湖北省宜昌市八年级上学期数学期中考试试卷
湖北省宜昌 八年级(上)期中数学试卷(含答案)
八年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.现有两根木棒,它们的长度分别为20cm和30cm,若不改变木棒的长度,要钉成一个三角形木架,则应在下列四根木棒中选取()的木棒.A. 10cmB. 20cmC. 50cmD. 60cm2.△ABC中,若∠A=60゜,∠B=65゜,则∠C等于()A. 65゜B. 55゜C. 45゜D. 75゜3.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A. ∠BCA=∠DCAB. ∠BAC=∠DACC. ∠B=∠D=90∘D. CB=CD4.若等腰三角形中有两边长分别为2和5,则这个三角形的周长为()A. 9B. 12C. 7或9D. 9或125.一个多边形的内角和比外角和的3倍多180度,那么这个多边形的边数是()A. 7B. 8C. 9D. 106.已知点A(m-1,3)与点B(2,n+1)关于x轴对称,则m+n的值为()A. −1B. −7C. 1D. 77.如图,将矩形ABCD纸片沿对角线BD折叠,使点C落在C′处,BC′交AD于E,∠DBC=22.5°,则在不添加任何辅助线的情况下,图中45°的角(虚线也视为角的边)有()A. 6个B. 5个C. 4个D. 3个8.如图,在△ABC中,AB=AC,∠A=30°,以C为圆心,CB的长为半径作圆弧,交AB于点D,连接CD,则∠ACD等于()A. 30∘B. 45∘C. 60∘D. 75∘9.将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为()A. 30∘B. 45∘C. 60∘D. 75∘10.下列说法正确的是()A. 等腰三角形的高、中线、角平分线互相重合B. 顶角相等的两个等腰三角形全等C. 等腰三角形一边不可以是另一边的二倍D. 等腰三角形的两个底角相等二、填空题(本大题共5小题,共15.0分)11.如图所示的方格中,∠1+∠2+∠3= 度.12.如图,平面上两个正方形与正五边形都有一条公共边,则∠α等于______度.13.如图所示,已知∠A=27°,∠CBE=90°,∠C=30°,则∠D的度数为______度.14.如图,已知△ABC的周长是22,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,△ABC的面积是______.15.如图,△ABC内有一点D,且DA=DB=DC,若∠DAB=20°,则∠ACB的度数为______度.三、解答题(本大题共9小题,共75.0分)16.如图,在△ABD和△FEC中,点B,C,D,E在同一直线上,且AB=FE,BC=DE,∠B=∠E.求证:∠A=∠F.17.如图,△ABC中,∠C=90°,∠A=30°.(1)用尺规作图作AB边上的中垂线DE,交AC于点D,交AB于点E.(保留作图痕迹,不要求写作法和证明);(2)连接BD,求证:BD平分∠CBA.18.如图,四边形ABCD中,∠B=90°,AB∥CD,M为BC边上的一点,且AM平分∠BAD,DM平分∠ADC.求证:(1)AM⊥DM;(2)M为BC的中点.19.如图,某货轮上午8时20分从A处出发,此时观测到海岛B的方位为北偏东60°,该货轮以每小时30海里的速度向东航行到C处,此时观测到海岛B的方位为北偏东30°,继续向东航行到D处,观测到海岛B的方位为北偏西30°.当货轮到达C 处时恰好与海岛B相距60海里,求该货轮到到达C,D处的时间.20.如图,△ABC中,∠BAC的角平分线AD和线段BC的垂直平分线FD相交于点D,DE⊥AC于点E.求证:AB+AC=2AE.21.如图,△ABC为等边三角形,AE=CD,AD交BE于点P,BQ⊥AD于Q.(1)求证:AD=BE;(2)设∠BPQ=α,那么α的大小是否随D、E的位置变化而变化?请说明理由;(3)若PQ=3,PE=1,求AD的长.22.某商店第一次用3000元购进某款书包,很快卖完,第二次又用2400元购进该款书包,但这次每个书包的进价是第一次进价的1.2倍,数量比第一次少了20个.(1)设第一次书包的进价为x元/个,则第二次的进价为______元/个;设第一次购进书包y个,则第二次购进书包______个.(直接写答案)(2)根据(1)设的未知数,列方程组并解答:第一次每个书包的进价是多少元?(3)在第二次的销售过程中,若按80/个的价格销售,恰好销售完一半时,根据市场情况,商店决定对剩余的书包全部按同一标准一次性打折销售,但要求利润不少于480元,问最低可打几折?23.如图,△ABC中,AB=AC,∠BAC=45°,BD⊥AC,垂足为D点,AE平分∠BAC,交BD于F,交BC于E,点G为AB的中点,连接DG,交AE于点H,(1)求∠ACB的度数;AF.(2)HE=1224.已知,点A,B分别在x轴,y轴上,K(2,2)是边AB上的一点,CK⊥AB交x轴于C.(1)如图①,求OB+OC的值;(2)如图②,延长KC交y轴于D,求S△ACK-S△OCD的值;(3)如图③,点P为AK上任意一点(P不与A,K重合),过A作AE⊥DP于E,连EK,求∠DEK的度数.答案和解析1.【答案】B【解析】解:设第三边的长为xcm,则30-20<x<30+20,10<x<50,四个选顶中只有答案B是20cm,在这个范围内,故选B.根据两边之和大于第三边,两边之差小于第三边,得出第三边x的取值为:10<x<50,作出判断.本题考查了三角形的三边关系,已知三角形的两边长,则第三边的范围为大于两边差且小于两边和.2.【答案】B【解析】解:∵∠A+∠B+∠C=180゜,∴∠C=180゜-60°-65°=55°.故选B.直接根据三角形内角和定理计算.本题考查了三角形内角和定理:三角形内角和是180°.3.【答案】A【解析】解:A、添加∠BCA=∠DCA时,不能判定△ABC≌△ADC,故A选项符合题意;B、添加∠BAC=∠DAC,根据SAS,能判定△ABC≌△ADC,故B选项不符合题意;C、添加∠B=∠D=90°,根据HL,能判定△ABC≌△ADC,故C选项不符合题意;D、添加CB=CD,根据SSS,能判定△ABC≌△ADC,故D选项不符合题意;故选:A.本题要判定△ABC≌△ADC,已知AB=AD,AC是公共边,具备了两组边对应相等,故添加CB=CD、∠BAC=∠DAC、∠B=∠D=90°后可分别根据SSS、SAS、HL能判定△ABC≌△ADC,而添加∠BCA=∠DCA后则不能.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4.【答案】B【解析】解:当腰为5时,根据三角形三边关系可知此情况成立,周长=5+5+2=12;当腰长为2时,根据三角形三边关系可知此情况不成立;所以这个三角形的周长是12.故选:B.题目给出等腰三角形有两条边长为5和2,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.5.【答案】C【解析】解:根据题意可得:(n-2)•180°=3×360°+180°,解得:n=9.经检验n=9符合题意,所以这个多边形的边数是9.故选C.多边形的内角和比外角和的3倍多180°,而多边形的外角和是360°,则内角和是3×360°+180°.n边形的内角和可以表示成(n-2)•180°,设这个多边形的边数是n,得到方程,从而求出边数.本题考查了多边形内角与外角,解答本题的关键在于结合多边形的内角和公式寻求等量关系并构建方程.6.【答案】A【解析】解:∵点A(m-1,3)与点B(2,n+1)关于x轴对称,∴,∴,∴m+n=3+(-4)=-1.故选A.本题比较容易,考查平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点:关于y轴对称的点,纵坐标相同,横坐标互为相反数.本题考查了对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.7.【答案】B【解析】解:图中45°的角有∠CBC',∠ABE,∠AEB,∠EDC′,∠DEC′.共5个.故选B.根据折叠的性质,∠CBC′=45°;∴∠ABE=∠AEB=∠EDC′=∠DEC′=45°.本题通过折叠变换考查正多边形的有关知识,及学生的逻辑思维能力.解答此类题最好动手操作,易得出答案.8.【答案】B【解析】解:∵AB=AC,∠A=30°,∴∠ACB=∠ABC=(180°-∠A)=(180°-30°)=75°,∵以C为圆心,BC的长为半径圆弧,交AC于点D,∴BC=CD,∴∠BCD=180°-2∠ACB=180°-2×75°=30°,∴∠ACD=∠ABC-∠BCD=75°-30°=45°.故选:B.根据等腰三角形两底角相等求出∠ABC=∠ACB,再求出∠BCD,然后根据∠ACD=∠ABC-∠BCD计算即可得解.本题考查了等腰三角形的性质,主要利用了等腰三角形两底角相等,熟记性质是解题的关键.9.【答案】D【解析】解:∵∠2=90°-45°=45°(直角三角形两锐角互余),∴∠3=∠2=45°,∴∠1=∠3+30°=45°+30°=75°.故选D.根据三角形的内角和求出∠2=45°,再根据对顶角相等求出∠3=∠2,然后根据三角形的一个外角等于与它不相邻的两个内角的和计算即可.本题考查的是三角形外角的性质,熟知三角形的一个外角等于与它不相邻的两个内角的和是解答此题的关键.10.【答案】D【解析】解:A、应为等腰三角形底边上的高、中线、顶角平分线互相重合,故错误;B、顶角相等的两个等腰三角形,若对应边不等,则不全等,故错误;C、等腰三角形中腰可以是底边的2倍的,故错误;D、等腰三角形的两个底角相等是正确.故选D.根据等腰三角形的性质分析各个选项.本题考查了对等腰三角形的性质的正确理解.11.【答案】135【解析】【分析】本题主要考查了全等图形,根据网格结构的特点找出全等三角形以及等腰直角三角形是解题的关键.标注字母,然后根据网格结构可得∠1与∠3所在的三角形全等,然后根据全等三角形对应角相等可以推出∠1+∠3=90°,再根据∠2所在的三角形是等腰直角三角形可得∠2=45°,然后进行计算即可得解.【解答】解:如图,根据网格结构可知,在△ABC与△ADE中,,∴△ABC≌△EDA(SSS),∴∠1=∠DAE,∴∠1+∠3=∠DAE+∠3=90°,又∵AD=DF,AD⊥DF,∴△ADF是等腰直角三角形,∴∠2=45°,∴∠1+∠2+∠3=90°+45°=135°.故答案为135.12.【答案】72【解析】解:正五边形的一个内角为108°,正方形的每个内角是90°,所以∠α=360°-108°-90°-90°=72°.先分别求出正五边形的一个内角为108°,正方形的每个内角是90°,再根据圆周角是360度求解即可.主要考查了多边形的内角和.多边形内角和公式:(n-2)•180°.13.【答案】33【解析】解:∵∠DFC=∠A+∠C=27°+30°=57°,∵∠FBD=∠CBE=90°,∴∠D=90°-∠DFB=33°,故答案为:33.根据外角的性质得到∠DFC=∠A+∠C=27°+30°=57°,由对顶角的性质得到∠FBD=∠CBE=90°,根据三角形的内角和即可得到结论.本题考查了三角形的内角和,三角形的外角的性质,熟练掌握三角形的内角和是解题的关键.14.【答案】33【解析】解:如图,连接OA,∵OB、OC分别平分∠ABC和∠ACB,∴点O到AB、AC、BC的距离都相等,∵△ABC的周长是22,OD⊥BC于D,且OD=3,∴S△ABC=×22×3=33.故答案为:33.根据角平分线上的点到角的两边的距离相等可得点O到AB、AC、BC的距离都相等,从而可得到△ABC的面积等于周长的一半乘以OD,然后列式进行计算即可求解.本题考查了角平分线上的点到角的两边的距离相等的性质,判断出三角形的面积与周长的关系是解题的关键.15.【答案】70【解析】解:∵DA=DB=DC,∴∠DAB=∠ABD,∠DBC=∠DCB,∠DAC=∠ACD,设∠DCA=x,∠DCB=y,∴∠ACB=x+y,∵∠DAB=20°,∴∠ABD=20°,∵∠ABC+∠ACB+∠BAC=180°,∴20+y+x+y+20+x=180,x+y=70,∴∠ACB=70°,故答案为:70.先根据等边对等角得:∠DAB=∠ABD,∠DBC=∠DCB,∠DAC=∠ACD,设∠DCA=x,∠DCB=y,根据三角形的内角和列方程得:20+y+x+y+20+x=180,则x+y=70,所以∠ACB=70°.本题考查了等腰三角形的性质,明确等边对等角是本题的关键,还利用了整体的思想解决问题.16.【答案】证明:∵点B,C,D,E在同一直线上,BC=DE,∴BC+CD=DE+CD,即:BD=CE,在△ABD与△FEC中,∴ AB=FE∠B=∠E BD=CE,∴△ABD≌△FEC(SAS),∴∠A=∠F.【解析】先根据SAS判定△ABD≌△FEC,再根据全等三角形的对应角相等,得出∠A=∠F.本题主要考查了全等三角形的判定与性质的综合应用,解题时注意:两边及其夹角对应相等的两个三角形全等.17.【答案】(1)解:如图所示,DE就是要求作的AB边上的中垂线;(2)证明:∵DE是AB边上的中垂线,∠A=30°,∴AD=BD,∴∠ABD=∠A=30°,∵∠C=90°,∴∠ABC=90°-∠A=90°-30°=60°,∴∠CBD=∠ABC-∠ABD=60°-30°=30°,∴∠ABD=∠CBD,∴BD平分∠CBA.【解析】(1)分别以A、B为圆心,以大于AB的长度为半径画弧,过两弧的交点作直线,交AC于点D,AB于点E,直线DE就是所要作的AB边上的中垂线;(2)根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,再根据等边对等角的性质求出∠ABD=∠A=30°,然后求出∠CBD=30°,从而得到BD平分∠CBA.本题考查了线段垂直平分线的作法以及线段垂直平分线上的点到线段两端点的距离相等的性质,难度不大,需熟练掌握.18.【答案】解:(1)∵AB∥CD,∴∠BAD+∠ADC=180°,∵AM平分∠BAD,DM平分∠ADC,∴2∠MAD+2∠ADM=180°,∴∠MAD+∠ADM=90°,∴∠AMD=90°,即AM⊥DM;(2)作NM⊥AD交AD于N,∵∠B=90°,AB∥CD,∴BM⊥AB,CM⊥CD,∵AM平分∠BAD,DM平分∠ADC,∴BM=MN,MN=CM,∴BM=CM,即M为BC的中点.【解析】(1)根据平行线的性质得到∠BAD+∠ADC=180°,根据角平分线的定义得到∠MAD+∠ADM=90°,根据垂直的定义得到答案;(2)作NM⊥AD,根据角平分线的性质得到BM=MN,MN=CM,等量代换得到答案.本题考查的是角平分线的性质,掌握平行线的性质和角的平分线上的点到角的两边的距离相等是解题的关键.19.【答案】解:由己知,得∠BAC=30°,∠ACB=120°,∠BCD=∠BDC=60°∴∠ABC=∠BAC=30°∴AC=BC=60(海里)∠CBD=60°∴t1=60÷30=2(小时)∴△BCD是等边三角形∴BC=CD=60(海里)∴t2=60÷30=2(小时),∴t3=2+2=4(小时).答:轮船到达C处是上午10时20分,轮船到达D处的时间是下午12时20分.或轮船到达C处用了2小时,到达D处用了4小时.【解析】根据题意,求得已知角的度数,根据特殊角的三角函数值求得AC、BC的值,从而求得CD的值,根据行程问题的求法再求轮船到达C处和D处的时间即可.此题是一道方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.20.【答案】证明:连接DB、DC,作DM⊥AB于M.∵FD是BC的垂直平分线,∴BD=CD,∵AD平分∠BAC,DM⊥AB,DE⊥AC,∴DM=DE,∠DMB=∠CED=90°,在Rt△DMB和Rt△DNC中,BD=DCDM=DE∴Rt△DMB≌Rt△DEC(HL),∴BM=CE,在Rt△ADM和Rt△ADE中,AD=AD,DM=DE∴△ADM≌△ADE,∴AM=AE,∴AB+AC=(AM-BM)+(AE+EC)=2AE.【解析】连接DB、DC,作DM⊥AB于M.根据HL证出Rt△DMB≌Rt△DNC,Rt△ADM≌△ADE即可.本题考查了全等三角形的性质和判定,线段的垂直平分线性质,角平分线的性质的应用,解题的关键是灵活运用所学知识,熟练掌握全等三角形的判定和性质,属于中考常考题型.21.【答案】(1)证明:∵△ABC为等边三角形,∴AC=AB,∠C=∠BAC=60°在△ACD和△BAE中,AC=AB∠C=∠BAE,CD=AE∴△ACD≌△BAE,∴AD=BE.(2)解:不变.由(1)可知:△ACD≌△BAE,∴∠CAD=∠ABE,∵α=∠ABE+∠BAP=∠CAD+∠BAP=60°,(3)解:在△PBQ中,∠PBQ=90°-∠PBQ=30°,∴BP=2PQ=6,∴AD=BE=BP+PE=6+1=7.【解析】(1)欲证明AD=BE,只要证明△ACD≌△BAE即可.(2)由α=∠ABE+∠BAP=∠CAD+∠BAP即可得出结论.(3)在RT△PBQ中,利用30度角的性质即可知道PB=2PQ,由此可以解决问题.本题考查全等三角形的判定和性质、直角三角形30度角的性质等知识,解题的根据利用全等三角形的性质,属于中考常考题型.22.【答案】1.2x;(y-20)【解析】解:(1)设第一次书包的进价为x元/个,则第二次的进价为1.2x元/个;设第一次购进书包y个,则第二次购进书包(y-20)个.(直接写答案)故答案是:1.2x;(y-20);(2)设第一次每个书包的进价是x元,-20=,x=50.经检验得出x=50是原方程的解,且符合题意,即:第一次书包的进价是50元.设最低可以打z折.2400÷(50×1.2)=4080×20+80×0.1z•20-2400≥480y≥8故最低打8折.(1)根据信息“第一次每个书包的进价是x元,但这次每个书包的进价是第一次进价的1.2倍,数量比第一次少了20个”填空.(2)设最低可以打x折,根据若第二次进货后按80元/个的价格销售,恰好销售完一半时,根据市场情况,商店决定对剩余的书包全部按同一标准一次性打折销售,但要求这次的利润不少于480元,可列出不等式求解.本题考查理解题意能力,第一问以数量做为等量关系列方程求解,第二问以利润做为不等量关系列不等式求解.23.【答案】解:(1)∵AB=AC,∴∠ACB=∠ABC,∵∠BAC=45°,∴∠ACB=∠ABC=12(180°-∠BAC)=12(180°-45°)=67.5°.(2)连结HB,∵AB=AC,AE平分∠BAC,∴AE⊥BC,BE=CE,∴∠CAE+∠C=90°,∵BD⊥AC,∴∠CBD+∠C=90°,∴∠CAE=∠CBD,∵BD⊥AC,D为垂足,∴∠DAB+∠DBA=90°,∵∠DAB=45°,∴∠DBA=45°,∴∠DBA=∠DAB,∴DA=DB,在Rt△BDC和Rt△ADF中,∠BDC=∠ADFBD=AD∠CAE=∠CBD∴Rt△BDC≌Rt△ADF(ASA),∴BC=AF,∵DA=DB,点G为AB的中点,∴DG垂直平分AB,∵点H在DG上,∴HA=HB,∴∠HAB=∠HBA=12∠BAC=22.5°,∴∠BHE=∠HAB+∠HBA=45°,∴∠HBE=∠ABC-∠ABH=67.5°-22.5°=45°,∴∠BHE=∠HBE,∴HE=BE=12BC,∵AF=BC,∴HE=1AF.2【解析】(1)根据等腰三角形性质和三角形内角和定理求出即可;(2)证△ADF≌△BDC,推出AF=BC,求出HE=BE=CE,即可得出答案.本题考查了全等三角形的性质和判定,等腰三角形的性质,三角形内角和定理等知识点的应用,主要考查学生的推理能力,难度偏大.24.【答案】解:(1)如图①,过K作KM⊥x轴,KN⊥y轴,垂足分别为M、N,则∠KNO=∠KMO=90°,∵∠BOA=90°,∴四边形OMKN是矩形,∴∠NKM=90°,∴∠NKC+∠CKM=90°,∵K(2,2),∴KM=KN=2,∴矩形OMKN是正方形,∴OM=ON=2,∵CK⊥AB,∴∠BKN+∠NKC=90°,∴∠BKN=∠CKM,∵∠KNB=∠CMK=90°,∴△KNB≌△KMC,∴CM=BN,∴OB+OC=ON+BN+OC=ON+CM+OC=ON+OM=2+2=4;(2)如图2,∵∠AKC=∠MKN=90°,∴∠AKM=∠NKD=90°-∠CKM,∵∠KND=∠KMA=90°,KM=KN,∴△AMK≌△DNK,∴S△AMK=S△DNK,∴S△ACK-S△OCD=S△AMK+S△CKM-S△OCD,=S△DNK+S△CKM-S△OCD,=S正方形OMKN+S△OCD-S△OCD,=2×2,=4.(3)由(2)得:△AMK≌△DNK,∴AK=DK,在DE上截取DF=AE,连接KF,∵AE⊥EF,DK⊥AB,∴∠DKP=∠AEP=90°,∵∠KPD=∠EPA,∴∠KDF=∠KAE,∴△KDF≌△KAE,∴KF=KE,∠DKF=∠AKE,∵∠DKP=90°,∴∠DKF+∠FKP=∠AKE+∠FKP=∠FKE=90°,∴△FKE是等腰直角三角形,∴∠DEK=45°.【解析】(1)如图①,作辅助线,构建全等三角形,先证明四边形OMKN为正方形得:OM=ON=2,再证明△KNB≌△KMC,则CM=BN,代入OB+OC中可得结论;(2)如图②,证明△AMK≌△DNK,则S△AMK=S△DNK,所以S△ACK-S△OCD拆成和与差的形式并等量代换得结果为4;(3)如图③,作辅助线,构建全等三角形,证明△KDF≌△KAE,得KF=KE,∠DKF=∠AKE,再得△FKE是等腰直角三角形,所以∠DEK=45°.本题是三角形的综合题,考查了全等三角形、正方形、矩形的性质和判定;以证明三角形全等为关键,利用全等三角形对应边相等和对应角相等得出边与角的关系;同时利用了全等三角形的面积也相等,在求解三角形面积的差时,利用三角形面积相等关系进行变形并加减得出与正方形的面积相等,从而得出结论.。
湖北省宜昌市八年级上学期数学期中考试试卷
湖北省宜昌市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)下列长度的3条线段,能构成三角形的是()A . 1,2,3B . 2,3,4C . 6,6,12D . 5,6,122. (2分)如图,在平面直角坐标系中,点A(1,m)在直线y=﹣2x+3上,点A关于y轴的对称点恰好落在直线y=kx+2上,则k的值为()A . ﹣2B . 1C .D . 23. (2分)一个多边形的外角和是内角和的,这个多边形的边数为()A . 5B . 6C . 7D . 84. (2分)(2018·曲靖) 若一个正多边形的内角和为720°,则这个正多边形的每一个内角是()A . 60°B . 90°C . 108°D . 120°5. (2分) (2011七下·广东竞赛) 如图,∠A=35°,∠B=∠C=90°,则∠D的度数是()A . 35°B . 45°C . 55°D . 65°6. (2分) (2020七下·金昌期末) 如图,已知AE =AF,那么添加下列一个条件后,仍无法判定AED≌ AFD的是()A . ED =FDB . ∠EAD=∠FADC . ∠AED=∠AFD= 90°D . ∠EDA =∠FDA7. (2分) (2019八上·扬州月考) 如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3的度数为()A . 90°B . 105°C . 120°D . 135°8. (2分)如图,在△ABC中,∠B=30°,ED垂直平分BC,ED=3.则CE长为()A . 6B . 9C . 3D . 89. (2分)△ABC是一个任意三角形,用直尺和圆规作出∠A、∠B的平分线,如果两条平分线交于点O,那么下列选项中不正确的是()A . 点O一定在△ABC的内部B . ∠C的平分线一定经过点OC . 点O到△ABC的三边距离一定相等D . 点O到△ABC三顶点的距离一定相等10. (2分)如图,四边形ABCD中,点M、N分别在AB、BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠D的度数为()A . 115°B . 105°C . 95°D . 85°11. (2分)如图,△ABC中,∠C=90°,AD是角平分线,∠B=30°,若BD=4,则BC=()A . 5B . 6C . 7D . 812. (2分)如图,在四边形ABCD中,AD∥BC,若∠DAB的平分线AE交CD于E,连结BE,且BE也平分∠ABC,则以下的命题中正确的个数是()①BC+AD=AB②E为CD中点③∠AEB=90°④S△ABE=S四边形ABCDA . 1B . 2C . 3D . 4二、填空题 (共6题;共7分)13. (1分)若一个等腰三角形的顶角等于50°,则它的底角等于________°.14. (1分)三角形三内角的度数之比为1:2:3,最大边的长是8cm,则最小边的长是________cm.15. (1分)角平分线的判定:________,到角的两边的距离________的点在角的平分线上.16. (1分) (2020八上·兴化月考) 如图,△ABC与△A′B′C′关于直线l对称,且∠A=102°,∠C′=25°,则∠B的度数为________17. (1分)(2018·惠阳模拟) 正六边形的每一个外角是________度18. (2分) (2020八上·江汉期末) 如图,点O是△ABC角平分线的交点,过点O作MN∥BC分别与AB,AC 相交于点M,N,若,,,则△AMN的周长为________.三、解答题 (共8题;共52分)19. (5分)(2017·新吴模拟) 如图:一辆汽车在一个十字路口遇到红灯刹车停下,汽车里的驾驶员看地面的斑马线前后两端的视角分别是∠DCA=30°和∠DCB=60°,如果斑马线的宽度是AB=3米,驾驶员与车头的距离是0.8米,这时汽车车头与斑马线的距离x是多少?20. (5分) (2020八下·中卫月考) 如图,DC⊥CA,EA⊥CA,CD=AB,CB=AE.求证:△BCD≌△EAB.21. (2分) (2019八上·夏津月考) 已知:如图所示,(1)作出△ABC关于y轴对称的△A′B′C′,并写出△A′B′C′三个顶点的坐标.(2)直接写出△ABC的面积为________.(3)在x轴上画出点P,使PA+PC最小.(不写作法,保留作图痕迹)22. (5分)如图,在Rt△ABC中,∠C=90°,∠B=15°,DE垂直平分AB交BC于点E,BE=4,求AC的长.23. (5分) (2018八上·建湖月考) 如图,AC=DE,CF=EB,AC⊥CE,DE⊥CE,垂足分别为C,E.求证:∠A=∠D.24. (10分) (2016八上·思茅期中) 如图,AD=CB,E,F是AC上两动点,且有DE=BF.(1)若点E,F运动至如图(1)所示的位置,且有AF=CE,求证:△ADE≌△CBF;(2)若点E,F运动至如图(2)所示的位置,仍有AF=CE,则△ADE≌△CBF还成立吗?为什么?(3)若点E,F不重合,则AD和CB平行吗?请说明理由.25. (10分) (2019八下·农安期末) 如图,点E是正方形ABCD外一点,点F是线段AE上一点,△EBF是等腰直角三角形,其中∠EBF=90°,连接CE、CF.(1)求证:△ABF≌△CBE;(2)判断△CEF的形状,并说明理由.26. (10分)(2020·南昌模拟) 定义:有一组对角互补的四边形叫做互补四边形.(1)概念理解:在互补四边形中,与是一组对角,若则 ________ (2)如图1,在中,点分别在边上,且求证:四边形是互补四边形.(3)探究发现:如图2,在等腰中,点分别在边上,四边形是互补四边形,求证:.(4)推广运用:如图3,在中,点分别在边上,四边形是互补四边形,若,求的值.参考答案一、单选题 (共12题;共24分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:二、填空题 (共6题;共7分)答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:三、解答题 (共8题;共52分)答案:19-1、考点:解析:答案:20-1、考点:解析:答案:21-1、答案:21-2、答案:21-3、考点:解析:答案:22-1、考点:解析:答案:23-1、考点:解析:答案:24-1、答案:24-2、答案:24-3、考点:解析:答案:25-1、答案:25-2、考点:解析:答案:26-1、答案:26-2、答案:26-3、答案:26-4、考点:解析:。
湖北省宜昌五中八年级上期中数学考试卷(解析版)(初二)期中考试.doc
湖北省宜昌五中八年级上期中数学考试卷(解析版)(初二)期中考试姓名:_____________ 年级:____________ 学号:______________一、xx题(每空xx 分,共xx分)【题文】一个多边形的内角和是外角和的2倍,则这个多边形是()A.四边形 B.五边形 C.六边形 D.八边形【答案】C【解析】试题分析:此题可以利用多边形的外角和和内角和定理求解.解:设所求正n边形边数为n,由题意得(n﹣2)•180°=360°×2解得n=6.则这个多边形是六边形.故选:C.【点评】本题考查多边形的内角和与外角和、方程的思想.关键是记住内角和的公式与外角和的特征:任何多边形的外角和都等于360°,多边形的内角和为(n﹣2)•180°.【题文】张明的父母打算购买一种形状和大小都相同的正多边形瓷砖来铺地板,为了保证铺地板时既没缝隙,又不重叠,则所购瓷砖形状不能是()A.正三角形 B.正方形 C.正六边形 D.正八边形【答案】D【解析】试题分析:平面图形镶嵌的条件:判断一种图形是否能够镶嵌,只要看一看拼在同一顶点处的几个角能否构成周角.若能构成360°,则说明能够进行平面镶嵌;反之则不能.解:A、正三角形的每个内角是60°,6个能密铺;B、正方形的每个内角是90°,4个能密铺;C、正六边形的每个内角是120°,能整除360°,3个能密铺;D、正八边形的每个内角为180°﹣360°÷8=135°,不能整除360°,不能密铺.故选D.【点评】本题考查平面镶嵌,用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案.【题文】如图,将Rt△ABC(其中∠B=34°,∠C=90°)绕A点按顺时针方向旋转到△AB1C1的位置,使得点C,A,B1在同一条直线上,那么旋转角最小等于()A.56° B.68° C.124° D.180°【答案】C【解析】试题分析:找到图中的对应点和对应角,根据旋转的性质作答.解:∵∠B=34°,∠C=90°∴∠BAC=56°∴∠BAB1=180°﹣56°=124°即旋转角最小等于124°.故选C.【点评】本题考查旋转两相等的性质,即对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.【题文】若三角形两边的长分别为7cm和2cm,第三边的长为奇数,则第三边的长为()A.3 B.5 C.7 D.9【答案】C【解析】试题分析:根据三角形任意两边之和大于第三边,任意两边之差小于第三边求出第三边的范围,再根据第三边为奇数作出选择.解:设第三边的长为x,∵7+2=9,7﹣2=5,∴5<x<9,∵x为奇数,∴x=7.故选C.【点评】本题主要考查三角形的三边关系,熟练掌握并灵活运用是解题的关键.【题文】能使两个直角三角形全等的条件是()A.斜边相等 B.两直角边对应相等C.两锐角对应相等 D.一锐角对应相等【答案】B【解析】试题分析:要判断能使两个直角三角形全等的条件首先要看现在有的条件:一对直角对应相等,还需要两个条件,而AAA是不能判定三角形全等的,所以正确的答案只有选项B了.解:A选项,无法证明两条直角边对应相等,因此A错误.C、D选项,在全等三角形的判定过程中,必须有边的参与,因此C、D选项错误.B选项的根据是全等三角形判定中的SAS判定.故选:B.【点评】本题考查的是直角三角形的判定方法,熟练掌握全等三角形的判定定理是解题的关键.【题文】点P(2,﹣3)关于x轴的对称点是()A.(﹣2,3) B.(2,3) C.(﹣2,3) D.(2,﹣3)【答案】B【解析】试题分析:根据平面直角坐标系中对称点的规律解答.解:点P(2,﹣3)关于x轴的对称点坐标为:(2,3).故选:B.【点评】此题主要考查了平面直角坐标系中对称点的规律.解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.【题文】已知:△ABC中,AB=AC=x,BC=6,则腰长x的取值范围是()A.0<x<3 B.x>3 C.3<x<6 D.x>6【答案】B【解析】试题分析:此题可根据三角形三边关系两边之和大于第三边得出.解:在△ABC中,AB=AC=x,BC=6.根据三角形三边关系得:AB+AC>BC,即x+x>6,解得x>3.故选:B.【点评】此题考查的知识点是等腰三角形的性质和三角形三边的关系,关键是由三角形三边关系两边之和大于第三边得出答案.【题文】如图,已知BE,CF分别为△ABC的两条高,BE和CF相交于点H,若∠BAC=50°,则∠BHC为()A.160° B.150° C.140° D.130°【答案】D【解析】试题分析:先根据直角三角形两锐角互余求出∠ABE,再根据三角形外角性质即可求出∠BHC的度数.解:∵BE为△ABC的高,∠BAC=50°,∴∠ABE=90°﹣50°=40°,∵CF为△ABC的高,∴∠BFC=90°,∴∠BHC=∠ABE+∠BFC=40°+90°=130°.故选D.【点评】本题考查直角三角形两锐角互余和三角形的一个外角等于和它不相邻的两内角的和.【题文】如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=35°,那么∠2是()°.A.55 B.35 C.65 D.25【答案】A【解析】试题分析:先根据直角定义求出∠1的余角,再利用两直线平行,同位角相等即可求出∠2的度数.解:如图,∵∠1=35°,∴∠3=90°﹣∠1=55°,∵直尺两边平行,∴∠2=∠3=55°(两直线平行,同位角相等).故选:A.【点评】本题与实际生活联系,主要考查平行线的性质,需要熟练掌握.【题文】如图,已知△ABC,求作一点P,使P到∠A的两边的距离相等,且PA=PB,下列确定P点的方法正确的是()A.P是∠A与∠B两角平分线的交点B.P为∠A的角平分线与AB的垂直平分线的交点C.P为AC、AB两边上的高的交点D.P为AC、AB两边的垂直平分线的交点【答案】B【解析】试题分析:根据角平分线及线段垂直平分线的判定定理作答.解:∵点P到∠A的两边的距离相等,∴点P在∠A的角平分线上;又∵PA=PB,∴点P在线段AB的垂直平分线上.即P为∠A的角平分线与AB的垂直平分线的交点.故选B.【点评】本题考查了角平分线及线段垂直平分线的判定定理.到一个角的两边距离相等的点在这个角的角平分线上;到一条线段两端距离相等的点在这条线段的垂直平分线上.【题文】小亮在镜中看到身后墙上的时钟如下,你认为实际时间最接近8:00的是()A. B. C. D.【答案】D【解析】试题分析:此题考查镜面对称,根据镜面对称的性质,在平面镜中的钟面上的时针、分针的位置和实物应关于过12时、6时的直线成轴对称.解:根据平面镜成像原理可知,镜中的像与原图象之间实际上只是进行了左右对换,由轴对称知识可知,只要将其进行左可翻折,即可得到原图象,实际时间为8点的时针关于过12时、6时的直线的对称点是4点,那么8点的时钟在镜子中看来应该是4点的样子,则应该在C和D选项中选择,D更接近8点.故选D.【点评】考查了镜面对称,这是一道开放性试题,解决此类题注意技巧;注意镜面反射的原理与性质.【题文】如图,△ABC内有一点D,且DA=DB=DC,若∠DAB=20°,∠DAC=30°,则∠BDC的大小是()A.100° B.80° C.70° D.50°【答案】A【解析】试题分析:如果延长BD交AC于E,由三角形的一个外角等于与它不相邻的两个内角的和,得∠BDC=∠DEC+∠ECD,∠DEC=∠ABE+∠BAE,所以∠BDC=∠ABE+∠BAE+∠ECD,又DA=DB=DC,根据等腰三角形等边对等角的性质得出∠ABE=∠DAB=20°,∠ECD=∠DAC=30°,进而得出结果.解:延长BD交AC于E.∵DA=DB=DC,∴∠ABE=∠DAB=20°,∠ECD=∠DAC=30°.又∵∠BAE=∠BAD+∠DAC=50°,∠BDC=∠DEC+∠ECD,∠DEC=∠ABE+∠BAE,∴∠BDC=∠ABE+∠BAE+∠ECD=20°+50°+30°=100°.故选A.【点评】本题考查三角形外角的性质及等边对等角的性质,解答的关键是沟通外角和内角的关系.【题文】在等腰△ABC中,AB=AC=9,BC=6,DE是AC的垂直平分线,交AB、AC于点D、E,则△BDC的周长是()A.6 B.9 C.12 D.15【答案】D【解析】试题分析:由DE是AC的垂直平分线,即可证得AD=CD,即可得△BDC的周长是AB与BC的和,又由AB=AC=9,BC=6,即可求得答案.解:∵DE是AC的垂直平分线,∴AD=CD,∴△BDC的周长是:BD+CD+BC=BD+AD+BC=AB+BC,∵AB=AC=9,BC=6,∴△BDC的周长是:AB+BC=9+6=15.故选D.【点评】此题考查了线段垂直平分线的性质.解题的关键是注意掌握数形结合思想与转化思想的应用.【题文】一根直尺EF压在三角板30°的角∠BAC上,与两边AC,AB交于M、N.那么∠CME+∠BNF是()A.150° B.180° C.135° D.不能确定【答案】A【解析】试题分析:根据∠CME与∠BNF是△AMN另外两个角,利用三角形的内角和定理即可求解.解:根据图象,∠CME+∠BNF=∠AMN+∠ANM,∵∠A=30°,∴∠CME+∠BNF=180°﹣∠A=150°.故选A.【点评】本题的关键在于所求两角的对顶角和∠A是三角形的三个内角,从而可以运用三角形的内角和定理求解.【题文】如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC交AC于点F.S△ABC=7,DE=2,AB=4,则AC长是()A.4 B.3 C.6 D.5【答案】B【解析】试题分析:首先由角平分线的性质可知DF=DE=2,然后由S△ABC=S△ABD+l【答案】见解析【解析】试题分析:由已知AB∥ED,AF=DC可以得出∠A=∠D,AC=DF,又因为AB=DE,则我们可以运用SAS来判定△ABC≌△DEF,根据全等三角形的对应边相等即可得出BC=EF.证明:∵AB∥ED,∴∠A=∠D,又∵AF=DC,∴AC=DF.在△ABC与△DEF中,∴△ABC≌△DEF.∴BC=EF.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL .注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.【题文】如图,已知DE∥BC,CD是∠ACB的平分线,∠B=70°,∠ACB=50°,求∠EDC和∠BDC的度数.【答案】∠EDC=25°,∠BDC=85°【解析】试题分析:由CD是∠ACB的平分线,∠ACB=50°,根据角平分线的性质,即可求得∠DCB的度数,又由DE ∥BC,根据两直线平行,内错角相等,即可求得∠EDC的度数,根据两直线平行,同旁内角互补,即可求得∠BDE的度数,即可求得∠BDC的度数.解:∵CD是∠ACB的平分线,∠ACB=50°,∴∠BCD=∠ACB=25°,∵DE∥BC,∴∠EDC=∠DCB=25°,∠BDE+∠B=180°,∵∠B=70°,∴∠BDE=110°,∴∠BDC=∠BDE﹣∠EDC=110°﹣25°=85°.∴∠EDC=25°,∠BDC=85°.【点评】此题考查了平行线的性质与角平分线的定义.解此题的关键是掌握两直线平行,内错角相等与两直线平行,同旁内角互补定理的应用.【题文】如图所示,AD,AE是三角形ABC的高和角平分线,∠B=36°,∠C=76°,求∠DAE的度数.【答案】20°【解析】试题分析:由三角形内角和定理可求得∠BAC的度数,在Rt△ADC中,可求得∠DAC的度数,AE是角平分线,有∠EAC=∠BAC,故∠DAE=∠EAC﹣∠DAC.解:∵∠B=36°,∠C=76°,∴∠BAC=180°﹣∠B﹣∠C=68°,∵AE是角平分线,∴∠EAC=∠BAC=34°.∵AD是高,∠C=76°,∴∠DAC=90°﹣∠C=14°,∴∠DAE=∠EAC﹣∠DAC=34°﹣14°=20°.【点评】本题主要考查了三角形内角和定理、角的平分线的性质、直角三角形的性质,比较综合,难度适中.【题文】如图,有一长方形纸片ABCD,AB=10,AD=6,将纸片折叠,使AD边落在AB边上,折痕为AE,再将△AED以DE为折痕向右折叠,AE与BC交于点F,求△CEF的面积.【答案】2【解析】试题分析:由翻折变换(轴对称)的性质可知:AD=6,BD=10﹣6=4,AB=6﹣4=2,再证明Rt△ADE∽Rt△ABF ,从而得出BF的长,由此可计算出△CEF的面积.解:如下图所示:由对称的性质可知:A′D′=A′D=AD=6,BD=10﹣6=4,∴AB=6﹣4=2.易证Rt△ADE∽Rt△ABF,∴∴BF===2∴S△CEF=AB•BF=×2×2=2,即:△CEF的面积为2.【点评】本题考查了翻折问题,解题的关键是分析清楚翻折前后对应的线段、角,“传递”相等关系.【题文】如图,在△ABD和△ACD中,已知AB=AC,∠B=∠C,求证:AD是∠BAC的平分线.【答案】见解析【解析】试题分析:连接BC,由AB=AC得到∠ABC=∠ACB,已知∠ABD=∠ACD,从而得出∠DBC=∠DCB,即BD=CD,又因为AB=AC,AD=AD,利用SSS判定△ABD≌△ACD,全等三角形的对应角相等即∠BAD=∠CAD,所以AD是∠BAC的平分线.证明:连接BC,∵AB=AC,∴∠ABC=∠ACB.∵∠ABD=∠ACD,∴∠DBC=∠DCB.∴BD=CD.在△ADB和△ADC中,,∴△ADB≌△ADC(SSS),∴∠BAD=∠CAD,即AD是∠BAC的平分线.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL .注意:防止本题直接应用SSA,作出辅助线是解决本题的关键.【题文】如图,在△ABC中,D为BC的中点,DE⊥BC交∠BAC的平分线AE于E,EF⊥AB于F,EG⊥AC交AC 延长线于G.求证:BF=CG.【答案】见解析【解析】试题分析:连接EB、EC,利用已知条件证明Rt△BEF≌Rt△CEG,即可得到BF=CG.解:如图,连接BE、EC,∵ED⊥BC,D为BC中点,∴BE=EC,∵EF⊥AB EG⊥AG,且AE平分∠FAG,∴FE=EG,在Rt△BFE和Rt△CGE中,,∴Rt△BFE≌Rt△CGE(HL),∴BF=CG.【点评】本题考查了全等三角形的判定:全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.【题文】如图,已知锐角△ABC中,AB、AC边的中垂线交于点O(1)若∠A=α(0°<α<90°),求∠BOC;(2)试判断∠ABO+∠ACB是否为定值;若是,求出定值,若不是,请说明理由.【答案】(1)2α;(2)是定值【解析】试题分析:(1)根据线段垂直平分线的性质得到AO=BO=CO,根据等腰三角形的性质得到∠OAB=∠OBA,∠OCA=∠OAC,根据周角定义即可得到结论;(2)根据等腰三角形的性质得到∠OBC=∠OCB,于是得到∠OBC=90°﹣α,根据三角形的内角和即可得到结论.解:(1)AB、AC边的中垂线交于点O,∴AO=BO=CO,∴∠OAB=∠OBA,∠OCA=∠OAC,∴∠AOB+∠AOC=(180°﹣∠OAB﹣∠OBA)+(180°﹣∠OAC﹣∠OCA),∴∠AOB+∠AOC=(180°﹣2∠OAB)+(180°﹣2∠OAC)=360°﹣2(∠OAB+∠OAC)=360°﹣2∠A=360°﹣2α,∴∠BOC=360°﹣(∠AOB+∠AOC)=2α;(2)∠ABO+∠ACB为定值,∵BO=CO,∴∠OBC=∠OCB,∵∠OAB=∠OBA,∠OCA=∠OAC,∴∠OBC=(180°﹣2∠A)=90°﹣α,∵∠ABO+∠ACB+∠OBC+∠A=180°,∴∠ABO+∠ACB=180°﹣α﹣(90°﹣α)=90°.【点评】本题考查了线段垂直平分线的性质,周角的定义,三角形的内角和,等腰三角形的性质,熟练掌握各定理是解题的关键.【题文】某公司有2位股东,20名工人、从2006年至2008年,公司每年股东的总利润和每年工人的工资总额如图所示.(1)填写下表:年份2006年2007年2008年工人的平均工资/元5000股东的平均利润/元25000(2)假设在以后的若干年中,每年工人的工资和股东的利润都按上图中的速度增长,那么到哪一年,股东的平均利润是工人的平均工资的8倍?【答案】(1)工人的平均工资:2007年6250元,2008年7500元;股东的平均利润:2007年37500元,2008年50000元.(2)2012年【解析】试题分析:(1)工人的平均工资=工人工资总额÷20,股东的平均利润=股东总利润÷2,结合图形分别计算,再填表即可;(2)由图可知:每位工人年平均工资增长1250元,每位股东年平均利润增长12500元,设经过x年每位股东年平均利润是每位工人年平均工资的8倍,列方程求解.解:(1)工人的平均工资:2007年6250元,2008年7500元;股东的平均利润:2007年37500元,2008年50000元.(2)设经过x年每位股东年平均利润是每位工人年平均工资的8倍.由图可知:每位工人年平均工资增长1250元,每位股东年平均利润增长12500元,所以:(5000+1250x)×8=25000+12500x,解得:x=6.2006+6=2012.答:到2012年每位股东年平均利润是每位工人年平均工资的8倍.【点评】解决此类问题,注意结合图表进行解答,还应灵活运用方程的思想简化运算.【题文】在△ABC中,AC=BC,∠ACB=90°,点D为AC的中点.(1)如图1,E为线段DC上任意一点,将线段DE绕点D逆时针旋转90°得到线段DF,连接CF,过点F作FH⊥FC,交直线AB于点H.判断FH与FC的数量关系并加以证明;(2)如图2,若E为线段DC的延长线上任意一点,(1)中的其他条件不变,你在(1)中得出的结论是否发生改变,直接写出你的结论,不必证明.【答案】(1)见解析(2)FH与FC仍然相等【解析】试题分析:(1)延长DF交AB于点G,根据三角形中位线的判定得出点G为AB的中点,根据中位线的性质及已知条件AC=BC,得出DC=DG,从而EC=FG,易证∠1=∠2=90°﹣∠DFC,∠CEF=∠FGH=135°,由AAS证出△CEF≌△FGH.∴CF=FH.(2)通过证明△CEF≌△FGH(ASA)得出.解:(1)FH与FC的数量关系是:FH=FC.证明如下:延长DF交AB于点G,由题意,知∠EDF=∠ACB=90°,DE=DF,∴DG∥CB,∵点D为AC的中点,∴点G为AB的中点,且,∴DG为△ABC的中位线,∴.∵AC=BC,∴DC=DG,∴DC﹣DE=DG﹣DF,即EC=FG.∵∠EDF=90°,FH⊥FC,∴∠1+∠CFD=90°,∠2+∠CFD=90°,∴∠1=∠2.∵△DEF与△ADG都是等腰直角三角形,∴∠DEF=∠DGA=45°,∴∠CEF=∠FGH=135°,∴△CEF≌△FGH,∴CF=FH.(2)FH与FC仍然相等.理由:由题意可得出:DF=DE,∴∠DFE=∠DEF=45°,∵AC=BC,∴∠A=∠CBA=45°,∵DF∥BC,∴∠CBA=∠FGB=45°,∴∠FGH=∠CEF=45°,∵点D为AC的中点,DF∥BC,∴DG=BC,DC=AC,∴DG=DC,∴EC=GF,∵∠DFC=∠FCB,∴∠GFH=∠FCE,在△FCE和△HFG中,∴△FCE≌△HFG(ASA),∴HF=FC.【点评】本题考查了全等三角形的判定和性质、三角形中位线定理等知识,综合性强,难度较大.。
湖北省宜昌市八年级上学期数学期中试卷
湖北省宜昌市八年级上学期数学期中试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)等式成立的条件是().A . a、b同号B .C .D .2. (2分)计算× 所得结果为()A . 1B . ﹣1C .D .3. (2分) (2017八上·平邑期末) 已知等腰三角形的一内角度数为40°,则它的顶角的度数为()A . 40°B . 80°C . 100°D . 40°或100°4. (2分) (2019八上·蠡县期中) 下列图形中,不是运用三角形的稳定性的是()A .B .C .D .5. (2分)(2020·衢江模拟) 如图,△ABC中,AC=BC,点P为AB上的动点(不与A,B重合)过P作PE⊥AC 于E,PF⊥BC于F设AP的长度为x,PE与PF的长度和为y,则能表示y与x之间的函数关系的图象大致是()A .B .C .D .6. (2分)解方程=的结果是()A . x=﹣2B . x=2C . x=4D . x≠27. (2分) (2019七下·福州期末) 某品牌电脑每台的成本为2400元,标价为3424元,若商店要以利润率不低于7%的售价打折销售,则至少打几折出售?设该品牌电脑打x折出售,则下列正确的不等式是()A . 3424x﹣2400≥2400×7%B . 3424x﹣2400≤2400×7%C . 3424× ﹣2400≤2400×7%D . 3424× ﹣2400≥2400×7%8. (2分) (2019八上·邯郸月考) 关于三角形,下列说法错误的是()A . 三角形具有稳定性B . 三角形任意两边之和大于第三边C . 三角形的内角和是180°D . 钝角三角形一定不是等腰三角形9. (2分)(2017·天津模拟) 如图,在正方形ABCD中,AB=2,延长BC到点E,使CE=1,连接DE,动点P 从点A出发以每秒1个单位的速度沿AB﹣BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当△ABP和△DCE 全等时,t的值为()A . 3B . 5C . 7D . 3或710. (2分) (2020八下·唐县期末) 如图,在Rt△ABC中,∠C=90°,∠B=22.5°,DE垂直平分AB交BC 于E,若BE=2 ,则AC=()A . 1B . 2C . 3D . 4二、填空题 (共8题;共8分)11. (1分) (2019八上·杭州期末) 已知等腰三角形的一个内角是,则其余两个角的度数分别是________度,________度12. (1分)计算:=________ .13. (1分) (2019七下·封开期中) 把命题“同旁内角互补,两直线平行”改写成“如果……,那么……”的形式:________.14. (1分) (2018八上·长春月考) 10m=2,10n=3,求103m+2n的值________.15. (1分) (2019七上·松江期末) 将0.000025用科学记数法表示为________.16. (1分) (2019八上·呼兰期中) 在中,,点在直线上,若,则的度数是________.17. (1分) (2019八上·十堰期中) 如图,在△ABC中,∠B、∠C的平分线交于O点,过O点作EF∥BC交AB、AC于点E、F.当EF=6,BE=4时,CF的长为________.18. (1分) (2017八下·金堂期末) 若关于有增根,则 =________;三、解答题 (共8题;共56分)19. (10分) (2019八上·昌邑期中) 计算和化简求值.(1)计算:(2)计算:(3)先化简再求值:,其中, .20. (10分) (2020八下·江阴月考)(1)化简:;(2)解方程:21. (5分)计算.(1);(2);(3),其中a=2.22. (5分) (2019八上·白云期末) 某校八年级学生去距离学校10千米的博物馆参观,一部分学生骑自行车,其余学生乘汽车.已知骑车学生所用的时间是乘车学生所用时间的2倍,且汽车的速度比骑车学生的速度快15千米/小时.求骑车学生的速度.23. (5分) (2019八上·德州期中) 如图,已知等边分别在上,且,连接交点.求证:24. (5分) (2019九上·福鼎开学考) 如图,在▱ABCD中,E , F是对角线AC上不同两点,,求证:四边形BFDE是平行四边形.25. (5分) (2019九上·成都开学考) 问题背景:如图1,等腰△ABC中,AB=AC ,∠BAC=120°,作AD⊥BC 于点D ,则D为BC的中点,∠BAD= ∠BAC=60°,于是 = = ;迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D , E , C三点在同一条直线上,连接BD .①求证:△ADB≌△AEC;②请直接写出线段AD , BD , CD之间的等量关系式;拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM ,作点C关于BM的对称点E ,连接AE并延长交BM于点F ,连接CE , CF .①证明△CEF是等边三角形;②若AE=5,CE=2,求BF的长.26. (11分)(2017·抚顺) 如图,OF是∠MON的平分线,点A在射线OM上,P,Q是直线ON上的两动点,点Q在点P的右侧,且PQ=OA,作线段OQ的垂直平分线,分别交直线OF,ON于点B、点C,连接AB,PB.(1)如图1,当P、Q两点都在射线ON上时,请直接写出线段AB与PB的数量关系;(2)如图2,当P、Q两点都在射线ON的反向延长线上时,线段AB,PB是否还存在(1)中的数量关系?若存在,请写出证明过程;若不存在,请说明理由;(3)如图3,∠MON=60°,连接AP,设 =k,当P和Q两点都在射线ON上移动时,k是否存在最小值?若存在,请直接写出k的最小值;若不存在,请说明理由.参考答案一、单选题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共8题;共8分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:三、解答题 (共8题;共56分)答案:19-1、答案:19-2、答案:19-3、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、答案:21-2、答案:21-3、考点:解析:答案:22-1、考点:解析:答案:23-1、考点:解析:答案:24-1、考点:解析:考点:解析:答案:26-1、答案:26-2、。
湖北省宜昌市八年级上学期期中数学试卷
湖北省宜昌市八年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)在下列长度的各组线段中,能组成直角三角形的是().A . 2,3,4B . 12,15,17C . 9,16,25D . 5,12,132. (2分) (2019七下·乌兰浩特期中) 在,,,,等五个数中,无理数有()A . 1个B . 2个C . 3个D . 4个3. (2分) (2018八上·武汉月考) 平面内点 A(-1,2)和点 B(-1,-2)的对称轴是()A . x 轴B . y 轴C . 直线 y=4D . 直线 x=-14. (2分)的平方根是()A . 2B . ±2C .D . ±5. (2分)老王以每千克0.8元的价格从批发市场购进若干千克西瓜到市场销售,在销售了部分西瓜后,余下的每千克降价0.2元,全部售完,销售金额与卖瓜的千克数之间的关系如图所示,那么老王赚了()A . 32元B . 36元C . 38元D . 44元6. (2分) (2016八上·盐城期末) 如图.矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3.则AB的长为()A . 3B . 4C . 5D . 67. (2分)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于点G,AG = cm,则GH的长为()A . cmB . cmC . cmD . cm8. (2分)如图,若象棋盘上建立直角坐标系,使“将”位于点(1,﹣2),“象”位于点(3,﹣2),那么“炮”位于点()A . (1,﹣1)B . (﹣1,1)C . (﹣1,2)D . (1,﹣2)二、填空题 (共8题;共9分)9. (1分)(2017·黄冈模拟) 计算的结果是________.10. (1分) (2017八下·门头沟期末) 如图,在平面直角坐标系xOy中,四边形OABC是平行四边形,且A (4,0)、B(6,2)、M(4,3).在平面内有一条过点M的直线将平行四边形OABC的面积分成相等的两部分,请写出该直线的函数表达式________11. (1分) (2019八上·江苏期中) 如图,在△ABC中,∠ABC=45°,AC=9cm,F是高AD和BE的交点,则BF的长是________.12. (1分) (2020九上·嘉兴月考) 定义:给定关于的函数,对于函数图象上的任意两点( , ),( , ),当时,都有,则称该函数为减函数.根据以上定义,下列函数为减函数的有________.(只需填写序号)① ;② ;③ ;④13. (1分)(2017·萧山模拟) 已知无理数1+2 ,若a<1+2 <b,其中a、b为两个连续的整数,则ab的值为________.14. (2分) (2019七上·杭州月考) ﹣的相反数是________; -5的倒数是________.15. (1分) (2018八上·叶县期中) 5x+9的立方根是4,则2x+3的平方根是________.16. (1分) (2015八下·武冈期中) 一棵树因雪灾于A处折断,如图所示,测得树梢触地点B到树根C处的距离为4米,∠ABC约45°,树干AC垂直于地面,那么此树在未折断之前的高度约为________米(答案可保留根号)三、解答题 (共7题;共45分)17. (5分)计算:+(π﹣2015)0﹣|﹣2|+2sin60°.18. (5分) (2015七下·新会期中) 若b= + +2,求ba的值.19. (5分)如图所示的一块地ABCD,已知AD=4m,CD=3m,∠ADC=90°,AB=13m,BC=12m,求这块地的面积.20. (5分)先化简,再求值:,其中实数x、y满足.21. (10分)如图,在平面直角坐标系中,△ABC的顶点A(0,1),B(3,2),C(1,4)均在正方形网格的格点上.(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)将△A1B1C1沿x轴方向向左平移3个单位后得到△A2B2C2 ,写出顶点A2 , B2 , C2的坐标.22. (5分)一个矩形的面积为60,长宽之比为5:2,求这个矩形的长和宽.23. (10分)(2018·宁夏) 如图:一次函数的图象与坐标轴交于A、B两点,点P是函数(0<x<4)图象上任意一点,过点P作PM⊥y轴于点M,连接OP.(1)当AP为何值时,△OPM的面积最大?并求出最大值;(2)当△BOP为等腰三角形时,试确定点P的坐标.参考答案一、选择题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共8题;共9分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共7题;共45分)17-1、18-1、19-1、20-1、21-1、21-2、22-1、23-1、23-2、。
湖北省宜昌市八年级上学期期中数学试卷
湖北省宜昌市八年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2011·绵阳) 王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上几根木条?()A . 0根B . 1根C . 2根D . 3根2. (2分) (2015七下·邳州期中) 如图,△ABC的边BC上的高是()A . BEB . DBC . CFD . AF3. (2分)已知点P(3,-2)与点Q关于x轴对称,则Q点的坐标为()A . (-3,2)B . (-3,-2)C . (3,2)D . (3,-2)4. (2分)在下列说法中是错误的()A . 在△ABC中,∠C=∠A-∠B,则△ABC为直角三角形.B . 在△ABC中,若∠A:∠B:∠C=5:2:3,则△ABC为直角三角形.C . 在△ABC中,若a=c,b=c,则△ABC为直角三角形.D . 在△ABC中,若a:b:c=2:2:4,则△ABC为直角三角形.5. (2分) (2019八下·忻城期中) 从n边形的一个顶点出发作对角线,这些对角线把这个n边形分成的三角形个数为()A . (n+1)个B . n个C . (n﹣1)个D . (n﹣2)个6. (2分) (2019八下·郑州月考) 如图,在△ABC中,AB=AC,点E在BC边上,在线段AC的延长线上取点D,使得CD=CE,连接DE,CF是△CDE的中线,若∠FCE=52°,则∠A的度数为()A . 38°B . 34°C . 32°D . 28°7. (2分)(2017·石狮模拟) 如图,在△ABC中,按以下步骤作图:①分别以A、B为圆心,大于 AB的长为半径画弧,两弧相交于点M、N;②作直线MN交AC于点D,连接BD.若CD=CB,∠A=35°,则∠C等于()A . 40°B . 50°C . 60°D . 70°8. (2分)在平面直角坐标系中,将点P(-2,3)沿x轴方向向右平移3个单位得到点Q,则点Q的坐标是().A . (-2,6)B . (-2,0)C . (-5,3)D . (1,3)9. (2分) (2016八下·鄄城期中) 如图,在△ABC中,AB=AC,AE是经过点A的一条直线,且B,C在AE的两侧,BD⊥AE于D,CE⊥AE于E,AD=CE,则∠BAC的度数是()A . 45°B . 60°C . 90°D . 120°10. (2分)如图,在△ABC中,∠ABC,∠ACB的平分线的交点P恰好在BC边的高AD上,则△ABC一定是()A . 直角三角形B . 等边三角形C . 等腰三角形D . 等腰直角三角形二、填空题 (共5题;共6分)11. (1分) (2020九下·武汉月考) 如图,在YABCD中,E为BC边上一点,且AB=AE,若AE平分∠DAB,∠EAC=25°,则∠AED的度数是________度.12. (2分)(2019·温州) 图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG=FE=6分米,且HO =FO=4分米.当∠AOC=90°时,点A离地面的距离AM为________分米;当OB从水平状态旋转到OB′(在CO延长线上)时,点E绕点F随之旋转至OB′上的点E′处,则B′E′﹣BE为________分米.13. (1分) (2016八上·江宁期中) 如图,∠A=100°,∠E=25°,△ABC与△DEF关于直线l对称,则△ABC 中的∠C=________°.14. (1分) (2019九上·无锡月考) 如图,在直角坐标系中,⊙A的圆心A的坐标为(﹣1,0),半径为1,点P为直线y=﹣ x+3上的动点,过点P作⊙A的切线,切点为Q,则切线长PQ的最小值是________.15. (1分)如图,设半径为3的半圆⊙O,直径为AB,C、D为半圆上的两点,P点是AB上一动点,若的度数为,的度数为,则 PC+PD的最小值是________ 。
湖北省宜昌市八年级上学期数学期中试卷
湖北省宜昌市八年级上学期数学期中试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)(2019·本溪模拟) 下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .2. (2分)(2017·曹县模拟) 下列运算正确的是()A . a3•a2=a5B . (a2)3=a5C . a3+a3=a6D . (a+b)2=a2+b23. (2分)(2018·葫芦岛) 下列运算正确的是()A . ﹣2x2+3x2=5x2B . x2•x3=x5C . 2(x2)3=8x6D . (x+1)2=x2+14. (2分)下列说法不正确的是()A . 对称轴是一条直线B . 两个关于某直线对称的三角形一定全等C . 若△ABC与△A′ B′C′关于直线l对称,那么它们对应边上的高中线、对应角平分线也分别关于直线l 对称D . 两个全等的三角形一定关于某条直线对称5. (2分) (2019七上·西安期中) 下列各数按从小到大的顺序排列正确的是()A .B .C .D .6. (2分)到三角形的三边距离相等的点是()A . 三角形三条高的交点B . 三角形三条内角平分线的交点C . 三角形三条中线的交点D . 无法确定7. (2分)(2019·秀洲模拟) 若点A(m,n)和点B(5,﹣7)关于x轴对称,则m+n的值是()A . 2B . ﹣2C . 12D . ﹣128. (2分)如图,等边△ABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC边上一点,若AE=2,当EF+CF取得最小值时,则∠ECF的度数为().A . 15°B . 22.5°C . 30°D . 45°二、填空题 (共8题;共8分)9. (1分)(2019·宁江模拟) 如图,在△ABC中,∠ACB=90°,∠A=45°,CD⊥AB于点D,点P在线段DB 上,若AP2-PB2=48,则△PCD的面积为________。
湖北省宜昌市八年级上学期数学期中考试试卷
湖北省宜昌市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共16题;共32分)1. (2分)下列图形中具有稳定性有()A . 2个B . 3个C . 4个D . 5个2. (2分) (2020七上·松阳期末) 数轴上的A,B,C三点所表示的数分别为a、b、1,且|a﹣1|+|b﹣1|=|a﹣b|,则下列选项中,满足A,B,C三点位置关系的数轴为()A .B .C .D .3. (2分) (2019八下·苏州期中) 若,则分式的值为()A .B .C .D .4. (2分) (2019八上·新田期中) 如图,线段与线段相交于点,,若要用判定定理判定△ ≌△ ,则要补充下列条件()A .B .C .D .5. (2分)我们规定:a*b= ,则下列等式中对于任意实数a、b、c都成立的是()①a+(b*c)=(a+b)*(a+c)②a*(b+c)=(a+b)*c③a*(b+c)=(a*b)+(a*c)④(a*b)+c= +(b*2c)A . ①②③B . ①②④C . ①③④D . ②④6. (2分)若m=-3,则m的范围是()A . 1<m<2B . 2<m<3C . 3<m<4D . 4<m<57. (2分)化简÷(﹣x﹣2)的结果()A .B .C .D .8. (2分)下列命题中,假命题是()A . 两条直角边对应相等的两个直角三角形全等B . 等腰三角形顶角的平分线把它分成两个全等三角形C . 有一个角是60º的等腰三角形是等边三角形D . 顶角相等的两个等腰三角形全等9. (2分)由四舍五入法得到的近似数0.03610有()个有效数字。
A . 4B . 6C . 3D . 510. (2分)如图,在Rt△ABC中,∠ACB=90°,AC=BC,边AC落在数轴上,点A表示的数是1,点C表示的数是3。
湖北省宜昌市八年级上学期数学期中考试试卷
湖北省宜昌市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共10分)1. (1分) (2019八下·尚志期中) 下列各组数不能组成直角三角形的一组数是()A . 5, 12, 13B .C . 7,24,25D . 8,15,172. (1分) (2020八上·沈阳期末) 下列等式成立的是()A .B .C .D .3. (1分)点(-2,4)关于x轴对称的点的坐标是()A . (-2,-4)B . (-2,4)C . (2-4)D . (2,4)4. (1分) (2019八上·陇西期中) 下列函数中,y的值随x的值增大而增大的是()A . y= -3xB . y=2x - 1C . y= -3x+10D . y= -2x+15. (1分)(2017·承德模拟) 估算的值在()A . 2和3之间B . 3和4之间C . 4和5之间D . 5和6之间6. (1分) (2019八上·高州期末) 坐标平面内下列各点中,在坐标轴上的是()A . (3,3)B . (﹣3,0)C . (﹣1,2)D . (﹣2,﹣3)7. (1分)函数中,自变量的取值范围是()A .B .C .D .8. (1分)下列说法中正确的个数是()(1)9的平方根是±3(2)平方根等于它本身的数是0和1(3)-2是4的平方根(4)16的算术平方根是4A . 1B . 2C . 3D . 49. (1分) (2017八下·路北期末) 在函数y= 中,x的取值范围是()A . x≥1B . x≤1C . x≠1D . x<010. (1分) (2017八下·鞍山期末) 如图,在矩形ABCD中,动点P从点A开始沿A→B→C→D的路径匀速运动到点D为止,在这个过程中,下列图象可以大致表示△APD的面积S随点P的运动时间t的变化关系的是()A .B .C .D .二、填空题 (共8题;共8分)11. (1分)﹣2015的绝对值是________ .12. (1分)当x=________时,|x|﹣8取得最小值,这个最小值是________.13. (1分)如图,有两棵树,一棵高10m,另一棵高4m,两树相距8m.一只小鸟从一棵树的树尖飞到另一棵树的树尖,那么这只小鸟至少要飞行________ m.14. (1分)(2019·海门模拟) 在平面直角坐标系中,点M的坐标是(﹣2,3),作点M关于y轴的对称点,得到点M′,再将点M′向下平移4个单位,得到M″,则M″点的坐标是________.15. (1分) (2019七下·巴南月考) 已知a是整数,点A(2a+1,2+a)在第二象限,则a=________.16. (1分) (2018八上·建平期末) 当m=________时,函数y=(2m-1)x3m-2是正比例函数.17. (1分) (2017八下·东莞期末) 直线与y轴的交点坐标为________;18. (1分) (2019七上·滨湖期中) 如图,第(1)个图形中有2个黑色正方形,第(2)个图形中有3个黑色正方形,第(3)个图形中有5个黑色正方形,……,根据图形变化的规律,第(2019)个图形中黑色正方形有________个.三、解答题 (共8题;共20分)19. (4分)(2018·东莞模拟) 计算:()﹣1﹣6cos30°﹣()0+ .20. (2分)解方程组:.21. (1分) (2017七下·南安期中) 已知二元一次方程组的解也是方程的解,求的值.22. (2分)(2018·长春模拟) 周末,甲、乙两名大学生骑自行车去距学校6000米的净月潭公园.两人同时从学校出发,以a米/分的速度匀速行驶.出发4.5分钟时,甲同学发现忘记带学生证,以1.5a米/分的速度按原路返回学校,取完学生证(在学校取学生证所用时间忽略不计),继续以返回时的速度追赶乙.甲追上乙后,两人以相同的速度前往净月潭.乙骑自行车的速度始终不变.设甲、乙两名大学生距学校的路程为s(米),乙同学行驶的时间为t(分),s与t之间的函数图象如图所示.(1)求a、b的值.(2)求甲追上乙时,距学校的路程.(3)当两人相距500米时,直接写出t的值是________.23. (1分)(2018·哈尔滨模拟) 如图,在小正方形的边长为1的方格纸中,有线段AB和线段CD,点A、B、C、D均在小正方形的顶点上.(1)在方格纸中画出以AB为斜边的直角三角形ABE,点E在小正方形的顶点上,且△ABE的面积为5;(2)在方格纸中画出以CD为一边的△CDF,点F在小正方形的顶点上,且△CDF的面积为4,CF与(1)中所画线段BE平行,连接AF,请直接写出线段AF的长.24. (2分) (2017八下·鄂托克旗期末) 甲、乙两组同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)的函数图象如图所示.(1)直接写出甲组加工零件的数量y与时间x之间的函数关系式________;(2)求乙组加工零件总量a的值;25. (3分) (2019八上·民勤月考) 如图,直线y1=x+1交x、y轴于点A、B,直线y2=﹣2x+4交x、y轴与C、D,两直线交于点E.(1)求点E的坐标;(2)求△ACE的面积.26. (5分)(2019·陕西模拟) 一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图所示:(1)甲乙两地的距离是________千米;(2)两车行驶多长时间相距300千米?(3)求出两车相遇后y与x之间的函数关系式.参考答案一、单选题 (共10题;共10分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共20分)19-1、20-1、21-1、22-1、22-2、22-3、23-1、23-2、24-1、24-2、25-1、25-2、26-1、26-2、26-3、。
湖北省宜昌市八年级(上)期中数学试卷-(含答案)
八年级(上)期中数学试卷一、选择题(本大题共15小题,共45.0分)1.若一个三角形的两边长分别为3和7,则第三边长可能是()A. 2B. 3C. 5D. 112.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()A. B. C. D.3.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A. B.C. D.4.如图,在△ABC中,∠A=50°,∠C=70°,则外角∠ABD的度数是()A.B.C.D.5.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A. 1个B. 2个C. 3个D. 4个6.如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是()A. B.C. D.7.一个正多边内和为40°,则这个正边形的一个外角等于()A. B. C. D.8.一个等腰三角形的两边长分别为4,8,则它的周长为()A. 12B. 16C. 20D. 16或209.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,詹姆斯在探究筝形的性质时,得到如下结论:①AC⊥BD;②AO=CO=AC;③△ABD≌△CBD,其中正确的结论有()A. 0个B. 1个C. 2个D. 3个10.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A. 15B. 30C. 45D. 6011.如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,下列结论中不正确的是()A. B. C. D.12.如图,在△ABC中,AC的垂直平分线分别交AC,BC于E,D两点,EC=4,△ABC的周长为23,则△ABD的周长为()A. 13B. 15C. 17D. 1913.如图,直线MN是四边形AMBN的对称轴,P是直线MN上的点,下列判断错误的是()A.B.C.D.14.如图,AD是△ABC的角平分线,则AB:AC等于()A. BD:CDB. AD:CDC. BC:ADD. BC:AC15.如图,△ABC是等边三角形,AQ=PQ,PR⊥AB于点R,PS⊥AC于点S,PR=PS,则下列结论:①点P在∠A的角平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.正确的有()A. 1个B. 2个C. 3个D. 4个二、解答题(本大题共9小题,共75.0分)16.如图,在△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠BAC=80°,∠ABC=70°.求∠BAD,∠AOF.17.如图,AB=AD,CB=CD,求证:AC平分∠BAD.18.如图,已知AC=AE,∠BAD=∠CAE,∠B=∠ADE,求证:BC=DE.19.如图,在△ABC中,AB=AC,D是BC边上的中点,DE,DF分别垂直AB,AC于点E和F.求证:DE=DF.20.如图,一艘轮船以18海里/时的速度由西向东航行,在A处测得小岛C在北偏东75°方向上,两小时后,轮船在B处测得小岛C在北偏东60°方向上,在小岛周围15海里处有暗礁,若轮船仍然按18海里/时的速度向东航行,请问是否有触礁危险?并说明理由.21.如图,在等腰三角形ABC中,AC=BC,分别以BC和AC为直角边向上作等腰直角三角形△BCD和△ACE,AE与BD相交于点F,连接CF并延长交AB于点G.求证:CG垂直平分AB.22.如图,在等边△ABC中,点F是AC边上一点,延长BC到点D,使BF=DF,若CD=CF,求证:(1)点F为AC的中点;(2)过点F作FE⊥BD,垂足为点E,请画出图形并证明BD=6CE.23.如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.24.在等腰Rt△ABC中,∠ACB=90°,AC=BC,点D是BC边上一点,BN⊥AD交AD的延长线于点N.(1)如图1,若CM∥BN交AD于点M.①直接写出图1中所有与∠MCD相等的角:______;(注:所找到的相等关系可以直接用于第②小题的证明过程②过点C作CG⊥BN,交BN的延长线于点G,请先在图1中画出辅助线,再回答线段AM、CG、BN有怎样的数量关系,并给予证明.(2)如图2,若CM∥AB交BN的延长线于点M.请证明:∠MDN+2∠BDN=180°.答案和解析1.【答案】C【解析】解:设第三边长为x,由题意得:7-3<x<7+3,则4<x<10,故选:C.根据三角形三边关系,两边之和第三边,两边之差小于第三边即可判断.本题考查三角形三边关系定理,记住两边之和第三边,两边之差小于第三边,属于基础题,中考常考题型.2.【答案】D【解析】解:A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项正确.故选:D.根据轴对称图形的概念求解.本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.【答案】A【解析】解:为△ABC中BC边上的高的是A选项.故选:A.根据三角形高线的定义:过三角形的顶点向对边引垂线,顶点和垂足之间的线段叫做三角形的高线解答.本题考查了三角形的角平分线、中线、高线,熟记高线的定义是解题的关键.4.【答案】B【解析】解:由三角形的外角性质的,∠ABD=∠A+∠C=50°+70°=120°.故选:B.根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.5.【答案】C【解析】解:要使△ABP与△ABC全等,点P到AB的距离应该等于点C到AB的距离,即3个单位长度,故点P的位置可以是P1,P3,P4三个,故选:C.根据全等三角形的判定得出点P的位置即可.此题考查全等三角形的判定,关键是利用全等三角形的判定进行判定点P的位置.6.【答案】A【解析】解:由题意,得∠ABC=∠BAD,AB=BA,A、∠ABC=∠BAD,AB=BA,AC=BD,(SSA)三角形不全等,故A错误;B、在△ABC与△BAD中,,△ABC≌△BAD(ASA),故B正确;C、在△ABC与△BAD中,,△ABC≌△BAD(AAS),故C正确;D、在△ABC与△BAD中,,△ABC≌△BAD(SAS),故D正确;故选:A.根据全等三角形的判定:SAS,AAS,ASA,可得答案.本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.【答案】C【解析】解:设此多边n边形,解:n=5,故这多边形的每一个外等于:=2°.故选.首先设此多边形为n边形,根题意得:0(-)=540,即可求得n=5,再由多形外角和等60,即得答案.此题考查了多边形的内角外角和知识.注意掌握多边形角和定:(n-•10°外角等于60°.8.【答案】C【解析】解:①当4为腰时,4+4=8,故此种情况不存在;②当8为腰时,8-4<8<8+4,符合题意.故此三角形的周长=8+8+4=20.故选:C.由于题中没有指明哪边是底哪边是腰,则应该分两种情况进行分析.本题考查的是等腰三角形的性质和三边关系,解答此题时注意分类讨论,不要漏解.9.【答案】D【解析】解:在△ABD与△CBD中,,∴△ABD≌△CBD(SSS),故③正确;∴∠ADB=∠CDB,在△AOD与△COD中,,∴△AOD≌△COD(SAS),∴∠AOD=∠COD=90°,AO=OC,∴AC⊥DB,故①②正确;故选D先证明△ABD与△CBD全等,再证明△AOD与△COD全等即可判断.此题考查全等三角形的判定和性质,关键是根据SSS证明△ABD与△CBD全等和利用SAS证明△AOD与△COD全等.10.【答案】B【解析】解:由题意得AP是∠BAC的平分线,过点D作DE⊥AB于E,又∵∠C=90°,∴DE=CD,∴△ABD的面积=AB•DE=×15×4=30.故选:B.判断出AP是∠BAC的平分线,过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,然后根据三角形的面积公式列式计算即可得解.本题考查了角平分线上的点到角的两边距离相等的性质以及角平分线的画法,熟记性质是解题的关键.11.【答案】B【解析】解:∵∠ABC=50°,∠ACB=60°,∴∠BAC=180°-∠ABC-∠ACB=180°-50°-60°=70°,故A选项正确,∵BD平分∠ABC,∴∠ABO=∠ABC=×50°=25°,在△ABO中,∠AOB=180°-∠BAC-∠ABO=180°-70°-25°=85°,∴∠DOC=∠AOB=85°,故B选项错误;∵CD平分∠ACE,∴∠ACD=(180°-60°)=60°,∴∠BDC=180°-85°-60°=35°,故C选项正确;∵BD、CD分别是∠ABC和∠ACE的平分线,∴D到AB、AC、BC的距离相等,∴AD是△ABC的外角平分线,∴∠DAC=(180°-70°)=55°,故D选项正确.故选:B.根据三角形的内角和定理列式计算即可求出∠BAC=70°,再根据角平分线的定义求出∠ABO,然后利用三角形的内角和定理求出∠AOB再根据对顶角相等可得∠DOC=∠AOB,根据邻补角的定义和角平分线的定义求出∠DCO,再利用三角形的内角和定理列式计算即可∠BDC,判断出AD为三角形的外角平分线,然后列式计算即可求出∠DAC.本题考查了角平分线的性质,三角形的内角和定理,角平分线的定义,熟记定理和概念是解题的关键.12.【答案】B【解析】解:∵AC的垂直平分线分别交AC、BC于E,D两点,∴AD=DC,AE=CE=4,即AC=8,∵△ABC的周长为23,∴AB+BC+AC=23,∴AB+BC=23-8=15,∴△ABD的周长为AB+BD+AD=AB+BD+CD=AB+BC=15,故选B.根据线段垂直平分线性质得出AD=DC,AE=CE=4,求出AC=8,AB+BC=15,求出△ABD的周长为AB+BC,代入求出即可.本题考查了线段垂直平分线性质的应用,能熟记线段垂直平分线性质定理的内容是解此题的关键,注意:线段垂直平分线上的点到线段两个端点的距离相等.13.【答案】B【解析】【分析】根据直线MN是四边形AMBN的对称轴,得到点A与点B对应,根据轴对称的性质即可得到结论.本题考查了轴对称的性质,熟练掌握轴对称的性质是解题的关键.【解答】解:∵直线MN是四边形AMBN的对称轴,∴点A与点B对应,∴AM=BM,AN=BN,∠ANM=∠BNM,∵点P是直线MN上的点,∴∠MAP=∠MBP,∴A,C,D正确,B错误,故选B.14.【答案】A【解析】解:如图过点B作BE∥AC交AD延长线于点E,∵BE∥AC,∴∠DBE=∠C,∠E=∠CAD,∴△BDE∽△CDA,∴=,又∵AD是角平分线,∴∠E=∠DAC=∠BAD,∴BE=AB,∴=,∴AB:AC=BD:CD.故选:A.先过点B作BE∥AC交AD延长线于点E,由于BE∥AC,利用平行线分线段成比例定理的推论、平行线的性质,可得∴△BDE∽△CDA,∠E=∠DAC,再利用相似三角形的性质可有=,而利用AD时角平分线又知∠E=∠DAC=∠BAD,于是BE=AB,等量代换即可证.此题考查了角平分线的定义、相似三角形的判定和性质、平行线分线段成比例定理的推论.关键是作平行线.15.【答案】D【解析】【分析】根据到角的两边的距离相等的点在角的平分线上可得AP平分∠BAC,从而判断出①正确,然后证明出△BPR≌△CPS全等,根据全等三角形对应边相等及AB=AC即可得到②正确,然后根据等边对等角的性质可得∠APQ=∠PAQ,然后得到∠PQC=2∠PAC=60°=∠BAC,然后根据同位角相等两直线平行可得QP∥AB,从而判断出③正确,由△PQS≌△PCS,△BRP≌△QSP,即可得到④正确.本题考查了角平分线的性质与全等三角形的判定与性质,准确识图并熟练掌握全等三角形的判定方法与性质是解题的关键.【解答】解:∵△ABC是等边三角形,PR⊥AB,PS⊥AC,且PR=PS,∴P在∠A的平分线上,故①正确;由①可知,PB=PC,∠B=∠C,PS=PR,∴△BPR≌△CPS,∴BR=SC,∴AS=AR,故②正确;∵AQ=PQ,∴∠PQC=2∠PAC=60°=∠BAC,∴PQ∥AR,故③正确;由③得,△PQC是等边三角形,∴△PQS≌△PCS,又由②可知,④△BRP≌△QSP,故④也正确,∵①②③④都正确,故选D.16.【答案】解:∵AD是高,∠ABC=70°,∴∠BAD=90°-70°=20°,∵AE、BF是角平分线,∠BAC=80°,∠ABC=70°,∴∠ABO=35°,∠BAO=40°,∴∠AOF=∠ABO+∠BAO=75°.【解析】在直角三角形中,根据两锐角互余即可得到∠BAD=20°,根据角平分线的性质可求出∠BAO和∠ABO,最后由三角形外角的性质求得∠AOF=75°.本题考查了三角形的内角和定理,外角的性质,三角形的高线与角平分线的性质,熟练掌握各性质定理是解题的关键.17.【答案】解:在△BAC和△DAC中,,公共边∴△BAC≌△DAC(SAS),∴∠BAC=∠DAC,∴AC平分∠BAD.【解析】根据全等三角形的判定定理SSS推出△BAC≌△DAC,根据全等三角形的性质可得∠BAC=∠DAC即可.本题考查了角平分线定义和全等三角形的性质和判定的应用,关键是推出△BAC≌△DAC,全等三角形的判定方法有SAS、ASA、AAS.18.【答案】证明:∵∠BAD=∠CAE,∴∠BAD+∠DAC=∠CAE+∠DAC.即∠BAC=∠DAE,在△ABC和△ADE中,∴△ABC≌△ADE(AAS).∴BC=DE.【解析】先通过∠BAD=∠CAE得出∠BAC=∠DAE,从而证明△ABC≌△ADE,得到BC=DE.本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:AAS、SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角19.【答案】证明:证法一:连接AD.∵AB=AC,点D是BC边上的中点∴AD平分∠BAC(三线合一性质),∵DE、DF分别垂直AB、AC于点E和F.∴DE=DF(角平分线上的点到角两边的距离相等).证法二:在△ABC中,∵AB=AC∴∠B=∠C(等边对等角)…(1分)∵点D是BC边上的中点∴BD=DC…(2分)∵DE、DF分别垂直AB、AC于点E和F∴∠BED=∠CFD=90°…(3分)在△BED和△CFD中∵ ,∴△BED≌△CFD(AAS),∴DE=DF(全等三角形的对应边相等).【解析】D是BC的中点,那么AD就是等腰三角形ABC底边上的中线,根据等腰三角形三线合一的特性,可知道AD也是∠BAC的角平分线,根据角平分线的点到角两边的距离相等,那么DE=DF.本题考查了等腰三角形的性质及全等三角形的判定与性质;利用等腰三角形三线合一的性质是解答本题的关键.20.【答案】解:作CE⊥AB于E,∵A处测得小岛P在北偏东75°方向,∴∠CAB=15°,∵在B处测得小岛P在北偏东60°方向,∴∠ACB=15°,∴AB=PB=2×18=36(海里),∵∠CBD=30°,∴CE=BC=18>15,∴船不改变航向,不会触礁.【解析】作CE⊥AB,利用直角三角形性质求出CE长,和15海里比较即可看出船不改变航向是否会触礁.此题考查了解直角三角形的应用,关键找出题中的等腰三角形,然后再根据直角三角形性质求解.21.【答案】证明:∵CA=CB∴∠CAB=∠CBA∵△AEC和△BCD为等腰直角三角形,∴∠CAE=∠CBD=45°,∠FAG=∠FBG,∴∠FAB=∠FBA,∴AF=BF,在三角形ACF和△CBF中,,∴△AFC≌△BCF(SSS),∴∠ACF=∠BCF∴AG=BG,CG⊥AB(三线合一),即CG垂直平分AB.【解析】求证△AFC≌△CEB可得∠ACF=∠BCF,根据等腰三角形底边三线合一即可解题.本题考查了全等三角形的判定,考查了全等三角形对应角相等的性质,考查了等腰三角形底边三线合一的性质.22.【答案】解:(1)∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,∵CF=CD,∴∠CFD=∠D,∴∠ACB=2∠D,即∠D=∠ACB=30°,∵FB=FD,∴∠FBD=∠D=30°,∴BF平分∠ABC,∴AF=CF,即点F为AC的中点;(2)如图,在Rt△EFC中,CF=2CE,而CD=CF,∴CF=2CE,在Rt△BCF中,BC=2CF,∴BC=4CE,∴BD=6CE.【解析】(1)根据等边三角形的性质得∠ABC=∠ACB=60°,利用∠CFD=∠D,则根据三角形外角性质得到∠ACB=2∠D,即∠D=∠ACB=30°,然后利用FB=FD得到∠FBD=∠D=30°,则BF平分∠ABC,于是根据等边三角形的性质可得到点F为AC的中点;(2)如图,过点F作FE⊥BD于E,利用含30度的直角三角形三边的关系得到CF=2CE,而CD=CF,则CF=2CE,再利用BC=2CF,所以BD=6CE.本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段.作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).记住含30度的直角三角形三边的关系.23.【答案】解:(1)∵△ABC是边长为6的等边三角形,∴∠ACB=60°,∵∠BQD=30°,∴∠QPC=90°,设AP=x,则PC=6-x,QB=x,∴QC=QB+BC=6+x,∵在Rt△QCP中,∠BQD=30°,∴PC=QC,即6-x=(6+x),解得x=2,∴AP=2;(2)当点P、Q同时运动且速度相同时,线段DE的长度不会改变.理由如下:作QF⊥AB,交直线AB于点F,连接QE,PF,又∵PE⊥AB于E,∴∠DFQ=∠AEP=90°,∵点P、Q速度相同,∴AP=BQ,∵△ABC是等边三角形,∴∠A=∠ABC=∠FBQ=60°,在△APE和△BQF中,∵∠AEP=∠BFQ=90°,∴∠APE=∠BQF,,∴△APE≌△BQF(AAS),∴AE=BF,PE=QF且PE∥QF,∴四边形PEQF是平行四边形,∴DE=EF,∵EB+AE=BE+BF=AB,∴DE=AB,又∵等边△ABC的边长为6,∴DE=3,∴点P、Q同时运动且速度相同时,线段DE的长度不会改变.【解析】(1)由△ABC是边长为6的等边三角形,可知∠ACB=60°,再由∠BQD=30°可知∠QPC=90°,设AP=x,则PC=6-x,QB=x,在Rt△QCP中,∠BQD=30°,PC= QC,即6-x=(6+x),求出x的值即可;(2)作QF⊥AB,交直线AB于点F,连接QE,PF,由点P、Q做匀速运动且速度相同,可知AP=BQ,再根据全等三角形的判定定理得出△APE≌△BQF,再由AE=BF,PE=QF且PE∥QF,可知四边形PEQF是平行四边形,进而可得出EB+AE=BE+BF=AB,DE=AB,由等边△ABC的边长为6可得出DE=3,故当点P、Q运动时,线段DE的长度不会改变.本题考查的是等边三角形的性质及全等三角形的判定定理、平行四边形的判定与性质,根据题意作出辅助线构造出全等三角形是解答此题的关键.24.【答案】∠CAD,∠CBN【解析】解:(1)①∵CM∥BN,BN⊥AN,∴∠CMD=∠N=90°,∠MCD=∠CBN,∵∠ACB=90°,∴∠ACM+∠CAD=90°,∠MCD+∠ACM=90°,∴∠MCD=∠CAD,故答案为∠CAD、∠CBN.②在图1中画出图形,如图所示,结论:AM=CG+BN,证明:在△ACM和△BCG中,,∴△ACM≌△BCG,∴CM=CG,AM=BG,∵∠CMN=∠MNG=∠G=90°,∴四边形MNGC是矩形,∴CM=GN=CG,∴AM=BG=BN+GN=BN+CG.(2)过点C作CE平分∠ACB,交AD于点E.∵在△ACD和△BDN中,∠ACB=90°,AN⊥ND ∴∠4+∠ADC=90°=∠5+∠BDN又∵∠ADC=∠BDN∴∠4=∠5,∵∠ACB=90°,AC=BC,CE平分∠ACB,∴∠6=45°,∠2=∠3=45°又∵CM∥AB,∴∠1=∠6=45°=∠2=∠3,在△ACE和△BCM中,,∴△ACE≌△BCM(ASA)∴CE=CM又∵∠1=∠2,CD=CD∴∠CDE=∠CDM又∵∠BDN=∠CDE,∠MDN+∠CDE+∠CDM=180°∴∠MDN+2∠BDN=180°.(1)①结论:∠CAD、CBN.利用同角的余角相等,平行线的性质即可证明.②由△ACM≌△BCG,推出CM=CG,AM=BG,由∠CMN=∠MNG=∠G=90°,推出四边形MNGC是矩形,推出CM=GN=CG,由此即可证明.(2)过点C作CE平分∠ACB,交AD于点E.由△ACE≌△BCM(ASA),推出CE=CM,又因为∠1=∠2,CD=CD,推出∠CDE=∠CDM,由∠BDN=∠CDE,∠MDN+∠CDE+∠CDM=180°,即可证明.本题考查等腰直角三角形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识,学会添加常用辅助线、构造全等三角形,属于中考常考题型.。
宜昌市初二年级数学上学期期中考试试卷(含答案解析)
宜昌市2021初二年级数学上册期中考试试卷(含答案解析)宜昌市2021初二年级数学上册期中考试试卷(含答案解析)一、选择题.〔每题3分,共45分〕1.以下四个标志图案是轴对称图形的是〔〕A. B. C. D.2.点〔3,﹣2〕关于x轴的对称点是〔〕A.〔﹣3,﹣2〕 B.〔3,2〕 C.〔﹣3,2〕 D.〔3,﹣2〕3.以下计算中正确的选项是〔〕A. a2+b3=2a5 B.a4÷a=a4 C. a2?a4=a8 D.〔a2〕3=a6 4.一粒芝麻约有0.000002千克,0.000002用科学记数学法表示为〔〕千克.A.2×10﹣4 B.0.2×10﹣5 C.2×10﹣7 D.2×10﹣65.以下各式是完全平方式的是〔〕A. x2+2x﹣1 B. x2+1 C. x2+2xy+1 D. x2﹣x+6.等式〔a+1〕0=1的条件是〔〕A.a≠﹣1 B.a≠0 C.a≠1 D. a=﹣17.以下长度的各种线段,可以组成三角形的是〔〕A. 1,2,3 B. 1,5,5 C. 3,3,6 D. 3,5,18.一个多边形的内角和是900°,那么这个多边形的边数是〔〕A. 6 B. 7 C. 8 D. 99.等腰三角形的周长为13cm,其中一边长为3cm,那么该等腰三角形的底边为〔〕A. 7cm B. 7cm或5cm C. 5cm D. 3cm10.以下各式由左边到右边的变形中,属于分解因式的是〔〕A. 3〔a+b〕=3a+3b B. x2+6x+9=x〔x+6〕+9C. ax﹣ay=a〔x﹣y〕 D. a2﹣2=〔a+2〕〔a﹣2〕11.把代数式ax2﹣4ax+4a分解因式,以下结果中正确的选项是〔〕A. a〔x﹣2〕2 B. a〔x+2〕2 C. a〔x﹣4〕2 D. a〔x+2〕〔x﹣2〕12.假设分式的值为0,那么x的值为〔〕A.﹣1 B. 0 C. 2 D.﹣1或213.如图,直角坐标系中,点A〔﹣2,2〕、B〔0,1〕点P 在x轴上,且△PAB是等腰三角形,那么满足条件的点P共有〔〕个.A. 1 B. 2 C. 3 D. 414.如图,从边长为a+1的正方形纸片中剪去一个边长为a ﹣1的正方形〔a>1〕,剩余局部沿虚线剪开,再拼成一个矩形〔不重叠无缝隙〕,那么该矩形的面积是〔〕A. 2 B. 2a C. 4a D. a2﹣115.某林场原方案在一定期限内固沙造林240公顷,实际每天固沙造林的面积比原方案多4公顷,结果提早5天完成任务.设原方案每天固沙造林x公顷,根据题意以下方程正确的选项是〔〕A. +5= B.﹣5=C. +5= D.﹣5=二、解答题.〔6分+6分+7分+7分8分+8分+10分+11分+12分〕16.计算2〔x+y〕〔x﹣y〕﹣〔x+y〕2.17.解分式方程: +3= .18.如图,在4×3的正方形网格中,阴影局部是由4个正方形组成的一个图形,请你用两种方法分别在如图方格内添涂2个小正方形,使这6个小正方形组成的图形是轴对称图形,并画出其对称轴.19.先化简再求值〔 + 〕÷ ,其中m= .20.如图,G是线段AB上一点,AC和DG相交于点E.请先作出∠ABC的平分线BF,交AC于点F;〔尺规作图,保存作图痕迹,不写作法与证明〕然后证明当:AD∥BC,AD=BC,∠ABC=2∠ADG时,DE=BF.21.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于N,交AC于M.〔1〕假设∠B=70°,那么∠NMA的度数是;〔2〕探究∠B与∠NMA的关系,并说明理由;〔3〕连接MB,假设AB=8cm,△MBC的周长是14cm.①求BC的长;②在直线MN上是否存在点P,使PB+CP的值最小?假设存在,标出点P的位置并求PB+CP的最小值;假设不存在,说明理由.22.某商店第一次用600元购进2B铅笔假设干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的倍,购进数量比第一次少了30支.〔1〕求第一次每支铅笔的进价是多少元?〔2〕假设要求这两次购进的铅笔按同一价格全部销售完毕后获利不低于420元,问每支售价至少是多少元?23.在△ABC中,AB=AC,D是直线BC上一点,以AD为一边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.设∠BAC=α,∠DCE=β.〔1〕如图〔1〕,点D在线段BC上挪动时,角α与β之间的数量关系是,证明你的结论;〔2〕如图〔2〕,点D在线段BC的延长线上挪动时,①探究角α与β之间的数量关系并证明,②探究线段BC、DC、CE之间的数量关系并证明.〔3〕当点D在线段BC的反向延长线上挪动时,请在图〔3〕中画出完好图形并猜测角α与β之间的数量关系是,线段BC、DC、CE之间的数量关系是,并写出证明过程.24.如下图,△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.假如点P在线段BC上由B出发向C点运动,同时点Q 在线段CA上由C点出发向A点运动.设运动时间为t秒.〔1〕假设点P的速度3cm/s,用含t的式子表示第t秒时,BP=cm,CP=cm.假设点Q运动速度与点P的运动速度相等,经过几秒钟△BPD与△CQP全等,说明理由;〔2〕假设点Q的运动速度与点P的运动速度不相等,且点P 的速度比点Q的速度慢1cm/s时,点Q的运动速度为多少时?可以使△BPD≌△CQP?〔3〕假设点Q以②中的运动速度从点C出发,点P以②中的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?宜昌市2021初二年级数学上册期中考试试卷(含答案解析)参考答案与试题解析一、选择题.〔每题3分,共45分〕1.以下四个标志图案是轴对称图形的是〔〕A. B. C. D.考点:轴对称图形.分析:根据轴对称图形的概念求解.解答:解:A、不是轴对称图形,故错误;B、是轴对称图形,故正确;C、不是轴对称图形,故错误;D、不是轴对称图形,故错误.应选B.点评:此题考察了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两局部沿对称轴折叠后可重合.2.点〔3,﹣2〕关于x轴的对称点是〔〕A.〔﹣3,﹣2〕 B.〔3,2〕 C.〔﹣3,2〕 D.〔3,﹣2〕考点:关于x轴、y轴对称的点的坐标.分析:熟悉:平面直角坐标系中任意一点P〔x,y〕,关于x轴的对称点的坐标是〔x,﹣y〕.解答:解:根据轴对称的性质,得点〔3,﹣2〕关于x轴的对称点是〔3,2〕.应选B.点评:此题比拟容易,考察平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系.是需要识记的内容.记忆方法是结合平面直角坐标系的图形记忆,另一种记忆方法是记住:关于横轴的对称点,横坐标不变,纵坐标变成相反数.3.以下计算中正确的选项是〔〕A. a2+b3=2a5 B.a4÷a=a4 C. a2?a4=a8 D.〔a2〕3=a6 考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:分别利用合并同类项法那么以及同底数幂的除法运算法那么和幂的乘方运算法那么等知识分别化简得出即可.解答:解:A、a2+b3无法计算,故此选项错误;B、a4÷a=a3,故此选项错误;C、a2?a4=a6,故此选项错误;D、〔a2〕3=a6,故此选项正确.应选:D.点评:此题主要考察了合并同类项法那么以及同底数幂的除法运算法那么和幂的乘方运算法那么等知识,正确掌握运算法那么是解题关键.4.一粒芝麻约有0.000002千克,0.000002用科学记数学法表示为〔〕千克.A.2×10﹣4 B.0.2×10﹣5 C.2×10﹣7 D.2×10﹣6考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.000 002=2×10﹣6;应选:D.点评:此题考察用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.以下各式是完全平方式的是〔〕A. x2+2x﹣1 B. x2+1 C. x2+2xy+1 D. x2﹣x+考点:完全平方式.分析:完全平方公式:〔a±b〕2=a2±2ab+b2.最后一项为乘积项除以2,除以第一个底数的结果的平方.解答:解:A、两平方项符号错误,故本选项错误;B、缺少中间项±2x,不是完全平方式,故本选项错误;C、1应该是y2,故本选项错误;D、原式=〔x﹣〕2,是完全平方式,故本选项正确.应选:D.点评:此题是完全平方公式的应用,熟记公式构造:两数的平方和,再加上或减去它们积的2倍,是解题的关键.6.等式〔a+1〕0=1的条件是〔〕A.a≠﹣1 B.a≠0 C.a≠1 D. a=﹣1考点:零指数幂.分析:根据零指数幂:a0=1〔a≠0〕求解即可.解答:解:〔a+1〕0=1的条件为:a≠﹣1.应选A.点评:此题考察了零指数幂的知识,解答此题的关键是掌握零指数幂:a0=1〔a≠0〕.7.以下长度的各种线段,可以组成三角形的是〔〕A. 1,2,3 B. 1,5,5 C. 3,3,6 D. 3,5,1考点:三角形三边关系.分析:看哪个选项中两条较小的边的和大于最大的边即可.解答:解:A、2+1=3,不能构成三角形;B、5+1>5,能构成三角形;C、3+3=6,不能构成三角形;D、1+3<5,不能构成三角形.应选B.点评:此题考察了可以组成三角形三边的条件,其实用两条较短的线段相加,假如大于最长那条就可以组成三角形.8.一个多边形的内角和是900°,那么这个多边形的边数是〔〕A. 6 B. 7 C. 8 D. 9考点:多边形内角与外角.专题:计算题.分析:此题根据多边形的内角和定理和多边形的内角和等于900°,列出方程,解出即可.解答:解:设这个多边形的边数为n,那么有〔n﹣2〕180°=900°,解得:n=7,∴这个多边形的边数为7.应选:B.点评:此题主要考察多边形的内角和定理,解题的关键是根据等量关系列出方程从而解决问题.9.等腰三角形的周长为13cm,其中一边长为3cm,那么该等腰三角形的底边为〔〕A. 7cm B. 7cm或5cm C. 5cm D. 3cm考点:等腰三角形的性质;三角形三边关系.专题:分类讨论.分析:分3cm长的边是腰和底边两种情况,分别利用三角形的周长,等腰三角形的性质和三角形的三边关系进展讨论即可求解.解答:解:当长是3cm的边是底边时,三边为3cm,5cm,5cm,等腰三角形成立;当长是3cm的边是腰时,底边长是13﹣3﹣3=7cm,而3+3<7,不满足三角形的三边关系.故底边长是3cm.应选D.点评:此题主要考察了等腰三角形的性质和三角形的三边关系,正确理解题意,分两种情况讨论,并且注意到利用三角形的三边关系定理,是解题的关键.10.以下各式由左边到右边的变形中,属于分解因式的是〔〕A. 3〔a+b〕=3a+3b B. x2+6x+9=x〔x+6〕+9C. ax﹣ay=a〔x﹣y〕 D. a2﹣2=〔a+2〕〔a﹣2〕考点:因式分解的意义.分析:根据因式分解是把一个多项式转化成几个整式的积,可得答案.解答:解:ax﹣ay=a〔x﹣y〕,故C说法正确,应选:C.点评:此题考察了因式分解,注意因式分解是把一个多项式转化成几个整式的积.11.把代数式ax2﹣4ax+4a分解因式,以下结果中正确的选项是〔〕A. a〔x﹣2〕2 B. a〔x+2〕2 C. a〔x﹣4〕2 D. a〔x+2〕〔x﹣2〕考点:提公因式法与公式法的综合运用.专题:因式分解.分析:先提取公因式a,再利用完全平方公式分解即可.解答:解:ax2﹣4ax+4a,=a〔x2﹣4x+4〕,=a〔x﹣2〕2.应选:A.点评:此题先提取公因式,再利用完全平方公式分解,分解因式时一定要分解彻底.12.假设分式的值为0,那么x的值为〔〕A.﹣1 B. 0 C. 2 D.﹣1或2考点:分式的值为零的条件.分析:根据分式的分子为0;分母不为0,分式的值为零,可得答案.解答:解:由分式的值为0,得,解得x=﹣1,应选:A.点评:此题考察了分式值为零的条件,假设分式的值为零,需同时具备两个条件:〔1〕分子为0;〔2〕分母不为0.这两个条件缺一不可.13.如图,直角坐标系中,点A〔﹣2,2〕、B〔0,1〕点P 在x轴上,且△PAB是等腰三角形,那么满足条件的点P共有〔〕个.A. 1 B. 2 C. 3 D. 4考点:等腰三角形的断定;坐标与图形性质.分析:由AB=AP,可得以A为圆心,AB为半径画圆,交x轴有二点P1〔﹣1,0〕,P2〔﹣3,0〕;由BP=AB,可得以B为圆心,BA为半径画圆,交x轴有二点P3〔﹣2,0〕,〔2,0〕不能组成△ABP,由AP=BP,可得AB的垂直平分线交x轴一点P4〔PA=PB〕.解答:解:如图,点A〔﹣2,2〕、B〔0,1〕,①以A为圆心,AB为半径画圆,交x轴有二点P1〔﹣1,0〕,P2〔﹣3,0〕,此时〔AP=AB〕;②以B为圆心,BA为半径画圆,交x轴有二点P3〔﹣2,0〕,〔2,0〕不能组成△ABP,故舍去,此时〔BP=AB〕;③AB的垂直平分线交x轴一点P4〔PA=PB〕,此时〔AP=BP〕;设此时P4〔x,0〕,那么〔x+2〕2+4=x2+1,解得:x=﹣,∴P4〔﹣,0〕.∴符合条件的点有4个.应选D.点评:此题考察了等腰三角形的断定.此题那难度适中,注意掌握数形结合思想与分类讨论思想的应用.14.如图,从边长为a+1的正方形纸片中剪去一个边长为a ﹣1的正方形〔a>1〕,剩余局部沿虚线剪开,再拼成一个矩形〔不重叠无缝隙〕,那么该矩形的面积是〔〕A. 2 B. 2a C. 4a D. a2﹣1考点:平方差公式的几何背景.专题:几何变换.分析:矩形的面积就是边长是a+1的正方形与边长是a﹣1的正方形的面积的差,列代数式进展化简即可.解答:解:矩形的面积是〔a+1〕2﹣〔a﹣1〕2=4a.应选:C.点评:此题考察了整式的运算,正确使用完全平方公式是关键.15.某林场原方案在一定期限内固沙造林240公顷,实际每天固沙造林的面积比原方案多4公顷,结果提早5天完成任务.设原方案每天固沙造林x公顷,根据题意以下方程正确的选项是〔〕A. +5= B.﹣5=C. +5= D.﹣5=考点:由实际问题抽象出分式方程.专题:应用题.分析:有工作总量240,求的是工作效率,那么一定是根据工作时间来列等量关系的.关键描绘语是:“提早5天完成任务〞.等量关系为:原方案用的时间﹣实际用的时间=5.解答:解:原方案用的时间为:,如今用的时间为:.那么根据等量关系方程为﹣5= .应选:B.点评:找到关键描绘语,找到等量关系是解决问题的关键.此题用到的等量关系为:工作时间=工作总量÷工作效率.二、解答题.〔6分+6分+7分+7分8分+8分+10分+11分+12分〕16.计算2〔x+y〕〔x﹣y〕﹣〔x+y〕2.考点:平方差公式;完全平方公式.分析:直接利用平方差公式以及完全平方公式去括号整理,进而合并同类项得出即可.解答:解:2〔x+y〕〔x﹣y〕﹣〔x+y〕2=2x2﹣2y2﹣x2﹣2xy﹣y2=x2﹣3y2﹣2xy.点评:此题主要考察了平方差公式以及完全平方公式,正确应用乘法公式是解题关键.17.解分式方程: +3= .考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:1+3〔x﹣2〕=x﹣1,去括号得:1+3x﹣6=x﹣1,移项合并得:2x=4,解得:x=2,经检验x=2是增根,分式方程无解.点评:此题考察理解分式方程,解分式方程的根本思想是“转化思想〞,把分式方程转化为整式方程求解.解分式方程一定注意要验根.18.如图,在4×3的正方形网格中,阴影局部是由4个正方形组成的一个图形,请你用两种方法分别在如图方格内添涂2个小正方形,使这6个小正方形组成的图形是轴对称图形,并画出其对称轴.考点:利用轴对称设计图案.分析:根据轴对称的性质画出图形即可.解答:解:如下图:点评:此题考察的是利用轴对称设计图案,熟知轴对称的性质是解答此题的关键.19.先化简再求值〔 + 〕÷ ,其中m= .考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的加法法那么计算,同时利用除法法那么变形,约分得到最简结果,将m的值代入计算即可求出值.解答:解:原式=[ + ]?当m= 时,原式= =﹣.点评:此题考察了分式的化简求值,纯熟掌握运算法那么是解此题的关键.20.如图,G是线段AB上一点,AC和DG相交于点E.请先作出∠ABC的平分线BF,交AC于点F;〔尺规作图,保存作图痕迹,不写作法与证明〕然后证明当:AD∥BC,AD=BC,∠ABC=2∠ADG时,DE=BF.考点:全等三角形的断定与性质.专题:作图题.分析:〔1〕此题考察学生的根本作图.〔2〕由题意易证△ADE≌△CBF推出DE=BF.解答:〔1〕解:以B为圆心、适当长为半径画弧,交AB、BC于M、N两点,分别以M、N为圆心、大于 MN长为半径画弧,两弧相交于点P,过B、P作射线BF交AC于F.〔2〕证明如下:∵AD∥BC,∴∠DAC=∠C.∵BF平分∠ABC,∴∠ABC=2∠FBC,又∵∠ABC=2∠ADG,∴∠D=∠FBC,在△ADE与△CBF中,,∴△ADE≌△CBF〔ASA〕,∴DE=BF.点评:此题考察的是全等三角形的断定定理以及根本作图的有关知识,难度一般.21.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于N,交AC于M.〔1〕假设∠B=70°,那么∠NMA的度数是50°;〔2〕探究∠B与∠NMA的关系,并说明理由;〔3〕连接MB,假设AB=8cm,△MBC的周长是14cm.①求BC的长;②在直线MN上是否存在点P,使PB+CP的值最小?假设存在,标出点P的位置并求PB+CP的最小值;假设不存在,说明理由.考点:轴对称-最短道路问题;线段垂直平分线的性质;等腰三角形的性质.分析:〔1〕根据等腰三角的性质,三角形的内角和定理,可得∠A的度数,根据直角三角形两锐角的关系,可得答案;〔2〕根据等腰三角的性质,三角形的内角和定理,可得∠A 的度数,根据直角三角形两锐角的关系,可得答案;〔3〕根据垂直平分线的性质,可得AM与MB的关系,再根据三角形的周长,可得答案;根据两点之间线段最短,可得P点与M点的关系,可得PB+PC与AC的关系.解答:解:〔1〕假设∠B=70°,那么∠NMA的度数是50°,故答案为:50°;〔2〕猜测的结论为:∠NMA=2∠B﹣90°.理由:∵AB=AC,∴∠B=∠C,∴∠A=180°﹣2∠B,又∵MN垂直平分AB,∴∠NMA=90°﹣∠A=90°﹣〔180°﹣2∠B〕=2∠B﹣90°.〔3〕如图:①∵MN垂直平分AB.∴MB=MA,又∵△MBC的周长是14cm,∴AC+BC=14cm,∴BC=6cm.②当点P与点M重合时,PB+CP的值最小,最小值是8cm.点评:此题考察了轴对称,线段垂直平分线上的点到线段两端点的间隔相等得出PB=PA.22.某商店第一次用600元购进2B铅笔假设干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的倍,购进数量比第一次少了30支.〔1〕求第一次每支铅笔的进价是多少元?〔2〕假设要求这两次购进的铅笔按同一价格全部销售完毕后获利不低于420元,问每支售价至少是多少元?考点:分式方程的应用;一元一次不等式组的应用.专题:计算题.分析:〔1〕设第一次每支铅笔进价为x元,那么第二次每支铅笔进价为 x元,根据题意可列出分式方程解答;〔2〕设售价为y元,求出利润表达式,然后列不等式解答.解答:解:〔1〕设第一次每支铅笔进价为x元,根据题意列方程得,﹣ =30,解得x=4,经检验:x=4是原分式方程的解.答:第一次每支铅笔的进价为4元.〔2〕设售价为y元,第一次每支铅笔的进价为4元,那么第二次每支铅笔的进价为4× =5元根据题意列不等式为:×〔y﹣4〕+ ×〔y﹣5〕≥420,解得y≥6.答:每支售价至少是6元.点评:此题考察了分式方程的应用和一元一次不等式的应用,弄清题意并找出题中的数量关系并列出方程是解题的关键.最后不要忘记检验.23.在△ABC中,AB=AC,D是直线BC上一点,以AD为一边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.设∠BAC=α,∠DCE=β.〔1〕如图〔1〕,点D在线段BC上挪动时,角α与β之间的数量关系是α+β=180°,证明你的结论;〔2〕如图〔2〕,点D在线段BC的延长线上挪动时,①探究角α与β之间的数量关系并证明,②探究线段BC、DC、CE之间的数量关系并证明.〔3〕当点D在线段BC的反向延长线上挪动时,请在图〔3〕中画出完好图形并猜测角α与β之间的数量关系是α>β,线段BC、DC、CE之间的数量关系是BC+CD>CE ,并写出证明过程.考点:全等三角形的断定与性质;等腰三角形的性质.分析:〔1〕先证∠CAE=∠BAD,再证明△ABD≌△ACE,得出对应角相等∠ABD=∠ACE,即可得出结论;〔2〕同〔1〕,证明△ABD≌△ACE,得出对应角相等∠ABD=∠ACE,对应边相等BD=CE,即可得出结论;〔3〕连接BE,先证明△BAE≌△CAD,得出对应角相等,对应边相等,再根据三角形外角关系和三边关系即可得出结论.解答:解:〔1〕α+β=180°;理由如下:∵∠DAE=∠BAC,∴∠DAE﹣∠DAC=∠BAC﹣∠DAC,∴∠CAE=∠BAD,在△ABD和△ACE中,∴△ABD≌△ACE〔SAS〕,∴∠ABD=∠ACE,∵∠BAC+∠ABD+∠ACB=180°,∴∠BAC+∠ACE+∠ACB=180°,∴∠BAC+∠BCE=180°,即α+β=180°;〔2〕α=β;理由如下:∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,∴∠BAD=∠CAE,在△BAD和△CAE中,∴△ABD≌△ACE〔SAS〕,∴∠ABD=∠ACE,BD=CE,∵∠ACD=∠ABD+∠BAC=∠ACE+∠DCE,∴∠BAC=∠DCE,即α=β;∵BD=BC+CD,∴CE=BC+CD〔3〕α>β,BC+CD>CE;如下图:连接BE,∵∠DAE=∠BAC,∴∠DAE+∠DAB=∠BAC+∠DAB,∴∠BAE=∠CAD,在△BAE和△CAD中,∴△BAE≌△CAD〔SAS〕,∴∠ABE=∠ACD,BE=CD,∵AB=AC,∴∠ABC=∠ACB,∵∠ABC+∠ABE+∠DBE=180°,∠BAC+∠ABC+∠ACB=180°,∴∠DBE=∠BAC=α,∵∠DBE>β,∴α>β,∵BC+BE>CE,∴BC+CD>CE.点评:此题考察了等腰三角形的性质和全等三角形的断定与性质;证明三角形全等得出对应角相等、对应边相等是解决问题的关键.24.如下图,△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.假如点P在线段BC上由B出发向C点运动,同时点Q 在线段CA上由C点出发向A点运动.设运动时间为t秒.〔1〕假设点P的速度3cm/s,用含t的式子表示第t秒时,BP= 3t cm,CP= 8﹣3t cm.假设点Q运动速度与点P 的运动速度相等,经过几秒钟△BPD与△CQP全等,说明理由;〔2〕假设点Q的运动速度与点P的运动速度不相等,且点P 的速度比点Q的速度慢1cm/s时,点Q的运动速度为多少时?可以使△BPD≌△CQP?〔3〕假设点Q以②中的运动速度从点C出发,点P以②中的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?考点:全等三角形的断定与性质;等腰三角形的性质.专题:动点型.分析:〔1〕根据路程=速度×时间就可以得出结论;〔2〕分类讨论,当△BPD≌△CPQ和△BPD≌△CQP时,由全等三角形的性质就可以求出结论;〔3〕Q的速度为5厘米/秒,那么P的速度为4厘米/秒,就有20+4t=5t就可以求出t的值.解答:解:〔1〕由题意,得BP=3t,∴PC=8﹣3t;故答案为:3t,8﹣3t〔2〕①当BP=PC时,BD=CQ,∵BP+CP=BC=8,∴BP=4,∴t=4/3s CQ=4 不成立.当BP=CQ时,BD=CP,∵点D为AB的中点,∴BD=AD,∵AB=10,∴BD=5,∴CP=5,∴BP=3,∴t=1,故t=1;②设Q的速度为acm/s,那么P的速度为〔a﹣1〕cm/s,∵BP与CQ不相等,∴BD=CQ,BP=CP,设运动时间为ts,∴at=5〔a﹣1〕t=4,∴t=1s a=5cm/s;〔3〕由②知Q的速度是5cm/s,P速度是4cm/s,设经过t 秒点Q与点P第一次相遇.∴20+4t=5t,∴t=20,当t=20s时,点Q从点出发运动100米,∴点Q与点P第一次在△ABC的边AB上相遇.点评:此题考察了动点问题在实际生活中的运用,全等三角形的性质的运用,行程问题的数量关系的运用,解答时运用全等三角形的性质求解是关键.。
2023-2024学年湖北省宜昌市兴山县八年级上学期期中数学试题
2023-2024学年湖北省宜昌市兴山县八年级上学期期中数学试题1.下面各组线段中,能组成三角形的是()A.5,11,6B.8,8,16C.10,5,4D.6,9,14 2.下列图案是轴对称图形的是()A.B.C.D.3.一个多边形的内角和是900°,则这个多边形的边数为()A.6B.7C.8D.94.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.等边三角形5.已知图中的两个三角形全等,则的度数是()A.B.C.D.6.等腰三角形的一个角是,则它的底角是()A.B.或C.或D.7.点关于轴对称的点是()A.B.C.D.8.如图,一扇窗户打开后,用窗钩可将其固定,这里运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短9.如图,已知,若添加一个条件使,则添加错误的是()A.B.C.D.10.如图,在中,按以下步骤作图:①分别以B、C为圆心,以大于的同样长为半径画弧,两弧相交于两点M、N;②作直线交于点D,连结,若,,则的度数是()A.B.C.D.11.已知等腰三角形一边长为2,一边的长为4,则等腰三角形的周长为_____.12.已知直角三角形中30°角所对的直角边为2cm,则斜边的长度为_______cm.13.如果,的周长为13,,,则的长为_______.14.如图,在△ABC中,AD,AE分别是边BC上的中线和高,AE=2,S△ABD=1.5,则BC=_____.15.如图,在△ABC中,AB=8,BC=6,AC=5,∠B、∠C的角平分线相交于点D,过D作EF//BC交AB于点E,交AC于点F,,则△AEF的周长等于___________16.如图,是中的角平分线,于点,于点,,,,则长是_____.17.如图,△ADF≌△BCE,∠B=32°,∠F=28°,BC=5cm,CD=1cm求:(1)∠1的度数(2)AC的长18.如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F,(1)求证:△BDE≌△CDF;(2)当AD⊥BC,AE=1,CF=2时,求AC的长.19.两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形,B,C,E在同一条直线上,连接.(1)请找出图②中的全等三角形,并给予说明(说明:结论中不得含有未标识的字母);(2)试说明:.20.已知:,.(1)若,求证:是的垂直平分线;(2)若,求的大小.21.如图,已知A(﹣2,4),B(4,2),C(2,﹣1)(1)画出△ABC关于x轴的对称△A1B1C1,写出点C关于x轴的对称点C1的坐标;(2)P为x轴上一点,请在图中找出使△PAB的周长最小时的点P并直接写出此时点P的坐标(保留作图痕迹).22.请阅读,完成证明和填空.九年级数学兴趣小组在学校的“数学长廊”中兴奋地展示了他们小组探究发现的结果,内容如下:(1)如图1,正三角形中,在、边上分别取点、,使,连结、,发现,且.请证明:.(2)如图2,正方形中,在、边上分别取点、,使,连结、,那么______,且______度.(3)如图3,正五边形中,在、边上分别取点、,使,连结、,那么______,且______度.(4)在正n边形中,对相邻的三边实施同样的操作过程,也会有类似的结论.请大胆猜测,用一句话概括你的发现:________________________________.23.如图,在中,,点D从B出发以每秒2个单位的长度的速度在线段上从点B向点C运动,点E同时从C出发以每秒2个单位长度的速度在线段上向点A运动,连接,设D,E两点的运动时间为(1)运动s时,;(2)运动多少秒时,能成立,并说明理由;(3)若,求(用含α的式子表示).24.在中,,点是上一点,将沿翻折后得到,边交射线于点.(1)如图1,当时,求证:.(2)若,.①如图2,当时,求的值.②是否存在这样的的值,使得中有两个角相等.若存在,求的值;若不存在,请说明理由.。
湖北省宜昌市八年级上学期期中数学试卷
湖北省宜昌市八年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、填空题 (共10题;共12分)1. (1分)(2016·长沙) 如图,△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为________.2. (1分)(2018·凉州) 如图,分别以等边三角形的每个顶点以圆心、以边长为半径,在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为,则勒洛三角形的周长为________.3. (1分)(2020·滨州) 现有下列长度的五根木棒:3,5,8,10,13,从中任取三根,可以组成三角形的概率为________.4. (1分) (2018八上·无锡期中) 如图,在△ABC中,AB=AC.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD.若∠A=28°,则∠CDB的大小为________°.5. (1分) (2019九上·西安期中) 如图,已知正五边形,边、的延长线交于点,则 ________.6. (2分)已知A(-1,-2)和B(1,3),将点A向________平移________个单位长度后得到的点与点B 关于y轴对称.7. (1分)如图,在△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于M,N两点;②作直线MN交AB于点D,连接CD,若CD=AC,∠B=25°,则∠ACB的度数为________ .8. (2分)正多边形的每个内角都________;若一个正多边形的一个内角是108°,则这个多边形的边数是________.9. (1分)如图,∠ABD=76°,∠C=38°,BC=30cm,则BD的长为________.10. (1分)(2018·驻马店模拟) 已知在等腰三角形ABC中,BC=8,AB,AC的长为方程x2-10x+m=0的根,则m=________.二、精心选一选,慧眼识金! (共10题;共20分)11. (2分)能构成三角形的是()A . 2、3、4B . 5、3、8C . 1、3、5D . 1、2、312. (2分)能将三角形的面积分成相等的两部分的是()A . 三角形的中线B . 三角形的高线C . 三角形的角平分线D . 以上都不对13. (2分) (2020八上·勃利期中) 对于任意三角形的高,下列说法错误的是()A . 直角三角形只有一条高B . 锐角三角形有三条高C . 任意三角形都有三条高D . 钝角三角形有两条高在三角形的外部14. (2分) (2020八上·乌兰察布月考) 已知等腰三角形的一边长等于4,一边长等于8,则它的周长为()A . 9B . 16或20C . 16D . 2015. (2分)一块三角形玻璃样板不慎被小强同学碰破,成了如图所示的四块,聪明的小强经过仔细的考虑认为只要带其中的两块碎片去玻璃店就可以让师傅画一块与以前一样的玻璃样板,你认为可行的方案是()A . 带其中的任意两块去都可以B . 带①、②或②、③去就可以了C . 带①、④或③、④去就可以了D . 带①、④或①、③去就可以了16. (2分) (2019八下·商水期末) 在平面直角坐标系中,点A(2,3)与点B关于轴对称,则点B的坐标为()A . (3,2)B . (-2,-3)C . (-2,3)D . (2,-3)17. (2分)正六边形的每个内角都是()A . 60°B . 80°C . 100°D . 120°18. (2分)下列图形中,既是中心对称图形,又是轴对称图形的是()A . 等边三角形B . 平行四边形C . 等腰三角形D . 菱形19. (2分) (2020八上·渠县月考) 由下列条件不能判定△ABC为直角三角形的是()A .B .C . ,,D .20. (2分) (2017九上·东莞开学考) 若三角形的三边长分别等于,,2,则此三角形的面积为()A .B .C .D .三、解答题 (共6题;共60分)21. (5分) (2017八上·独山期中) 如图,某住宅小区拟在休闲场地的三条道路m,n,l上修建三个凉亭A、B、C且凉亭与长廊两两连通.如果凉亭A、B的位置己经选定,那么凉亭C建在道路l上的什么位置,才能使工程造价最低?请用尺规作出图形(不写作法,但保留作图痕迹)22. (10分) (2019八上·永安期中) 如图,直线与轴相交于点,与轴相交于点.(1)求,两点的坐标;(2)过点作直线与轴相交于,且使,求的面积.23. (5分) (2016九上·腾冲期中) 如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.24. (20分)如图,点A的坐标为(4,0).点P是直线y= x+3在第一象限内的点,过P作PMx轴于点M,O是原点.(1)设点P的坐标为(x,y),试用它的纵坐标y表示△OPA的面积S;(2) S与y是怎样的函数关系?它的自变量y的取值范围是什么?(3)如果用P的坐标表示△OPA的面积S,S与x是怎样的函数关系?它的自变量的取值范围是什么?(4)在直线y= x+3上求一点Q,使△QOA是以OA为底的等腰三角形.25. (5分)(2017·桂林) 求证:角平分线上的点到这个角的两边距离相等.已知:求证:证明:26. (15分) (2019八下·汉阳期中)(1)叙述三角形中位线定理,并运用平行四边形的知识证明;(2)运用三角形中位线的知识解决如下问题:如图1,在四边形ABCD中,AD∥BC,E、F分别是AB,CD的中点,求证:EF=(AD+BC)(3)如图2,在四边形ABCD中,AD∥BC,∠B=900 , AD=3,BC=4,CD=7,E是AB的中点,直接写出点E到CD的距离.参考答案一、填空题 (共10题;共12分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、精心选一选,慧眼识金! (共10题;共20分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:答案:19-1、考点:解析:答案:20-1、考点:解析:三、解答题 (共6题;共60分)答案:21-1、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、考点:解析:答案:24-1、答案:24-2、答案:24-3、答案:24-4、考点:解析:答案:25-1、考点:解析:答案:26-1、答案:26-2、答案:26-3、考点:解析:。
湖北省宜昌市八年级上学期数学期中考试试卷
湖北省宜昌市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共10分)1. (1分)(2019·苏州模拟) 如图,以O为圆心的圆与直线y=-x+ 交于A、B两点,若△OAB恰为等边三角形,则弧AB的长度为()A . πB . πC . πD .2. (1分)(2018·河北) 图中由“○”和“□”组成轴对称图形,该图形的对称轴是直线()A . l1B . l2C . l3D . l43. (1分)(2019·咸宁模拟) 下列计算正确的是()A . a3+a2=a5B . a3•a2=a5C . (2a2)3=6a6D . a6÷a2=a34. (1分)(2019·九龙坡模拟) 下列计算正确的是()A . 2a+3b=5abB . a2·a4=a8C . (-2a2b)3=-8a6b3D . a6÷a3+a2=2a25. (1分) (2019八上·柘城月考) 如图,BE,CF是△ABC的角平分线,∠ABC=80°,∠ACB=60°,EB,CF 相交于D,则∠CDE的度数是()A . 130°B . 70°C . 80°D . 75°6. (1分) (2019八上·海港期中) 如图,BE⊥AC于点D ,且AD=CD , BD=ED ,若∠ABC=54°,则∠E =()A . 25°B . 27°C . 30°D . 45°7. (1分)下列图形中,具有稳定性的是()A . 平行四边形B . 三角形C . 梯形D . 菱形8. (1分)如图,在四边形ABCD中,E是BC的中点,连接AC,AE,若AB=AC,AE=CD,AD=CE,则图中的全等三角形有()A . 0对B . 1对C . 2对D . 3对9. (1分) (2015八下·潮州期中) 下列结论不正确的是()A . 等腰三角形底边上的高、中线、角平分线互相重合B . 等腰三角形内角可以是钝角C . 等腰三角形的底角只能是锐角D . 等边三角形是特殊的等腰三角形10. (1分) (2019八下·三原期末) 如图,在▱ABCD中,,的平分线与DC交于点E,,BF与AD的延长线交于点F,则BC等于()A . 2B .C . 3D .二、填空题 (共8题;共8分)11. (1分) (2019八上·扶风期中) 若,则点P ( , )关于轴对称的点的坐标为________.12. (1分)(2020·天水) 一个三角形的两边长分别为2和5,第三边长是方程的根,则该三角形的周长为________.13. (1分)如图,在△ABC中,CD平分∠ACB交AB于点D,DE⊥AC交于点E,DF⊥BC于点F,且BC=4,DE=2,则△BCD的面积是________.14. (1分) (2017八上·腾冲期中) 一个多边形的每一个外角都等于36°,则该多边形的内角和等于________度.15. (1分) (2019八上·厦门月考) 计算:(1)=________;(2) ________;;(3) ________;(4) =________;(5) ________;(6) =________.16. (1分) (2020八下·西安月考) 如图,已知正方形ABOC的顶点B(2,1),则顶点C的坐标为 ________.17. (1分) (2016八上·自贡期中) 如图,在△ABC中,∠BAC=90°,AB=AC,∠BAD=30°,AD=AE.则∠EDC 的度数为________.18. (1分) (2018八上·嵊州期末) 已知,在△ABC中,∠A>∠B,分别以点A,C为圆心,大于 AC长为半径画弧,两弧交于点P,点Q,作直线PQ交AB于点D,再分别以点B,D为圆心,大于 BD长为半径画弧,两弧交于点M,点N,作直线MN交BC于点E,若△CDE是等边三角形,则∠A=________.三、解答题 (共8题;共17分)19. (4分)(2017七下·合浦期中) 计算 10199(1)101×99;(2)(2a-b)(2a+b)-(2a-b)220. (3分) (2019八上·杭锦旗期中) 如图所示,在平面直角坐标系中,△A BC的顶点A(0,1),B(3,2),C(1,4)均在正方形网格的格点上.(1)直接写出点A,B,C关于x轴对称的点A1 , B1 , C1的坐标;.(2)在图中作出△ABC关于y轴对称图形△A2B2C2 .(3)计算△ABC的面积.21. (1分) (2017八上·德惠期末) 如图,在等腰三角形ABC中,两腰上的中线BE、CD相交于点O.求证:OB=OC.22. (2分)(2017·枝江模拟) 如图,在△ABC中,AD平分∠BAC,且BD=CD,DE⊥AB于点E,DF⊥AC于点F.(1)求证:AB=AC;(2)若AD=2 ,∠DAC=30°,求AC的长.23. (1分)如图所示,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,求PD的长.24. (2分) (2018八上·宁波期末) 定义:若以三条线段a,b,c为边能构成一个直角三角形,则称线段a,b,c是勾股线段组.(1)如图①,已知点M,N是线段AB上的点,线段AM,MN,NB是勾股线段组,若AB=12,AM=3,求MN的长;(2)如图②,△ABC中,∠A=18°,∠B=27°,边AC,BC的垂直平分线分别交AB于点M,N,求证:线段AM,MN,NB是勾股线段组;(3)如图③,在等边△ABC中,P为△ABC内一点,线段AP,BP,CP构成勾股线段组,CP为此线段组的最长线段,求∠APB的度数.25. (2分) (2019七上·灌阳期中) 如图,在一长方形休闲广场的四角都设计一块半径相同的四分之一圆的花坛,若圆形的半径为米,广场长为米,宽为米。
湖北省宜昌市八年级(上)期中数学试卷
八年级(上)期中数学试卷题号一二总分得分一、选择题(本大题共15小题,共45.0分)1.若一个三角形的两边长分别为3和7,则第三边长可能是( )A. 2B. 3C. 5D. 112.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是( )A. B. C. D.3.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是( )A. B.C. D.4.如图,在△ABC中,∠A=50°,∠C=70°,则外角∠ABD的度数是( )A. 110∘B. 120∘C. 130∘D. 140∘5.如图,在方格纸中,以AB 为一边作△ABP ,使之与△ABC 全等,从P 1,P 2,P 3,P 4四个点中找出符合条件的点P ,则点P 有( )A. 1个B. 2个C. 3个D. 4个6.如图,已知∠ABC =∠BAD ,添加下列条件还不能判定△ABC ≌△BAD 的是( )A. B. AC =BD∠CAB =∠DBA C. D. ∠C =∠DBC =AD 7.一个正多边内和为40°,则这个正边形的一个外角等于( )A. B. C. D. 108∘90∘72∘60∘8.一个等腰三角形的两边长分别为4,8,则它的周长为( )A. 12B. 16C. 20D. 16或209.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD =CD ,AB =CB ,詹姆斯在探究筝形的性质时,得到如下结论:①AC ⊥BD ;②AO =CO =AC ;③△ABD ≌△CBD ,12其中正确的结论有( )A. 0个 B. 1个 C. 2个 D. 3个10.如图,在Rt △ABC 中,∠C =90°,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于MN 的长为半径画弧,两弧交于12点P ,作射线AP 交边BC 于点D ,若CD =4,AB =15,则△ABD 的面积是( )A. 15 B. 30 C. 45 D. 6011.如图,在△ABC 中,∠ABC =50°,∠ACB =60°,点E 在BC 的延长线上,∠ABC 的平分线BD 与∠ACE 的平分线CD 相交于点D ,连接AD ,下列结论中不正确的是( )A. B. C. D.∠BAC=70∘∠DOC=90∘∠BDC=35∘∠DAC=55∘12.如图,在△ABC中,AC的垂直平分线分别交AC,BC于E,D两点,EC=4,△ABC的周长为23,则△ABD的周长为()A. 13B. 15C. 17D. 1913.如图,直线MN是四边形AMBN的对称轴,P是直线MN上的点,下列判断错误的是()A. AM=BMB. AP=BNC. ∠MAP=∠MBPD. ∠ANM=∠BNM14.如图,AD是△ABC的角平分线,则AB:AC等于( )A. BD:CDB. AD:CDC. BC:ADD. BC:AC15.如图,△ABC是等边三角形,AQ=PQ,PR⊥AB于点R,PS⊥AC于点S,PR=PS,则下列结论:①点P在∠A的角平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.正确的有()A. 1个B. 2个C. 3个D. 4个二、解答题(本大题共9小题,共75.0分)16.如图,在△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠BAC=80°,∠ABC=70°.求∠BAD,∠AOF.17.如图,AB=AD,CB=CD,求证:AC平分∠BAD.18.如图,已知AC=AE,∠BAD=∠CAE,∠B=∠ADE,求证:BC=DE.19.如图,在△ABC中,AB=AC,D是BC边上的中点,DE,DF分别垂直AB,AC于点E和F.求证:DE=DF.20.如图,一艘轮船以18海里/时的速度由西向东航行,在A处测得小岛C在北偏东75°方向上,两小时后,轮船在B处测得小岛C在北偏东60°方向上,在小岛周围15海里处有暗礁,若轮船仍然按18海里/时的速度向东航行,请问是否有触礁危险?并说明理由.21.如图,在等腰三角形ABC中,AC=BC,分别以BC和AC为直角边向上作等腰直角三角形△BCD和△ACE,AE与BD相交于点F,连接CF并延长交AB于点G.求证:CG垂直平分AB.22.如图,在等边△ABC中,点F是AC边上一点,延长BC到点D,使BF=DF,若CD=CF,求证:(1)点F为AC的中点;(2)过点F作FE⊥BD,垂足为点E,请画出图形并证明BD=6CE.23.如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.24.在等腰Rt△ABC中,∠ACB=90°,AC=BC,点D是BC边上一点,BN⊥AD交AD的延长线于点N.(1)如图1,若CM∥BN交AD于点M.①直接写出图1中所有与∠MCD相等的角:______;(注:所找到的相等关系可以直接用于第②小题的证明过程②过点C作CG⊥BN,交BN的延长线于点G,请先在图1中画出辅助线,再回答线段AM、CG、BN有怎样的数量关系,并给予证明.(2)如图2,若CM∥AB交BN的延长线于点M.请证明:∠MDN+2∠BDN=180°.答案和解析1.【答案】C【解析】解:设第三边长为x,由题意得:7-3<x<7+3,则4<x<10,故选:C.根据三角形三边关系,两边之和第三边,两边之差小于第三边即可判断.本题考查三角形三边关系定理,记住两边之和第三边,两边之差小于第三边,属于基础题,中考常考题型.2.【答案】D【解析】解:A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项正确.故选:D.根据轴对称图形的概念求解.本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.【答案】A【解析】解:为△ABC中BC边上的高的是A选项.故选:A.根据三角形高线的定义:过三角形的顶点向对边引垂线,顶点和垂足之间的线段叫做三角形的高线解答.本题考查了三角形的角平分线、中线、高线,熟记高线的定义是解题的关键.4.【答案】B【解析】解:由三角形的外角性质的,∠ABD=∠A+∠C=50°+70°=120°.故选:B.根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.5.【答案】C【解析】解:要使△ABP与△ABC全等,点P到AB的距离应该等于点C到AB的距离,即3个单位长度,故点P的位置可以是P1,P3,P4三个,故选:C.根据全等三角形的判定得出点P的位置即可.此题考查全等三角形的判定,关键是利用全等三角形的判定进行判定点P的位置.6.【答案】A【解析】解:由题意,得∠ABC=∠BAD,AB=BA,A、∠ABC=∠BAD,AB=BA,AC=BD,(SSA)三角形不全等,故A错误;B、在△ABC与△BAD中,,△ABC≌△BAD(ASA),故B正确;C、在△ABC与△BAD中,,△ABC≌△BAD(AAS),故C正确;D、在△ABC与△BAD中,,△ABC≌△BAD(SAS),故D正确;故选:A.根据全等三角形的判定:SAS,AAS,ASA,可得答案.本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.【答案】C【解析】解:设此多边n边形,解:n=5,故这多边形的每一个外等于:=2°.故选.首先设此多边形为n边形,根题意得:0(-)=540,即可求得n=5,再由多形外角和等60,即得答案.此题考查了多边形的内角外角和知识.注意掌握多边形角和定:(n-•10°外角等于60°.8.【答案】C【解析】解:①当4为腰时,4+4=8,故此种情况不存在;②当8为腰时,8-4<8<8+4,符合题意.故此三角形的周长=8+8+4=20.故选:C.由于题中没有指明哪边是底哪边是腰,则应该分两种情况进行分析.本题考查的是等腰三角形的性质和三边关系,解答此题时注意分类讨论,不要漏解.9.【答案】D【解析】解:在△ABD与△CBD中,,∴△ABD≌△CBD(SSS),故③正确;∴∠ADB=∠CDB,在△AOD与△COD中,,∴△AOD≌△COD(SAS),∴∠AOD=∠COD=90°,AO=OC,∴AC⊥DB,故①②正确;故选D先证明△ABD与△CBD全等,再证明△AOD与△COD全等即可判断.此题考查全等三角形的判定和性质,关键是根据SSS证明△ABD与△CBD全等和利用SAS证明△AOD与△COD全等.10.【答案】B【解析】解:由题意得AP是∠BAC的平分线,过点D作DE⊥AB于E,又∵∠C=90°,∴DE=CD,∴△ABD的面积=AB•DE=×15×4=30.故选:B.判断出AP是∠BAC的平分线,过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,然后根据三角形的面积公式列式计算即可得解.本题考查了角平分线上的点到角的两边距离相等的性质以及角平分线的画法,熟记性质是解题的关键.11.【答案】B【解析】解:∵∠ABC=50°,∠ACB=60°,∴∠BAC=180°-∠ABC-∠ACB=180°-50°-60°=70°,故A选项正确,∵BD平分∠ABC,∴∠ABO=∠ABC=×50°=25°,在△ABO中,∠AOB=180°-∠BAC-∠ABO=180°-70°-25°=85°,∴∠DOC=∠AOB=85°,故B选项错误;∵CD平分∠ACE,∴∠ACD=(180°-60°)=60°,∴∠BDC=180°-85°-60°=35°,故C选项正确;∵BD、CD分别是∠ABC和∠ACE的平分线,∴D到AB、AC、BC的距离相等,∴AD是△ABC的外角平分线,∴∠DAC=(180°-70°)=55°,故D选项正确.故选:B.根据三角形的内角和定理列式计算即可求出∠BAC=70°,再根据角平分线的定义求出∠ABO,然后利用三角形的内角和定理求出∠AOB再根据对顶角相等可得∠DOC=∠AOB,根据邻补角的定义和角平分线的定义求出∠DCO,再利用三角形的内角和定理列式计算即可∠BDC,判断出AD为三角形的外角平分线,然后列式计算即可求出∠DAC.本题考查了角平分线的性质,三角形的内角和定理,角平分线的定义,熟记定理和概念是解题的关键.12.【答案】B【解析】解:∵AC的垂直平分线分别交AC、BC于E,D两点,∴AD=DC,AE=CE=4,即AC=8,∵△ABC的周长为23,∴AB+BC+AC=23,∴AB+BC=23-8=15,∴△ABD的周长为AB+BD+AD=AB+BD+CD=AB+BC=15,故选B.根据线段垂直平分线性质得出AD=DC,AE=CE=4,求出AC=8,AB+BC=15,求出△ABD的周长为AB+BC,代入求出即可.本题考查了线段垂直平分线性质的应用,能熟记线段垂直平分线性质定理的内容是解此题的关键,注意:线段垂直平分线上的点到线段两个端点的距离相等.13.【答案】B【解析】【分析】根据直线MN是四边形AMBN的对称轴,得到点A与点B对应,根据轴对称的性质即可得到结论.本题考查了轴对称的性质,熟练掌握轴对称的性质是解题的关键.【解答】解:∵直线MN是四边形AMBN的对称轴,∴点A与点B对应,∴AM=BM,AN=BN,∠ANM=∠BNM,∵点P是直线MN上的点,∴∠MAP=∠MBP,∴A,C,D正确,B错误,故选B.14.【答案】A【解析】解:如图过点B作BE∥AC交AD延长线于点E,∵BE∥AC,∴∠DBE=∠C,∠E=∠CAD,∴△BDE∽△CDA,∴=,又∵AD是角平分线,∴∠E=∠DAC=∠BAD,∴BE=AB,∴=,∴AB:AC=BD:CD.故选:A.先过点B作BE∥AC交AD延长线于点E,由于BE∥AC,利用平行线分线段成比例定理的推论、平行线的性质,可得∴△BDE∽△CDA,∠E=∠DAC,再利用相似三角形的性质可有=,而利用AD时角平分线又知∠E=∠DAC=∠BAD,于是BE=AB,等量代换即可证.此题考查了角平分线的定义、相似三角形的判定和性质、平行线分线段成比例定理的推论.关键是作平行线.15.【答案】D【解析】【分析】根据到角的两边的距离相等的点在角的平分线上可得AP平分∠BAC,从而判断出①正确,然后证明出△BPR≌△CPS全等,根据全等三角形对应边相等及AB=AC即可得到②正确,然后根据等边对等角的性质可得∠APQ=∠PAQ,然后得到∠PQC=2∠PAC=60°=∠BAC,然后根据同位角相等两直线平行可得QP∥AB,从而判断出③正确,由△PQS≌△PCS,△BRP≌△QSP,即可得到④正确.本题考查了角平分线的性质与全等三角形的判定与性质,准确识图并熟练掌握全等三角形的判定方法与性质是解题的关键.【解答】解:∵△ABC是等边三角形,PR⊥AB,PS⊥AC,且PR=PS,∴P在∠A的平分线上,故①正确;由①可知,PB=PC,∠B=∠C,PS=PR,∴△BPR≌△CPS,∴BR=SC,∴AS=AR,故②正确;∵AQ=PQ,∴∠PQC=2∠PAC=60°=∠BAC,∴PQ∥AR,故③正确;由③得,△PQC是等边三角形,∴△PQS≌△PCS,又由②可知,④△BRP≌△QSP,故④也正确,∵①②③④都正确,故选D.16.【答案】解:∵AD是高,∠ABC=70°,∴∠BAD=90°-70°=20°,∵AE、BF是角平分线,∠BAC=80°,∠ABC=70°,∴∠ABO =35°,∠BAO =40°,∴∠AOF =∠ABO +∠BAO =75°.【解析】在直角三角形中,根据两锐角互余即可得到∠BAD=20°,根据角平分线的性质可求出∠BAO 和∠ABO ,最后由三角形外角的性质求得∠AOF=75°.本题考查了三角形的内角和定理,外角的性质,三角形的高线与角平分线的性质,熟练掌握各性质定理是解题的关键.17.【答案】解:在△BAC 和△DAC 中,,{AB =AD BC =DC AC =AC(公共边)∴△BAC ≌△DAC (SAS ),∴∠BAC =∠DAC ,∴AC 平分∠BAD .【解析】根据全等三角形的判定定理SSS 推出△BAC ≌△DAC ,根据全等三角形的性质可得∠BAC=∠DAC 即可.本题考查了角平分线定义和全等三角形的性质和判定的应用,关键是推出△BAC ≌△DAC ,全等三角形的判定方法有SAS 、ASA 、AAS .18.【答案】证明:∵∠BAD =∠CAE ,∴∠BAD +∠DAC =∠CAE +∠DAC .即∠BAC =∠DAE ,在△ABC 和△ADE 中,{∠BAC =∠DAE ∠B =∠ADE AC =AE∴△ABC ≌△ADE (AAS ).∴BC =DE .【解析】先通过∠BAD=∠CAE 得出∠BAC=∠DAE ,从而证明△ABC ≌△ADE ,得到BC=DE .本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:AAS 、SSS 、SAS 、SSA 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角19.【答案】证明:证法一:连接AD .∵AB =AC ,点D 是BC 边上的中点∴AD 平分∠BAC (三线合一性质),∵DE 、DF 分别垂直AB 、AC 于点E 和F .∴DE =DF (角平分线上的点到角两边的距离相等).证法二:在△ABC 中,∵AB =AC∴∠B =∠C (等边对等角) …(1分)∵点D 是BC 边上的中点∴BD =DC …(2分)∵DE 、DF 分别垂直AB 、AC 于点E 和F∴∠BED =∠CFD =90°…(3分)在△BED 和△CFD 中∵,{∠BED =∠CFD∠B =∠C BD =DC∴△BED ≌△CFD (AAS ),∴DE =DF (全等三角形的对应边相等).【解析】D 是BC 的中点,那么AD 就是等腰三角形ABC 底边上的中线,根据等腰三角形三线合一的特性,可知道AD 也是∠BAC 的角平分线,根据角平分线的点到角两边的距离相等,那么DE=DF .本题考查了等腰三角形的性质及全等三角形的判定与性质;利用等腰三角形三线合一的性质是解答本题的关键.20.【答案】解:作CE ⊥AB 于E ,∵A 处测得小岛P 在北偏东75°方向,∴∠CAB =15°,∵在B 处测得小岛P 在北偏东60°方向,∴∠ACB =15°,∴AB =PB =2×18=36(海里),∵∠CBD =30°,∴CE =BC =18>15,12∴船不改变航向,不会触礁.【解析】作CE ⊥AB ,利用直角三角形性质求出CE 长,和15海里比较即可看出船不改变航向是否会触礁.此题考查了解直角三角形的应用,关键找出题中的等腰三角形,然后再根据直角三角形性质求解.21.【答案】证明:∵CA =CB∴∠CAB =∠CBA∵△AEC 和△BCD 为等腰直角三角形,∴∠CAE =∠CBD =45°,∠FAG =∠FBG ,∴∠FAB =∠FBA ,∴AF =BF ,在三角形ACF 和△CBF 中,,{AF =BF AC =BC CF =CF∴△AFC ≌△BCF (SSS ),∴∠ACF =∠BCF∴AG =BG ,CG ⊥AB (三线合一),即CG 垂直平分AB .【解析】求证△AFC ≌△CEB 可得∠ACF=∠BCF ,根据等腰三角形底边三线合一即可解题.本题考查了全等三角形的判定,考查了全等三角形对应角相等的性质,考查了等腰三角形底边三线合一的性质.22.【答案】解:(1)∵△ABC 为等边三角形,∴∠ABC =∠ACB =60°,∵CF =CD ,∴∠CFD =∠D ,∴∠ACB =2∠D ,即∠D =∠ACB =30°,12∵FB =FD ,∴∠FBD =∠D =30°,∴BF 平分∠ABC ,∴AF =CF ,即点F 为AC 的中点;(2)如图,在Rt △EFC 中,CF =2CE ,而CD =CF ,∴CF =2CE ,在Rt △BCF 中,BC =2CF ,∴BC =4CE ,∴BD =6CE .【解析】(1)根据等边三角形的性质得∠ABC=∠ACB=60°,利用∠CFD=∠D ,则根据三角形外角性质得到∠ACB=2∠D ,即∠D=∠ACB=30°,然后利用FB=FD 得到∠FBD=∠D=30°,则BF 平分∠ABC ,于是根据等边三角形的性质可得到点F 为AC 的中点;(2)如图,过点F 作FE ⊥BD 于E ,利用含30度的直角三角形三边的关系得到CF=2CE ,而CD=CF ,则CF=2CE ,再利用BC=2CF ,所以BD=6CE .本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段.作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).记住含30度的直角三角形三边的关系.23.【答案】解:(1)∵△ABC 是边长为6的等边三角形,∴∠ACB =60°,∵∠BQD =30°,∴∠QPC =90°,设AP =x ,则PC =6-x ,QB =x ,∴QC =QB +BC =6+x ,∵在Rt △QCP 中,∠BQD =30°,∴PC =QC ,即6-x =(6+x ),解得x =2,1212∴AP =2;(2)当点P 、Q 同时运动且速度相同时,线段DE 的长度不会改变.理由如下:作QF ⊥AB ,交直线AB 于点F ,连接QE ,PF ,又∵PE ⊥AB 于E ,∴∠DFQ =∠AEP =90°,∵点P 、Q 速度相同,∴AP =BQ ,∵△ABC 是等边三角形,∴∠A =∠ABC =∠FBQ =60°,在△APE 和△BQF 中,∵∠AEP =∠BFQ =90°,∴∠APE =∠BQF ,,{∠AEP =∠BFQ ∠A =∠FBQ AP =BQ∴△APE ≌△BQF (AAS ),∴AE =BF ,PE =QF 且PE ∥QF ,∴四边形PEQF 是平行四边形,∴DE =EF ,12∵EB +AE =BE +BF =AB ,∴DE =AB ,12又∵等边△ABC 的边长为6,∴DE =3,∴点P 、Q 同时运动且速度相同时,线段DE 的长度不会改变.【解析】(1)由△ABC 是边长为6的等边三角形,可知∠ACB=60°,再由∠BQD=30°可知∠QPC=90°,设AP=x ,则PC=6-x ,QB=x ,在Rt △QCP 中,∠BQD=30°,PC=QC ,即6-x=(6+x ),求出x 的值即可;(2)作QF ⊥AB ,交直线AB 于点F ,连接QE ,PF ,由点P 、Q 做匀速运动且速度相同,可知AP=BQ ,再根据全等三角形的判定定理得出△APE ≌△BQF ,再由AE=BF ,PE=QF 且PE ∥QF ,可知四边形PEQF 是平行四边形,进而可得出EB+AE=BE+BF=AB ,DE=AB ,由等边△ABC 的边长为6可得出DE=3,故当点P 、Q 运动时,线段DE 的长度不会改变.本题考查的是等边三角形的性质及全等三角形的判定定理、平行四边形的判定与性质,根据题意作出辅助线构造出全等三角形是解答此题的关键.24.【答案】∠CAD ,∠CBN【解析】解:(1)①∵CM ∥BN ,BN ⊥AN ,∴∠CMD=∠N=90°,∠MCD=∠CBN ,∵∠ACB=90°,∴∠ACM+∠CAD=90°,∠MCD+∠ACM=90°,∴∠MCD=∠CAD ,故答案为∠CAD 、∠CBN .②在图1中画出图形,如图所示,结论:AM=CG+BN ,证明:在△ACM 和△BCG 中,,∴△ACM≌△BCG,∴CM=CG,AM=BG,∵∠CMN=∠MNG=∠G=90°,∴四边形MNGC是矩形,∴CM=GN=CG,∴AM=BG=BN+GN=BN+CG.(2)过点C作CE平分∠ACB,交AD于点E.∵在△ACD和△BDN中,∠ACB=90°,AN⊥ND∴∠4+∠ADC=90°=∠5+∠BDN又∵∠ADC=∠BDN∴∠4=∠5,∵∠ACB=90°,AC=BC,CE平分∠ACB,∴∠6=45°,∠2=∠3=45°又∵CM∥AB,∴∠1=∠6=45°=∠2=∠3,在△ACE和△BCM中,,∴△ACE≌△BCM(ASA)∴CE=CM又∵∠1=∠2,CD=CD∴∠CDE=∠CDM又∵∠BDN=∠CDE,∠MDN+∠CDE+∠CDM=180°∴∠MDN+2∠BDN=180°.(1)①结论:∠CAD、CBN.利用同角的余角相等,平行线的性质即可证明.②由△ACM≌△BCG,推出CM=CG,AM=BG,由∠CMN=∠MNG=∠G=90°,推出四边形MNGC是矩形,推出CM=GN=CG,由此即可证明.(2)过点C作CE平分∠ACB,交AD于点E.由△ACE≌△BCM(ASA),推出CE=CM,又因为∠1=∠2,CD=CD,推出∠CDE=∠CDM,由∠BDN=∠CDE,∠MDN+∠CDE+∠CDM=180°,即可证明.本题考查等腰直角三角形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识,学会添加常用辅助线、构造全等三角形,属于中考常考题型.。
湖北省宜昌市五中教联体2023-2024学年八年级上学期期中数学试题
湖北省宜昌市五中教联体2023-2024学年八年级上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.若一个三角形的三边长分别为2、6、a ,则a 的值可以是()A .3B .4C .7D .82.下列图形中是轴对称图形是()A .B .C .D .3.如图,某中学的电动伸缩校门利用的数学原理是()A .三角形的稳定性B .两点之间,线段最短C .三角形两边之和大于第三边D .四边形的不稳定性4.已知点A 的坐标为()3,4-,则点A 关于y 轴对称的点的坐标为()A .()3,4B .()3,4--C .()3,4-D .()3,4-5.在△ABC 中,∠A :∠B :∠C=1:2:3,则△ABC 为()A .等腰三角形B .锐角三角形C .直角三角形D .钝角三角形6.一个多边形的内角和是它的外角和的2倍,那么这个多边形的边数是()A .3B .4C .5D .67.如图,在△ABC 中,AD 是BC 边上的中线,CE 是AB 边上的高,若AB =4,6ADC S △=,则CE 的长度为()A .4B .58.如图,在已知的ABC 中,按以下步骤作图:①分别以B ,C 为圆心,以大于12BC ②作直线MN 交AB 于点D ,连接CD 若,50CD AC A =∠=︒,则ACB ∠的度数为(A .90︒B .95︒9.如图,在ABC 中,AB AC =.过点连接CD .若140BAD ∠=︒,则ACD ∠A .50︒B .60︒10.如图,在ABC 中,90ACB ∠=︒CD 交于点M ,AE 与BF 交于点N ,下面说法正确的有(①2BCD CAE ∠=∠;②CME CEM ∠=∠则9AB =.A .①②③B .①②④C .①③④D .①②③④13.如图的三角形纸片中,AB 得点C 落在AB 边上的点E 处,折痕为为.14.如图,在ABC 中,A ∠作BD 的垂线交BD 的延长线于点三、问答题17.在ABC 中,80A ∠=︒,40B C ∠-∠=︒,求B ∠与C ∠的度数.四、证明题18.如图,,AC BC BD AD ⊥⊥,垂足分别为C ,D ,AC BD =.求证BC AD =.19.已知点A 、E 、F 、C 在同一直线上,已知AD BC ∥,AD BC =,AE CF =,试说明BE 与DF 的关系.20.如图,ABC 的两条高AD ,CE 交于点F ,AF BC =.(1)求证:BE EF =;(2)若4BE =,5CF =,求ACF △的面积.五、作图题21.如图,在99⨯的网格中建立如图的平面直角坐标系,点()30A -,,点()1,5B -.仅用无刻度的直尺在给定网格中按下列步骤完成画图.(1)在y 轴上找一点P 使PA PB +的值最小(保留画图过程的痕迹);(2)在x 轴的正半轴上找一点Q ,使45ABQ ∠=︒(保留画图过程的痕迹);(3)画出BQ 边上的高AH (保留画图过程的痕迹).六、证明题22.四边形ABCD 中,AB CD ∥,DE 平分ADC ∠.(1)求证:2CEF B ∠=∠;(2)如图1,求证:EC EF =;(3)如图2,如果10AF =,AC m =,当CE 正好平分ACB ∠时,直接写出BC _____.(用含m 的代数式表示)24.如图,在平面直角坐标系中,点(),0A n ,点()0,B m 且满足(4n m +--(1)求出A ,B 两点坐标.(2)如图1,点()0,2C 为线段OB 上一点,连AC ,①试证明:CD OD AC +=.②直接写出BOD ∠和ACD ∠的数量关系为.(3)如图2,过O 作OF AB ⊥于F ,以OB 为边在于点N ,试探究AM ,AN ,ON 之间的数量关系,并说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖北省宜昌市八年级上学期数学期中考试试卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共10题;共20分)
1. (2分) (2018八上·汉阳期中) 下列表示天气符号的图形中,不是轴对称图形的是()
A .
B .
C .
D .
2. (2分) (2016七下·江阴期中) 一个多边形的每个外角都等于30°,则这个多边形的边数是()
A . 10
B . 11
C . 12
D . 13
3. (2分) (2019七下·大埔期末) 下列说法中错误的是()
A . 全等三角形的对应边相等
B . 全等三角形的面积相等
C . 全等三角形的对应角相等
D . 全等三角形的角平分线相等
4. (2分)如图,在平行四边形 ABCD中,对角线AC和BD相交于点O,如果AC=12, AB=10,BD=m,那么m 的取值范围是()
A . 8<m<32
B . 2<m<22
C . 10<m<12
D . 1<m<11
5. (2分)三角形的下列线段中,能将三角形的面积分成相等两部分的是()
A . 中线
B . 角平分线
C . 高
D . 中位线
6. (2分)如图,为测量B点到河对面的目标A之间的距离,他们在B点同侧选择了一点C,测得∠ABC=70°,∠ACB=40°,然后在M处立了标杆,使∠CBM=70°,∠BCM=40°,那么需要测量________才能测得A,B之间的距离()
A . AB
B . AC
C . BM
D . CM
7. (2分)(2019·太原模拟) 如图,过⊙O上一点A作⊙O的切线,交直径BC的延长线与点D,连接AB,若∠B=25°,则∠D的度数为()
A . 25°
B . 40°
C . 45°
D . 50°
8. (2分)如图,在△ABC中,点D是边AB上一点,点E是边AC上一点,且DE∥BC,∠B=40°,∠AED=60°,则∠A的度数是()
A .
B .
C .
D .
9. (2分) (2019八上·丹徒月考) 如图所示,若AB=DE,BE=CF,要证△ABF≌△DEC,需补充一个条件()
A . AF=CD
B . ∠A=∠D
C . ∠AFB=∠C
D . BF=EC
10. (2分)(2017·宜宾) 如图,在矩形ABCD中BC=8,CD=6,将△ABE沿BE折叠,使点A恰好落在对角线BD上F处,则DE的长是()
A . 3
B .
C . 5
D .
二、填空题 (共5题;共5分)
11. (1分)若一个三角形有两边长为5和2,第三边长为奇数,则此三角形的周长为________.
12. (1分)如图,生活中都把自行车的几根梁做成三角形的支架,这是因为三角形具有________性.
13. (1分)等腰三角形ABC中,∠A=40°,则∠B=________
14. (1分)△ABC中,AB=AC,∠A+∠B=115°,则∠A=________,∠B=________。
15. (1分) (2016八上·重庆期中) 如图,已知AB=AC,∠1=∠2,∠B=∠C,则BD=CE.请说明理由:
解:∵∠1=∠2
∴∠1+∠BAC=∠2+________.
即________ =∠DAB.
在△ABD和△ACE中,
∠B=________(已知)
∵AB=________(已知)
∠EAC=________(已证)
∴△ABD≌△ACE(________)
∴BD=CE(________)
三、解答题 (共8题;共66分)
16. (5分) (2019七下·丹阳月考) 已知为三角形三边的长,化简: .
17. (6分)(2016·钦州) 如图,在平面直角坐标系中,△ABC的三个顶点分别为A(﹣1,﹣1),B(﹣3,3),C(﹣4,1)
(1)
画出△ABC关于y轴对称的△A1B1C1,并写出点B的对应点B1的坐标;
(2)
画出△ABC绕点A按逆时针旋转90°后的△AB2C2,并写出点C的对应点C2的坐标.
18. (5分)(2019·大渡口模拟) 如图,AB∥CD,△EFG的顶点F,G分别落在直线AB,CD上,GE交AB于点H,GE平分∠FGD.若∠EFG=90°,∠E=35°,求∠EFB的度数.
19. (10分)(2019·抚顺模拟) 如图
如图,在等腰中,,点E在AC上且不与点A、C重合,在的外部作等腰,使,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.
(1)请直接写出线段AF,AE的数量关系;
(2)将绕点C逆时针旋转,当点E在线段BC上时,如图,连接AE,请判断线段AF,AE 的数量关系,并证明你的结论;
若,,在图的基础上将绕点C继续逆时针旋转一周的过程中,当平行四边形ABFD为菱形时,直接写出线段AE的长度.
20. (5分) (2019九上·天津期中) 在平面直角坐标系中,O为原点,点A(4,0),点B(0,3),把△ABO 绕点B逆时针旋转,得△A′BO′,点A,O旋转后的对应点为A′,O′,记旋转角为α.
(1)如图①,若α=90°,求AA′的长;
(2)如图②,若α=120°,求点O′的坐标;
(3)在(2)的条件下,边OA上的一点P旋转后的对应点为P′,当O′P+BP′取得最小值时,在图中画出点P的位置,并直接写出点P的坐标.
21. (10分) (2018八上·秀洲月考) △ABC和△A DE都是等腰直角三角形,∠BAC=∠DAE=90°.
(1)如图1,点D、E在AB、AC上,则BD,CE满足怎样的数量关系和位置关系?(直接写出答案)
(2)如图2,点D在△ABC内部,点E在△ABC外部,连结BD,CE,则BD,CE满足怎样的数量关系和位置关系?请说明理由.
(3)如图3,点D,E都在△ABC外部,连结BD, CE, CD, EB,BD,与CE相交于H点. 若BD= ,求四边形BCDE的面积.
22. (10分) (2017七下·大石桥期末) 综合题。
(1)
解方程组
(2)
x取那些整数值时,不等式与都成立?
23. (15分) (2015七下·启东期中) 如图所示,点A的坐标为A(0,a),将点A向右平移b个单位得到点B,其中a,b满足:(3a﹣2b)2+|a+b﹣5|=0.
(1)求点B的坐标并求△AOB的面积S△AOB;
(2)在x轴上是否存在一点D,使得S△AOB=2S△AOD?若存在,求出D点的坐标;若不存在,说明理由.
参考答案一、单选题 (共10题;共20分)
1-1、
2、答案:略
3、答案:略
4-1、
5-1、
6-1、
7-1、
8-1、
9、答案:略
10-1、
二、填空题 (共5题;共5分)
11-1、
12-1、
13-1、
14-1、
15、答案:略
三、解答题 (共8题;共66分)
16-1、
17-1、17-2、18-1、
19-1、
20-1、20-2、
20-3、21-1、
21-2、21-3、
22-1、22-2、23-1、23-2、。