求抛物线的解析式;(2)当厶BDP为等腰直角三角形时,求线段PD的长;(3)如图(2),将厶BDP绕点B逆时针旋转,得到△ BD P'当旋转角/ PBP = / OAC且点P的对应点P落在坐标轴上时,请直接写出点P的坐标.12 •综合与探究如图,在平面直角坐标系中,已知抛物线y=ax2+bx - 8与x轴交于A,B两点,与y轴交于点C,直线I经过坐标原点0,与抛物线的一个交点为D,与抛物线的对称轴交于点E,连接CE已知点A,D的坐标分别为(-2, 0),(6,- 8).(1)求抛物线的函数表达式,并分别求出点B和点E的坐标;(2)试探究抛物线上是否存在点F,使厶FOE^A FCE若存在,请直接写出点F 的坐标;若不存在,请说明理由;(3)若点P是y轴负半轴上的一个动点,设其坐标为(0, m),直线PB与直线是等腰三角形.因动点产生的直角三角形问题13. 已知,如图1,在梯形ABCD中,AD// BC,/ BCD=90, BC=11, CD=6, tan / ABC=2点E在AD边上,且AE=3ED EF// AB交BC于点F,点M、N分别在射线FE和线段CD上.(1)求线段CF的长;(2)如图2,当点M在线段FE上,且AM丄MN,设FM?cos/ EFC=x CN=y求y关于x的函数解析式,并写出它的定义域;(3)如果△ AMN为等腰直角三角形,求线段FM的长.C C14. 如图,在矩形ABCD中,点0为坐标原点,点B的坐标为(4, 3),点A、C 在坐标轴上,点P在BC边上,直线h:y=2x+3,直线12:y=2x-3.(1)分别求直线l1与x轴,直线12与AB的交点坐标;(2)已知点M在第一象限,且是直线12上的点,若△ APM是等腰直角三角形,求点M的坐标;(3)我们把直线h和直线12上的点所组成的图形为图形F.已知矩形ANPQ的顶点N在图形F上,Q是坐标平面内的点,且N点的横坐标为x,请直接写出x的取值范围(不用说明理由).因动点产生的平行四边形问题15. 如图,在平面直角坐标系xOy 中,抛物线y=ax - 2ax -3a (a v 0)与x 轴交 于A , B 两点(点A 在点B 的左侧),经过点A 的直线I : y=kx+b 与y 轴交于点C , 与抛物线的另一个交点为D ,且CD=4AC(1) 直接写出点A 的坐标,并求直线I 的函数表达式(其中k , b 用含a 的式子 表示);(2) 点E 是直线I 上方的抛物线上的一点,若△ ACE 的面积的最大值为「,求a4的值;(3) 设P 是抛物线对称轴上的一点,点 Q 在抛物线上,以点A ,D ,P ,Q 为顶OA=5, AB=4,点D 为边AB 上一点,将△ BCD 沿直 线CD 折叠,使点B 恰好落在OA 边上的点E 处,分别以OC, OA 所在的直线为x 轴,y 轴建立平面直角坐标系.(1) 求点E 坐标及经过O , D , C 三点的抛物线的解析式;(2) 一动点P 从点C 出发,沿CB 以每秒2个单位长的速度向点B 运动,同时 动点Q 从E 点出发,沿EC 以每秒1个单位长的速度向点C 运动,当点P 到达点 B 时,两点同时停止运动.设运动时间为 t 秒,当t 为何值时,DP=DQ(3) 若点N 在(2)中的抛物线的对称轴上,点 M 在抛物线上,是否存在这样 的点M 与点N ,使得以M , N , C, E 为顶点的四边形是平行四边形?若存在, 请求出M 点的坐标;若不存在,请说明理由.16.如图,在矩形OABC 中, 请说明理由.17•如图,抛物线y=-X123+2X+3与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D和点C关于抛物线的对称轴对称,直线AD与y轴交于点E.1 求直线AD的解析式;2 如图1,直线AD上方的抛物线上有一点F,过点F作FG丄AD于点G,作FH平行于X轴交直线AD于点巴求厶FGH周长的最大值;3 点M是抛物线的顶点,点P是y轴上一点,点Q是坐标平面内一点,以A, M , P, Q为顶点的四边形是以AM为边的矩形•若点T和点Q关于AM所在直线对称,求点T 的坐标.18•如图,点A和动点P在直线I上,点P关于点A的对称点为Q,以AQ为边作Rt A ABQ,使/ BAQ=90 , AQ: AB=3: 4,作厶ABQ的外接圆0.点C在点P 右侧,PC=4过点C作直线m丄I,过点O作OD丄m于点D,交AB右侧的圆弧于点E.在射线CD上取点F,使DF冷CD,以DE, DF为邻边作矩形DEGF设AQ=3x.(1)用关于X的代数式表示BQ, DF.(2)当点P在点A右侧时,若矩形DEGF勺面积等于90,求AP的长.(3)在点P的整个运动过程中,①当AP为何值时,矩形DEGF是正方形?②作直线BG交。

2018年中考数学挑战压轴题(含答案)

2018年中考数学挑战压轴题(含答案)

2017 挑战压轴题中考数学精讲解读篇因动点产生的相似三角形问题1.如图,在平面直角坐标系xOy中,将抛物线y=x2的对称轴绕着点P(0,2)顺时针旋转45°后与该抛物线交于A、B两点,点Q是该抛物线上一点.(1)求直线AB的函数表达式;(2)如图①,若点Q在直线AB的下方,求点Q到直线AB的距离的最大值;(3)如图②,若点Q在y轴左侧,且点T(0,t)(t<2)是射线PO上一点,当以P、B、Q为顶点的三角形与△PAT相似时,求所有满足条件的t的值.2.如图,已知BC是半圆O的直径,BC=8,过线段BO上一动点D,作AD⊥BC 交半圆O于点A,联结AO,过点B作BH⊥AO,垂足为点H,BH的延长线交半圆O于点F.(1)求证:AH=BD;(2)设BD=x,BE•BF=y,求y关于x的函数关系式;(3)如图2,若联结FA并延长交CB的延长线于点G,当△FAE与△FBG相似时,求BD的长度.3.如图,在平面直角坐标系xOy中,直线AB过点A(3,0)、B(0,m)(m>0),tan∠BAO=2.(1)求直线AB的表达式;(2)反比例函数y=的图象与直线AB交于第一象限内的C、D两点(BD<BC),当AD=2DB时,求k1的值;(3)设线段AB的中点为E,过点E作x轴的垂线,垂足为点M,交反比例函数y=的图象于点F,分别联结OE、OF,当△OEF∽△OBE时,请直接写出满足条件的所有k2的值.4.如图,在Rt△ABC中,∠ACB=90°,AC=1,BC=7,点D是边CA延长线的一点,AE⊥BD,垂足为点E,AE的延长线交CA的平行线BF于点F,连结CE交AB于点G.(1)当点E是BD的中点时,求tan∠AFB的值;(2)CE•AF的值是否随线段AD长度的改变而变化?如果不变,求出CE•AF的值;如果变化,请说明理由;(3)当△BGE和△BAF相似时,求线段AF的长.5.如图,平面直角坐标系xOy中,已知B(﹣1,0),一次函数y=﹣x+5的图象与x轴、y轴分别交于点A、C两点,二次函数y=﹣x2+bx+c的图象经过点A、点B.(1)求这个二次函数的解析式;(2)点P是该二次函数图象的顶点,求△APC的面积;(3)如果点Q在线段AC上,且△ABC与△AOQ相似,求点Q的坐标.6.已知:半圆O的直径AB=6,点C在半圆O上,且tan∠ABC=2,点D为弧AC上一点,联结DC(如图)(1)求BC的长;(2)若射线DC交射线AB于点M,且△MBC与△MOC相似,求CD的长;(3)联结OD,当OD∥BC时,作∠DOB的平分线交线段DC于点N,求ON的长.7.如图,已知二次函数y=x2+bx+c(b,c为常数)的图象经过点A(3,﹣1),点C(0,﹣4),顶点为点M,过点A作AB∥x轴,交y轴与点D,交该二次函数图象于点B,连结BC.(1)求该二次函数的解析式及点M的坐标;(2)若将该二次函数图象向上平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△ABC的内部(不包含△ABC的边界),求m的取值范围;(3)点P时直线AC上的动点,若点P,点C,点M所构成的三角形与△BCD相似,请直接写出所有点P的坐标(直接写出结果,不必写解答过程).因动点产生的等腰三角形问题8.如图1,在△ABC中,∠ACB=90°,∠BAC=60°,点E是∠BAC角平分线上一点,过点E作AE的垂线,过点A作AB的垂线,两垂线交于点D,连接DB,点F是BD的中点,DH⊥AC,垂足为H,连接EF,HF.(1)如图1,若点H是AC的中点,AC=2,求AB,BD的长;(2)如图1,求证:HF=EF;(3)如图2,连接CF,CE.猜想:△CEF是否是等边三角形?若是,请证明;若不是,说明理由.9.已知,一条抛物线的顶点为E(﹣1,4),且过点A(﹣3,0),与y轴交于点C,点D是这条抛物线上一点,它的横坐标为m,且﹣3<m<﹣1,过点D作DK ⊥x轴,垂足为K,DK分别交线段AE、AC于点G、H.(1)求这条抛物线的解析式;(2)求证:GH=HK;(3)当△CGH是等腰三角形时,求m的值.10.如图,已知在Rt△ABC中,∠ACB=90°,AB=5,sinA=,点P是边BC上的一点,PE⊥AB,垂足为E,以点P为圆心,PC为半径的圆与射线PE相交于点Q,线段CQ与边AB交于点D.(1)求AD的长;(2)设CP=x,△PCQ的面积为y,求y关于x的函数解析式,并写出定义域;(3)过点C作CF⊥AB,垂足为F,联结PF、QF,如果△PQF是以PF为腰的等腰三角形,求CP的长.11.如图(1),直线y=﹣x+n交x轴于点A,交y轴于点C(0,4),抛物线y=x2+bx+c 经过点A,交y轴于点B(0,﹣2).点P为抛物线上一个动点,过点P作x轴的垂线PD,过点B作BD⊥PD于点D,连接PB,设点P的横坐标为m.(1)求抛物线的解析式;(2)当△BDP为等腰直角三角形时,求线段PD的长;(3)如图(2),将△BDP绕点B逆时针旋转,得到△BD′P′,当旋转角∠PBP′=∠OAC,且点P的对应点P′落在坐标轴上时,请直接写出点P的坐标.12.综合与探究如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣8与x轴交于A,B两点,与y轴交于点C,直线l经过坐标原点O,与抛物线的一个交点为D,与抛物线的对称轴交于点E,连接CE,已知点A,D的坐标分别为(﹣2,0),(6,﹣8).(1)求抛物线的函数表达式,并分别求出点B和点E的坐标;(2)试探究抛物线上是否存在点F,使△FOE≌△FCE?若存在,请直接写出点F 的坐标;若不存在,请说明理由;(3)若点P是y轴负半轴上的一个动点,设其坐标为(0,m),直线PB与直线l交于点Q,试探究:当m为何值时,△OPQ是等腰三角形.13.已知,如图1,在梯形ABCD中,AD∥BC,∠BCD=90°,BC=11,CD=6,tan ∠ABC=2,点E在AD边上,且AE=3ED,EF∥AB交BC于点F,点M、N分别在射线FE和线段CD上.(1)求线段CF的长;(2)如图2,当点M在线段FE上,且AM⊥MN,设FM•cos∠EFC=x,CN=y,求y关于x的函数解析式,并写出它的定义域;(3)如果△AMN为等腰直角三角形,求线段FM的长.14.如图,在矩形ABCD中,点O为坐标原点,点B的坐标为(4,3),点A、C 在坐标轴上,点P在BC边上,直线l1:y=2x+3,直线l2:y=2x﹣3.(1)分别求直线l1与x轴,直线l2与AB的交点坐标;(2)已知点M在第一象限,且是直线l2上的点,若△APM是等腰直角三角形,求点M的坐标;(3)我们把直线l1和直线l2上的点所组成的图形为图形F.已知矩形ANPQ的顶点N在图形F上,Q是坐标平面内的点,且N点的横坐标为x,请直接写出x的取值范围(不用说明理由).15.如图,在平面直角坐标系xOy中,抛物线y=ax2﹣2ax﹣3a(a<0)与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)直接写出点A的坐标,并求直线l的函数表达式(其中k,b用含a的式子表示);(2)点E是直线l上方的抛物线上的一点,若△ACE的面积的最大值为,求a 的值;(3)设P是抛物线对称轴上的一点,点Q在抛物线上,以点A,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.16.如图,在矩形OABC中,OA=5,AB=4,点D为边AB上一点,将△BCD沿直线CD折叠,使点B恰好落在OA边上的点E处,分别以OC,OA所在的直线为x 轴,y轴建立平面直角坐标系.(1)求点E坐标及经过O,D,C三点的抛物线的解析式;(2)一动点P从点C出发,沿CB以每秒2 个单位长的速度向点B运动,同时动点Q从E点出发,沿EC以每秒1个单位长的速度向点C运动,当点P到达点B时,两点同时停止运动.设运动时间为t秒,当t为何值时,DP=DQ;(3)若点N在(2)中的抛物线的对称轴上,点M在抛物线上,是否存在这样的点M与点N,使得以M,N,C,E为顶点的四边形是平行四边形?若存在,请求出M点的坐标;若不存在,请说明理由.17.如图,抛物线y=﹣x2+2x+3与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D和点C关于抛物线的对称轴对称,直线AD与y轴交于点E.(1)求直线AD的解析式;(2)如图1,直线AD上方的抛物线上有一点F,过点F作FG⊥AD于点G,作FH平行于x轴交直线AD于点H,求△FGH周长的最大值;(3)点M是抛物线的顶点,点P是y轴上一点,点Q是坐标平面内一点,以A,M,P,Q为顶点的四边形是以AM为边的矩形.若点T和点Q关于AM所在直线对称,求点T的坐标.18.如图,点A和动点P在直线l上,点P关于点A的对称点为Q,以AQ为边作Rt△ABQ,使∠BAQ=90°,AQ:AB=3:4,作△ABQ的外接圆O.点C在点P 右侧,PC=4,过点C作直线m⊥l,过点O作OD⊥m于点D,交AB右侧的圆弧于点E.在射线CD上取点F,使DF=CD,以DE,DF为邻边作矩形DEGF.设AQ=3x.(1)用关于x的代数式表示BQ,DF.(2)当点P在点A右侧时,若矩形DEGF的面积等于90,求AP的长.(3)在点P的整个运动过程中,①当AP为何值时,矩形DEGF是正方形?②作直线BG交⊙O于点N,若BN的弦心距为1,求AP的长(直接写出答案).19.在平面直角坐标系xOy(如图)中,经过点A(﹣1,0)的抛物线y=﹣x2+bx+3与y轴交于点C,点B与点A、点D与点C分别关于该抛物线的对称轴对称.(1)求b的值以及直线AD与x轴正方向的夹角;(2)如果点E是抛物线上一动点,过E作EF平行于x轴交直线AD于点F,且F 在E的右边,过点E作EG⊥AD与点G,设E的横坐标为m,△EFG的周长为l,试用m表示l;(3)点M是该抛物线的顶点,点P是y轴上一点,Q是坐标平面内一点,如果以点A、M、P、Q为顶点的四边形是矩形,求该矩形的顶点Q的坐标.20.如图,直线y=mx+4与反比例函数y=(k>0)的图象交于点A、B,与x 轴、y轴分别交于D、C,tan∠CDO=2,AC:CD=1:2.(1)求反比例函数解析式;(2)联结BO,求∠DBO的正切值;(3)点M在直线x=﹣1上,点N在反比例函数图象上,如果以点A、B、M、N 为顶点的四边形是平行四边形,求点N的坐标.21.如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为(2,9),与y轴交于点A(0,5),与x轴交于点E、B.(1)求二次函数y=ax2+bx+c的表达式;(2)过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点(点P 在AC上方),作PD平行于y轴交AB于点D,问当点P在何位置时,四边形APCD 的面积最大?并求出最大面积;(3)若点M在抛物线上,点N在其对称轴上,使得以A、E、N、M为顶点的四边形是平行四边形,且AE为其一边,求点M、N的坐标.因动点产生的梯形问题22.如图,在平面直角坐标系xOy中,二次函数y=+bx+c的图象与y轴交于点A,与双曲线y=有一个公共点B,它的横坐标为4,过点B作直线l∥x轴,与该二次函数图象交于另一个点C,直线AC在y轴上的截距是﹣6.(1)求二次函数的解析式;(2)求直线AC的表达式;(3)平面内是否存在点D,使A、B、C、D为顶点的四边形是等腰梯形?如果存在,求出点D坐标;如果不存在,说明理由.23.如图,矩形OMPN的顶点O在原点,M、N分别在x轴和y轴的正半轴上,OM=6,ON=3,反比例函数y=的图象与PN交于C,与PM交于D,过点C作CA⊥x轴于点A,过点D作DB⊥y轴于点B,AC与BD交于点G.(1)求证:AB∥CD;(2)在直角坐标平面内是否若存在点E,使以B、C、D、E为顶点,BC为腰的梯形是等腰梯形?若存在,求点E的坐标;若不存在请说明理由.因动点产生的面积问题24.如图,边长为8的正方形OABC的两边在坐标轴上,以点C为顶点的抛物线经过点A,点P是抛物线上点A,C间的一个动点(含端点),过点P作PF⊥BC 于点F,点D、E的坐标分别为(0,6),(﹣4,0),连接PD、PE、DE.(1)请直接写出抛物线的解析式;(2)小明探究点P的位置发现:当P与点A或点C重合时,PD与PF的差为定值,进而猜想:对于任意一点P,PD与PF的差为定值,请你判断该猜想是否正确,并说明理由;(3)小明进一步探究得出结论:若将“使△PDE的面积为整数”的点P记作“好点”,则存在多个“好点”,且使△PDE的周长最小的点P也是一个“好点”.请直接写出所有“好点”的个数,并求出△PDE周长最小时“好点”的坐标.25.如图,四边形OABC是边长为4的正方形,点P为OA边上任意一点(与点O、A不重合),连接CP,过点P作PM⊥CP交AB于点D,且PM=CP,过点M 作MN∥OA,交BO于点N,连接ND、BM,设OP=t.(1)求点M的坐标(用含t的代数式表示).(2)试判断线段MN的长度是否随点P的位置的变化而改变?并说明理由.(3)当t为何值时,四边形BNDM的面积最小.26.在数学兴趣小组活动中,小明进行数学探究活动,将边长为2的正方形ABCD 与边长为2的正方形AEFG按图1位置放置,AD与AE在同一直线上,AB与AG在同一直线上.(1)小明发现DG⊥BE,请你帮他说明理由.(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG 上时,请你帮他求出此时BE的长.(3)如图3,小明将正方形ABCD绕点A继续逆时针旋转,线段DG与线段BE将相交,交点为H,写出△GHE与△BHD面积之和的最大值,并简要说明理由.27.在平面直角坐标系中,O为原点,直线y=﹣2x﹣1与y轴交于点A,与直线y=﹣x交于点B,点B关于原点的对称点为点C.(1)求过A,B,C三点的抛物线的解析式;(2)P为抛物线上一点,它关于原点的对称点为Q.①当四边形PBQC为菱形时,求点P的坐标;②若点P的横坐标为t(﹣1<t<1),当t为何值时,四边形PBQC面积最大?并说明理由.28.如图,在平面直角坐标系中,点A(10,0),以OA为直径在第一象限内作半圆,B为半圆上一点,连接AB并延长至C,使BC=AB,过C作CD⊥x轴于点D,交线段OB于点E,已知CD=8,抛物线经过O、E、A三点.(1)∠OBA=°.(2)求抛物线的函数表达式.(3)若P为抛物线上位于第一象限内的一个动点,以P、O、A、E为顶点的四边形面积记作S,则S取何值时,相应的点P有且只有3个?29.如图1,关于x的二次函数y=﹣x2+bx+c经过点A(﹣3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,E在x轴上.(1)求抛物线的解析式;(2)DE上是否存在点P到AD的距离与到x轴的距离相等?若存在求出点P,若不存在请说明理由;(3)如图2,DE的左侧抛物线上是否存在点F,使2S△FBC =3S△EBC?若存在求出点F的坐标,若不存在请说明理由.30.已知抛物线y=mx2+(1﹣2m)x+1﹣3m与x轴相交于不同的两点A、B (1)求m的取值范围;(2)证明该抛物线一定经过非坐标轴上的一点P,并求出点P的坐标;(3)当<m≤8时,由(2)求出的点P和点A,B构成的△ABP的面积是否有最值?若有,求出该最值及相对应的m值.31.问题提出(1)如图①,已知△ABC,请画出△ABC关于直线AC对称的三角形.问题探究(2)如图②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在边BC、CD 上分别存在点G、H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.问题解决(3)如图③,有一矩形板材ABCD,AB=3米,AD=6米,现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,EF=FG=米,∠EHG=45°,经研究,只有当点E、F、G分别在边AD、AB、BC上,且AF<BF,并满足点H 在矩形ABCD内部或边上时,才有可能裁出符合要求的部件,试问能否裁得符合要求的面积尽可能大的四边形EFGH部件?若能,求出裁得的四边形EFGH部件的面积;若不能,请说明理由.32.如图,在平面直角坐标系中,矩形OCDE的顶点C和E分别在y轴的正半轴和x轴的正半轴上,OC=8,OE=17,抛物线y=x2﹣3x+m与y轴相交于点A,抛物线的对称轴与x轴相交于点B,与CD交于点K.(1)将矩形OCDE沿AB折叠,点O恰好落在边CD上的点F处.①点B的坐标为(、),BK的长是,CK的长是;②求点F的坐标;③请直接写出抛物线的函数表达式;(2)将矩形OCDE沿着经过点E的直线折叠,点O恰好落在边CD上的点G处,连接OG,折痕与OG相交于点H,点M是线段EH上的一个动点(不与点H重合),连接MG,MO,过点G作GP⊥OM于点P,交EH于点N,连接ON,点M 从点E开始沿线段EH向点H运动,至与点N重合时停止,△MOG和△NOG的面积分别表示为S1和S2,在点M的运动过程中,S1•S2(即S1与S2的积)的值是否发生变化?若变化,请直接写出变化范围;若不变,请直接写出这个值.温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.33.如图,已知▱ABCD的三个顶点A(n,0)、B(m,0)、D(0,2n)(m>n>0),作▱ABCD关于直线AD的对称图形AB1C1D(1)若m=3,试求四边形CC1B1B面积S的最大值;(2)若点B1恰好落在y轴上,试求的值.因动点产生的相切问题34.如图,已知在平面直角坐标系xOy中,抛物线y=ax2+2x+c与x轴交于点A(﹣1,0)和点B,与y轴相交于点C(0,3),抛物线的对称轴为直线l.(1)求这条抛物线的关系式,并写出其对称轴和顶点M的坐标;(2)如果直线y=kx+b经过C、M两点,且与x轴交于点D,点C关于直线l的对称点为N,试证明四边形CDAN是平行四边形;(3)点P在直线l上,且以点P为圆心的圆经过A、B两点,并且与直线CD相切,求点P的坐标.35.如图,在Rt△ABC中,∠C=90°,AC=14,tanA=,点D是边AC上一点,AD=8,点E是边AB上一点,以点E为圆心,EA为半径作圆,经过点D,点F是边AC 上一动点(点F不与A、C重合),作FG⊥EF,交射线BC于点G.(1)用直尺圆规作出圆心E,并求圆E的半径长(保留作图痕迹);(2)当点G的边BC上时,设AF=x,CG=y,求y关于x的函数解析式,并写出它的定义域;(3)联结EG,当△EFG与△FCG相似时,推理判断以点G为圆心、CG为半径的圆G与圆E可能产生的各种位置关系.36.如图,线段PA=1,点D是线段PA延长线上的点,AD=a(a>1),点O是线段AP延长线上的点,OA2=OP•OD,以O为圆心,OA为半径作扇形OAB,∠BOA=90°.点C是弧AB上的点,联结PC、DC.(1)联结BD交弧AB于E,当a=2时,求BE的长;(2)当以PC为半径的⊙P和以CD为半径的⊙C相切时,求a的值;(3)当直线DC经过点B,且满足PC•OA=BC•OP时,求扇形OAB的半径长.37.如图,在矩形ABCD中,AB=6cm,AD=8cm,点P从点B出发,沿对角线BD 向点D匀速运动,速度为4cm/s,过点P作PQ⊥BD交BC于点Q,以PQ为一边作正方形PQMN,使得点N落在射线PD上,点O从点D出发,沿DC向点C匀速运动,速度为3cm/s,以O为圆心,0.8cm为半径作⊙O,点P与点O同时出发,设它们的运动时间为t(单位:s)(0<t<).(1)如图1,连接DQ平分∠BDC时,t的值为;(2)如图2,连接CM,若△CMQ是以CQ为底的等腰三角形,求t的值;(3)请你继续进行探究,并解答下列问题:①证明:在运动过程中,点O始终在QM所在直线的左侧;②如图3,在运动过程中,当QM与⊙O相切时,求t的值;并判断此时PM与⊙O是否也相切?说明理由.38.如图,抛物线y=﹣x2+mx+n的图象经过点A(2,3),对称轴为直线x=1,一次函数y=kx+b的图象经过点A,交x轴于点P,交抛物线于另一点B,点A、B 位于点P的同侧.(1)求抛物线的解析式;(2)若PA:PB=3:1,求一次函数的解析式;(3)在(2)的条件下,当k>0时,抛物线的对称轴上是否存在点C,使得⊙C 同时与x轴和直线AP都相切,如果存在,请求出点C的坐标,如果不存在,请说明理由.因动点产生的线段和差问题39.如图,抛物线y=x 2﹣4x 与x 轴交于O ,A 两点,P 为抛物线上一点,过点P 的直线y=x +m 与对称轴交于点Q .(1)这条抛物线的对称轴是 ,直线PQ 与x 轴所夹锐角的度数是 ;(2)若两个三角形面积满足S △POQ =S △PAQ ,求m 的值;(3)当点P 在x 轴下方的抛物线上时,过点C (2,2)的直线AC 与直线PQ 交于点D ,求:①PD +DQ 的最大值;②PD•DQ 的最大值.40.抛物线y=ax 2+bx +4(a ≠0)过点A (1,﹣1),B (5,﹣1),与y 轴交于点C .(1)求抛物线的函数表达式;(2)如图1,连接CB ,以CB 为边作▱CBPQ ,若点P 在直线BC 上方的抛物线上,Q 为坐标平面内的一点,且▱CBPQ 的面积为30,求点P 的坐标;(3)如图2,⊙O 1过点A 、B 、C 三点,AE 为直径,点M 为上的一动点(不与点A ,E 重合),∠MBN 为直角,边BN 与ME 的延长线交于N ,求线段BN 长度的最大值.41.如图,在每一个四边形ABCD中,均有AD∥BC,CD⊥BC,∠ABC=60°,AD=8,BC=12.(1)如图①,点M是四边形ABCD边AD上的一点,则△BMC的面积为;(2)如图②,点N是四边形ABCD边AD上的任意一点,请你求出△BNC周长的最小值;(3)如图③,在四边形ABCD的边AD上,是否存在一点P,使得cos∠BPC的值最小?若存在,求出此时cos∠BPC的值;若不存在,请说明理由.42.如图,把△EFP按图示方式放置在菱形ABCD中,使得顶点E、F、P分别在线段AB、AD、AC上,已知EP=FP=4,EF=4,∠BAD=60°,且AB>4.(1)求∠EPF的大小;(2)若AP=6,求AE+AF的值;(3)若△EFP的三个顶点E、F、P分别在线段AB、AD、AC上运动,请直接写出AP长的最大值和最小值.43.如图,在平面直角坐标系中,抛物线y=﹣x2﹣x+2与x轴交于B、C两点(点B在点C的左侧),与y轴交于点A,抛物线的顶点为D.(1)填空:点A的坐标为(,),点B的坐标为(,),点C的坐标为(,),点D的坐标为(,);(2)点P是线段BC上的动点(点P不与点B、C重合)①过点P作x轴的垂线交抛物线于点E,若PE=PC,求点E的坐标;②在①的条件下,点F是坐标轴上的点,且点F到EA和ED的距离相等,请直接写出线段EF的长;③若点Q是线段AB上的动点(点Q不与点A、B重合),点R是线段AC上的动点(点R不与点A、C重合),请直接写出△PQR周长的最小值.44.如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积;(3)当射线BN交线段CD于点F时,求DF的最大值.45.如图,半圆O的直径AB=4,以长为2的弦PQ为直径,向点O方向作半圆M,其中P点在上且不与A点重合,但Q点可与B点重合.发现:的长与的长之和为定值l,求l:思考:点M与AB的最大距离为,此时点P,A间的距离为;点M与AB的最小距离为,此时半圆M的弧与AB所围成的封闭图形面积为;探究:当半圆M与AB相切时,求的长.(注:结果保留π,cos35°=,cos55°=)46.(1)发现:如图1,点A为线段BC外一动点,且BC=a,AB=b.填空:当点A位于时,线段AC的长取得最大值,且最大值为(用含a,b的式子表示)(2)应用:点A为线段BC外一动点,且BC=3,AB=1,如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.①请找出图中与BE相等的线段,并说明理由;②直接写出线段BE长的最大值.(3)拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,请直接写出线段AM长的最大值及此时点P的坐标.47.如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a<0)经过点B.(1)求该抛物线的函数表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S 的最大值;(3)在(2)的条件下,当S取得最大值时,动点M相应的位置记为点M′.①写出点M′的坐标;②将直线l绕点A按顺时针方向旋转得到直线l′,当直线l′与直线AM′重合时停止旋转,在旋转过程中,直线l′与线段BM′交于点C,设点B、M′到直线l′的距离分别为d1、d2,当d1+d2最大时,求直线l′旋转的角度(即∠BAC的度数).48.如图,在平面直角坐标系xOy中,将二次函数y=x2﹣1的图象M沿x轴翻折,把所得到的图象向右平移2个单位长度后再向上平移8个单位长度,得到二次函数图象N.(1)求N的函数表达式;(2)设点P(m,n)是以点C(1,4)为圆心、1为半径的圆上一动点,二次函数的图象M与x轴相交于两点A、B,求PA2+PB2的最大值;(3)若一个点的横坐标与纵坐标均为整数,则该点称为整点.求M与N所围成封闭图形内(包括边界)整点的个数.49.如图,顶点为A(,1)的抛物线经过坐标原点O,与x轴交于点B.(1)求抛物线对应的二次函数的表达式;(2)过B作OA的平行线交y轴于点C,交抛物线于点D,求证:△OCD≌△OAB;(3)在x轴上找一点P,使得△PCD的周长最小,求出P点的坐标.2017 挑战压轴题中考数学精讲解读篇参考答案与试题解析一.解答题(共36小题)1.如图,在平面直角坐标系xOy中,将抛物线y=x2的对称轴绕着点P(0,2)顺时针旋转45°后与该抛物线交于A、B两点,点Q是该抛物线上一点.(1)求直线AB的函数表达式;(2)如图①,若点Q在直线AB的下方,求点Q到直线AB的距离的最大值;(3)如图②,若点Q在y轴左侧,且点T(0,t)(t<2)是射线PO上一点,当以P、B、Q为顶点的三角形与△PAT相似时,求所有满足条件的t的值.【分析】(1)根据题意易得点M、P的坐标,利用待定系数法来求直线AB的解析式;(2)如图①,过点Q作x轴的垂线QC,交AB于点C,再过点Q作直线AB的垂线,垂足为D,构建等腰直角△QDC,利用二次函数图象上点的坐标特征和二次函数最值的求法进行解答;(3)根据相似三角形的对应角相等推知:△PBQ中必有一个内角为45°;需要分类讨论:∠PBQ=45°和∠PQB=45°;然后对这两种情况下的△PAT是否是直角三角形分别进行解答.另外,以P、B、Q为顶点的三角形与△PAT相似也有两种情况:△Q″PB∽△PAT、△Q″BP∽△PAT.【解答】解:(1)如图①,设直线AB与x轴的交点为M.∵∠OPA=45°,∴OM=OP=2,即M(﹣2,0).设直线AB的解析式为y=kx+b(k≠0),将M(﹣2,0),P(0,2)两点坐标代入,得,解得.故直线AB的解析式为y=x+2;(2)如图①,过点Q作x轴的垂线QC,交AB于点C,再过点Q作直线AB的垂线,垂足为D,根据条件可知△QDC为等腰直角三角形,则QD=QC.设Q(m,m2),则C(m,m+2).∴QC=m+2﹣m2=﹣(m﹣)2+,QD=QC=[﹣(m﹣)2+].故当m=时,点Q到直线AB的距离最大,最大值为;(3)∵∠APT=45°,∴△PBQ中必有一个内角为45°,由图知,∠BPQ=45°不合题意.①如图②,若∠PBQ=45°,过点B作x轴的平行线,与抛物线和y轴分别交于点Q′、F.此时满足∠PBQ′=45°.∵Q′(﹣2,4),F(0,4),∴此时△BPQ′是等腰直角三角形,由题意知△PAT也是等腰直角三角形.(i)当∠PTA=90°时,得到:PT=AT=1,此时t=1;(ii)当∠PAT=90°时,得到:PT=2,此时t=0.②如图③,若∠PQB=45°,①中是情况之一,答案同上;先以点F为圆心,FB为半径作圆,则P、B、Q′都在圆F上,设圆F与y轴左侧的抛物线交于另一点Q″.则∠PQ″B=∠PQ′B=45°(同弧所对的圆周角相等),即这里的交点Q″也是符合要求.设Q″(n,n2)(﹣2<n<0),由FQ″=2,得n2+(4﹣n2)2=22,即n4﹣7n2+12=0.解得n2=3或n2=4,而﹣2<n<0,故n=﹣,即Q″(﹣,3).可证△PFQ″为等边三角形,所以∠PFQ″=60°,又PQ″=PQ″,所以∠PBQ″=∠PFQ″=30°.则在△PQ″B中,∠PQ″B=45°,∠PBQ″=30°.(i)若△Q″PB∽△PAT,则过点A作y轴的垂线,垂足为E.则ET=AE=,OE=1,所以OT=﹣1,解得t=1﹣;(ii)若△Q″BP∽△PAT,则过点T作直线AB垂线,垂足为G.设TG=a,则PG=TG=a,AG=TG=a,AP=,∴a+a=,解得PT=a=﹣1,∴OT=OP﹣PT=3﹣,∴t=3﹣.综上所述,所求的t的值为t=1或t=0或t=1﹣或t=3﹣.2.如图,已知BC是半圆O的直径,BC=8,过线段BO上一动点D,作AD⊥BC 交半圆O于点A,联结AO,过点B作BH⊥AO,垂足为点H,BH的延长线交半圆O于点F.(1)求证:AH=BD;(2)设BD=x,BE•BF=y,求y关于x的函数关系式;(3)如图2,若联结FA并延长交CB的延长线于点G,当△FAE与△FBG相似时,求BD的长度.【分析】(1)由AD⊥BC,BH⊥AO,利用垂直的定义得到一对直角相等,再由一对公共角,且半径相等,利用AAS得到三角形ADO与三角形BHO全等,利用全等三角形对应边相等得到OH=OD,利用等式的性质化简即可得证;(2)连接AB,AF,如图1所示,利用HL得到直角三角形ADB与直角三角形BHA全等,利用全等三角形对应角相等得到一对角相等,再由公共角相等得到三角形ABE与三角形AFB相似,由相似得比例即可确定出y与x的函数解析式;(3)连接OF,如图2所示,利用两对角相等的三角形相似得到三角形AFO与三角形FOG相似,由相似得比例求出BD的长即可.【解答】(1)证明:∵AD⊥BC,BH⊥AO,∴∠ADO=∠BHO=90°,在△ADO与△BHO中,,∴△ADO≌△BHO(AAS),∴OH=OD,又∵OA=OB,∴AH=BD;(2)解:连接AB、AF,如图1所示,∵AO是半径,AO⊥弦BF,∴∴AB=AF,∴∠ABF=∠AFB,在Rt△ADB与Rt△BHA中,,∴Rt△ADB≌Rt△BHA(HL),∴∠ABF=∠BAD,∴∠BAD=∠AFB,又∵∠ABF=∠EBA,∴△BEA∽△BAF,∴=,。

2018年中考数学挑战压轴题(含答案)

2018年中考数学挑战压轴题(含答案)

2017 挑战压轴题中考数学精讲解读篇因动点产生的相似三角形问题1.如图,在平面直角坐标系xOy中,将抛物线y=x2的对称轴绕着点P(0,2)顺时针旋转45°后与该抛物线交于A、B两点,点Q是该抛物线上一点.(1)求直线AB的函数表达式;(2)如图①,若点Q在直线AB的下方,求点Q到直线AB的距离的最大值;(3)如图②,若点Q在y轴左侧,且点T(0,t)(t<2)是射线PO上一点,当以P、B、Q为顶点的三角形与△PAT相似时,求所有满足条件的t的值.2.如图,已知BC是半圆O的直径,BC=8,过线段BO上一动点D,作AD⊥BC 交半圆O于点A,联结AO,过点B作BH⊥AO,垂足为点H,BH的延长线交半圆O于点F.(1)求证:AH=BD;(2)设BD=x,BE•BF=y,求y关于x的函数关系式;(3)如图2,若联结FA并延长交CB的延长线于点G,当△FAE与△FBG相似时,求BD的长度.3.如图,在平面直角坐标系xOy中,直线AB过点A(3,0)、B(0,m)(m>0),tan∠BAO=2.(1)求直线AB的表达式;(2)反比例函数y=的图象与直线AB交于第一象限内的C、D两点(BD<BC),当AD=2DB时,求k1的值;(3)设线段AB的中点为E,过点E作x轴的垂线,垂足为点M,交反比例函数y=的图象于点F,分别联结OE、OF,当△OEF∽△OBE时,请直接写出满足条件的所有k2的值.4.如图,在Rt△ABC中,∠ACB=90°,AC=1,BC=7,点D是边CA延长线的一点,AE⊥BD,垂足为点E,AE的延长线交CA的平行线BF于点F,连结CE交AB于点G.(1)当点E是BD的中点时,求tan∠AFB的值;(2)CE•AF的值是否随线段AD长度的改变而变化?如果不变,求出CE•AF的值;如果变化,请说明理由;(3)当△BGE和△BAF相似时,求线段AF的长.5.如图,平面直角坐标系xOy中,已知B(﹣1,0),一次函数y=﹣x+5的图象与x轴、y轴分别交于点A、C两点,二次函数y=﹣x2+bx+c的图象经过点A、点B.(1)求这个二次函数的解析式;(2)点P是该二次函数图象的顶点,求△APC的面积;(3)如果点Q在线段AC上,且△ABC与△AOQ相似,求点Q的坐标.6.已知:半圆O的直径AB=6,点C在半圆O上,且tan∠ABC=2,点D为弧AC上一点,联结DC(如图)(1)求BC的长;(2)若射线DC交射线AB于点M,且△MBC与△MOC相似,求CD的长;(3)联结OD,当OD∥BC时,作∠DOB的平分线交线段DC于点N,求ON的长.7.如图,已知二次函数y=x2+bx+c(b,c为常数)的图象经过点A(3,﹣1),点C(0,﹣4),顶点为点M,过点A作AB∥x轴,交y轴与点D,交该二次函数图象于点B,连结BC.(1)求该二次函数的解析式及点M的坐标;(2)若将该二次函数图象向上平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△ABC的内部(不包含△ABC的边界),求m的取值范围;(3)点P时直线AC上的动点,若点P,点C,点M所构成的三角形与△BCD相似,请直接写出所有点P的坐标(直接写出结果,不必写解答过程).因动点产生的等腰三角形问题8.如图1,在△ABC中,∠ACB=90°,∠BAC=60°,点E是∠BAC角平分线上一点,过点E作AE的垂线,过点A作AB的垂线,两垂线交于点D,连接DB,点F是BD的中点,DH⊥AC,垂足为H,连接EF,HF.(1)如图1,若点H是AC的中点,AC=2,求AB,BD的长;(2)如图1,求证:HF=EF;(3)如图2,连接CF,CE.猜想:△CEF是否是等边三角形?若是,请证明;若不是,说明理由.9.已知,一条抛物线的顶点为E(﹣1,4),且过点A(﹣3,0),与y轴交于点C,点D是这条抛物线上一点,它的横坐标为m,且﹣3<m<﹣1,过点D作DK ⊥x轴,垂足为K,DK分别交线段AE、AC于点G、H.(1)求这条抛物线的解析式;(2)求证:GH=HK;(3)当△CGH是等腰三角形时,求m的值.10.如图,已知在Rt△ABC中,∠ACB=90°,AB=5,sinA=,点P是边BC上的一点,PE⊥AB,垂足为E,以点P为圆心,PC为半径的圆与射线PE相交于点Q,线段CQ与边AB交于点D.(1)求AD的长;(2)设CP=x,△PCQ的面积为y,求y关于x的函数解析式,并写出定义域;(3)过点C作CF⊥AB,垂足为F,联结PF、QF,如果△PQF是以PF为腰的等腰三角形,求CP的长.11.如图(1),直线y=﹣x+n交x轴于点A,交y轴于点C(0,4),抛物线y=x2+bx+c 经过点A,交y轴于点B(0,﹣2).点P为抛物线上一个动点,过点P作x轴的垂线PD,过点B作BD⊥PD于点D,连接PB,设点P的横坐标为m.(1)求抛物线的解析式;(2)当△BDP为等腰直角三角形时,求线段PD的长;(3)如图(2),将△BDP绕点B逆时针旋转,得到△BD′P′,当旋转角∠PBP′=∠OAC,且点P的对应点P′落在坐标轴上时,请直接写出点P的坐标.12.综合与探究如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣8与x轴交于A,B两点,与y轴交于点C,直线l经过坐标原点O,与抛物线的一个交点为D,与抛物线的对称轴交于点E,连接CE,已知点A,D的坐标分别为(﹣2,0),(6,﹣8).(1)求抛物线的函数表达式,并分别求出点B和点E的坐标;(2)试探究抛物线上是否存在点F,使△FOE≌△FCE?若存在,请直接写出点F 的坐标;若不存在,请说明理由;(3)若点P是y轴负半轴上的一个动点,设其坐标为(0,m),直线PB与直线l交于点Q,试探究:当m为何值时,△OPQ是等腰三角形.13.已知,如图1,在梯形ABCD中,AD∥BC,∠BCD=90°,BC=11,CD=6,tan ∠ABC=2,点E在AD边上,且AE=3ED,EF∥AB交BC于点F,点M、N分别在射线FE和线段CD上.(1)求线段CF的长;(2)如图2,当点M在线段FE上,且AM⊥MN,设FM•cos∠EFC=x,CN=y,求y关于x的函数解析式,并写出它的定义域;(3)如果△AMN为等腰直角三角形,求线段FM的长.14.如图,在矩形ABCD中,点O为坐标原点,点B的坐标为(4,3),点A、C 在坐标轴上,点P在BC边上,直线l1:y=2x+3,直线l2:y=2x﹣3.(1)分别求直线l1与x轴,直线l2与AB的交点坐标;(2)已知点M在第一象限,且是直线l2上的点,若△APM是等腰直角三角形,求点M的坐标;(3)我们把直线l1和直线l2上的点所组成的图形为图形F.已知矩形ANPQ的顶点N在图形F上,Q是坐标平面内的点,且N点的横坐标为x,请直接写出x的取值范围(不用说明理由).15.如图,在平面直角坐标系xOy中,抛物线y=ax2﹣2ax﹣3a(a<0)与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)直接写出点A的坐标,并求直线l的函数表达式(其中k,b用含a的式子表示);(2)点E是直线l上方的抛物线上的一点,若△ACE的面积的最大值为,求a 的值;(3)设P是抛物线对称轴上的一点,点Q在抛物线上,以点A,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.16.如图,在矩形OABC中,OA=5,AB=4,点D为边AB上一点,将△BCD沿直线CD折叠,使点B恰好落在OA边上的点E处,分别以OC,OA所在的直线为x 轴,y轴建立平面直角坐标系.(1)求点E坐标及经过O,D,C三点的抛物线的解析式;(2)一动点P从点C出发,沿CB以每秒2 个单位长的速度向点B运动,同时动点Q从E点出发,沿EC以每秒1个单位长的速度向点C运动,当点P到达点B时,两点同时停止运动.设运动时间为t秒,当t为何值时,DP=DQ;(3)若点N在(2)中的抛物线的对称轴上,点M在抛物线上,是否存在这样的点M与点N,使得以M,N,C,E为顶点的四边形是平行四边形?若存在,请求出M点的坐标;若不存在,请说明理由.17.如图,抛物线y=﹣x2+2x+3与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D和点C关于抛物线的对称轴对称,直线AD与y轴交于点E.(1)求直线AD的解析式;(2)如图1,直线AD上方的抛物线上有一点F,过点F作FG⊥AD于点G,作FH平行于x轴交直线AD于点H,求△FGH周长的最大值;(3)点M是抛物线的顶点,点P是y轴上一点,点Q是坐标平面内一点,以A,M,P,Q为顶点的四边形是以AM为边的矩形.若点T和点Q关于AM所在直线对称,求点T的坐标.18.如图,点A和动点P在直线l上,点P关于点A的对称点为Q,以AQ为边作Rt△ABQ,使∠BAQ=90°,AQ:AB=3:4,作△ABQ的外接圆O.点C在点P 右侧,PC=4,过点C作直线m⊥l,过点O作OD⊥m于点D,交AB右侧的圆弧于点E.在射线CD上取点F,使DF=CD,以DE,DF为邻边作矩形DEGF.设AQ=3x.(1)用关于x的代数式表示BQ,DF.(2)当点P在点A右侧时,若矩形DEGF的面积等于90,求AP的长.(3)在点P的整个运动过程中,①当AP为何值时,矩形DEGF是正方形?②作直线BG交⊙O于点N,若BN的弦心距为1,求AP的长(直接写出答案).19.在平面直角坐标系xOy(如图)中,经过点A(﹣1,0)的抛物线y=﹣x2+bx+3与y轴交于点C,点B与点A、点D与点C分别关于该抛物线的对称轴对称.(1)求b的值以及直线AD与x轴正方向的夹角;(2)如果点E是抛物线上一动点,过E作EF平行于x轴交直线AD于点F,且F 在E的右边,过点E作EG⊥AD与点G,设E的横坐标为m,△EFG的周长为l,试用m表示l;(3)点M是该抛物线的顶点,点P是y轴上一点,Q是坐标平面内一点,如果以点A、M、P、Q为顶点的四边形是矩形,求该矩形的顶点Q的坐标.20.如图,直线y=mx+4与反比例函数y=(k>0)的图象交于点A、B,与x 轴、y轴分别交于D、C,tan∠CDO=2,AC:CD=1:2.(1)求反比例函数解析式;(2)联结BO,求∠DBO的正切值;(3)点M在直线x=﹣1上,点N在反比例函数图象上,如果以点A、B、M、N 为顶点的四边形是平行四边形,求点N的坐标.21.如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为(2,9),与y轴交于点A(0,5),与x轴交于点E、B.(1)求二次函数y=ax2+bx+c的表达式;(2)过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点(点P 在AC上方),作PD平行于y轴交AB于点D,问当点P在何位置时,四边形APCD 的面积最大?并求出最大面积;(3)若点M在抛物线上,点N在其对称轴上,使得以A、E、N、M为顶点的四边形是平行四边形,且AE为其一边,求点M、N的坐标.因动点产生的梯形问题22.如图,在平面直角坐标系xOy中,二次函数y=+bx+c的图象与y轴交于点A,与双曲线y=有一个公共点B,它的横坐标为4,过点B作直线l∥x轴,与该二次函数图象交于另一个点C,直线AC在y轴上的截距是﹣6.(1)求二次函数的解析式;(2)求直线AC的表达式;(3)平面内是否存在点D,使A、B、C、D为顶点的四边形是等腰梯形?如果存在,求出点D坐标;如果不存在,说明理由.23.如图,矩形OMPN的顶点O在原点,M、N分别在x轴和y轴的正半轴上,OM=6,ON=3,反比例函数y=的图象与PN交于C,与PM交于D,过点C作CA⊥x轴于点A,过点D作DB⊥y轴于点B,AC与BD交于点G.(1)求证:AB∥CD;(2)在直角坐标平面内是否若存在点E,使以B、C、D、E为顶点,BC为腰的梯形是等腰梯形?若存在,求点E的坐标;若不存在请说明理由.因动点产生的面积问题24.如图,边长为8的正方形OABC的两边在坐标轴上,以点C为顶点的抛物线经过点A,点P是抛物线上点A,C间的一个动点(含端点),过点P作PF⊥BC 于点F,点D、E的坐标分别为(0,6),(﹣4,0),连接PD、PE、DE.(1)请直接写出抛物线的解析式;(2)小明探究点P的位置发现:当P与点A或点C重合时,PD与PF的差为定值,进而猜想:对于任意一点P,PD与PF的差为定值,请你判断该猜想是否正确,并说明理由;(3)小明进一步探究得出结论:若将“使△PDE的面积为整数”的点P记作“好点”,则存在多个“好点”,且使△PDE的周长最小的点P也是一个“好点”.请直接写出所有“好点”的个数,并求出△PDE周长最小时“好点”的坐标.25.如图,四边形OABC是边长为4的正方形,点P为OA边上任意一点(与点O、A不重合),连接CP,过点P作PM⊥CP交AB于点D,且PM=CP,过点M 作MN∥OA,交BO于点N,连接ND、BM,设OP=t.(1)求点M的坐标(用含t的代数式表示).(2)试判断线段MN的长度是否随点P的位置的变化而改变?并说明理由.(3)当t为何值时,四边形BNDM的面积最小.26.在数学兴趣小组活动中,小明进行数学探究活动,将边长为2的正方形ABCD 与边长为2的正方形AEFG按图1位置放置,AD与AE在同一直线上,AB与AG在同一直线上.(1)小明发现DG⊥BE,请你帮他说明理由.(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG 上时,请你帮他求出此时BE的长.(3)如图3,小明将正方形ABCD绕点A继续逆时针旋转,线段DG与线段BE将相交,交点为H,写出△GHE与△BHD面积之和的最大值,并简要说明理由.27.在平面直角坐标系中,O为原点,直线y=﹣2x﹣1与y轴交于点A,与直线y=﹣x交于点B,点B关于原点的对称点为点C.(1)求过A,B,C三点的抛物线的解析式;(2)P为抛物线上一点,它关于原点的对称点为Q.①当四边形PBQC为菱形时,求点P的坐标;②若点P的横坐标为t(﹣1<t<1),当t为何值时,四边形PBQC面积最大?并说明理由.28.如图,在平面直角坐标系中,点A(10,0),以OA为直径在第一象限内作半圆,B为半圆上一点,连接AB并延长至C,使BC=AB,过C作CD⊥x轴于点D,交线段OB于点E,已知CD=8,抛物线经过O、E、A三点.(1)∠OBA=°.(2)求抛物线的函数表达式.(3)若P为抛物线上位于第一象限内的一个动点,以P、O、A、E为顶点的四边形面积记作S,则S取何值时,相应的点P有且只有3个?29.如图1,关于x的二次函数y=﹣x2+bx+c经过点A(﹣3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,E在x轴上.(1)求抛物线的解析式;(2)DE上是否存在点P到AD的距离与到x轴的距离相等?若存在求出点P,若不存在请说明理由;(3)如图2,DE的左侧抛物线上是否存在点F,使2S△FBC =3S△EBC?若存在求出点F的坐标,若不存在请说明理由.30.已知抛物线y=mx2+(1﹣2m)x+1﹣3m与x轴相交于不同的两点A、B (1)求m的取值范围;(2)证明该抛物线一定经过非坐标轴上的一点P,并求出点P的坐标;(3)当<m≤8时,由(2)求出的点P和点A,B构成的△ABP的面积是否有最值?若有,求出该最值及相对应的m值.31.问题提出(1)如图①,已知△ABC,请画出△ABC关于直线AC对称的三角形.问题探究(2)如图②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在边BC、CD 上分别存在点G、H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.问题解决(3)如图③,有一矩形板材ABCD,AB=3米,AD=6米,现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,EF=FG=米,∠EHG=45°,经研究,只有当点E、F、G分别在边AD、AB、BC上,且AF<BF,并满足点H 在矩形ABCD内部或边上时,才有可能裁出符合要求的部件,试问能否裁得符合要求的面积尽可能大的四边形EFGH部件?若能,求出裁得的四边形EFGH部件的面积;若不能,请说明理由.32.如图,在平面直角坐标系中,矩形OCDE的顶点C和E分别在y轴的正半轴和x轴的正半轴上,OC=8,OE=17,抛物线y=x2﹣3x+m与y轴相交于点A,抛物线的对称轴与x轴相交于点B,与CD交于点K.(1)将矩形OCDE沿AB折叠,点O恰好落在边CD上的点F处.①点B的坐标为(、),BK的长是,CK的长是;②求点F的坐标;③请直接写出抛物线的函数表达式;(2)将矩形OCDE沿着经过点E的直线折叠,点O恰好落在边CD上的点G处,连接OG,折痕与OG相交于点H,点M是线段EH上的一个动点(不与点H重合),连接MG,MO,过点G作GP⊥OM于点P,交EH于点N,连接ON,点M 从点E开始沿线段EH向点H运动,至与点N重合时停止,△MOG和△NOG的面积分别表示为S1和S2,在点M的运动过程中,S1•S2(即S1与S2的积)的值是否发生变化?若变化,请直接写出变化范围;若不变,请直接写出这个值.温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.33.如图,已知▱ABCD的三个顶点A(n,0)、B(m,0)、D(0,2n)(m>n>0),作▱ABCD关于直线AD的对称图形AB1C1D(1)若m=3,试求四边形CC1B1B面积S的最大值;(2)若点B1恰好落在y轴上,试求的值.因动点产生的相切问题34.如图,已知在平面直角坐标系xOy中,抛物线y=ax2+2x+c与x轴交于点A(﹣1,0)和点B,与y轴相交于点C(0,3),抛物线的对称轴为直线l.(1)求这条抛物线的关系式,并写出其对称轴和顶点M的坐标;(2)如果直线y=kx+b经过C、M两点,且与x轴交于点D,点C关于直线l的对称点为N,试证明四边形CDAN是平行四边形;(3)点P在直线l上,且以点P为圆心的圆经过A、B两点,并且与直线CD相切,求点P的坐标.35.如图,在Rt△ABC中,∠C=90°,AC=14,tanA=,点D是边AC上一点,AD=8,点E是边AB上一点,以点E为圆心,EA为半径作圆,经过点D,点F是边AC 上一动点(点F不与A、C重合),作FG⊥EF,交射线BC于点G.(1)用直尺圆规作出圆心E,并求圆E的半径长(保留作图痕迹);(2)当点G的边BC上时,设AF=x,CG=y,求y关于x的函数解析式,并写出它的定义域;(3)联结EG,当△EFG与△FCG相似时,推理判断以点G为圆心、CG为半径的圆G与圆E可能产生的各种位置关系.36.如图,线段PA=1,点D是线段PA延长线上的点,AD=a(a>1),点O是线段AP延长线上的点,OA2=OP•OD,以O为圆心,OA为半径作扇形OAB,∠BOA=90°.点C是弧AB上的点,联结PC、DC.(1)联结BD交弧AB于E,当a=2时,求BE的长;(2)当以PC为半径的⊙P和以CD为半径的⊙C相切时,求a的值;(3)当直线DC经过点B,且满足PC•OA=BC•OP时,求扇形OAB的半径长.37.如图,在矩形ABCD中,AB=6cm,AD=8cm,点P从点B出发,沿对角线BD 向点D匀速运动,速度为4cm/s,过点P作PQ⊥BD交BC于点Q,以PQ为一边作正方形PQMN,使得点N落在射线PD上,点O从点D出发,沿DC向点C匀速运动,速度为3cm/s,以O为圆心,0.8cm为半径作⊙O,点P与点O同时出发,设它们的运动时间为t(单位:s)(0<t<).(1)如图1,连接DQ平分∠BDC时,t的值为;(2)如图2,连接CM,若△CMQ是以CQ为底的等腰三角形,求t的值;(3)请你继续进行探究,并解答下列问题:①证明:在运动过程中,点O始终在QM所在直线的左侧;②如图3,在运动过程中,当QM与⊙O相切时,求t的值;并判断此时PM与⊙O是否也相切?说明理由.38.如图,抛物线y=﹣x2+mx+n的图象经过点A(2,3),对称轴为直线x=1,一次函数y=kx+b的图象经过点A,交x轴于点P,交抛物线于另一点B,点A、B 位于点P的同侧.(1)求抛物线的解析式;(2)若PA:PB=3:1,求一次函数的解析式;(3)在(2)的条件下,当k>0时,抛物线的对称轴上是否存在点C,使得⊙C 同时与x轴和直线AP都相切,如果存在,请求出点C的坐标,如果不存在,请说明理由.因动点产生的线段和差问题39.如图,抛物线y=x 2﹣4x 与x 轴交于O ,A 两点,P 为抛物线上一点,过点P 的直线y=x +m 与对称轴交于点Q .(1)这条抛物线的对称轴是 ,直线PQ 与x 轴所夹锐角的度数是 ;(2)若两个三角形面积满足S △POQ =S △PAQ ,求m 的值;(3)当点P 在x 轴下方的抛物线上时,过点C (2,2)的直线AC 与直线PQ 交于点D ,求:①PD +DQ 的最大值;②PD•DQ 的最大值.40.抛物线y=ax 2+bx +4(a ≠0)过点A (1,﹣1),B (5,﹣1),与y 轴交于点C .(1)求抛物线的函数表达式;(2)如图1,连接CB ,以CB 为边作▱CBPQ ,若点P 在直线BC 上方的抛物线上,Q 为坐标平面内的一点,且▱CBPQ 的面积为30,求点P 的坐标;(3)如图2,⊙O 1过点A 、B 、C 三点,AE 为直径,点M 为上的一动点(不与点A ,E 重合),∠MBN 为直角,边BN 与ME 的延长线交于N ,求线段BN 长度的最大值.41.如图,在每一个四边形ABCD中,均有AD∥BC,CD⊥BC,∠ABC=60°,AD=8,BC=12.(1)如图①,点M是四边形ABCD边AD上的一点,则△BMC的面积为;(2)如图②,点N是四边形ABCD边AD上的任意一点,请你求出△BNC周长的最小值;(3)如图③,在四边形ABCD的边AD上,是否存在一点P,使得cos∠BPC的值最小?若存在,求出此时cos∠BPC的值;若不存在,请说明理由.42.如图,把△EFP按图示方式放置在菱形ABCD中,使得顶点E、F、P分别在线段AB、AD、AC上,已知EP=FP=4,EF=4,∠BAD=60°,且AB>4.(1)求∠EPF的大小;(2)若AP=6,求AE+AF的值;(3)若△EFP的三个顶点E、F、P分别在线段AB、AD、AC上运动,请直接写出AP长的最大值和最小值.43.如图,在平面直角坐标系中,抛物线y=﹣x2﹣x+2与x轴交于B、C两点(点B在点C的左侧),与y轴交于点A,抛物线的顶点为D.(1)填空:点A的坐标为(,),点B的坐标为(,),点C的坐标为(,),点D的坐标为(,);(2)点P是线段BC上的动点(点P不与点B、C重合)①过点P作x轴的垂线交抛物线于点E,若PE=PC,求点E的坐标;②在①的条件下,点F是坐标轴上的点,且点F到EA和ED的距离相等,请直接写出线段EF的长;③若点Q是线段AB上的动点(点Q不与点A、B重合),点R是线段AC上的动点(点R不与点A、C重合),请直接写出△PQR周长的最小值.44.如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积;(3)当射线BN交线段CD于点F时,求DF的最大值.45.如图,半圆O的直径AB=4,以长为2的弦PQ为直径,向点O方向作半圆M,其中P点在上且不与A点重合,但Q点可与B点重合.发现:的长与的长之和为定值l,求l:思考:点M与AB的最大距离为,此时点P,A间的距离为;点M与AB的最小距离为,此时半圆M的弧与AB所围成的封闭图形面积为;探究:当半圆M与AB相切时,求的长.(注:结果保留π,cos35°=,cos55°=)46.(1)发现:如图1,点A为线段BC外一动点,且BC=a,AB=b.填空:当点A位于时,线段AC的长取得最大值,且最大值为(用含a,b的式子表示)(2)应用:点A为线段BC外一动点,且BC=3,AB=1,如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.①请找出图中与BE相等的线段,并说明理由;②直接写出线段BE长的最大值.(3)拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,请直接写出线段AM长的最大值及此时点P的坐标.47.如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a<0)经过点B.(1)求该抛物线的函数表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S 的最大值;(3)在(2)的条件下,当S取得最大值时,动点M相应的位置记为点M′.①写出点M′的坐标;②将直线l绕点A按顺时针方向旋转得到直线l′,当直线l′与直线AM′重合时停止旋转,在旋转过程中,直线l′与线段BM′交于点C,设点B、M′到直线l′的距离分别为d1、d2,当d1+d2最大时,求直线l′旋转的角度(即∠BAC的度数).48.如图,在平面直角坐标系xOy中,将二次函数y=x2﹣1的图象M沿x轴翻折,把所得到的图象向右平移2个单位长度后再向上平移8个单位长度,得到二次函数图象N.(1)求N的函数表达式;(2)设点P(m,n)是以点C(1,4)为圆心、1为半径的圆上一动点,二次函数的图象M与x轴相交于两点A、B,求PA2+PB2的最大值;(3)若一个点的横坐标与纵坐标均为整数,则该点称为整点.求M与N所围成封闭图形内(包括边界)整点的个数.49.如图,顶点为A(,1)的抛物线经过坐标原点O,与x轴交于点B.(1)求抛物线对应的二次函数的表达式;(2)过B作OA的平行线交y轴于点C,交抛物线于点D,求证:△OCD≌△OAB;(3)在x轴上找一点P,使得△PCD的周长最小,求出P点的坐标.2017 挑战压轴题中考数学精讲解读篇参考答案与试题解析一.解答题(共36小题)1.如图,在平面直角坐标系xOy中,将抛物线y=x2的对称轴绕着点P(0,2)顺时针旋转45°后与该抛物线交于A、B两点,点Q是该抛物线上一点.(1)求直线AB的函数表达式;(2)如图①,若点Q在直线AB的下方,求点Q到直线AB的距离的最大值;(3)如图②,若点Q在y轴左侧,且点T(0,t)(t<2)是射线PO上一点,当以P、B、Q为顶点的三角形与△PAT相似时,求所有满足条件的t的值.【分析】(1)根据题意易得点M、P的坐标,利用待定系数法来求直线AB的解析式;(2)如图①,过点Q作x轴的垂线QC,交AB于点C,再过点Q作直线AB的垂线,垂足为D,构建等腰直角△QDC,利用二次函数图象上点的坐标特征和二次函数最值的求法进行解答;(3)根据相似三角形的对应角相等推知:△PBQ中必有一个内角为45°;需要分类讨论:∠PBQ=45°和∠PQB=45°;然后对这两种情况下的△PAT是否是直角三角形分别进行解答.另外,以P、B、Q为顶点的三角形与△PAT相似也有两种情况:△Q″PB∽△PAT、△Q″BP∽△PAT.【解答】解:(1)如图①,设直线AB与x轴的交点为M.∵∠OPA=45°,∴OM=OP=2,即M(﹣2,0).设直线AB的解析式为y=kx+b(k≠0),将M(﹣2,0),P(0,2)两点坐标代入,得,解得.故直线AB的解析式为y=x+2;(2)如图①,过点Q作x轴的垂线QC,交AB于点C,再过点Q作直线AB的垂线,垂足为D,根据条件可知△QDC为等腰直角三角形,则QD=QC.设Q(m,m2),则C(m,m+2).∴QC=m+2﹣m2=﹣(m﹣)2+,QD=QC=[﹣(m﹣)2+].故当m=时,点Q到直线AB的距离最大,最大值为;(3)∵∠APT=45°,∴△PBQ中必有一个内角为45°,由图知,∠BPQ=45°不合题意.①如图②,若∠PBQ=45°,过点B作x轴的平行线,与抛物线和y轴分别交于点Q′、F.此时满足∠PBQ′=45°.∵Q′(﹣2,4),F(0,4),∴此时△BPQ′是等腰直角三角形,由题意知△PAT也是等腰直角三角形.(i)当∠PTA=90°时,得到:PT=AT=1,此时t=1;(ii)当∠PAT=90°时,得到:PT=2,此时t=0.②如图③,若∠PQB=45°,①中是情况之一,答案同上;先以点F为圆心,FB为半径作圆,则P、B、Q′都在圆F上,设圆F与y轴左侧的抛物线交于另一点Q″.则∠PQ″B=∠PQ′B=45°(同弧所对的圆周角相等),即这里的交点Q″也是符合要求.设Q″(n,n2)(﹣2<n<0),由FQ″=2,得n2+(4﹣n2)2=22,即n4﹣7n2+12=0.解得n2=3或n2=4,而﹣2<n<0,故n=﹣,即Q″(﹣,3).可证△PFQ″为等边三角形,所以∠PFQ″=60°,又PQ″=PQ″,所以∠PBQ″=∠PFQ″=30°.则在△PQ″B中,∠PQ″B=45°,∠PBQ″=30°.(i)若△Q″PB∽△PAT,则过点A作y轴的垂线,垂足为E.则ET=AE=,OE=1,所以OT=﹣1,解得t=1﹣;(ii)若△Q″BP∽△PAT,则过点T作直线AB垂线,垂足为G.设TG=a,则PG=TG=a,AG=TG=a,AP=,∴a+a=,解得PT=a=﹣1,∴OT=OP﹣PT=3﹣,∴t=3﹣.综上所述,所求的t的值为t=1或t=0或t=1﹣或t=3﹣.2.如图,已知BC是半圆O的直径,BC=8,过线段BO上一动点D,作AD⊥BC 交半圆O于点A,联结AO,过点B作BH⊥AO,垂足为点H,BH的延长线交半圆O于点F.(1)求证:AH=BD;(2)设BD=x,BE•BF=y,求y关于x的函数关系式;(3)如图2,若联结FA并延长交CB的延长线于点G,当△FAE与△FBG相似时,求BD的长度.【分析】(1)由AD⊥BC,BH⊥AO,利用垂直的定义得到一对直角相等,再由一对公共角,且半径相等,利用AAS得到三角形ADO与三角形BHO全等,利用全等三角形对应边相等得到OH=OD,利用等式的性质化简即可得证;(2)连接AB,AF,如图1所示,利用HL得到直角三角形ADB与直角三角形BHA全等,利用全等三角形对应角相等得到一对角相等,再由公共角相等得到三角形ABE与三角形AFB相似,由相似得比例即可确定出y与x的函数解析式;(3)连接OF,如图2所示,利用两对角相等的三角形相似得到三角形AFO与三角形FOG相似,由相似得比例求出BD的长即可.【解答】(1)证明:∵AD⊥BC,BH⊥AO,∴∠ADO=∠BHO=90°,在△ADO与△BHO中,,∴△ADO≌△BHO(AAS),∴OH=OD,又∵OA=OB,∴AH=BD;(2)解:连接AB、AF,如图1所示,∵AO是半径,AO⊥弦BF,∴∴AB=AF,∴∠ABF=∠AFB,在Rt△ADB与Rt△BHA中,,∴Rt△ADB≌Rt△BHA(HL),∴∠ABF=∠BAD,∴∠BAD=∠AFB,又∵∠ABF=∠EBA,∴△BEA∽△BAF,∴=,。

2018年中考数学挑战压轴题(含答案)

2018年中考数学挑战压轴题(含答案)

2018年挑战压轴题中考数学精讲解读篇因动点产生的相似三角形问题1.如图,在平面直角坐标系xOy中,将抛物线y=x2的对称轴绕着点P(0,2)顺时针旋转45°后与该抛物线交于A、B两点,点Q是该抛物线上一点.(1)求直线AB的函数表达式;(2)如图①,若点Q在直线AB的下方,求点Q到直线AB的距离的最大值;(3)如图②,若点Q在y轴左侧,且点T(0,t)(t<2)是射线PO上一点,当以P、B、Q为顶点的三角形与△PAT相似时,求所有满足条件的t的值.2.如图,已知BC是半圆O的直径,BC=8,过线段BO上一动点D,作AD⊥BC 交半圆O于点A,联结AO,过点B作BH⊥AO,垂足为点H,BH的延长线交半圆O于点F.(1)求证:AH=BD;(2)设BD=x,BEBF=y,求y关于x的函数关系式;(3)如图2,若联结FA并延长交CB的延长线于点△G,当FAE与△FBG相似时,求BD的长度.3.如图,在平面直角坐标系xOy中,直线AB过点A(3,0)、B(0,m)(m>0),tan∠BAO=2.D(1)求直线AB的表达式;(2)反比例函数y=的图象与直线AB交于第一象限内的C、两点(BD<BC),当AD=2DB时,求k1的值;(3)设线段AB的中点为E,过点E作x轴的垂线,垂足为点M,交反比例函数y=的图象于点F,分别联结OE、△OF,当OEF∽△OBE时,请直接写出满足条件的所有k2的值.4.如图,在Rt△ABC中,∠ACB=90°,AC=1,BC=7,点D是边CA延长线的一点,AE⊥BD,垂足为点E,AE的延长线交CA的平行线BF于点F,连结CE交AB于点G.(1)当点E是BD的中点时,求tan∠AFB的值;(2)CE•AF的值是否随线段AD长度的改变而变化?如果不变,求出CE•AF的值;如果变化,请说明理由;(3)当△BGE和△BAF相似时,求线段AF的长.5.如图,平面直角坐标系xOy中,已知B(﹣1,0),一次函数y=﹣x+5的图象与x轴、y轴分别交于点A、C两点,二次函数y=﹣x2+bx+c的图象经过点A、点B.(1)求这个二次函数的解析式;(2)点P是该二次函数图象的顶点,求△APC的面积;(3)如果点Q在线段AC上,且△ABC与△AOQ相似,求点Q的坐标.6.已知:半圆O的直径AB=6,点C在半圆O上,且tan∠ABC=2,点D为弧AC上一点,联结DC(如图)(1)求BC的长;(2)若射线DC交射线AB于点M,且△MBC与△MOC相似,求CD的长;(3)联结OD,当OD∥BC时,作∠DOB的平分线交线段DC于点N,求ON的长.7.如图,已知二次函数y=x2+bx+c(b,c为常数)的图象经过点A(3,﹣1),点C(0,﹣4),顶点为点M,过点A作AB∥x轴,交y轴与点D,交该二次函数图象于点B,连结BC.(1)求该二次函数的解析式及点M的坐标;(2)若将该二次函数图象向上平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△ABC的内部(不包含△ABC的边界),求m的取值范围;(3)点P时直线AC上的动点,若点P,点C,点M所构成的三角形与△BCD相似,请直接写出所有点P的坐标(直接写出结果,不必写解答过程).因动点产生的等腰三角形问题8.如图1,在△ABC中,∠ACB=90°,∠BAC=60°,点E是∠BAC角平分线上一点,过点E作AE的垂线,过点A作AB的垂线,两垂线交于点D,连接DB,点F是BD的中点,DH⊥AC,垂足为H,连接EF,HF.(1)如图1,若点H是AC的中点,AC=2,求AB,BD的长;(2)如图1,求证:HF=EF;(3)如图2,连接CF,△CE.猜想:CEF是否是等边三角形?若是,请证明;若不是,说明理由.9.已知,一条抛物线的顶点为E(﹣1,4),且过点A(﹣3,0),与y轴交于点C,点D是这条抛物线上一点,它的横坐标为m,且﹣3<m<﹣1,过点D作DK ⊥x轴,垂足为K,DK分别交线段AE、AC于点G、H.(1)求这条抛物线的解析式;C 4(2)求证:GH=HK ;(3)当△CGH 是等腰三角形时,求 m 的值.10.如图,已知在 Rt △ABC 中,∠ACB=90°,AB=5,sinA= ,点 P 是边 BC 上的一点,PE ⊥AB ,垂足为 E ,以点 P 为圆心,PC 为半径的圆与射线 PE 相交于点 Q ,线段 CQ 与边 AB 交于点 D .(1)求 AD 的长;(2)设 CP=x ,△PCQ 的面积为 y ,求 y 关于 x 的函数解析式,并写出定义域;(3)过点 C 作 CF ⊥AB ,垂足为 F ,联结 PF 、△QF ,如果PQF 是以 PF 为腰的等腰三角形,求 CP 的长.11.如图(1),直线 y=﹣ x +n 交 x 轴于点 A ,交 y 轴于点 (0,),抛物线 y= x 2+bx +c经过点 A ,交 y 轴于点 B (0,﹣2).点 P 为抛物线上一个动点,过点 P 作 x 轴的垂线 PD ,过点 B 作 BD ⊥PD 于点 D ,连接 PB ,设点 P 的横坐标为 m .(1)求抛物线的解析式;(2)当△BDP为等腰直角三角形时,求线段PD的长;(3)如图(2),将△BDP绕点B逆时针旋转,得到△BD′P′,当旋转角∠PBP′=∠OAC,且点P的对应点P′落在坐标轴上时,请直接写出点P的坐标.12.综合与探究如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣8与x轴交于A,B两点,与y轴交于点C,直线l经过坐标原点O,与抛物线的一个交点为D,与抛物线的对称轴交于点E,连接CE,已知点A,D的坐标分别为(﹣2,0),(6,﹣8).(1)求抛物线的函数表达式,并分别求出点B和点E的坐标;(2)试探究抛物线上是否存在点F,使△FOE≌△FCE?若存在,请直接写出点F 的坐标;若不存在,请说明理由;(3)若点P是y轴负半轴上的一个动点,设其坐标为(0,m),直线PB与直线l交于点Q,试探究:当m为何值时,△OPQ是等腰三角形.因动点产生的直角三角形问题13.已知,如图1,在梯形ABCD中,AD∥BC,∠BCD=90°,BC=11,CD=6,tan ∠ABC=2,点E在AD边上,且AE=3ED,EF∥AB交BC于点F,点M、N分别在射线 FE 和线段 CD 上.(1)求线段 CF 的长;(2)如图 2,当点 M 在线段 FE 上,且 AM ⊥MN ,设 FMcos ∠EFC=x ,CN=y ,求 y 关于 x 的函数解析式,并写出它的定义域;(3)如果△AMN 为等腰直角三角形,求线段 FM 的长.14.如图,在矩形 ABCD 中,点 O 为坐标原点,点 B 的坐标为(4,3),点 A 、C在坐标轴上,点 P 在 BC 边上,直线 l 1:y=2x +3,直线 l 2:y=2x ﹣3.(1)分别求直线 l 1 与 x 轴,直线 l 2 与 AB 的交点坐标;(2)已知点 M 在第一象限,且是直线 l 2 上的点,若△APM 是等腰直角三角形, 求点 M 的坐标;(3)我们把直线 l 1 和直线 l 2 上的点所组成的图形为图形 F .已知矩形 ANPQ 的顶 点 N 在图形 F 上,Q 是坐标平面内的点,且 N 点的横坐标为 x ,请直接写出 x 的取值范围(不用说明理由).因动点产生的平行四边形问题15.如图,在平面直角坐标系 xOy 中,抛物线 y=ax 2﹣2ax ﹣3a (a <0)与 x 轴交于 A ,B 两点(点 A 在点 B 的左侧),经过点 A 的直线 l :y=kx +b 与 y 轴交于点 C ,与抛物线的另一个交点为D,且CD=4AC.(1)直接写出点A的坐标,并求直线l的函数表达式(其中k,b用含a的式子表示);(2)点E是直线l上方的抛物线上的一点,若△ACE的面积的最大值为,求a 的值;(3)设P是抛物线对称轴上的一点,点Q在抛物线上,以点A,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.16.如图,在矩形OABC中,OA=5,AB=4,点D为边AB上一点,将△BCD沿直线CD折叠,使点B恰好落在OA边上的点E处,分别以OC,OA所在的直线为x 轴,y轴建立平面直角坐标系.(1)求点E坐标及经过O,D,C三点的抛物线的解析式;(2)一动点P从点C出发,沿CB以每秒2个单位长的速度向点B运动,同时动点Q从E点出发,沿EC以每秒1个单位长的速度向点C运动,当点P到达点B时,两点同时停止运动.设运动时间为t秒,当t为何值时,DP=DQ;(3)若点N在(2)中的抛物线的对称轴上,点M在抛物线上,是否存在这样的点M与点N,使得以M,N,C,E为顶点的四边形是平行四边形?若存在,请求出M点的坐标;若不存在,请说明理由.17.如图,抛物线y=﹣x2+2x+3与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D和点C关于抛物线的对称轴对称,直线AD与y轴交于点E.(1)求直线AD的解析式;(2)如图1,直线AD上方的抛物线上有一点F,过点F作FG⊥AD于点G,作FH平行于x轴交直线AD于点△H,求FGH周长的最大值;(3)点M是抛物线的顶点,点P是y轴上一点,点Q是坐标平面内一点,以A,M,P,Q为顶点的四边形是以AM为边的矩形.若点T和点Q关于AM所在直线对称,求点T的坐标.18.如图,点A和动点P在直线l上,点P关于点A的对称点为Q,以AQ为边作Rt△ABQ,使∠BAQ=90°,AQ:AB=3:4,作△ABQ的外接圆O.点C在点P 右侧,PC=4,过点C作直线m⊥l,过点O作OD⊥m于点D,交AB右侧的圆弧于点E.在射线CD上取点F,使DF=CD,以DE,DF为邻边作矩形DEGF.设AQ=3x.(1)用关于x的代数式表示BQ,DF.(2)当点P在点A右侧时,若矩形DEGF的面积等于90,求AP的长.(3)在点P的整个运动过程中,①当AP为何值时,矩形DEGF是正方形?②作直线BG交⊙O于点N,若BN的弦心距为1,求AP的长(直接写出答案).19.在平面直角坐标系xOy(如图)中,经过点A(﹣1,0)的抛物线y=﹣x2+bx+3与y轴交于点C,点B与点A、点D与点C分别关于该抛物线的对称轴对称.(1)求b的值以及直线AD与x轴正方向的夹角;(2)如果点E是抛物线上一动点,过E作EF平行于x轴交直线AD于点F,且F 在E的右边,过点E作EG⊥AD与点G,设E的横坐标为m,△EFG的周长为l,试用m表示l;(3)点M是该抛物线的顶点,点P是y轴上一点,Q是坐标平面内一点,如果以点A、M、P、Q为顶点的四边形是矩形,求该矩形的顶点Q的坐标.20.如图,直线y=mx+4与反比例函数y=(k>0)的图象交于点A、B,与x 轴、y轴分别交于D、C,tan∠CDO=2,AC:CD=1:2.(1)求反比例函数解析式;(2)联结BO,求∠DBO的正切值;(3)点M在直线x=﹣1上,点N在反比例函数图象上,如果以点A、B、M、N 为顶点的四边形是平行四边形,求点N的坐标.21.如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为(2,9),与y轴交于点A(0,5),与x轴交于点E、B.(1)求二次函数y=ax2+bx+c的表达式;(2)过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点(点P 在AC上方),作PD平行于y轴交AB于点D,问当点P在何位置时,四边形APCD的面积最大?并求出最大面积;(3)若点M在抛物线上,点N在其对称轴上,使得以A、E、N、M为顶点的四边形是平行四边形,且AE为其一边,求点M、N的坐标.因动点产生的梯形问题22.如图,在平面直角坐标系xOy中,二次函数y=+bx+c的图象与y轴交于点A,与双曲线y=有一个公共点B,它的横坐标为4,过点B作直线l∥x轴,与该二次函数图象交于另一个点C,直线AC在y轴上的截距是﹣6.(1)求二次函数的解析式;(2)求直线AC的表达式;(3)平面内是否存在点D,使A、B、C、D为顶点的四边形是等腰梯形?如果存在,求出点D坐标;如果不存在,说明理由.23.如图,矩形OMPN的顶点O在原点,M、N分别在x轴和y轴的正半轴上,OM=6,ON=3,反比例函数y=的图象与PN交于C,与PM交于D,过点C作CA⊥x轴于点A,过点D作DB⊥y轴于点B,AC与BD交于点G.(1)求证:AB∥CD;(2)在直角坐标平面内是否若存在点E,使以B、C、D、E为顶点,BC为腰的梯形是等腰梯形?若存在,求点E的坐标;若不存在请说明理由.因动点产生的面积问题24.如图,边长为8的正方形OABC的两边在坐标轴上,以点C为顶点的抛物线经过点A,点P是抛物线上点A,C间的一个动点(含端点),过点P作PF⊥BC于点F,点D、E的坐标分别为(0,6),(﹣4,0),连接PD、PE、DE.(1)请直接写出抛物线的解析式;(2)小明探究点P的位置发现:当P与点A或点C重合时,PD与PF的差为定值,进而猜想:对于任意一点P,PD与PF的差为定值,请你判断该猜想是否正确,并说明理由;(3)小明进一步探究得出结论:若将“使△PDE的面积为整数”的点P记作“好点”,则存在多个“好点”,且使△PDE的周长最小的点P也是一个“好点”.请直接写出所有“好点”的个数,并求出△PDE周长最小时“好点”的坐标.25.如图,四边形OABC是边长为4的正方形,点P为OA边上任意一点(与点O、A不重合),连接CP,过点P作PM⊥CP交AB于点D,且PM=CP,过点M 作MN∥OA,交BO于点N,连接ND、BM,设OP=t.(1)求点M的坐标(用含t的代数式表示).(2)试判断线段MN的长度是否随点P的位置的变化而改变?并说明理由.(3)当t为何值时,四边形BNDM的面积最小.26.在数学兴趣小组活动中,小明进行数学探究活动,将边长为2的正方形ABCD 与边长为2的正方形AEFG按图1位置放置,AD与AE在同一直线上,AB与AG在同一直线上.(1)小明发现DG⊥BE,请你帮他说明理由.(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG 上时,请你帮他求出此时BE的长.(3)如图3,小明将正方形ABCD绕点A继续逆时针旋转,线段DG与线段BE将相交,交点为△H,写出GHE与△BHD面积之和的最大值,并简要说明理由.27.在平面直角坐标系中,O为原点,直线y=﹣2x﹣1与y轴交于点A,与直线y=﹣x交于点B,点B关于原点的对称点为点C.(1)求过A,B,C三点的抛物线的解析式;(2)P为抛物线上一点,它关于原点的对称点为Q.①当四边形PBQC为菱形时,求点P的坐标;②若点P的横坐标为t(﹣1<t<1),当t为何值时,四边形PBQC面积最大?并说明理由.28.如图,在平面直角坐标系中,点A(10,0),以OA为直径在第一象限内作半圆,B为半圆上一点,连接AB并延长至C,使BC=AB,过C作CD⊥x轴于点D,交线段OB于点E,已知CD=8,抛物线经过O、E、A三点.(1)∠OBA=°.(2)求抛物线的函数表达式.(3)若P为抛物线上位于第一象限内的一个动点,以P、O、A、E为顶点的四边形面积记作S,则S取何值时,相应的点P有且只有3个?29.如图1,关于x的二次函数y=﹣x2+bx+c经过点A(﹣3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,E在x轴上.(1)求抛物线的解析式;(2)DE上是否存在点P到AD的距离与到x轴的距离相等?若存在求出点P,若不存在请说明理由;(3)如图2,DE的左侧抛物线上是否存在点F,使2SF的坐标,若不存在请说明理由.△FBC=3S△EBC?若存在求出点30.已知抛物线y=mx2+(1﹣2m)x+1﹣3m与x轴相交于不同的两点A、B (1)求m的取值范围;(2)证明该抛物线一定经过非坐标轴上的一点P,并求出点P的坐标;(3)当<m≤8时,由(2)求出的点P和点A,B构成的△ABP的面积是否有最值?若有,求出该最值及相对应的m值.31.问题提出(1)如图①,已知△ABC,请画出△ABC关于直线AC对称的三角形.问题探究(2)如图②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在边BC、CD 上分别存在点G、H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.问题解决(3)如图③,有一矩形板材ABCD,AB=3米,AD=6米,现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,EF=FG=米,∠EHG=45°,经研究,只有当点E、F、G分别在边AD、AB、BC上,且AF<BF,并满足点H 在矩形ABCD内部或边上时,才有可能裁出符合要求的部件,试问能否裁得符合要求的面积尽可能大的四边形EFGH部件?若能,求出裁得的四边形EFGH部件的面积;若不能,请说明理由.32.如图,在平面直角坐标系中,矩形O CDE的顶点C和E分别在y轴的正半轴和x轴的正半轴上,OC=8,OE=17,抛物线y=x2﹣3x+m与y轴相交于点A,抛物线的对称轴与x轴相交于点B,与CD交于点K.(1)将矩形OCDE沿AB折叠,点O恰好落在边CD上的点F处.①点B的坐标为(、),BK的长是,CK的长是;②求点F的坐标;③请直接写出抛物线的函数表达式;(2)将矩形OCDE沿着经过点E的直线折叠,点O恰好落在边CD上的点G处,连接OG,折痕与OG相交于点H,点M是线段EH上的一个动点(不与点H重合),连接MG,MO,过点G作GP⊥OM于点P,交EH于点N,连接ON,点M从点E开始沿线段EH向点H运动,至与点N重合时停止,△MOG和△NOG的面积分别表示为S1和S2,在点M的运动过程中,S1S2(即S1与S2的积)的值是否发生变化?若变化,请直接写出变化范围;若不变,请直接写出这个值.温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.A33.如图,已知▱ABCD 的三个顶点 A (n ,0)、B (m ,0)、D (0,2n )(m >n >0),作▱ABCD 关于直线 AD 的对称图形 AB 1C 1D (1)若 m=3,试求四边形 CC 1B 1B 面积 S 的最大值; (2)若点 B 1 恰好落在 y 轴上,试求 的值.因动点产生的相切问题34.如图,已知在平面直角坐标系 xOy 中,抛物线 y=ax 2+2x +c 与 x 轴交于点 (﹣1,0)和点 B ,与 y 轴相交于点 C (0,3),抛物线的对称轴为直线 l .(1)求这条抛物线的关系式,并写出其对称轴和顶点 M 的坐标;(2)如果直线 y=kx +b 经过 C 、M 两点,且与 x 轴交于点 D ,点 C 关于直线 l 的对称点为 N ,试证明四边形 CDAN 是平行四边形;(3)点 P 在直线 l 上,且以点 P 为圆心的圆经过 A 、B 两点,并且与直线 CD 相切,求点 P 的坐标.35.如图,在Rt△ABC中,∠C=90°,AC=14,tanA=,点D是边AC上一点,AD=8,点E是边AB上一点,以点E为圆心,EA为半径作圆,经过点D,点F是边AC 上一动点(点F不与A、C重合),作FG⊥EF,交射线BC于点G.(1)用直尺圆规作出圆心E,并求圆E的半径长(保留作图痕迹);(2)当点G的边BC上时,设AF=x,CG=y,求y关于x的函数解析式,并写出它的定义域;(3)联结△EG,当EFG与△FCG相似时,推理判断以点G为圆心、CG为半径的圆G与圆E可能产生的各种位置关系.36.如图,线段PA=1,点D是线段PA延长线上的点,AD=a(a>1),点O是线段AP延长线上的点,OA2=OP•OD,以O为圆心,OA为半径作扇形OAB,∠BOA=90°.点C是弧AB上的点,联结PC、DC.(1)联结BD交弧AB于E,当a=2时,求BE的长;(2)当以PC为半径的⊙P和以CD为半径的⊙C相切时,求a的值;(3)当直线DC经过点B,且满足PC•OA=BC•OP时,求扇形OAB的半径长.37.如图,在矩形ABCD中,AB=6cm,AD=8cm,点P从点B出发,沿对角线BD 向点D匀速运动,速度为4cm/s,过点P作PQ⊥BD交BC于点Q,以PQ为一边作正方形PQMN,使得点N落在射线PD上,点O从点D出发,沿DC向点C匀速运动,速度为3cm/s,以O为圆心,0.8cm为半径作⊙O,点P与点O同时出发,设它们的运动时间为t(单位:s)(0<t<).(1)如图1,连接DQ平分∠BDC时,t的值为;(2)如图2,连接△CM,若CMQ是以CQ为底的等腰三角形,求t的值;(3)请你继续进行探究,并解答下列问题:①证明:在运动过程中,点O始终在QM所在直线的左侧;②如图3,在运动过程中,当QM与⊙O相切时,求t的值;并判断此时PM与⊙O是否也相切?说明理由.38.如图,抛物线y=﹣x2+mx+n的图象经过点A(2,3),对称轴为直线x=1,一次函数y=kx+b的图象经过点A,交x轴于点P,交抛物线于另一点B,点A、B 位于点P的同侧.(1)求抛物线的解析式;(2)若PA:PB=3:1,求一次函数的解析式;(3)在(2)的条件下,当k>0时,抛物线的对称轴上是否存在点C,使得⊙C 同时与x轴和直线AP都相切,如果存在,请求出点C的坐标,如果不存在,请说明理由.因动点产生的线段和差问题39.如图,抛物线 y=x 2﹣4x 与 x 轴交于 O ,A 两点,P 为抛物线上一点,过点 P的直线 y=x +m 与对称轴交于点 Q .(1)这条抛物线的对称轴是,直线 PQ 与 x 轴所夹锐角的度数是;(2)若两个三角形面积满足 S △POQ = S △PAQ ,求 m 的值;(3)当点 P 在 x 轴下方的抛物线上时,过点 C (2,2)的直线 AC 与直线 PQ 交于点 D ,求:①PD +DQ 的最大值;②PDDQ 的最大值.40.抛物线 y=ax 2+bx +4(a ≠0)过点 A (1,﹣1),B (5,﹣1),与 y 轴交于点 C .(1)求抛物线的函数表达式;(2)如图 1,连接 CB ,以 CB 为边作▱CBPQ ,若点 P 在直线 BC 上方的抛物线上,Q 为坐标平面内的一点,且▱CBPQ 的面积为 30,求点 P 的坐标;(3)如图 2,⊙O 1 过点 A 、B 、C 三点,AE 为直径,点 M 为上的一动点(不与点 A ,E 重合),∠MBN 为直角,边 BN 与 ME 的延长线交于 N ,求线段 BN 长度的最大值.41.如图,在每一个四边形ABCD中,均有AD∥BC,CD⊥BC,∠ABC=60°,AD=8,BC=12.(1)如图①,点M是四边形ABCD边AD上的一点,则△BMC的面积为;(2)如图②,点N是四边形ABCD边AD上的任意一点,请你求出△BNC周长的最小值;(3)如图③,在四边形ABCD的边AD上,是否存在一点P,使得cos∠BPC的值最小?若存在,求出此时cos∠BPC的值;若不存在,请说明理由.42.如图,把△EFP按图示方式放置在菱形ABCD中,使得顶点E、F、P分别在线段AB、AD、AC上,已知EP=FP=4,EF=4,∠BAD=60°,且AB>4.(1)求∠EPF的大小;(2)若AP=6,求AE+AF的值;(3)若△EFP的三个顶点E、F、P分别在线段AB、AD、AC上运动,请直接写出AP长的最大值和最小值.43.如图,在平面直角坐标系中,抛物线y=﹣x2﹣x+2与x轴交于B、C两点(点B在点C的左侧),与y轴交于点A,抛物线的顶点为D.(1)填空:点A的坐标为(,),点B的坐标为(,),点C的坐标为(,),点D的坐标为(,);(2)点P是线段BC上的动点(点P不与点B、C重合)①过点P作x轴的垂线交抛物线于点E,若PE=PC,求点E的坐标;②在①的条件下,点F是坐标轴上的点,且点F到EA和ED的距离相等,请直接写出线段EF的长;③若点Q是线段AB上的动点(点Q不与点A、B重合),点R是线段AC上的动点(点R不与点A、C重合),请直接写出△PQR周长的最小值.44.如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积;(3)当射线BN交线段CD于点F时,求DF的最大值.45.如图,半圆O的直径AB=4,以长为2的弦PQ为直径,向点O方向作半圆M,其中P点在发现:的长与上且不与A点重合,但Q点可与B点重合.的长之和为定值l,求l:思考:点M与AB的最大距离为,此时点P,A间的距离为;点M与AB的最小距离为,此时半圆M的弧与AB所围成的封闭图形面积为;探究:当半圆M与AB相切时,求的长.(注:结果保留π,cos35°=,cos55°=)46.(1)发现:如图1,点A为线段BC外一动点,且BC=a,AB=b.填空:当点A位于时,线段AC的长取得最大值,且最大值为(用含a,b的式子表示)(2)应用:点A为线段BC外一动点,且BC=3,AB=1,如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.①请找出图中与BE相等的线段,并说明理由;②直接写出线段BE长的最大值.(3)拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,请直接写出线段AM长的最大值及此时点P的坐标.47.如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a<0)经过点B.(1)求该抛物线的函数表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为△m,ABM的面积为S,求S与m的函数表达式,并求出S 的最大值;(3)在(2)的条件下,当S取得最大值时,动点M相应的位置记为点M′.①写出点M′的坐标;②将直线l绕点A按顺时针方向旋转得到直线l′,当直线l′与直线AM′重合时停止旋转,在旋转过程中,直线l′与线段BM′交于点C,设点B、M′到直线l′的距离分别为d1、d2,当d1+d2最大时,求直线l′旋转的角度(即∠BAC的度数).48.如图,在平面直角坐标系xOy中,将二次函数y=x2﹣1的图象M沿x轴翻折,把所得到的图象向右平移2个单位长度后再向上平移8个单位长度,得到二次函数图象N.(1)求N的函数表达式;(2)设点P(m,n)是以点C(1,4)为圆心、1为半径的圆上一动点,二次函数的图象M与x轴相交于两点A、B,求PA2+PB2的最大值;(3)若一个点的横坐标与纵坐标均为整数,则该点称为整点.求M与N所围成封闭图形内(包括边界)整点的个数.49.如图,顶点为A(,1)的抛物线经过坐标原点O,与x轴交于点B.(1)求抛物线对应的二次函数的表达式;(2)过B作OA的平行线交y轴于点C,交抛物线于点D,求证:△OCD≌△OAB;(3)在x轴上找一点P,使得△PCD的周长最小,求出P点的坐标.(2017挑战压轴题中考数学精讲解读篇参考答案与试题解析一.解答题(共36小题)1.如图,在平面直角坐标系xOy中,将抛物线y=x2的对称轴绕着点P(0,2)顺时针旋转45°后与该抛物线交于A、B两点,点Q是该抛物线上一点.(1)求直线AB的函数表达式;(2)如图①,若点Q在直线AB的下方,求点Q到直线AB的距离的最大值;(3)如图②,若点Q在y轴左侧,且点T(0,t)(t<2)是射线PO上一点,当以P、B、Q为顶点的三角形与△PAT相似时,求所有满足条件的t的值.【分析】1)根据题意易得点M、P的坐标,利用待定系数法来求直线AB的解析式;(2)如图①,过点Q作x轴的垂线QC,交AB于点C,再过点Q作直线AB的垂线,垂足为D,构建等腰直角△QDC,利用二次函数图象上点的坐标特征和二次函数最值的求法进行解答;(3)根据相似三角形的对应角相等推知:△PBQ中必有一个内角为45°;需要分类讨论:∠PBQ=45°和∠PQB=45°;然后对这两种情况下的△PAT是否是直角三角形分别进行解答.另外,以P、B、Q为顶点的三角形与△PAT相似也有两种情况:△Q″PB∽△PAT、△Q″BP∽△PAT.【解答】解:(1)如图①,设直线AB与x轴的交点为M.∵∠OPA=45°,∴OM=OP=2,即M(﹣2,0).设直线AB的解析式为y=kx+b(k≠0),将M(﹣2,0),P(0,2)两点坐标代入,得,解得.故直线AB的解析式为y=x+2;(2)如图①,过点Q作x轴的垂线QC,交AB于点C,再过点Q作直线AB的垂线,垂足为D,根据条件可知△QDC为等腰直角三角形,则QD=QC.设Q(m,m2),则C(m,m+2).∴QC=m+2﹣m2=﹣(m﹣)2+,QD=QC=[﹣(m﹣)2+].故当m=时,点Q到直线AB的距离最大,最大值为;(3)∵∠APT=45°,∴△PBQ中必有一个内角为45°,由图知,∠BPQ=45°不合题意.①如图②,若∠PBQ=45°,过点B作x轴的平行线,与抛物线和y轴分别交于点Q′、F.此时满足∠PBQ′=45°.∵Q′(﹣2,4),F(0,4),∴此时△BPQ′是等腰直角三角形,由题意知△PAT也是等腰直角三角形.(i)当∠PTA=90°时,得到:PT=AT=1,此时t=1;(ii)当∠PAT=90°时,得到:PT=2,此时t=0.②如图③,若∠PQB=45°,①中是情况之一,答案同上;先以点F为圆心,FB为半径作圆,则P、B、Q′都在圆F上,设圆F与y轴左侧的抛物线交于另一点Q″.则∠PQ″B=∠PQ′B=45°(同弧所对的圆周角相等),即这里的交点Q″也是符合要求.设Q″(n,n2)(﹣2<n<0),由FQ″=2,得n2+(4﹣n2)2=22,即n4﹣7n2+12=0.解得n2=3或n2=4,而﹣2<n<0,故n=﹣,即Q″(﹣,3).可证△PFQ″为等边三角形,所以∠PFQ″=60°,又PQ″=PQ″,所以∠PBQ″=∠PFQ″=30°.则在△PQ″B中,∠PQ″B=45°,∠PBQ″=30°.(i)若△Q″PB∽△PAT,则过点A作y轴的垂线,垂足为E.则ET=所以OT=AE=,OE=1,﹣1,解得t=1﹣;(ii)若△Q″BP∽△PAT,则过点T作直线AB垂线,垂足为G.设TG=a,则PG=TG=a,AG=∴a+a=,TG=a,AP=,解得PT=a=﹣1,∴OT=OP﹣PT=3﹣,∴t=3﹣.综上所述,所求的t的值为t=1或t=0或t=1﹣或t=3﹣.2.如图,已知BC是半圆O的直径,BC=8,过线段BO上一动点D,作AD⊥BC 交半圆O于点A,联结AO,过点B作BH⊥AO,垂足为点H,BH的延长线交半圆O于点F.(1)求证:AH=BD;(2)设BD=x,BEBF=y,求y关于x的函数关系式;(3)如图2,若联结FA并延长交CB的延长线于点△G,当FAE与△FBG相似时,求BD的长度.【分析】(1)由AD⊥BC,BH⊥AO,利用垂直的定义得到一对直角相等,再由一对公共角,且半径相等,利用AAS得到三角形ADO与三角形BHO全等,利用全等三角形对应边相等得到OH=OD,利用等式的性质化简即可得证;(2)连接AB,AF,如图1所示,利用HL得到直角三角形ADB与直角三角形BHA全等,利用全等三角形对应角相等得到一对角相等,再由公共角相等得到三角形ABE与三角形AFB相似,由相似得比例即可确定出y与x的函数解析式;(3)连接OF,如图2所示,利用两对角相等的三角形相似得到三角形AFO与三角形FOG相似,由相似得比例求出BD的长即可.【解答】(1)证明:∵AD⊥BC,BH⊥AO,∴∠ADO=∠BHO=90°,在△ADO与△BHO中,,∴△ADO≌△BHO(AAS),∴OH=OD,又∵OA=OB,∴AH=BD;(2)解:连接AB、AF,如图1所示,∵AO是半径,AO⊥弦BF,∴∴AB=AF,∴∠ABF=∠AFB,在Rt△ADB与Rt△BHA中,,∴Rt△ADB≌Rt△BHA(HL),∴∠ABF=∠BAD,∴∠BAD=∠AFB,又∵∠ABF=∠EBA,∴△BEA∽△BAF,∴=,。

2018挑战中考数学压轴题全套含答案及解析

2018挑战中考数学压轴题全套含答案及解析

第一部分函数图象中点的存在性问题§1.1 因动点产生的相似三角形问题例1 2014年市中考第28题例2 2014年市中考第21题例3 2015年湘西州中考第26题例4 2015年市中考第25题例5 2016年市中考第26题例6 2016年市中考第24题例7 2016年市崇明县中考模拟第25题例8 2016年市黄浦区中考模拟第26题§1.2 因动点产生的等腰三角形问题例9 2014年市中考第26题例10 2014年市第25题例11 2014年市中考第26题例12 2014年市中考第27题例13 2015年市中考第22题例14 2015年市中考第26题例15 2016年市中考第26题例16 2016年市长宁区金山区中考模拟第25题例17 2016年省中考第23题§1.3 因动点产生的直角三角形问题例19 2015年市中考第21题例20 2015年市中考第26题例21 2016年市中考第26题例22 2016年市松江区中考模拟第25题例23 2016年义乌市市中考第24题§1.4 因动点产生的平行四边形问题例24 2014年市中考第24题例25 2014年市中考第20题例26 2014年市中考第25题例27 2015年市中考第25题例28 2015年黄冈市中考第24题例29 2016年市中考第26题例30 2016年市嘉定区宝山区中考模拟中考第24题例31 2016年市徐汇区中考模拟第24题§1.5 因动点产生的面积问题例32 2014年市中考第25题例33 2014年永州市中考第25题例35 2015年市中考第26题例36 2015年株洲市中考第23题例37 2015年市中考第28题例38 2016年市中考第22题例39 2016年永州市中考第26题例40 2016年市中考第26题例41 2016年省中考第25题§1.6 因动点产生的相切问题例42 2014年市中考第27题例43 2014年株洲市中考第23题例44 2015年市中考第25题例45 2015年湘西州中考第25题例46 2016年市中考第25题例47 2016年市中考第26题例48 2016年市闵行区中考模拟第24题例49 2016年市普陀区中考模拟中考第25题§1.7 因动点产生的线段和差问题例50 2014年市中考第26题例51 2014年湘西州中考第25题例53 2015年市中考第28题例54 2015年市中考第25题例55 2016年市中考第26题例56 2016年市中考第24题例57 2016年市中考第21题第二部分图形运动中的函数关系问题§2.1 由比例线段产生的函数关系问题例1 2014年市中考第26题例2 2014年市中考第25题例3 2014年市中考第25题例4 2015年市中考第25题例5 2015年市中考第26题例6 2015年市中考第25题例7 2015年市中考第26题例8 2016年市中考第25题例9 2016年湘西州中考第26题例10 2016年市静安区青浦区中考模拟第25题例11 2016年市中考第27题第三部分图形运动中的计算说理问题§3.1 代数计算及通过代数计算进行说理问题例1 2014年市中考第25题例2 2014年市中考第23题例3 2014年市中考第26题例4 2014年株洲市中考第24题例5 2015年市中考第27题例6 2015年市中考第25题例7 2015年永州市中考第26题例8 2015年市中考第25题例9 2015年株洲市中考第24题例10 2016年市中考第22题例11 2016年市中考第25题例12 2016年株洲市中考第26题例13 2016年市中考第25题例14 2016年市中考第26题§3.2 几何证明及通过几何计算进行说理问题例15 2014年市中考第26题例16 2014年市中考第26题例17 2014年市中考第23题例18 2015年市中考第26题例19 2015年市中考第20题例20 2015年永州市中考第27题例21 2015年市中考第23题例22 2016年市中考第25题例23 2016年市中考第25题例24 2016年永州市中考第27题例25 2016年市中考第23题例26 2016年株洲市中考第25题例27 2016年市中考第25题第四部分图形的平移、翻折与旋转§4.1 图形的平移例1 2015年市中考第15题例2 2015年市中考第14题例3 2015年株洲市中考第14题例4 2016年市虹口区中考模拟第18题§4.2 图形的翻折例5 2016年市奉贤区中考模拟第18题例6 2016年市静安区青浦区中考模拟第18题例7 2016年市闵行区中考模拟第18题例8 2016年市浦东新区中考模拟第18题例8 2016年市普陀区中考模拟第18题例10 2016年市中考第15题例11 2016年市中考第14题例12 2016年市中考第18题例13 2016年市中考第15题例14 2016年市中考第12题§4.3 图形的旋转例15 2016年昂立教育中学生三模联考第18题例16 2016年市崇明县中考模拟第18题例17 2016年市黄浦区中考模拟第18题例18 2016年市嘉定区宝山区中考模拟第18题例19 2016年市闸北区中考模拟第18题例20 2016年市中考第13题例21 2016年株洲市中考第4题§4.4 三角形例22 2016年省中考第10题例23 2016年市中考第10题例24 2016年省中考第16题例25 2016年市中考第10题例27 2016年市中考第10题例28 2016年省中考第14题例29 2016年江市中考第11题例30 2016年市中考第18题§4.5 四边形例31 2016年湘西州中考第11题例32 2016年市中考第4题例33 2016年市中考第6题例34 2016年市中考第16题例35 2016年市中考第14题例36 2016年市中考第13题例37 2016年市中考第18题例38 2016年市中考第17题例39 2016年市中考第15题§4.6 圆例40 2016年滨州市中考第16题例41 2016年市中考第17题例42 2016年市中考第16题例43 2016年市中考第17题例45 2016年市中考第18题例46 2016年市中考第9题例47 2016年宿迁市中考第16题例48 2016年市中考第17题例49 2016年市中考第18题例50 2016年湘西州中考第18题例51 2016年永州市中考第20题§4.7 函数的图象及性质例52 2015年荆州市中考第9题例53 2015年市中考第12题例54 2015年市中考第12题例55 2015年市中考第10题例56 2015年市中考第10题例57 2015年呼和浩特市中考第10题例58 2016年市中考第18题例59 2016年市中考第19题例60 2016年市中考第15题例61 2016年株洲市中考第9题例62 2016年永州市中考第19题例63 2016年市中考第8题例64 2016年市中考第16题例65 2016年市中考第14题例66 2016年株洲市中考第10题例67 2016年株洲市中考第17题例68 2016年东营市中考第15题例69 2016年市中考第13题例70 2016年市中考第16题例71 2016年宿迁市中考第15题例72 2016年市中考第14题例73 2016年义乌市市中考第9题例74 2016年市中考第12题例75 2016年市中考第16题§1.1 因动点产生的相似三角形问题课前导学相似三角形的判定定理有3个,其中判定定理1和判定定理2都有对应角相等的条件,因此探求两个三角形相似的动态问题,一般情况下首先寻找一组对应角相等.判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验.如果已知∠A =∠D ,探求△ABC 与△DEF 相似,只要把夹∠A 和∠D 的两边表示出来,按照对应边成比例,分AB DE AC DF =和AB DF AC DE=两种情况列方程. 应用判定定理1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等. 应用判定定理3解题不多见,根据三边对应成比例列连比式解方程(组).还有一种情况,讨论两个直角三角形相似,如果一组锐角相等,其中一个直角三角形的锐角三角比是确定的,那么就转化为讨论另一个三角形是直角三角形的问题.求线段的长,要用到两点间的距离公式,而这个公式容易记错.理解记忆比较好. 如图1,如果已知A 、B 两点的坐标,怎样求A 、B 两点间的距离呢?我们以AB 为斜边构造直角三角形,直角边与坐标轴平行,这样用勾股定理就可以求斜边AB 的长了.水平距离BC 的长就是A 、B 两点间的水平距离,等于A 、B 两点的横坐标相减;竖直距离AC 就是A 、B 两点间的竖直距离,等于A 、B 两点的纵坐标相减.图1例 1 2014年省市中考第28题二次函数y =a x 2+b x +c (a ≠0)的图象与x 轴交于A (-3, 0)、B (1, 0)两点,与y 轴交于点C (0,-3m )(m >0),顶点为D .(1)求该二次函数的解析式(系数用含m 的代数式表示);(2)如图1,当m =2时,点P 为第三象限抛物线上的一个动点,设△APC 的面积为S ,试求出S 与点P 的横坐标x 之间的函数关系式及S 的最大值;(3)如图2,当m 取何值时,以A 、D 、C 三点为顶点的三角形与△OBC 相似?图1 图2动感体验请打开几何画板文件名“1428”,拖动点P 运动,可以体验到,当点P 运动到AC 的中点的正下方时,△APC 的面积最大.拖动y 轴上表示实数m 的点运动,抛物线的形状会改变,可以体验到,∠ACD 和∠ADC 都可以成为直角.思路点拨1.用交点式求抛物线的解析式比较简便.2.连结OP ,△APC 可以割补为:△AOP 与△COP 的和,再减去△AOC .3.讨论△ACD 与△OBC 相似,先确定△ACD 是直角三角形,再验证两个直角三角形是否相似.4.直角三角形ACD 存在两种情况.图文解析(1)因为抛物线与x 轴交于A (-3, 0)、B (1, 0)两点,设y =a (x +3)(x -1).代入点C (0,-3m ),得-3m =-3a .解得a =m .所以该二次函数的解析式为y =m (x +3)(x -1)=mx 2+2mx -3m .(2)如图3,连结OP .当m =2时,C (0,-6),y =2x 2+4x -6,那么P (x , 2x 2+4x -6).由于S △AOP =1()2P OA y ⨯-=32-(2x 2+4x -6)=-3x 2-6x +9, S △COP =1()2P OC x ⨯-=-3x ,S △AOC =9, 所以S =S △APC =S △AOP +S △COP -S △AOC =-3x 2-9x =23273()24x -++. 所以当32x =-时,S 取得最大值,最大值为274.图3 图4 图5(3)如图4,过点D 作y 轴的垂线,垂足为E .过点A 作x 轴的垂线交DE 于F . 由y =m (x +3)(x -1)=m (x +1)2-4m ,得D (-1,-4m ).在Rt △OBC 中,OB ∶OC =1∶3m .如果△ADC 与△OBC 相似,那么△ADC 是直角三角形,而且两条直角边的比为1∶3m .①如图4,当∠ACD =90°时,OA OC EC ED =.所以331m m =.解得m =1. 此时3CA OC CD ED ==,3OC OB =.所以CA OC CD OB =.所以△CDA ∽△OBC . ②如图5,当∠ADC =90°时,FA FD ED EC =.所以421m m=.解得2m =. 此时222DA FD DC EC m===,而3232OC m OB ==.因此△DCA 与△OBC 不相似. 综上所述,当m =1时,△CDA ∽△OBC .考点伸展第(2)题还可以这样割补:如图6,过点P 作x 轴的垂线与AC 交于点H .由直线AC :y =-2x -6,可得H (x ,-2x -6).又因为P (x , 2x 2+4x -6),所以HP =-2x 2-6x .因为△PAH 与△PCH 有公共底边HP ,高的和为A 、C 两点间的水平距离3,所以S =S △APC =S △APH +S △CPH=32(-2x 2-6x ) =23273()24x -++. 图6例2 2014年省市中考第21题如图1,在直角梯形ABCD中,AB//CD,AD⊥AB,∠B=60°,AB=10,BC=4,点P沿线段AB从点A向点B运动,设AP=x.2·1·c·n·j·y(1)求AD的长;(2)点P在运动过程中,是否存在以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似?若存在,求出x的值;若不存在,请说明理由;(3)设△ADP与△PCB的外接圆的面积分别为S1、S2,若S=S1+S2,求S的最小值.动感体验图1请打开几何画板文件名“1421”,拖动点P在AB上运动,可以体验到,圆心O的运动轨迹是线段BC的垂直平分线上的一条线段.观察S随点P运动的图象,可以看到,S有最小值,此时点P看上去象是AB的中点,其实离得很近而已.思路点拨1.第(2)题先确定△PCB是直角三角形,再验证两个三角形是否相似.2.第(3)题理解△PCB的外接圆的圆心O很关键,圆心O在确定的BC的垂直平分线上,同时又在不确定的BP的垂直平分线上.而BP与AP是相关的,这样就可以以AP 为自变量,求S的函数关系式.图文解析(1)如图2,作CH⊥AB于H,那么AD=CH.在Rt△BCH中,∠B=60°,BC=4,所以BH=2,CH=23.所以AD=23.(2)因为△APD是直角三角形,如果△APD与△PCB相似,那么△PCB一定是直角三角形.①如图3,当∠CPB=90°时,AP=10-2=8.所以APAD =23=43,而PCPB=3.此时△APD与△PCB不相似.图2 图3 图4 ②如图4,当∠BCP=90°时,BP=2BC=8.所以AP=2.所以AP AD =23=3.所以∠APD =60°.此时△APD ∽△CBP . 综上所述,当x =2时,△APD ∽△CBP .(3)如图5,设△ADP 的外接圆的圆心为G ,那么点G 是斜边DP 的中点.设△PCB 的外接圆的圆心为O ,那么点O 在BC 边的垂直平分线上,设这条直线与BC 交于点E ,与AB 交于点F .设AP =2m .作OM ⊥BP 于M ,那么BM =PM =5-m .在Rt △BEF 中,BE =2,∠B =60°,所以BF =4.在Rt △OFM 中,FM =BF -BM =4-(5-m )=m -1,∠OFM =30°,所以OM =3(1)m -. 所以OB 2=BM 2+OM 2=221(5)(1)3m m -+-. 在Rt △ADP 中,DP 2=AD 2+AP 2=12+4m 2.所以GP 2=3+m 2.于是S =S 1+S 2=π(GP 2+OB 2)=22213(5)(1)3m m m π⎡⎤++-+-⎢⎥⎣⎦=2(73285)3m m π-+. 所以当167m =时,S 取得最小值,最小值为1137π.图5 图6考点伸展关于第(3)题,我们再讨论个问题.问题1,为什么设AP =2m 呢?这是因为线段AB =AP +PM +BM =AP +2BM =10. 这样BM =5-m ,后续可以减少一些分数运算.这不影响求S 的最小值.问题2,如果圆心O 在线段EF 的延长线上,S 关于m 的解析式是什么?如图6,圆心O 在线段EF 的延长线上时,不同的是FM =BM -BF =(5-m )-4=1-m .此时OB 2=BM 2+OM 2=221(5)(1)3m m -+-.这并不影响S 关于m 的解析式.例 3 2015年省湘西市中考第26题如图1,已知直线y =-x +3与x 轴、y 轴分别交于A 、B 两点,抛物线y =-x 2+bx +c 经过A 、B 两点,点P 在线段OA 上,从点O 出发,向点A 以每秒1个单位的速度匀速运动;同时,点Q 在线段AB 上,从点A 出发,向点B 以每秒2个单位的速度匀速运动,连结PQ ,设运动时间为t 秒.(1)求抛物线的解析式;(2)问:当t 为何值时,△APQ 为直角三角形;(3)过点P 作PE //y 轴,交AB 于点E ,过点Q 作QF //y 轴,交抛物线于点F ,连结EF ,当EF //PQ 时,求点F 的坐标;(4)设抛物线顶点为M ,连结BP 、BM 、MQ ,问:是否存在t 的值,使以B 、Q 、M 为顶点的三角形与以O 、B 、P 为顶点的三角形相似?若存在,请求出t 的值;若不存在,请说明理由. 图1动感体验请打开几何画板文件名“15湘西26”,拖动点P 在OA 上运动,可以体验到,△APQ 有两个时刻可以成为直角三角形,四边形EPQF 有一个时刻可以成为平行四边形,△MBQ 与△BOP 有一次机会相似.思路点拨1.在△APQ 中,∠A =45°,夹∠A 的两条边AP 、AQ 都可以用t 表示,分两种情况讨论直角三角形APQ .2.先用含t 的式子表示点P 、Q 的坐标,进而表示点E 、F 的坐标,根据PE =QF 列方程就好了.3.△MBQ 与△BOP 都是直角三角形,根据直角边对应成比例分两种情况讨论. 图文解析(1)由y =-x +3,得A (3, 0),B (0, 3).将A (3, 0)、B (0, 3)分别代入y =-x 2+bx +c ,得930,3.b c c -++=⎧⎨=⎩ 解得2,3.b c =⎧⎨=⎩ 所以抛物线的解析式为y =-x 2+2x +3.(2)在△APQ 中,∠PAQ =45°,AP =3-t ,AQ =2t .分两种情况讨论直角三角形APQ :①当∠PQA =90°时,AP =2AQ .解方程3-t =2t ,得t =1(如图2).②当∠QPA =90°时,AQ =2AP .解方程2t =2(3-t ),得t =1.5(如图3).图2 图3(3)如图4,因为PE //QF ,当EF //PQ 时,四边形EPQF 是平行四边形.所以EP =FQ .所以y E -y P =y F -y Q .因为x P =t ,x Q =3-t ,所以y E =3-t ,y Q =t ,y F =-(3-t )2+2(3-t )+3=-t 2+4t . 因为y E -y P =y F -y Q ,解方程3-t =(-t 2+4t )-t ,得t =1,或t =3(舍去).所以点F 的坐标为(2, 3).图4 图5(4)由y =-x 2+2x +3=-(x -1)2+4,得M (1, 4).由A (3, 0)、B (0, 3),可知A 、B 两点间的水平距离、竖直距离相等,AB =2. 由B (0, 3)、M (1, 4),可知B 、M 两点间的水平距离、竖直距离相等,BM 2 所以∠MBQ =∠BOP =90°.因此△MBQ 与△BOP 相似存在两种可能: ①当BM OB BQ OP =23322t t=-.解得94t =(如图5). ②当BM OP BQ OB =23322t t =-.整理,得t 2-3t +3=0.此方程无实根. 考点伸展第(3)题也可以用坐标平移的方法:由P (t , 0),E (t , 3-t ),Q(3-t , t ),按照P →E 方向,将点Q 向上平移,得F (3-t , 3).再将F (3-t , 3)代入y =-x 2+2x +3,得t =1,或t =3.§1.2 因动点产生的等腰三角形问题课前导学我们先回顾两个画图问题:1.已知线段AB =5厘米,以线段AB 为腰的等腰三角形ABC 有多少个?顶点C 的轨迹是什么?2.已知线段AB =6厘米,以线段AB 为底边的等腰三角形ABC 有多少个?顶点C 的轨迹是什么?已知腰长画等腰三角形用圆规画圆,圆上除了两个点以外,都是顶点C .已知底边画等腰三角形,顶角的顶点在底边的垂直平分线上,垂足要除外.在讨论等腰三角形的存在性问题时,一般都要先分类.如果△ABC 是等腰三角形,那么存在①AB =AC ,②BA =BC ,③CA =CB 三种情况. 解等腰三角形的存在性问题,有几何法和代数法,把几何法和代数法相结合,可以使得解题又好又快.几何法一般分三步:分类、画图、计算.哪些题目适合用几何法呢?如果△ABC 的∠A (的余弦值)是确定的,夹∠A 的两边AB 和AC 可以用含x 的式子表示出来,那么就用几何法.①如图1,如果AB =AC ,直接列方程;②如图2,如果BA =BC ,那么1cos 2AC AB A =∠;③如图3,如果CA =CB ,那么1cos 2AB AC A =∠. 代数法一般也分三步:罗列三边长,分类列方程,解方程并检验.如果三角形的三个角都是不确定的,而三个顶点的坐标可以用含x 的式子表示出来,那么根据两点间的距离公式,三边长(的平方)就可以罗列出来.图1 图2 图3例 9 2014年市中考第26题如图1,抛物线y =ax 2+bx +c (a 、b 、c 是常数,a ≠0)的对称轴为y 轴,且经过(0,0)和1(,)16a 两点,点P 在该抛物线上运动,以点P 为圆心的⊙P 总经过定点A (0, 2). (1)求a 、b 、c 的值;(2)求证:在点P 运动的过程中,⊙P 始终与x 轴相交;(3)设⊙P 与x 轴相交于M (x 1, 0)、N (x 2, 0)两点,当△AMN 为等腰三角形时,求圆心P 的纵坐标.图1动感体验请打开几何画板文件名“1426”,拖动圆心P 在抛物线上运动,可以体验到,圆与x 轴总是相交的,等腰三角形AMN 存在五种情况.思路点拨1.不算不知道,一算真奇妙,原来⊙P 在x 轴上截得的弦长MN =4是定值.2.等腰三角形AMN 存在五种情况,点P 的纵坐标有三个值,根据对称性,MA =MN 和NA =NM 时,点P 的纵坐标是相等的.图文解析(1)已知抛物线的顶点为(0,0),所以y =ax 2.所以b =0,c =0.将1(,)16a 代入y =ax 2,得2116a =.解得14a =(舍去了负值). (2)抛物线的解析式为214y x =,设点P 的坐标为21(,)4x x . 已知A (0, 2),所以222411(2)4416PA x x x =+-+>214x . 而圆心P 到x 轴的距离为214x ,所以半径PA >圆心P 到x 轴的距离. 所以在点P 运动的过程中,⊙P 始终与x 轴相交.(3)如图2,设MN 的中点为H ,那么PH 垂直平分MN .在Rt △PMH 中,2241416PM PA x ==+,22411()416PH x x ==,所以MH 2=4. 所以MH =2.因此MN =4,为定值.等腰△AMN 存在三种情况:①如图3,当AM =AN 时,点P 为原点O 重合,此时点P 的纵坐标为0.图2 图3 ②如图4,当MA =MN 时,在Rt △AOM 中,OA =2,AM =4,所以OM =23.此时x =OH =232+.所以点P 的纵坐标为22211(232)(31)42344x =+=+=+. 如图5,当NA =NM 时,根据对称性,点P 的纵坐标为也为423+.图4 图5③如图6,当NA =NM =4时,在Rt △AON 中,OA =2,AN =4,所以ON =23.此时x =OH =232-.所以点P 的纵坐标为22211(232)(31)42344x =-=-=-. 如图7,当MN =MA =4时,根据对称性,点P 的纵坐标也为423-.图6 图7考点伸展如果点P 在抛物线214y x =上运动,以点P 为圆心的⊙P 总经过定点B (0, 1),那么在点P 运动的过程中,⊙P 始终与直线y =-1相切.这是因为:设点P 的坐标为21(,)4x x .已知B (0, 1),所以2114PB x ==+. 而圆心P 到直线y =-1的距离也为2114x +,所以半径PB =圆心P 到直线y =-1的距离.所以在点P 运动的过程中,⊙P 始终与直线y =-1相切.例 10 2014年省市中考第25题如图1,在平面直角坐标系中,O 为坐标原点,抛物线y =ax 2+bx +c (a ≠0)过O 、B 、C 三点,B 、C 坐标分别为(10, 0)和1824(,)55-,以OB 为直径的⊙A 经过C 点,直线l 垂直x 轴于B 点.(1)求直线BC 的解析式;(2)求抛物线解析式及顶点坐标;(3)点M 是⊙A 上一动点(不同于O 、B ),过点M 作⊙A 的切线,交y 轴于点E ,交直线l 于点F ,设线段ME 长为m ,MF 长为n ,请猜想mn 的值,并证明你的结论;(4)若点P 从O 出发,以每秒1个单位的速度向点B 作直线运动,点Q 同时从B 出发,以相同速度向点C 作直线运动,经过t (0<t ≤8)秒时恰好使△BPQ 为等腰三角形,请求出满足条件的t 值. 图图1 动感体验请打开几何画板文件名“1425”,拖动点M 在圆上运动,可以体验到,△EAF 保持直角三角形的形状,AM 是斜边上的高.拖动点Q 在BC 上运动,可以体验到,△BPQ 有三个时刻可以成为等腰三角形.思路点拨1.从直线BC 的解析式可以得到∠OBC 的三角比,为讨论等腰三角形BPQ 作铺垫.2.设交点式求抛物线的解析式比较简便.3.第(3)题连结AE 、AF 容易看到AM 是直角三角形EAF 斜边上的高.4.第(4)题的△PBQ 中,∠B 是确定的,夹∠B 的两条边可以用含t 的式子表示.分三种情况讨论等腰三角形.图文解析(1)直线BC 的解析式为31542y x =-. (2)因为抛物线与x 轴交于O 、B (10, 0)两点,设y =ax (x -10). 代入点C 1824(,)55-,得241832()555a -=⨯⨯-.解得524a =. 所以2255255125(10)(5)2424122424y x x x x x =-=-=--. 抛物线的顶点为125(5,)24-. (3)如图2,因为EF 切⊙A 于M ,所以AM ⊥EF . 由AE =AE ,AO =AM ,可得Rt △AOE ≌Rt △AME .所以∠1=∠2.同理∠3=∠4.于是可得∠EAF =90°.所以∠5=∠1.由tan ∠5=tan ∠1,得MA ME MF MA=. 所以ME ·MF =MA 2,即mn =25.图2(4)在△BPQ 中,cos ∠B =45,BP =10-t ,BQ =t . 分三种情况讨论等腰三角形BPQ : ①如图3,当BP =BQ 时,10-t =t .解得t =5.②如图4,当PB =PQ 时,1cos 2BQ BP B =∠.解方程14(10)25t t =-,得8013t =. ③如图5,当QB =QP 时,1cos 2BP BQ B =∠.解方程14(10)25t t -=,得5013t =.图3 图4 图5考点伸展在第(3)题条件下,以EF 为直径的⊙G 与x 轴相切于点A .如图6,这是因为AG 既是直角三角形EAF 斜边上的中线,也是直角梯形EOBF 的中位线,因此圆心G 到x 轴的距离等于圆的半径,所以⊙G 与x 轴相切于点A .图6例11 2014年省市中考第26题在平面直角坐标系中,抛物线y=x2-(m+n)x+mn(m>n)与x轴相交于A、B两点(点A位于点B的右侧),与y轴相交于点C.(1)若m=2,n=1,求A、B两点的坐标;(2)若A、B两点分别位于y轴的两侧,C点坐标是(0,-1),求∠ACB的大小;(3)若m=2,△ABC是等腰三角形,求n的值.动感体验请打开几何画板文件名“1426”,点击屏幕左下方的按钮(2),拖动点A在x轴正半轴上运动,可以体验到,△ABC保持直角三角形的形状.点击屏幕左下方的按钮(3),拖动点B在x轴上运动,观察△ABC的顶点能否落在对边的垂直平分线上,可以体验到,等腰三角形ABC有4种情况.思路点拨1.抛物线的解析式可以化为交点式,用m,n表示点A、B、C的坐标.2.第(2)题判定直角三角形ABC,可以用勾股定理的逆定理,也可以用锐角的三角比.3.第(3)题讨论等腰三角形ABC,先把三边长(的平方)罗列出来,再分类解方程.图文解析(1)由y=x2-(m+n)x+mn=(x-m)(x-n),且m>n,点A位于点B的右侧,可知A(m, 0),B(n, 0).若m=2,n=1,那么A(2, 0),B(1, 0)..(2)如图1,由于C(0, mn),当点C的坐标是(0,-1),mn=-1,OC=1.若A、B两点分别位于y轴的两侧,那么OA·OB=m(-n)=-mn=1.所以OC2=OA·OB.所以OC OB.OA OC所以tan ∠1=tan ∠2.所以∠1=∠2.又因为∠1与∠3互余,所以∠2与∠3互余.所以∠ACB =90°.图1 图2 图3(3)在△ABC 中,已知A (2, 0),B (n , 0),C (0, 2n ).讨论等腰三角形ABC ,用代数法解比较方便:由两点间的距离公式,得AB 2=(n -2)2,BC 2=5n 2,AC 2=4+4n 2.①当AB =AC 时,解方程(n -2)2=4+4n 2,得43n =-(如图2). ②当CA =CB 时,解方程4+4n 2=5n 2,得n =-2(如图3),或n =2(A 、B 重合,舍去).③当BA =BC 时,解方程(n -2)2=5n 2,得51n +=-(如图4),或51n -=(如图5).图4 图5考点伸展第(2)题常用的方法还有勾股定理的逆定理.由于C (0, mn ),当点C 的坐标是(0,-1),mn =-1.由A (m , 0),B (n , 0),C (0,-1),得AB 2=(m -n )2=m 2-2mn +n 2=m 2+n 2+2, BC 2=n 2+1,AC 2=m 2+1.所以AB 2=BC 2+AC 2.于是得到Rt △ABC ,∠ACB =90°.第(3)题在讨论等腰三角形ABC 时,对于CA =CB 的情况,此时A 、B 两点关于y轴对称,可以直接写出B (-2, 0),n =-2.例 12 2014年省市中考第27题如图1,在△ABC 中,∠ACB =90°,AC =4cm ,BC =3cm .如果点P 由点B 出发沿BA 方向向点A 匀速运动,同时点Q 由点A 出发沿AC 方向向点C 匀速运动,它们的速度均为1cm/s .连结PQ ,设运动时间为t (s )(0<t <4),解答下列问题:(1)设△APQ 的面积为S ,当t 为何值时,S 取得最大值?S 的最大值是多少?(2)如图2,连结PC ,将△PQC 沿QC 翻折,得到四边形PQP ′C ,当四边形PQP ′C 为菱形时,求t 的值;(3)当t 为何值时,△APQ 是等腰三角形?图1 图2动感体验请打开几何画板文件名“1427”,拖动点Q 在AC 上运动,可以体验到,当点P 运动到AB 的中点时,△APQ 的面积最大,等腰三角形APQ 存在三种情况.还可以体验到,当QC =2HC 时,四边形PQP ′C 是菱形.思路点拨1.在△APQ 中,∠A 是确定的,夹∠A 的两条边可以用含t 的式子表示.2.四边形PQP ′C 的对角线保持垂直,当对角线互相平分时,它是菱形,.图文解析(1)在Rt △ABC 中,AC =4,BC =3,所以AB =5,sin A =35,cos A =45. 作QD ⊥AB 于D ,那么QD =AQ sin A =35t . 所以S =S △APQ =12AP QD ⋅=13(5)25t t -⨯=23(5)10t t --=23515()+1028t --. 当52t =时,S 取得最大值,最大值为158.(2)设PP ′与AC 交于点H ,那么PP ′⊥QC ,AH =AP cos A =4(5)5t -.如果四边形PQP ′C 为菱形,那么PQ =PC .所以QC =2HC . 解方程4424(5)5t t ⎡⎤-=⨯--⎢⎥⎣⎦,得2013t =.图3 图4(3)等腰三角形APQ 存在三种情况:①如图5,当AP =AQ 时,5-t =t .解得52t =. ②如图6,当PA =PQ 时,1cos 2AQ AP A =.解方程14(5)25t t =-,得4013t =. ③如图7,当QA =QP 时,1cos 2AP AQ A =.解方程14(5)25t t -=,得2513t =.图5 图6 图7考点伸展在本题情境下,如果点Q 是△PP ′C 的重心,求t 的值.如图8,如果点Q 是△PP ′C 的重心,那么QC =23HC . 解方程2444(5)35t t ⎡⎤-=⨯--⎢⎥⎣⎦,得6023t =.图8例 13 2015年省市中考第22题如图1,已知Rt △ABC 中,∠C =90°,AC =8,BC =6,点P 以每秒1个单位的速度从A 向C 运动,同时点Q 以每秒2个单位的速度从A →B →C 方向运动,它们到C 点后都停止运动,设点P 、Q 运动的时间为t 秒.(1)在运动过程中,求P 、Q 两点间距离的最大值;(2)经过t 秒的运动,求△ABC 被直线PQ 扫过的面积S 与时间t 的函数关系式;(3)P ,Q 两点在运动过程中,是否存在时间t ,使得△PQC 为等腰三角形.若存在,求出此时的t 值,若不存在,请说明理由.(24.25≈,结果保留一位小数)图1动感体验请打开几何画板文件名“1522”,拖动点P 在AC 上运动,可以体验到,PQ 与BD 保持平行,等腰三角形PQC 存在三种情况.思路点拨1.过点B 作QP 的平行线交AC 于D ,那么BD 的长就是PQ 的最大值.2.线段PQ 扫过的面积S 要分两种情况讨论,点Q 分别在AB 、BC 上.3.等腰三角形PQC 分三种情况讨论,先罗列三边长.图文解析(1)在Rt △ABC 中,AC =8,BC =6,所以AB =10.如图2,当点Q 在AB 上时,作BD //PQ 交AC 于点D ,那么22AB AQ t AD AP t===. 所以AD =5.所以CD =3. 如图3,当点Q 在BC 上时,16228CQ t CP t-==-. 又因为623CB CD ==,所以CQ CB CP CD =.因此PQ //BD .所以PQ 的最大值就是BD . 在Rt △BCD 中,BC =6,CD =3,所以BD =35.所以PQ 的最大值是35.图2 图3 图4(2)①如图2,当点Q 在AB 上时,0<t ≤5,S △ABD =15.由△AQP ∽△ABD ,得2()AQPABDS AP S AD =△△.所以S =S △AQP =215()5t ⨯=235t . ②如图3,当点Q 在BC 上时,5<t ≤8,S △ABC =24. 因为S △CQP =12CQ CP ⋅=1(162)(8)2t t --=2(8)t -,所以S =S △ABC -S △CQP =24-(t -8)2=-t 2+16t -40.(3)如图3,当点Q 在BC 上时,CQ =2CP ,∠C =90°,所以△PQC 不可能成为等腰三角形.当点Q 在AB 上时,我们先用t 表示△PQC 的三边长:易知CP =8-t .如图2,由QP //BD ,得QP AP BD AD =,即535t =.所以35QP t =. 如图4,作QH ⊥AC 于H .在Rt △AQH 中,QH =AQ sin ∠A =65t ,AH =85t . 在Rt △CQH 中,由勾股定理,得CQ =22QH CH +=2268()(8)55t t +-. 分三种情况讨论等腰三角形PQC :(1)①当PC =PQ 时,解方程358t t -=,得6510t =-≈3.4(如图5所示). ②当QC =QP 时,226835()(8)55t t t +-=.整理,得2111283200t t -+=. 所以(11t -40)(t -8)=0.解得4011t =≈3.6(如图6所示),或t =8(舍去). ③当CP =CQ 时,22688()(8)55t t t -=+-.整理,得25160t t -=.解得165t ==3.2(如图7所示),或t =0(舍去). 综上所述,当t 的值约为3.4,3.6,或等于3.2时,△PQC 是等腰三角形.图5 图6 图7考点伸展第(1)题求P 、Q 两点间距离的最大值,可以用代数计算说理的方法:①如图8,当点Q 在AB 上时,PQ =22QH PH +=2268()()55t t t +-=35t . 当Q 与B 重合时,PQ 最大,此时t =5,PQ 的最大值为35.②如图9,当点Q 在BC 上时,PQ =22CQ CP +=22(2)CP CP +=5(8)t -. 当Q 与B 重合时,PQ 最大,此时t =5,PQ 的最大值为35.综上所述,PQ 的最大值为35.图8 图9§1.3 因动点产生的直角三角形问题课前导学我们先看三个问题:1.已知线段AB ,以线段AB 为直角边的直角三角形ABC 有多少个?顶点C 的轨迹是什么?2.已知线段AB ,以线段AB 为斜边的直角三角形ABC 有多少个?顶点C 的轨迹是什么?3.已知点A (4,0),如果△OAB 是等腰直角三角形,求符合条件的点B 的坐标.图1 图2 图3如图1,点C 在垂线上,垂足除外.如图2,点C 在以AB 为直径的圆上,A 、B 两点除外.如图3,以OA为边画两个正方形,除了O、A两点以外的顶点和正方形对角线的交点,都是符合题意的点B,共6个.解直角三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根.一般情况下,按照直角顶点或者斜边分类,然后按照三角比或勾股定理列方程.有时根据直角三角形斜边上的中线等于斜边的一半列方程更简便.解直角三角形的问题,常常和相似三角形、三角比的问题联系在一起.如果直角边与坐标轴不平行,那么过三个顶点作与坐标轴平行的直线,可以构造两个新的相似直角三角形,这样列比例方程比较简便.如图4,已知A(3, 0),B(1,-4),如果直角三角形ABC的顶点C在y轴上,求点C的坐标.我们可以用几何的方法,作AB为直径的圆,快速找到两个符合条件的点C.如果作BD⊥y轴于D,那么△AOC∽△CDB.设OC=m,那么341mm-=.这个方程有两个解,分别对应图中圆与y轴的两个交点.图4例19 2015年省市中考第21题如图1,已知抛物线E1:y=x2经过点A(1,m),以原点为顶点的抛物线E2经过点B(2,2),点A、B关于y轴的对称点分别为点A′、B′.(1)求m的值及抛物线E2所表示的二次函数的表达式;(2)如图1,在第一象限,抛物线E1上是否存在点Q,使得以点Q、B、B′为顶点的三角形为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由;(3)如图2,P为第一象限的抛物线E1上与点A不重合的一点,连结OP并延长与抛物线E2相交于点P′,求△PAA′与△P′BB′的面积之比.。

(完整版)2018年中考数学挑战压轴题(含答案)

(完整版)2018年中考数学挑战压轴题(含答案)

2017 挑战压轴题中考数学精讲解读篇因动点产生的相似三角形问题1.如图,在平面直角坐标系xOy中,将抛物线y=x2的对称轴绕着点P(0,2)顺时针旋转45°后与该抛物线交于A、B两点,点Q是该抛物线上一点.(1)求直线AB的函数表达式;(2)如图①,若点Q在直线AB的下方,求点Q到直线AB的距离的最大值;(3)如图②,若点Q在y轴左侧,且点T(0,t)(t<2)是射线PO上一点,当以P、B、Q为顶点的三角形与△PAT相似时,求所有满足条件的t的值.2.如图,已知BC是半圆O的直径,BC=8,过线段BO上一动点D,作AD⊥BC交半圆O于点A,联结AO,过点B作BH⊥AO,垂足为点H,BH的延长线交半圆O于点F.(1)求证:AH=BD;(2)设BD=x,BE•BF=y,求y关于x的函数关系式;(3)如图2,若联结FA并延长交CB的延长线于点G,当△FAE与△FBG相似时,求BD的长度.3.如图,在平面直角坐标系xOy中,直线AB过点A(3,0)、B(0,m)(m>0),tan∠BAO=2.(1)求直线AB的表达式;(2)反比例函数y=的图象与直线AB交于第一象限内的C、D两点(BD<BC),当AD=2DB时,的值;求k1(3)设线段AB的中点为E,过点E作x轴的垂线,垂足为点M,交反比例函数y=的图象于的值.点F,分别联结OE、OF,当△OEF∽△OBE时,请直接写出满足条件的所有k24.如图,在Rt△ABC中,∠ACB=90°,AC=1,BC=7,点D是边CA延长线的一点,AE⊥BD,垂足为点E,AE的延长线交CA的平行线BF于点F,连结CE交AB于点G.(1)当点E是BD的中点时,求tan∠AFB的值;(2)CE•AF的值是否随线段AD长度的改变而变化?如果不变,求出CE•AF的值;如果变化,请说明理由;(3)当△BGE和△BAF相似时,求线段AF的长.5.如图,平面直角坐标系xOy中,已知B(﹣1,0),一次函数y=﹣x+5的图象与x轴、y轴分别交于点A、C两点,二次函数y=﹣x2+bx+c的图象经过点A、点B.(1)求这个二次函数的解析式;(2)点P是该二次函数图象的顶点,求△APC的面积;(3)如果点Q在线段AC上,且△ABC与△AOQ相似,求点Q的坐标.6.已知:半圆O的直径AB=6,点C在半圆O上,且tan∠ABC=2,点D为弧AC上一点,联结DC(如图)(1)求BC的长;(2)若射线DC交射线AB于点M,且△MBC与△MOC相似,求CD的长;(3)联结OD,当OD∥BC时,作∠DOB的平分线交线段DC于点N,求ON的长.7.如图,已知二次函数y=x2+bx+c(b,c为常数)的图象经过点A(3,﹣1),点C(0,﹣4),顶点为点M,过点A作AB∥x轴,交y轴与点D,交该二次函数图象于点B,连结BC.(1)求该二次函数的解析式及点M的坐标;(2)若将该二次函数图象向上平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△ABC的内部(不包含△ABC的边界),求m的取值范围;(3)点P时直线AC上的动点,若点P,点C,点M所构成的三角形与△BCD相似,请直接写出所有点P的坐标(直接写出结果,不必写解答过程).因动点产生的等腰三角形问题8.如图1,在△ABC中,∠ACB=90°,∠BAC=60°,点E是∠BAC角平分线上一点,过点E作AE 的垂线,过点A作AB的垂线,两垂线交于点D,连接DB,点F是BD的中点,DH⊥AC,垂足为H,连接EF,HF.(1)如图1,若点H是AC的中点,AC=2,求AB,BD的长;(2)如图1,求证:HF=EF;(3)如图2,连接CF,CE.猜想:△CEF是否是等边三角形?若是,请证明;若不是,说明理由.9.已知,一条抛物线的顶点为E(﹣1,4),且过点A(﹣3,0),与y轴交于点C,点D是这条抛物线上一点,它的横坐标为m,且﹣3<m<﹣1,过点D作DK⊥x轴,垂足为K,DK分别交线段AE、AC于点G、H.(1)求这条抛物线的解析式;(2)求证:GH=HK;(3)当△CGH是等腰三角形时,求m的值.10.如图,已知在Rt△ABC中,∠ACB=90°,AB=5,sinA=,点P是边BC上的一点,PE⊥AB,垂足为E,以点P为圆心,PC为半径的圆与射线PE相交于点Q,线段CQ与边AB交于点D.(1)求AD的长;(2)设CP=x,△PCQ的面积为y,求y关于x的函数解析式,并写出定义域;(3)过点C作CF⊥AB,垂足为F,联结PF、QF,如果△PQF是以PF为腰的等腰三角形,求CP 的长.11.如图(1),直线y=﹣x+n交x轴于点A,交y轴于点C(0,4),抛物线y=x2+bx+c经过点A,交y轴于点B(0,﹣2).点P为抛物线上一个动点,过点P作x轴的垂线PD,过点B作BD ⊥PD于点D,连接PB,设点P的横坐标为m.(1)求抛物线的解析式;(2)当△BDP为等腰直角三角形时,求线段PD的长;(3)如图(2),将△BDP绕点B逆时针旋转,得到△BD′P′,当旋转角∠PBP′=∠OAC,且点P 的对应点P′落在坐标轴上时,请直接写出点P的坐标.12.综合与探究如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣8与x轴交于A,B两点,与y轴交于点C,直线l经过坐标原点O,与抛物线的一个交点为D,与抛物线的对称轴交于点E,连接CE,已知点A,D的坐标分别为(﹣2,0),(6,﹣8).(1)求抛物线的函数表达式,并分别求出点B和点E的坐标;(2)试探究抛物线上是否存在点F,使△FOE≌△FCE?若存在,请直接写出点F的坐标;若不存在,请说明理由;(3)若点P是y轴负半轴上的一个动点,设其坐标为(0,m),直线PB与直线l交于点Q,试探究:当m为何值时,△OPQ是等腰三角形.因动点产生的直角三角形问题13.已知,如图1,在梯形ABCD中,AD∥BC,∠BCD=90°,BC=11,CD=6,tan∠ABC=2,点E在AD边上,且AE=3ED,EF∥AB交BC于点F,点M、N分别在射线FE和线段CD上.(1)求线段CF的长;(2)如图2,当点M在线段FE上,且AM⊥MN,设FM•cos∠EFC=x,CN=y,求y关于x的函数解析式,并写出它的定义域;(3)如果△AMN为等腰直角三角形,求线段FM的长.14.如图,在矩形ABCD 中,点O 为坐标原点,点B 的坐标为(4,3),点A 、C 在坐标轴上,点P 在BC 边上,直线l 1:y=2x+3,直线l 2:y=2x ﹣3.(1)分别求直线l 1与x 轴,直线l 2与AB 的交点坐标;(2)已知点M 在第一象限,且是直线l 2上的点,若△APM 是等腰直角三角形,求点M 的坐标; (3)我们把直线l 1和直线l 2上的点所组成的图形为图形F .已知矩形ANPQ 的顶点N 在图形F 上,Q 是坐标平面内的点,且N 点的横坐标为x ,请直接写出x 的取值范围(不用说明理由).因动点产生的平行四边形问题15.如图,在平面直角坐标系xOy 中,抛物线y=ax 2﹣2ax ﹣3a(a <0)与x 轴交于A ,B 两点(点A 在点B 的左侧),经过点A 的直线l :y=kx+b 与y 轴交于点C ,与抛物线的另一个交点为D ,且CD=4AC .(1)直接写出点A 的坐标,并求直线l 的函数表达式(其中k ,b 用含a 的式子表示); (2)点E 是直线l 上方的抛物线上的一点,若△ACE 的面积的最大值为,求a 的值;(3)设P 是抛物线对称轴上的一点,点Q 在抛物线上,以点A ,D ,P ,Q 为顶点的四边形能否成为矩形?若能,求出点P 的坐标;若不能,请说明理由.16.如图,在矩形OABC中,OA=5,AB=4,点D为边AB上一点,将△BCD沿直线CD折叠,使点B 恰好落在OA边上的点E处,分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系.(1)求点E坐标及经过O,D,C三点的抛物线的解析式;(2)一动点P从点C出发,沿CB以每秒2 个单位长的速度向点B运动,同时动点Q从E点出发,沿EC以每秒1个单位长的速度向点C运动,当点P到达点B时,两点同时停止运动.设运动时间为t秒,当t为何值时,DP=DQ;(3)若点N在(2)中的抛物线的对称轴上,点M在抛物线上,是否存在这样的点M与点N,使得以M,N,C,E为顶点的四边形是平行四边形?若存在,请求出M点的坐标;若不存在,请说明理由.17.如图,抛物线y=﹣x2+2x+3与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D和点C关于抛物线的对称轴对称,直线AD与y轴交于点E.(1)求直线AD的解析式;(2)如图1,直线AD上方的抛物线上有一点F,过点F作FG⊥AD于点G,作FH平行于x轴交直线AD于点H,求△FGH周长的最大值;(3)点M是抛物线的顶点,点P是y轴上一点,点Q是坐标平面内一点,以A,M,P,Q为顶点的四边形是以AM为边的矩形.若点T和点Q关于AM所在直线对称,求点T的坐标.18.如图,点A和动点P在直线l上,点P关于点A的对称点为Q,以AQ为边作Rt△ABQ,使∠BAQ=90°,AQ:AB=3:4,作△ABQ的外接圆O.点C在点P右侧,PC=4,过点C作直线m⊥l,过点O作OD⊥m于点D,交AB右侧的圆弧于点E.在射线CD上取点F,使DF=CD,以DE,DF为邻边作矩形DEGF.设AQ=3x.(1)用关于x的代数式表示BQ,DF.(2)当点P在点A右侧时,若矩形DEGF的面积等于90,求AP的长.(3)在点P的整个运动过程中,①当AP为何值时,矩形DEGF是正方形?②作直线BG交⊙O于点N,若BN的弦心距为1,求AP的长(直接写出答案).19.在平面直角坐标系xOy(如图)中,经过点A(﹣1,0)的抛物线y=﹣x2+bx+3与y轴交于点C,点B与点A、点D与点C分别关于该抛物线的对称轴对称.(1)求b的值以及直线AD与x轴正方向的夹角;(2)如果点E是抛物线上一动点,过E作EF平行于x轴交直线AD于点F,且F在E的右边,过点E作EG⊥AD与点G,设E的横坐标为m,△EFG的周长为l,试用m表示l;(3)点M是该抛物线的顶点,点P是y轴上一点,Q是坐标平面内一点,如果以点A、M、P、Q为顶点的四边形是矩形,求该矩形的顶点Q的坐标.20.如图,直线y=mx+4与反比例函数y=(k>0)的图象交于点A、B,与x轴、y轴分别交于D、C,tan∠CDO=2,AC:CD=1:2.(1)求反比例函数解析式;(2)联结BO,求∠DBO的正切值;(3)点M在直线x=﹣1上,点N在反比例函数图象上,如果以点A、B、M、N为顶点的四边形是平行四边形,求点N的坐标.21.如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为(2,9),与y轴交于点A(0,5),与x轴交于点E、B.(1)求二次函数y=ax2+bx+c的表达式;(2)过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点(点P在AC上方),作PD平行于y轴交AB于点D,问当点P在何位置时,四边形APCD的面积最大?并求出最大面积;(3)若点M在抛物线上,点N在其对称轴上,使得以A、E、N、M为顶点的四边形是平行四边形,且AE为其一边,求点M、N的坐标.因动点产生的梯形问题22.如图,在平面直角坐标系xOy中,二次函数y=+bx+c的图象与y轴交于点A,与双曲线y=有一个公共点B,它的横坐标为4,过点B作直线l∥x轴,与该二次函数图象交于另一个点C,直线AC在y轴上的截距是﹣6.(1)求二次函数的解析式;(2)求直线AC的表达式;(3)平面内是否存在点D,使A、B、C、D为顶点的四边形是等腰梯形?如果存在,求出点D坐标;如果不存在,说明理由.23.如图,矩形OMPN的顶点O在原点,M、N分别在x轴和y轴的正半轴上,OM=6,ON=3,反比例函数y=的图象与PN交于C,与PM交于D,过点C作CA⊥x轴于点A,过点D作DB⊥y轴于点B,AC与BD交于点G.(1)求证:AB∥CD;(2)在直角坐标平面内是否若存在点E,使以B、C、D、E为顶点,BC为腰的梯形是等腰梯形?若存在,求点E的坐标;若不存在请说明理由.因动点产生的面积问题24.如图,边长为8的正方形OABC的两边在坐标轴上,以点C为顶点的抛物线经过点A,点P是抛物线上点A,C间的一个动点(含端点),过点P作PF⊥BC于点F,点D、E的坐标分别为(0,6),(﹣4,0),连接PD、PE、DE.(1)请直接写出抛物线的解析式;(2)小明探究点P的位置发现:当P与点A或点C重合时,PD与PF的差为定值,进而猜想:对于任意一点P,PD与PF的差为定值,请你判断该猜想是否正确,并说明理由;(3)小明进一步探究得出结论:若将“使△PDE的面积为整数”的点P记作“好点”,则存在多个“好点",且使△PDE的周长最小的点P也是一个“好点”.请直接写出所有“好点”的个数,并求出△PDE周长最小时“好点"的坐标.25.如图,四边形OABC是边长为4的正方形,点P为OA边上任意一点(与点O、A不重合),连接CP,过点P作PM⊥CP交AB于点D,且PM=CP,过点M作MN∥OA,交BO于点N,连接ND、BM,设OP=t.(1)求点M的坐标(用含t的代数式表示).(2)试判断线段MN的长度是否随点P的位置的变化而改变?并说明理由.(3)当t为何值时,四边形BNDM的面积最小.26.在数学兴趣小组活动中,小明进行数学探究活动,将边长为2的正方形ABCD与边长为2的正方形AEFG按图1位置放置,AD与AE在同一直线上,AB与AG在同一直线上.(1)小明发现DG⊥BE,请你帮他说明理由.(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长.(3)如图3,小明将正方形ABCD绕点A继续逆时针旋转,线段DG与线段BE将相交,交点为H,写出△GHE与△BHD面积之和的最大值,并简要说明理由.27.在平面直角坐标系中,O为原点,直线y=﹣2x﹣1与y轴交于点A,与直线y=﹣x交于点B,点B关于原点的对称点为点C.(1)求过A,B,C三点的抛物线的解析式;(2)P为抛物线上一点,它关于原点的对称点为Q.①当四边形PBQC为菱形时,求点P的坐标;②若点P的横坐标为t(﹣1<t<1),当t为何值时,四边形PBQC面积最大?并说明理由.28.如图,在平面直角坐标系中,点A(10,0),以OA为直径在第一象限内作半圆,B为半圆上一点,连接AB并延长至C,使BC=AB,过C作CD⊥x轴于点D,交线段OB于点E,已知CD=8,抛物线经过O、E、A三点.(1)∠OBA= °.(2)求抛物线的函数表达式.(3)若P为抛物线上位于第一象限内的一个动点,以P、O、A、E为顶点的四边形面积记作S,则S取何值时,相应的点P有且只有3个?29.如图1,关于x的二次函数y=﹣x2+bx+c经过点A(﹣3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,E在x轴上.(1)求抛物线的解析式;(2)DE上是否存在点P到AD的距离与到x轴的距离相等?若存在求出点P,若不存在请说明理由;(3)如图2,DE的左侧抛物线上是否存在点F,使2S△FBC =3S△EBC?若存在求出点F的坐标,若不存在请说明理由.30.已知抛物线y=mx2+(1﹣2m)x+1﹣3m与x轴相交于不同的两点A、B(1)求m的取值范围;(2)证明该抛物线一定经过非坐标轴上的一点P,并求出点P的坐标;(3)当<m≤8时,由(2)求出的点P和点A,B构成的△ABP的面积是否有最值?若有,求出该最值及相对应的m值.31.问题提出(1)如图①,已知△ABC,请画出△ABC关于直线AC对称的三角形.问题探究(2)如图②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.问题解决(3)如图③,有一矩形板材ABCD,AB=3米,AD=6米,现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,EF=FG=米,∠EHG=45°,经研究,只有当点E、F、G分别在边AD、AB、BC上,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能裁出符合要求的部件,试问能否裁得符合要求的面积尽可能大的四边形EFGH部件?若能,求出裁得的四边形EFGH 部件的面积;若不能,请说明理由.32.如图,在平面直角坐标系中,矩形OCDE的顶点C和E分别在y轴的正半轴和x轴的正半轴上,OC=8,OE=17,抛物线y=x2﹣3x+m与y轴相交于点A,抛物线的对称轴与x轴相交于点B,与CD交于点K.(1)将矩形OCDE沿AB折叠,点O恰好落在边CD上的点F处.①点B的坐标为(、),BK的长是,CK的长是;②求点F的坐标;③请直接写出抛物线的函数表达式;(2)将矩形OCDE沿着经过点E的直线折叠,点O恰好落在边CD上的点G处,连接OG,折痕与OG相交于点H,点M是线段EH上的一个动点(不与点H重合),连接MG,MO,过点G作GP⊥OM 于点P,交EH于点N,连接ON,点M从点E开始沿线段EH向点H运动,至与点N重合时停止,△MOG和△NOG的面积分别表示为S1和S2,在点M的运动过程中,S1•S2(即S1与S2的积)的值是否发生变化?若变化,请直接写出变化范围;若不变,请直接写出这个值.温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.33.如图,已知▱ABCD的三个顶点A(n,0)、B(m,0)、D(0,2n)(m>n>0),作▱ABCD关于直线AD的对称图形AB1C 1 D(1)若m=3,试求四边形CC1B1B面积S的最大值;(2)若点B1恰好落在y轴上,试求的值.因动点产生的相切问题34.如图,已知在平面直角坐标系xOy中,抛物线y=ax2+2x+c与x轴交于点A(﹣1,0)和点B,与y轴相交于点C(0,3),抛物线的对称轴为直线l.(1)求这条抛物线的关系式,并写出其对称轴和顶点M的坐标;(2)如果直线y=kx+b经过C、M两点,且与x轴交于点D,点C关于直线l的对称点为N,试证明四边形CDAN是平行四边形;(3)点P在直线l上,且以点P为圆心的圆经过A、B两点,并且与直线CD相切,求点P的坐标.35.如图,在Rt△ABC中,∠C=90°,AC=14,tanA=,点D是边AC上一点,AD=8,点E是边AB 上一点,以点E为圆心,EA为半径作圆,经过点D,点F是边AC上一动点(点F不与A、C重合),作FG⊥EF,交射线BC于点G.(1)用直尺圆规作出圆心E,并求圆E的半径长(保留作图痕迹);(2)当点G的边BC上时,设AF=x,CG=y,求y关于x的函数解析式,并写出它的定义域;(3)联结EG,当△EFG与△FCG相似时,推理判断以点G为圆心、CG为半径的圆G与圆E可能产生的各种位置关系.36.如图,线段PA=1,点D是线段PA延长线上的点,AD=a(a>1),点O是线段AP延长线上的点,OA2=OP•OD,以O为圆心,OA为半径作扇形OAB,∠BOA=90°.点C是弧AB上的点,联结PC、DC.(1)联结BD交弧AB于E,当a=2时,求BE的长;(2)当以PC为半径的⊙P和以CD为半径的⊙C相切时,求a的值;(3)当直线DC经过点B,且满足PC•OA=BC•OP时,求扇形OAB的半径长.37.如图,在矩形ABCD中,AB=6cm,AD=8cm,点P从点B出发,沿对角线BD向点D匀速运动,速度为4cm/s,过点P作PQ⊥BD交BC于点Q,以PQ为一边作正方形PQMN,使得点N落在射线PD 上,点O从点D出发,沿DC向点C匀速运动,速度为3cm/s,以O为圆心,0.8cm为半径作⊙O,点P与点O同时出发,设它们的运动时间为t(单位:s)(0<t<).(1)如图1,连接DQ平分∠BDC时,t的值为;(2)如图2,连接CM,若△CMQ是以CQ为底的等腰三角形,求t的值;(3)请你继续进行探究,并解答下列问题:①证明:在运动过程中,点O始终在QM所在直线的左侧;②如图3,在运动过程中,当QM与⊙O相切时,求t的值;并判断此时PM与⊙O是否也相切?说明理由.38.如图,抛物线y=﹣x2+mx+n的图象经过点A(2,3),对称轴为直线x=1,一次函数y=kx+b 的图象经过点A,交x轴于点P,交抛物线于另一点B,点A、B位于点P的同侧.(1)求抛物线的解析式;(2)若PA:PB=3:1,求一次函数的解析式;(3)在(2)的条件下,当k>0时,抛物线的对称轴上是否存在点C,使得⊙C同时与x轴和直线AP都相切,如果存在,请求出点C的坐标,如果不存在,请说明理由.因动点产生的线段和差问题39.如图,抛物线y=x2﹣4x与x轴交于O,A两点,P为抛物线上一点,过点P的直线y=x+m与对称轴交于点Q.(1)这条抛物线的对称轴是,直线PQ与x轴所夹锐角的度数是;(2)若两个三角形面积满足S△POQ =S△PAQ,求m的值;(3)当点P在x轴下方的抛物线上时,过点C(2,2)的直线AC与直线PQ交于点D,求:①PD+DQ 的最大值;②PD•DQ的最大值.40.抛物线y=ax2+bx+4(a≠0)过点A(1,﹣1),B(5,﹣1),与y轴交于点C.(1)求抛物线的函数表达式;(2)如图1,连接CB,以CB为边作▱CBPQ,若点P在直线BC上方的抛物线上,Q为坐标平面内的一点,且▱CBPQ的面积为30,求点P的坐标;(3)如图2,⊙O1过点A、B、C三点,AE为直径,点M为上的一动点(不与点A,E重合),∠MBN为直角,边BN与ME的延长线交于N,求线段BN长度的最大值.41.如图,在每一个四边形ABCD中,均有AD∥BC,CD⊥BC,∠ABC=60°,AD=8,BC=12.(1)如图①,点M是四边形ABCD边AD上的一点,则△BMC的面积为;(2)如图②,点N是四边形ABCD边AD上的任意一点,请你求出△BNC周长的最小值;(3)如图③,在四边形ABCD的边AD上,是否存在一点P,使得cos∠BPC的值最小?若存在,求出此时cos∠BPC的值;若不存在,请说明理由.42.如图,把△EFP按图示方式放置在菱形ABCD中,使得顶点E、F、P分别在线段AB、AD、AC 上,已知EP=FP=4,EF=4,∠BAD=60°,且AB>4.(1)求∠EPF的大小;(2)若AP=6,求AE+AF的值;(3)若△EFP的三个顶点E、F、P分别在线段AB、AD、AC上运动,请直接写出AP长的最大值和最小值.43.如图,在平面直角坐标系中,抛物线y=﹣x2﹣x+2与x轴交于B、C两点(点B在点C的左侧),与y轴交于点A,抛物线的顶点为D.(1)填空:点A的坐标为(,),点B的坐标为( ,),点C的坐标为(,),点D的坐标为(,);(2)点P是线段BC上的动点(点P不与点B、C重合)①过点P作x轴的垂线交抛物线于点E,若PE=PC,求点E的坐标;②在①的条件下,点F是坐标轴上的点,且点F到EA和ED的距离相等,请直接写出线段EF的长;③若点Q是线段AB上的动点(点Q不与点A、B重合),点R是线段AC上的动点(点R不与点A、C重合),请直接写出△PQR周长的最小值.44.如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积;(3)当射线BN交线段CD于点F时,求DF的最大值.45.如图,半圆O的直径AB=4,以长为2的弦PQ为直径,向点O方向作半圆M,其中P点在上且不与A点重合,但Q点可与B点重合.发现:的长与的长之和为定值l,求l:思考:点M与AB的最大距离为,此时点P,A间的距离为;点M与AB的最小距离为,此时半圆M的弧与AB所围成的封闭图形面积为;探究:当半圆M与AB相切时,求的长.(注:结果保留π,cos35°=,cos55°=)46.(1)发现:如图1,点A为线段BC外一动点,且BC=a,AB=b.填空:当点A位于时,线段AC的长取得最大值,且最大值为(用含a,b的式子表示)(2)应用:点A为线段BC外一动点,且BC=3,AB=1,如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.①请找出图中与BE相等的线段,并说明理由;②直接写出线段BE长的最大值.(3)拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,请直接写出线段AM长的最大值及此时点P的坐标.47.如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a<0)经过点B.(1)求该抛物线的函数表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值;(3)在(2)的条件下,当S取得最大值时,动点M相应的位置记为点M′.①写出点M′的坐标;②将直线l绕点A按顺时针方向旋转得到直线l′,当直线l′与直线AM′重合时停止旋转,在旋转过程中,直线l′与线段BM′交于点C,设点B、M′到直线l′的距离分别为d1、d2,当d1+d2最大时,求直线l′旋转的角度(即∠BAC的度数).48.如图,在平面直角坐标系xOy中,将二次函数y=x2﹣1的图象M沿x轴翻折,把所得到的图象向右平移2个单位长度后再向上平移8个单位长度,得到二次函数图象N.(1)求N的函数表达式;(2)设点P(m,n)是以点C(1,4)为圆心、1为半径的圆上一动点,二次函数的图象M与x 轴相交于两点A、B,求PA2+PB2的最大值;(3)若一个点的横坐标与纵坐标均为整数,则该点称为整点.求M与N所围成封闭图形内(包括边界)整点的个数.49.如图,顶点为A(,1)的抛物线经过坐标原点O,与x轴交于点B.(1)求抛物线对应的二次函数的表达式;(2)过B作OA的平行线交y轴于点C,交抛物线于点D,求证:△OCD≌△OAB;(3)在x轴上找一点P,使得△PCD的周长最小,求出P点的坐标.2017 挑战压轴题中考数学精讲解读篇参考答案与试题解析一.解答题(共36小题)1.如图,在平面直角坐标系xOy中,将抛物线y=x2的对称轴绕着点P(0,2)顺时针旋转45°后与该抛物线交于A、B两点,点Q是该抛物线上一点.(1)求直线AB的函数表达式;(2)如图①,若点Q在直线AB的下方,求点Q到直线AB的距离的最大值;(3)如图②,若点Q在y轴左侧,且点T(0,t)(t<2)是射线PO上一点,当以P、B、Q为顶点的三角形与△PAT相似时,求所有满足条件的t的值.【分析】(1)根据题意易得点M、P的坐标,利用待定系数法来求直线AB的解析式;(2)如图①,过点Q作x轴的垂线QC,交AB于点C,再过点Q作直线AB的垂线,垂足为D,构建等腰直角△QDC,利用二次函数图象上点的坐标特征和二次函数最值的求法进行解答;(3)根据相似三角形的对应角相等推知:△PBQ中必有一个内角为45°;需要分类讨论:∠PBQ=45°和∠PQB=45°;然后对这两种情况下的△PAT是否是直角三角形分别进行解答.另外,以P、B、Q为顶点的三角形与△PAT相似也有两种情况:△Q″PB∽△PAT、△Q″BP∽△PAT.【解答】解:(1)如图①,设直线AB与x轴的交点为M.∵∠OPA=45°,∴OM=OP=2,即M(﹣2,0).设直线AB的解析式为y=kx+b(k≠0),将M(﹣2,0),P(0,2)两点坐标代入,得,解得.故直线AB的解析式为y=x+2;(2)如图①,过点Q作x轴的垂线QC,交AB于点C,再过点Q作直线AB的垂线,垂足为D,根据条件可知△QDC为等腰直角三角形,则QD=QC.设Q(m,m2),则C(m,m+2).∴QC=m+2﹣m2=﹣(m﹣)2+,QD=QC=[﹣(m﹣)2+].故当m=时,点Q到直线AB的距离最大,最大值为;(3)∵∠APT=45°,∴△PBQ中必有一个内角为45°,由图知,∠BPQ=45°不合题意.①如图②,若∠PBQ=45°,过点B作x轴的平行线,与抛物线和y轴分别交于点Q′、F.此时满足∠PBQ′=45°.∵Q′(﹣2,4),F(0,4),∴此时△BPQ′是等腰直角三角形,由题意知△PAT也是等腰直角三角形.(i)当∠PTA=90°时,得到:PT=AT=1,此时t=1;(ii)当∠PAT=90°时,得到:PT=2,此时t=0.②如图③,若∠PQB=45°,①中是情况之一,答案同上;先以点F为圆心,FB为半径作圆,则P、B、Q′都在圆F上,设圆F与y轴左侧的抛物线交于另一点Q″.则∠PQ″B=∠PQ′B=45°(同弧所对的圆周角相等),即这里的交点Q″也是符合要求.设Q″(n,n2)(﹣2<n<0),由FQ″=2,得n2+(4﹣n2)2=22,即n4﹣7n2+12=0.解得n2=3或n2=4,而﹣2<n<0,故n=﹣,即Q″(﹣,3).可证△PFQ″为等边三角形,所以∠PFQ″=60°,又PQ″=PQ″,所以∠PBQ″=∠PFQ″=30°.则在△PQ″B中,∠PQ″B=45°,∠PBQ″=30°.(i)若△Q″PB∽△PAT,则过点A作y轴的垂线,垂足为E.则ET=AE=,OE=1,所以OT=﹣1,解得t=1﹣;(ii)若△Q″BP∽△PAT,则过点T作直线AB垂线,垂足为G.设TG=a,则PG=TG=a,AG=TG=a,AP=,∴a+a=,解得PT=a=﹣1,∴OT=OP﹣PT=3﹣,∴t=3﹣.综上所述,所求的t的值为t=1或t=0或t=1﹣或t=3﹣.2.如图,已知BC是半圆O的直径,BC=8,过线段BO上一动点D,作AD⊥BC交半圆O于点A,联结AO,过点B作BH⊥AO,垂足为点H,BH的延长线交半圆O于点F.(1)求证:AH=BD;(2)设BD=x,BE•BF=y,求y关于x的函数关系式;(3)如图2,若联结FA并延长交CB的延长线于点G,当△FAE与△FBG相似时,求BD的长度.【分析】(1)由AD⊥BC,BH⊥AO,利用垂直的定义得到一对直角相等,再由一对公共角,且半径相等,利用AAS得到三角形ADO与三角形BHO全等,利用全等三角形对应边相等得到OH=OD,利用等式的性质化简即可得证;(2)连接AB,AF,如图1所示,利用HL得到直角三角形ADB与直角三角形BHA全等,利用全等三角形对应角相等得到一对角相等,再由公共角相等得到三角形ABE与三角形AFB相似,由相似得比例即可确定出y与x的函数解析式;(3)连接OF,如图2所示,利用两对角相等的三角形相似得到三角形AFO与三角形FOG相似,由相似得比例求出BD的长即可.【解答】(1)证明:∵AD⊥BC,BH⊥AO,∴∠ADO=∠BHO=90°,在△ADO与△BHO中,,∴△ADO≌△BHO(AAS),∴OH=OD,又∵OA=OB,∴AH=BD;(2)解:连接AB、AF,如图1所示,∵AO是半径,AO⊥弦BF,。

专题18 折叠问题-决胜2018中考数学压轴题全揭秘精品(解析版)

专题18 折叠问题-决胜2018中考数学压轴题全揭秘精品(解析版)

一、选择题1.(2017四川省乐山市,第10题,3分)如图,平面直角坐标系xOy 中,矩形OABC 的边OA 、OC 分别落在x 、y 轴上,点B 坐标为(6,4),反比例函数xy 6=的图象与AB 边交于点D ,与BC 边交于点E ,连结DE ,将△BDE 沿DE 翻折至△B 'DE 处,点B '恰好落在正比例函数y =kx 图象上,则k 的值是( )A .52-B .211-C .51-D .241- 【答案】B .【分析】根据矩形的性质得到,CB ∥x 轴,AB ∥y 轴,于是得到D (6,1),E (32,4),根据勾股定理得到ED 的长,连接BB ′,交ED 于F ,过B ′作B ′G ⊥BC 于G ,根据轴对称的性质得到BF =B ′F ,BB ′⊥ED 求得BB ′的长,设EG =x ,则BG =92﹣x 根据勾股定理即可得到结论.点睛:本题考查了翻折变换(折叠问题),矩形的性质,勾股定理,熟练掌握折叠的性质是解题的关键.考点:反比例函数与一次函数的交点问题;翻折变换(折叠问题);综合题.2.(2017四川省内江市,第11题,3分)如图,在矩形AOBC中,O为坐标原点,OA、OB分别在x轴、y轴上,点B的坐标为(0,33),∠ABO=30°,将△ABC沿AB所在直线对折后,点C落在点D处,则点D的坐标为()A.(32,332)B.(2,332)C.(332,32)D.(32,3﹣332)【答案】A.【分析】根据翻折变换的性质结合锐角三角函数关系得出对应线段长,进而得出D点坐标.【解析】∵四边形AOBC是矩形,∠ABO=30°,点B的坐标为(0,33,∴AC=OB=33∠CAB=30°,∴BC=AC•tan30°=3333=3,∵将△ABC沿AB所在直线对折后,点C落在点D处,∴∠BAD=30°,AD=33D作DM⊥x轴于点M,∵∠CAB=∠BAD=30°,∴∠DAM=30°,∴DM=12AD=332,∴AM=33cos30°=92,∴MO=92﹣3=32,∴点D的坐标为(3233).故选A.点睛:此题主要考查了翻折变换以及矩形的性质和锐角三角函数关系,正确得出∠DAM =30°是解题关键. 考点:翻折变换(折叠问题);坐标与图形性质;矩形的性质;综合题.学.科.网3.(2017江苏省无锡市,第10题,3分)如图,△ABC 中,∠BAC =90°,AB =3,AC =4,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED ,连CE ,则线段CE 的长等于( )A .2B .54C .53D .75【答案】D .【分析】如图连接BE 交AD 于O ,作AH ⊥BC 于H .首先证明AD 垂直平分线段BE ,△BCE 是直角三角形,求出BC 、BE 在Rt △BCE 中,利用勾股定理即可解决问题. 【解析】如图连接BE 交AD 于O ,作AH ⊥BC 于H .在Rt △ABC 中,∵AC =4,AB =3,∴BC =2234+=5,∵CD =DB ,∴AD =DC =DB =52,∵12•BC •AH =12•AB •AC ,∴AH =125,∵AE =AB ,DE =DB =DC ,∴AD 垂直平分线段BE ,△BCE 是直角三角形,∵12•AD •BO =12•BD •AH ,∴OB =125,∴BE =2OB =245,在Rt △BCE 中,EC =22BC BE -=22245()5-=75,故选D .点睛:本题考查翻折变换、直角三角形的斜边中线的性质、勾股定理等知识,解题的关键是学会利用面积法求高,属于中考常考题型.考点:翻折变换(折叠问题);直角三角形斜边上的中线;勾股定理.4.(2017浙江省台州市,第10题,4分)如图,矩形EFGH 的四个顶点分别在菱形ABCD 的四条边上,BE=BF,将△AEH,△CFG分别沿边EH,FG折叠,当重叠部分为菱形且面积是菱形ABCD面积的116时,则AEEB为()A.53B.2C.52D.4【答案】A.【分析】设重叠的菱形边长为x,BE=BF=y,由矩形和菱形的对称性以及折叠的性质得:四边形AHME、四边形BENF是菱形,得出EN=BE=y,EM=x+y,由相似的性质得出AB=4MN=4x,求出AE=AB﹣BE=4x﹣y,得出方程4x﹣y=x+y,得出x=23y,AE=53y,即可得出结论.【解析】设重叠的菱形边长为x,BE=BF=y,由矩形和菱形的对称性以及折叠的性质得:四边形AHME、四边形BENF是菱形,∴AE=EM,EN=BE=y,EM=x+y,∵当重叠部分为菱形且面积是菱形ABCD面积的116,且两个菱形相似,∴AB=4MN=4x,∴AE=AB﹣BE=4x﹣y,∴4x﹣y=x+y,解得:x=23y,∴AE=53y,∴AEEB=53yy =53;故选A.点睛:本题考查了折叠的性质、菱形的判定与性质、矩形的性质、相似多边形的性质等知识;熟练掌握菱形的判定与性质是解决问题的关键.考点:翻折变换(折叠问题);菱形的性质;矩形的性质;综合题.5.(2017衢州,第9题,3分)如图,矩形纸片ABCD中,AB=4,BC=6,将△ABC沿AC折叠,使点B落在点E处,CE交AD于点F,则DF的长等于()A .53 B . 35 C . 37 D . 45 【答案】B .【分析】根据折叠的性质得到AE =AB ,∠E =∠B =90°,易证Rt △AEF ≌Rt △CDF ,即可得到结论EF =DF ;易得FC =F A ,设F A =x ,则FC =x ,FD =6﹣x ,在Rt △CDF 中利用勾股定理得到关于x 的方程x 2=42+(6﹣x )2,解方程求出x .【解析】∵矩形ABCD 沿对角线AC 对折,使△ABC 落在△ACE 的位置,∴AE =AB ,∠E =∠B =90°,又∵四边形ABCD 为矩形,∴AB =CD ,∴AE =DC ,而∠AFE =∠DFC ,在△AEF 与△CDF 中,∵∠AFE =∠CFD ,∠E =∠D ,AE =CD ,∴△AEF ≌△CDF (AAS ),∴EF =DF ;∵四边形ABCD 为矩形,∴AD =BC =6,CD =AB =4,∵Rt △AEF ≌Rt △CDF ,∴FC =F A ,设F A =x ,则FC =x ,FD =6﹣x ,在Rt △CDF 中,CF 2=CD 2+DF 2,即x 2=42+(6﹣x )2,解得x =133,则FD =6﹣x =35.故选B .点睛:本题考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应边相等.也考查了矩形的性质和三角形全等的判定与性质以及勾股定理.考点:翻折变换(折叠问题);矩形的性质;综合题.6.(2017湖南省长沙市,第12题,3分)如图,将正方形ABCD 折叠,使顶点A 与CD 边上的一点H 重合(H 不与端点C ,D 重合),折痕交AD 于点E ,交BC 于点F ,边AB 折叠后与边BC 交于点G .设正方形ABCD 的周长为m ,△CHG 的周长为n ,则mn的值为( )A .22 B .21C .215-D .随H 点位置的变化而变化 【答案】B .【分析】设CH =x ,DE =y ,则DH =4m ﹣x ,EH =4m﹣y ,然后利用正方形的性质和折叠可以证明△DEH ∽△CHG ,利用相似三角形的对应边成比例可以把CG ,HG 分别用x ,y 分别表示,△CHG 的周长也用x ,y 表示,然后在Rt △DEH 中根据勾股定理可以得到222m mx x y -=,进而求出△CMG 的周长. 【解析】设CH =x ,DE =y ,则DH =4m ﹣x ,EH =4m﹣y ,∵∠EMG =90°,∴∠DME +∠CMG =90°.∵∠DME +∠DEM =90°,∴∠DEM =∠CMG ,又∵∠D =∠C =90°△DEM ∽△CMG ,∴CG CM MGDM DE EM==,即 44CG x MGm m y x y ==--,∴CG =()4m x x y -,MG =()4m x y y -,△CMG 的周长为n =CM +CG +MG =22mx x y -,在Rt △DEM 中,DM 2+DE 2=EM 2,即(4m ﹣x )2+y 2=(4m ﹣y )2,整理得222m m x x y -=,∴n =CM +MG +CG =22mx x y -=2myy =2m ,∴m n =21.故选B .点睛:本题考查翻折变换及正方形的性质,正方形的有些题目有时用代数的计算证明比用几何方法简单,甚至几何方法不能解决的用代数方法可以解决.本题综合考查了相似三角形的应用和正方形性质的应用. 考点:翻折变换(折叠问题);综合题. 7.(2016内蒙古包头市)如图,直线243y x =+与x 轴、y 轴分别交于点A 和点B ,点C 、D 分别为线段AB 、OB 的中点,点P 为OA 上一动点,PC +PD 值最小时点P 的坐标为( )A.(﹣3,0)B.(﹣6,0)C.(32-,0)D.(52-,0)【答案】C.【分析】根据一次函数解析式求出点A、B的坐标,再由中点坐标公式求出点C、D的坐标,根据对称的性质找出点D′的坐标,结合点C、D′的坐标求出直线CD′的解析式,令y=0即可求出x的值,从而得出点P的坐标.【解析】作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示.令243y x=+中x=0,则y=4,∴点B的坐标为(0,4);令243y x=+中y=0,则2403x+=,解得:x=﹣6,∴点A的坐标为(﹣6,0).∵点C、D分别为线段AB、OB的中点,∴点C(﹣3,2),点D(0,2).∵点D′和点D关于x轴对称,∴点D′的坐标为(0,﹣2).设直线CD′的解析式为y=kx+b,∵直线CD′过点C(﹣3,2),D′(0,﹣2),∴有232k bb=-+⎧⎨-=⎩,解得:432kb⎧=-⎪⎨⎪=-⎩,∴直线CD′的解析式为423y x=--.令423y x=--中y=0,则4203x--=,解得:x=32-,∴点P的坐标为(32-,0).故选C.考点:一次函数图象上点的坐标特征;轴对称-最短路线问题;最值问题.8.(2016内蒙古呼伦贝尔市,第6题,3分)将点A(3,2)向左平移4个单位长度得点A′,则点A′关于y轴对称的点的坐标是()A.(﹣3,2)B.(﹣1,2)C.(1,﹣2)D.(1,2)【答案】D.【分析】根据题意可以求得点A′的坐标,从而可以求得点A′关于y轴对称的点的坐标,本题得以解决.【解析】∵将点A(3,2)向左平移4个单位长度得点A′,∴点A′的坐标为(﹣1,2),∴点A′关于y 轴对称的点的坐标是(1,2),故选D.考点:关于x轴、y轴对称的点的坐标;坐标与图形变化-平移.9.(2016内蒙古呼伦贝尔市,第12题,3分)如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为PQ,则线段BQ的长度为()A.53B.52C.4D.5【答案】C.【分析】设BQ=x,则由折叠的性质可得DQ=AQ=9﹣x,根据中点的定义可得BD=3,在Rt△BQD中,根据勾股定理可得关于x的方程,解方程即可求解.【解析】设BQ=x,由折叠的性质可得DQ=AQ=9﹣x,∵D是BC的中点,∴BD=3,在Rt△BQD中,2223(9)x x+=-,解得:x=4.故线段BQ的长为4.故选C.考点:翻折变换(折叠问题).10.(2016天津市)如图,把一张矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,AB′与DC相交于点E,则下列结论一定正确的是()A.∠DAB′=∠CAB′B.∠ACD=∠B′CD C.AD=AE D.AE=CE 【答案】D.【分析】根据翻折变换的性质可得∠BAC=∠CAB′,根据两直线平行,内错角相等可得∠BAC=∠ACD,从而得到∠ACD=∠CAB′,然后根据等角对等边可得AE=CE,从而得解.【解析】∵矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,∴∠BAC=∠CAB′,∵AB∥CD,∴∠BAC=∠ACD,∴∠ACD=∠CAB′,∴AE=CE,所以,结论正确的是D选项.故选D.考点:翻折变换(折叠问题).11.(2016四川省南充市)如图,对折矩形纸片ABCD,使AB与DC重合得到折痕EF,将纸片展平;再一次折叠,使点D落到EF上点G处,并使折痕经过点A,展平纸片后∠DAG的大小为()A.30°B.45°C.60°D.75°【答案】C.【分析】直接利用翻折变换的性质以及直角三角形的性质得出∠2=∠4,再利用平行线的性质得出∠1=∠2=∠3,进而得出答案.【解析】如图所示:由题意可得:∠1=∠2,AN=M N,∠M GA=90°,则NG=12A M,故AN=NG,则∠2=∠4,∵EF∥AB,∴∠4=∠3,∴∠1=∠2=∠3=13×90°=30°,∴∠DAG=60°.故选C.考点:翻折变换(折叠问题).12.(2016四川省资阳市)如图,矩形ABCD与菱形EFGH的对角线均交于点O,且EG∥BC,将矩形折叠,使点C与点O重合,折痕MN恰好过点G若AB=6,EF=2,∠H=120°,则DN的长为()A 3B63+C63D.236【答案】C.【分析】延长EG交DC于P点,连接GC、FH,则△GCP为直角三角形,证明四边形OGCM为菱形,则可证3GP的值,再由梯形的中位线定理CM+DN=2GP,即可得出答案.【解析】长EG交DC于P点,连接GC、FH;如图所示:则CP=DP=12CD=62,△GCP为直角三角形,∵四边形EFGH是菱形,∠EHG=120°,∴GH=EF=2,∠OHG=60°,EG⊥FH,∴OG=GH•sin60°=2×32=3,由折叠的性质得:CG=OG=3,OM=CM,∠MOG=∠MCG,∴PG=22CG CP-=6,∵OG∥CM,∴∠MOG+∠OMC=180°,∴∠MCG+∠OMC=180°,∴OM∥CG,∴四边形OGCM为平行四边形,∵OM=CM,∴四边形OGCM为菱形,∴CM=OG=3,根据题意得:PG是梯形MCDN的中位线,∴DN+CM=2PG=6,∴DN=63-;故选C.考点:矩形的性质;菱形的性质;翻折变换(折叠问题).学.科.网13.(2016四川省雅安市)如图,在矩形ABCD中,AD=6,AE⊥BD,垂足为E,ED=3BE,点P、Q分别在BD,AD上,则AP+PQ的最小值为()A.22B2C.23D.33【答案】D.【分析】在Rt△ABE中,利用三角形相似可求得AE、DE的长,设A点关于BD的对称点A′,连接A′D,可证明△ADA′为等边三角形,当PQ⊥AD时,则PQ最小,所以当A′Q⊥AD时AP+PQ最小,从而可求得AP+PQ的最小值等于DE的长,可得出答案..【解析】设BE=x,则DE=3x,∵四边形ABCD为矩形,且AE⊥BD,∴△ABE∽△DAE,∴2AE=BE•DE,即223AE x=,∴AE =3x ,在Rt △ADE 中,由勾股定理可得222AD AE DE =+,即2226(3)(3)x x =+,解得x =3,∴AE =3,DE =33,如图,设A 点关于BD 的对称点为A ′,连接A ′D ,PA ′,则A ′A =2AE =6=AD ,AD =A ′D =6,∴△AA ′D 是等边三角形,∵PA =PA ′,∴当A ′、P 、Q 三点在一条线上时,A ′P +PQ 最小,又垂线段最短可知当PQ ⊥AD 时,A ′P +PQ 最小,∴AP +PQ =A ′P +PQ =A ′Q =DE =33,故选D .考点:矩形的性质;轴对称-最短路线问题;最值问题.14.(2016山东省威海市)如图,在矩形ABCD 中,AB =4,BC =6,点E 为BC 的中点,将△ABE 沿AE 折叠,使点B 落在矩形内点F 处,连接CF ,则CF 的长为( )A .95B .125C .165D .185【答案】D .【分析】连接BF ,根据三角形的面积公式求出BH ,得到BF ,根据直角三角形的判定得到∠BFC =90°,根据勾股定理求出答案.【解析】连接BF ,∵BC =6,点E 为BC 的中点,∴BE =3,又∵AB =4,∴AE =22AB BE +=5,∴BH =125,则BF =245,∵FE =BE =EC ,∴∠BFC =90°,∴CF =22246()5-=185.故选D .考点:矩形的性质;翻折变换(折叠问题).15.(2016山东省枣庄市)如图,△ABC的面积为6,AC=3,现将△ABC沿AB所在直线翻折,使点C落在直线AD上的C′处,P为直线AD上的一点,则线段BP的长不可能是()A.3B.4C.5.5D.10【答案】A.【分析】过B作BN⊥AC于N,B M⊥AD于M,根据折叠得出∠C′AB=∠CAB,根据角平分线性质得出BN=B M,根据三角形的面积求出BN,即可得出点B到AD的最短距离是4,得出选项即可.考点:翻折变换(折叠问题).16.(2016山东省济宁市)如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是()A.613B.513C.413D.313【答案】B.【分析】由在4×4正方形网格中,任选取一个白色的小正方形并涂黑,共有13种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有5种情况,直接利用概率公式求解即可求得答案.【解析】∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有4个情况,∴使图中黑色部分的图形仍然构成一个轴对称图形的概率是:5.故选B.13考点:概率公式;利用轴对称设计图案.17.(2016山东省聊城市)如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,若∠2=40°,则图中∠1的度数为()A.115°B.120°C.130°D.140°【答案】A.【分析】根据折叠的性质和矩形的性质得出∠BFE=∠EFB',∠B'=∠B=90°,根据三角形内角和定理求出∠CFB'=50°,进而解答即可.【解析】∵把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,∴∠BFE=∠EFB',∠B'=∠B=90°,∵∠2=40°,∴∠CFB'=50°,∴∠1+∠EFB'﹣∠CFB'=180°,即∠1+∠1﹣50°=180°,解得:∠1=115°,故选A.考点:翻折变换(折叠问题).18.(2016广西百色市)如图,正△ABC的边长为2,过点B的直线l⊥AB,且△ABC与△A′BC′关于直线l对称,D为线段BC′上一动点,则AD+CD的最小值是()A.4B.32C.23D.23【答案】A.【分析】作点A关于直线BC′的对称点A1,连接A1C交直线BC与点D,由图象可知点D在C′B的延长线上,由此可得出当点D与点B重合时,AD+CD的值最小,由此即可得出结论,再根据等边三角形的性质算出AB+CB的长度即可.【解析】作点A关于直线BC′的对称点A1,连接A1C交直线BC与点D,如图所示.由图象可知当点D在C′B的延长线上时,AD+CD最小,而点D为线段BC′上一动点,∴当点D与点B 重合时AD+CD值最小,此时AD+CD=AB+CB=2+2=4.故选A.考点:轴对称-最短路线问题;等边三角形的性质;最值问题.学.科.网19.(2016广西钦州市)如图,把矩形纸片ABCD沿EF翻折,点A恰好落在BC边的A′处,若AB=3,∠EF A=60°,则四边形A′B′EF的周长是()+B.33C.43D.53A.13【答案】C.【分析】先在直角三角形EFG中用勾股定理求出EF,FG,再判断出三角形A'EF是等边三角形,求出AF,从而得出BE=B'E=1,最后用四边形的周长公式即可.【解析】如图,过点E作EG⊥AD,∴∠AGE=∠FGE=90°.∵矩形纸片ABCD,∴∠A=∠B=∠AGE=90°,∴四边形ABEG是矩形,∴BE=AG,EG=AB3,在Rt△EFG中,∠EFG=60°,EG3∴FG=1,EF=2,由折叠有,A'F=AF,A'B'=AB3,BE=B'E,∠A'FE=∠AFE=60°,∵BC∥AD,∴∠A'EF=∠AFE=60°,∴△A 'EF 是等边三角形,∴A 'F =EF =2,∴AF =A 'F =2,∴BE =AG =AF ﹣FG =2﹣1=1,∴B 'E =1,∴四边形A ′B ′EF 的周长是A 'B '+B 'E +EF +A 'F=3+1+2+1=43+,故选C .考点:翻折变换(折叠问题);矩形的性质;综合题.20.(2016江苏省南通市)平面直角坐标系xOy 中,已知A (﹣1,0)、B (3,0)、C (0,﹣1)三点,D (1,m )是一个动点,当△ACD 的周长最小时,△ABD 的面积为( )A .13B .23C .43D .83【答案】C .【分析】先根据△ACD 的周长最小,求出点C 关于直线x =1对称的点E 的坐标,再运用待定系数法求得直线AE 的解析式,并把D (1,m )代入,求得D 的坐标,最后计算,△ABD 的面积.【解析】由题可得,点C 关于直线x =1的对称点E 的坐标为(2,﹣1),设直线AE 的解析式为y =kx +b ,则:012k b k b =-+⎧⎨-=+⎩,解得:1313k b ⎧=-⎪⎪⎨⎪=-⎪⎩,∴1133y x =--,将D (1,m )代入,得: m =1133--=23-,即点D 的坐标为(1,23-),∴当△ACD 的周长最小时,△ABD 的面积=12×AB ×|23-|=12×4×23=43.故选C . 考点:轴对称-最短路线问题;坐标与图形性质;转化思想.21.(2016江苏省宿迁市)如图,把正方形纸片ABCD 沿对边中点所在的直线对折后展开,折痕为M N ,再过点B 折叠纸片,使点A 落在M N 上的点F 处,折痕为BE .若AB 的长为2,则F M 的长为( )A .2B 3C 2D .1【答案】B .【分析】根据翻折不变性,AB =FB =2,B M =1,在Rt △BF M 中,可利用勾股定理求出F M 的值.【解析】∵四边形ABCD 为正方形,AB =2,过点B 折叠纸片,使点A 落在M N 上的点F 处,∴FB =AB =2,B M =1,则在Rt △B M F 中,F M =22BF BM -=2221-=3,故选B .考点:翻折变换(折叠问题).22.(2016江苏省苏州市)矩形OABC 在平面直角坐标系中的位置如图所示,点B 的坐标为(3,4),D 是OA 的中点,点E 在AB 上,当△CDE 的周长最小时,点E 的坐标为( )A .(3,1)B .(3,43) C .(3,53) D .(3,2) 【答案】B . 【分析】如图,作点D 关于直线AB 的对称点H ,连接CH 与AB 的交点为E ,此时△CDE 的周长最小,先求出直线CH 解析式,再求出直线CH 与AB 的交点即可解决问题.【解析】如图,作点D 关于直线AB 的对称点H ,连接CH 与AB 的交点为E ,此时△CDE 的周长最小.∵D (32,0),A (3,0),∴H (92,0),∴直线CH 解析式为849y x =-+,∴x =3时,y =43,∴点E 坐标(3,43).故选B .考点:矩形的性质;坐标与图形性质;轴对称-最短路线问题.23.(2016江苏省镇江市)如图,在平面直角坐标系中,坐标原点O 是正方形OABC 的一个顶点,已知点B 坐标为(1,7),过点P (a ,0)(a >0)作PE ⊥x 轴,与边OA 交于点E (异于点O 、A ),将四边形ABCE 沿CE 翻折,点A ′、B ′分别是点A 、B 的对应点,若点A ′恰好落在直线PE 上,则a 的值等于( )A .54B .43C .2D .3 【答案】C .【分析】作辅助线,利用待定系数法求直线OB 和AC 的解析式,表示出点C 的坐标,根据勾股定理列方程求出点C 的坐标,根据图形点C 的位置取值;先由点B 的坐标求出对角线OB 的长,在Rt △OBC 中,利用特殊的三角函数值求出正方形的边长为5,求出FG 的长,写出点P 的坐标,确定其a 的值.【解析】当点A ′恰好落在直线PE 上,如图所示,连接OB 、AC ,交于点D ,过点C 作CF ∥A ′B ′,交PE 于点F ,交y 轴于点G ,则CF ⊥y 轴,∵四边形OABC 是正方形,∴OD =BD ,OB ⊥AC ,∵O (0,0),B (1,7),∴D (12,72),由勾股定理得:OB =2217+=50=52,设直线OB 的解析式为:y =kx ,把B (1,7)代入得:k =7,∴直线OB 的解析式为:y =7x ,∴设直线AC 的解析式为:17y x c =-+,把D (12,72)代入得:711272c =-⨯+,c =257,∴直线AC 的解析式为:12577y x =-+,设C (x ,12577x -+),在Rt △OBC 中,cos ∠BOC =OC OB,∴OC =cos45°•OB =252⨯=5,∴正方形OABC 的边长为5,由翻折得:A ′B ′=AB =5,在Rt △OCG 中,222OC OG CG =+,∴2221255()77x x =+-+,解得:x 1=﹣3,x 2=4(舍),∴CG =3,∵CF =A ′B ′=5,∴FG =CF ﹣CG =5﹣3=2,∴P (2,0),即a =2,故选C .考点:翻折变换(折叠问题);坐标与图形性质;正方形的性质;综合题.24.(2016海南省)如图,AD是△ABC的中线,∠ADC=45°,把△ADC沿着直线AD对折,点C落在点E的位置.如果BC=6,那么线段BE的长度为()A.6B.62C.23D.32【答案】D.【分析】根据折叠的性质判定△EDB是等腰直角三角形,然后再求BE.【解析】根据折叠的性质知,CD=ED,∠CDA=∠ADE=45°,∴∠CDE=∠BDE=90°,∵BD=CD,BC=6,∴BD=ED=3,即△EDB是等腰直角三角形,∴BE=2BD=2×3=32,故选D.考点:翻折变换(折叠问题).25.(2016浙江省台州市)小红用次数最少的对折方法验证了一条四边形丝巾的形状是正方形,她对折了()A.1次B.2次C.3次D.4次【答案】B.【分析】由折叠得出四个角相等的四边形是矩形,再由一组邻边相等,即可得出四边形是正方形.【解析】小红用次数最少的对折方法验证了一条四边形丝巾的形状是正方形,她对折了2次;理由如下:小红把原丝巾对折1次(共2层),如果原丝巾对折后完全重合,即表明它是矩形;沿对角线对折1次,若两个三角形重合,表明一组邻边相等,因此是正方形;故选B.考点:翻折变换(折叠问题).26.(2016浙江省温州市)如图,一张三角形纸片ABC,其中∠C=90°,AC=4,BC=3.现小林将纸片做三次折叠:第一次使点A落在C处;将纸片展平做第二次折叠,使点B落在C处;再将纸片展平做第三次折叠,使点A落在B处.这三次折叠的折痕长依次记为a,b,c,则a,b,c的大小关系是()A .c >a >bB .b >a >cC .c >b >aD .b >c >a【答案】D .【分析】(1)图1,根据折叠得:D E 是线段AC 的垂直平分线,由中位线定理的推论可知:D E 是△ABC 的中位线,得出DE 的长,即a 的长;(2)图2,同理可得:M N 是△ABC 的中位线,得出M N 的长,即b 的长;(3)图3,根据折叠得:GH 是线段AB 的垂直平分线,得出AG 的长,再利用两角对应相等证△ACB ∽△AGH ,利用比例式可求GH 的长,即c 的长.【解析】第一次折叠如图1,折痕为DE ,由折叠得:A E =EC =12AC =12×4=2,DE ⊥AC .∵∠ACB =90°,∴DE ∥BC ,∴a =DE =12BC =12×3=32; 第二次折叠如图2,折痕为M N ,由折叠得:B N =NC =12BC =12×3=32,M N ⊥BC ,∵∠ACB =90°,∴M N ∥AC ,∴b =M N =12AC =12×4=2; 第三次折叠如图3,折痕为GH ,由勾股定理得:A B =2234+=5,由折叠得:A G =BG =12AB =12×5=52,GH ⊥AB ,∴∠AGH =90°,∵∠A =∠A ,∠AGH =∠ACB ,∴△ACB ∽△AGH ,∴AC BC AG GH =,∴4352GH=,∴GH =158,即c =158.∵2>158>32,∴b >c >a ,故选D .考点:翻折变换(折叠问题).学.科.网27.(2016浙江省湖州市)如图1,在等腰三角形ABC 中,AB =AC =4,BC =7.如图2,在底边BC 上取一点D ,连结AD ,使得∠DAC =∠ACD .如图3,将△ACD 沿着AD 所在直线折叠,使得点C 落在点E 处,连结BE ,得到四边形ABED .则BE 的长是( )A.4B.174C.32D.25【答案】B.【分析】只要证明△ABD∽△M BE,得AB BDBM BE,只要求出B M、BD即可解决问题.考点:翻折变换(折叠问题);四点共圆;等腰三角形的性质;相似三角形的判定与性质;综合题.28.(2016浙江省舟山市)把一张圆形纸片按如图所示方式折叠两次后展开,图中的虚线表示折痕,则BC 的度数是()A.120°B.135°C.150°D.165°【答案】C.【分析】直接利用翻折变换的性质结合锐角三角函数关系得出∠BOD=30°,再利用弧度与圆心角的关系得出答案.【解析】如图所示:连接BO,过点O作OE⊥AB于点E,由题意可得:EO=12BO,AB∥DC,可得∠EBO=30°,故∠BOD=30°,则∠BOC=150°,故BC的度数是150°.故选C.考点:圆心角、弧、弦的关系;翻折变换(折叠问题).29.(2016湖北省咸宁市)已知菱形OABC 在平面直角坐标系的位置如图所示,顶点A (5,0),OB =45,点P 是对角线OB 上的一个动点,D (0,1),当CP +DP 最短时,点P 的坐标为( )A .(0,0)B .(1,12) C .(65,35) D .(107,57) 【答案】D .【分析】如图连接AC ,AD ,分别交OB 于G 、P ,作BK ⊥OA 于K .首先说明点P 就是所求的点,再求出点B 坐标,求出直线OB 、DA ,列方程组即可解决问题.【解析】如图连接AC ,AD ,分别交OB 于G 、P ,作BK ⊥OA 于K . ∵四边形OABC 是菱形,∴AC ⊥OB ,GC =AG ,OG =BG =25A 、C 关于直线OB 对称,∴PC +PD =PA +PD =DA ,∴此时PC +PD 最短,在RT △AOG 中,AG =22OA OG -=225(25)-=5,∴AC =25,∵OA •BK =12•AC •OB ,∴BK =4,AK 22AB BK -=3,∴点B 坐标(8,4),∴直线OB 解析式为12y x =,直线AD 解析式为115y x =-+,由12115y x y x ⎧=⎪⎪⎨⎪=-+⎪⎩,解得:10757x y ⎧=⎪⎪⎨⎪=⎪⎩,∴点P 坐标(107,57).故选D . 考点:菱形的性质;坐标与图形性质;轴对称-最短路线问题.30.(2016福建省莆田市)如图,在△ABC 中,∠ACB =90°,AC =BC =4,将△ABC 折叠,使点A 落在BC 边上的点D 处,EF 为折痕,若AE =3,则sin ∠BFD 的值为( )A .13B .223C .24D .35【答案】A .【分析】由题意得:△AEF ≌△DEF ,故∠EDF =∠A ;由三角形的内角和定理及平角的知识问题即可解决.【解析】∵在△ABC 中,∠ACB =90°,AC =BC =4,∴∠A =∠B ,由折叠的性质得到:△AEF ≌△DEF ,∴∠EDF =∠A ,∴∠EDF =∠B ,∴∠CDE +∠BDF +∠EDF =∠BFD +∠BDF +∠B =180°,∴∠CDE =∠BFD .又∵AE =DE =3,∴CE =4﹣3=1,∴在直角△ECD 中,sin ∠CDE =13CE ED =.故选A . 考点:翻折变换(折叠问题);等腰直角三角形;锐角三角函数的定义.31.(2016贵州省遵义市)如图,正方形ABCD 的边长为3,E 、F 分别是AB 、CD 上的点,且∠CFE =60°,将四边形BCFE 沿EF 翻折,得到B ′C ′FE ,C ′恰好落在AD 边上,B ′C ′交AB 于点G ,则GE 的长是( )A .334B .425C .423-D .53-【答案】C .【分析】由正方形的性质得出∠A =∠B =∠C =∠D =90°,AB =AD =3,由折叠的性质得出FC ′=FC ,∠C ′FE =∠CFE =60°,∠FC ′B ′=∠C =90°,B ′E =BE ,∠B ′=∠B =90°,求出∠DC ′F =30°,得出FC ′=FC =2DF ,求出DF =1,DC 33C ′A =33,AG 3(33),设EB =x ,则GE =2x ,得出方程,解方程即可.【解析】∵四边形ABCD 是正方形,∴∠A =∠B =∠C =∠D =90°,AB =AD =3,由折叠的性质得:FC ′=FC ,∠C ′FE =∠CFE =60°,∠FC ′B ′=∠C =90°,B ′E =BE ,∠B ′=∠B =90°,∴∠DFC ′=60°,∴∠DC ′F =30°,∴FC ′=FC =2DF ,∵DF +CF =CD =3,∴DF +2DF =3,解得:D F =1,∴DC ′=3DF =3,则C ′A =33-,AG =3(33)-,设EB =x ,∵∠B ′GE =∠AGC ′=∠DC ′F =30°,∴GE =2x ,则 3(33)-+3x =3,解得:x =23-,∴GE =423-;故选C .考点:翻折变换(折叠问题);正方形的性质.32.(2016湖北省鄂州市)如图,菱形ABCD 的边AB =8,∠B =60°,P 是AB 上一点,BP =3,Q 是CD 边上一动点,将梯形APQD 沿直线PQ 折叠,A 的对应点A ′.当CA ′的长度最小时,CQ 的长为( )A .5B .7C .8D .132【答案】B . 【分析】作CH ⊥AB 于H ,如图,根据菱形的性质可判断△ABC 为等边三角形,则CH =32AB =43,AH =BH =4,再利用勾股定理计算出CP =7,再根据折叠的性质得点A ′在以P 点为圆心,PA 为半径的弧上,利用点与圆的位置关系得到当点A ′在PC 上时,CA ′的值最小,然后证明CQ =CP 即可.【解析】作CH ⊥AB 于H ,如图,∵菱形ABCD 的边AB =8,∠B =60°,∴△ABC 为等边三角形,∴CH =3AB =43,AH =BH =4,∵PB =3,∴HP =1,在Rt △CHP 中,CP =22(43)1+=7,∵梯形APQD 沿直线PQ 折叠,A 的对应点A ′,∴点A ′在以P 点为圆心,PA 为半径的弧上,∴当点A ′在PC 上时,CA ′的值最小,∴∠APQ =∠CPQ ,而CD ∥AB ,∴∠APQ =∠CQP ,∴∠CQP =∠CPQ ,∴CQ =CP =7.故选B .考点:菱形的性质;翻折变换(折叠问题);综合题;最值问题.33.(2016福建省龙岩市)如图,在周长为12的菱形ABCD 中,AE =1,AF =2,若P 为对角线BD 上一动点,则EP+FP的最小值为()A.1B.2C.3D.4【答案】C.【分析】作F点关于BD的对称点F′,则PF=PF′,由两点之间线段最短可知当E、P、F′在一条直线上时,EP+FP有最小值,然后求得EF′的长度即可.【解析】作F点关于BD的对称点F′,则PF=PF′,连接EF′交BD于点P,∴EP+FP=EP+F′P.由两点之间线段最短可知:当E、P、F′在一条直线上时,EP+FP的值最小,此时EP+FP=EP+F′P=EF′.∵四边形ABCD为菱形,周长为12,∴AB=BC=CD=DA=3,AB∥CD,∵AF=2,AE=1,∴DF=AE=1,∴四边形AEF′D是平行四边形,∴EF′=AD=3,∴EP+FP的最小值为3.故选C.考点:菱形的性质;轴对称-最短路线问题;最值问题.学.科.网34.(2016贵州省毕节市)如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E 处,折痕为GH.若BE:EC=2:1,则线段CH的长是()A.3B.4C.5D.6【答案】B.【分析】根据折叠的性质可得DH=EH,在直角△CEH中,若设CH=x,则DH=EH=9﹣x,CE=3cm,可以根据勾股定理列出方程,从而解出CH的长.【解析】由题意设CH =x cm ,则DH =EH =(9﹣x )cm ,∵BE :EC =2:1,∴CE =13BC =3cm ,∴在Rt △ECH 中,222EH EC CH =+,即222(9)3x x -=+,解得:x =4,即CH =4cm .故选B .考点:正方形的性质;翻折变换(折叠问题).35.(2016黑龙江省牡丹江市)如图,在平面直角坐标系中,A (﹣8,﹣1),B (﹣6,﹣9),C (﹣2.﹣9),D (﹣4,﹣1).先将四边形ABCD 沿x 轴翻折,再向右平移8个单位长度,向下平移1个单位长度后,得到四边形A 1B 1C 1D 1,最后将四边形A 1B 1C 1D 1,绕着点A 1旋转,使旋转后的四边形对角线的交点落在x 轴上,则旋转后的四边形对角线的交点坐标为( )A .(4,0)B .(5,0)C .(4,0)或(﹣4,0)D .(5,0)或(﹣5,0)【答案】D .【分析】根据题意画出图形,发现有两种情况:①对角线交点落在x 轴正半轴上,②对角线交点落在x 轴负半轴上;先求平移后的四边形A 1B 1C 1D 1对角线交点E 1的坐标,求OE 1的长,从而求出结论.【解析】由题意得:A 1(0,0),C 1(6,8),根据四个点的坐标可知:四边形ABCD 是平行四边形,∴对角线交点E 1是A 1C 1的中点,∴E 1(3,4),由勾股定理得:A 1E 12234+5,当对角线交点落在x 轴正半轴上时,对角线的交点坐标为(5,0),当对角线交点落在x 轴负半轴上时,对角线的交点坐标为(﹣5,0),故选D .考点:坐标与图形变化-旋转;坐标与图形变化-对称;坐标与图形变化-平移;规律型.36.(2015常州)将一张宽为4cm 的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是( )A .338cm 2B .8cm 2C .3316cm 2 D .16cm 2 【答案】B .【解析】试题分析:如图,当AC ⊥AB 时,三角形面积最小,∵∠BAC =90°∠ACB =45°,∴AB =AC =4cm ,∴S △ABC =12×4×4=8cm 2.故选B .考点:1.翻折变换(折叠问题);2.最值问题.37.(2015贵港)在平面直角坐标系中,若点P (m ,m ﹣n )与点Q (﹣2,3)关于原点对称,则点M (m ,n )在( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A .【解析】试题分析:根据平面内两点关于原点对称的点,横坐标与纵坐标都互为相反数,∴m =2且m ﹣n =﹣3,∴m =2,n =5,∴点M (m ,n )在第一象限,故选A .考点:关于原点对称的点的坐标.38.(2015庆阳)在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△B2n A2n+1B2n+1(n 是正整数)的顶点A2n+1的坐标是()A.(4n﹣13)B.(2n﹣13)C.(4n+13D.(2n+13)【答案】C.【解析】试题分析:∵△OA1B1是边长为2的等边三角形,∴A1的坐标为(1,3,B1的坐标为(2,0),∵△B2A2B1与△OA1B1关于点B1成中心对称,∴点A2与点A1关于点B1成中心对称,∵2×2﹣1=3,2×03=3∴点A2的坐标是(3,3,∵△B2A3B3与△B2A2B1关于点B2成中心对称,∴点A3与点A2关于点B2成中心对称,∵2×4﹣3=5,2×0 -3,∴点A3的坐标是(53),﹣(3∵△B3A4B4与△B3A3B2关于点B3成中心对称,∴点A4与点A3关于点B3成中心对称,∵2×6﹣5=7,-3,∴点A4的坐标是(7,3,2×03…,∵1=2×1﹣1,3=2×2﹣1,5=2×3﹣1,7=2×3﹣1,…,∴A n的横坐标是2n﹣1,A2n+1的横坐标是2(2n+1)﹣1=4n+1,-A2n+13∵当n为奇数时,A n3,当n为偶数时,A n的纵坐标是3∴△B2n A2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是(4n+13).故选C.考点:1.坐标与图形变化-旋转;2.规律型;3.综合题;4.压轴题.39.(2015桂林)如图,在△ABC中,AB=10,AC=8,BC=12,AD⊥BC于D,点E、F分别在AB、AC边上,把△ABC沿EF折叠,使点A与点D恰好重合,则△DEF的周长是()。

福建2018中考数学压轴题解析

福建2018中考数学压轴题解析

25、已知抛物线c bx ax y ++=2经过点0(A ,)2.(1)若点2(-,)0在抛物线上,求a 与b 的关系.(2)抛物线上任意不同两点1(x M ,)1y ,2(x N ,)2y .且当021<<x x 时,0))((2121>y y x x --;当210x x <<时,0))((2121<y y x x --.以原点O 为圆心,OA 为半径的圆与抛物线的另两个交点为B ,C .ABC △有一个内角为︒60.①求抛物线的解析式;②点P 与点O 关于点A 对称,N M O ,,三点共线,求证:PA 平分MPN ∠.(1)解:∵抛物线经过0(A ,)2,∴2=c ;又∵点2(-,)0在抛物线上∴0222=+-b a )0(≠a (2)①解:∵021<<x x ,0))((2121>y y x x --,∴021<x x -,021<y y -;∴当021<<x x 时,21y y <,即当0<x 时,y 随着x 的增大而增大;∵210x x <<,0))((2121<y y x x --,∴021<x x -,021>y y -;∴当210x x <<时,21y y >,即当0>x 时,y 随着x 的增大而减小;∴0<a ,且抛物线的对称轴为直线0=x ,∴02=-ab ,∴0=b ,∴这时抛物线解析式为22+=ax y ①;如图,根据对称性可知AC AB =,又∵ABC △有一个内角为︒60,∴ABC △为等边三角形;连接OC ,过C 点作x CD ⊥轴于点D ,则有2==OA OC ,︒=∠120AOC ,∴︒=︒-︒=∠3090120COD ,∴在COD Rt △中,121==OC CD ,3=OD ,∴,3(C )1-将,3(C )1-代入①,得123-=+a ∴1-=a ,∴抛物线的解析式为22+-=x y .②解:由①得,)2(211+-x x M ,,)2(222+-x x N ,,∵N M O ,,三点花线,∴,,0021≠≠x x 且22212122x x x x +-=+-∴212121)(2x x x x x x --=-,∵21x x ≠,∴221-=x x ,122x x -=,∴)242(211+-x x N ,;∵点P 和点O 关于点A 对称,∴)40(,P 过点M 作y ME ⊥轴于E ,过点N 作y NF ⊥轴于F ,则有︒=∠=∠90PFN PEM ,)20(21+-x E ,,)240(21+-F ,∵在PEM △中,21212)2(4x x PE +=+--=,1x ME =,∴112x x PE ME +=;∵在PFN △中,21212142)24(4x PF +=+--=,12x NF ==12x ,∴11212112422x x x x x PF NF +=+=;∴NF ME =,∴PFN Rt PEM Rt △∽△,∴NPF MPE ∠=∠,∴PA 平分MPN ∠.注:专家组给出的答案是用对称点来考虑,这里用相似三角形的思想.。

2018全国各地中考数学压轴题精选(含详细答案).docx

2018全国各地中考数学压轴题精选(含详细答案).docx

一.解答(共30 小)1.(区)如,直l1:y=kx+b 平行于直y=x 1,且与直l2:相交于点P( 1, 0).(1)求直l1、 l2的解析式;(2)直 l1与 y 交于点A.一点 C 从点 A 出,先沿平行于x 的方向运,到达直l2上的点 B1后,改垂直于 x 的方向运,到达直l1上的点 A1后,再沿平行于x 的方向运,到达直l2上的点 B2后,又改垂直于x 的方向运,到达直 l 1上的点 A2后,仍沿平行于x 的方向运,⋯照此律运,点 C 依次点 B1, A1, B2, A2, B3,A3,⋯, B n, A n,⋯①求点 B1, B2, A1, A2的坐;②你通得出点 A、B 的坐;并求当点 C到达 A ,运的路径的?n n n2.(莆田)如1,在平面直角坐系xOy 中,矩形 OABC的 OA 在 y 的正半上,OC在x 的正半上, OA=1, OC=2,点 D 在 OC 上且 OD= .(1)求直AC 的解析式;(2)在 y 上是否存在点P,直 PD与矩形角AC交于点 M,使得△ DMC 等腰三角形?若存在,直接写出所有符合条件的点P 的坐;若不存在,明理由.(3)抛物y= x 怎平移,才能使得平移后的抛物点 D 和点 E(点 E 在 y 的正半上),且△ ODE沿DE折叠后点O 落在 AB 上 O′ .3.(阳)已知 Z 市某种生活必需品的年需求量y1(万件)、供量 y2(万件)与价格x (元 / 件)在一定范内分近似足下列函数关系式:y= 4x+190,y =5x 170.当 y =y1212,称商品的价格定价格,需求量定需求量;当y1< y2,称商品的供求关系供于求;当y1> y2,称商品的供求关系供不求.(1)求商品的定价格和定需求量;(2)当价格为45(元 / 件)时,该商品的供求关系如何?为什么?4.(哈尔滨)如图 1,在平面直角坐标系中,点 O 是坐标原点,四边形 ABCO是菱形,点 A 的坐标为(﹣ 3,4),点 C 在 x 轴的正半轴上,直线 AC 交 y 轴于点 M,AB 边交 y 轴于点 H.(1)求直线AC 的解析式;(2)连接 BM,如图 2,动点 P 从点 A 出发,沿折线ABC方向以 2 个单位 / 秒的速度向终点C 匀速运动,设△ PMB 的面积为S( S≠0),点 P 的运动时间为 t 秒,求 S 与 t 之间的函数关系式(要求写出自变量t 的取值范围);(3)在( 2)的条件下,当t 为何值时,∠ MPB 与∠ BCO互为余角,并求此时直线OP与直线 AC 所夹锐角的正切值.5.(桂林)如图已知直线L: y= x+3,它与x 轴、 y 轴的交点分别为A、 B 两点.(1)求点 A、点 B 的坐标.F(不(2)设 F 为 x 轴上一动点,用尺规作图作出⊙P,使⊙ P 经过点 B 且与 x 轴相切于点写作法,保留作图痕迹).(3)设( 2)中所作的⊙ P 的圆心坐标为 P( x, y),求 y 关于 x 的函数关系式.(4)是否存在这样的⊙ P,既与 x 轴相切又与直线 L 相切于点 B?若存在,求出圆心 P 的坐标;若不存在,请说明理由.6.(防城港)如图,在平面直角坐标系,直线y=﹣(x﹣6)与x 轴、 y 轴分别相交于A、D 两点,点 B 在 y 轴上,现将△ AOB 沿 AB 翻折 180 °,使点 O 刚好落在直线AD 的点 C 处.(1)求 BD 的长;(2)设点 N 是线段 AD 上的一个动点(与点 A、D 不重合), S△NBD=S1,S△NOA=S2,当点 N 运动到什么位置时,S1?S2的值最大,并求出此时点N 的坐标;(3)在 y 轴上是否存在点M ,使 △ MAC 为直角三角形?若存在,请写出所有符合条件的点M 的坐标,并选择一个写出其求解过程;若不存在,简述理由.7.(大兴安岭)直线 y=kx+b ( k ≠0)与坐标轴分别交于 A 、 B 两点, OA 、 OB 的长分别是方程 x 2﹣ 14x+48=0 的两根( OA > OB ),动点 P 从 O 点出发,沿路线 O?B?A 以每秒 1 个单位 长度的速度运动,到达 A 点时运动停止.( 1)直接写出 A 、 B 两点的坐标;( 2)设点 P 的运动时间为 t (秒), △ OPA 的面积为 S ,求 S 与 t 之间的函数关系式(不必写出自变量的取值范围); (3)当 S=12 时,直接写出点P 的坐标,此时,在坐标轴上是否存在点M ,使以 O 、 A 、 P 、M 为顶点的四边形是梯形?若存在,请直接写出点 M 的坐标;若不存在,请说明理由.8.(云南)如图,在直角坐标系中,半圆直径为 OC ,半圆圆心 D 的坐标为( 0, 2),四边形 OABC 是矩形,点 A 的坐标为( 6, 0). (1)若过点 P ( 2,0)且与半圆 D 相切于点 F 的切线分别与 y 轴和 BC 边交于点 H 与点E ,求切线 PF 所在直线的解析式;(2)若过点 A 和点 B 的切线分别与半圆相切于点P 1 和 P 2(点 P 1、 P 2 与点 O 、 C 不重合),请求 P 1、 P 2 点的坐标并说明理由.(注:第(2)问可利用备用图作答).9.(厦门)如图,在直角梯形 OABD 中, DB ∥ OA ,∠ OAB=90°,点 O 为坐标原点,点 A 在 x 轴的正半轴上,对角线 OB , AD 相交于点 M . OA=2, AB=2 ,BM : MO=1 : 2.(1)求 OB 和 OM 的值;(2)求直线OD 所对应的函数关系式;(3)已知点P 在线段 OB 上( P 不与点 O,B 重合),经过点 A 和点 P 的直线交梯形OABD的边于点E( E 异于点 A),设 OP=t,梯形 OABD 被夹在∠ OAE内的部分的面积为S,求 S关于 t 的函数关系式.10.(天门)如图①,在平面直角坐标系中, A 点坐标为( 3,0),B 点坐标为( 0,4).动点 M 从点 O 出发,沿OA 方向以每秒 1 个单位长度的速度向终点 A 运动;同时,动点N 从点 A 出发沿 AB 方向以每秒个单位长度的速度向终点 B 运动.设运动了x 秒.(1)点 N 的坐标为(_________,_________);(用含x 的代数式表示)(2)当 x 为何值时,△ AMN 为等腰三角形;(3)如图②,连接 ON 得△ OMN,△ OMN 可能为正三角形吗?若不能,点M 的运动速度不变,试改变点N 的运动速度,使△ OMN为正三角形,并求出点N 的运动速度.11.(乐山)如图,在平面直角坐标系中,△ABC的边 AB 在 x 轴上,且 OA> OB,以 AB 为直径2的圆过点 C.若点 C 的坐标为( 0, 2), AB=5,A,B 两点的横坐标 x A, x B是关于 x 的方程 x﹣( m+2) x+n﹣1=0 的两根.(1)求 m, n 的值;(2)若∠ ACB 平分线所在的直线l 交 x 轴于点 D,试求直线l 对应的一次函数解析式;(3)过点 D 任作一直线l 分′别交射线CA,CB(点 C 除外)于点M,N.则的是否为定值?若是,求出该定值;若不是,请说明理由.12.(黄冈)已知:如图,在直角梯形 COAB中, OC∥ AB,以 O 为原点建立平面直角坐标系, A,B,C 三点的坐标分别为 A(8 ,0), B( 8,10), C( 0,4),点 D 为线段 BC的中点,动点P 从点 O 出发,以每秒 1 个单位的速度,沿折线 OABD 的路线移动,移动的时间为 t 秒.(1)求直线 BC的解析式;(2)若动点 P 在线段 OA 上移动,当 t 为何值时,四边形 OPDC的面积是梯形 COAB面积的;(3)动点 P 从点 O 出发,沿折线OABD 的路线移动过程中,设△ OPD的面积为S,请直接写出 S 与 t 的函数关系式,并指出自变量t 的取值范围;(4)试探究:当动点 P 在线段 AB 上移动时,能否在线段OA 上找到一点Q,使四边形CQPD 为矩形?并求出此时动点P 的坐标.13.(遵义)如图,已知一次函数的图象与x 轴, y 轴分别相交于A, B 两点,点 C 在 AB 上以每秒 1 个单位的速度从点 B 向点 A 运动,同时点 D 在线段 AO 上以同样的速度从点 A 向点 O 运动,运动时间用t(单位:秒)表示.(1)求 AB 的长;(2)当 t 为何值时,△ ACD与△ AOB 相似并直接写出此时点 C 的坐标;(3)△ ACD 的面积是否有最大值?若有,此时t 为何值;若没有,请说明理由.14.(株洲)已知 Rt△ABC,∠ ACB=90°, AC=4, BC=3, CD⊥AB 于点 D,以 D 为坐标原点,CD 所在直线为 y 轴建立如图所示平面直角坐标系.(1)求 A, B, C 三点的坐;(2)若⊙ O1,⊙ O2分△ACD,△ BCD的内切,求直O1O2的解析式;(3)若直 O1O2分交 AC,BC 于点 M,N,判断 CM 与 CN的大小关系,并明你的.15.(江)探索、研究:下是按照一定的律画出的一列“ 型” ,下表的n 表示“型” 的序号, a n表示第 n 个“ 型” 中“ 枝”的个数.:表:n 2 3 4⋯13 7 1⋯a n15(1)根据“ ”、“表”可以出a n关于 n 的关系式_________.若直 l1点( a1, a2)、( a2, a3),求直 l 1的函数关系式,并明任意的正整数 n,点( a n,a n+1)都在直 l1上.(2)直l2: y= x+4 与 x 相交于点A,与直l1相交于点M ,双曲 y=(x>0)点 M,且与直l2相交于另一点N.①求点 N 的坐,并在如所示的直角坐系中画出双曲及直l 1、 l2.② H 双曲在点 M、 N 之的部分(不包括点 M 、N), P H 上一个点,点 P 的横坐 t ,直 MP 与 x 相交于点 Q,当 t 何,△ MQA 的面等于△ PMA 的面的2 倍又是否存在 t 的,使得△ PMA 的面等于 1?若存在,求出 t 的;若不存在,明理由.③在 y 上是否存在点G,使得△GMN 的周最小?若存在,求出点G的坐;若不存在,明理由.16.(咸宁)如,在平面直角坐系 xoy 中,已知矩形 ABCD的 AB、AD 分在 x 、 y 上,点 A 与坐原点重合,且 AB=2, AD=1.操作:将矩形ABCD折叠,使点 A 落在 DC 上.探究:(1)我们发现折痕所在的直线与矩形的两边一定相交,那么相交的情形有几种请你画出每种情形的图形;(只要用矩形草稿纸动手折一折你会有发现的!)(2)当折痕所在的直线与矩形的边 OD 相交于点 E,与边 OB 相交于点 F 时,设直线的解析式为y=kx+b.①求 b 与 k 的函数关系式;②求折痕 EF的长(用含k 的代数式表示),并写出k 的取值范围.17.(厦门)已知点 P(m, n)( m> 0)在直线 y=x+b(0< b< 3)上,点 A、 B 在 x 轴上(点 A 在点 B 的左边),线段 AB 的长度为 b,设△ PAB的面积为 S,且 S= b 2+ b.(1)若 b= ,求 S 的值;(2)若 S=4,求 n 的值;(3)若直线 y=x+b( 0< b< 3)与 y 轴交于点 C,△PAB是等腰三角形,当 CA∥ PB 时,求 b的值.18.(乌鲁木齐)如图1,在平面直角坐标系中,O 为坐标原点,点 A 的坐标为( 0, 6),点 B 坐标为,BC∥ y轴且与x轴交于点C,直线 OB 与直线 AC 相交于点P.(1)求点 P 的坐标;(2)若以点 O 为圆心, OP 的长为半径作⊙ O(如图 2),求证:直线 AC与⊙ O 相切于点 P;(3)过点 B 作 BD∥ x 轴与 y 轴相交于点 D,以点 O 为圆心, r 为半径作⊙ O,使点 D 在⊙ O内,点 C 在⊙ O 外;以点 B 为圆心, R 为半径作⊙ B,若⊙ O 与⊙ B 相切,试分别求出 r, R 的取值范围.19.(随州)如图,直角梯形 ABCD的腰 BC 所在直线的解析式为 y=﹣ x﹣ 6 ,点 A 与坐标原点 O重合,点 D 的坐标为( 0,﹣ 4 ),将直角梯形 ABCD绕点 O 顺时针旋转 180°,得到直角梯形OEFG(如图 1).(1)直接写出E, F 两点的坐标及直角梯形OEFG的腰 EF所在直线的解析式;(2)将图 1 中的直角梯形ABCD先沿 x 轴向右平移到点 A 与点 E 重合的位置,再让直角顶点 A 紧贴着 EF,向上平移直角梯形ABCD(即梯形ABCD向上移动时,总保持着AB∥ FG),当点 A 与点 F 重合时,梯形 ABCD停止移动.观察得知:在梯形ABCD移动过程中,其腰 BC始终经过坐标原点 O.(如图 2)①设点 A 的坐标为( a, b),梯形 ABCD与梯形 OEFG重合部分的面积为S,试求 a 与何值时, S的值恰好等于梯形 OEFG面积的;②当点 A 在 EF上滑动时,设AD 与 x 轴的交点为 M,试问:在 y 轴上是否存在点 P,使得△PAM 是底角为 30 °的等腰三角形?如果存在,请求出所有符合条件的点P 的坐标;如果不存在,请说明理由.(利用图 3 进行探索)20.(邵阳)如图,直线y=﹣x+2 与 x 轴, y 轴分别相交于点A, B.将△ AOB 绕点 O 按顺时针方向旋转α角( 0°<α≤ 360)°,可得△ COD.(1)求点 A, B 的坐标;(2)当点 D 落在直线 AB 上时,直线 CD 与 OA 相交于点 E,△ COD和△ AOB 的重叠部分为△ODE(图①).求证:△ ODE∽△ ABO;(3)除了( 2)中的情况外,是否还存在△ COD和△ AOB 的重叠部分与△ AOB 相似,若存在,请指出旋转角α的度数;若不存在,请说明理由;(4)当α=30时°(图②), CD与 OA, AB 分别相交于点 P,M , OD 与 AB 相交于点 N,试求△ COD与△ AOB 的重叠部分(即四边形 OPMN)的面积.21.(韶关)如图,在平面直角坐标系中,四边形OABC是矩形,OA=4,AB=2,直线与坐标轴交于D、 E.设 M 是 AB 的中点, P 是线段 DE上的动点.(1)求 M、 D 两点的坐标;(2)当 P 在什么位置, PA=PB求出此 P 点的坐;(3) P 作 PH⊥ BC,垂足 H,当以 PM 直径的⊙ F 与 BC 相切于点 N ,求梯形 PMBH的面.22.(衢州)如,点 B1(1, y1), B2(2, y2), B3( 3, y3)⋯, B n( n, y n)( n 是正整数)依次一次函数 y= x+ 的象上的点,点 A1( x1,0),A2( x2,0),A3( x3,0),⋯,A n( x n, 0)( n 是正整数)依次是x 正半上的点,已知x1=a( 0<a< 1),△ A1B1A2,△A2B2A3,△ A3B3A4⋯△ A n B n A n+1分是以B1, B2,B3,⋯, B n点的等腰三角形.(1)写出 B2, B n两点的坐;(2)求 x2, x3(用含 a 的代数式表示);分析形中各等腰三角形底度之的关系,写出你成立的两个;是否存在直角三角形?若存在,(3)当 a( 0< a< 1)化,在上述所有的等腰三角形中,求出相的 a 的;若不存在,明理由.23.(黔南州)某商厦一种成本 50 元 / 件的商品,定的售价不低于成本,又不高于 80 元/ 件,中售量 y(件)与售价 x(元 / 件)的关系可近似的看作一次函数(如).(1)求 y 与 x 的关系式;(2)商厦得的毛利(毛利 =售成本) s(元),售价定多少,商厦利最大,最大利是多少?此的售量是多少件?24.(牡丹江)如图,在平面直角坐标系中,已知点A(﹣ 3, 6),点 B,点 C 分别在 x 轴2的负半轴和正半轴上,OB, OC的长分别是方程x ﹣4x+3=0 的两根( OB< OC).(1)求 B, C 两点的坐标;(2)在坐标平面内是否存在点Q 和点 P(点 P 在直线 AC 上),使以 O、P、C、Q 为顶点的四边形是正方形?若存在,请直接写出Q 点的坐标;若不存在,请说明理由;(3)若平面内有 M( 1,﹣ 2), D 为线段 OC上一点,且满足∠ DMC=∠ BAC,∠ MCD=45°,求直线 AD 的解析式.25.(梅州)如图,直角梯形ABCD中, AB∥ CD,∠ A=90°, AB=6, AD=4,DC=3,动点 P从点 A 出发,沿A→D→C→B方向移动,动点Q 从点 A 出发,在AB 边上移动.设点P 移动的路程为x,点 Q 移动的路程为y,线段 PQ 平分梯形ABCD的周长.(1)求 y 与 x 的函数关系式,并求出x,y 的取值范围;(2)当 PQ∥ AC 时,求 x,y 的值;(3)当 P 不在 BC 边上时,线段PQ能否平分梯形ABCD的面积?若能,求出此时x 的值;若不能,说明理由.26.(聊城)某市为了进一步改善居民的生活环境,园林处决定增加公园 A 和公园 B 的绿化面积.已知公园 A, B 分别有如图1,图 2 所示的阴影部分需铺设草坪,在甲、乙两地分别有同种草皮 1608m 2和 1200m2出售,且售价一样.若园林处向甲、乙两地购买草皮,其路程和运费单价见下表:公园 A公园 B路程(千米)运费单价(元)路程(千米)运费单价(元)甲地300.25320.25乙地220.3300.3(注:运费单价指将每平方米草皮运送 1 千米所需的人民币)(1)分别求出公园 A ,B 需铺设草坪的面积;(结果精确到 1m 2)(2)请设计出总运费最省的草皮运送方案,并说明理由.27.(佳木斯)如图,在平面直角坐标系中,已知点 A (﹣ 3, 6),点 B ,点 C 分别在 x 轴的负半轴和正半轴上, OB , OC 的长分别是方程 x 2﹣4x+3=0 的两根( OB < OC ).( 1)求点 B ,点 C 的坐标;( 2)若平面内有 M ( 1,﹣ 2), D 为线段 OC 上一点,且满足∠ DMC=∠ BAC ,求直线 MD 的解析式;( 3)在坐标平面内是否存在点Q 和点 P (点 P 在直线 AC 上),使以 O ,P ,C ,Q 为顶点的四边形是正方形?若存在,请直接写出Q 点的坐标;若不存在,请说明理由.28.(济南)已知:如图,在平面直角坐标系中,△ ABC 是直角三角形,∠ ACB=90°,点 A ,C 的坐标分别为 A (﹣ 3, 0), C (1, 0), tan ∠ BAC= . (1)求过点 A , B 的直线的函数表达式;(2)在 x 轴上找一点 D ,连接 DB ,使得 △ ADB 与 △ ABC 相似(不包括全等),并求点 D 的 坐标;(3)在( 2)的条件下,如 P ,Q 分别是 AB 和 AD 上的动点,连接 PQ ,设 AP=DQ=m ,问是否存在这样的 m ,使得 △ APQ 与 △ ADB 相似?如存在,请求出 m 的值;如不存在,请说明理由.29.(黑龙江)如图,点<OB )的长分别是关于(1)求∠ ABC 的度数;A 为 x 轴负半轴上一点,点B 为 x 轴正半轴上一点, OA , OB ( OAx 的一元二次方程 22的两根, C ( 0,3),且 S △ABC =6x ﹣4mx+m +2=0(2)过点 C 作 CD⊥ AC 交 x 轴于点 D,求点 D 的坐标;(3)在第( 2)问的条件下, y 轴上是否存在点 P,使∠ PBA=∠ ACB?若存在,请直接写出直线 PD 的解析式;若不存在,请说明理由.AD 平行于x 轴,下底BC 交y 30.(哈尔滨)如图,梯形ABCD在平面直角坐标系中,上底轴于点E,点C( 4,﹣ 2),点D( 1, 2), BC=9, sin∠ ABC=.(1)求直线AB 的解析式;(2)若点 H 的坐标为(﹣ 1,﹣ 1),动点 G 从 B 出发,以 1 个单位 / 秒的速度沿着BC边向C 点运动(点G 可以与点 B 或点 C 重合),求△ HGE的面积 S( S≠0)随动点 G 的运动时间t′秒变化的函数关系式(写出自变量t′的取值范围);(3)在( 2)的条件下,当秒时,点G 停止运动,此时直线GH 与y 轴交于点N.另一动点 P 开始从 B 出发,以 1 个单位 / 秒的速度沿着梯形的各边运动一周,即由 B 到 A,然后由 A 到 D,再由 D 到 C,最后由 C 回到 B(点 P 可以与梯形的各顶点重合).设动点P 的运动时间为t 秒,点 M 为直线 HE 上任意一点(点M 不与点 H 重合),在点P 的整个运动过程中,求出所有能使∠PHM 与∠ HNE相等的 t 的值.答案与分准一.解答(共30 小)1.(区)如,直l1:y=kx+b 平行于直y=x 1,且与直l2:相交于点P ( 1, 0).(1)求直l1、 l2的解析式;(2)直 l1与 y 交于点A.一点 C 从点 A 出,先沿平行于x 的方向运,到达直l2上的点 B1后,改垂直于 x 的方向运,到达直l1上的点 A1后,再沿平行于x 的方向运,到达直l2上的点 B2后,又改垂直于x 的方向运,到达直 l 1上的点 A2后,仍沿平行于x 的方向运,⋯照此律运,点 C 依次点B1, A1, B2, A2, B3,A3,⋯, B n, A n,⋯①求点 B1, B2, A1, A2的坐;②你通得出点A n、B n的坐;并求当点C到达 A n,运的路径的?考点:一次函数合。

专题28 探究型问题-决胜2018中考数学压轴题全揭秘精品(解析版)

专题28 探究型问题-决胜2018中考数学压轴题全揭秘精品(解析版)

一、选择题1.(2016云南省曲靖市)小明所在城市的“阶梯水价”收费办法是:每户用水不超过5吨,每吨水费x 元;超过5吨,每吨加收2元,小明家今年5月份用水9吨,共交水费为44元,根据题意列出关于x 的方程正确的是( )A .5x +4(x +2)=44B .5x +4(x ﹣2)=44C .9(x +2)=44D .9(x +2)﹣4×2=44点睛:本题考查由实际问题抽象出一元一次方程,解题的关键是明确题意,列出相应的方程. 考点:由实际问题抽象出一元一次方程;探究型.2.(2016山东省日照市)如图,P 为平行四边形ABCD 边AD 上一点,E 、F 分别是PB 、PC (靠近点P )的三等分点,△PEF 、△PDC 、△P AB 的面积分别为S 1、S 2、S 3,若AD =2,AB =23,∠A =60°,则S 1+S 2+S 3的值为( )A .103 B .92 C .133D .4 【答案】A .【分析】先作辅助线DH ⊥AB 于点D ,然后根据特殊角的三角函数值可以求得DH 的长度,从而可以求得平行四边形的面积,然后根据三角形的相似可以求得S 1+S 2+S 3的值.【解析】作DH ⊥AB 于点H ,如右图所示,∵AD =2,AB =3∠A =60°,∴DH =AD •sin 60°=2×323∴S ▱ABCD =AB •DH =2336,∴S 2+S 3=S △PBC =3,又∵E 、F 分别是PB 、PC (靠近点P )的三等分点,∴ΔPEF ΔPBC S S =19,∴S △PEF =19×3=13,即S 1=13,∴S 1+S 2+S 3=13+3=103,故选A .点睛:本题考查相似三角形的判定与性质、平行四边形的性质,解题的关键是明确题意,找出所求问题需要的条件,画出合适的辅助线,利用数形结合的思想解答问题.考点:相似三角形的判定与性质;平行四边形的性质;探究型.3.(2016山东省泰安市)如图,四个实数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n+q=0,则m,n,p,q四个实数中,绝对值最大的一个是()A.p B.q C.m D.n【答案】A.【分析】根据n+q=0可以得到n、q的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决.【解析】∵n+q=0,∴n和q互为相反数,0在线段NQ的中点处,∴绝对值最大的点P表示的数p,故选A.点睛:本题考查实数与数轴,解题的关键是明确数轴的特点,利用数形结合的思想解答.考点:实数与数轴;探究型.4.(2016山东省青岛市)输入一组数据,按下列程序进行计算,输出结果如表:x 20.5 20.6 20.7 20.8 20.9输出﹣13.75 ﹣8.04 ﹣2.31 3.44 9.21分析表格中的数据,估计方程288260()的一个正数解x的大致范围为()x+-=A.20.5<x<20.6B.20.6<x<20.7C.20.7<x<20.8D.20.8<x<20.9【答案】C.【分析】根据表格中的数据,可以知道288260x +-=()的值,从而可以判断当288260x +-=()时,x 的所在的范围,本题得以解决.【解析】由表格可知,当x =20.7时,288260x +-=()=﹣2.31,当x =20.8时,288260x +-=()=3.44,故288260x +-=()=0时,20.7<x <20.8,故选C .点睛:本题考查估算一元二次方程的近似解,解题的关键是明确题意,找出所求问题需要的条件. 考点:估算一元二次方程的近似解;探究型.学.科.网5.(2016广西贺州市)n 是整数,式子21[1(1)](1)8n n ---计算的结果( )A .是0B .总是奇数C .总是偶数D .可能是奇数也可能是偶数 【答案】C .【分析】根据题意,可以利用分类讨论的数学思想探索式子21[1(1)](1)8n n ---计算的结果等于什么,从而可以得到哪个选项是正确的.【解析】当n 是偶数时,21[1(1)](1)8n n ---=21[11](1)8n --=0,当n 是奇数时,21[11](1)8n +-=21[1(1)](1)8n n ---=1(1)(1)4n n +-,设n =2k ﹣1(k 为整数),则 1(1)(1)4n n +-=1(211)(211)4k k -+--=k (k ﹣1),∵0或k (k ﹣1)(k 为整数)都是偶数,故选C . 点睛:本题考查因式分解的应用,解题的关键是明确题意,利用分类讨论的数学思想解答问题. 考点:因式分解的应用;探究型;分类讨论.6.(2016浙江省绍兴市)抛物线2y x bx c =++(其中b ,c 是常数)过点A (2,6),且抛物线的对称轴与线段y =0(1≤x ≤3)有交点,则c 的值不可能是( ) A .4 B .6 C .8 D .10 【答案】A .【分析】根据抛物线2y x bx c =++(其中b ,c 是常数)过点A (2,6),且抛物线的对称轴与线段y =0(1≤x ≤3)有交点,可以得到c 的取值范围,从而可以解答本题.【解析】∵抛物线2y x bx c =++(其中b ,c 是常数)过点A (2,6),且抛物线的对称轴与线段y =0(1≤x ≤3)有交点,∴4261321b c b++=⎧⎪⎨≤-≤⎪⎩⨯,解得6≤c ≤14,故选A . 点睛:本题考查二次函数的性质、解不等式,解题关键是明确题意,列出相应的关系式.考点:二次函数的性质;探究型.二、填空题7.(2017山东省潍坊市,第15题,3分)如图,在△ABC中,AB≠AC.D、E分别为边AB、AC上的点.AC=3AD,AB=3AE,点F为BC边上一点,添加一个条件:,可以使得△FDB与△ADE相似.(只需写出一个)【答案】D F∥AC或∠BFD=∠A.【分析】结论:DF∥AC,或∠BFD=∠A.根据相似三角形的判定方法一一证明即可.【解析】DF∥AC,或∠BFD=∠A.理由:∵∠A=∠A,13AD AEAC AB==,∴△ADE∽△ACB,∴①当DF∥AC时,△BDF∽△BAC,∴△BDF∽△EAD.②当∠BFD=∠A时,∵∠B=∠AED,∴△FBD∽△AED.故答案为:DF∥AC或∠BFD=∠A.点睛:本题考查相似三角形的判定和性质.平行线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.考点:相似三角形的判定;分类讨论;开放型;探究型.8.(2017贵州省黔东南州,第12题,4分)如图,点B、F、C、E在一条直线上,已知FB=CE,AC∥DF,请你添加一个适当的条件使得△ABC≌△DEF.【答案】∠A=∠D.【分析】根据全等三角形的判定定理填空.【解析】添加∠A=∠D.理由如下:∵FB=CE,∴BC=EF.又∵AC∥DF,∴∠ACB=∠DFE,在△ABC与△DEF中,∵∠A=∠D,∠ACB=∠DFE,BC=EF,∴△ABC≌△DEF(AAS).故答案为:∠A=∠D.点睛:本题主要考查对全等三角形的判定,平行线的性质等知识点的理解和掌握,熟练地运用全等三角形的判定定理进行证明是解此题的关键,是一个开放型的题目,比较典型.考点:全等三角形的判定;探究型.9.(2017湖南省娄底市,第14题,3分)如图,在Rt△ABC与Rt△DCB中,已知∠A=∠D=90°,请你添加一个条件(不添加字母和辅助线),使Rt△ABC≌Rt△DCB,你添加的条件是.【答案】A B=DC.【分析】根据斜边与直角边对应相等的两个直角三角形全等,使Rt△ABC≌Rt△DCB,添加的条件是:AB=DC.【解析】∵斜边与直角边对应相等的两个直角三角形全等,∴在Rt△ABC与Rt△DCB中,已知∠A=∠D=90°,使Rt△ABC≌Rt△DCB,添加的条件是:AB=DC.故答案为:AB=DC.点睛:此题主要考查了全等三角形的判定和性质的应用,要熟练掌握,解答此题的关键是要明确:①判定定理1:SSS﹣﹣三条边分别对应相等的两个三角形全等.②判定定理2:SAS﹣﹣两边及其夹角分别对应相等的两个三角形全等.③判定定理3:ASA﹣﹣两角及其夹边分别对应相等的两个三角形全等.④判定定理4:AAS﹣﹣两角及其中一个角的对边对应相等的两个三角形全等.⑤判定定理5:HL﹣﹣斜边与直角边对应相等的两个直角三角形全等.考点:直角三角形全等的判定;探究型.10.(2016四川省内江市)问题引入:(1)如图①,在△ABC中,点O是∠ABC和∠ACB平分线的交点,若∠A=α,则∠BOC= (用α表示);如图②,∠CBO=13∠ABC,∠BCO=13∠ACB,∠A=α,则∠BOC= (用α表示)拓展研究:(2)如图③,∠CBO=13∠DBC,∠BCO=13∠ECB,∠A=α,请猜想∠BOC= (用α表示),并说明理由.类比研究:(3)BO、CO分别是△ABC的外角∠DBC、∠ECB的n等分线,它们交于点O,∠CBO=1n∠DBC,∠BCO=1n∠ECB,∠A=α,请猜想∠BOC= .【答案】(1)90°+12α,120°+13α;(2)120°-13α;(3)(1)1801nn nα-⨯-.【分析】(1)如图①,根据角平分线的定义可得∠OBC=12∠ABC,∠OCB=12∠ACB,然后表示出∠OBC+∠OCB,再根据三角形的内角和等于180°列式整理即可得∠BOC=90°+12α;如图②,根据三角形的内角和等于180°列式整理即可得∠BOC=120°+13α;(2)如图③,根据三角形的内角和等于180°列式整理即可得∠BOC=120°﹣13α;(3)根据三角形的内角和等于180°列式整理即可得∠BOC=(1)1801nn nα-⨯-.【解析】(1)如图①,∵∠ABC与∠ACB的平分线相交于点O,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∴∠OBC+∠OCB=12(∠ABC+∠ACB),在△OBC中,∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣12(∠ABC+∠ACB)=180°﹣12(180°﹣∠A)=90°+12∠A=90°+12α;如图②,在△OBC中,∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣13(∠ABC+∠ACB)=180°﹣13(180°﹣∠A)=120°+13∠A=120°+13α;(2)如图③,在△OBC中,∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣13(∠DBC+∠ECB)=180°﹣13(∠A+∠ACB+∠A+ABC)=180°﹣13(∠A+180°)=120°﹣13α;(3)在△OBC中,∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣1n(∠DBC+∠ECB)=180°﹣1n(∠A+∠ACB+∠A+ABC)=180°﹣1n(∠A+180°)=(1)1801nn nα-⨯-.点睛:本题考查了三角形的内角和定理,角平分线的定义,整体思想的利用是解题的关键. 考点:角的计算;探究型;变式探究.11.(2015淄博)对于两个二次函数1y ,2y ,满足2122238y y x x +=++.当x =m 时,二次函数1y 的函数值为5,且二次函数2y 有最小值3.请写出两个符合题意的二次函数2y 的解析式(要求:写出的解析式的对称轴不能相同).【答案】答案不唯一,例如:213y x =+,22(3)3y x =++.【解析】试题分析:已知当x =m 时,二次函数1y 的函数值为5,且二次函数2y 有最小值3,故抛物线的顶点坐标为(m ,3),设出顶点式求解即可.答案不唯一,例如:213y x =+,22(3)3y x =++. 故答案为:答案不唯一,例如:213y x =+,22(3)3y x =++.考点:1.二次函数的性质;2.开放型.12.(2015年四川成都)如图,A ,B ,C 为⊙O 上相邻的三个n 等分点,AB BC =,点E 在BC 上,EF 为⊙O 的直径,将⊙O 沿EF 折叠,使点A 与A ′重合,点B 与B ′重合,连接EB ′,EC ,EA ′.设EB ′=b ,EC =c ,EA ′=p .现探究b ,c ,p 三者的数量关系:发现当n =3时,p =b +c .请继续探究b ,c ,p 三者的数量关系:当n =4时,p = ▲ ;当n =12时,p = ▲ . (参考数据:6262sin15cos75cos15sin75-+︒=︒=︒=︒=,,)∴DA AC EB BC =。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题1.(2017江苏省南通市,第9题,3分)已知∠AOB,作图.步骤1:在OB上任取一点M,以点M为圆心,MO长为半径画半圆,分别交OA、OB于点P、Q;步骤2:过点M作PQ的垂线交PQ于点C;步骤3:画射线OC.则下列判断:①PC CQ=;②MC∥OA;③OP=PQ;④OC平分∠AOB,其中正确的个数为()A.1B.2C.3D.4【答案】C.【分析】由OQ为直径可得出OA⊥PQ,结合MC⊥PQ可得出OA∥MC,结论②正确;根据平行线的性质可得出∠P AO=∠CMQ,结合圆周角定理可得出∠COQ=12∠POQ=∠BOQ,进而可得出PC CQ=,OC平分∠AOB,结论①④正确;由∠AOB的度数未知,不能得出OP=PQ,即结论③错误.综上即可得出结论.点睛:本题考查了作图中的复杂作图、角平分线的定义、圆周角定理以及平行线的判定及性质,根据作图的过程逐一分析四条结论的正误是解题的关键.考点:作图—复杂作图;圆周角定理.2.(2017河北,第16题,2分)已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB边重合,如图所示,按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转;…在这样连续6次旋转的过程中,点B,M间的距离可能是()A.1.4B.1.1C.0.8D.0.5点睛:本题考查正六边形、正方形的性质等知识,解题的关键作出点M的运动轨迹,利用图象解决问题,题目有一定的难度.考点:正多边形和圆;旋转的性质;操作型;综合题.3.(2017湖北省武汉市,第10题,3分)如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4B.5C.6D.7【答案】D.【分析】①以B为圆心,BC长为半径画弧,交AB于点D,△BCD就是等腰三角形;②以A为圆心,AC长为半径画弧,交AB于点E,△ACE就是等腰三角形;③以C为圆心,BC长为半径画弧,交AC于点F,△BCF就是等腰三角形;④作AC的垂直平分线交AB于点H,△ACH就是等腰三角形;⑤作AB的垂直平分线交AC于G,则△AGB是等腰三角形;⑥作BC的垂直平分线交AB于I,则△BCI是等腰三角形.⑦以C为圆心,BC长为半径画弧,交AB于点K,△BCK就是等腰三角形;【解析】如图:故选D.点睛:本题考查了等腰三角形的判定的应用,主要考查学生的理解能力和动手操作能力.考点:等腰三角形的判定与性质;分类讨论;综合题;操作型.学科.网4.(2016四川省达州市)如图,将一张等边三角形纸片沿中位线剪成4个小三角形,称为第一次操作;然后,将其中的一个三角形按同样方式再剪成4个小三角形,共得到7个小三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成4个小三角形,共得到10个小三角形,称为第三次操作;…根据以上操作,若要得到100个小三角形,则需要操作的次数是()A.25B.33C.34D.50【答案】B.【分析】由第一次操作后三角形共有4个、第二次操作后三角形共有(4+3)个、第三次操作后三角形共有(4+3+3)个,可得第n次操作后三角形共有4+3(n﹣1)=3n+1个,根据题意得3n+1=100,求得n的值即可.【解析】∵第一次操作后,三角形共有4个;第二次操作后,三角形共有4+3=7个;第三次操作后,三角形共有4+3+3=10个;…∴第n次操作后,三角形共有4+3(n﹣1)=3n+1个;当3n+1=100时,解得:n=33,故选B.考点:规律型:图形的变化类;操作型.5.(2016山东省淄博市)小明用计算器计算(a+b)c的值,其按键顺序和计算器显示结果如表:这时他才明白计算器是先做乘法再做加法的,于是他依次按键:从而得到了正确结果,已知a是b的3倍,则正确的结果是()A.24B.39C.48D.96【答案】C.【分析】根据题意得出关于a,b,c的方程组,进而解出a,b,c的值,进而得出答案.【解析】由题意可得:21393a bcb aca b+=⎧⎪+=⎨⎪=⎩,则:321339b bcb bc+=⎧⎨+=⎩,解得:934abc=⎧⎪=⎨⎪=⎩,故(9+3)×4=48.故选C.考点:计算器—基础知识;操作型.6.(2016江苏省扬州市)如图,矩形纸片ABCD中,AB=4,BC=6.将该矩形纸片剪去3个等腰直角三角形,所有剪法中剩余部分面积的最小值是()A.6B.3C.2.5D.2【答案】C.【分析】以BC为边作等腰直角三角形△EBC,延长BE交AD于F,得△ABF是等腰直角三角形,作EG⊥CD 于G,得△EGC是等腰直角三角形,在矩形ABCD中剪去△ABF,△BCE,△ECG得到四边形EFDG,此时剩余部分面积的最小【解析】如图以BC为边作等腰直角三角形△EBC,延长BE交AD于F,得△ABF是等腰直角三角形,作EG⊥CD于G,得△EGC是等腰直角三角形,在矩形ABCD中剪去△ABF,△BCE,△ECG得到四边形EFDG,此时剩余部分面积的最小=4×6﹣12×4×4﹣12×3×6﹣12×3×3=2.5.故选C.考点:矩形的性质;等腰直角三角形;操作型;最值问题;几何问题的最值.7.(2016福建省莆田市)如图,在平面直角坐标系中,点A(0,2),在x轴上任取一点M,完成以下作图步骤:①连接AM.作线段AM的垂直平分线l1,过点M作x轴的垂线l2,记l1,l2的交点为P;②在x轴上多次改变点M的位置,用①的方法得到相应的点P,把这些点用平滑的曲线顺次连接起来,得到的曲线是()A.直线B.抛物线C.双曲线D.双曲线的一支【答案】B.【分析】按照给定的作图步骤作图,根据图形中曲线的特征即可得出该曲线为抛物线.【解析】根据作图步骤作图,如图所示.由此即可得出该曲线为抛物线.故选B.考点:二次函数图象上点的坐标特征;线段垂直平分线的性质;作图—基本作图.8.(2016黑龙江省绥化市)把一张正方形纸片如图①、图②对折两次后,再按如图③挖去一个三角形小孔,则展开后图形是()A.B.C.D.【答案】C.【分析】结合空间思维,分析折叠的过程及剪三角形的位置,注意图形的对称性,易知展开的形状.【解析】当正方形纸片两次沿对角线对折成为一直角三角形时,在直角三角形中间的位置上剪三角形,则直角顶点处完好,即原正方形中间无损,且三角形关于对角线对称,三角形的AB边平行于正方形的边.再结合C点位置可得答案为C.故选C.考点:剪纸问题;操作型.9.(2016黑龙江省龙东地区)为了丰富学生课外小组活动,培养学生动手操作能力,王老师让学生把5m 长的彩绳截成2m或1m的彩绳,用来做手工编织,在不造成浪费的前提下,你有几种不同的截法()A.1B.2C.3D.4【答案】C.【分析】截下来的符合条件的彩绳长度之和刚好等于总长9米时,不造成浪费,设截成2米长的彩绳x根,1米长的y根,由题意得到关于x与y的方程,求出方程的正整数解即可得到结果.【解析】截下来的符合条件的彩绳长度之和刚好等于总长5米时,不造成浪费,设截成2米长的彩绳x根,1米长的y根,由题意得,2x+y=5,因为x,y都是正整数,所以符合条件的解为:5 xy=⎧⎨=⎩,13xy=⎧⎨=⎩,21xy=⎧⎨=⎩,则共有3种不同截法,故选C.考点:二元一次方程的应用;方案型;操作型.10.(2015荆州)如图所示,将正方形纸片三次对折后,沿图中AB线剪掉一个等腰直角三角形,展开铺平得到的图形是()A.B.C.D.【答案】A.【解析】试题分析:找一张正方形的纸片,按上述顺序折叠、裁剪,然后展开后得到的图形如图所示:故选A.考点:剪纸问题.11.(2015深圳)如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得P A+PC=BC,则下列选项正确的是()A.B.C.D.【答案】D.考点:作图—复杂作图.12.(2015三明)如图,在△ABC中,∠ACB=90°,分别以点A和B为圆心,以相同的长(大于12AB)为半径作弧,两弧相交于点M和N,作直线MN交AB于点D,交BC于点E,连接CD,下列结论错误的是()A.AD=BD B.BD=CD C.∠A=∠BED D.∠ECD=∠EDC【答案】D.【解析】试题分析:∵MN为AB的垂直平分线,∴AD=BD,∠BDE=90°;∵∠ACB=90°,∴CD=BD;∵∠A+∠B=∠B+∠BED=90°,∴∠A=∠BED;∵∠A≠60°,AC≠AD,∴EC≠ED,∴∠ECD≠∠EDC.故选D.考点:1.作图—基本作图;2.线段垂直平分线的性质;3.直角三角形斜边上的中线.13.(2015潍坊)如图,在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点A、D为圆心,以大于12AD的长为半径在AD两侧作弧,交于两点M、N;第二步,连接MN分别交AB、AC于点E、F;第三步,连接DE、DF.若BD=6,AF=4,CD=3,则BE的长是()A.2B.4C.6D.8【答案】D.考点:1.平行线分线段成比例;2.菱形的判定与性质;3.作图—基本作图.学科.网14.(2015嘉兴)数学活动课上,四位同学围绕作图问题:“如图,已知直线l和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”分别作出了下列四个图形.其中作法错误的是()A.B.C.D.【答案】A.【解析】试题分析:A.根据作法无法判定PQ⊥l;B.以P为圆心大于P到直线l的距离为半径画弧,交直线l,于两点,再以两点为圆心,大于它们的长为半径画弧,得出其交点,进而作出判断;C.根据直径所对的圆周角等于90°作出判断;D.根据全等三角形的判定和性质即可作出判断.从以上分析可知,选项B、C、D都能够得到PQ⊥l于点Q;选项A不能够得到PQ⊥l于点Q.故选A.考点:作图—基本作图.二、填空题15.(2017北京市,第16题,3分)图1是“作已知直角三角形的外接圆”的尺规作图过程已知:Rt△ABC,∠C=90°,求作Rt△ABC的外接圆.作法:如图2.(1)分别以点A和点B为圆心,大于12的长为半径作弧,两弧相交于P,Q两点;(2)作直线PQ,交AB于点O;(3)以O为圆心,OA为半径作⊙O.⊙O即为所求作的圆.请回答:该尺规作图的依据是.【答案】到线段两端点的距离相等的点在这条线段的垂直平分线上;90°的圆周角所的弦是直径.点睛:本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.考点:作图—复杂作图;三角形的外接圆与外心;作图题.16.(2017天津,第18题,3分)如图,在每个小正方形的边长为1的网格中,点A ,B ,C 均在格点上.(1)AB 的长等于 ;(2)在△ABC 的内部有一点P ,满足S △P S △P S △PCA =1:2:3,请在如图所示的网格中,用无刻度...的直尺,画出点P ,并简要说明点P 的位置是如何找到的(不要求证明)【答案】(117;(2)答案见解析.【分析】(1)利用勾股定理即可解决问题;(2)如图AC 与网格相交,得到点D 、E ,取格点F ,连接FB 并且延长,与网格相交,得到M ,N ,G .连接DN ,EM ,DG ,DN 与EM 相交于点P ,点P 即为所求.【解析】(1)AB 2214 1717.(2)如图AC 与网格相交,得到点D 、E ,取格点F ,连接FB 并且延长,与网格相交,得到M ,N ,G .连接DN ,EM ,DG ,DN 与EM 相交于点P ,点P 即为所求.理由:平行四边形ABME的面积:平行四边形CDNB的面积:平行四边形DEMG的面积=1:2:3,△P AB的面积=12平行四边形ABME的面积,△PBC的面积=12平行四边形CDNB的面积,△P AC的面积=△PNG的面积=12△DGN的面积=12平行四边形DEMG的面积,∴S△P S△P S△PCA=1:2:3.点睛:本题考查作图﹣应用与设计、勾股定理、三角形的面积等知识,解题的关键是利用数形结合的思想解决问题,求出△P AB,△PBC,△P AC的面积,属于中考常考题型.考点:作图—应用与设计作图;勾股定理;综合题.17.(2017安徽省,第14题,5分)在三角形纸片ABC中,∠A=90°,∠C=30°,AC=30cm,将该纸片沿过点B的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD(如图1),减去△CDE后得到双层△BDE(如图2),再沿着过△BDE某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为cm.【答案】40或33.【分析】解直角三角形得到AB=3∠ABC=60°,根据折叠的性质得到∠ABD=∠EBD=12∠ABC=30°,BE=AB=3求得DE=10,BD=20,如图1,平行四边形的边是DF,BF,如图2,平行四边形的边是DE,EG,于是得到结论.【解析】∵∠A=90°,∠C=30°,AC=30cm,∴AB=103ABC=60°,∵△ADB≌△EDB,∴∠ABD=∠EBD=12∠ABC=30°,BE=AB=103,∴DE=10,BD=20,如图1,平行四边形的边是DF,BF,且DF=BF=2033,∴平行四边形的周长=8033;如图2,平行四边形的边是DE,EG,且DF=BF=10,∴平行四边形的周长=40.综上所述:平行四边形的周长为40或8033,故答案为:40或8033.点睛:本题考查了剪纸问题,平行四边形的性质,解直角三角形,正确的理解题意是解题的关键.考点:剪纸问题;操作型;分类讨论;综合题.18.(2017山东省烟台市,第18题,3分)如图1,将一圆形纸片向右、向上两次对折后得到如图2所示的扇形AOB.已知OA=6,取OA的中点C,过点C作CD⊥OA交AB于点D,点F是AB上一点.若将扇形BOD沿OD翻折,点B恰好与点F重合,用剪刀沿着线段BD,DF,F A依次剪下,则剪下的纸片(形状同阴影图形)面积之和为.【答案】36π﹣108.【分析】先求出∠ODC=∠BOD=30°,作DE⊥OB可得DE=12OD=3,先根据S弓形BD=S扇形BOD﹣S△BOD求得弓形的面积,再利用折叠的性质求得所有阴影部分面积.【解析】如图,∵CD⊥OA,∴∠DCO=∠AOB=90°,∵OA=OD=OB=6,OC=12OA=12OD,∴∠ODC=∠BOD=30°,作DE⊥OB于点E,则DE=12OD=3,∴S弓形BD=S扇形BOD﹣S△BOD=2306360π⨯﹣12×6×3=3π﹣9,则剪下的纸片面积之和为12×(3π﹣9)=36π﹣108,故答案为:36π﹣108.点睛:本题主要考查扇形面积的计算,熟练掌握扇形的面积计算公式及折叠的性质是解题的关键. 考点:扇形面积的计算;剪纸问题;操作型.19.(2017黑龙江省绥化市,第21题,3分)如图,顺次连接腰长为2的等腰直角三角形各边中点得到第1个小三角形,再顺次连接所得的小三角形各边中点得到第2个小三角形,如此操作下去,则第n 个小三角形的面积为 .【答案】2112n -.【分析】记原来三角形的面积为s ,第一个小三角形的面积为s 1,第二个小三角形的面积为s 2,…,求出s 1,s 2,s 3,探究规律后即可解决问题.【解析】记原来三角形的面积为s ,第一个小三角形的面积为s 1,第二个小三角形的面积为s 2,…,∵ s 1=14•s =212•s ,s 2=14•14s =412 •s ,s 3=612•s ,∴s n =212n •s =2211222n ⋅⋅=2112n -,故答案为:2112n -. 点睛:本题考查三角形的中位线定理,三角形的面积等知识,解题的关键是循环从特殊到一般的探究方法,寻找规律,利用规律即可解决问题.考点:三角形中位线定理;等腰直角三角形;综合题;规律型;操作型.20.(2017黑龙江省齐齐哈尔市,第16题,3分)如图,在等腰三角形纸片ABC 中,AB =AC =10,BC =12,沿底边BC 上的高AD 剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是 .【答案】10cm ,73,13.【分析】利用等腰三角形的性质,进而重新组合得出平行四边形,进而利用勾股定理求出对角线的长.【解析】如图:,过点A 作AD ⊥BC 于点D ,∵△ABC 边AB =AC =10cm ,BC =12cm ,∴BD =DC =6cm ,∴AD =8cm ,如图①所示:可得四边形ACBD 是矩形,则其对角线长为:10cm ,如图②所示:AD =8cm ,连接BC ,过点C 作CE ⊥BD 于点E ,则EC =8cm ,BE =2BD =12cm ,则BC =413cm ,如图③所示:BD =6cm ,由题意可得:AE =6cm ,EC =2BE =16cm ,故AC =22616 =273cm ,故答案为:10cm ,273cm ,413cm .点睛:此题主要考查了图形的剪拼以及勾股定理和等腰三角形的性质等知识,利用分类讨论得出是解题关键.考点:图形的剪拼;分类讨论;操作型.学科.网21.(2016北京市)下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程:已知:直线l 和l 外一点P .(如图1)求作:直线l 的垂线,使它经过点P .作法:如图2(1)在直线l 上任取两点A ,B ;(2)分别以点A ,B 为圆心,AP ,BP 长为半径作弧,两弧相交于点Q ;(3)作直线PQ .所以直线PQ 就是所求的垂线.请回答:该作图的依据是 .【答案】到线段两个端点的距离相等的点在线段的垂直平分线上(A、B都在线段PQ的垂直平分线上).【分析】只要证明直线AB是线段PQ的垂直平分线即可.【解析】到线段两个端点的距离相等的点在线段的垂直平分线上(A、B都在线段PQ的垂直平分线上),理由:如图,∵P A=PQ,PB=PB,∴点A、点B在线段PQ的垂直平分线上,∴直线AB垂直平分线段PQ,∴PQ⊥AB.考点:作图—基本作图.22.(2016天津市)如图,在每个小正方形的边长为1的网格中,A,E为格点,B,F为小正方形边的中点,C为AE,BF的延长线的交点.(1)AE的长等于________;(2)若点P在线段AC上,点Q在线段BC上,且满足AP = PQ = QB,请在如图所示的网格中,用无刻度的直尺,画出线段PQ,并简要说明点P,Q的位置是如何找到的(不要求证明)________.【答案】(1)5;(2)答案见解析. 【分析】(1)利用格点,根据勾股定理求出AB 的长;(2)如图,AC 与网格线相交,得点P ;取个点M ,连接AM 并延长与BC 相交,得点Q ,连接PQ 即可.【解析】(1)AE =2212+=5;(2)如图,AC 与网格线相交,得点P ;取个点M ,连接AM 并延长与BC 相交,得点Q ,连接PQ .线段PQ 即为所求.证明如下:以A 为坐标原点建立直角坐标系,使点B 、C 都在第一象限.则A (0,0),P (1.5,3),M (3,3),B (6,1.5),F (5,3.5).可求出直线AM 的解析式为:y =x ,直线BF 的解析式为:y =-2x +13.5,则由213.5y x y x =⎧⎨=-+⎩,得:x =y =4.5,∴Q (4.5,4.5),则AP =221.53+=352, PQ =22(4.5 1.5)(4.53)-+-=352,QB =22(6 4.5)(1.5 4.5)-+-=352,∴AP = PQ = QB .考点:勾股定理;作图题.23.(2016山东省青岛市)如图,以边长为20cm 的正三角形纸板的各顶点为端点,在各边上分别截取4cm 长的六条线段,过截得的六个端点作所在边的垂线,形成三个有两个直角的四边形.把它们沿图中 虛线剪掉,用剩下的纸板折成一个底为正三角形的无盖柱形盒子,则它的容积为 cm 3.【答案】1443.【分析】由题意得出△ABC为等边三角形,△OPQ为等边三角形,得出∠A=∠B=∠C=60°,AB=BC=AC.∠POQ=60°,连结AO,作QM⊥OP于M,在Rt△AOD中,∠OAD=∠OAK=30°,得出OD 的长,求出OP,无盖柱形盒子的容积=底面积×高,即可得出结果.【解析】如图由题意得:△ABC为等边三角形,△OPQ为等边三角形,AD=AK=BE=BF=CG=CH=4CM,∴∠A=∠B=∠C=60°,AB=BC=AC,∠POQ=60°,∴∠ADO=∠AKO=90°.连结AO,作QM⊥OP于M,在Rt△AOD中,∠OAD=∠OAK=30°,∴OD=33AD=433cm,∵PQ=OP=DE=20﹣2×4=12(cm),∴QM=OP•sin60°=12×32=63(cm),∴无盖柱形盒子的容积=1126342⨯⨯⨯=1443(cm3);故答案为:1443.考点:剪纸问题.24.(2016广东省深圳市)如图,在▱ABCD中,AB=3,BC=5,以点B的圆心,以任意长为半径作弧,分别交BA、BC于点P、Q,再分别以P、Q为圆心,以大于12PQ的长为半径作弧,两弧在∠ABC内交于点M,连接BM并延长交AD于点E,则DE的长为.【答案】2.【分析】根据作图过程可得得AE平分∠ABC;再根据角平分线的性质和平行四边形的性质可证明∠AEB=∠CBE,证出AE=AB=3,即可得出DE的长.【解析】根据作图的方法得:A E平分∠ABC,∴∠ABE=∠CBE∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=5,∴∠AEB=∠CBE,∴∠ABE=∠AEB,∴AE=AB=3,∴DE=AD﹣AE=5﹣3=2;故答案为:2.考点:平行四边形的性质;等腰三角形的判定;作图—复杂作图;操作型.25.(2016浙江省湖州市)如图,在Rt △ABC 中,∠ACB =90°,BC =6,AC =8,分别以点A ,B 为圆心,大于线段AB 长度一半的长为半径作弧,相交于点E ,F ,过点E ,F 作直线EF ,交AB 于点D ,连结CD ,则CD 的长是 .【答案】5.【分析】首先说明AD =DB ,利用直角三角形斜边中线等于斜边一半,即可解决问题.【解析】由题意EF 是线段AB 的垂直平分线,∴AD =DB ,Rt △ABC 中,∵∠ACB =90°,BC =6,AC =8,∴AB =22AC BC +=2268+=10,∵AD =DB ,∠ACB =90°,∴CD =12AB =5.故答案为:5.考点:作图—基本作图;直角三角形斜边上的中线;勾股定理.学科.网26.(2016山东省淄博市)由一些相同的小正方体搭成的几何体的左视图和俯视图如图所示,请在网格中涂出一种该几何体的主视图,且使该主视图是轴对称图形.【答案】答案见解析.【分析】根据俯视图和左视图可知,该几何体共两层,底层有9个正方体,上层中间一行有正方体,若使主视图为轴对称图形可使中间一行、中间一列有一个小正方体即可.【解析】如图所示:考点:作图-三视图;轴对称图形;由三视图判断几何体.27.(2016四川省眉山市)已知:如图△ABC三个顶点的坐标分别为A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形网格中,每个小正方形的边长是1个单位长度.(1)画出△ABC向上平移6个单位得到的△A1B1C1;(2)以点C为位似中心,在网格中画出△A2B2C2,使△A2B2C2与△ABC位似,且△A2B2C2与△ABC的位似比为2:1,并直接写出点A2的坐标.【答案】(1)作图见解析;(2)作图见解析,A2坐标(﹣2,﹣2).【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用位似图形的性质得出对应点位置进而得出.【解析】(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求,A2坐标(﹣2,﹣2).考点:作图-平移变换;作图-位似变换.28.(2016四川省达州市)如图,在▱ABCD中,已知AD>AB.(1)实践与操作:作∠BAD的平分线交BC于点E,在AD上截取AF=AB,连接EF;(要求:尺规作图,保留作图痕迹,不写作法)(2)猜想并证明:猜想四边形ABEF的形状,并给予证明.【答案】(1)作图见解析;(2)四边形ABEF是菱形.【分析】(1)由角平分线的作法容易得出结果,在AD上截取AF=AB,连接EF;画出图形即可;(2)由平行四边形的性质和角平分线得出∠BAE=∠AEB,证出BE=AB,由(1)得:A F=AB,得出BE=AF,即可得出结论.考点:平行四边形的性质;作图—基本作图.29.(2016山东省枣庄市)P n 表示n 边形的对角线的交点个数(指落在其内部的交点),如果这些交点都不重合,那么P n 与n 的关系式是:P n =2(1)()24n n n an b -⋅-+(其中a ,b 是常数,n ≥4) (1)通过画图,可得:四边形时,P 4= ;五边形时,P 5= ; (2)请根据四边形和五边形对角线交点的个数,结合关系式,求a ,b 的值. 【答案】(1)1;5;(2)a =5,b =6.【分析】(1)依题意画出图形,数出图形中对角线交点的个数即可得出结论;(2)将(1)中的数值代入公式可得出关于a 、b 的二元一次方程组,解方程组即可得出结论. 【解析】(1)画出图形如下.由画形,可得:当n =4时,P 4=1;当n =5时,P 5=5. 故答案为:1;5.(2)将(1)中的数值代入公式,得:224(41)1(44)245(51)5(55)24a b a b ⨯-⎧=⋅-+⎪⎪⎨⨯-⎪=⋅-+⎪⎩,解得:a =5,b =6.考点:作图—应用与设计作图;二元一次方程的应用;多边形的对角线.30.(2016山东省聊城市)如图,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为A (﹣3,5),B (﹣2,1),C (﹣1,3).(1)若△ABC 经过平移后得到△A 1B 1C 1,已知点C 1的坐标为(4,0),写出顶点A 1,B 1的坐标; (2)若△ABC 和△A 1B 2C 2关于原点O 成中心对称图形,写出△A 1B 2C 2的各顶点的坐标; (3)将△ABC 绕着点O 按顺时针方向旋转90°得到△A 2B 3C 3,写出△A 2B 3C 3的各顶点的坐标.【答案】(1)A1(2,2),B1(3,﹣2);(2)A2(3,﹣5),B2(2,﹣1),C2(1,﹣3);(3)A3(5,3),B3(1,2),C3(3,1).【分析】(1)利用点C和点C1的坐标变化得到平移的方向与距离,然后利用此平移规律写出顶点A1,B1的坐标;(2)根据关于原点对称的点的坐标特征求解;(3)利用网格和旋转的性质画出△A2B3C3,然后写出△A2B3C3的各顶点的坐标.【解析】(1)如图,△A1B1C1为所作,因为点C(﹣1,3)平移后的对应点C1的坐标为(4,0),所以△ABC 先向右平移5个单位,再向下平移3个单位得到△A1B1C1,所以点A1的坐标为(2,2),B1点的坐标为(3,﹣2);(2)因为△ABC和△A1B2C2关于原点O成中心对称图形,所以A2(3,﹣5),B2(2,﹣1),C2(1,﹣3);(3)如图,△A2B3C3为所作,A3(5,3),B3(1,2),C3(3,1);考点:坐标与图形变化-旋转;坐标与图形变化-平移;作图题.31.(2016山东省青岛市)已知:线段a及∠ACB.求作:⊙O,使⊙O在∠ACB的内部,CO=a,且⊙O与∠ACB的两边分别相切.【答案】作图见解析.【分析】首先作出∠ACB的平分线CD,再截取CO=a得出圆心O,作OE⊥CA,由角平分线的性质和切线的判定作出圆即可.【解析】①作∠ACB的平分线CD,②在CD上截取CO=a,③作OE⊥CA于E,以O我圆心,OE长为半径作圆;如图所示:⊙O即为所求.考点:作图—复杂作图.学科.网32.(2016山西省)综合与实践问题情境在综合与实践课上,老师让同学们以“菱形纸片的剪拼”为主题开展数学活动,如图1,将一张菱形纸片ABCD(∠BAD>90°)沿对角线AC剪开,得到△ABC和△ACD.操作发现(1)将图1中的△ACD以A为旋转中心,按逆时针方向旋转角α,使α=∠BAC,得到如图2所示的△AC′D,分别延长BC和DC′交于点E,则四边形ACEC′的形状是;(2)创新小组将图1中的△ACD以A为旋转中心,按逆时针方向旋转角α,使α=2∠BAC,得到如图3所示的△AC′D,连接DB,C′C,得到四边形BCC′D,发现它是矩形,请你证明这个结论;实践探究(3)缜密小组在创新小组发现结论的基础上,量得图3中BC=13cm,AC=10cm,然后提出一个问题:将△AC′D沿着射线DB方向平移acm,得到△A′C′D′,连接BD′,CC′,使四边形BCC′D恰好为正方形,求a的值,请你解答此问题;(4)请你参照以上操作,将图1中的△ACD 在同一平面内进行一次平移,得到△A ′C ′D ,在图4中画出平移后构造出的新图形,标明字母,说明平移及构图方法,写出你发现的结论,不必证明.【答案】(1)菱形;(2)证明见解析;(3)7113或40913;(4)答案见解析. 【分析】(1)利用旋转的性质结合菱形的性质得出:∠1=∠2,∠2=∠3,∠1=∠4,AC =AC ′,进而利用菱形的判定方法得出答案;(2)利用旋转的性质结合菱形的性质得出,四边形BCC ′D 是平行四边形,进而得出四边形BCC ′D 是矩形;(3)首先求出CC ′的长,分别利用①点C ″在边C ′C 上,②点C ″在C ′C 的延长线上,求出a 的值; (4)利用平移的性质以及平行四边形的判定方法得出答案.【解析】(1)如图2,由题意可得:∠1=∠2,∠2=∠3,∠1=∠4,AC =AC ′,故AC ′∥EC ,AC ∥C ′E ,则四边形ACEC ′是平行四边形,故四边形ACEC ′的形状是菱形; 故答案为:菱形;(2)证明:如图3,作AE ⊥CC ′于点E ,由旋转得:A C ′=AC ,则∠CAE =∠C ′AE =12α=∠BAC ,∵四边形ABCD 是菱形,∴BA =BC ,∴∠BCA =∠BAC ,∴∠CAE =∠BCA ,∴AE ∥BC ,同理可得:A E ∥DC ′,∴BC ∥DC ′,则∠BCC ′=90°,又∵BC =DC ′,∴四边形BCC ′D 是平行四边形,∵∠BCC ′=90°,∴四边形BCC ′D 是矩形;(3)如图3,过点B 作BF ⊥AC ,垂足为F ,∵BA =BC ,∴CF =AF =12AC =12×10=5,在Rt △BCF 中,BF 22BC CF -22135-12,在△ACE 和△CBF 中,∵∠CAE =∠BCF ,∠CEA =∠BFC =90°,∴△ACE ∽△CBF ,∴CE AC BF BC =,即101213CE =,解得:EC =12013,∵AC =AC ′,AE ⊥CC ′,∴CC ′=2CE =2×12013=24013,当四边形BCC ′D ′恰好为正方形时,分两种情况: ①点C ″在边C ′C 上,a =C ′C ﹣13=24013﹣13=7113;②点C ″在C ′C 的延长线上,a =C ′C +13=24013+13=40913.综上所述:a 的值为:7113或40913; (4)答案不唯一,例:如图4,画出正确图形,平移及构图方法:将△ACD 沿着射线CA 方向平移,平移距离为12AC 的长度,得到△A ′C ′D ′,连接A ′B ,D ′C ,结论:∵BC =A ′D ′,BC ∥A ′D ′,∴四边形A ′BCD ′是平行四边形.考点:几何变换综合题;操作型;分类讨论;压轴题. 33.(2016山西省)综合与探究如图,在平面直角坐标系中,已知抛物线28y ax bx =+-与x 轴交于A ,B 两点,与y 轴交于点C ,直线l 经过坐标原点O ,与抛物线的一个交点为D ,与抛物线的对称轴交于点E ,连接CE ,已知点A ,D 的坐标分别为(﹣2,0),(6,﹣8).(1)求抛物线的函数表达式,并分别求出点B 和点E 的坐标;(2)试探究抛物线上是否存在点F ,使△FOE ≌△FCE ?若存在,请直接写出点F 的坐标;若不存在,请说明理由;(3)若点P 是y 轴负半轴上的一个动点,设其坐标为(0,m ),直线PB 与直线l 交于点Q ,试探究:当m 为何值时,△OPQ 是等腰三角形.【答案】(1)21382y x x =--,B (8,0),E (3,﹣4);(2)(317+,﹣4)或(3174);(3)m =83-或323-. 【分析】(1)根据待定系数法求出抛物线解析式即可求出点B 坐标,求出直线OD 解析式即可解决点E 坐。

相关文档
最新文档