咸宁中考数学试题答案

合集下载

湖北省咸宁市2021年中考数学试卷和答案

湖北省咸宁市2021年中考数学试卷和答案

2021年湖北省咸宁市中考数学试卷一、单选题1.3-的相反数是( )A .13-B .13C .3D .3-2.2021年5月15日07时18分,我国首个火星探测器“天问一号”经过470000000公里旅程成功着陆在火星上,从此,火星上留下中国的脚印,同时也为我国的宇宙探测之路迈出重要一步.将470000000用科学记数法表示为( )A .74710⨯B .74.710⨯C .84.710⨯D .90.4710⨯3.下列图形中,是轴对称图形但不是中心对称图形的是( )A .等边三角形B .正六边形C .正方形D .圆4.下列计算正确的是( )A .325a a a +=B .32a a a ÷=C .326326a a a ⋅=D .22(2)4a a -=- 5.如图是由四个相同的正方体组成的几何体,其俯视图是( )A .B .C .D .6.高尔基说:“书,是人类进步的阶梯”.阅读可以丰富知识,拓展视野,充实生活,给我们带来愉快.英才中学计划在各班设立图书角,为合理搭配各类书籍,学校团委以“我最喜爱的书籍”为主题,对全校学生进行抽样调查,收集整理喜爱的书籍类型(A .科普,B .文学,C .体育,D .其他)数据后,绘制出两幅不完整的统计图,则下列说法错误..的是( )A .样本容量为400B .类型D 所对应的扇形的圆心角为36︒C .类型C 所占百分比为30%D .类型B 的人数为120人7.如图,O 是Rt ABC △的外接圆,OE AB ⊥交O 于点E ,垂足为点D ,AE ,CB 的延长线交于点F .若3OD =,8AB =,则FC 的长是( )A .10B .8C .6D .48.如图,AC 为矩形ABCD 的对角线,已知3AD =,4CD =.点P 沿折线C A D --以每秒1个单位长度的速度运动(运动到D 点停止),过点P 作PE BC ⊥于点E ,则CPE △的面积y 与点P 运动的路程x 间的函数图象大致是( )A .B .C .D .二、填空题9.式子2a +在实数范围内有意义,则a 的取值范围是____.10.正五边形的一个内角是_____度.11.东方红学校举行“学党史,听党话,跟党走”讲故事比赛,七位评委对其中一位选手的评分分别为:85,87,89,91,85,92,90.则这组数据的中位数为______.12.若关于x 的一元二次方程2x 2x m 0-+=有两个不相等的实数根,则m 的值可以是____.(写出一个即可)13.在Rt ABC △中,90C ∠=︒,30B ∠=︒,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点E ,F ;再分别以点E ,F 为圈心,大于12EF 的长为半径画弧,两弧交于点P ,作射线AP 交BC 于点D .则CD 与BD 的数量关系是____.14.如图,建筑物BC 上有一高为8m 的旗杆AB ,从D 处观测旗杆顶部A 的仰角为53︒,观测旗杆底部B 的仰角为45︒,则建筑物BC 的高约为_____m (结果保留小数点后一位).(参考数据sin530.80︒≈,cos530.60︒≈,tan53 1.33︒≈)1551-这个数叫做黄金分割数,著名数学家华罗庚优选法中的0.618法就应用了黄金分割数.设51a -=,51b +=1ab =,记11111S a b =+++,2221111S a b =+++,…,1010101111S a b =+++.则1210S S S +++=____.16.如图,正方形ABCD 中,1AB =,连接AC ,ACD ∠的平分线交AD 于点E ,在AB 上截取AF DE =,连接DF ,分别交CE ,AC 于点G ,H ,点P 是线段GC 上的动点,PQ AC ⊥于点Q ,连接PH .下列结论:①CE DF ⊥;②DE DC AC +=;③3EA AH =;④PH PQ +的最小值是22.其中所有正确结论的序号是_____.三、解答题17.计算:0|13|2sin 60(1)π--︒+-.18.如图,在ABC 和DEC 中,A D ∠=∠,BCE ACD ∠=∠.(1)求证:ABCDEC △△; (2)若:4:9ABC DECS S =,6BC =,求EC 的长. 19.2021年,黄冈、咸宁、孝感三市实行中考联合命题,为确保联合命题的公平性,决定采取三轮抽签的方式来确定各市选派命题组长的学科.第一轮,各市从语文、数学、英语三个学科中随机抽取一科;第二轮,各市从物理、化学、历史三个学科中随机抽取一科;第三轮,各市从道德与法治、地理、生物三个学科中随机抽取一科.(1)黄冈在第一轮抽到语文学科的概率是_______;(2)用画树状图或列表法求黄冈在第二轮和第三轮抽签中,抽到的学科恰好是历史和地理的概率.20.如图,反比例函数k y x=上的图象与一次函数y mx n =+的图象相交于(),1A a -,(1,3)B -两点.(1)求反比例函数和一次函数的解析式;(2)设直线AB 交y 轴于点C ,点(,0)N t 是正半轴上的一个动点,过点N 作NM x ⊥轴交反比例函数k y x=的图象于点M ,连接CN ,OM .若3COMN S >四边形,求t 的取值范围. 21.如图,在Rt ABC △中,90ACB ∠=︒,O 与BC ,AC 分别相切于点E ,F ,BO 平分ABC ∠,连接OA .(1)求证:AB 是O 的切线; (2)若3BE AC ==,O 的半径是1,求图中阴影部分的面积.22.2021年是中国共产党建党100周年,红旗中学以此为契机,组织本校师生参加红色研学实践活动,现租用甲、乙两种型号的大客车(每种型号至少一辆)送549名学生和11名教师参加此次实践活动,每辆汽车上至少要有一名教师.甲、乙两种型号的大客车的载客量和租金如下表所示:甲种客车 乙种客车 载客量/(人/辆)40 55 租金(元/辆) 500 600(1)共需租________辆大客车;(2)最多可以租用多少辆甲种型号大客车?(3)有几种租车方案?哪种租车方案最节省钱?23.红星公司销售一种成本为40元/件的产品,若月销售单价不高于50元/件.一个月可售出5万件;月销售单价每涨价1元,月销售量就减少0.1万件.其中月销售单价不低于成本.设月销售单价为x (单位:元/件),月销售量为y (单位:万件).(1)直接写出y 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)当月销售单价是多少元/件时,月销售利润最大,最大利润是多少万元?(3)为响应国家“乡村振兴”政策,该公司决定在某月每销售1件产品便向大别山区捐款a 元.已知该公司捐款当月的月销售单价不高于70元/件,月销售最大利润是78万元,求a 的值.24.已知抛物线23y ax bx =+-与x 轴相交于(1,0)A -,(3,0)B 两点,与y 轴交于点C ,点(,0)N n 是x 轴上的动点.(1)求抛物线的解析式;(2)如图1,若3n <,过点N 作x 轴的垂线交抛物线于点P ,交直线BC 于点G .过点P 作PD BC ⊥于点D ,当n 为何值时,PDG BNG ≌;(3)如图2,将直线BC 绕点B 顺时针旋转,使它恰好经过线段OC 的中点,然后将它向上平移32个单位长度,得到直线1OB . ①1tan BOB ∠=______;②当点N 关于直线1OB 的对称点1N 落在抛物线上时,求点N 的坐标.参考答案1.C2.C3.A4.B5.C6.C7.A8.D9.2a ≥-10.10811.8912.0(答案不唯一)13.12CD BD =14.24.215.1016.①②④【分析】先根据SAS 定理证出ADF DCE ≅,从而可得ADF DCE ∠=∠,再根据角的和差即可判断结论①;根据等腰三角形的性质可得,DC CH AF AH ==,然后根据线段的和差、等量代换即可判断结论②;先根据正方形的性质可得AC =,再根据1DC CH ==可得1DE AF AH ===,从而可得2EA =P 作PM CD ⊥于点M ,连接HM ,先根据角平分线的性质可得PM PQ =,再根据两点之间线段最短、垂线段最短可得当HM CD ⊥时,PH PQ +取得最小值,然后解直角三角形即可得判断结论④.【详解】 解:四边形ABCD 是正方形,1AB =,1,90,45,//CD AD AC ADC DAF ACD AB CD ∴===∠=∠=︒∠=︒,在ADF 和DCE 中,90AD DC DAF CDE AF DE =⎧⎪∠=∠=︒⎨⎪=⎩,()ADF DCE SAS ∴≅,ADF DCE ∴∠=∠,18090DCE DEG CDE ∠+∠=︒-∠=︒,90ADF DEG ∴∠+∠=︒,90DGE ∴∠=︒,即CE DF ⊥,结论①正确; CE 平分ACD ∠,CE DF ⊥,1CH DC ∴==,CDH CHD AHF ∴∠=∠=∠,//AB CD ,CDH AFH ∴∠=∠,AFH AHF ∴∠=∠,AF AH ∴=,AF DE =DE DC AF CH AH CH AC ∴+=+=+=,结论②正确;1,CH AC ==,1DE AF AH AC CH ∴===-=,)112EA AD DE ∴=-=-=EA AH ∴==即EA =,结论③错误; 如图,过点P 作PM CD ⊥于点M ,连接HM ,CE 平分ACD ∠,PM CD ⊥,PQ AC ⊥,PM PQ ∴=,PH PQ PH PM +=+∴,由两点之间线段最短得:当点,,H P M 共线时,PH PM +取得最小值HM , 由垂线段最短得:当HM CD ⊥时,HM 取得最小值,此时在Rt CHM 中,2sin sin 45HM CH ACD =⋅∠=︒= 即PH PQ +的最小值是22,结论④正确; 综上,所有正确结论的序号是①②④,故答案为:①②④.17.0.【详解】 解:原式33121-=+, 33=0=.18.(1)证明见解析;(2)9.【详解】证明:(1)BCE ACD ∠=∠,BCE ACE ACD ACE ∴∠+∠=∠+∠,即ACB DCE ∠=∠,在ABC 和DEC 中,ACB DCE A D ∠=∠⎧⎨∠=∠⎩, ABC DEC ~∴;(2)由(1)已证:ABC DEC △△,2ABC DEC C C S S B E ⎛⎫∴= ⎪⎝⎭, :4:9ABC DEC S S=,6BC =, 2649EC ⎛⎫∴= ⎪⎝⎭, 解得9EC =或9EC =-(不符题意,舍去),则EC 的长为9.19.(1)13;(2)19. 【详解】解:(1)黄冈在第一轮随机抽取一科共有3种等可能性的结果,则黄冈在第一轮抽到语文学科的概率是13P =, 故答案为:13; (2)将物理、化学、历史三个学科分别记为123,,A A A ,将道德与法治、地理、生物三个学科分别记为123,,B B B ,画树状图如下:由此可知,黄冈在第二轮和第三轮抽签中的所有可能结果共有9种,它们每一种出现的可能性都相等;其中,抽到的学科恰好是历史和地理的结果只有1种,则所求的概率为19P =, 答:黄冈在第二轮和第三轮抽签中,抽到的学科恰好是历史和地理的概率是19. 20.(1)3y x =-,2y x =-+;(2)32t >. 【详解】解:(1)将点(1,3)B -代入k y x =得:133k =-⨯=-, 则反比例函数的解析式为3y x =-; 当1y =-时,31x-=-,解得3x =,即()3,1A -, 将点()3,11),(,3B A --代入y mx n =+得:313m n m n +=-⎧⎨-+=⎩,解得12m n =-⎧⎨=⎩, 则一次函数的解析式为2y x =-+;(2)对于一次函数2y x =-+,当0x =时,2y =,即(0,2)C , 2OC ∴=,NM x ⊥轴,且(,0)(0)N t t >,3(,)M t t∴-,ON t =, 3MN t∴=, 11322CON MO O N C MN S S OC ON N M S O N =+=⋅+⋅>四边形, 1132322t t t∴⨯+⋅>, 解得32t >. 21.(1)证明见解析;(2)5328π-. 【详解】证明:(1)如图,过点O 作⊥OD AB 于点D ,连接OE , BC 与O 相切于点E ,OE BC ∴⊥,BO 平分ABC ∠,12OBD OBE ABC ∴∠=∠=∠, 在OBD 和OBE △中,90ODB OEB OBD OBE OB OB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,()OBD OBE AAS ∴≅,OD OE ∴=,OD ∴是O 的半径,又OD AB ⊥,AB ∴是O 的切线;(2)如图,设,OA OB 分别交O 于点,M N ,连接OF , O 的半径是1,1OD OF ∴==, AC 与O 相切于点F ,OF AC ∴⊥,90OFC OEC ACB ∴∠=∠=︒∠=,∴四边形OECF 是矩形,1CE OF ∴==,3BE AC ==,4BC BE CE ∴=+=,5AB ∴==,在Rt OAD 和Rt OAF 中,OA OA OD OF =⎧⎨=⎩, ()Rt OAD Rt OAF HL ∴≅,12OAD OAF BAC ∴∠=∠=∠, ()11451222OBD A OAD BAC B BC AB A C C ∠=∠∴∠+∠+∠∠=+=︒, 180()135O AOB OAD BD ∠∴∠=︒-∠=+︒,则图中阴影部分的面积为21135153236028AOB OMDN S S AB OD ππ⨯-=⋅-=-扇形.22.(1)11;(2)3辆;(3)3种,租用3辆甲种型号大客车,8辆乙种型号大客车最节省钱.【详解】解:(1)(54911)5510+÷=(辆)10⋯(人),11111÷=(辆),∴共需租11辆大客车,故答案为:11;(2)设租用x 辆甲种型号大客车,则租用(11)x -辆乙种型号大客车,由题意得:4055(11)54911x x +-≥+,解得3x ≤,因为1≥x 且为正整数,所以最多可以租用3辆甲种型号大客车;(3)由(2)可知,租用甲种型号大客车的辆数可以为1,2,3辆,则有三种租车方案:①租用1辆甲种型号大客车,10辆乙种型号大客车;②租用2辆甲种型号大客车,9辆乙种型号大客车;③租用3辆甲种型号大客车,8辆乙种型号大客车; 方案①的费用为1500106006500⨯+⨯=(元),方案②的费用为250096006400⨯+⨯=(元),方案③的费用为350086006300⨯+⨯=(元),所以租用3辆甲种型号大客车,8辆乙种型号大客车最节省钱.23.(1)5(4050)0.110(50100)x y x x ≤≤⎧=⎨-+<≤⎩;(2)当月销售单价是70元/件时,月销售利润最大,最大利润是90万元;(3)4.【详解】解:(1)由题意,当4050x ≤≤时,5y =,当50x >时,50.1(50)0.110y x x =--=-+,0y ≥,0.1100x ∴-+≥,解得100x ≤,综上,5(4050)0.110(50100)x y x x ≤≤⎧=⎨-+<≤⎩; (2)设该产品的月销售利润为w 万元,①当4050x ≤≤时,5(40)5200w x x =-=-,由一次函数的性质可知,在4050x ≤≤内,w 随x 的增大而增大,则当50x =时,w 取得最大值,最大值为55020050⨯-=;②当50100x <≤时,2(40)(0.110)0.1(70)90w x x x =--+=--+,由二次函数的性质可知,当70x =时,w 取得最大值,最大值为90,因为9050>,所以当月销售单价是70元/件时,月销售利润最大,最大利润是90万元;(3)捐款当月的月销售单价不高于70元/件,月销售最大利润是78万元(大于50万元), 5070x ∴<≤,设该产品捐款当月的月销售利润为Q 万元,由题意得:(40)(0.110)Q x a x =---+, 整理得:221400.1()390240a a Q x a +=--+-+, 140702a +>, ∴在5070x <≤内,Q 随x 的增大而增大,则当70x =时,Q 取得最大值,最大值为(7040)(0.17010)903a a ---⨯+=-, 因此有90378a -=,解得4a =.24.(1)223y x x =--;(2)2n =;(3)①12;②251013(,0)9+或251013(,0)9-. 【详解】 解:(1)将点(1,0)A -,(3,0)B 代入23y ax bx =+-得:309330a b a b --=⎧⎨+-=⎩, 解得12a b =⎧⎨=-⎩, 则抛物线的解析式为223y x x =--;(2)由题意得:点P 的坐标为2(,23)P n n n --, 对于二次函数223y x x =--,当0x =时,3y =-,即(0,3)C -,设直线BC 的解析式为y kx c =+, 将点(3,0)B ,(0,3)C -代入得:303k c c +=⎧⎨=-⎩,解得13k c =⎧⎨=-⎩, 则直线BC 的解析式为3y x =-,(,3)G n n ∴-,223(23)3PG n n n n n ∴=----=-+,22(3)(3)(3)2BG n n n =-+-=-,PDG BNG ≅,PG BG ∴=,即23(3)2n n n -+=-,解得2n =或3n =(与3n <不符,舍去), 故当2n =时,PDG BNG ≅;(3)①如图,设线段OC 的中点为点D ,过点B 作x 轴的垂线,交直线1OB 于点E ,则点D 的坐标为3(0,)2D -,点E 的横坐标为3, 设直线BD 的解析式为00y k x c =+, 将点(3,0)B ,3(0,)2D -代入得:0003032k c c +=⎧⎪⎨=-⎪⎩,解得001232k c ⎧=⎪⎪⎨⎪=-⎪⎩, 则直线BD 的解析式为1322y x =-, 由平移的性质得:直线1OB 的解析式为12y x =, 当3x =时,32y =,即3(3,)2E , 33,2OB BE ∴==, 11tan 2BE BOB OB ∠==∴, 故答案为:12; ②由题意得:11NN OB ⊥,则设直线1NN 的解析式为12y x c =-+,将点(,0)N n 代入得:120n c -+=,解得12c n =, 则直线1NN 的解析式为22y x n =-+, 联立2212y x n y x =-+⎧⎪⎨=⎪⎩,解得4525x n y n ⎧=⎪⎪⎨⎪=⎪⎩, 即直线1NN 与直线1OB 的交点坐标为42(,)55n n , 设点1N 的坐标为1(,)N s t , 则4250225s n n t n +⎧=⎪⎪⎨+⎪=⎪⎩,解得3545s n t n ⎧=⎪⎪⎨⎪=⎪⎩,即134(,)55N n n ,将点134(,)55N n n 代入223y x x =--得:2334()55235n n n -⨯-=, 整理得:2507509n n --=,解得n =或n =则点N 的坐标为或.。

2021年湖北省咸宁市中考数学试题(含答案)

2021年湖北省咸宁市中考数学试题(含答案)

初中毕业生学业考试数 学 试 卷考生注意:1.本试卷分试题卷(共4页)和答题卷;全卷24小题,满分120分;考试时间120分钟. 2.考生答题前,请将自己的学校、姓名、准考证号填写在试题卷和答题卷指定的位置,同时认真阅读答题卷上的注意事项.考生答题时,请按题号顺序在答题卷上各题目的答题区域内作答,写在试题卷上无效.试 题 卷一、精心选一选(本大题共8小题,每小题3分,满分24分.在每小题给出的四个选项中只有一项是符合题目要求的,请在答题卷上把正确答案的代号涂黑)1.下列实数中,属于无理数的是( ) A .3- B .3.14C .13D2.若代数式x +4的值是2,则x 等于( ) A .2 B .2- C .6 D .6-3.下列运算正确的是( )A= B .222()a b a b -=- C .0(2)1π-= D .3226(2)2ab a b =4.6月15日“父亲节”,小明送给父亲一个礼盒(如左图所示),该礼盒的主视图是( )5.如图,l ∥m ,等边△ABC 的顶点B 在直线m 上,∠1= 20°,则∠2的度数为()A .60°B .45°C .40°D .30° 6.甲、乙、丙、丁四位同学五次数学测验成绩统计如右表所示.如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加全国数学联赛,那么应选( ) A .甲 B .乙 C .丙 D .丁 7.用一条长为40 cm 的绳子围成一个面积为a cm 2的长 方形,a 的值不可能...为( ) A .20 B .40 C .100 D .120 8.如图,双曲线my x=与直线y kx b =+相交于点M ,N ,且 点M 的坐标为(1,3),点N 的纵坐标为1-.根据图象甲 乙 丙丁 平均数 80 85 85 80 方 差 42 42 54 59(第8题)(第5题) BA C21 l m A B C D 正面信息可得关于x 的方程mkx b x=+的解为( ) A .3-,1 B .3-,3 C .1-,1 D .1-,3二、细心填一填(本大题共8小题,每小题3分,满分24分.请把答案填在答题卷相应题号的横线上)9.点P (1,2-)关于 y 轴对称的点的坐标为 .10.体育委员小金带了500元钱去买体育用品,已知一个足球x 元,一个篮球y 元.则代数式50032x y --表示的实际意义是 .11.不等式组{43131x x -+>,≤的解集是 . 12.小亮与小明一起玩“石头、剪刀、布”的游戏,两同学同时出“剪刀”的概率是 . 13.如图,在扇形OAB 中,∠AOB =90°,点C 是⌒AB 上的一个动点(不与A ,B 重合),OD ⊥BC ,OE ⊥AC ,垂足分别 为D ,E .若DE =1,则扇形OAB 的面积为 .14.观察分析下列数据: 0,6,3-,列的规律得到第16个数据应是 (结果需化简) . 15.科学家为了推测最适合某种珍奇植物生长的温度,将这种植物分别放在不同温度的环境中,经过一定时间后,测试出这种植物高度的增长此可以推测最适合这种植物生长的温度为 ℃.16.如图,在△ABC 中,AB =AC =10,点D 是边BC 上一动点 (不与B ,C 重合),∠ADE =∠B =α,DE 交AC 于点E ,且4cos 5α=.下列结论:①△ADE ∽△ACD ;②当BD =6时,△ABD 与△DCE 全等;③△DCE 为直角三角形时,BD 为8或252;④0< 6.4CE ≤.其中正确的结论是 .(把你认为正确结论的序号都填上)三、专心解一解(本大题共8小题,满分72分.请认真读题,冷静思考.解答题应写出必要的文字说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的位置) 17.(本题满分8分,每小题4分) (1)计算:824)2(12--⨯+--; (2)化简:ba b a a +--1222.B CBOACED(第13题)18.(本题满分7分)随着市民环保意识的增强,烟花爆竹销售量逐年下降.咸宁市2011年销售烟花爆竹20万箱,到2013年烟花爆竹销售量为9.8万箱.求咸宁市2011年到2013年烟花爆竹年销售量的平均下降率. 19.(本题满分8分)如图,在Rt △ABC 中,∠ACB =90º,∠B=30º,将△ABC 绕点C 按顺时针方向旋转n 度后,得到△DEC ,点D 刚好落在AB 边上. (1)求n 的值;(2)若F 是DE 的中点,判断四边形ACFD 的形状,并说明理由.20.(本题满分8分)我市民营经济持续发展,2013年城镇民营企业就业人数突破20万.为了解城镇民营企业员工每月的收入状况,统计局对全市城镇民营企业员工2013年月平均收入随机抽样调查,将抽样的数据按 “2000元以内”、“2000元~4000元”、“4000元~6000元”和“6000元以上” 分为四组,进行整理,分别用A ,B ,C ,D 表示,得到下列两幅不完整的统计图.由图中所给出的信息解答下列问题:(1)本次抽样调查的员工有_ __人,在扇形统计图中x 的值为_ __,表示“月平均收入在2000元以内”的部分所对应扇形的圆心角的度数是_ __;(2)将不完整的条形图补充完整,并估计我市2013年城镇民营企业20万员工中,每月的收入在“2000元~4000元”的约多少人?A C (第19题)(3)统计局根据抽样数据计算得到,2013年我市城镇民营企业员工月平均收入为4872元,请你结合上述统计的数据,谈一谈用平均数反映月收入情况是否合理?21.(本题满分9分)如图,已知AB 是⊙O 的直径,直线CD 与⊙O 相切于点C ,AD ⊥CD 于点D . (1) 求证: AC 平分∠DAB ; (2) 若点E 为⌒AB 的中点, 325AD =,AC =8,求AB 和CE 的长.22.(本题满分10分)在“黄袍山国家油茶产业示范园”建设中,某农户计划购买甲、乙两种油茶树苗共1000株.已知乙种树苗比甲种树苗每株贵3元,且用100元钱购买甲种树苗的株数与用160元钱购买乙种树苗的株数刚好相同. (1)求甲、乙两种油茶树苗每株的价格;(2)如果购买两种树苗共用5600元,那么甲、乙两种树苗各买了多少株?(3)调查统计得,甲、乙两种树苗的成活率分别为90%,95%.要使这批树苗的成活率不低于92%,且使购买树苗的费用最低,应如何选购树苗?最低费用是多少? 23.(本题满分10分)如图1,P (m ,n )是抛物线214x y =-上任意一点, l 是过点(0,2-)且与x 轴平行的直线,过点P 作直线PH ⊥l ,垂足为H . 【探究】 (1)填空:当m =0时,OP = ,PH = ;当m =4时,OP = ,PH = ; 【证明】(2)对任意m ,n ,猜想OP 与PH 的大小关系,并证明你的猜想. 【应用】(3)如图2,已知线段AB =6,端点A ,B 在抛物线214x y =-上滑动,求A ,B 两点到直线l 的距离之和的最小值.(第23题图1)(第23题图2)AE (第21题)24.(本题满分12分),4).点P从点A 如图,正方形OABC的边OA,OC在坐标轴上,点B的坐标为(4出发,以每秒1个单位长度的速度沿x轴向点O运动;点Q从点O同时出发,以相同的速度沿x轴的正方向运动,规定点P到达点O时,点Q也停止运动.连接BP,过P 点作BP的垂线,与过点Q平行于y轴的直线l相交于点D.BD与y轴交于点E,连接PE.设点P运动的时间为t(s).Array(1)∠PBD的度数为,点D的坐标为(用t表示);(2)当t为何值时,△PBE 为等腰三角形?(3)探索△POE周长是否随时间t的变化而变化,若变化,说明理由;若不变,试求这个定值.数学试题参考答案及评分说明说明:1.如果考生的解答正确,思路与本参考答案不同,可参照本评分说明制定相应的评分细则评分,不得放弃评阅,简单判错.2.每题都要评阅完毕,不要因为考生的解答中出现错误而中断对该题的评阅.当考生的解答在某一步出现错误,影响了后继部分时,如果该步以后的解答未改变这道题的内容和难度,则可视影响的程度决定后面部分的给分,但不得超过后面部分应给分数的一半;如果这一步以后的解答有较严重的错误,就不给分.3.为阅卷方便,解答题的解题步骤写得较为详细,但允许考生在解答过程中,合理地省略非关键性的步骤.4.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 5.每题评分时只给整数分数.9.(1-,2-) 10.体育委员买了3个足球,2个篮球后剩余的经费 11.2x -≤12.19 13.2π14.- 15.1- 16.①②③④(少填不给分)三.专心解一解(本大题满分72分)17.(1)解:原式=428+- --------------------------------------------------3分=2-. ----------------------------------------------4分(2)解:原式=22222a a b a b a b ----=22a ba b +- -------------------------------------------2分 =1a b-. -------------------------------4分 18.解:设年销售量的平均下降率为x ,依题意得:220(1)9.8x -=. ---------------------3分解这个方程,得10.3x =,2 1.7x =.------------------------5分因为2 1.7x =不符合题意,所以0.330%x ==. ----------------6分答:咸宁市2011年到2013年烟花爆竹年销售量的平均下降率为30%.---------------7分 19.解:(1)由旋转可知,CA =CD . ∵∠ACB =90º,∠B=30º,∴∠A=60º.∴△ACD 为等边三角形.∴∠ACD =60º,即n =60. ----------------------------3分 (2)四边形ACFD 是菱形. -------------------------------------------------------------4分理由:∵F 是DE 的中点, ∴12CF DE DF ==. ∵∠EDC=∠A=60º, ∴△FCD 为等边三角形, ∴CF DF CD ==. ∵△ACD 为等边三角形. ∴AC AD CD ==.∴AC AD DF CF ===. ∴四边形ACFD 是菱形. ------------------8分 (说明:此题说理方法较多,如可以先说明是平行四边形再说明邻边,等)20.(1)本次抽样调查的员工有 500 人, ---------------------1分在扇形统计图中x 的值为 14 ,扇形圆心角的度数是 21.6 º ; ----------------------------------3分(2)补充完整的条形图(如图) -------------------------------------5分 20×60%=12(万人) 答:估计该市2013年城镇民营企业20万员工每月的收入在“2000元~4000元” 的有12万人 ---------------------------6分(3)用平均数反映月收入情况不合理.由数据可以看出500名被调查者中有330人的月收入不超过4000元,月收入的平均数受高收入者和低收入者收入变化的影响较大,050100150200250300350A B C D 人数月收入(元)月收入的中位数几乎不受高低两端收入变化的影响,因此,用月收入的中位数反映月收入水平更合理. ------------------------------8分 (本题答案不惟一,上述解法供参考.) 21.(1)证明:连结OC .∵直线CD 与⊙O 相切于点C , ∴OC ⊥CD .∵AD ⊥CD , ∴OC ∥AD . ∴∠DAC =∠ACO . ∵OA =OC ∴∠OAC =∠ACO .∴∠DAC =∠CAO .即AC 平分∠DAB . ---------------3分 (2)解:连接BC ,∵AB 是⊙O 的直径,∴∠ACB =90°=∠ADC . ∵∠DAC =∠CAO ,∴△ADC ∽△ACB .∴ABACAC AD =. ∵325AD =,AC =8, ∴AB =10. ----------------------------------------6分 ∵点E 为⌒AB 的中点,∴∠ACE =45°. 过点A 作CE 的垂线,垂足为F , ∴CF =AE =AC sin45°=8.在Rt △ACB中,6BC ==, ∴84tan tan =63E B ==.在Rt △AEF 中,4tan =3AF E EF = ,∴3=EF ⨯=∴CE ------------------------------9分22.(1) 设甲种树苗每株x 元,则乙种树苗每株(x +3)元.根据题意得:1001603x x =+. --------------------------1分 解得5x =. ------------------------------2分 检验: 5x =是原分式方程的解.答:甲、乙两种油茶树苗每株的价格分别为5元和8元. -------------3分 (2)设购买甲种树苗x 棵,购买乙种树苗为y 棵,由题意得:1000,585600.x y x y +=⎧⎨+=⎩--------------------------4分 解得: 800,200.x y =⎧⎨=⎩-----------------------------5分答:购买甲种树苗800棵,乙种树苗200棵. ----------------6分 (3)设购买甲种树苗x 棵时,购买两种树苗的费用之和为w 元.AE则w 与x 的函数关系式为:w =5x +8(1000-x )=8000-3x ----------7分由题意得:90%x +95%(1000-x )≥1000×92%,解得x ≤600. ------------8分在w =8000-3x 中,w 随x 的增大而减小,所以当x =600时,w 取得最小值,其最小值为8000-30×600=6200.-------9分 答:购买甲种树苗600棵,乙种树苗400棵费用最低,最低费用是6200元. -----10分 23.(1)填空:当m =0时,OP = 1 ,PH = 1 ;----------------------1分当m =4时,OP = 5 ,PH = 5 ;-----------------3分(2)OP = PH ---------------------------------------------------4分证明:∵P (m ,n )是抛物线214x y =-上任意一点,∴214m n =-.∵24222222(1)14162m m m OP m n m =+=+-=++,24222(12)14162m m m PH =-+=++,∴22OP PH =, ∴OP PH =. ---------------------7分(3)分别A ,B 过点作直线l 的垂线,垂足为M ,N .①当AB 不过O 点时,连接OA ,OB , 在△OAB 中OA +OB >AB =6,由上述结论得:AM=OA ,BN=OB . ∴AM + BN >6.②当AB 过O 点时,AM + BN= OA +OB =AB =6. 所以AM + BN 的最小值为6.即A ,B 两点到直线l 的距离之和的最小值为6.-------------10分24.(1)∠PBD =45º -------------------------------------1分 点D 的坐标为(t ,t ) -------------------------------3分 (2)解:由△PAB ≌△DQP 得PB =PD ,显然P B ≠PE .--------------------------------------4分 分两种情况:(ⅰ)若EB=EP ,则∠EP B =∠EBP=45 º,此时点P 与O 点重合,t =4. ------------------5分(ⅱ)若BE=BP ,则△PAB ≌△ECB .∴CE=PA= t . 过D 点作DF ⊥OC 于点F ,则DF=OF= t , 42EF t =-.∵△BCE ∽△DFE ,∴BC DF CE EF=.∴442tt t=-.解得4t=-±.∴4t=.---------------------------------7分综上,当4t=或4时,△PBE 为等腰三角形.--------------8分(3)△POE周长不随时间t的变化而变化.----------------------9分将△BCE绕点B按顺时针方向旋转90 º,得到△BAH.∴BE=BH,CE=AH,∠EBH =90º,∴∠EBP=45º=∠PBH,∵BP=BP,∴△PBE≌△PBH .∴EP= PH=AH+AP= CE+AP.∴△POE周长=OP+OE+PE= OP+OE+ CE+AP=OA+OC=4+4=8.--------------------------12分。

2020年湖北省咸宁市中考数学试卷(解析版)

2020年湖北省咸宁市中考数学试卷(解析版)

2020年湖北省咸宁市中考数学试卷一、精心选一选选择题(本大题共8小题,每小题3分,共24分再给出的四个选项中只有一项释符合题目要求的,请在答题卷上把正确答案的代号涂黑)1.冰箱冷藏室的温度零上5℃,记作+5℃,保鲜室的温度零下7℃,记作()A.7℃B.﹣7℃C.2℃D.﹣12℃2.如图,直线l1∥l2,CD⊥AB于点D,∠1=50°,则∠BCD的度数为()A.50°B.45°C.40°D.30°3.近几年来,我市加大教育信息化投入,投资201000000元,初步完成咸宁市教育公共云服务平台基础工程,教学点数字教育资源全覆盖,将201000000用科学记数法表示为()A.20.1×107 B.2.01×108 C.2.01×109 D.0.201×10104.下面四个几何体中,其主视图不是中心对称图形的是()A.B.C.D.5.下列运算正确的是()A.﹣=B.=﹣3 C.a•a2=a2D.(2a3)2=4a66.某班七个兴趣小组人数分别为4,4,5,5,x,6,7,已知这组数据的平均数是5,则这组数据的众数和中位数分别是()A.4,5 B.4,4 C.5,4 D.5,57.如图,在△ABC中,中线BE,CD相交于点O,连接DE,下列结①=;②=;③=;④=其中正确的个数有()A.1个B.2个C.3个D.4个8.已知菱形OABC在平面直角坐标系的位置如图所示,顶点A(5,0),OB=4,点P 是对角线OB上的一个动点,D(0,1),当CP+DP最短时,点P的坐标为()A.(0,0)B.(1,)C.(,)D.(,)二、细心填一填(本大题共8小题,每小题3分,共24分,请把答案填在答案卷相应题号的横线上)9.代数式在实数范围内有意义,则x的取值范围是______.10.关于x的一元二次方程x2+bx+2=0有两个不相等的实数根,写出一个满足条件的实数b 的值:b=______.11.a,b互为倒数,代数式÷(+)的值为______.12.一个布袋内只装有一个红球和2个黄球,这些球除颜色外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黄球的概率是______.13.端午节那天,“味美早餐店”的粽子打9折出售,小红的妈妈去该店买粽子花了54元钱,比平时多买了3个,求平时每个粽子卖多少元?设平时每个粽子卖x元,列方程为______.14.如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆相交于点D,连接BD、BE、CE,若∠CBD=32°,则∠BEC的度数为______.15.用m根火柴棒恰好可拼成如图1所示的a个等边三角形或如图2所示的b个正六边形,则=______.16.如图,边长为4的正方形ABCD内接于点O,点E是上的一动点(不与A、B重合),点F是上的一点,连接OE、OF,分别与AB、BC交于点G,H,且∠EOF=90°,有以下结论:①=;②△OGH是等腰三角形;③四边形OGBH的面积随着点E位置的变化而变化;④△GBH周长的最小值为4+.其中正确的是______(把你认为正确结论的序号都填上).三、专心解一解(本大题共8小题,满分72分.请认真读题,冷静思考,解答题应写出必要的文字说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的位置)解答题17.(1)计算:|﹣2|﹣20160+()﹣2(2)解不等式组:.18.证明命题“角的平分线上的点到角的两边的距离相等”,要根据题意,画出图形,并用符号表示已知和求证,写出证明过程,下面是小明同学根据题意画出的图形,并写出了不完整的已知和求证.已知:如图,∠AOC=∠BOC,点P在OC上,______求证:______.请你补全已知和求证,并写出证明过程.19.某市为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行超价收费,为更好地决策,自来水公司的随机抽取了部分用户的用水量数据,并绘制了如图不完整的统计图,(每组数据包括在右端点但不包括左端点),请你根据统计图解答下列问题:(1)此次抽样调查的样本容量是______.(2)补全频数分布直方图,求扇形图中“15吨~20吨”部分的圆心角的度数.(3)如果自来水公司将基本用水量定为每户25吨,那么该地区6万用户中约有多少用户的用水全部享受基本价格?20.如图,在平面直角坐标系中,直线y=2x与反比例函数y=在第一象限内的图象交于点A(m,2),将直线y=2x向下平移后与反比例函数y=在第一象限内的图象交于点P,且△POA的面积为2.(1)求k的值.(2)求平移后的直线的函数解析式.21.如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O 为圆心,OA为半径的圆恰好经过点D,分别交AC,AB于点E,F.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=2,BF=2,求阴影部分的面积(结果保留π).22.某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.(1)求y与x之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润多少元?(3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?23.阅读理解:我们知道,四边形具有不稳定性,容易变形,如图1,一个矩形发生变形后成为一个平行四边形,设这个平行四边形相邻两个内角中较小的一个内角为α,我们把的值叫做这个平行四边形的变形度.(1)若矩形发生变形后的平行四边形有一个内角是120度,则这个平行四边形的变形度是______.猜想证明:(2)设矩形的面积为S1,其变形后的平行四边形面积为S2,试猜想S1,S2,之间的数量关系,并说明理由;拓展探究:(3)如图2,在矩形ABCD中,E是AD边上的一点,且AB2=AE•AD,这个矩形发生变形后为平行四边形A1B1C1D1,E1为E的对应点,连接B1E1,B1D1,若矩形ABCD的面积为4(m>0),平行四边形A1B1C1D1的面积为2(m>0),试求∠A1E1B1+∠A1D1B1的度数.24.如图1,在平面直角坐标系xOy中,点A的坐标为(0,1),取一点B(b,0),连接AB,做线段AB的垂直平分线l1,过点B作x轴的垂线l2,记l1,l2的交点为P.(1)当b=3时,在图1中补全图形(尺规作图,不写作法,保留作图痕迹);(2)小慧多次取不同数值b,得出相应的点P,并把这些点用平滑的曲线连接起来发现:这些点P竟然在一条曲线L上!①设点P的坐标为(x,y),试求y与x之间的关系式,并指出曲线L是哪种曲线;②设点P到x轴,y轴的距离分别是d1,d2,求d1+d2的范围,当d1+d2=8时,求点P的坐标;③将曲线L在直线y=2下方的部分沿直线y=2向上翻折,得到一条“W”形状的新曲线,若直线y=kx+3与这条“W”形状的新曲线有4个交点,直接写出k的取值范围.2018年湖北省咸宁市中考数学试卷参考答案与试题解析一、精心选一选选择题(本大题共8小题,每小题3分,共24分再给出的四个选项中只有一项释符合题目要求的,请在答题卷上把正确答案的代号涂黑)1.冰箱冷藏室的温度零上5℃,记作+5℃,保鲜室的温度零下7℃,记作()A.7℃B.﹣7℃C.2℃D.﹣12℃【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:∵冰箱冷藏室的温度零上5℃,记作+5℃,∴保鲜室的温度零下7℃,记作﹣7℃.故选:B.2.如图,直线l1∥l2,CD⊥AB于点D,∠1=50°,则∠BCD的度数为()A.50°B.45°C.40°D.30°【考点】平行线的性质.【分析】先依据平行线的性质可求得∠ABC的度数,然后在直角三角形CBD中可求得∠BCD 的度数.【解答】解:∵l1∥l2,∴∠1=∠ABC=50°.∵CD⊥AB于点D,∴∠CDB=90°.∴∠BCD+∠DBC=90°,即∠BCD+50°=90°.∴∠BCD=40°.故选:C.3.近几年来,我市加大教育信息化投入,投资201000000元,初步完成咸宁市教育公共云服务平台基础工程,教学点数字教育资源全覆盖,将201000000用科学记数法表示为()A.20.1×107 B.2.01×108 C.2.01×109 D.0.201×1010【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将201000000用科学记数法表示为2.01×108.故选B.4.下面四个几何体中,其主视图不是中心对称图形的是()A.B.C.D.【考点】简单几何体的三视图;中心对称图形.【分析】首先得出各几何体的主视图的形状,进而结合中心对称图形的定义得出答案.【解答】解:A、立方体的主视图是正方形,是中心对称图形,故此选项错误;B、球体的主视图是圆,是中心对称图形,故此选项错误;C、圆锥的主视图是等腰三角形,不是中心对称图形,故此选项正确;D、圆柱的主视图是矩形,是中心对称图形,故此选项错误;故选:C.5.下列运算正确的是()A.﹣=B.=﹣3 C.a•a2=a2D.(2a3)2=4a6【考点】二次根式的加减法;同底数幂的乘法;幂的乘方与积的乘方;二次根式的性质与化简.【分析】直接利用二次根式加减运算法则以及积的乘方运算法则和幂的乘方运算法则、同底数幂的乘法运算法则、二次根式的性质分别化简判断即可.【解答】解:A、﹣无法计算,故此选项错误;B、=3,故此选项错误;C、a•a2=a3,故此选项错误;D、(2a3)2=4a6,正确.故选:D.6.某班七个兴趣小组人数分别为4,4,5,5,x,6,7,已知这组数据的平均数是5,则这组数据的众数和中位数分别是()A.4,5 B.4,4 C.5,4 D.5,5【考点】众数;算术平均数;中位数.【分析】根据众数、算术平均数、中位数的概念,结合题意进行求解.【解答】解:∵这组数据的平均数是5,∴=5,解得:x=4,这组数据按照从小到大的顺序排列为:4,4,4,5,5,6,7,则众数为:4,中位数为:5.故选A.7.如图,在△ABC中,中线BE,CD相交于点O,连接DE,下列结论:①=;②=;③=;④=其中正确的个数有()A.1个B.2个C.3个D.4个【考点】相似三角形的判定与性质;三角形的重心.【分析】BE、CD是△ABC的中线,即D、E是AB和AC的中点,即DE是△ABC的中位线,则DE∥BC,△ODE∽△OCB,根据相似三角形的性质即可判断.【解答】解:∵BE、CD是△ABC的中线,即D、E是AB和AC的中点,∴DE是△ABC的中位线,∴DE=BC,即=,DE∥BC,∴△DOE∽△COB,∴=()2=()2=,===,故①正确,②错误,③正确;设△ABC的BC边上的高AF,则S△ABC=BC•AF,S△ACD=S△ABC=BC•AF,∵△ODE中,DE=BC,DE边上的高是×AF=AF,∴S△ODE=×BC×AF=BC•AF,∴==,故④错误.故正确的是①③.故选B.8.已知菱形OABC 在平面直角坐标系的位置如图所示,顶点A (5,0),OB=4,点P 是对角线OB 上的一个动点,D (0,1),当CP +DP 最短时,点P 的坐标为( )A .(0,0)B .(1,)C .(,)D .(,)【考点】菱形的性质;坐标与图形性质;轴对称-最短路线问题.【分析】如图连接AC ,AD ,分别交OB 于G 、P ,作BK ⊥OA 于K .首先说明点P 就是所求的点,再求出点B 坐标,求出直线OB 、DA ,列方程组即可解决问题. 【解答】解:如图连接AC ,AD ,分别交OB 于G 、P ,作BK ⊥OA 于K .∵四边形OABC 是菱形,∴AC ⊥OB ,GC=AG ,OG=BG=2,A 、C 关于直线OB 对称,∴PC +PD=PA +PD=DA , ∴此时PC +PD 最短,在RT △AOG 中,AG===,∴AC=2,∵OA •BK=•AC •OB ,∴BK=4,AK==3,∴点B 坐标(8,4),∴直线OB 解析式为y=x ,直线AD 解析式为y=﹣x +1,由解得,∴点P坐标(,).故选D.二、细心填一填(本大题共8小题,每小题3分,共24分,请把答案填在答案卷相应题号的横线上)9.代数式在实数范围内有意义,则x的取值范围是x≥1.【考点】二次根式有意义的条件.【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵在实数范围内有意义,∴x﹣1≥0,解得x≥1.故答案为:x≥1.10.关于x的一元二次方程x2+bx+2=0有两个不相等的实数根,写出一个满足条件的实数b 的值:b=3.【考点】根的判别式.【分析】根据题意可知判别式△=b2﹣8>0,从而求得b的取值范围,然后即可得出答案.【解答】解:∵关于x的一元二次方程x2+bx+2=0有两个不相等的实数根,∴△=b2﹣8>0,∴b>2或b<﹣2,∴b为3,4,5等等,∴b为3(答案不唯一).故答案为3.11.a,b互为倒数,代数式÷(+)的值为1.【考点】分式的化简求值.【分析】先算括号里面的,再算除法,根据a,b互为倒数得出a•b=1,代入代数式进行计算即可.【解答】解:原式=÷=(a+b)•=ab,∵a,b互为倒数,∴a•b=1,∴原式=1.故答案为:1.12.一个布袋内只装有一个红球和2个黄球,这些球除颜色外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黄球的概率是.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的球都是黄球的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有9种等可能的结果,两次摸出的球都是黄球的有4种情况,∴两次摸出的球都是黄球的概率是,故答案为:.13.端午节那天,“味美早餐店”的粽子打9折出售,小红的妈妈去该店买粽子花了54元钱,比平时多买了3个,求平时每个粽子卖多少元?设平时每个粽子卖x元,列方程为+3=.【考点】由实际问题抽象出分式方程.【分析】根据端午节那天,“味美早餐店”的粽子打9折出售,小红的妈妈去该店买粽子花了54元钱,比平时多买了3个,设平时每个粽子卖x元,可以列出相应的分式方程.【解答】解:由题意可得,+3=,故答案为: +3=.14.如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆相交于点D,连接BD、BE、CE,若∠CBD=32°,则∠BEC的度数为122°.【考点】三角形的内切圆与内心;圆周角定理.【分析】根据圆周角定理可求∠CAD=32°,再根据三角形内心的定义可求∠BAC,再根据三角形内角和定理和三角形内心的定义可求∠EBC+∠ECB,再根据三角形内角和定理可求∠BEC的度数.【解答】解:在⊙O中,∵∠CBD=32°,∵∠CAD=32°,∵点E是△ABC的内心,∴∠BAC=64°,∴∠EBC+∠ECB=÷2=58°,∴∠BEC=180°﹣58°=122°.故答案为:122°.15.用m根火柴棒恰好可拼成如图1所示的a个等边三角形或如图2所示的b个正六边形,则=.【考点】规律型:图形的变化类.【分析】根据题意和图形可以得到a与m的关系式和b与m的关系式,从而可以得到b与a的比值.【解答】解:由题意可得,3+(a﹣1)×2=m,6+(b﹣1)×5=m,∴3+(a﹣1)×2=6+(b﹣1)×5,化简,得,故答案为:.16.如图,边长为4的正方形ABCD内接于点O,点E是上的一动点(不与A、B重合),点F是上的一点,连接OE、OF,分别与AB、BC交于点G,H,且∠EOF=90°,有以下结论:①=;②△OGH是等腰三角形;③四边形OGBH的面积随着点E位置的变化而变化;④△GBH周长的最小值为4+.其中正确的是①②(把你认为正确结论的序号都填上).【考点】圆的综合题.【分析】①根据ASA可证△BOE≌△COF,根据全等三角形的性质得到BE=CF,根据等弦对等弧得到=,可以判断①;②根据SAS可证△BOG≌△COH,根据全等三角形的性质得到∠GOH=90°,OG=OH,根据等腰直角三角形的判定得到△OGH是等腰直角三角形,可以判断②;③通过证明△HOM≌△GON,可得四边形OGBH的面积始终等于正方形ONBM的面积,可以判断③;④根据△BOG≌△COH可知BG=CH,则BG+BH=BC=4,设BG=x,则BH=4﹣x,根据勾股定理得到GH==,可以求得其最小值,可以判断④.【解答】解:①如图所示,∵∠BOE+∠BOF=90°,∠COF+∠BOF=90°,∴∠BOE=∠COF,在△BOE与△COF中,,∴△BOE≌△COF,∴BE=CF,∴=,①正确;②∵BE=CF,∴△BOG≌△COH;∵∠BOG=∠COH,∠COH+∠OBF=90°,∴∠GOH=90°,OG=OH,∴△OGH是等腰直角三角形,②正确.③如图所示,∵△HOM≌△GON,∴四边形OGBH的面积始终等于正方形ONBM的面积,③错误;④∵△BOG≌△COH,∴BG=CH,∴BG+BH=BC=4,设BG=x,则BH=4﹣x,则GH==,∴其最小值为2,D错误.故答案为:①②.三、专心解一解(本大题共8小题,满分72分.请认真读题,冷静思考,解答题应写出必要的文字说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的位置)解答题17.(1)计算:|﹣2|﹣20160+()﹣2(2)解不等式组:.【考点】解一元一次不等式组;零指数幂;负整数指数幂.【分析】(1)根据绝对值的性质、零指数幂、负整指数幂的运算法则分别计算可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:(1)原式=2﹣1+4=5;(2)解不等式组,解不等式①得:x>3,解不等式②得:x<5,∴该不等式组的解集为:3<x<5.18.证明命题“角的平分线上的点到角的两边的距离相等”,要根据题意,画出图形,并用符号表示已知和求证,写出证明过程,下面是小明同学根据题意画出的图形,并写出了不完整的已知和求证.已知:如图,∠AOC=∠BOC,点P在OC上,PD⊥OA,PE⊥OB求证:PD=PE.请你补全已知和求证,并写出证明过程.【考点】角平分线的性质.【分析】根据图形写出已知条件和求证,利用全等三角形的判定得出△PDO≌△PEO,由全等三角形的性质可得结论.【解答】解:已知:PD⊥OA,PE⊥OB,垂足分别为D、E;求证:PD=PE.故答案为:PD=PE.∵PD⊥OA,PE⊥OB,∴∠PDO=∠PEO=90°,在△PDO和△PEO中,,∴△PDO≌△PEO(AAS),∴PD=PE.19.某市为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行超价收费,为更好地决策,自来水公司的随机抽取了部分用户的用水量数据,并绘制了如图不完整的统计图,(每组数据包括在右端点但不包括左端点),请你根据统计图解答下列问题:(1)此次抽样调查的样本容量是100.(2)补全频数分布直方图,求扇形图中“15吨~20吨”部分的圆心角的度数.(3)如果自来水公司将基本用水量定为每户25吨,那么该地区6万用户中约有多少用户的用水全部享受基本价格?【考点】频数(率)分布直方图;总体、个体、样本、样本容量;用样本估计总体;扇形统计图.【分析】(1)根据10~15吨部分的用户数和百分比进行计算;(2)先根据频数分布直方图中的数据,求得“15吨~20吨”部分的用户数,再画图,最后根据该部分的用户数计算圆心角的度数;(3)根据用水25吨以内的用户数的占比,求得该地区6万用户中用水全部享受基本价格的户数.【解答】解:(1)∵10÷10%=100(户)∴样本容量是100;(2)用水15~20吨的户数:100﹣10﹣36﹣24﹣8=22(户)∴补充图如下:“15吨~20吨”部分的圆心角的度数=360°×=79.2°答:扇形图中“15吨~20吨”部分的圆心角的度数为79.2°.(3)6×=4.08(万户)答:该地区6万用户中约有4.08万户的用水全部享受基本价格.20.如图,在平面直角坐标系中,直线y=2x与反比例函数y=在第一象限内的图象交于点A(m,2),将直线y=2x向下平移后与反比例函数y=在第一象限内的图象交于点P,且△POA的面积为2.(1)求k的值.(2)求平移后的直线的函数解析式.【考点】反比例函数与一次函数的交点问题.【分析】(1)由点A的纵坐标求得m,即点A的坐标,把点A的坐标代入反比例函数中即可;(2)先求出PM,再求出BN然后用锐角三角函数求出OB,即可.【解答】解:(1)∵点A(m,2)在直线y=2x,∴2=2m,∴m=1,∴点A(1,2),∵点A(1,2)在反比例函数y=上,∴k=2,(2)如图,设平移后的直线与y轴相交于B,过点P作PM⊥OA,BN⊥OA,AC⊥y轴由(1)知,A(1,2),∴OA=,sin∠BON=sin∠AOC==,∵S△POA=OA×PM=×PM=2,∴PM=,∵PM⊥OA,BN⊥OA,∴PM∥BN,∵PB∥OA,∴四边形BPMN是平行四边形,∴BN=PM=,∵sin∠BON===,∴OB=4,∵PB∥AO,∴B(0,﹣4),∴平移后的直线PB的函数解析式y=2x﹣421.如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O 为圆心,OA为半径的圆恰好经过点D,分别交AC,AB于点E,F.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=2,BF=2,求阴影部分的面积(结果保留π).【考点】直线与圆的位置关系;扇形面积的计算.【分析】(1)连接OD,证明OD∥AC,即可证得∠ODB=90°,从而证得BC是圆的切线;(2)在直角三角形OBD中,设OF=OD=x,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为圆的半径,求出圆心角的度数,直角三角形ODB的面积减去扇形DOF 面积即可确定出阴影部分面积.【解答】解:(1)BC与⊙O相切.证明:连接OD.∵AD是∠BAC的平分线,∴∠BAD=∠CAD.又∵OD=OA,∴∠OAD=∠ODA.∴∠CAD=∠ODA.∴OD∥AC.∴∠ODB=∠C=90°,即OD⊥BC.又∵BC过半径OD的外端点D,∴BC与⊙O相切.(2)设OF=OD=x,则OB=OF+BF=x+2,根据勾股定理得:OB2=OD2+BD2,即(x+2)2=x2+12,解得:x=2,即OD=OF=2,∴OB=2+2=4,∵Rt△ODB中,OD=OB,∴∠B=30°,∴∠DOB=60°,==,∴S扇形AOB=×2×2﹣=2﹣.则阴影部分的面积为S△ODB﹣S扇形DOF故阴影部分的面积为2﹣.22.某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.(1)求y与x之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润多少元?(3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?【考点】二次函数的应用.【分析】(1)根据售量y(件)与售价x(元/件)之间的函数关系即可得到结论.(2))设每星期利润为W元,构建二次函数利用二次函数性质解决问题.(3)列出不等式先求出售价的范围,再确定销售数量即可解决问题.【解答】解:(1)y=300+30(60﹣x)=﹣30x+2100.(2)设每星期利润为W元,W=(x﹣40)(﹣30x+2100)=﹣30(x﹣55)2+6750.∴x=55时,W最大值=6750.∴每件售价定为55元时,每星期的销售利润最大,最大利润6750元.(3)由题意(x﹣40)(﹣30x+2100)≥6480,解得52≤x≤58,当x=52时,销售300+30×8=540,当x=58时,销售300+30×2=360,∴该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装360件.23.阅读理解:我们知道,四边形具有不稳定性,容易变形,如图1,一个矩形发生变形后成为一个平行四边形,设这个平行四边形相邻两个内角中较小的一个内角为α,我们把的值叫做这个平行四边形的变形度.(1)若矩形发生变形后的平行四边形有一个内角是120度,则这个平行四边形的变形度是.猜想证明:(2)设矩形的面积为S1,其变形后的平行四边形面积为S2,试猜想S1,S2,之间的数量关系,并说明理由;拓展探究:(3)如图2,在矩形ABCD中,E是AD边上的一点,且AB2=AE•AD,这个矩形发生变形后为平行四边形A1B1C1D1,E1为E的对应点,连接B1E1,B1D1,若矩形ABCD的面积为4(m>0),平行四边形A1B1C1D1的面积为2(m>0),试求∠A1E1B1+∠A1D1B1的度数.【考点】相似形综合题.【分析】(1)根据平行四边形的性质得到α=60°,根据三角函数的定义即可得到结论;(2)如图1,设矩形的长和宽分别为a,b,变形后的平行四边形的高为h,根据平行四边形和矩形的面积公式即可得到结论;(3)由已知条件得到△B1A1E1∽△D1A1B1,由相似三角形的性质得到∠A1B1E1=∠A1D1B1,根据平行线的性质得到∠A1E1B1=∠C1B1E1,求得∠A1E1B1+∠A1D1B1=∠C1E1B1+∠A1B1E1=∠A1B1C1,证得∠A1B1C1=30°,于是得到结论.【解答】解:(1)∵平行四边形有一个内角是120度,∴α=60°,∴==;故答案为:;(2)=,理由:如图1,设矩形的长和宽分别为a,b,变形后的平行四边形的高为h,∴S1=ab,S2=ah,sinα=,∴==,∵=,∴=;(3)∵AB2=AE•AD,∴A1B12=A1E1•A1D1,即=,∵∠B1A1E1=∠D1A1B1,∴△B1A1E1∽△D1A1B1,∴∠A1B1E1=∠A1D1B1,∵A1D1∥B1C1,∴∠A1E1B1=∠C1B1E1,∴∠A1E1B1+∠A1D1B1=∠C1E1B1+∠A1B1E1=∠A1B1C1,由(2)知=可知==2,∴sin∠A1B1C1=,∴∠A1B1C1=30°,∴∠A1E1B1+∠A1D1B1=30°.24.如图1,在平面直角坐标系xOy中,点A的坐标为(0,1),取一点B(b,0),连接AB,做线段AB的垂直平分线l1,过点B作x轴的垂线l2,记l1,l2的交点为P.(1)当b=3时,在图1中补全图形(尺规作图,不写作法,保留作图痕迹);(2)小慧多次取不同数值b,得出相应的点P,并把这些点用平滑的曲线连接起来发现:这些点P竟然在一条曲线L上!①设点P的坐标为(x,y),试求y与x之间的关系式,并指出曲线L是哪种曲线;②设点P到x轴,y轴的距离分别是d1,d2,求d1+d2的范围,当d1+d2=8时,求点P的坐标;③将曲线L在直线y=2下方的部分沿直线y=2向上翻折,得到一条“W”形状的新曲线,若直线y=kx+3与这条“W”形状的新曲线有4个交点,直接写出k的取值范围.【考点】一次函数综合题.【分析】(1)利用尺规作出线段AB的垂直平分线,过点B作出x轴的垂线即可.(2)①分x>O或x<0两种情形利用勾股定理求出x与y的关系即可解决问题.②由题意得d1+d2=x2++|x|,列出方程即可解决问题.③求出直线y=2与抛物线y=x2+的两个交点为(﹣,2)和(,2),利用这两个特殊点,求出k的值即可解决问题.l2的交点为【解答】解;(1)线段AB的垂直平分线l1,过点B作x轴的垂线l2,直线l1与P,如图所示,(2)①当x>0时,如图2中,连接AP,作PE⊥y轴于E,∵l1垂直平分AB,∴PA=PB=y,在RT△APE中,∵EP=BO=x,AE=OE﹣OA=y﹣1,PA=y,∴y2=x2+(y﹣1)2,∴y=x2+,当x<0时,点P(x,y)同样满足y=x2+,∴曲线l就是二次函数y=x2+即曲线l是抛物线.②∵d1=x2+,d2=|x|,∴d1+d2=x2++|x|,当x=0时,d1+d2有最小值,∴d1+d2≥,∵d1+d2=8,则x2++|x|=8,当x≥0时,原方程化为x2++x﹣8=0,解得x=3或(﹣5舍弃),当x<0时,原方程化为x2+﹣x﹣8=0,解得x=﹣3或(5舍弃),∵x=±3时,y=5,∴点P坐标(3,5)或(﹣3,5).③如图3中,把y=2代入y=x2+,解得x=,∴直线y=2与抛物线y=x2+的两个交点为(﹣,2)和(,2).当直线y=kx+3经过点(﹣,2)时,2=﹣k+3∴k=,当直线y=kx+3经过点(,2)时,2=k+3,∴k=﹣,∴直线y=kx+3与这条“W”形状的曲线有四个交点时,k的取值范围是:﹣<k<.。

2020年湖北省咸宁市中考数学试卷(含解析)

2020年湖北省咸宁市中考数学试卷(含解析)

2020年湖北省咸宁市中考数学试卷(考试时间:120分钟满分:120分)一、选择题(每小题3分,共24分)1.早在两千多年前,中国人就已经开始使用负数,并运用到生产和生活中,比西方早一千多年.下列各式计算结果为负数的是()A.3+(﹣2)B.3﹣(﹣2)C.3×(﹣2)D.(﹣3)÷(﹣2)2.中国互联网络信息中心数据显示,随着二胎政策全面开放,升学就业竞争压力的不断增大,满足用户碎片化学习需求的在线教育用户规模持续增长,预计2020年中国在线教育用户规模将达到305000000人.将305000000用科学记数法表示为()A.0.305×1011B.3.05×108C.3.05×106D.305×1083.下列计算正确的是()A.3a﹣a=2 B.a•a2=a3C.a6÷a2=a3D.(3a2)2=6a44.如图是由5个完全相同的小正方体组成的几何体,则该几何体的左视图是()A.B.C.D.5.如图是甲、乙两名射击运动员某节训练课的5次射击成绩的折线统计图,下列判断正确的是()A.乙的最好成绩比甲高B.乙的成绩的平均数比甲小C.乙的成绩的中位数比甲小D.乙的成绩比甲稳定6.如图,在⊙O中,OA=2,∠C=45°,则图中阴影部分的面积为()A.﹣B.π﹣C.﹣2 D.π﹣27.在平面直角坐标系xOy中,对于横、纵坐标相等的点称为“好点”.下列函数的图象中不存在“好点”的是()A.y=﹣x B.y=x+2 C.y=D.y=x2﹣2x8.如图,在矩形ABCD中,AB=2,BC=2,E是BC的中点,将△ABE沿直线AE翻折,点B落在点F处,连结CF,则cos∠ECF的值为()A.B.C.D.二、填空题(每小题3分,共24分)9.点A在数轴上的位置如图所示,则点A表示的数的相反数是.10.因式分解:mx2﹣2mx+m=.11.如图,请填写一个条件,使结论成立:∵,∴a∥b.12.若关于x的一元二次方程(x+2)2=n有实数根,则n的取值范围是.13.某校开展以“我和我的祖国”为主题的“大合唱”活动,七年级准备从小明、小东、小聪三名男生和小红、小慧两名女生中各随机选出一名男生和一名女生担任领唱,则小聪和小慧被同时选中的概率是.14.如图,海上有一灯塔P,位于小岛A北偏东60°方向上,一艘轮船从小岛A出发,由西向东航行24nmile 到达B处,这时测得灯塔P在北偏东30°方向上,如果轮船不改变航向继续向东航行,当轮船到达灯塔P 的正南方,此时轮船与灯塔P的距离是nmile.(结果保留一位小数,≈1.73)15.按一定规律排列的一列数:3,32,3﹣1,33,34,37,3﹣11,318,…,若a,b,c表示这列数中的连续三个数,猜想a,b,c满足的关系式是.16.如图,四边形ABCD是边长为2的正方形,点E是边BC上一动点(不与点B,C重合),∠AEF=90°,且EF交正方形外角的平分线CF于点F,交CD于点G,连接AF,有下列结论:①△ABE∽△ECG;②AE=EF;③∠DAF=∠CFE;④△CEF的面积的最大值为1.其中正确结论的序号是.(把正确结论的序号都填上)三、解答题(共72分)17.(8分)(1)计算:|1﹣|﹣2sin45°+(﹣2020)0;(2)解不等式组:18.(7分)如图,在▱ABCD中,以点B为圆心,BA长为半径画弧,交BC于点E,在AD上截取AF=BE.连接EF.(1)求证:四边形ABEF是菱形;(2)请用无刻度的直尺在▱ABCD内找一点P,使∠APB=90°.(标出点P的位置,保留作图痕迹,不写作法)19.(8分)如图,已知一次函数y1=kx+b与反比例函数y2=的图象在第一、三象限分别交于A(6,1),B(a,﹣3)两点,连接OA,OB.(1)求一次函数和反比例函数的解析式;(2)△AOB的面积为;(3)直接写出y1>y2时x的取值范围.20.(8分)随着科技的进步和网络资源的丰富,在线阅读已成为很多人选择的阅读方式.为了解同学们在线阅读情况,某校园小记者随机调查了本校部分同学,并统计他们平均每天的在线阅读时间t(单位:min),然后利用所得数据绘制成如图不完整的统计图表.在线阅读时间频数分布表组别在线阅读时间t 人数A 10≤t<30 4B 30≤t<50 8C 50≤t<70 aD 70≤t<90 16E 90≤t<110 2根据以上图表,解答下列问题:(1)这次被调查的同学共有人,a=,m=;(2)求扇形统计图中扇形D的圆心角的度数;(3)若该校有950名学生,请估计全校有多少学生平均每天的在线阅读时间不少于50min?21.(9分)如图,在Rt△ABC中,∠C=90°,点O在AC上,以OA为半径的半圆O交AB于点D,交AC于点E,过点D作半圆O的切线DF,交BC于点F.(1)求证:BF=DF;(2)若AC=4,BC=3,CF=1,求半圆O的半径长.22.(10分)5月18日,我市九年级学生安全有序开学复课.为切实做好疫情防控工作,开学前夕,我市某校准备在民联药店购买口罩和水银体温计发放给每个学生.已知每盒口罩有100只,每盒水银体温计有10支,每盒口罩价格比每盒水银体温计价格多150元.用1200元购买口罩盒数与用300元购买水银体温计所得盒数相同.(1)求每盒口罩和每盒水银体温计的价格各是多少元?(2)如果给每位学生发放2只口罩和1支水银体温计,且口罩和水银体温计均整盒购买.设购买口罩m盒(m为正整数),则购买水银体温计多少盒能和口罩刚好配套?请用含m的代数式表示.(3)在民联药店累计购医用品超过1800元后,超出1800元的部分可享受8折优惠.该校按(2)中的配套方案购买,共支付w元,求w关于m的函数关系式.若该校九年级有900名学生,需要购买口罩和水银体温计各多少盒?所需总费用为多少元?23.(10分)定义:有一组对角互余的四边形叫做对余四边形.理解:(1)若四边形ABCD是对余四边形,则∠A与∠C的度数之和为;证明:(2)如图1,MN是⊙O的直径,点A,B,C在⊙O上,AM,CN相交于点D.求证:四边形ABCD是对余四边形;探究:(3)如图2,在对余四边形ABCD中,AB=BC,∠ABC=60°,探究线段AD,CD和BD之间有怎样的数量关系?写出猜想,并说明理由.24.(12分)如图,在平面直角坐标系中,直线y=﹣x+2与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c过点B且与直线相交于另一点C(,).(1)求抛物线的解析式;(2)点P是抛物线上的一动点,当∠PAO=∠BAO时,求点P的坐标;(3)点N(n,0)(0<n<)在x轴的正半轴上,点M(0,m)是y轴正半轴上的一动点,且满足∠MNC =90°.①求m与n之间的函数关系式;②当m在什么范围时,符合条件的N点的个数有2个?参考答案与试题解析一、1.【解答】解:A.3+(﹣2)=1,故A不符合题意;B.3﹣(﹣2)=3+2=5,故B不符合题意;C.3×(﹣2)=﹣6,故C符合题意;D.(﹣3)÷(﹣2)=1.5,故D不符合题意.综上,只有C计算结果为负.故选:C.2.【解答】解:305000000=3.05×108,故选:B.3.【解答】解:3a﹣a=a,因此选项A计算错误,不符合题意;a•a2=a3,因此选项B计算正确,符合题意;a6÷a2=a4,因此选项C计算错误,不符合题意;(3a2)2=9a4≠6a4,因此选项D计算错误,不符合题意.故选:B.4.【解答】解:从左面看有两层,底层是2个正方形,上层的左边是1个正方形.故选:A.5.【解答】解:由折线图可知,甲的5次射击成绩为6,7,10,8,9,乙的5次射击成绩为8,9,8,7,8,∵10>9,∴甲的最好成绩比乙高,故选项A错误,不符合题意;∵=(6+7+10+8+9)=8,=(8+9+8+7+8)=8,∴乙的成绩的平均数与甲相等,故选项B错误,不符合题意;∵甲的成绩按从小到大的顺序排列为:6,7,8,9,10,所以中位数为8,乙的成绩按从小到大的顺序排列为:7,8,8,8,9,所以中位数为8,∴乙的成绩的中位数与甲相等,故选项C错误,不符合题意;∵=[(6﹣8)2+(7﹣8)2+(8﹣8)2+(9﹣8)2+(10﹣8)2]=2,=[(7﹣8)2+3×(8﹣8)2+(9﹣8)2]=0.4,2>0.4,∴乙的成绩比甲稳定,故选项D正确,符合题意.故选:D.6.【解答】解:∵∠C=45°,∴∠AOB=90°,∴S阴影=S扇形AOB﹣S△AOB=﹣=π﹣2.故选:D.7.【解答】解:∵横、纵坐标相等的点称为“好点”,∴当x=y时,A.x=﹣x,解得x=0;不符合题意;B.x=x+2,此方程无解,符合题意;C.x2=2,解得x=±,不符合题意;D.x=x2﹣2x,解得x1=0,x2=3,不符合题意.故选:B.8.【解答】解:如图,∵四边形ABCD是矩形,∴∠B=90°,∵E是BC的中点,BC=2,∴BE=CE=BC=,∴AE===3,由翻折变换的性质得:△AFE≌△ABE,∴∠AEF=∠AEB,EF=BE=,∴EF=CE,∴∠EFC=∠ECF,∵∠BEF=∠EFC+∠ECF,∴∠AEB=∠ECF,∴cos∠ECF=cos∠AEB==.故选:C.二、9.【解答】解:∵点A在数轴上表示的数是3,∴点A表示的数的相反数是﹣3.故答案为:﹣3.10.【解答】解:mx2﹣2mx+m=m(x2﹣2x+1)=m(x﹣1)2,11.【解答】解:∵∠1=∠4或∠2=∠4或∠3+∠4=180°,∴a∥b.故答案为:∠1=∠4或∠2=∠4或∠3+∠4=180°.12.【解答】解:原方程可变形为x2+4x+4﹣n=0.∵该方程有实数根,∴△=42﹣4×1×(4﹣n)≥0,解得:n≥0.故答案为:n≥0.13.【解答】解:利用列表法表示所有可能出现的结果如下:共有6种可能出现的结果,其中小聪和小慧同时被选中的有1种,∴P(小聪和小慧)=,故答案为:.14.【解答】解:过P作PD⊥AB于D.∵∠PAB=30°,∠PBD=60°,∴∠PAB=∠APB,∴BP=AB=24nmile.在直角△PBD中,PD=BP•sin∠PBD=24×=12≈20.8(nmile).即此时轮船与灯塔P的距离约为20.8nmile.故答案为20.8.15.【解答】解:∵3,32,3﹣1,33,3﹣4,37,3﹣11,318,…,1﹣2=﹣1,2﹣(﹣1)=3,﹣1﹣3=﹣4,3﹣(﹣4)=7,﹣4﹣7=﹣11,7﹣(﹣11)=18,…,∴a,b,c满足的关系式是a﹣b=c.故答案为:a﹣b=c.16.【解答】解:①∵四边形ABCD是正方形,∴∠B=∠ECG=90°,∵∠AEF=90°,∴∠AEB+∠CEG=∠AEB+∠BAE,∴∠BAE=∠CEG,∴△ABE∽△ECG,故①正确;②在BA上截取BM=BE,如图1,∵四边形ABCD为正方形,∴∠B=90°,BA=BC,∴△BEM为等腰直角三角形,∴∠BME=45°,∴∠AME=135°,∵BA﹣BM=BC﹣BE,∴AM=CE,∵CF为正方形外角平分线,∴∠DCF=45°,∴∠ECF=135°,∵∠AEF=90°,∴∠AEB+∠FEC=90°,而∠AEB+∠BAE=90°,∴∠BAE=∠FEC,在△AME和△ECF中,∴△AME≌△ECF,∴AE=EF,故②正确;③∵AE=EF,∠AEF=90°,∴∠EAF=45°,∴∠BAE+∠DAF=45°,∵∠BAE+∠CFE=∠CEF+∠CFE=45°,∴∠DAF=∠CFE,故③正确;④设BE=x,则BM=x,AM=AB﹣BM=4﹣x,S△ECF=S△AME=•x•(2﹣x)=﹣(x﹣1)2+,当x=1时,S△ECF有最大值,故④错误.故答案为:①②③.三、17.【解答】解:(1)原式=﹣1﹣2×+1 =﹣1﹣+1=0;(2)解不等式﹣(x﹣1)>3,得:x<﹣2,解不等式2x+9>3,得:x>﹣3,则不等式组的解集为﹣3<x<﹣2.18.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AF∥BE,∵AF=BE,∴四边形ABEF是平行四边形,∵BA=BE,∴四边形ABEF是菱形;(2)如图所示:点P即为所求:19.【解答】解:(1)把A(6,1)代入y2=中,解得:m=6,故反比例函数的解析式为y2=;把B(a,﹣3)代入y2=,解得a=﹣2,故B(﹣2,﹣3),把A(6,1),B(﹣2,﹣3)代入y1=kx+b,得,解得:,故一次函数解析式为y1=x﹣2;(2)如图,设一次函数y1=x﹣2与x轴交于点C,令y=0,得x=4.∴点C的坐标是(4,0),∴S△AOB=S△AOC+S△BOC=×4×1+×4×3=8.故答案为8;(3)由图象可知,当﹣2<x<0或x>6时,直线y1=kx+b落在双曲线y2=上方,即y1>y2,所以y1>y2时x的取值范围是﹣2<x<0或x>6.20.【解答】解:(1)这次被调查的同学共有8÷16%=50(人),a=50×40%=20,∵m%==8%,∴m=8.故答案为:50,20,8;(2)扇形统计图中扇形D的圆心角的度数为:360°×=115.2°;(3)950×=722(人),答:估计全校有多少学生平均每天的在线阅读时间不少于50min的有722人.21.【解答】解:(1)连接OD,如图1,∵过点D作半圆O的切线DF,交BC于点F,∴∠ODF=90°,∴∠ADO+∠BDF=90°,∵OA=OD,∴∠OAD=∠ODA,∴∠OAD+∠BDF=90°,∵∠C=90°,∴∠OAD+∠B=90°,∴∠B=∠BDF,∴BF=DF;(2)连接OF,OD,如图2,设圆的半径为r,则OD=OE=r,∵AC=4,BC=3,CF=1,∴OC=4﹣r,DF=BF=3﹣1=2,∵OD2+DF2=OF2=OC2+CF2,∴r2+22=(4﹣r)2+12,∴.故圆的半径为.22.【解答】解:(1)设每盒口罩和每盒水银体温计的价格各是x元,(x﹣150)元,根据题意,得=,解得x=200,经检验,x=200是原方程的解,∴x﹣150=50,答:每盒口罩和每盒水银体温计的价格各是200元、50元;(2)设购买水银体温计y盒能和口罩刚好配套,根据题意,得100m=2×10y,则y=5m,答:购买水银体温计5m盒能和口罩刚好配套;(3)若200m+50×5m≤1800,∴450m≤1800,∴m≤4,即m≤4时,w=450m;若m>4,则w=1800+(450m﹣1800)×0.8=360m+360,综上所述:w=.若该校九年级有900名学生,需要购买口罩:900×2=1800(支),水银体温计:900×1=900(支),此时m=1800÷100=18(盒),y=5×18=90(盒),则w=360×18+360=6840(元).答:购买口罩和水银体温计各18盒、90盒,所需总费用为6840元.23.【解答】(1)解:∵四边形ABCD是对余四边形,∴∠A+∠C=90°或∠A+∠C=360°﹣90°=270°,故答案为:90°或270°;(2)证明:∵MN是⊙O的直径,点A,B,C在⊙O上,∴∠BAM+∠BCN=90°,即∠BAD+∠BCD=90°,∴四边形ABCD是对余四边形;(3)解:线段AD,CD和BD之间数量关系为:AD2+CD2=BD2,理由如下:∵对余四边形ABCD中,∠ABC=60°,∴∠ADC=30°,∵AB=BC,∴将△BCD绕点B逆时针旋转60°,得到△BAF,连接FD,如图3所示:∴△BCD≌△BAF,∠FBD=60°∴BF=BD,AF=CD,∠BDC=∠BFA,∴△BFD是等边三角形,∴BF=BD=DF,∵∠ADC=30°,∴∠ADB+∠BDC=30°,∴∠BFA+∠ADB=30°,∵∠FBD+∠BFA+∠ADB+∠AFD+∠ADF=180°,∴60°+30°+∠AFD+∠ADF=180°,∴∠AFD+∠ADF=90°,∴∠FAD=90°,∴AD2+AF2=DF2,∴AD2+CD2=BD2.24.【解答】解:(1)直线y=﹣x+2与x轴交于点A,与y轴交于点B,则点A、B的坐标分别为(4,0)、(0,2),将点B、C的坐标代入抛物线表达式得,解得,故抛物线的表达式为:y=﹣x2+x+2①;(2)如图1,作点B关于x轴的对称点B′(0,﹣2),连接AB′交抛物线于点P(P′),则∠PAO=∠BAO,由点A、B′的坐标得,直线AB′的表达式为:y=x﹣2②,联立①②并解得:x=3或﹣2,故点P的坐标为(3,﹣)或(﹣2,﹣3);(3)①过点C作CH⊥x轴于点H,∵∠MNC=90°,∴∠MNO+∠CNH=90°,∠CNH+∠NCH=90°,∴∠MNO=∠NCH,∴tan∠MNO=tan∠NCH,即,即,解得:m=﹣n2+n;②m=﹣n2+n,∵<0,故m有最大值,当n=时,m的最大值为,而m>0,故0<m<时,符合条件的N点的个数有2个。

湖北省咸宁市2021年中考数学试卷(含解析)

湖北省咸宁市2021年中考数学试卷(含解析)

2021年湖北省咸宁市中考数学试卷一、精心选一选(本大题共8小题,每小题3分,满分24分.在每小题给出的四个选项中只有一项是符合题目要求的,请在答题卷上把正确答案的代号涂黑)1.(3分)早在两千多年前,中国人就已经开始使用负数,并运用到生产和生活中,比西方早一千多年.下列各式计算结果为负数的是()A.3+(﹣2)B.3﹣(﹣2)C.3×(﹣2)D.(﹣3)÷(﹣2)2.(3分)中国互联网络信息中心数据显示,随着二胎政策全面开放,升学就业竞争压力的不断增大,满足用户碎片化学习需求的在线教育用户规模持续增长,预计2021年中国在线教育用户规模将达到305000000人.将305000000用科学记数法表示为()A.0.305×1011B.3.05×108C.3.05×106D.305×1083.(3分)下列计算正确的是()A.3a﹣a=2B.a•a2=a3C.a6÷a2=a3D.(3a2)2=6a44.(3分)如图是由5个完全相同的小正方体组成的几何体,则该几何体的左视图是()A.B.C.D.5.(3分)如图是甲、乙两名射击运动员某节训练课的5次射击成绩的折线统计图,下列判断正确的是()A.乙的最好成绩比甲高B.乙的成绩的平均数比甲小C.乙的成绩的中位数比甲小D.乙的成绩比甲稳定6.(3分)如图,在⊙O中,OA=2,∠C=45°,则图中阴影部分的面积为()A.﹣B.π﹣C.﹣2D.π﹣27.(3分)在平面直角坐标系xOy中,对于横、纵坐标相等的点称为“好点”.下列函数的图象中不存在“好点”的是()A.y=﹣x B.y=x+2C.y=D.y=x2﹣2x8.(3分)如图,在矩形ABCD中,AB=2,BC=2,E是BC的中点,将△ABE沿直线AE翻折,点B落在点F 处,连结CF,则cos∠ECF的值为()A.B.C.D.二、细心填一填(本大题共8小题,每小题3分,满分24分.请把答案填在答题卷相应题号的横线上)9.(3分)点A在数轴上的位置如图所示,则点A表示的数的相反数是.10.(3分)因式分解:mx2﹣2mx+m=.11.(3分)如图,请填写一个条件,使结论成立:∵,∴a∥b.12.(3分)若关于x的一元二次方程(x+2)2=n有实数根,则n的取值范围是.13.(3分)某校开展以“我和我的祖国”为主题的“大合唱”活动,七年级准备从小明、小东、小聪三名男生和小红、小慧两名女生中各随机选出一名男生和一名女生担任领唱,则小聪和小慧被同时选中的概率是.14.(3分)如图,海上有一灯塔P,位于小岛A北偏东60°方向上,一艘轮船从小岛A出发,由西向东航行24nmile到达B处,这时测得灯塔P在北偏东30°方向上,如果轮船不改变航向继续向东航行,当轮船到达灯塔P的正南方,此时轮船与灯塔P的距离是nmile.(结果保留一位小数,≈1.73)15.(3分)按一定规律排列的一列数:3,32,3﹣1,33,34,37,3﹣11,318,…,若a,b,c表示这列数中的连续三个数,猜想a,b,c满足的关系式是.16.(3分)如图,四边形ABCD是边长为2的正方形,点E是边BC上一动点(不与点B,C重合),∠AEF=90°,且EF交正方形外角的平分线CF于点F,交CD于点G,连接AF,有下列结论:①△ABE∽△ECG;②AE=EF;③∠DAF=∠CFE;④△CEF的面积的最大值为1.其中正确结论的序号是.(把正确结论的序号都填上)三、专心解一解(本大题共8小题,满分72分.请认真读题,冷静思考,解答题应写出必要的文字说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的位置)17.(8分)(1)计算:|1﹣|﹣2sin45°+(﹣2021)0;(2)解不等式组:18.(7分)如图,在▱ABCD中,以点B为圆心,BA长为半径画弧,交BC于点E,在AD上截取AF=BE.连接EF.(1)求证:四边形ABEF是菱形;(2)请用无刻度的直尺在▱ABCD内找一点P,使∠APB=90°.(标出点P的位置,保留作图痕迹,不写作法)19.(8分)如图,已知一次函数y1=kx+b与反比例函数y2=的图象在第一、三象限分别交于A(6,1),B(a,﹣3)两点,连接OA,OB.(1)求一次函数和反比例函数的解析式;(2)△AOB的面积为;(3)直接写出y1>y2时x的取值范围.20.(8分)随着科技的进步和网络资源的丰富,在线阅读已成为很多人选择的阅读方式.为了解同学们在线阅读情况,某校园小记者随机调查了本校部分同学,并统计他们平均每天的在线阅读时间t(单位:min),然后利用所得数据绘制成如图不完整的统计图表.在线阅读时间频数分布表组别在线阅读时间t人数A10≤t<304B30≤t<508C50≤t<70aD70≤t<9016E90≤t<1102根据以上图表,解答下列问题:(1)这次被调查的同学共有人,a=,m=;(2)求扇形统计图中扇形D的圆心角的度数;(3)若该校有950名学生,请估计全校有多少学生平均每天的在线阅读时间不少于50min?21.(9分)如图,在Rt△ABC中,∠C=90°,点O在AC上,以OA为半径的半圆O交AB于点D,交AC于点E,过点D作半圆O的切线DF,交BC于点F.(1)求证:BF=DF;(2)若AC=4,BC=3,CF=1,求半圆O的半径长.22.(10分)5月18日,我市九年级学生安全有序开学复课.为切实做好疫情防控工作,开学前夕,我市某校准备在民联药店购买口罩和水银体温计发放给每个学生.已知每盒口罩有100只,每盒水银体温计有10支,每盒口罩价格比每盒水银体温计价格多150元.用1200元购买口罩盒数与用300元购买水银体温计所得盒数相同.(1)求每盒口罩和每盒水银体温计的价格各是多少元?(2)如果给每位学生发放2只口罩和1支水银体温计,且口罩和水银体温计均整盒购买.设购买口罩m盒(m 为正整数),则购买水银体温计多少盒能和口罩刚好配套?请用含m的代数式表示.(3)在民联药店累计购医用品超过1800元后,超出1800元的部分可享受8折优惠.该校按(2)中的配套方案购买,共支付w元,求w关于m的函数关系式.若该校九年级有900名学生,需要购买口罩和水银体温计各多少盒?所需总费用为多少元?23.(10分)定义:有一组对角互余的四边形叫做对余四边形.理解:(1)若四边形ABCD是对余四边形,则∠A与∠C的度数之和为;证明:(2)如图1,MN是⊙O的直径,点A,B,C在⊙O上,AM,CN相交于点D.求证:四边形ABCD是对余四边形;探究:(3)如图2,在对余四边形ABCD中,AB=BC,∠ABC=60°,探究线段AD,CD和BD之间有怎样的数量关系?写出猜想,并说明理由.24.(12分)如图,在平面直角坐标系中,直线y=﹣x+2与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c 过点B且与直线相交于另一点C(,).(1)求抛物线的解析式;(2)点P是抛物线上的一动点,当∠P AO=∠BAO时,求点P的坐标;(3)点N(n,0)(0<n<)在x轴的正半轴上,点M(0,m)是y轴正半轴上的一动点,且满足∠MNC=90°.①求m与n之间的函数关系式;②当m在什么范围时,符合条件的N点的个数有2个?2021年湖北省咸宁市中考数学试卷试题解析一、精心选一选(本大题共8小题,每小题3分,满分24分.在每小题给出的四个选项中只有一项是符合题目要求的,请在答题卷上把正确答案的代号涂黑)1.解:A.3+(﹣2)=1,故A不符合题意;B.3﹣(﹣2)=3+2=5,故B不符合题意;C.3×(﹣2)=﹣6,故C符合题意;D.(﹣3)÷(﹣2)=1.5,故D不符合题意.综上,只有C计算结果为负.故选:C.2.解:305000000=3.05×108,故选:B.3.解:3a﹣a=a,因此选项A计算错误,不符合题意;a•a2=a3,因此选项B计算正确,符合题意;a6÷a2=a4,因此选项C计算错误,不符合题意;(3a2)2=9a4≠6a4,因此选项D计算错误,不符合题意.故选:B.4.解:从左面看有两层,底层是2个正方形,上层的左边是1个正方形.故选:A.5.解:由折线图可知,甲的5次射击成绩为6,7,10,8,9,乙的5次射击成绩为8,9,8,7,8,∵10>9,∴甲的最好成绩比乙高,故选项A错误,不符合题意;∵=(6+7+10+8+9)=8,=(8+9+8+7+8)=8,∴乙的成绩的平均数与甲相等,故选项B错误,不符合题意;∵甲的成绩按从小到大的顺序排列为:6,7,8,9,10,所以中位数为8,乙的成绩按从小到大的顺序排列为:7,8,8,8,9,所以中位数为8,∴乙的成绩的中位数与甲相等,故选项C错误,不符合题意;∵=[(6﹣8)2+(7﹣8)2+(8﹣8)2+(9﹣8)2+(10﹣8)2]=2,=[(7﹣8)2+3×(8﹣8)2+(9﹣8)2]=0.4,2>0.4,∴乙的成绩比甲稳定,故选项D正确,符合题意.故选:D.6.解:∵∠C=45°,∴∠AOB=90°,∴S阴影=S扇形AOB﹣S△AOB=﹣=π﹣2.故选:D.7.解:∵横、纵坐标相等的点称为“好点”,∴当x=y时,A.x=﹣x,解得x=0;不符合题意;B.x=x+2,此方程无解,符合题意;C.x2=2,解得x=±,不符合题意;D.x=x2﹣2x,解得x1=0,x2=3,不符合题意.故选:B.8.解:如图,∵四边形ABCD是矩形,∴∠B=90°,∵E是BC的中点,BC=2,∴BE=CE=BC=,∴AE===3,由翻折变换的性质得:△AFE≌△ABE,∴∠AEF=∠AEB,EF=BE=,∴EF=CE,∴∠EFC=∠ECF,∵∠BEF=∠EFC+∠ECF,∴∠AEB=∠ECF,∴cos∠ECF=cos∠AEB==.故选:C.二、细心填一填(本大题共8小题,每小题3分,满分24分.请把答案填在答题卷相应题号的横线上)9.解:∵点A在数轴上表示的数是3,∴点A表示的数的相反数是﹣3.故答案为:﹣3.10.解:mx2﹣2mx+m=m(x2﹣2x+1)=m(x﹣1)2,11.解:∵∠1=∠4或∠2=∠4或∠3+∠4=180°,∴a∥b.故答案为:∠1=∠4或∠2=∠4或∠3+∠4=180°.12.解:原方程可变形为x2+4x+4﹣n=0.∵该方程有实数根,∴△=42﹣4×1×(4﹣n)≥0,解得:n≥0.故答案为:n≥0.13.解:利用列表法表示所有可能出现的结果如下:共有6种可能出现的结果,其中小聪和小慧同时被选中的有1种,∴P(小聪和小慧)=,故答案为:.14.解:过P作PD⊥AB于D.∵∠P AB=30°,∠PBD=60°,∴∠P AB=∠APB,∴BP=AB=24nmile.在直角△PBD中,PD=BP•sin∠PBD=24×=12≈20.8(nmile).即此时轮船与灯塔P的距离约为20.8nmile.故答案为20.8.15.解:∵3,32,3﹣1,33,3﹣4,37,3﹣11,318,…,1﹣2=﹣1,2﹣(﹣1)=3,﹣1﹣3=﹣4,3﹣(﹣4)=7,﹣4﹣7=﹣11,7﹣(﹣11)=18,…,∴a,b,c满足的关系式是a﹣b=c.故答案为:a﹣b=c.16.解:①∵四边形ABCD是正方形,∴∠B=∠ECG=90°,∵∠AEF=90°,∴∠AEB+∠CEG=∠AEB+∠BAE,∴∠BAE=∠CEG,∴△ABE∽△ECG,故①正确;②在BA上截取BM=BE,如图1,∵四边形ABCD为正方形,∴∠B=90°,BA=BC,∴△BEM为等腰直角三角形,∴∠BME=45°,∴∠AME=135°,∵BA﹣BM=BC﹣BE,∴AM=CE,∵CF为正方形外角平分线,∴∠DCF=45°,∴∠ECF=135°,∵∠AEF=90°,∴∠AEB+∠FEC=90°,而∠AEB+∠BAE=90°,∴∠BAE=∠FEC,在△AME和△ECF中,∴△AME≌△ECF,∴AE=EF,故②正确;③∵AE=EF,∠AEF=90°,∴∠EAF=45°,∴∠BAE+∠DAF=45°,∵∠BAE+∠CFE=∠CEF+∠CFE=45°,∴∠DAF=∠CFE,故③正确;④设BE=x,则BM=x,AM=AB﹣BM=4﹣x,S△ECF=S△AME=•x•(2﹣x)=﹣(x﹣1)2+,当x=1时,S△ECF有最大值,故④错误.故答案为:①②③.三、专心解一解(本大题共8小题,满分72分.请认真读题,冷静思考,解答题应写出必要的文字说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的位置)17.解:(1)原式=﹣1﹣2×+1=﹣1﹣+1=0;(2)解不等式﹣(x﹣1)>3,得:x<﹣2,解不等式2x+9>3,得:x>﹣3,则不等式组的解集为﹣3<x<﹣2.18.(1)证明:∵四边形ABCD是平行四边形,∴AF∥BE,∵AF=BE,∴四边形ABEF是平行四边形,∵BA=BE,∴四边形ABEF是菱形;(2)如图所示:点P即为所求:19.解:(1)把A(6,1)代入y2=中,解得:m=6,故反比例函数的解析式为y2=;把B(a,﹣3)代入y2=,解得a=﹣2,故B(﹣2,﹣3),把A(6,1),B(﹣2,﹣3)代入y1=kx+b,得,解得:,故一次函数解析式为y1=x﹣2;(2)如图,设一次函数y1=x﹣2与x轴交于点C,令y=0,得x=4.∴点C的坐标是(4,0),∴S△AOB=S△AOC+S△BOC=×4×1+×4×3=8.故答案为8;(3)由图象可知,当﹣2<x<0或x>6时,直线y1=kx+b落在双曲线y2=上方,即y1>y2,所以y1>y2时x的取值范围是﹣2<x<0或x>6.20.解:(1)这次被调查的同学共有8÷16%=50(人),a=50×40%=20,∵m%==8%,∴m=8.故答案为:50,20,8;(2)扇形统计图中扇形D的圆心角的度数为:360°×=115.2°;(3)950×=722(人),答:估计全校有多少学生平均每天的在线阅读时间不少于50min的有722人.21.解:(1)连接OD,如图1,∵过点D作半圆O的切线DF,交BC于点F,∴∠ODF=90°,∴∠ADO+∠BDF=90°,∵OA=OD,∴∠OAD=∠ODA,∴∠OAD+∠BDF=90°,∵∠C=90°,∴∠OAD+∠B=90°,∴∠B=∠BDF,∴BF=DF;(2)连接OF,OD,如图2,设圆的半径为r,则OD=OE=r,∵AC=4,BC=3,CF=1,∴OC=4﹣r,DF=BF=3﹣1=2,∵OD2+DF2=OF2=OC2+CF2,∴r2+22=(4﹣r)2+12,∴.故圆的半径为.22.解:(1)设每盒口罩和每盒水银体温计的价格各是x元,(x﹣150)元,根据题意,得=,解得x=200,经检验,x=200是原方程的解,∴x﹣150=50,答:每盒口罩和每盒水银体温计的价格各是200元、50元;(2)设购买水银体温计y盒能和口罩刚好配套,根据题意,得100m=2×10y,则y=5m,答:购买水银体温计5m盒能和口罩刚好配套;(3)若200m+50×5m≤1800,∴450m≤1800,∴m≤4,即m≤4时,w=450m;若m>4,则w=1800+(450m﹣1800)×0.8=360m+360,综上所述:w=.若该校九年级有900名学生,需要购买口罩:900×2=1800(支),水银体温计:900×1=900(支),此时m=1800÷100=18(盒),y=5×18=90(盒),则w=360×18+360=6840(元).答:购买口罩和水银体温计各18盒、90盒,所需总费用为6840元.23.(1)解:∵四边形ABCD是对余四边形,∴∠A+∠C=90°或∠A+∠C=360°﹣90°=270°,故答案为:90°或270°;(2)证明:∵MN是⊙O的直径,点A,B,C在⊙O上,∴∠BAM+∠BCN=90°,即∠BAD+∠BCD=90°,∴四边形ABCD是对余四边形;(3)解:线段AD,CD和BD之间数量关系为:AD2+CD2=BD2,理由如下:∵对余四边形ABCD中,∠ABC=60°,∴∠ADC=30°,∵AB=BC,∴将△BCD绕点B逆时针旋转60°,得到△BAF,连接FD,如图3所示:∴△BCD≌△BAF,∠FBD=60°∴BF=BD,AF=CD,∠BDC=∠BF A,∴△BFD是等边三角形,∴BF=BD=DF,∵∠ADC=30°,∴∠ADB+∠BDC=30°,∴∠BF A+∠ADB=30°,∵∠FBD+∠BF A+∠ADB+∠AFD+∠ADF=180°,∴60°+30°+∠AFD+∠ADF=180°,∴∠AFD+∠ADF=90°,∴∠F AD=90°,∴AD2+AF2=DF2,∴AD2+CD2=BD2.24.解:(1)直线y=﹣x+2与x轴交于点A,与y轴交于点B,则点A、B的坐标分别为(4,0)、(0,2),将点B、C的坐标代入抛物线表达式得,解得,故抛物线的表达式为:y=﹣x2+x+2①;(2)如图1,作点B关于x轴的对称点B′(0,﹣2),连接AB′交抛物线于点P(P′),则∠P AO=∠BAO,由点A、B′的坐标得,直线AB′的表达式为:y=x﹣2②,联立①②并解得:x=3或﹣2,故点P的坐标为(3,﹣)或(﹣2,﹣3);(3)①过点C作CH⊥x轴于点H,∵∠MNC=90°,∴∠MNO+∠CNH=90°,∠CNH+∠NCH=90°,∴∠MNO=∠NCH,∴tan∠MNO=tan∠NCH,即,即,解得:m=﹣n2+n;②m=﹣n2+n,∵<0,故m有最大值,当n=时,m的最大值为,而m>0,故0<m<时,符合条件的N点的个数有2个.。

2020年湖北省咸宁市中考数学试题及参考答案(word解析版)

2020年湖北省咸宁市中考数学试题及参考答案(word解析版)

湖北省咸宁市2020年初中毕业生学业考试数学试卷(满分120分,考试时间120分钟)一、精心选一选(本大题共8小题,每小题3分,满分24分.在每小题给出的四个选项中只有一项是符合题目要求的)1.早在两千多年前,中国人就已经开始使用负数,并运用到生产和生活中,比西方早一千多年.下列各式计算结果为负数的是()A.3+(﹣2)B.3﹣(﹣2)C.3×(﹣2)D.(﹣3)÷(﹣2)2.中国互联网络信息中心数据显示,随着二胎政策全面开放,升学就业竞争压力的不断增大,满足用户碎片化学习需求的在线教育用户规模持续增长,预计2020年中国在线教育用户规模将达到305000000人.将305000000用科学记数法表示为()A.0.305×1011B.3.05×108C.3.05×106D.305×1083.下列计算正确的是()A.3a﹣a=2 B.a•a2=a3C.a6÷a2=a3D.(3a2)2=6a44.如图是由5个完全相同的小正方体组成的几何体,则该几何体的左视图是()A.B.C.D.5.如图是甲、乙两名射击运动员某节训练课的5次射击成绩的折线统计图,下列判断正确的是()A.乙的最好成绩比甲高B.乙的成绩的平均数比甲小C.乙的成绩的中位数比甲小D.乙的成绩比甲稳定6.如图,在⊙O中,OA=2,∠C=45°,则图中阴影部分的面积为()A.﹣B.π﹣C.﹣2 D.π﹣27.在平面直角坐标系xOy中,对于横、纵坐标相等的点称为“好点”.下列函数的图象中不存在“好点”的是()A.y=﹣x B.y=x+2 C.y=D.y=x2﹣2x8.如图,在矩形ABCD中,AB=2,BC=2,E是BC的中点,将△ABE沿直线AE翻折,点B落在点F处,连结CF,则cos∠ECF的值为()A.B.C.D.二、细心填一填(本大题共8小题,每小题3分,满分24分)9.点A在数轴上的位置如图所示,则点A表示的数的相反数是.10.因式分解:mx2﹣2mx+m=.11.如图,请填写一个条件,使结论成立:∵,∴a∥b.12.若关于x的一元二次方程(x+2)2=n有实数根,则n的取值范围是.13.某校开展以“我和我的祖国”为主题的“大合唱”活动,七年级准备从小明、小东、小聪三名男生和小红、小慧两名女生中各随机选出一名男生和一名女生担任领唱,则小聪和小慧被同时选中的概率是.14.如图,海上有一灯塔P,位于小岛A北偏东60°方向上,一艘轮船从小岛A出发,由西向东航行24nmile到达B处,这时测得灯塔P在北偏东30°方向上,如果轮船不改变航向继续向东航行,当轮船到达灯塔P的正南方,此时轮船与灯塔P的距离是nmile.(结果保留一位小数,≈1.73)15.按一定规律排列的一列数:3,32,3﹣1,33,3﹣4,37,3﹣11,318,…,若a,b,c表示这列数中的连续三个数,猜想a,b,c满足的关系式是.16.如图,四边形ABCD是边长为2的正方形,点E是边BC上一动点(不与点B,C重合),∠AEF=90°,且EF交正方形外角的平分线CF于点F,交CD于点G,连接AF,有下列结论:①△ABE∽△ECG;②AE=EF;③∠DAF=∠CFE;④△CEF的面积的最大值为1.其中正确结论的序号是.(把正确结论的序号都填上)三、专心解一解(本大题共8小题,满分72分.请认真读题,冷静思考,解答题应写出必要的文字说明、证明过程或演算步骤)17.(8分)(1)计算:|1﹣|﹣2sin45°+(﹣2020)0;(2)解不等式组:18.(7分)如图,在▱ABCD中,以点B为圆心,BA长为半径画弧,交BC于点E,在AD上截取AF=BE.连接EF.(1)求证:四边形ABEF是菱形;(2)请用无刻度的直尺在▱ABCD内找一点P,使∠APB=90°.(标出点P的位置,保留作图痕迹,不写作法)19.(8分)如图,已知一次函数y 1=kx+b 与反比例函数y 2=的图象在第一、三象限分别交于A (6,1),B (a ,﹣3)两点,连接OA ,OB .(1)求一次函数和反比例函数的解析式;(2)△AOB 的面积为 ;(3)直接写出y 1>y 2时x 的取值范围.20.(8分)随着科技的进步和网络资源的丰富,在线阅读已成为很多人选择的阅读方式.为了解同学们在线阅读情况,某校园小记者随机调查了本校部分同学,并统计他们平均每天的在线阅读时间t (单位:min ),然后利用所得数据绘制成如图不完整的统计图表.在线阅读时间频数分布表根据以上图表,解答下列问题:(1)这次被调查的同学共有 人,a = ,m = ;(2)求扇形统计图中扇形D 的圆心角的度数;(3)若该校有950名学生,请估计全校有多少学生平均每天的在线阅读时间不少于50min ?21.(9分)如图,在Rt △ABC 中,∠C =90°,点O 在AC 上,以OA 为半径的半圆O 交AB 于点D ,交AC 于点E ,过点D 作半圆O 的切线DF ,交BC 于点F .(1)求证:BF =DF ;(2)若AC =4,BC =3,CF =1,求半圆O 的半径长.22.(10分)5月18日,我市九年级学生安全有序开学复课.为切实做好疫情防控工作,开学前夕,我市某校准备在民联药店购买口罩和水银体温计发放给每个学生.已知每盒口罩有100只,每盒水银体温计有10支,每盒口罩价格比每盒水银体温计价格多150元.用1200元购买口罩盒数与用300元购买水银体温计所得盒数相同.(1)求每盒口罩和每盒水银体温计的价格各是多少元?(2)如果给每位学生发放2只口罩和1支水银体温计,且口罩和水银体温计均整盒购买.设购买口罩m 盒(m 为正整数),则购买水银体温计多少盒能和口罩刚好配套?请用含m 的代数式表示.(3)在民联药店累计购医用品超过1800元后,超出1800元的部分可享受8折优惠.该校按(2)中的配套方案购买,共支付w 元,求w 关于m 的函数关系式.若该校九年级有900名学生,需要购买口罩和水银体温计各多少盒?所需总费用为多少元?组别 在线阅读时间t 人数 A 10≤t <30 4 B 30≤t <50 8 C 50≤t <70 a D 70≤t <90 16 E 90≤t <110 223.(10分)定义:有一组对角互余的四边形叫做对余四边形.理解:(1)若四边形ABCD是对余四边形,则∠A与∠C的度数之和为;证明:(2)如图1,MN是⊙O的直径,点A,B,C在⊙O上,AM,CN相交于点D.求证:四边形ABCD是对余四边形;探究:(3)如图2,在对余四边形ABCD中,AB=BC,∠ABC=60°,探究线段AD,CD和BD之间有怎样的数量关系?写出猜想,并说明理由.24.(12分)如图,在平面直角坐标系中,直线y=﹣x+2与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c过点B且与直线相交于另一点C(,).(1)求抛物线的解析式;(2)点P是抛物线上的一动点,当∠PAO=∠BAO时,求点P的坐标;(3)点N(n,0)(0<n<)在x轴的正半轴上,点M(0,m)是y轴正半轴上的一动点,且满足∠MNC=90°.①求m与n之间的函数关系式;②当m在什么范围时,符合条件的N点的个数有2个?答案与解析一、精心选一选(本大题共8小题,每小题3分,满分24分.在每小题给出的四个选项中只有一项是符合题目要求的)1.早在两千多年前,中国人就已经开始使用负数,并运用到生产和生活中,比西方早一千多年.下列各式计算结果为负数的是()A.3+(﹣2)B.3﹣(﹣2)C.3×(﹣2)D.(﹣3)÷(﹣2)【知识考点】有理数的混合运算.【思路分析】分别按照有理数的加减法、有理数的乘除法法则计算即可.【解答过程】解:A.3+(﹣2)=1,故A不符合题意;B.3﹣(﹣2)=3+2=5,故B不符合题意;C.3×(﹣2)=﹣6,故C符合题意;D.(﹣3)÷(﹣2)=1.5,故D不符合题意.综上,只有C计算结果为负.故选:C.【总结归纳】本题考查了有理数的混合运算,熟练掌握有理数的运算法则是解题的关键.2.中国互联网络信息中心数据显示,随着二胎政策全面开放,升学就业竞争压力的不断增大,满足用户碎片化学习需求的在线教育用户规模持续增长,预计2020年中国在线教育用户规模将达到305000000人.将305000000用科学记数法表示为()A.0.305×1011B.3.05×108C.3.05×106D.305×108【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答过程】解:305000000=3.05×108,故选:B.【总结归纳】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列计算正确的是()A.3a﹣a=2 B.a•a2=a3C.a6÷a2=a3D.(3a2)2=6a4【知识考点】合并同类项;同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法.【思路分析】分别根据合并同类项的法则、同底数幂的除法法则、积的乘方与同底数幂的乘法法则计算各项,进而可得答案.【解答过程】解:3a﹣a=a,因此选项A计算错误,不符合题意;a•a2=a3,因此选项B计算正确,符合题意;a6÷a2=a4,因此选项C计算错误,不符合题意;(3a2)2=9a4≠6a4,因此选项D计算错误,不符合题意.故选:B.【总结归纳】本题考查了合并同类项、同底数幂的除法和乘法以及积的乘方等运算法则,属于基本题型,熟练掌握上述基础知识是关键.4.如图是由5个完全相同的小正方体组成的几何体,则该几何体的左视图是()A.B.C.D.【知识考点】简单组合体的三视图.【思路分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解答过程】解:从左面看有两层,底层是2个正方形,上层的左边是1个正方形.故选:A.【总结归纳】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.5.如图是甲、乙两名射击运动员某节训练课的5次射击成绩的折线统计图,下列判断正确的是()A.乙的最好成绩比甲高B.乙的成绩的平均数比甲小C.乙的成绩的中位数比甲小D.乙的成绩比甲稳定【知识考点】折线统计图;加权平均数;中位数;方差.【思路分析】利用折线统计图可得甲、乙两名射击运动员5次射击的成绩,把他们的最好成绩进行比较,即可判断A;利用平均数、中位数、方差的意义分别求出他们的平均数、中位数、方差,即可判断B、C、D.【解答过程】解:由折线图可知,甲的5次射击成绩为6,7,10,8,9,乙的5次射击成绩为8,9,8,7,8,∵10>9,∴甲的最好成绩比乙高,故选项A错误,不符合题意;∵=(6+7+10+8+9)=8,=(8+9+8+7+8)=8,∴乙的成绩的平均数与甲相等,故选项B错误,不符合题意;∵甲的成绩按从小到大的顺序排列为:6,7,8,9,10,所以中位数为8,乙的成绩按从小到大的顺序排列为:7,8,8,8,9,所以中位数为8,∴乙的成绩的中位数与甲相等,故选项C错误,不符合题意;∵=[(6﹣8)2+(7﹣8)2+(8﹣8)2+(9﹣8)2+(10﹣8)2]=2,=[(7﹣8)2+3×(8﹣8)2+(9﹣8)2]=0.4,2>0.4,∴乙的成绩比甲稳定,故选项D正确,符合题意.故选:D.【总结归纳】本题考查了折线统计图,平均数、中位数与方差.从折线图中得到必要的信息是解决问题的关键.6.如图,在⊙O中,OA=2,∠C=45°,则图中阴影部分的面积为()A.﹣B.π﹣C.﹣2 D.π﹣2【知识考点】扇形面积的计算.【思路分析】由∠C=45°根据圆周角定理得出∠AOB=90°,根据S阴影=S扇形AOB﹣S△AOB可得出结论.【解答过程】解:∵∠C=45°,∴∠AOB=90°,∴S阴影=S扇形AOB﹣S△AOB=﹣=π﹣2.故选:D.【总结归纳】本题考查的是扇形面积的计算,根据题意求得三角形与扇形的面积是解答此题的关键.7.在平面直角坐标系xOy中,对于横、纵坐标相等的点称为“好点”.下列函数的图象中不存在“好点”的是()A.y=﹣x B.y=x+2 C.y=D.y=x2﹣2x【知识考点】一次函数图象上点的坐标特征;反比例函数图象上点的坐标特征;二次函数图象上点的坐标特征.【思路分析】根据横、纵坐标相等的点称为“好点”,即当x=y时,函数解析式变为方程后,方程有解即可判断.【解答过程】解:∵横、纵坐标相等的点称为“好点”,∴当x=y时,A.x=﹣x,解得x=0;不符合题意;B.x=x+2,此方程无解,符合题意;C.x2=2,解得x=±,不符合题意;D.x=x2﹣2x,解得x1=0,x2=3,不符合题意.故选:B.【总结归纳】本题考查了二次函数图象上点的坐标特征、一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征,解决本题的关键是掌握每个函数的性质.8.如图,在矩形ABCD中,AB=2,BC=2,E是BC的中点,将△ABE 沿直线AE翻折,点B落在点F处,连结CF,则cos∠ECF的值为()A.B.C.D.【知识考点】矩形的性质;翻折变换(折叠问题);解直角三角形.【思路分析】由矩形的性质得出∠B=90°,由勾股定理求出AE,由翻折变换的性质得出△AFE ≌△ABE,得出∠AEF=∠AEB,EF=BE=,因此EF=CE,由等腰三角形的性质得出∠EFC =∠ECF,由三角形的外角性质得出∠AEB=∠ECF,cos∠ECF=cos∠AEB=,即可得出结果.【解答过程】解:如图,∵四边形ABCD是矩形,∴∠B=90°,∵E是BC的中点,BC=2,∴BE=CE=BC=,∴AE===3,由翻折变换的性质得:△AFE≌△ABE,∴∠AEF=∠AEB,EF=BE=,∴EF=CE,∴∠EFC=∠ECF,∵∠BEF=∠EFC+∠ECF,∴∠AEB=∠ECF,∴cos∠ECF=cos∠AEB==.故选:C.【总结归纳】本题考查了矩形的性质,勾股定理,翻折变换的性质,等腰三角形的判定与性质,三角形的外角性质,三角函数;熟练掌握矩形的性质和翻折变换的性质,证出∠AEB=∠ECF是解决问题的关键.二、细心填一填(本大题共8小题,每小题3分,满分24分)9.点A在数轴上的位置如图所示,则点A表示的数的相反数是.【知识考点】数轴;相反数.【思路分析】A在数轴上表示的数是3,根据相反数的含义和求法,判断出点A表示的数的相反数是多少即可.【解答过程】解:∵点A在数轴上表示的数是3,∴点A表示的数的相反数是﹣3.故答案为:﹣3.【总结归纳】此题主要考查了在数轴上表示数的方法,相反数的定义.解题的关键是熟练掌握在数轴上表示数的方法,以及相反数的含义和求法.10.因式分解:mx2﹣2mx+m=.【知识考点】提公因式法与公式法的综合运用.【思路分析】先提公因式,再利用完全平方公式进行因式分解即可.【解答过程】解:mx2﹣2mx+m=m(x2﹣2x+1)=m(x﹣1)2,【总结归纳】本题考查提公因式法、公式法因式分解,确定多项式的公因式是提公因式的关键,掌握公式的结构特征是正确使用公式的前提.11.如图,请填写一个条件,使结论成立:∵,∴a∥b.【知识考点】平行线的判定.【思路分析】要使得a∥b,判别两条直线平行的方法有:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;依此即可求解.【解答过程】解:∵∠1=∠4或∠2=∠4或∠3+∠4=180°,∴a∥b.故答案为:∠1=∠4或∠2=∠4或∠3+∠4=180°.【总结归纳】考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.12.若关于x的一元二次方程(x+2)2=n有实数根,则n的取值范围是.【知识考点】根的判别式.【思路分析】将原方程变形为一般式,根据方程的系数结合根的判别式△≥0,即可得出关于n 的一元一次不等式,解之即可得出n的取值范围(利用偶次方的非负性也可以找出n的取值范围).【解答过程】解:原方程可变形为x2+4x+4﹣n=0.∵该方程有实数根,∴△=42﹣4×1×(4﹣n)≥0,解得:n≥0.故答案为:n≥0.【总结归纳】本题考查了根的判别式,牢记“当△≥0时,方程有实数根”是解题的关键.13.某校开展以“我和我的祖国”为主题的“大合唱”活动,七年级准备从小明、小东、小聪三名男生和小红、小慧两名女生中各随机选出一名男生和一名女生担任领唱,则小聪和小慧被同时选中的概率是.【知识考点】列表法与树状图法.【思路分析】用列表法表示所有可能出现的结果,进而求出相应的概率.【解答过程】解:利用列表法表示所有可能出现的结果如下:共有6种可能出现的结果,其中小聪和小慧同时被选中的有1种,∴P(小聪和小慧)=,故答案为:.【总结归纳】本题考查列表法求随机事件发生的概率,列举出所有可能出现的结果,是正确解答的关键.14.如图,海上有一灯塔P,位于小岛A北偏东60°方向上,一艘轮船从小岛A出发,由西向东航行24nmile到达B处,这时测得灯塔P在北偏东30°方向上,如果轮船不改变航向继续向东航行,当轮船到达灯塔P的正南方,此时轮船与灯塔P的距离是nmile.(结果保留一位小数,≈1.73)【知识考点】解直角三角形的应用﹣方向角问题.【思路分析】过P作PD⊥AB于D,易证△ABP是等腰三角形,得到BP=AB=24nmile.然后在直角△PBD中,利用三角函数的定义求得PD的长即可.【解答过程】解:过P作PD⊥AB于D.∵∠PAB=30°,∠PBD=60°,∴∠PAB=∠APB,∴BP=AB=24nmile.在直角△PBD中,PD=BP•sin∠PBD=24×=12≈20.8(nmile).即此时轮船与灯塔P的距离约为20.8nmile.故答案为20.8.【总结归纳】本题考查了解直角三角形的应用﹣方向角问题,等腰三角形的判定与性质等知识,正确作出高线,转化为直角三角形的计算是解决本题的关键.15.按一定规律排列的一列数:3,32,3﹣1,33,3﹣4,37,3﹣11,318,…,若a,b,c表示这列数中的连续三个数,猜想a,b,c满足的关系式是.【知识考点】规律型:数字的变化类.【思路分析】首项判断出这列数中,3的指数各项依次为1,2,﹣1,3,﹣4,7,﹣11,18…,从第三个数起,每个数的指数都是前两数指数之差;可得这列数中的连续三个数,满足a÷b=c,据此解答即可.【解答过程】解:∵3,32,3﹣1,33,3﹣4,37,3﹣11,318,…,1﹣2=﹣1,2﹣(﹣1)=3,﹣1﹣3=﹣4,3﹣(﹣4)=7,﹣4﹣7=﹣11,7﹣(﹣11)=18,…,∴a,b,c满足的关系式是a÷b=c.故答案为:a÷b=c.【总结归纳】此题主要考查了规律型:数字的变化类,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出a、b、c的指数的特征.16.如图,四边形ABCD是边长为2的正方形,点E是边BC上一动点(不与点B,C重合),∠AEF=90°,且EF交正方形外角的平分线CF于点F,交CD于点G,连接AF,有下列结论:①△ABE∽△ECG;②AE=EF;③∠DAF=∠CFE;④△CEF的面积的最大值为1.其中正确结论的序号是.(把正确结论的序号都填上)【知识考点】二次函数的最值;全等三角形的判定与性质;正方形的性质;相似三角形的判定与性质.【思路分析】①由∠AEB+∠CEG=∠AEB+∠BAE得∠BAE=∠CEG,再结合两直角相等得△ABE∽△ECG;②在BA上截取BM=BE,易得△BEM为等腰直角三角形,则∠BME=45°,所以∠AME=135°,再利用等角的余角相等得到∠BAE=∠FEC,于是根据“ASA”可判断△AME≌△ECF,则根据全等三角形的性质可对②进行判断;③由∠MAE+∠DAF=45°,∠CEF+∠CFE=45°,可得出∠DAF与∠CFE的大小关系,便可对③判断;④设BE=x,则BM=x,AM=AB﹣BM=4﹣x,利用三角形面积公式得到S△AME=•x•(2﹣x),则根据二次函数的性质可得S△AME的最大值,便可对④进行判断.【解答过程】解:①∵四边形ABCD是正方形,∴∠B=∠ECG=90°,∵∠AEF=90°,∴∠AEB+∠CEG=∠AEB+∠BAE,∴∠BAE=∠CEG,∴△ABE∽△ECG,故①正确;②在BA上截取BM=BE,如图1,∵四边形ABCD为正方形,∴∠B=90°,BA=BC,∴△BEM为等腰直角三角形,∴∠BME=45°,∴∠AME=135°,∵BA﹣BM=BC﹣BE,∴AM=CE,∵CF为正方形外角平分线,∴∠DCF=45°,∴∠ECF=135°,∵∠AEF=90°,∴∠AEB+∠FEC=90°,而∠AEB+∠BAE=90°,∴∠BAE=∠FEC,在△AME和△ECF中,∴△AME≌△ECF,∴AE=EF,故②正确;③∵AE=EF,∠AEF=90°,∴∠EAF=45°,∴∠BAE+∠DAF=45°,∵∠BAE+∠CFE=∠CEF+∠CFE=45°,∴∠DAF=∠CFE,故③正确;④设BE=x,则BM=x,AM=AB﹣BM=4﹣x,S△ECF=S△AME=•x•(2﹣x)=﹣(x﹣1)2+,当x=1时,S△ECF有最大值,故④错误.故答案为:①②③.【总结归纳】本题考查了四边形的综合题:熟练掌握正方形的性质和二次函数的性质;能灵活运用全等三角形的知识解决线段线段的问题.构建△AME与△EFC全等是关键.三、专心解一解(本大题共8小题,满分72分.请认真读题,冷静思考,解答题应写出必要的文字说明、证明过程或演算步骤)17.(8分)(1)计算:|1﹣|﹣2sin45°+(﹣2020)0;(2)解不等式组:【知识考点】实数的运算;零指数幂;解一元一次不等式组;特殊角的三角函数值.【思路分析】(1)先去绝对值符号、代入三角函数值、计算零指数幂,再计算乘法,最后计算加减可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答过程】解:(1)原式=﹣1﹣2×+1=﹣1﹣+1=0;(2)解不等式﹣(x﹣1)>3,得:x<﹣2,解不等式2x+9>3,得:x>﹣3,则不等式组的解集为﹣3<x<﹣2.【总结归纳】本题考查的是解一元一次不等式组和实数的运算,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.(7分)如图,在▱ABCD中,以点B为圆心,BA长为半径画弧,交BC于点E,在AD上截取AF=BE.连接EF.(1)求证:四边形ABEF是菱形;(2)请用无刻度的直尺在▱ABCD内找一点P,使∠APB=90°.(标出点P的位置,保留作图痕迹,不写作法)【知识考点】平行四边形的性质;菱形的判定与性质;圆周角定理;作图—复杂作图.【思路分析】(1)根据平行四边形的性质和判定,菱形的判定即可证明;(2)连结AE,BF,根据菱形的性质可得AE和BF的交点即为点P.【解答过程】(1)证明:∵四边形ABCD是平行四边形,∴AF∥BE,∵AF=BE,∴四边形ABEF是平行四边形,∵BA=BE,∴四边形ABEF是菱形;(2)如图所示:点P即为所求:【总结归纳】本题考查菱形的判定和性质、平行四边形的性质、作图﹣基本作图等知识,解题的关键是作出图形,属于中考常考题型.19.(8分)如图,已知一次函数y1=kx+b与反比例函数y2=的图象在第一、三象限分别交于A (6,1),B(a,﹣3)两点,连接OA,OB.(1)求一次函数和反比例函数的解析式;(2)△AOB的面积为;(3)直接写出y1>y2时x的取值范围.【知识考点】反比例函数与一次函数的交点问题.【思路分析】(1)首先把A(6,1)代入反比例函数解析式中确定m,然后把B(a,﹣3)代入反比例函数的解析式确定a,然后根据A,B两点坐标利用待定系数法确定一次函数的解析式;(2)求得一次函数与x轴的交点,根据S△AOB=S△AOC+S△BOC即可求解;(3)根据图象,写出直线y1=kx+b落在双曲线y2=上方的部分对应的自变量的取值范围即可.【解答过程】解:(1)把A(6,1)代入y2=中,解得:m=6,故反比例函数的解析式为y2=;把B(a,﹣3)代入y2=,解得a=﹣2,故B(﹣2,﹣3),把A(6,1),B(﹣2,﹣3)代入y1=kx+b,得,解得:,故一次函数解析式为y1=x﹣2;(2)如图,设一次函数y1=x﹣2与x轴交于点C,令y =0,得x =4. ∴点C 的坐标是(4,0), ∴S △AOB =S △AOC +S △BOC =×4×1+×4×3=8.故答案为8;(3)由图象可知,当﹣2<x <0或x >6时,直线y 1=kx+b 落在双曲线y 2=上方,即y 1>y 2,所以y 1>y 2时x 的取值范围是﹣2<x <0或x >6.【总结归纳】此题考查了一次函数与反比例函数的交点问题,待定系数法求一次函数与反比例函数的解析式,三角形的面积,待定系数法求函数解析式是中学阶段求函数解析式常用的方法,一定要熟练掌握并灵活运用.利用了数形结合思想.20.(8分)随着科技的进步和网络资源的丰富,在线阅读已成为很多人选择的阅读方式.为了解同学们在线阅读情况,某校园小记者随机调查了本校部分同学,并统计他们平均每天的在线阅读时间t (单位:min ),然后利用所得数据绘制成如图不完整的统计图表.在线阅读时间频数分布表根据以上图表,解答下列问题:(1)这次被调查的同学共有 人,a = ,m = ; (2)求扇形统计图中扇形D 的圆心角的度数;(3)若该校有950名学生,请估计全校有多少学生平均每天的在线阅读时间不少于50min ? 【知识考点】用样本估计总体;频数(率)分布表;扇形统计图.【思路分析】(1)根据B 组的频数和所占的百分比,可以求得这次被调查的同学总数,用被调查的同学总数乘以C 组所占百分比得到a 的值,用A 组人数除以被调查的同学总数,即可得到m ; (2)用360°乘以D 组所占百分比得到D 组圆心角的度数;(3)利用样本估计总体,用该校学生数乘以样本中平均每天的在线阅读时间不少于50min 的人组别 在线阅读时间t 人数 A 10≤t <30 4 B 30≤t <50 8 C 50≤t <70 a D 70≤t <90 16 E90≤t <1102数所占的百分比即可.【解答过程】解:(1)这次被调查的同学共有8÷16%=50(人),a=50×40%=20,∵m%==8%,∴m=8.故答案为:50,20,8;(2)扇形统计图中扇形D的圆心角的度数为:360°×=115.2°;(3)950×=722(人),答:估计全校有多少学生平均每天的在线阅读时间不少于50min的有722人.【总结归纳】本题考查了频数分布表,扇形统计图,读懂统计图表,从不同的统计图表中得到必要的信息是解决问题的关键.也考查了利用样本估计总体.21.(9分)如图,在Rt△ABC中,∠C=90°,点O在AC上,以OA为半径的半圆O交AB于点D,交AC于点E,过点D作半圆O的切线DF,交BC于点F.(1)求证:BF=DF;(2)若AC=4,BC=3,CF=1,求半圆O的半径长.【知识考点】圆周角定理;切线的性质;相似三角形的判定与性质.(1)连接OD,由切线性质得∠ODF=90°,进而证明∠BDF+∠A=∠A+∠B=90°,【思路分析】得∠B=∠BDF,便可得BF=DF;(2)设半径为r,连接OD,OF,则OC=4﹣r,求得DF,再由勾股定理,利用OF为中间变量列出r的方程便可求得结果.【解答过程】解:(1)连接OD,如图1,∵过点D作半圆O的切线DF,交BC于点F,∴∠ODF=90°,∴∠ADO+∠BDF=90°,∵OA=OD,∴∠OAD=∠ODA,∴∠OAD+∠BDF=90°,∵∠C=90°,∴∠OAD+∠B=90°,∴∠B=∠BDF,∴BF=DF;(2)连接OF,OD,如图2,设圆的半径为r,则OD=OE=r,∵AC=4,BC=3,CF=1,∴OC=4﹣r,DF=BF=3﹣1=2,∵OD2+DF2=OF2=OC2+CF2,∴r2+22=(4﹣r)2+12,∴.故圆的半径为.【总结归纳】本题主要考查了切线的性质,等腰三角形的性质与判定,勾股定理,已知切线,往往连接半径为辅助线,第(2)题关键是由勾股定理列出方程.22.(10分)5月18日,我市九年级学生安全有序开学复课.为切实做好疫情防控工作,开学前夕,我市某校准备在民联药店购买口罩和水银体温计发放给每个学生.已知每盒口罩有100只,每盒水银体温计有10支,每盒口罩价格比每盒水银体温计价格多150元.用1200元购买口罩盒数与用300元购买水银体温计所得盒数相同.(1)求每盒口罩和每盒水银体温计的价格各是多少元?(2)如果给每位学生发放2只口罩和1支水银体温计,且口罩和水银体温计均整盒购买.设购买口罩m盒(m为正整数),则购买水银体温计多少盒能和口罩刚好配套?请用含m的代数式表示.(3)在民联药店累计购医用品超过1800元后,超出1800元的部分可享受8折优惠.该校按(2)中的配套方案购买,共支付w元,求w关于m的函数关系式.若该校九年级有900名学生,需要购买口罩和水银体温计各多少盒?所需总费用为多少元?【知识考点】分式方程的应用;一次函数的应用.【思路分析】(1)设每盒口罩和每盒水银体温计的价格各是x元,(x﹣150)元,根据题意列出分式方程即可;(2)根据配套问题,设购买水银体温计y盒能和口罩刚好配套,根据口罩的数量等于水银体温计数量的2倍列出方程即可用含m的代数式表示;(3)根据题意列出不等式:200m+50×5m≤1800,可得m≤4时,w=450m;当m>4时,w=1800+(450m﹣1800)×0.8=360m+360,进而可得w关于m的函数关系式.【解答过程】解:(1)设每盒口罩和每盒水银体温计的价格各是x元,(x﹣150)元,根据题意,得=,解得x=200,经检验,x=200是原方程的解,∴x﹣150=50,答:每盒口罩和每盒水银体温计的价格各是200元、50元;(2)设购买水银体温计y盒能和口罩刚好配套,根据题意,得100m=2×10y,则y=5m,答:购买水银体温计5m盒能和口罩刚好配套;。

2022年湖北省咸宁市中考数学试卷(解析版)

2022年湖北省咸宁市中考数学试卷(解析版)

2022年湖北省咸宁市中考数学试卷参考答案与试题解析一、精心选一选(本大题共8小题,每小题3分,满分24分.在每小题给出的四个选项中只有一项是符合题目要求的,请在答题卡上把正确答案的代号涂黑)1.(3分)5-的绝对值是()A .5B .5-C .15-D .15【分析】5-的绝对值就是数轴上表示5-的点与原点的距离.【解答】解:5-的绝对值是5,故选:A .2.(3分)某几何体的三视图如图所示,则该几何体是()A .圆锥B .三棱锥C .三棱柱D .四棱柱【分析】从三视图的俯视图看是一个三角形,而主视图是一个矩形,左视图为矩形,可知这是一个三棱柱.【解答】解:由三视图可知,这个几何体是直三棱柱.故选:C .3.(3分)北京冬奥会开幕式的冰雪五环由我国航天科技建造,该五环由21000个LED 灯珠组成,夜色中就像闪闪发光的星星,把北京妆扮成了奥运之城.将数据21000用科学记数法表示为()A .32110⨯B .42.110⨯C .52.110⨯D .60.2110⨯【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10时,n 是正数;当原数的绝对值1<时,n 是负数.【解答】解:421000 2.110=⨯;故选:B .4.(3分)下列图形中,对称轴条数最多的是()A .等边三角形B .矩形C .正方形D .圆【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:等边三角形有三条对称轴,矩形有两条对称轴,正方形有四条对称轴,圆有无数条对称轴,所以对称轴条数最多的图形是圆.故选:D .5.(3分)下列计算正确的是()A .248a a a ⋅=B .236(2)6a a -=-C .43a a a ÷=D .2235a a a +=【分析】根据同底数的幂的乘除、幂的乘方与积的乘方、合并同类项法则逐项判断.【解答】解:246a a a ⋅=,故A 错误,不符合题意;236(2)8a a -=-,故B 错误,不符合题意;43a a a ÷=,故C 正确,符合题意;235a a a +=,故D 错误,不符合题意;故选:C .6.(3分)下列调查中,适宜采用全面调查方式的是()A .检测“神舟十四号”载人飞船零件的质量B .检测一批LED 灯的使用寿命C .检测黄冈、孝感、咸宁三市的空气质量D .检测一批家用汽车的抗撞击能力【分析】根据全面调查与抽样调查的特点,逐一判断即可解答.【解答】解:A 、检测“神舟十四号”载人飞船零件的质量,适宜采用全面调查的方式,故A 符合题意;B 、检测一批LED 灯的使用寿命,适宜采用抽样调查的方式,故B 不符合题意;C 、检测黄冈、孝感、咸宁三市的空气质量,适宜采用抽样调查的方式,故C 不符合题意;D 、检测一批家用汽车的抗撞击能力,适宜采用抽样调查的方式,故D 不符合题意;故选:A .7.(3分)如图,在Rt ABC ∆中,90C ∠=︒,30B ∠=︒,8AB =,以点C 为圆心,CA 的长为半径画弧,交AB 于点D ,则 AD 的长为()A .πB .43πC .53πD .2π【分析】连接CD ,根据90ACB ∠=︒,30B ∠=︒可以得到A ∠的度数,再根据AC CD =以及A ∠的度数即可得到ACD ∠的度数,最后根据弧长公式求解即可.【解答】解:连接CD ,如图所示:90ACB =︒ ,30B ∠=︒,8AB =,903060A ∴∠=︒-︒=︒,142AC AB ==,由题意得:AC CD =,ACD ∴∆为等边三角形,60ACD ∴∠=︒,∴ AD 的长为:60441803ππ⨯=,故选:B .8.(3分)如图,在矩形ABCD 中,AB BC <,连接AC ,分别以点A ,C 为圆心,大于12AC 的长为半径画弧,两弧交于点M ,N ,直线MN 分别交AD ,BC 于点E ,F .下列结论:①四边形AECF 是菱形;②2AFB ACB ∠=∠;③AC EF CF CD ⋅=⋅;④若AF 平分BAC ∠,则2CF BF =.其中正确结论的个数是()A .4B .3C .2D .1【分析】根据题意分别证明各个结论来判断即可.【解答】解:根据题意知,BF 垂直平分AC,在AOE ∆和COF ∆中,90EAO FCO AOE COF AO CO ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,()AOE COF AAS ∴∆≅∆,OE OF ∴=,AE AF CF CE ∴===,即四边形AECF 是菱形,故①结论正确;AFB FAO ACB ∠=∠+∠ ,AF FC =,FAO ACB ∴∠=∠,2AFB ACB ∴∠=∠,故②结论正确;11222AECF S CF CD AC OE AC EF =⋅=⋅⨯=⋅ 四边形,故③结论不正确;若AF 平分BAC ∠,则190303BAF FAC CAD ∠=∠=∠=⨯︒=︒,2AF BF ∴=,CF AF = ,2CF BF ∴=,故④结论正确;故选:B .二、细心填一填(本大题共8小题,每小题3分,满分24分.请把答案填在答题卡相应题号的横线上)9.(3分)若分式21x -有意义,则x 的取值范围是1x ≠.【分析】根据分式有意义的条件可知10x -≠,再解不等式即可.【解答】解:由题意得:10x -≠,解得:1x ≠,故答案为:1x ≠.10.(3分)如图,直线//a b ,直线c 与直线a ,b 相交,若154∠=︒,则3∠=126度.【分析】根据两直线平行,同位角相等和邻补角的定义解答即可.【解答】解://a b ,4154∴∠=∠=︒,3180418054126∴∠=︒-∠=︒-︒=︒,故答案为:126.11.(3分)若一元二次方程2430x x -+=的两个根是1x ,2x ,则12x x ⋅的值是3.【分析】根据根与系数的关系直接可得答案.【解答】解:1x ,2x 是一元二次方程2430x x -+=的两个根,123x x ∴⋅=,故答案为:3.12.(3分)如图,已知//AB DE ,AB DE =,请你添加一个条件A D ∠=∠,使ABC DEF ∆≅∆.【分析】添加条件:A D ∠=∠,根据ASA 即可证明ABC DEF ∆≅∆.【解答】解:添加条件:A D ∠=∠.//AB DE ,B DEC ∴∠=∠,在ABC ∆和DEF ∆中,A D AB DEB DEC ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ABC DEF ASA ∴∆≅∆,故答案为:A D ∠=∠.(答案不唯一)13.(3分)小聪和小明两个同学玩“石头,剪刀、布”的游戏,随机出手一次是平局的概率是13.【分析】首先根据题意列出表格,然后由表格即可求得所有等可能的结果与两人平局的情况,再利用概率公式即可求得答案.【解答】解:小聪和小明玩“石头、剪刀、布”游戏,所有可能出现的结果列表如下:由表格可知,共有9种等可能情况.其中平局的有3种:(石头,石头)、(剪刀,剪刀)、(布,布).∴小明和小聪平局的概率为:3193=.故答案为:13.14.(3分)如图,有甲乙两座建筑物,从甲建筑物A 点处测得乙建筑物D 点的俯角α为45︒,C 点的俯角β为58︒,BC 为两座建筑物的水平距离.已知乙建筑物的高度CD 为6m ,则甲建筑物的高度AB 为16m .(sin 580.85︒≈,cos 580.53︒≈,tan 58 1.60︒≈,结果保留整数).【分析】过点D 作DE AB ⊥于点E ,则6BE CD m ==,45ADE ∠=︒,58ACB ∠=︒,在Rt ADE ∆中,45ADE ∠=︒,设AE x =m ,则DE x =m ,BC x =m ,(6)AB AE BE x m =+=+,在Rt ABC ∆中,6tan tan 58 1.60AB xACB BC x+∠=︒==≈,解得10x =,进而可得出答案.【解答】解:过点D 作DE AB ⊥于点E ,如图.则6BE CD m ==,45ADE ∠=︒,58ACB ∠=︒,在Rt ADE ∆中,45ADE ∠=︒,设AE x =m ,则DE x =m ,BC x ∴=m ,(6)AB AE BE x m =+=+,在Rt ABC ∆中,6tan tan 58 1.60AB xACB BC x+∠=︒==≈,解得10x =,16AB m ∴=.故答案为:16.15.(3分)勾股定理最早出现在商高的《周髀算经》:“勾广三,股修四,经隅五”.观察下列勾股数:3,4,5;5,12,13;7,24,25;⋯,这类勾股数的特点是:勾为奇数,弦与股相差为1.柏拉图研究了勾为偶数,弦与股相差为2的一类勾股数,如:6,8,10;8,15,17;⋯,若此类勾股数的勾为2(3m m ,m 为正整数),则其弦是21m -(结果用含m 的式子表示).【分析】根据题意得2m 为偶数,设其股是a ,则弦为2a +,根据勾股定理列方程即可得到结论.【解答】解:m 为正整数,2m ∴为偶数,设其股是a ,则弦为2a +,根据勾股定理得,222(2)(2)m a a +=+,解得21a m =-,综上所述,其弦是21m -,故答案为:21m -.16.(3分)如图1,在ABC ∆中,36B ∠=︒,动点P 从点A 出发,沿折线A B C →→匀速运动至点C 停止.若点P 的运动速度为1/cm s ,设点P 的运动时间为()t s ,AP 的长度为()y cm ,y 与t 的函数图象如图2所示.当AP 恰好平分BAC ∠时t 的值为2.【分析】由图象可得4AB BC cm ==,通过证明APC BAC ∆∆∽,可求AP 的长,即可求解.【解答】解:如图,连接AP ,由图2可得4AB BC cm ==,36B ∠=︒ ,AB BC =,72BAC C ∴∠=∠=︒,AP 平分BAC ∠,36BAP PAC B ∴∠=∠=∠=︒,AP BP ∴=,72APC C ∠=︒=∠,AP AC BP ∴==,PAC B ∠=∠ ,C C ∠=∠,APC BAC ∴∆∆∽,∴AP PCAB AC=,24(4)AP AB PC AP ∴=⋅=-,2AP BP ∴=-=,(负值舍去),2t ∴=,故答案为:2+.三、专心解一解(本大题共8小题,满分72分.请认真读题,冷静思考.解答题应写出必要的文字说明、证明过程或演算步骤,请把解题过程写在答题卡相应题号的位置)17.(6分)先化简,再求值:42(3)xy xy xy ---,其中2x =,1y =-.【分析】先去括号,再合并同类项,然后把x ,y 的值代入化简后的式子进行计算即可解答.【解答】解:42(3)xy xy xy ---423xy xy xy =-+5xy =,当2x =,1y =-时,原式52(1)10=⨯⨯-=-.18.(8分)某班去革命老区研学旅行,研学基地有甲乙两种快餐可供选择,买1份甲种快餐和2份乙种快餐共需70元,买2份甲种快餐和3份乙种快餐共需120元.(1)买一份甲种快餐和一份乙种快餐各需多少元?(2)已知该班共买55份甲乙两种快餐,所花快餐费不超过1280元,问至少买乙种快餐多少份?【分析】(1)设购买一份甲种快餐需要x 元,购买一份乙种快餐需要y 元,根据“买1份甲种快餐和2份乙种快餐共需70元,买2份甲种快餐和3份乙种快餐共需120元”,即可列出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设购买乙种快餐m 份,则购买甲种快餐(55)m -份,利用总价=单价⨯数量,结合总价不超过1280元,即可列出关于m 的一元一次不等式,解之取其中的最小值即可得出结论.【解答】解:(1)设购买一份甲种快餐需要x 元,购买一份乙种快餐需要y 元,依题意得:27023120x y x y +=⎧⎨+=⎩,解得:3020x y =⎧⎨=⎩.答:购买一份甲种快餐需要30元,购买一份乙种快餐需要20元.(2)设购买乙种快餐m 份,则购买甲种快餐(55)m -份,依题意得:30(55)201280m m -+,解得:37m .答:至少买乙种快餐37份.19.(8分)为落实“双减”政策,优化作业管理,某中学从全体学生中随机抽取部分学生,调查他们每天完成书面作业的时间t (单位:分钟).按照完成时间分成五组:A 组“45t ”,B 组“4560t <”,C 组“6075t <”,D 组“7590t <”,E 组“90t >”.将收集的数据整理后,绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)这次调查的样本容量是100,请补全条形统计图;(2)在扇形统计图中,B 组的圆心角是度,本次调查数据的中位数落在组内;(3)若该校有1800名学生,请你估计该校每天完成书面作业不超过90分钟的学生人数.【分析】(1)根据C 组的人数和所占的百分比,可以计算出本次调查的人数,然后即可计算出D 组的人数,从而可以将条形统计图补充完整;(2)根据统计图中的数据,可以计算出B 组的圆心角的度数,以及中位数落在哪一组;(3)根据题意和统计图中的数据,可以计算出该校每天完成书面作业不超过90分钟的学生人数.【解答】解:(1)这次调查的样本容量是:2525%100÷=,D 组的人数为:100102025540----=,补全的条形统计图如右图所示:故答案为:100;(2)在扇形统计图中,B 组的圆心角是:2036072100︒⨯=︒, 本次调查了100个数据,第50个数据和51个数据都在C 组,∴中位数落在C 组,故答案为:72,C ;(3)100518001710100-⨯=(人),答:估计该校每天完成书面作业不超过90分钟的学生有1710人.20.(9分)如图,已知一次函数1y kx b =+的图象与函数2(0)m y x x =>的图象交于1(6,2A -,1(2B ,)n 两点,与y 轴交于点C .将直线AB 沿y 轴向上平移t 个单位长度得到直线DE ,DE 与y 轴交于点F .(1)求1y 与2y 的解析式;(2)观察图象,直接写出12y y <时x 的取值范围;(3)连接AD ,CD ,若ACD ∆的面积为6,则t 的值为2.【分析】(1)将点1(6,)2A -代入2m y x=中,求反比例函数的解析式;通过解析式求出B 点坐标,然后将点A 、B 代入1y kx b =+,即可求出一次函数的解析式;(2)通过观察图象即可求解;(3)由题意先求出直线DE 的解析式为132y x t =-+,过点F 作GF AB ⊥交于点G ,连接AF ,由45OCA ∠=︒,求出22FG =,再求出AC =,由平行线的性质可知ACD ACF S S ∆∆=,则12622t ⨯=,即可求t .【解答】解:(1)将点1(6,)2A -代入2m y x=中,3m ∴=-,23y x-∴=,1(2B ,)n 在23y x-=中,可得6n =-,1(2B ∴,6)-,将点A 、B 代入1y kx b =+,∴162162k b k b ⎧+=-⎪⎪⎨⎪+=-⎪⎩,解得1132k b =⎧⎪⎨=-⎪⎩,1132y x ∴=-;(2) 一次函数与反比例函数交点为1(6,)2A -,1(2B ,6)-,∴162x <<时,12y y <;(3)在1132y x =-中,令0x =,则132y =-,13(0,)2C ∴-, 直线AB 沿y 轴向上平移t 个单位长度,∴直线DE 的解析式为132y x t =-+,F ∴点坐标为13(0,)2t -+,过点F 作GF AB ⊥交于点G ,连接AF ,直线AB 与x 轴交点为13(2,0),与y 轴交点13(0,)2C -,45OCA ∴∠=︒,FG CG ∴=,FC t = ,22FG ∴=,1(6,)2A - ,13(0,)2C -,AC ∴=,//AB DF ,ACD ACF S S ∆∆∴=,∴162⨯=,2t ∴=,故答案为:2.21.(9分)如图,O 是ABC ∆的外接圆,AD 是O 的直径,BC 与过点A 的切线EF 平行,BC ,AD 相交于点G .(1)求证:AB AC =;(2)若16DG BC ==,求AB 的长.【分析】(1)根据垂径定理,圆周角定理,等腰三角形的判定定理解答即可;(2)根据相似三角形的判定定理,勾股定理解答即可.【解答】(1)证明:EF 是O 的切线,DA EF ∴⊥,//BC EF ,DA BC ∴⊥,DA 是直径,∴AB AC =,ACB ABC ∴∠=∠,AB AC ∴=.(2)解:连接DB ,BG AD ⊥ ,BGD BGA ∴∠=∠,90ABG DBG ∠+∠=︒ ,90DBG BDG ∠+∠=︒,ABG BDG ∴∠=∠,ABG BDG ∴∆∆∽,∴AG BG BG DG=,即2BG AG DG =⨯,16BC = ,BG GC =,8BG ∴=,2816AG ∴=⨯,解得:4AG =,在Rt ABG ∆中,8BG =,4AG =,AB ∴=.故答案为:.22.(10分)为增强民众生活幸福感,市政府大力推进老旧小区改造工程.和谐小区新建一小型活动广场,计划在2360m 的绿化带上种植甲乙两种花卉.市场调查发现:甲种花卉种植费用y (元2/)m 与种植面积2()x m 之间的函数关系如图所示,乙种花卉种植费用为15元2/m .(1)当100x 时,求y 与x 的函数关系式,并写出x 的取值范围;(2)当甲种花卉种植面积不少于230m ,且乙种花卉种植面积不低于甲种花卉种植面积的3倍时.①如何分配甲乙两种花卉的种植面积才能使种植的总费用w (元)最少?最少是多少元?②受投入资金的限制,种植总费用不超过6000元,请直接写出甲种花卉种植面积x 的取值范围.【分析】(1)分段利用图象的特点,利用待定系数法,即可求出答案;(2)先求出x 的范围;①分两段建立w 与x 的函数关系,即可求出各自的w 的最小值,最后比较,即可求出答案案;②分两段利用6000w ,建立不等式求解,即可求出答案.【解答】解:(1)当040x <时,30y =;当40100x <时,设函数关系式为y kx b =+,线段过点(40,30),(100,15),∴403010015k b k b +=⎧⎨+=⎩,∴1440k b ⎧=-⎪⎨⎪=⎩,1404y x ∴=-+,即30(040)140(40100)4x y x x <⎧⎪=⎨-+<⎪⎩;(2) 甲种花卉种植面积不少于230m ,30x ∴,乙种花卉种植面积不低于甲种花卉种植面积的3倍,3603x x ∴-,90x ∴,即3090x ;①当3040x 时,由(1)知,30y =,乙种花卉种植费用为15元2/m .15(360)3015(360)155400w yx x x x x ∴=+-=+-=+,当30x =时,5850min w =;当4090x <时,由(1)知,1404y x =-+,2115(360)(50)60254w yx x x ∴=+-=--+,∴当90x =时,21(9050)602556254min w =--+=,58505625> ,∴种植甲种花卉290m ,乙种花卉2270m 时,种植的总费用最少,最少为5625元;②当3040x 时,由①知,155400w x =+,种植总费用不超过6000元,1554006000x ∴+,40x ∴,即满足条件的x 的范围为3040x ,当4090x <时,由①知,21(50)60254w x =--+, 种植总费用不超过6000元,21(50)602560004x ∴--+,40x ∴(不符合题意,舍去)或60x ,即满足条件的x 的范围为6090x ,综上,满足条件的x 的范围为3040x 或6090x .23.(10分)问题背景:一次数学综合实践活动课上,小慧发现并证明了关于三角形角平分线的一个结论.如图1,已知AD 是ABC ∆的角平分线,可证AB BD AC CD=.小慧的证明思路是:如图2,过点C 作//CE AB ,交AD 的延长线于点E ,构造相似三角形来证明AB BD AC CD =.尝试证明:(1)请参照小慧提供的思路,利用图2证明:AB BD AC CD=;应用拓展:(2)如图3,在Rt ABC ∆中,90BAC ∠=︒,D 是边BC 上一点.连接AD ,将ACD ∆沿AD 所在直线折叠,点C 恰好落在边AB 上的E 点处.①若1AC =,2AB =,求DE 的长;②若BC m =,AED α∠=,求DE 的长(用含m ,α的式子表示).【分析】(1)证明CED BAD ∆∆∽,由相似三角形的性质得出CE CD AB BD=,证出CE CA =,则可得出结论;(2)①由折叠的性质可得出CAD BAD ∠=∠,CD DE =,由(1)可知,AB BD AC CD =,由勾股定理求出BC =,则可求出答案;②由折叠的性质得出C AED α∠=∠=,则tan tan AB C ACα∠==,方法同①可求出1tan m CD α=+,则可得出答案.【解答】(1)证明://CE AB ,E EAB ∴∠=∠,B ECB ∠=∠,CED BAD ∴∆∆∽,∴CE CD AB BD=,E EAB ∠=∠ ,EAB CAD ∠=∠,E CAD ∴∠=∠,CE CA ∴=,∴AB BD AC CD=.(2)解:① 将ACD ∆沿AD 所在直线折叠,点C 恰好落在边AB 上的E 点处,CAD BAD ∴∠=∠,CD DE =,由(1)可知,AB BD AC CD=,又1AC = ,2AB =,∴21BD CD=,2BD CD ∴=,90BAC ∠=︒ ,BC ∴===,BD CD ∴+=,3CD ∴=,CD ∴=;53DE ∴=;② 将ACD ∆沿AD 所在直线折叠,点C 恰好落在边AB 上的E 点处,CAD BAD ∴∠=∠,CD DE =,C AED α∠=∠=,tan tan AB C ACα∴∠==,由(1)可知,AB BD AC CD=,tan BD CD α∴=,tan BD CD α∴=⋅,又BC BD CD m =+= ,tan CD CD m α∴⋅+=,1tan m CD α∴=+,1tan m DE α∴=+.24.(12分)抛物线24y x x =-与直线y x =交于原点O 和点B ,与x 轴交于另一点A ,顶点为D .(1)直接写出点B 和点D 的坐标;(2)如图1,连接OD ,P 为x 轴上的动点,当1tan 2PDO ∠=时,求点P 的坐标;(3)如图2,M 是点B 关于抛物线对称轴的对称点,Q 是抛物线上的动点,它的横坐标为(05)m m <<,连接MQ ,BQ ,MQ 与直线OB 交于点E .设BEQ ∆和BEM ∆的面积分别为1S 和2S ,求12S S的最大值.【分析】(1)令24y x x x =-=,求出x 的值即可得出点B 的坐标,将函数24y x x =-化作顶点式可得出点D 的坐标;(2)过点D 作DE y ⊥轴于点E ,易得1tan 2DOE ∠=,因为1tan 2PDO ∠=,所以ODG DOE =∠,分两种情况进行讨论,当点P 在线段OD 的右侧时,//DP y 轴,当点P 在线段OD 左侧时,设直线DO 与y 轴交于点G ,则ODG ∆是等腰三角形,分别求出点P 的坐标即可.(3)分别过点M ,Q 作y 轴的平行线,交直线OB 于点N ,K ,则11()2B E S QK x x =-,21()2B E S MN x x =-,由点Q 的横坐标为m ,可表达12S S ,再利用二次函数的性质可得出结论.【解答】解:(1)令24y x x x =-=,解得0x =或5x =,(5,5)B ∴;224(2)4y x x x =-=-- ,∴顶点(2,4)D -.(2)如图,过点D 作DE y ⊥轴于点E ,2DE ∴=,4OE =,1tan 2DOE ∴∠=,1tan 2PDO ∠= ,ODG DOE ∴=∠,①当点P 在线段OD 的右侧时,//DP y 轴,如图,(2,0)P ∴;②当点P 在线段OD 左侧时,设直线DO 与y 轴交于点G ,则ODG ∆是等腰三角形,OG DG ∴=,设OG t =,则DG t =,4GE t =-,在Rt DGE ∆中,2222(4)t t =+-,解得52t =,5(0,)2G ∴-,∴直线DG 的解析式为:3542y x =--,令0y =,则35042x --=,解得103x =-,10(3P ∴-,0).综上,点P 的坐标为(2,0)或10(3-,0).(3) 点(5,5)B 与点M 关于对称轴2x =对称,(1,5)M ∴-.如图,分别过点M ,Q 作y 轴的平行线,交直线OB 于点N ,K ,(1,1)N ∴--,6MN =, 点Q 横坐标为m ,2(,4)Q m m m ∴-,(,)K m m ,22(4)5KQ m m m m m ∴=--=-+.11()2B E S QK x x =- ,21()2B E S MN x x =-,∴221211525(5)()66224S QK m m m S MN ==--=--+,106-< ,∴当52m =时,12S S 的最大值为2524.。

咸宁中考数学试卷真题

咸宁中考数学试卷真题

咸宁中考数学试卷真题第一部分:选择题(共70分)1. 已知函数f(f)=3f+2,求当f=5时,函数f(f)的值。

(),(),(),()A. 17B. 16C. 15D. 142. 下列计算错误的是()A. 3 × 4 = 12B. 20 ÷ 5 = 15C. 9 + 5 - 4 = 10D. 12 × 2 - 8 = 163. 在图中,小黄圆圈的田字格中填上4位数,其中个位数为3,百位、十位、千位数中的一个为2、6或8,那么这个数最接近的十位数是()A. 20B. 30C. 40D. 504. 下列各组数中,有一个不符合规律的是()A. 4,9,14,19,24B. 3,8,15,24,35C. 2,5,10,13,18D. 6,15,28,45,665. 有4张正方形卡片,如图所示。

其中画有圆、三角形、方形、菱形的卡片分别标有相应的英文字母。

现在从中任选2张,按规定组成一个词,如"Circular"表示两张都是圆形。

那么至少需要选出多少张卡片才能组成一个意义明确的词?(),(),(),()A. 1B. 2C. 3D. 46. 下列计算过程错误的是()A. 8 ÷ (2 + 3) = 1B. 9 ÷ 3 × 6 = 18C. 16 × 5 ÷ 8 = 10D. 50 ÷ (8 × 3) = 27. 如图所示,长方体ABCD-A′B′C′D′四棱柱为正方体ABCD的棱柱,已知A′C′=8cm,下列各式中正确的是()。

A. BD=ACB. BD=AA′C. A′C′//AA′D. BD⊥AC8. 如图,在平面直角坐标系中,点A(1,2),B(3,4),C(5,6),D(7,8)依次是圆心在y=-x上的四个圆内有且只有一个整数点的圆弧所对应的圆心,那么C、D两点所在的圆弧对应的圆心坐标为()。

咸宁市重点中学2024届中考联考数学试卷含解析

咸宁市重点中学2024届中考联考数学试卷含解析

咸宁市重点中学2024年中考联考数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图所示几何体的主视图是( )A .B .C .D .2.不等式组29611x x x k +>+⎧⎨-<⎩的解集为2x <.则k 的取值范围为( ) A .1k < B .1k C .1k > D .1k <3.如图,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB 为( )A .5sin αB .5sin αC .5cosαD .5cos α4.下列分式中,最简分式是( )A .2211x x -+ B .211x x +- C .2222x xy y x xy -+- D .236212x x -+ 5.若代数式11x x +-有意义,则实数x 的取值范围是( ) A .x≠1 B .x≥0 C .x≠0 D .x≥0且x≠16.下列图案中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .7.四组数中:①1和1;②﹣1和1;③0和0;④﹣23和﹣112,互为倒数的是()A.①②B.①③C.①④D.①③④8.要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.1(1)282x x-=B.1(1)282x x+=C.(1)28x x-=D.(1)28x x+=9.关于反比例函数y=2x,下列说法中错误的是()A.它的图象是双曲线B.它的图象在第一、三象限C.y的值随x的值增大而减小D.若点(a,b)在它的图象上,则点(b,a)也在它的图象上10.钟鼎文是我国古代的一种文字,是铸刻在殷周青铜器上的铭文,下列钟鼎文中,不是轴对称图形的是( ) A.B.C.D.二、填空题(共7小题,每小题3分,满分21分)11.点 C 在射线AB上,若AB=3,BC=2,则AC为_____.12.如图,在△OAB中,C是AB的中点,反比例函数y=kx(k>0)在第一象限的图象经过A,C两点,若△OAB面积为6,则k的值为_____.13.若m、n 是方程x2+2018x﹣1=0 的两个根,则m2n+mn2﹣mn=_________.14.正六边形的每个内角等于______________°.15.比较大小:4 17“>”或“<”号)161x-有意义,则x的取值范围是_____17.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,点D为AB的中点,将△ACD绕着点C逆时针旋转,使点A落在CB的延长线A′处,点D落在点D′处,则D′B长为_____.三、解答题(共7小题,满分69分)18.(10分)在△ABC 中,90︒∠=C ,以边AB 上一点O 为圆心,OA 为半径的圈与BC 相切于点D ,分别交AB ,AC 于点E ,F 如图①,连接AD ,若25CAD ︒∠=,求∠B 的大小;如图②,若点F 为AD 的中点,O 的半径为2,求AB 的长.19.(5分)在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.求每台电脑、每台电子白板各多少万元?根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.20.(8分)某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:kg ),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)图①中m 的值为 ;(Ⅱ)求统计的这组数据的平均数、众数和中位数;(Ⅲ) 根据样本数据,估计这2500只鸡中,质量为2.0kg 的约有多少只?21.(10分)如图,在平行四边形ABCD中,E、F是对角线BD上的两点,且BF=DE.求证:AE∥CF.22.(10分)三辆汽车经过某收费站下高速时,在2个收费通道A,B中,可随机选择其中的一个通过.(1)三辆汽车经过此收费站时,都选择A通道通过的概率是;(2)求三辆汽车经过此收费站时,至少有两辆汽车选择B通道通过的概率.23.(12分)如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t.(1)求抛物线的表达式;(2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.(3)如图2,连接BC,PB,PC,设△PBC的面积为S.①求S关于t的函数表达式;②求P点到直线BC的距离的最大值,并求出此时点P的坐标.24.(14分)如图,一次函数y=﹣x+的图象与反比例函数y=(k>0)的图象交于A,B两点,过A点作x轴的垂线,垂足为M,△AOM面积为1.(1)求反比例函数的解析式;(2)在y轴上求一点P,使PA+PB的值最小,并求出其最小值和P点坐标.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解题分析】从正面看几何体,确定出主视图即可.【题目详解】解:几何体的主视图为故选C.【题目点拨】本题考查了简单组合体的三视图,主视图即为从正面看几何体得到的视图.2、B【解题分析】求出不等式组的解集,根据已知得出关于k的不等式,求出不等式的解集即可.【题目详解】解:解不等式组29611x xx k+>+⎧⎨-<⎩,得21xx k<⎧⎨<+⎩.∵不等式组29611x xx k+>+⎧⎨-<⎩的解集为x<2,∴k+1≥2,解得k≥1.故选:B.【题目点拨】本题考查了解一元一次不等式组的应用,解此题的关键是能根据不等式组的解集和已知得出关于k的不等式,难度适中.3、D【解题分析】利用所给的角的余弦值求解即可.【题目详解】∵BC=5米,∠CBA=∠α,∴AB=BCcosα=5cosα.故选D.【题目点拨】本题主要考查学生对坡度、坡角的理解及运用.4、A【解题分析】试题分析:选项A为最简分式;选项B化简可得原式==;选项C化简可得原式==;选项D化简可得原式==,故答案选A.考点:最简分式.5、D【解题分析】试题分析:∵代数式11x x+-∴10 {xx-≠≥,解得x≥0且x≠1.故选D.考点:二次根式,分式有意义的条件.6、B【解题分析】根据轴对称图形与中心对称图形的概念求解.【题目详解】A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误.故选B.【题目点拨】考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7、C【解题分析】根据倒数的定义,分别进行判断即可得出答案.【题目详解】∵①1和1;1×1=1,故此选项正确;②-1和1;-1×1=-1,故此选项错误;③0和0;0×0=0,故此选项错误;④−23和−112,-23×(-112)=1,故此选项正确;∴互为倒数的是:①④,故选C.【题目点拨】此题主要考查了倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.8、A【解题分析】根据应用题的题目条件建立方程即可.【题目详解】解:由题可得:1(1)47 2x x-=⨯即:1(1)28 2x x-=故答案是:A.【题目点拨】本题主要考察一元二次方程的应用题,正确理解题意是解题的关键.9、C【解题分析】根据反比例函数y=2x的图象上点的坐标特征,以及该函数的图象的性质进行分析、解答.【题目详解】A.反比例函数2yx的图像是双曲线,正确;B.k=2>0,图象位于一、三象限,正确;C.在每一象限内,y的值随x的增大而减小,错误;D.∵ab=ba,∴若点(a,b)在它的图像上,则点(b,a)也在它的图像上,故正确.故选C.【题目点拨】本题主要考查反比例函数的性质.注意:反比例函数的增减性只指在同一象限内.10、A【解题分析】根据轴对称图形的概念求解.解:根据轴对称图形的概念可知:B,C,D是轴对称图形,A不是轴对称图形,故选A.“点睛”本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.二、填空题(共7小题,每小题3分,满分21分)11、2或2.【解题分析】解:本题有两种情形:(2)当点C在线段AB上时,如图,∵AB=3,BC=2,∴AC=AB﹣BC=3-2=2;(2)当点C在线段AB的延长线上时,如图,∵AB=3,BC=2,∴AC=AB+BC=3+2=2.故答案为2或2.点睛:在未画图类问题中,正确画图很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.12、4【解题分析】分别过点A 、点C 作OB 的垂线,垂足分别为点M 、点N ,根据C 是AB 的中点得到CN 为AMB 的中位线,然后设MN NB a ==,CN b =,2AM b =,根据OM AM ON CN ⋅=⋅,得到OM a =,最后根据面积32236a b ab =⋅÷==求得2ab =,从而求得224k a b ab =⋅==.【题目详解】分别过点A 、点C 作OB 的垂线,垂足分别为点M 、点N ,如图点C 为AB 的中点,∴CN 为AMB 的中位线,∴MN NB a ==,CN b =,2AM b =,OM AM ON CN ⋅=⋅,∴()2OM b OM a b ⋅=+⋅,∴OM a =,∴32236AOB S a b ab =⋅÷==,∴2ab =,∴224k a b ab =⋅==.故答案为:4.【题目点拨】本题考查了反比例函数的比例系数的几何意义及三角形的中位线定理,关键是正确作出辅助线,掌握在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是2k ,且保持不变.13、1【解题分析】根据根与系数的关系得到 m+n=﹣2018,mn=﹣1,把 m 2n+mm 2﹣mn 分解因式得到 mn (m+n ﹣1),然后利用整体代入的方法计算.【题目详解】解:∵m、n 是方程x2+2018x﹣1=0 的两个根,则原式=mn(m+n﹣1)=﹣1×(﹣2018﹣1)=﹣1×(﹣1)=1,故答案为:1.【题目点拨】本题考查了根与系数的关系,如果一元二次方程ax2+bx+c=0 的两根分别为与,则解题时要注意这两个关系的合理应用.14、120【解题分析】试题解析:六边形的内角和为:(6-2)×180°=720°,∴正六边形的每个内角为:=120°.考点:多边形的内角与外角.15、>【解题分析】1617∴417考点:实数的大小比较.【题目详解】请在此输入详解!16、x≤1且x≠﹣1.【解题分析】根据二次根式有意义,分式有意义得:1﹣x≥0且x+1≠0,解得:x≤1且x≠﹣1.故答案为x≤1且x≠﹣1.17、132.【解题分析】试题分析:解:∵在Rt△ABC中,∠ACB=90°,AC=4,BC=3,∴AB=5,∵点D为AB的中点,∴CD=AD=BD=AB=2.5,过D′作D′E⊥BC,∵将△ACD绕着点C逆时针旋转,使点A落在CB的延长线A′处,点D落在点D′处,∴CD′=AD=A′D′,∴D′E==1.5,∵A′E=CE=2,BC=3,∴BE=1,∴BD′=,故答案为.考点:旋转的性质.三、解答题(共7小题,满分69分)18、(1)∠B=40°;(2)AB= 6.【解题分析】(1)连接OD,由在△ABC中, ∠C=90°,BC是切线,易得AC∥OD ,即可求得∠CAD=∠ADO ,继而求得答案;(2)首先连接OF,OD,由AC∥OD得∠OFA=∠FOD ,由点F为弧AD的中点,易得△AOF是等边三角形,继而求得答案. 【题目详解】解:(1)如解图①,连接OD,∵BC切⊙O于点D,∴∠ODB=90°,∵∠C=90°,∴AC∥OD,∴∠CAD=∠ADO,∵OA=OD,∴∠DAO=∠ADO=∠CAD=25°,∴∠DOB=∠CAO=∠CAD+∠DAO=50°, ∵∠ODB=90°,∴∠B=90°-∠DOB=90°-50°=40°; (2)如解图②,连接OF,OD,∵AC∥OD,∴∠OFA=∠FOD,∵点F为弧AD的中点,∴∠AOF=∠FOD,∴∠OFA=∠AOF,∴AF=OA,∵OA=OF,∴△AOF为等边三角形,∴∠FAO=60°,则∠DOB=60°,∴∠B=30°,∵在Rt△ODB中,OD=2,∴OB=4,∴AB=AO +OB=2+4=6.【题目点拨】本题考查了切线的性质,平行线的性质,等腰三角形的性质,弧弦圆心角的关系,等边三角形的判定与性质,含30°角的直角三角形的性质.熟练掌握切线的性质是解(1)的关键,证明△AOF 为等边三角形是解(2)的关键.19、(1)每台电脑0.5万元,每台电子白板1.5万元(2)见解析【解题分析】解:(1)设每台电脑x 万元,每台电子白板y 万元,根据题意得:x 2y 3.5{2x y 2.5+=+=,解得:x 0.5{y 1.5==。

2022咸宁中考数学

2022咸宁中考数学

2022咸宁中考数学【一】:湖北省咸宁市2022年中考数学试题(图片版,含答案)【三】:湖北省咸宁市2022年中考数学试卷试题解析湖北省咸宁市2022年中考数学试卷一、精心选一选(本大题共8小题,每小题3分,共24分。

在每小题给出的四个选项中只有一项是符合题目要求的。

请在答题卷上把正确答案的代号涂黑)1、冰箱冷藏室的温度零上5°C,记着+5°C,保鲜室的温度零下7°C,记着()A。

7°CB。

-7°CC。

2°CD。

-12°C【考点】正负数表示的意义及应用.【解析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:根据题意可得:温度零上的记为+,所以温度零下的记为:﹣,因此,保鲜室的温度零下7°C,记着-7°C.故选B。

【点评】本题考查了正负数表示的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.2、如图,直线l1∥l2,CD⊥AB于点D,∠1=50°,则∠BCD的度数为()A。

50°B。

45°C。

40°D。

30°(第2题)【考点】平行线的性质,垂直的性质,三角形的内角和定理.【解析】由直线l1∥l2,根据两直线平行,内错角相等,可得∠ABC=50°;由CD⊥AB,可知∠CDB=90°,由三角形的内角和定理,可求得∠BCD的度数。

【解答】解:∵l1∥l2,∴∠ABC=∠1=50°;又∵CD⊥AB,∴∠CDB=90°;在△BCD中,∠BCD=180°-∠CDB-∠ABC=180°-90°-50°=40°故选C.【点评】本题考查了平行线的性质,垂直的性质,三角形的内角和定理.解题的关键是要注意掌握两质一个定理的应用:①两直线平行,内错角相等;②垂直的性质:如果两直线互相垂直,则它们相交所组成的角为直角;③三角形的内角和定理:三角形三个内角的和为180°。

咸宁市中考数学试卷及答案解析

咸宁市中考数学试卷及答案解析

湖北省咸宁市中考数学试卷一、选择题(共8小题,每小题3分,满分24分)1.如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是()A.B.C.D.考点:正数和负数.分析:求出每个数的绝对值,根据绝对值的大小找出绝对值最小的数即可.解答:解:∵|﹣0.6|<|+0.7|<|+2.5|<|﹣3.5|,∴﹣0.6最接近标准,故选:C.点评:本题考查了绝对值和正数和负数的应用,掌握正数和负数的概念和绝对值的性质是解题的关键,主要考查学生的理解能力,题目具有一定的代表性,难度也不大.2.(3分)(•咸宁)方程2x﹣1=3的解是()A.﹣1 B.﹣2 C.1D.2考点:解一元一次方程.专题:计算题.分析:方程移项合并,把x系数化为1,即可求出解.解答:解:方程2x﹣1=3,移项合并得:2x=4,解得:x=2,故选D点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.3.(3分)(•咸宁)一个几何体的三视图如图所示,则这个几何体是()A.圆柱B.圆锥C.长方体D.正方体考点:由三视图判断几何体.分主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.析:解答:解:由主视图和左视图为长方形可得此几何体为柱体,由俯视图为圆可得此几何体为圆柱.故选A.点评:本题考查了由三视图判断几何体:由三视图想象几何体的形状,首先应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.4.(3分)(•咸宁)如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=50°,则∠2的度数为()A.50°B.40°C.30°D.25°考点:平行线的性质.分析:由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.解答:解:如图,,∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°﹣50°=40°.故选B.点评:此题考查了平行线的性质.注意两直线平行,同位角相等定理的应用是解此题的关键.5.(3分)(•咸宁)下列运算正确的是()A.a6÷a2=a3B.(a+b)2=a2+b2C.2﹣3=﹣6 D.=﹣3考点:同底数幂的除法;立方根;完全平方公式;负整数指数幂.专题:计算题.分析:A、原式利用同底数幂的除法法则计算得到结果,即可做出判断;B、原式利用完全平方公式化简得到结果,即可做出判断;C、原式利用负整数指数幂法则计算得到结果,即可做出判断;D、原式利用立方根定义计算得到结果,即可做出判断.解答:解:A、原式=a4,错误;B、原式=a2+b2+2ab,错误;C、原式=,错误;D、原式=﹣3,正确,故选D点此题考查了同底数幂的除法,立方根,完全平方公式,以及负整数指数幂,熟练掌评:握公式及法则是解本题的关键.6.(3分)(•咸宁)如图,以点O为位似中心,将△ABC放大得到△DEF.若AD=OA,则△ABC与△DEF的面积之比为()A.1:2 B.1:4 C.1:5 D.1:6考点:位似变换.分析:利用位似图形的性质首先得出位似比,进而得出面积比.解答:解:∵以点O为位似中心,将△ABC放大得到△DEF,AD=OA,∴OA:OD=1:2,∴△ABC与△DEF的面积之比为:1:4.故选:B.点评:此题主要考查了位似图形的性质,得出位似比是解题关键.7.(3分)(•咸宁)如图,在△ABC中,CA=CB,∠ACB=90°,以AB的中点D为圆心,作圆心角为90°的扇形DEF,点C恰在EF上,设∠BDF=α(0°<α<90°),当α由小到大变化时,图中阴影部分的面积()A.由小到大B.由大到小C.不变D.先由小到大,后由大到小考点:扇形面积的计算.分析:作DM⊥AC于M,DN⊥BC于N,构造正方形DMCN,利用正方形和等腰直角三角形的性质,通过证明△DMG≌△DNH,把△DHN补到△DNG的位置,得到四边形DGCH的面积=正方形DMCN的面积,于是得到阴影部分的面积=扇形的面积﹣正方形DMCN的面积,即为定值.解答:解:作DM⊥AC于M,DN⊥BC于N,连接DC,∵CA=CB,∠ACB=90°,∴∠A=∠B=45°,DM=AD=AB,DN=BD=AB,∴DM=DN,∴四边形DNCN是正方形,∴∠MDN=90°,∴∠MDG=90°﹣∠GDN,∵∠EDF=90°,∴∠NDH=90°﹣∠GDN,∴∠MDG=∠NDH,在△DMG和△DNH中,,∴△DMG≌△DNH,∴四边形DGCH的面积=正方形DMCN的面积,∵正方形DMCN的面积=DM2=AB2,∴四边形DGCH的面积=,∵扇形FDE的面积==,∴阴影部分的面积=扇形面积﹣四边形DGCH的面积=(定值),故选C.点评:本题主要考查了等腰直角三角形斜边中线的性质,正方形的性质,全等三角形的判定和性质,能正确作出辅助线构造全等三角形是解题的关键.8.(3分)(•咸宁)如图是二次函数y=ax2+bx+c的图象,下列结论:①二次三项式ax2+bx+c的最大值为4;②4a+2b+c<0;③一元二次方程ax2+bx+c=1的两根之和为﹣1;④使y≤3成立的x的取值范围是x≥0.其中正确的个数有()A.1个B.2个C.3个D.4个考点:二次函数的图象;二次函数图象与系数的关系;二次函数的最值;抛物线与x轴的交点;二次函数与不等式(组).分析:①根据抛物线的顶点坐标确定二次三项式ax2+bx+c的最大值;②根据x=2时,y<0确定4a+2b+c的符号;③根据抛物线的对称性确定一元二次方程ax2+bx+c=1的两根之和;④根据函数图象确定使y≤3成立的x的取值范围.解答:解:∵抛物线的顶点坐标为(﹣1,4),∴二次三项式ax2+bx+c的最大值为4,①正确;∵x=2时,y<0,∴4a+2b+c<0,②正确;根据抛物线的对称性可知,一元二次方程ax2+bx+c=1的两根之和为﹣2,③错误;使y≤3成立的x的取值范围是x≥0或x≤﹣2,④错误,故选:B.点评:本题考查的是二次函数的图象、二次函数的最值、二次函数与不等式,掌握二次函数的性质、正确获取图象信息是解题的关键.二、细心填一填(本大题共有8小题,每小题3分,共24分)9.(3分)(•咸宁)﹣6的倒数是.考点:倒数.分析:根据倒数的定义求解.解答:解:因为(﹣6)×(﹣)=1,所以﹣6的倒数是﹣.点评:倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.10.(3分)(•咸宁)端午节期间,“惠民超市”销售的粽子打8折后卖a元,则粽子的原价卖a元.考点:列代数式.分8折=80%,把原价当作单位“1”,则现价是原价的80%,根据分数除法的意义原价析:是:a÷80%=,得结果.解答:解:8折=80%,a÷80%=,故答案为:.点评:本题主要考查了打折问题,找准单位“1”,弄清各种量的关系是解答此题的关键.11.(3分)(•咸宁)将x2+6x+3配方成(x+m)2+n的形式,则m=3.考点:配方法的应用.专题:计算题.分析:原式配方得到结果,即可求出m的值.解答:解:x2+6x+3=x2+6x+9﹣6=(x+3)2﹣6=(x+m)2+n,则m=3,故答案为:3点评:此题考查了配方法的应用,熟练掌握完全平方公式是解本题的关键.12.(3分)(•咸宁)如果实数x,y满足方程组,则x2﹣y2的值为﹣.考点:解二元一次方程组;平方差公式.专题:计算题.分析:方程组第二个方程变形求出x+y的值,原式利用平方差公式化简,将各自的值代入计算即可求出值.解答:解:方程组第二个方程变形得:2(x+y)=5,即x+y=,∵x﹣y=﹣,∴原式=(x+y)(x﹣y)=﹣,故答案为:﹣点评:此题考查了解二元一次方程组,以及平方差公式,熟练掌握运算法则是解本题的关键.13.(3分)(•咸宁)为了解学生课外阅读的喜好,某校从八年级1200名学生中随机抽取50名学生进行问卷调查,整理数据后绘制如图所示的统计图.由此可估计该年级喜爱“科普常识”的学生约有360人.考点:扇形统计图.分析:根据扇形图求出喜爱科普常识的学生所占的百分比,1200乘百分比得到答案.解答:解:喜爱科普常识的学生所占的百分比为:1﹣40%﹣20%﹣10%=30%,1200×30%=360,故答案为:360.点评:本题考查的是扇形统计图的知识,读懂统计图,从统计图中得到必要的信息是解决问题的关键,扇形统计图直接反映部分占总体的百分比大小.14.(3分)(•咸宁)如图,在平面直角坐标系中,点A的坐标为(0,6),将△OAB 沿x轴向左平移得到△O′A′B′,点A的对应点A′落在直线y=﹣x上,则点B与其对应点B′间的距离为8.考点:一次函数图象上点的坐标特征;坐标与图形变化-平移.分析:根据题意确定点A′的纵坐标,根据点A′落在直线y=﹣x上,求出点A′的横坐标,确定△OAB沿x轴向左平移的单位长度即可得到答案.解答:解:由题意可知,点A移动到点A′位置时,纵坐标不变,∴点A′的纵坐标为6,﹣x=6,解得x=﹣8,∴△OAB沿x轴向左平移得到△O′A′B′位置,移动了8个单位,∴点B与其对应点B′间的距离为8,故答案为:8.点本题考查的是一次函数图象上点的坐标特征和图形的平移,确定三角形OAB移动的评:距离是解题的关键.15.(3分)(•咸宁)古希腊数学家把数1,3,6,10,15,21,…叫做三角数,它有一定的规律性.若把第一个三角数记为a1,第二个三角数记为a2…,第n个三角数记为a n,计算a1+a2,a2+a3,a3+a4,…由此推算a399+a400= 1.6×105或160000.考点:规律型:数字的变化类.分析:首先计算a1+a2,a2+a3,a3+a4的值,然后总结规律,根据规律可以得出结论.解答:解:∵;;;…∴;∴.故答案为:1.6×105或160000.点评:本题考查的是规律发现,根据计算a1+a2,a2+a3,a3+a4的值可以发现规律为,发现规律是解决本题的关键.16.(3分)(•咸宁)如图,已知正方形ABCD的边长为2,E是边BC上的动点,BF⊥AE交CD于点F,垂足为G,连结CG.下列说法:①AG>GE;②AE=BF;③点G运动的路径长为π;④CG的最小值为﹣1.其中正确的说法是②③.(把你认为正确的说法的序号都填上)考点:四边形综合题.分析:根据正方形对角线的性质可得出当E移动到与C重合时,AG=GE,故①错误;求得∠BAE=∠CBF,根据正方形的性质可得AB=BC,∠ABC=∠C=90°,然后利用“角角边”证明△ABE和△BCF全等,根据全等三角形对应角相等可得AE=BF,判断出②正确;根据题意,G点的轨迹是以A为圆心以AB长为半径的圆弧BD的长,然后求出弧BD的长度,判断出③正确;正方形的对角线减去圆弧的半径就是CG的最小值,通过计算从而判断出④错误.解答:解:∵在正方形ABCD中,AE、BD垂直平分,∴当E移动到与C重合时,AG=GE,故①错误;∵BF⊥AE,∴∠AEB+∠CBF=90°,∵∠AEB+∠BAE=90°,∴∠BAE=∠CBF,在△ABE和△BCF中,,∴△ABE≌△BCF(AAS),∴故②正确;根据题意,G点的轨迹是以A为圆心以AB长为半径的圆弧BD的长,∴圆弧BD的长==π,故③正确;CG的最小值为AC﹣AB=4﹣2,故④错误;综上所述,正确的结论有②③.故答案为②③.点评:本题考查了正方形的性质,全等三角形的判定与性质,弧长的计算,勾股定理的应用,熟记性质并求出△ABE和△BCF全等是解题的关键,用阿拉伯数字加弧线表示角更形象直观.三、专心解一解(本大题共8小题,满分72分)17.(8分)(•咸宁)(1)计算:|1﹣|++(﹣2)0;(2)化简:(a2b﹣2ab2﹣b3)÷b﹣(a﹣b)2.考点:整式的混合运算;实数的运算;零指数幂.专题:计算题.分析:(1)原式第一项利用绝对值的代数意义化简,第二项化为最简二次根式,第三项利用零指数幂法则计算即可得到结果;(2)原式第一项利用多项式除以单项式法则计算,第二项利用完全平方公式化简,去括号合并即可得到结果.解答:解:(1)原式=﹣1+2+1=3;(2)原式=a2﹣2ab﹣b2﹣a2+2ab﹣b2=﹣2b2.点评:此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.18.(6分)(•咸宁)如图,在△ABC中,AB=AC,∠A=36°,BD为角平分线,DE⊥AB,垂足为E.(1)写出图中一对全等三角形和一对相似比不为1的相似三角形;(2)选择(1)中一对加以证明.考点:相似三角形的判定;全等三角形的判定.分析:(1)利用相似三角形的性质以及全等三角形的性质得出符合题意的答案;(2)利用相似三角形的判定以及全等三角形的判定方法分别得出即可.解答:解:(1)△ADE≌△BDE,△ABC∽△BCD;(2)证明:∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD为角平分线,∴∠ABD=∠ABC=36°=∠A,在△ADE和△BDE中∵,∴△ADE≌△BDE(AAS);证明:∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD为角平分线,∴∠DBC=∠ABC=36°=∠A,∵∠C=∠C,∴△ABC∽△BCD.点评:此题主要考查了相似三角形以及全等三角形的判定,正确把握判定方法是解题关键.19.(8分)(•咸宁)已知关于x的一元二次方程mx2﹣(m+2)x+2=0.(1)证明:不论m为何值时,方程总有实数根;(2)m为何整数时,方程有两个不相等的正整数根.考点:根的判别式;解一元二次方程-公式法.分析:(1)求出方程根的判别式,利用配方法进行变形,根据平方的非负性证明即可;(2)利用一元二次方程求根公式求出方程的两个根,根据题意求出m的值.解答:解:(1)△=(m+2)2﹣8m=m2﹣4m+4=(m﹣2)2,∵不论m为何值时,(m﹣2)2≥0,∴△≥0,∴方程总有实数根;(2)解方程得,x=,x1=,x2=1,∵方程有两个不相等的正整数根,∴m=1或2,m=2不合题意,∴m=1.点评:本题考查的是一元二次方程根的判别式和求根公式的应用,掌握一元二次方程根的情况与判别式△的关系:△>0⇔方程有两个不相等的实数根;△=0⇔方程有两个相等的实数根;△<0⇔方程没有实数根是解题的关键.20.(9分)(•咸宁)某校九年级两个班,各选派10名学生参加学校举行的“汉字听写”大赛预赛.各参赛选手的成绩如图:九(1)班:88,91,92,93,93,93,94,98,98,100九(2)班:89,93,93,93,95,96,96,98,98,99通过整理,得到数据分析表如下:班级最高分平均分中位数众数方差九(1)班100 m 93 93 12九(2)班99 95 n 93 8.4(1)直接写出表中m、n的值;(2)依据数据分析表,有人说:“最高分在(1)班,(1)班的成绩比(2)班好”,但也有人说(2)班的成绩要好,请给出两条支持九(2)班成绩好的理由;(3)若从两班的参赛选手中选四名同学参加决赛,其中两个班的第一名直接进入决赛,另外两个名额在四个“98分”的学生中任选二个,试求另外两个决赛名额落在同一个班的概率.考点:列表法与树状图法;加权平均数;中位数;众数;方差.专题:计算题.分析:(1)求出九(1)班的平均分确定出m的值,求出九(2)班的中位数确定出n的值即可;(2)分别从平均分,方差,以及中位数方面考虑,写出支持九(2)班成绩好的原因;(3)画树状图得出所有等可能的情况数,找出另外两个决赛名额落在同一个班的情况数,即可求出所求的概率.解答:解:(1)m=(88+91+92+93+93+93+94+98+98+100)=94;把九(2)班成绩排列为:89,93,93,93,95,96,96,98,98,99,则中位数n=(95+96)=95.5;(2)①九(2)班平均分高于九(1)班;②九(2)班的成绩比九(1)班稳定;③九(2)班的成绩集中在中上游,故支持九(2)班成绩好(任意选两个即可);(3)用A1,B1表示九(1)班两名98分的同学,C2,D2表示九(2)班两名98分的同学,画树状图,如图所示:所有等可能的情况有12种,其中另外两个决赛名额落在同一个班的情况有4种,则P(另外两个决赛名额落在同一个班)==.点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.21.(9分)(•咸宁)如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆恰好与BC相切于点D,分别交AC、AB于点E、F.(1)若∠B=30°,求证:以A、O、D、E为顶点的四边形是菱形.(2)若AC=6,AB=10,连结AD,求⊙O的半径和AD的长.考点:切线的性质;菱形的判定与性质;相似三角形的判定与性质.分析:(1)连接OD、OE、ED.先证明△AOE是等边三角形,得到AE=AO=0D,则四边形AODE是平行四边形,然后由OA=OD证明四边形AODE是菱形;(2)连接OD、DF.先由△OBD∽△ABC,求出⊙O的半径,然后证明△ADC∽△AFD,得出AD2=AC•AF,进而求出AD.解答:(1)证明:如图1,连接OD、OE、ED.∵BC与⊙O相切于一点D,∴OD⊥BC,∴∠ODB=90°=∠C,∴OD∥AC,∵∠B=30°,∴∠A=60°,∵OA=OE,∴△AOE是等边三角形,∴AE=AO=0D,∴四边形AODE是平行四边形,∵OA=OD,∴四边形AODE是菱形.(2)解:设⊙O的半径为r.∵OD∥AC,∴△OBD∽△ABC.∴,即8r=6(8﹣r).解得r=,∴⊙O的半径为.如图2,连接OD、DF.∵OD∥AC,∴∠DAC=∠ADO,∵OA=OD,∴∠ADO=∠DAO,∴∠DAC=∠DAO,∵AF是⊙O的直径,∴∠ADF=90°=∠C,∴△ADC∽△AFD,∴,∴AD2=AC•AF,∵AC=6,AF=,∴AD2=×6=45,∴AD==3.点评:本题考查了切线的性质、圆周角定理、等边三角形的判定与性质、菱形的判定和性质以及相似三角形的判定和性质,是一个综合题,难度中等.熟练掌握相关图形的性质及判定是解本题的关键.22.(10分)(•咸宁)在“绿满鄂南”行动中,某社区计划对面积为1800m2的区域进行绿化.经投标,由甲、乙两个工程队来完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积.(2)设甲工程队施工x天,乙工程队施工y天,刚好完成绿化任务,求y与x的函数解析式.(3)若甲队每天绿化费用是0.6万元,乙队每天绿化费用为0.25万元,且甲乙两队施工的总天数不超过26天,则如何安排甲乙两队施工的天数,使施工总费用最低?并求出最低费用.考点:一次函数的应用;分式方程的应用.分析:(1)设乙工程队每天能完成绿化的面积是xm2,根据在完成面积为400m2区域的绿化时,甲队比乙队少用4天,列方程求解;(2)根据题意得到100x+50y=1800,整理得:y=36﹣2x,即可解答.(3)根据甲乙两队施工的总天数不超过26天,得到x≥10,设施工总费用为w元,根据题意得:w=0.6x+0.25y=0.6x+0.25×(36﹣2x)=0.1x+9,根据一次函数的性质,即可解答.解答:解:(1)设乙工程队每天能完成绿化的面积是xm2,根据题意得:,解得:x=50,经检验,x=50是原方程的解,则甲工程队每天能完成绿化的面积是50×2=100(m2),答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;(2)根据题意,得:100x+50y=1800,整理得:y=36﹣2x,∴y与x的函数解析式为:y=36﹣2x.(3)∵甲乙两队施工的总天数不超过26天,∴x+y≤26,∴x+36﹣2x≤26,解得:x≥10,设施工总费用为w元,根据题意得:w=0.6x+0.25y=0.6x+0.25×(36﹣2x)=0.1x+9,∵k=0.1>0,∴w随x减小而减小,∴当x=10时,w有最小值,最小值为0.1×10+9=10,此时y=36﹣20=16.答:安排甲队施工10天,乙队施工16天时,施工总费用最低.点评:本题考查了分式方程和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程和不等式求解.23.(10分)(•咸宁)定义:数学活动课上,乐老师给出如下定义:有一组对边相等而另一组对边不相等的凸四边形叫做对等四边形.理解:(1)如图1,已知A、B、C在格点(小正方形的顶点)上,请在方格图中画出以格点为顶点,AB、BC为边的两个对等四边形ABCD;(2)如图2,在圆内接四边形ABCD中,AB是⊙O的直径,AC=BD.求证:四边形ABCD是对等四边形;(3)如图3,在Rt△PBC中,∠PCB=90°,BC=11,tan∠PBC=,点A在BP边上,且AB=13.用圆规在PC上找到符合条件的点D,使四边形ABCD为对等四边形,并求出CD 的长.考点:四边形综合题.分析:(1)根据对等四边形的定义,进行画图即可;(2)连接AC,BD,证明Rt△ADB≌Rt△ACB,得到AD=BC,又AB是⊙O的直径,所以AB≠CD,即可解答;(3)根据对等四边形的定义,分两种情况:①若CD=AB,此时点D在D1的位置,CD1=AB=13;②若AD=BC=11,此时点D在D2、D3的位置,AD2=AD3=BC=11;利用勾股定理和矩形的性质,求出相关相关线段的长度,即可解答.解答:解:(1)如图1所示(画2个即可).(2)如图2,连接AC,BD,∵AB是⊙O的直径,∴∠ADB=∠ACB=90°,在Rt△ADB和Rt△ACB中,∴Rt△ADB≌Rt△ACB,∴AD=BC,又∵AB是⊙O的直径,∴AB≠CD,∴四边形ABCD是对等四边形.(3)如图3,点D的位置如图所示:①若CD=AB,此时点D在D1的位置,CD1=AB=13;②若AD=BC=11,此时点D在D2、D3的位置,AD2=AD3=BC=11,过点A分别作AE⊥BC,AF⊥PC,垂足为E,F,设BE=x,∵tan∠PBC=,∴AE=,在Rt△ABE中,AE2+BE2=AB2,即,解得:x1=5,x2﹣5(舍去),∴BE=5,AE=12,∴CE=BC﹣BE=6,由四边形AECF为矩形,可得AF=CE=6,CF=AE=12,在Rt△AFD2中,,∴,,综上所述,CD的长度为13、12﹣或12+.点评:本题主要考查了四边形的综合题,解题的关键是理解并能运用“等对角四边形”这个概念.在(3)中注意分类讨论思想的应用、勾股定理的应用.24.(12分)(•咸宁)如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,将直线在x轴下方的部分沿x轴翻折,得到一个新函数的图象(图中的“V形折线”).(1)类比研究函数图象的方法,请列举新函数的两条性质,并求新函数的解析式;(2)如图2,双曲线y=与新函数的图象交于点C(1,a),点D是线段AC上一动点(不包括端点),过点D作x轴的平行线,与新函数图象交于另一点E,与双曲线交于点P.①试求△PAD的面积的最大值;②探索:在点D运动的过程中,四边形PAEC能否为平行四边形?若能,求出此时点D 的坐标;若不能,请说明理由.考点:反比例函数综合题.分析:(1)根据一次函数的性质,结合函数图象可写出新函数的两条性质;求新函数的解析式,可分两种情况进行讨论:①x≥﹣3时,显然y=x+3;②当x<﹣3时,利用待定系数法求解;(2)①先把点C(1,a)代入y=x+3,求出C(1,4),再利用待定系数法求出反比例函数解析式为y=.由点D是线段AC上一动点(不包括端点),可设点D的坐标为(m,m+3),且﹣3<m<1,那么P(,m+3),PD=﹣m,再根据三角形的面积公式得出△PAD的面积为S=(﹣m)×(m+3)=﹣m2﹣m+2=﹣(m+)2+,然后利用二次函数的性质即可求解;②先利用中点坐标公式求出AC的中点D的坐标,再计算DP,DE的长度,如果DP=DE,那么根据对角线互相平分的四边形是平行四边形可得四边形PAEC为平行四边形;如果DP≠DE,那么不是平行四边形.解答:解:(1)如图1,均是正整数新函数的两条性质:①函数的最小值为0;②函数图象的对称轴为直线x=﹣3;由题意得A点坐标为(﹣3,0).分两种情况:①x≥﹣3时,显然y=x+3;②当x<﹣3时,设其解析式为y=kx+b.在直线y=x+3中,当x=﹣4时,y=﹣1,则点(﹣4,﹣1)关于x轴的对称点为(﹣4,1).把(﹣4,1),(﹣3,0)代入y=kx+b,得,解得,∴y=﹣x﹣3.综上所述,新函数的解析式为y=;(2)如图2,①∵点C(1,a)在直线y=x+3上,∴a=1+3=4.∵点C(1,4)在双曲线y=上,∴k=1×4=4,y=.∵点D是线段AC上一动点(不包括端点),∴可设点D的坐标为(m,m+3),且﹣3<m<1.∵DP∥x轴,且点P在双曲线上,∴P(,m+3),∴PD=﹣m,∴△PAD的面积为S=(﹣m)×(m+3)=﹣m2﹣m+2=﹣(m+)2+,∵a=﹣<0,∴当m=﹣时,S有最大值,为,又∵﹣3<﹣<1,∴△PAD的面积的最大值为;②在点D运动的过程中,四边形PAEC不能为平行四边形.理由如下:当点D为AC的中点时,其坐标为(﹣1,2),此时P点的坐标为(2,2),E点的坐标为(﹣5,2),∵DP=3,DE=4,∴EP与AC不能互相平分,∴四边形PAEC不能为平行四边形.点本题是反比例函数综合题,其中涉及到利用待定系数法求反比例函数、一次函数的评:解析式,反比例函数、一次函数图象上点的坐标特征,三角形的面积,二次函数最值的求法,平行四边形的判定等知识,综合性较强,难度适中.利用数形结合、分类讨论是解题的关键.。

湖北省咸宁市2022年中考数学真题试题(含解析)

湖北省咸宁市2022年中考数学真题试题(含解析)

湖北省咸宁市 2022年中考数学真题试题第一卷〔共24分〕一、选择题:本大题共8个小题,每题3分,共24分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1. 下表是我市四个景区今年2月份某天6时气温,其中气温最低的景区是( ) 景区 潜山公园陆水湖隐水洞三湖连江气温C 1- C 0 C 2- C 2A .潜山公园B .陆水湖C .隐水洞D .三湖连江 【答案】C.试题分析:观察表格可得﹣2<﹣1<0<2,即可得隐水洞的气温最低,应选C . 考点:有理数的大小比拟.2. 在绿满鄂南行动中,咸宁市方案2015年至2017年三年间植树造林1210000亩,全力打造绿色生态旅游城市,将1210000用科学计数法表示为〔〕A .410121⨯B .5101.12⨯C .51021.1⨯D .61021.1⨯ 【答案】D .试题分析:用科学记数法表示较大的数时,一般形式为a ×10n,其中1≤|a|<10,n 为整数, 所以1210000=1.21×106.应选D . 考点:科学记数法.3.以下算式中,结果等于5a 的是〔〕A .32a a +B .32a a ⋅C .a a ÷5D . 32)(a【答案】B .考点:整式的运算.4. 如图是某个几何体的三视图,该几何体是〔 〕A .三棱柱B .三棱锥 C.圆柱 D .圆锥 【答案】A .试题分析:观察可得,主视图是三角形,俯视图是两个矩形,左视图是矩形,所以这个几何体是三棱柱,应选A .考点:由三视图判定几何体.5. 由于受97N H 禽流感的影响,我市某城区今年2月份鸡的价格比1月份下降%a ,3月份比2月份下降%b ,1月份鸡的价格为24元/千克,设3月份鸡的价格为m 元/千克,那么〔〕A .%)%1(24b a m --=B .%%)1(24b a m -= C. %%24b a m --= D .%)1%)(1(24b a m --= 【答案】D .考点:列代数式.6. c b a ,,为常数,点),(c a P 在第二象限,那么关于x 的方程02=++c bx ax 根的情况是〔〕A .有两个相等的实数根B .有两个不相等的实数根 C.没有实数根 D .无法判断 【答案】B .试题分析:点P 〔a ,c 〕在第二象限,可得a <0,c >0,所以ac <0,即可判定△=b 2﹣4ac >0,所以方程有两个不相等的实数根.应选B . 考点:根的判别式;点的坐标.7. 如图,⊙O 的半径为3,四边形ABCD 内接于⊙O ,连接OD OB ,,假设BCD BOD ∠=∠,那么⋂BD 的长为〔〕A .πB .π23C. π2 D .π3 【答案】C .考点:弧长的计算;圆内接四边形的性质.8. 在平面直接坐标系xOy 中,将一块含义45角的直角三角板如图放置,直角顶点C 的坐标为)0,1(,顶点A 的坐标为)2,0(,顶点B 恰好落在第一象限的双曲线上,现将直角三角板沿x 轴正方向平移,当顶点A 恰好落在该双曲线上时停止运动,那么此点C 的对应点C '的坐标为〔〕A .)0,23(B .)0,2( C. )0,25( D .)0,3( 【答案】C.试题分析:过点B 作BD ⊥x 轴于点D , ∵∠ACO+∠BCD=90°, ∠OAC+ACO=90°, ∴∠OAC=∠BCD , 在△ACO 与△BCD 中,OAC BCD AOC BDC AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ACO ≌△BCD 〔AAS 〕 ∴OC=BD ,OA=CD , ∵A 〔0,2〕,C 〔1,0〕 ∴OD=3,BD=1, ∴B 〔3,1〕,∴设反比例函数的解析式为y=k x,应选C.考点:反比例函数图象上点的坐标特征;坐标与图形变化﹣平移.第二卷〔共96分〕二、填空题〔每题8分,总分值24分,将答案填在答题纸上〕 9. 8的立方根是 . 【答案】2.试题分析:利用立方根的定义可得8的立方根为2. 考点:立方根.10. 化简:xx x x 112++- .【答案】x+1.试题分析:原式=2211(1)1x x x x x x x x x x-++++===+. 考点:分式的乘除法.11. 分解因式:=+-2422a a . 【答案】2〔a ﹣1〕2.试题分析:先提取2,再利用完全平方公式分解即可,即原式=2〔a 2﹣2a+1〕=2〔a ﹣1〕2. 考点:提公因式法与公式法的综合运用.12. 如图,直线n mx y +=与抛物线c bx ax y ++=2交于),4(),,1(q B p A -两点,那么关于x 的不等式c bx ax n mx ++>+2的解集是 .【答案】x <﹣1或x >4.考点:二次函数与不等式〔组〕.13. 小明的爸爸是个“健步走〞运动爱好者,他用 软件记录了某个月〔30天〕每天健步走的步数,并将记录结果绘制成了如下统计表: 步数〔万步〕 1.1 2.1 3.1 4.1 5.1 天数 3 75123在每天所走的步数这组数据中,众数和中位数分别是 . 【答案】1.4;1.35.试题分析:把这组数据按照从小到大的顺序排列,第15、16个数的平均数是中位数是〔1.3+1.4〕÷2=1.35,,在这组数据中出现次数最多的是1.4,得到这组数据的众数是1.4. 考点:众数;中位数.14. 如图,点O 的矩形纸片ABCD 的对称中心,E 是BC 上一点,将纸片沿AE 折叠后,点B 恰好与点O 重合,假设3=BE ,那么折痕AE 的长为 .【答案】6.试题分析:由题意得:AB=AO=CO ,即AC=2AB ,且OE 垂直平分AC ,那么AE=6考点:矩形的性质;翻折变换〔折叠问题〕.15. 如图,边长为4的正六边形ABCDEF 的中心与坐标原点O 重合,x AF //轴,将正六边形ABCDEF 绕原点O 顺时针旋转n 次,每次旋转60,当2017=n 时,顶点A 的坐标为 .【答案】〔2,3〕试题分析: 2022×60°÷360°=336…1,即与正六边形ABCDEF 绕原点O 顺时针旋转1次时点A 的坐标是一样的.当点A 按顺时针旋转60°时,与原F 点重合.连接OF ,过点F 作FH ⊥x 轴,垂足为H ;由EF=4,∠FOE=60°〔正六边形的性质〕,∴△OEF 是等边三角形,∴OF=EF=4, ∴F 〔2,3〕,即旋转 2022后点A 的坐标是〔2,3〕.考点:坐标与图形变化﹣旋转;规律型:点的坐标.16. 如图,在ACB Rt ∆中,30,2=∠=BAC BC ,斜边AB 的两个端点分别在相互垂直的射线ON OM ,上滑动,以下结论:①假设O C 、两点关于AB 对称,那么32=OA ; ②O C 、两点距离的最大值为4;③假设AB 平分CO ,那么CO AB ⊥; ④斜边AB 的中点D 运动路径的长为2π. 其中正确的选项是 .【答案】①②③.∵∠AOB=∠ACB=90°, ∴OE=CE=12AB=2, 当OC 经过点E 时,OC 最大,那么C 、O 两点距离的最大值为4;综上所述,此题正确的有:①②③;考点:三角形综合题.三、解答题 〔本大题共8小题,共72分.解容许写出文字说明、证明过程或演算步骤.〕17. ⑴计算:0201748|3|+--;⑵解方程:3121-=x x . 【答案】〔1〕1﹣3〔2〕x=﹣1.试题分析:〔1〕根据实数的运算法那么,零指数幂的性质计算即可;〔2〕根据分式方程的解法即可得到结论. 试题解析:〔1〕原式33+1=1﹣3〔2〕方程两边通乘以2x 〔x ﹣3〕得,x ﹣3=4x , 解得:x=﹣1,检验:当x=﹣1时,2x 〔x ﹣3〕≠0,∴原方程的根是x=﹣1. 考点:实数的运算;解分式方程.18. 如图,点F C E B ,,,在一条直线上,FC BE DE AC DF AB ===,,.⑴求证:DFE ABC ∆≅∆;⑵连接BD AF ,,求证:四边形ABDF 是平行四边形. 【答案】详见解析.试题分析:〔1〕由SSS 证明△ABC ≌△DFE 即可;〔2〕连接AF 、BD ,由全等三角形的性质得出∠ABC=∠DFE ,∵AB=DF ,∴四边形ABDF 是平行四边形.考点:全等三角形的判定与性质;平行四边形的判定.19. 咸宁市某中学为了解本校学生对新闻、体育、动画、娱乐四类电视节目的喜爱情况,随机抽取了局部学生进行问卷调查,根据调查结果绘制了如以下图所示的两幅不完整统计图,请你根据图中信息解答以下问题:⑴补全条形统计图,“体育〞对应扇形的圆心角是度;⑵根据以上统计分析,估计该校2000名学生中喜爱“娱乐〞的有人;⑶在此次问卷调查中,甲、乙两班分别有2人喜爱新闻节目,假设从这4人中随机抽取2人去参加“新闻小记者〞培训,请用列表法或者画树状图的方法求所抽取的2人来自不同班级的概率【答案】〔1〕72;〔2〕700;〔3〕23.补全条形图如下:“体育〞对应扇形的圆心角是360°×40200=72°;考点:扇形统计图;条形统计图;列表法与树状图法;用样本估计总体.20. 小慧根据学习函数的经验,对函数|1|-=x y 的图象与性质进行了研究,下面是小慧的研究过程,请补充完成:⑴函数|1|-=x y 的自变量x 的取值范围是 ; ⑵列表,找出y 与x 的几组对应值.x1- 0 1 2 3yb1 01 2其中,=b ;⑶在平面直角坐标系xOy 中,描出以上表中各队对应值为坐标的点,并画出该函数的图象; ⑷写出该函数的一条性质: .【答案】〔1〕任意实数;〔2〕2;〔3〕详见解析;〔4〕函数的最小值为0〔答案不唯一〕.〔3〕如下图;〔4〕由函数图象可知,函数的最小值为0. 故答案为:函数的最小值为0〔答案不唯一〕. 考点:一次函数的性质;一次函数的图象.21. 如图,在ABC ∆中,AC AB =,以AB 为直径的⊙O 与边AC BC ,分别交于E D ,两点,过点D 作AC DF ⊥,垂足为点F .⑴求证:DF 是⊙O 的切线; ⑵假设52cos ,4==A AE ,求DF 的长 【答案】〔1〕详见解析;〔2〕21.∵OB=OD,∴∠ODB=∠B,∵∠ODF=∠DFG=∠OGF=90°,∴四边形OGFD为矩形,∴21考点:圆的综合题.22. 某公司开发出一款新的节能产品,该产品的本钱价位6元/件,该产品在正式投放市场前通过代销点进行了为期一个月〔30天〕的试销售,售价为8元/件.工作人员对销售情况进行了跟踪记录,并将记录情况绘制成图象,图中的折线ODE表示日销售量y〔件〕与销售时间x〔天〕之间的函数关系,线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.⑴第24天的日销售量是件,日销售利润是元;⑵求y与x之间的函数关系式,并写出x的取值范围;⑶日销售利润不低于640元的天数共有多少天?试销售期间,日销售最大利润是多少元?【答案】〔1〕330,660;〔2〕y=20(018)5450(1830)y x xy x x=≤≤⎧⎨=-+≤⎩;〔3〕720元.试题分析:〔1〕根据第22天销售了340件,结合时间每增加1天日销售量减少5件,即可求出第24天的日销售量,再根据日销售利润=单件利润×日销售量即可求出日销售利润;〔2〕根据点D的坐标利用待定系数法即可求出线段OD的函数关系式,根据第22天销售了340件,结合时间每增加1天日销售量减少5件,即可求出线段DE的函数关系式,联立两函数关系式求出交点D的坐标,此题得解;〔3〕分0≤x≤18和18<x≤30,找出关于x的一元一次不等式,解之即可得出x的取值范围,有起始和结束时间即可求出日销售利润不低于640元的天数,再根据点D的坐标结合日销售利润=单件利润×日销售数,即可求出日销售最大利润.试题解析:根据题意得:线段DE所表示的y与x之间的函数关系式为y=340﹣5〔x﹣22〕=﹣5x+450.联立两线段所表示的函数关系式成方程组,得205450y x y x =⎧⎨=-+⎩,解得18360x y =⎧⎨=⎩,∴交点D 的坐标为〔18,360〕, ∴y 与x 之间的函数关系式为y=20(018)5450(1830)y x x y x x =≤≤⎧⎨=-+≤⎩.〔3〕当0≤x ≤18时,根据题意得:〔8﹣6〕×20x ≥640, 解得:x ≥16;考点:一次函数的应用. 23.定义:数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称三角形为“智慧三角形〞.理解:⑴如图1,B A ,是⊙O 上两点,请在圆上找出满足条件的点C ,使ABC ∆为“智慧三角形〞〔画出点C 的位置,保存作图痕迹〕;⑵如图2,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且CD CF 41=,试判断AEF ∆是否为“智慧三角形〞,并说明理由; 运用:⑶如图3,在平面直角坐标系xOy 中,⊙O 的半径为1,点Q 是直线3=y 上的一点,假设在⊙O 上存在一点P ,使得OPQ ∆为“智慧三角形〞,当其面积取得最小值时,直接写出此时点P 的坐标.【答案】〔1〕详见解析;〔2〕详见解析;〔3〕P 的坐标〔﹣223,13〕,〔223,13〕. 试题分析:〔1〕连结AO 并且延长交圆于C1,连结BO 并且延长交圆于C2,即可求解;〔2〕设正方形的边长为4a ,表示出DF=CF 以及EC 、BE 的长,然后根据勾股定理列式表示出AF2、EF2、AE2,再根据勾股定理逆定理判定△AEF 是直角三角形,由直角三角形的性质可得△AEF 为“智慧三角形〞;〔3〕根据“智慧三角形〞的定义可得△OPQ 为直角三角形,根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,那么面积取得最小值,由垂线段最短可得斜边最短为3,根据勾股定理可求另一条直角边,再根据三角形面积可求斜边的高,即点P 的横坐标,再根据勾股定理可求点P 的纵坐标,从而求解.∵E 是DC 的中点, ∴DE=CE=2a , ∵BC :FC=4:1, ∴FC=a ,BF=4a ﹣a=3a ,在Rt △ADE 中,AE 2=〔4a 〕2+〔2a 〕2=20a 2, 在Rt △ECF 中,EF 2=〔2a 〕2+a 2=5a 2,在Rt △ABF 中,AF 2=〔4a 〕2+〔3a 〕2=25a 2, ∴AE 2+EF 2=AF 2,∴△AEF 是直角三角形,∵斜边AF 上的中线等于AF 的一半, ∴△AEF 为“智慧三角形〞; 〔3〕如图3所示:故点P 的坐标〔﹣223,13〕,〔223,13〕.考点:圆的综合题. 24.如图,抛物线c bx x y ++=221与x 轴交于B A 、两点,与y 轴交于点C ,其对称轴交抛物线于点D ,交x 轴于点E ,6==OC OB .⑴求抛物线的解析式及点D 的坐标;⑵连接F BD ,为抛物线上一动点,当EDB FAB ∠=∠时,求点F 的坐标;⑶平行于x 轴的直线交抛物线于N M ,两点,以线段MN 为对角线作菱形MPNQ ,当点P 在x 轴上,且MN PQ 21=时,求菱形对角线MN 的长. 【答案】〔1〕y=12x 2﹣2x ﹣6,D 〔2,﹣8〕;〔2〕F 点的坐标为〔7,92〕或〔5,﹣72〕;〔3〕菱形对角线MN 的长为65+1或65﹣1.试题分析:〔1〕由条件可求得B 、C 坐标,利用待定系数法可求得抛物线解析式,进一步可求得D 点坐标;〔2〕过F 作FG ⊥x 轴于点G ,可设出F 点坐标,利用△FAG ∽△BDE ,由相似三角形的性质可得到关于F 点坐标的方程,可求得F 点的坐标;〔3〕可求得P 点坐标,设T 为菱形对角线的交点,设出PT 的长为n ,从而可表示出M 点的坐标,代入抛物线解析式可得到n 的方程,可求得n 的值,从而可求得MN 的长. 试题解析:〔2〕如图1,过F 作FG ⊥x 轴于点G ,设F〔x,12x2﹣2x﹣6〕,那么FG=|12x2﹣2x﹣6|,在y=12x2﹣2x﹣6中,令y=0可得12x2﹣2x﹣6=0,解得x=﹣2或x=6,∴A〔﹣2,0〕,∴OA=2,那么AG=x+2,综上可知F点的坐标为〔7,92〕或〔5,﹣72〕;〔3〕∵点P在x轴上,∴由菱形的对称性可知P〔2,0〕,如图2,当MN在x轴上方时,设T为菱形对角线的交点,∵PQ=12 MN,考点:二次函数综合题.21。

2020年湖北省咸宁市中考数学试卷

2020年湖北省咸宁市中考数学试卷

2020年湖北省咸宁市中考数学试卷题号一二三总分得分一、选择题(本大题共8小题,共24.0分)1.早在两千多年前,中国人就已经开始使用负数,并运用到生产和生活中,比西方早一千多年.下列各式计算结果为负数的是()A. 3+(-2)B. 3-(-2)C. 3×(-2)D. (-3)÷(-2)2.中国互联网络信息中心数据显示,随着二胎政策全面开放,升学就业竞争压力的不断增大,满足用户碎片化学习需求的在线教育用户规模持续增长,预计2020年中国在线教育用户规模将达到305000000人.将305000000用科学记数法表示为()A. 0.305×1011B. 3.05×108C. 3.05×106D. 305×1083.下列计算正确的是()A. 3a-a=2B. a•a2=a3C. a6÷a2=a3D. (3a2)2=6a44.如图是由5个完全相同的小正方体组成的几何体,则该几何体的左视图是()A. B. C. D.5.如图是甲、乙两名射击运动员某节训练课的5次射击成绩的折线统计图,下列判断正确的是()A. 乙的最好成绩比甲高B. 乙的成绩的平均数比甲小C. 乙的成绩的中位数比甲小D. 乙的成绩比甲稳定6.如图,在⊙O中,OA=2,∠C=45°,则图中阴影部分的面积为()A. -B. π-C. -2D. π-27.在平面直角坐标系xOy中,对于横、纵坐标相等的点称为“好点”.下列函数的图象中不存在“好点”的是()A. y=-xB. y=x+2C. y=D. y=x2-2x8.如图,在矩形ABCD中,AB=2,BC=2,E是BC的中点,将△ABE沿直线AE翻折,点B落在点F处,连结CF,则cos∠ECF的值为()A. B. C. D.二、填空题(本大题共8小题,共24.0分)9.点A在数轴上的位置如图所示,则点A表示的数的相反数是______.10.因式分解:mx2-2mx+m=______.11.如图,请填写一个条件,使结论成立:∵______,∴a∥b.12.若关于x的一元二次方程(x+2)2=n有实数根,则n的取值范围是______.13.某校开展以“我和我的祖国”为主题的“大合唱”活动,七年级准备从小明、小东、小聪三名男生和小红、小慧两名女生中各随机选出一名男生和一名女生担任领唱,则小聪和小慧被同时选中的概率是______.14.如图,海上有一灯塔P,位于小岛A北偏东60°方向上,一艘轮船从小岛A出发,由西向东航行24nmile到达B处,这时测得灯塔P在北偏东30°方向上,如果轮船不改变航向继续向东航行,当轮船到达灯塔P的正南方,此时轮船与灯塔P的距离是______nmile.(结果保留一位小数,≈1.73)15.按一定规律排列的一列数:3,32,3-1,33,34,37,3-11,318,…,若a,b,c表示这列数中的连续三个数,猜想a,b,c满足的关系式是______.16.如图,四边形ABCD是边长为2的正方形,点E是边BC上一动点(不与点B,C重合),∠AEF=90°,且EF交正方形外角的平分线CF于点F,交CD于点G,连接AF,有下列结论:①△ABE∽△ECG;②AE=EF;③∠DAF=∠CFE;④△CEF的面积的最大值为1.其中正确结论的序号是______.(把正确结论的序号都填上)三、解答题(本大题共8小题,共72.0分)17.(1)计算:|1-|-2sin45°+(-2020)0;(2)解不等式组:18.如图,在▱ABCD中,以点B为圆心,BA长为半径画弧,交BC于点E,在AD上截取AF=BE.连接EF.(1)求证:四边形ABEF是菱形;(2)请用无刻度的直尺在▱ABCD内找一点P,使∠APB=90°.(标出点P的位置,保留作图痕迹,不写作法)19.如图,已知一次函数y1=kx+b与反比例函数y2=的图象在第一、三象限分别交于A(6,1),B(a,-3)两点,连接OA,OB.(1)求一次函数和反比例函数的解析式;(2)△AOB的面积为______;(3)直接写出y1>y2时x的取值范围.20.随着科技的进步和网络资源的丰富,在线阅读已成为很多人选择的阅读方式.为了解同学们在线阅读情况,某校园小记者随机调查了本校部分同学,并统计他们平均每天的在线阅读时间t(单位:min),然后利用所得数据绘制成如图不完整的统计图表.在线阅读时间频数分布表组别在线阅读时间t人数A10≤t<304B30≤t<508C50≤t<70aD70≤t<9016E90≤t<1102根据以上图表,解答下列问题:(1)这次被调查的同学共有______人,a=______,m=______;(2)求扇形统计图中扇形D的圆心角的度数;(3)若该校有950名学生,请估计全校有多少学生平均每天的在线阅读时间不少于50min?21.如图,在Rt△ABC中,∠C=90°,点O在AC上,以OA为半径的半圆O交AB于点D,交AC于点E,过点D作半圆O的切线DF,交BC于点F.(1)求证:BF=DF;(2)若AC=4,BC=3,CF=1,求半圆O的半径长.22.5月18日,我市九年级学生安全有序开学复课.为切实做好疫情防控工作,开学前夕,我市某校准备在民联药店购买口罩和水银体温计发放给每个学生.已知每盒口罩有100只,每盒水银体温计有10支,每盒口罩价格比每盒水银体温计价格多150元.用1200元购买口罩盒数与用300元购买水银体温计所得盒数相同.(1)求每盒口罩和每盒水银体温计的价格各是多少元?(2)如果给每位学生发放2只口罩和1支水银体温计,且口罩和水银体温计均整盒购买.设购买口罩m盒(m为正整数),则购买水银体温计多少盒能和口罩刚好配套?请用含m的代数式表示.(3)在民联药店累计购医用品超过1800元后,超出1800元的部分可享受8折优惠.该校按(2)中的配套方案购买,共支付w元,求w关于m的函数关系式.若该校九年级有900名学生,需要购买口罩和水银体温计各多少盒?所需总费用为多少元?23.定义:有一组对角互余的四边形叫做对余四边形.理解:(1)若四边形ABCD是对余四边形,则∠A与∠C的度数之和为______;证明:(2)如图1,MN是⊙O的直径,点A,B,C在⊙O上,AM,CN相交于点D.求证:四边形ABCD是对余四边形;探究:(3)如图2,在对余四边形ABCD中,AB=BC,∠ABC=60°,探究线段AD,CD和BD之间有怎样的数量关系?写出猜想,并说明理由.24.如图,在平面直角坐标系中,直线y=-x+2与x轴交于点A,与y轴交于点B,抛物线y=-x2+bx+c过点B且与直线相交于另一点C(,).(1)求抛物线的解析式;(2)点P是抛物线上的一动点,当∠PAO=∠BAO时,求点P的坐标;(3)点N(n,0)(0<n<)在x轴的正半轴上,点M(0,m)是y轴正半轴上的一动点,且满足∠MNC=90°.①求m与n之间的函数关系式;②当m在什么范围时,符合条件的N点的个数有2个?答案和解析1.【答案】C【解析】解:A.3+(-2)=1,故A不符合题意;B.3-(-2)=3+2=5,故B不符合题意;C.3×(-2)=-6,故C符合题意;D.(-3)÷(-2)=1.5,故D不符合题意.综上,只有C计算结果为负.故选:C.分别按照有理数的加减法、有理数的乘除法法则计算即可.本题考查了有理数的混合运算,熟练掌握有理数的运算法则是解题的关键.2.【答案】B【解析】解:305000000=3.05×108,故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】B【解析】解:3a-a=a,因此选项A计算错误,不符合题意;a•a2=a3,因此选项B计算正确,符合题意;a6÷a2=a4,因此选项C计算错误,不符合题意;(3a2)2=9a4≠6a4,因此选项D计算错误,不符合题意.故选:B.分别根据合并同类项的法则、同底数幂的除法法则、积的乘方与同底数幂的乘法法则计算各项,进而可得答案.本题考查了合并同类项、同底数幂的除法和乘法以及积的乘方等运算法则,属于基本题型,熟练掌握上述基础知识是关键.4.【答案】A【解析】解:从左面看有两层,底层是2个正方形,上层的左边是1个正方形.故选:A.找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.本题考查了三视图的知识,左视图是从物体的左面看得到的视图.5.【答案】D【解析】解:由折线图可知,甲的5次射击成绩为6,7,10,8,9,乙的5次射击成绩为8,9,8,7,8,∵10>9,∴甲的最好成绩比乙高,故选项A错误,不符合题意;∵=(6+7+10+8+9)=8,=(8+9+8+7+8)=8,∴乙的成绩的平均数与甲相等,故选项B错误,不符合题意;∵甲的成绩按从小到大的顺序排列为:6,7,8,9,10,所以中位数为8,乙的成绩按从小到大的顺序排列为:7,8,8,8,9,所以中位数为8,∴乙的成绩的中位数与甲相等,故选项C错误,不符合题意;∵=[(6-8)2+(7-8)2+(8-8)2+(9-8)2+(10-8)2]=2,=[(7-8)2+3×(8-8)2+(9-8)2]=0.4,2>0.4,∴乙的成绩比甲稳定,故选项D正确,符合题意.故选:D.利用折线统计图可得甲、乙两名射击运动员5次射击的成绩,把他们的最好成绩进行比较,即可判断A;利用平均数、中位数、方差的意义分别求出他们的平均数、中位数、方差,即可判断B、C、D.本题考查了折线统计图,平均数、中位数与方差.从折线图中得到必要的信息是解决问题的关键.6.【答案】D【解析】解:∵∠C=45°,∴∠AOB=90°,∴S阴影=S扇形AOB-S△AOB=-=π-2.故选:D.由∠C=45°根据圆周角定理得出∠AOB=90°,根据S阴影=S扇形AOB-S△AOB可得出结论.本题考查的是扇形面积的计算,根据题意求得三角形与扇形的面积是解答此题的关键.7.【答案】B【解析】解:∵横、纵坐标相等的点称为“好点”,∴当x=y时,A.x=-x,解得x=0;不符合题意;B.x=x+2,此方程无解,符合题意;C.x2=2,解得x=±,不符合题意;D.x=x2-2x,解得x1=0,x2=3,不符合题意.故选:B.根据横、纵坐标相等的点称为“好点”,即当x=y时,函数解析式变为方程后,方程有解即可判断.本题考查了二次函数图象上点的坐标特征、一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征,解决本题的关键是掌握每个函数的性质.8.【答案】C【解析】解:如图,∵四边形ABCD是矩形,∴∠B=90°,∵E是BC的中点,BC=2,∴BE=CE=BC=,∴AE===3,由翻折变换的性质得:△AFE≌△ABE,∴∠AEF=∠AEB,EF=BE=,∴EF=CE,∴∠EFC=∠ECF,∵∠BEF=∠EFC+∠ECF,∴∠AEB=∠ECF,∴cos∠ECF=cos∠AEB==.故选:C.由矩形的性质得出∠B=90°,由勾股定理求出AE,由翻折变换的性质得出△AFE≌△ABE,得出∠AEF=∠AEB,EF=BE=,因此EF=CE,由等腰三角形的性质得出∠EFC=∠ECF,由三角形的外角性质得出∠AEB=∠ECF,cos∠ECF=cos∠AEB=,即可得出结果.本题考查了矩形的性质,勾股定理,翻折变换的性质,等腰三角形的判定与性质,三角形的外角性质,三角函数;熟练掌握矩形的性质和翻折变换的性质,证出∠AEB=∠ECF 是解决问题的关键.9.【答案】-3【解析】解:∵点A在数轴上表示的数是3,∴点A表示的数的相反数是-3.故答案为:-3.A在数轴上表示的数是3,根据相反数的含义和求法,判断出点A表示的数的相反数是多少即可.此题主要考查了在数轴上表示数的方法,相反数的定义.解题的关键是熟练掌握在数轴上表示数的方法,以及相反数的含义和求法.10.【答案】m(x-1)2【解析】解:mx2-2mx+m=m(x2-2x+1)=m(x-1)2,先提公因式,再利用完全平方公式进行因式分解即可.本题考查提公因式法、公式法因式分解,确定多项式的公因式是提公因式的关键,掌握公式的结构特征是正确使用公式的前提.11.【答案】∠1=∠4或∠2=∠4或∠3+∠4=180°【解析】解:∵∠1=∠4或∠2=∠4或∠3+∠4=180°,∴a∥b.故答案为:∠1=∠4或∠2=∠4或∠3+∠4=180°.要使得a∥b,判别两条直线平行的方法有:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;依此即可求解.考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.12.【答案】n≥0【解析】解:原方程可变形为x2+4x+4-n=0.∵该方程有实数根,∴△=42-4×1×(4-n)≥0,解得:n≥0.故答案为:n≥0.将原方程变形为一般式,根据方程的系数结合根的判别式△≥0,即可得出关于n的一元一次不等式,解之即可得出n的取值范围(利用偶次方的非负性也可以找出n的取值范围).本题考查了根的判别式,牢记“当△≥0时,方程有实数根”是解题的关键.13.【答案】【解析】解:利用列表法表示所有可能出现的结果如下:共有6种可能出现的结果,其中小聪和小慧同时被选中的有1种,∴P(小聪和小慧)=,故答案为:.用列表法表示所有可能出现的结果,进而求出相应的概率.本题考查列表法求随机事件发生的概率,列举出所有可能出现的结果,是正确解答的关键.14.【答案】20.8【解析】解:过P作PD⊥AB于D.∵∠PAB=30°,∠PBD=60°,∴∠PAB=∠APB,∴BP=AB=24nmile.在直角△PBD中,PD=BP•sin∠PBD=24×=12≈20.8(nmile).即此时轮船与灯塔P的距离约为20.8nmile.故答案为20.8.过P作PD⊥AB于D,易证△ABP是等腰三角形,得到BP=AB=24nmile.然后在直角△PBD 中,利用三角函数的定义求得PD的长即可.本题考查了解直角三角形的应用-方向角问题,等腰三角形的判定与性质等知识,正确作出高线,转化为直角三角形的计算是解决本题的关键.15.【答案】a-b=c【解析】解:∵3,32,3-1,33,3-4,37,3-11,318,…,1-2=-1,2-(-1)=3,-1-3=-4,3-(-4)=7,-4-7=-11,7-(-11)=18,…,∴a,b,c满足的关系式是a-b=c.故答案为:a-b=c.首项判断出这列数中,3的指数各项依次为1,2,-1,3,-4,7,-11,18…,从第三个数起,每个数的指数都是前两数指数之差;可得这列数中的连续三个数,满足a-b=c,据此解答即可.此题主要考查了规律型:数字的变化类,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出a、b、c的指数的特征.16.【答案】①②③【解析】解:①∵四边形ABCD是正方形,∴∠B=∠ECG=90°,∵∠AEF=90°,∴∠AEB+∠CEG=∠AEB+∠BAE,∴∠BAE=∠CEG,∴△ABE∽△ECG,故①正确;②在BA上截取BM=BE,如图1,∵四边形ABCD为正方形,∴∠B=90°,BA=BC,∴△BEM为等腰直角三角形,∴∠BME=45°,∴∠AME=135°,∵BA-BM=BC-BE,∴AM=CE,∵CF为正方形外角平分线,∴∠DCF=45°,∴∠ECF=135°,∵∠AEF=90°,∴∠AEB+∠FEC=90°,而∠AEB+∠BAE=90°,∴∠BAE=∠FEC,在△AME和△ECF中,∴△AME≌△ECF,∴AE=EF,故②正确;③∵AE=EF,∠AEF=90°,∴∠EAF=45°,∴∠BAE+∠DAF=45°,∵∠BAE+∠CFE=∠CEF+∠CFE=45°,∴∠DAF=∠CFE,故③正确;④设BE=x,则BM=x,AM=AB-BM=4-x,S△ECF=S△AME=•x•(2-x)=-(x-1)2+,故④错误.故答案为:①②③.①由∠AEB+∠CEG=∠AEB+∠BAE得∠BAE=∠CEG,再结合两直角相等得△ABE∽△ECG;②在BA上截取BM=BE,易得△BEM为等腰直角三角形,则∠BME=45°,所以∠AME=135°,再利用等角的余角相等得到∠BAE=∠FEC,于是根据“ASA”可判断△AME≌△ECF,则根据全等三角形的性质可对②进行判断;③由∠MAE+∠DAF=45°,∠CEF+∠CFE=45°,可得出∠DAF与∠CFE的大小关系,便可对③判断;④设BE=x,则BM=x,AM=AB-BM=4-x,利用三角形面积公式得到S△AME=•x•(2-x),则根据二次函数的性质可得S△AME的最大值,便可对④进行判断.本题考查了四边形的综合题:熟练掌握正方形的性质和二次函数的性质;能灵活运用全等三角形的知识解决线段线段的问题.构建△AME与△EFC全等是关键.17.【答案】解:(1)原式=-1-2×+1=-1-+1=0;(2)解不等式-(x-1)>3,得:x<-2,解不等式2x+9>3,得:x>-3,则不等式组的解集为-3<x<-2.【解析】(1)先去绝对值符号、代入三角函数值、计算零指数幂,再计算乘法,最后计算加减可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组和实数的运算,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.【答案】(1)证明:∵四边形ABCD是平行四边形,∴AF∥BE,∵AF=BE,∴四边形ABEF是平行四边形,∵BA=BE,∴四边形ABEF是菱形;(2)如图所示:点P即为所求:【解析】(1)根据平行四边形的性质和判定,菱形的判定即可证明;(2)连结AE,BF,根据菱形的性质可得AE和BF的交点即为点P.本题考查菱形的判定和性质、平行四边形的性质、作图-基本作图等知识,解题的关键是作出图形,属于中考常考题型.19.【答案】8【解析】解:(1)把A(6,1)代入y2=中,解得:m=6,故反比例函数的解析式为y2=;把B(a,-3)代入y2=,解得a=-2,故B(-2,-3),把A(6,1),B(-2,-3)代入y1=kx+b,得,解得:,故一次函数解析式为y1=x-2;(2)如图,设一次函数y1=x-2与x轴交于点C,令y=0,得x=4.∴点C的坐标是(4,0),∴S△AOB=S△AOC+S△BOC=×4×1+×4×3=8.故答案为8;(3)由图象可知,当-2<x<0或x>6时,直线y1=kx+b落在双曲线y2=上方,即y1>y2,所以y1>y2时x的取值范围是-2<x<0或x>6.(1)首先把A(6,1)代入反比例函数解析式中确定m,然后把B(a,-3)代入反比例函数的解析式确定a,然后根据A,B两点坐标利用待定系数法确定一次函数的解析式;(2)求得一次函数与x轴的交点,根据S△AOB=S△AOC+S△BOC即可求解;(3)根据图象,写出直线y1=kx+b落在双曲线y2=上方的部分对应的自变量的取值范围即可.此题考查了一次函数与反比例函数的交点问题,待定系数法求一次函数与反比例函数的解析式,三角形的面积,待定系数法求函数解析式是中学阶段求函数解析式常用的方法,一定要熟练掌握并灵活运用.利用了数形结合思想.20.【答案】50 20 8【解析】解:(1)这次被调查的同学共有8÷16%=50(人),a=50×40%=20,∵m%==8%,∴m=8.故答案为:50,20,8;(2)扇形统计图中扇形D的圆心角的度数为:360°×=115.2°;(3)950×=722(人),答:估计全校有多少学生平均每天的在线阅读时间不少于50min的有722人.(1)根据B组的频数和所占的百分比,可以求得这次被调查的同学总数,用被调查的同学总数乘以C组所占百分比得到a的值,用A组人数除以被调查的同学总数,即可得到m;(2)用360°乘以D组所占百分比得到D组圆心角的度数;(3)利用样本估计总体,用该校学生数乘以样本中平均每天的在线阅读时间不少于50min的人数所占的百分比即可.本题考查了频数分布表,扇形统计图,读懂统计图表,从不同的统计图表中得到必要的信息是解决问题的关键.也考查了利用样本估计总体.21.【答案】解:(1)连接OD,如图1,∵过点D作半圆O的切线DF,交BC于点F,∴∠ODF=90°,∴∠ADO+∠BDF=90°,∵OA=OD,∴∠OAD=∠ODA,∴∠OAD+∠BDF=90°,∵∠C=90°,∴∠OAD+∠B=90°,∴∠B=∠BDF,∴BF=DF;(2)连接OF,OD,如图2,设圆的半径为r,则OD=OE=r,∵AC=4,BC=3,CF=1,∴OC=4-r,DF=BF=3-1=2,∵OD2+DF2=OF2=OC2+CF2,∴r2+22=(4-r)2+12,∴.故圆的半径为.【解析】(1)连接OD,由切线性质得∠ODF=90°,进而证明∠BDF+∠A=∠A+∠B=90°,得∠B=∠BDF,便可得BF=DF;(2)设半径为r,连接OD,OF,则OC=4-r,求得DF,再由勾股定理,利用OF为中间变量列出r的方程便可求得结果.本题主要考查了切线的性质,等腰三角形的性质与判定,勾股定理,已知切线,往往连接半径为辅助线,第(2)题关键是由勾股定理列出方程.22.【答案】解:(1)设每盒口罩和每盒水银体温计的价格各是x元,(x-150)元,根据题意,得=,解得x=200,经检验,x=200是原方程的解,∴x-150=50,答:每盒口罩和每盒水银体温计的价格各是200元、50元;(2)设购买水银体温计y盒能和口罩刚好配套,根据题意,得100m=2×10y,则y=5m,答:购买水银体温计5m盒能和口罩刚好配套;(3)若200m+50×5m≤1800,∴450m≤1800,∴m≤4,即m≤4时,w=450m;若m>4,则w=1800+(450m-1800)×0.8=360m+360,综上所述:w=.若该校九年级有900名学生,需要购买口罩:900×2=1800(支),水银体温计:900×1=900(支),此时m=1800÷100=18(盒),y=5×18=90(盒),则w=360×18+360=6840(元).答:购买口罩和水银体温计各18盒、90盒,所需总费用为6840元.【解析】(1)设每盒口罩和每盒水银体温计的价格各是x元,(x-150)元,根据题意列出分式方程即可;(2)根据配套问题,设购买水银体温计y盒能和口罩刚好配套,根据口罩的数量等于水银体温计数量的2倍列出方程即可用含m的代数式表示;(3)根据题意列出不等式:200m+50×5m≤1800,可得m≤4时,w=450m;当m>4时,w=1800+(450m-1800)×0.8=360m+360,进而可得w关于m的函数关系式.本题考查分式方程,一次函数的应用;能够根据题意列出准确的分式方程,求费用的最大值转化为求一次函数的最大值是解题的关键.23.【答案】90°或270°【解析】(1)解:∵四边形ABCD是对余四边形,故答案为:90°或270°;(2)证明:∵MN是⊙O的直径,点A,B,C在⊙O上,∴∠BAM+∠BCN=90°,即∠BAD+∠BCD=90°,∴四边形ABCD是对余四边形;(3)解:线段AD,CD和BD之间数量关系为:AD2+CD2=BD2,理由如下:∵对余四边形ABCD中,∠ABC=60°,∴∠ADC=30°,∵AB=BC,∴将△BCD绕点B逆时针旋转60°,得到△BAF,连接FD,如图3所示:∴△BCD≌△BAF,∠FBD=60°∴BF=BD,AF=CD,∠BDC=∠BFA,∴△BFD是等边三角形,∴BF=BD=DF,∵∠ADC=30°,∴∠ADB+∠BDC=30°,∴∠BFA+∠ADB=30°,∵∠FBD+∠BFA+∠ADB+∠AFD+∠ADF=180°,∴60°+30°+∠AFD+∠ADF=180°,∴∠AFD+∠ADF=90°,∴∠FAD=90°,∴AD2+AF2=DF2,∴AD2+CD2=BD2.(1)对余四边形的定义即可得出结果;(2)由圆周角定理得出∠BAM+∠BCN=90°,即∠BAD+∠BCD=90°,即可得出结论;(3)对余四边形的定义得出∠ADC=30°,将△BCD绕点B逆时针旋转60°,得到△BAF,连接FD,则△BCD≌△BAF,∠FBD=60°,得出BF=BD,AF=CD,∠BDC=∠BFA,则△BFD 是等边三角形,得出BF=BD=DF,易证∠BFA+∠ADB=30°,由∠FBD+∠BFA+∠ADB+∠AFD+∠ADF=180°,得出∠AFD+∠ADF=90°,则∠FAD=90°,由勾股定理即可得出结果.本题是圆的综合题,主要考查了对余四边形的定义、圆周角定理、旋转的性质、等边三角形的判定与性质、三角形内角和定理、勾股定理等知识;熟练掌握对余四边形的定义和旋转的性质是解题的关键.24.【答案】解:(1)直线y=-x+2与x轴交于点A,与y轴交于点B,则点A、B的坐标分别为(4,0)、(0,2),将点B、C的坐标代入抛物线表达式得,解得,故抛物线的表达式为:y=-x2+x+2①;(2)如图1,作点B关于x轴的对称点B′(0,-2),连接AB′交抛物线于点P(P′),则∠PAO=∠BAO,由点A、B′的坐标得,直线AB′的表达式为:y=x-2②,联立①②并解得:x=3或-2,故点P的坐标为(3,-)或(-2,-3);(3)①过点C作CH⊥x轴于点H,∵∠MNC=90°,∴∠MNO+∠CNH=90°,∠CNH+∠NCH=90°,∴∠MNO=∠NCH,∴tan∠MNO=tan∠NCH,即,即,解得:m=-n2+n;②m=-n2+n,∵<0,故m有最大值,当n=时,m的最大值为,而m>0,故0<m<时,符合条件的N点的个数有2个.【解析】(1)用待定系数法即可求解;则∠PAO=∠BAO,即可求解;(3)①证明tan∠MNO=tan∠NCH,即,即,即可求解;②m=-n2+n,当n=时,m的最大值为,即可求解.本题考查的是二次函数综合运用,涉及到一次函数的性质、解直角三角形等,综合性强,难度适中.。

湖北省咸宁市2019年中考数学真题试题(含解析)

湖北省咸宁市2019年中考数学真题试题(含解析)

湖北省咸宁市2019年中考数学真题试题一、选择题(每题只有一个正确选项,本题共8小题,每题3分,共24分)1. 咸宁冬季里某一天的气温为﹣3℃~2℃,则这一天的温差是()A. 1℃B. ﹣1℃C. 5℃D. ﹣5℃【答案】C【解析】【分析】根据题意列出算式,再利用减法法则计算即可得.【详解】由题意知这一天的最高气温是2℃,最低气温是﹣3℃,3所以这一天的温差是2﹣(﹣3)=2+3=5(℃),故选C.【点睛】本题考查了有理数减法的应用,根据题意列出算式,熟练应用减法法则是解题的关键.2. 如图,已知a∥b,l与a、b相交,若∠1=70°,则∠2的度数等于()A. 120°B. 110°C. 100°D. 70°【答案】B【解析】【分析】先求出∠1的邻补角的度数,再根据两直线平行,同位角相等即可求出∠2的度数.【详解】如图,∵∠1=70°,∴∠3=180°﹣∠1=180°﹣70°=110°,∵a∥b,∴∠2=∠3=110°,故选B.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.3. 2017年,咸宁市经济运行总体保持平稳较快增长,全年GDP约123500000000元,增速在全省17个市州中排名第三,将123500000000用科学记数法表示为()A. 123.5×109B. 12.35×1010C. 1.235×108D. 1.235×1011【答案】D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】123500000000的小数点向左移动11位得到1.235,所以 123500000000用科学记数法表示为1.235×1011,故选D.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4. 用4个完全相同的小正方体搭成如图所示的几何体,该几何体的()A. 主视图和左视图相同B. 主视图和俯视图相同C. 左视图和俯视图相同D. 三种视图都相同【答案】A【解析】【分析】分别画出该几何体的三视图进而得出答案.【详解】如图所示:,故该几何体的主视图和左视图相同,故选A.【点睛】本题考查了三视图,解题的关键是得出该几何体的三视图.5. 下列计算正确的是()A. a3•a3=2a3B. a2+a2=a4C. a6÷a2=a3D. (﹣2a2)3=﹣8a6【答案】D【解析】【分析】根据同底数幂的乘法、合并同类项法则及同底数幂的除法、积的乘方与幂的乘方的运算法则逐一计算可得.【详解】A、a3•a3=a6,故A选项错误;B、a2+a2=2a2,故B选项错误;C、a6÷a2=a4,故C选项错误;D、(﹣2a2)3=﹣8a6,故D选项正确,故选D.【点睛】本题考查了同底数幂的乘除法、合并同类项、积的乘方等运算,熟练掌握各运算的运算法则是解题的关键.6. 已知一元二次方程2x2+2x﹣1=0的两个根为x1,x2,且x1<x2,下列结论正确的是()A. x1+x2=1B. x1•x2=﹣1C. |x1|<|x2|D. x12+x1=【答案】D【解析】【分析】直接利用根与系数的关系对A、B进行判断;由于x1+x2<0,x1x2<0,则利用有理数的性质得到x1、x2异号,且负数的绝对值大,则可对C进行判断;利用一元二次方程解的定义对D进行判断.【详解】根据题意得x1+x2=﹣=﹣1,x1x2=﹣,故A、B选项错误;∵x1+x2<0,x1x2<0,∴x1、x2异号,且负数的绝对值大,故C选项错误;∵x1为一元二次方程2x2+2x﹣1=0的根,∴2x12+2x1﹣1=0,∴x12+x1=,故D选项正确,故选D.【点睛】本题考查了一元二次方程的解、一元二次方程根与系数的关系,熟练掌握相关内容是解题的关键.7. 如图,已知⊙O的半径为5,弦AB,CD所对的圆心角分别是∠AOB,COD,若∠AOB与∠COD互补,弦CD=6,则弦AB的长为()A. 6B. 8C. 5D. 5【答案】B【解析】【分析】延长AO交⊙O于点E,连接BE,由∠AOB+∠BOE=∠AOB+∠COD知∠BOE=∠COD,据此可得BE=CD=6,在Rt△ABE中利用勾股定理求解可得.【详解】如图,延长AO交⊙O于点E,连接BE,则∠AOB+∠BOE=180°,又∵∠AOB+∠COD=180°,∴∠BOE=∠COD,∴BE=CD=6,∵AE为⊙O的直径,∴∠ABE=90°,∴AB==8,故选B.【点睛】本题考查了弧、弦、圆心角的关系,圆周角定理等,正确添加辅助线以及熟练应用相关的性质与定理是解题的关键.8. 甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了32分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米其中正确的结论有()A. 1个B. 2个C. 3个D. 4个【答案】A【解析】【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】由图可得,甲步行的速度为:240÷4=60米/分,故①正确,乙走完全程用的时间为:2400÷(16×60÷12)=30(分钟),故②错误,乙追上甲用的时间为:16﹣4=12(分钟),故③错误,乙到达终点时,甲离终点距离是:2400﹣(4+30)×60=360米,故④错误,故选A.【点睛】本题考查了函数图象,弄清题意,读懂图象,从中找到必要的信息是解题的关键.二、细心填一填(本大题共8小题,每小题3分,满分24分)9. 如果分式有意义,那么实数x的取值范围是_____.【答案】x≠2【解析】分析:根据分式有意义,分母不等于0列式计算即可得解.详解:由题意得,x−2≠0,解得x≠2.故答案为:x≠2.点睛:此题考查了分式有意义的条件:分式有意义的条件是分母不等于0,分式无意义的条件是分母等于0.10. 因式分解:ab2﹣a=_____.【答案】a(b+1)(b﹣1)【解析】分析:首先提取公因式,再用公式法分解因式即可.详解:原式故答案为:点睛:考查因式分解,本题是提取公因式法和公式法相结合.注意分解一定要彻底.11. 写出一个比2大比3小的无理数(用含根号的式子表示)_____.【答案】【解析】【分析】先利用4<5<9,再根据算术平方根的定义有2<<3,这样就可得到满足条件的无理数.【详解】∵4<5<9,∴2<<3,即为比2大比3小的无理数.故答案为:.【点睛】本题考查了估算无理数的大小,熟练掌握利用完全平方数和算术平方根对无理数的大小进行估算是解题的关键.12.一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3.随机摸出一个小球然后放回,再随机摸出一个小球,则两次摸出的小球标号相同的概率是_________。

咸宁市中考数学试题及答案

咸宁市中考数学试题及答案

咸宁市中考数学试题及答案第一部分选择题1. 已知函数 f(x) 的定义域为实数集,f(x) = x^2 - 3x + 2,下列选项中哪个等式成立?A. f(-1) = 0B. f(1) = 0C. f(0) = 1D. f(2) = 0答案:B2. 在平面直角坐标系中,点A(x,y)关于x轴对称点是A'(-x,y'),且A'在第三象限,若y = -1,则点A的坐标为:A. (-1, 1)B. (-1, -1)C. (1, -1)D. (1, 1)答案:C3. 若正方体的一个棱长为a,则它的表面积为多少?A. 4a^2B. 8a^2C. 6a^2D. 12a^2答案:C4. 一辆汽车以每小时60公里的速度行驶,要经过长为540米的隧道,它需多长时间才能完全通过?A. 6秒B. 9秒C. 12秒D. 15秒答案:B5. 若a,b,c是互不相等的非零实数,下列等式中正确的是:A. (a+b+c)^2 = a^2 + b^2 + c^2B. (a+b+c)^2 = a^2 + 2ab + c^2C. (a+b+c)^2 = a^2 + b^2 + 2abD. (a+b+c)^2 = a^2 - b^2 + c^2答案:B第二部分填空题1. 设四个正数成等差数列,已知它们的和为20,差为2,则最小的一个数为____。

答案:22. 若a+b=10,a-b=6,则a的值为____。

答案:83. 若把一个菱形的周长扩大8倍,它的面积将扩大____倍。

答案:64第三部分解答题1. 计算:2.5 ÷ (1 - 0.5) × 3解答:2.5 ÷ (1 - 0.5) × 3 = 2.5 ÷ 0.5 × 3 = 5 × 3 = 152. 有一个三角形的三个内角的度数分别为60°、70°和50°,这个三角形是什么三角形?解答:因为三个内角的度数之和为180°,所以60° + 70° + 50° = 180°。

湖北咸宁 2019年中考数学真题 (含答案)

湖北咸宁 2019年中考数学真题 (含答案)

湖北咸宁2019年中考数学一、选择题1.下列关于0的说法正确的是()A.0是正数B.0是负数C.0是有理数D.0是无理数2.勾股定理是“人类最伟大的十个科学发现之一”.我国对勾股定理的证明是由汉代的赵爽在注解《周髀算经》时给出的,他用来证明勾股定理的图案被称为“赵爽弦图”.2002年在北京召开的国际数学大会选它作为会徽.下列图案中是“赵爽弦图”的是()3.下列计算正确的是()A.﹣=B.C.a5÷a2=a3D.(ab2)3=ab64.若正多边形的内角和是540°,则该正多边形的一个外角为()A.45°B.60°C.72°D.90°5.如图是由5个完全相同的小正方形搭成的几何体,如果将小正方体A放到小正方体B的正上方,则它的()A.主视图会发生改变B.俯视图会发生改变C.左视图会发生改变D.三种视图都会发生改变6.若关于x的一元二次方程x2﹣2x+m=0有实数根,则实数m的取值范围是()A.m<1B.m≤1C.m>1D.m≥17.已知点A(﹣1,m),B(1,m),C(2,m﹣n)(n>0)在同一个函数的图象上,这个函数可能是()A.y=x B.y=﹣C.y=x2D.y=﹣x28.在平面直角坐标系中,将一块直角三角板如图放置,直角顶点与原点O重合,顶点A,B恰好分别落在函数y=﹣(x<0),y=(x>0)的图象上,则sin∠ABO的值为()A.B.C.D.二、填空题9.计算:()0﹣1=.10.一个质地均匀的小正方体,六个面分别标有数字“1”“1”“2”“4”“5”“5”,随机掷一次小正方体,朝上一面的数字是奇数的概率是.11.若整式x2+my2(m为常数,且m≠0)能在有理数范围内分解因式,则m的值可以是(写一个即可).12.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x尺,绳子长y尺,可列方程组为.13.如图所示,九(1)班数学课外活动小组在河边测量河宽AB(这段河流的两岸平行),他们在点C测得∠ACB=30°,点D处测得∠ADB=60°,CD=80m,则河宽AB约为m.(结果保留整数,≈1.73).14.如图,半圆的直径AB=6,点C在半圆上,∠BAC=30°,则阴影部分的面积为(结果保留π).15.有一列数,按一定规律排列成1,﹣2,4,﹣8,16,﹣32,…,其中某三个相邻数的积是412,则这三个数的和是.16.如图,先有一张矩形纸片ABCD,AB=4,BC=8,点M,N分别在矩形的边AD,BC上,将矩形纸片沿直线MN折叠,使点C落在矩形的边AD上,记为点P,点D落在G处,连接PC,交MN于点Q,连接CM.下列结论:①CQ=CD;②四边形CMPN是菱形;③P,A重合时,MN=2;④△PQM的面积S的取值范围是3≤S≤5.其中正确的是(把正确结论的序号都填上).三、计算题17.化简:÷;18.解不等式组:四、解答题19.在Rt△ABC中,∠C=90°,∠A=30°,D,E,F分别是AC,AB,BC的中点,连接ED,EF.(1)求证:四边形DEFC是矩形;(2)请用无刻度的直尺在图中作出∠ABC的平分线(保留作图痕迹,不写作法).20.小慧家与文具店相距960m,小慧从家出发,沿笔直的公路匀速步行12min来到文具店买笔记本,停留3min,因家中有事,便沿着原路匀速跑步6min返回家中.(1)小慧返回家中的速度比去文具店的速度快多少?(2)请你画出这个过程中,小慧离家的距离y与时间x的函数图象;(3)根据图象回答,小慧从家出发后多少分钟离家距离为720m?21.某校为了解七、八年级学生一分钟跳绳情况,从这两个年级随机抽取50名学生进行测试,并对测试成绩(一分钟跳绳次数)进行整理、描述和分析,下面给出了部分信息:七年级学生一分钟跳绳成绩(数据分7组:60≤x<80,80≤x<100,…,180≤x<200)在100≤x<120这一组的是:根据以上信息,回答下列问题:(1)表中a=;(2)在这次测试中,七年级甲同学的成绩122次,八年级乙同学的成绩125次,他们的测试成绩,在各自年级所抽取的50名同学中,排名更靠前的是(填“甲”或“乙”),理由是.(3)该校七年级共有500名学生,估计一分钟跳绳不低于116次的有多少人?22.如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,以CD为直径的⊙O分别交AC,BC于点E,F两点,过点F作FG⊥AB于点G.(1)试判断FG与⊙O的位置关系,并说明理由.(2)若AC=3,CD=2.5,求FG的长.23.某工厂用50天时间生产一款新型节能产品,每天生产的该产品被某网店以每件80元的价格全部订购,在生产过程中,由于技术的不断更新,该产品第x天的生产成本y(元/件)与x(天)之间的关系如图所示,第x天该产品的生产量z(件)与x(天)满足关系式z=﹣2x+120.(1)第40天,该厂生产该产品的利润是元;(2)设第x天该厂生产该产品的利润为w元.①求w与x之间的函数关系式,并指出第几天的利润最大,最大利润是多少?②在生产该产品的过程中,当天利润不低于2400元的共有多少天?五、综合题24.定义:有一组邻边相等且对角互补的四边形叫做等补四边形.理解:(1)如图1,点A,B,C在⊙O上,∠ABC的平分线交⊙O于点D,连接AD,CD.求证:四边形ABCD是等补四边形;探究:(2)如图2,在等补四边形ABCD中,AB=AD,连接AC,AC是否平分∠BCD?请说明理由.运用:(3)如图3,在等补四边形ABCD中,AB=AD,其外角∠EAD的平分线交CD的延长线于点F,CD=10,AF=5,求DF的长.25.如图,在平面直角坐标系中,直线y=﹣x+2与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c经过A,B两点且与x轴的负半轴交于点C.(1)求该抛物线的解析式;(2)若点D为直线AB上方抛物线上的一个动点,当∠ABD=2∠BAC时,求点D的坐标;(3)已知E,F分别是直线AB和抛物线上的动点,当B,O,E,F为顶点的四边形是平行四边形时,直接写出所有符合条件的E点的坐标.参考答案1.答案为:C.2.答案为:B.3.答案为:C.4.答案为:C.5.答案为:A.6.答案为:B.7.答案为:D.8.答案为:D.9.答案为:0.10.答案为:.11.答案为:﹣1(答案不唯一).12.答案为:.13.答案为:69.14.答案为:3π﹣.15.答案为:﹣384.解析:∵一列数为1,﹣2,4,﹣8,16,﹣32,…,∴这列数的第n个数可以表示为(﹣2)n﹣1,∵其中某三个相邻数的积是412,∴设这三个相邻的数为(﹣2)n﹣1、(﹣2)n、(﹣2)n+1,则(﹣2)n﹣1•(﹣2)n•(﹣2)n+1=412,即(﹣2)3n=(22)12,∴(﹣2)3n=224,∴3n=24,解得,n=8,∴这三个数的和是:(﹣2)7+(﹣2)8+(﹣2)9=(﹣2)7×(1﹣2+4)=(﹣128)×3=﹣384,16.答案为:②③.解:如图1,∵PM∥CN,∴∠PMN=∠MNC,∵∠MNC=∠PNM,∴∠PMN=∠PNM,∴PM=PN,∵NC=NP,∴PM=CN,∵MP∥CN,∴四边形CNPM是平行四边形,∵CN=NP,∴四边形CNPM是菱形,故②正确;∴CP⊥MN,∠BCP=∠MCP,∴∠MQC=∠D=90°,∵CP=CP,若CQ=CD,则Rt△CMQ≌△CMD,∴∠DCM=∠QCM=∠BCP=30°,这个不一定成立,故①错误;点P与点A重合时,如图2,设BN=x,则AN=NC=8﹣x,在Rt△ABN中,AB2+BN2=AN2,即42+x2=(8﹣x)2,解得x=3,∴CN=8﹣3=5,AC=,∴,∴,∴MN=2QN=2.故③正确;当MN过点D时,如图3,此时,CN最短,四边形CMPN的面积最小,则S最小为S=,当P点与A点重合时,CN最长,四边形CMPN的面积最大,则S最大为S=,∴4≤S≤5,故④错误.17.原式=×(m﹣1)=;18.,解①得:x>﹣2,解②得:x≤3,所以这个不等式组的解集为:﹣2<x≤3.19.(1)证明:∵D,E,F分别是AC,AB,BC的中点,∴DE∥FC,EF∥CD,∴四边形DEFC是平行四边形,∵∠DCF=90°,∴四边形DEFC是矩形.(2)连接EC,DF交于点O,作射线BO,射线BO即为所求.20.解:(1)由题意可得,(m/min)答:小慧返回家中的速度比去文具店的速度快80m/min;(2)如图所示:(3)根据图象可得,小慧从家出发后9分钟或16.5分钟分钟离家距离为720m;21.解:(1)∵七年级50名学生成绩的中位数是第25、26个数据的平均数,而第25、26个数据分别是117、119,∴中位数a==118,故答案为:118;(2)∴在各自年级所抽取的50名同学中,排名更靠前的是甲,理由是甲的成绩122超过中位数118,乙的成绩125低于其中位数126,故答案为:甲,甲的成绩122超过中位数118,乙的成绩125低于其中位数126.(3)估计一分钟跳绳不低于116次的有500×=270(人).22.解:(1)FG与⊙O相切,理由:如图,连接OF,∵∠ACB=90°,D为AB的中点,∴CD=BD,∴∠DBC=∠DCB,∵OF=OC,∴∠OFC=∠OCF,∴∠OFC=∠DBC,∴OF∥DB,∴∠OFG+∠DGF=180°,∵FG⊥AB,∴∠DGF=90°,∴∠OFG=90°,∴FG与⊙O相切;(2)连接DF,∵CD=2.5,∴AB=2CD=5,∴BC==4,∵CD 为⊙O 的直径,∴∠DFC=90°,∴FD⊥BC,∵DB=DC,∴BF=BC=2,∵sin∠ABC=,即=,∴FG=.23.解:(1)由图象可知,第40天时的成本为40元,此时的产量为z=﹣2×40+120=40则第40天的利润为:(80﹣40)×40=1600元.故答案为1600(2)①;设直线AB 的解析式为y=kx+b(k≠0),把(0,70)(30,40)代入得,解得∴直线AB 的解析式为y=﹣x+70(Ⅰ)当0<x≤30时w=[80﹣(﹣x+70)](﹣2x+120)=﹣2x 2+100x+1200=﹣2(x﹣25)2+2450∴当x=25时,w 最大值=2450(Ⅱ)当30<x≤50时,w=(80﹣40)×(﹣2x+120)=﹣80x+4800∵w 随x 的增大而减小∴当x=31时,w 最大值=2320∴第25天的利润最大,最大利润为2450元②(Ⅰ)当0<x≤30时,令﹣2(x﹣25)2+2450=2400元,解得x 1=20,x 2=30∵抛物线w=﹣2(x﹣25)2+2450开口向下由其图象可知,当20≤x≤30时,w≥2400此时,当天利润不低于2400元的天数为:30﹣20+1=11天(Ⅱ)当30<x≤50时,由①可知当天利润均低于2400元综上所述,当天利润不低于2400元的共有11天.24.解:(1)证明:∵四边形ABCD 为圆内接四边形,∴∠A+∠C=180°,∠ABC+∠ADC=180°,∵BD平分∠ABC,∴∠ABD=∠CBD,∴,∴AD=CD,∴四边形ABCD是等补四边形;(2)AD平分∠BCD,理由如下:如图2,过点A分别作AE⊥BC于点E,AF垂直CD的延长线于点F,则∠AEB=∠AFD=90°,∵四边形ABCD是等补四边形,∴∠B+∠ADC=180°,又∠ADC+∠ADF=180°,∴∠B=∠ADF,∵AB=AD,∴△ABE≌△ADF(AAS),∴AE=AF,∴AC是∠BCF的平分线,即AC平分∠BCD;(3)如图3,连接AC,∵四边形ABCD是等补四边形,∴∠BAD+∠BCD=180°,又∠BAD+∠EAD=180°,∴∠EAD=∠BCD,∵AF平分∠EAD,∴∠FAD=∠EAD,由(2)知,AC平分∠BCD,∴∠FCA=∠BCD,∴∠FCA=∠FAD,又∠AFC=∠DFA,∴△ACF∽△DAF,∴,即,∴DF=5﹣5.25.解:(1)在中,令y=0,得x=4,令x=0,得y=2∴A(4,0),B(0,2)把A(4,0),B(0,2),代入,得,解得∴抛物线得解析式为(2)如图,过点B作x轴得平行线交抛物线于点E,过点D作BE得垂线,垂足为F ∵BE∥x轴,∴∠BAC=∠ABE∵∠ABD=2∠BAC,∴∠ABD=2∠ABE 即∠DBE+∠ABE=2∠ABE ∴∠DBE=∠ABE∴∠DBE=∠BAC设D 点的坐标为(x,),则BF=x,DF=∵tan∠DBE=,tan∠BAC=∴=,即解得x 1=0(舍去),x 2=2当x=2时,=3∴点D 的坐标为(2,3)(3)当BO 为边时,OB∥EF,OB=EF,设E(m,),F(m,)EF=|()﹣()|=2解得m 1=2,,当BO 为对角线时,OB 与EF 互相平分,过点O 作OF∥AB,直线OF交抛物线于点F()和()求得直线EF 解析式为或直线EF 与AB 的交点为E,点E 的横坐标为或∴E 点的坐标为(2,1)或(,)或()或()或()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.为阅卷方便,解答题的解题步骤写得较为详细,但允许考生在解答过程中,合理地省略非关键性的步骤.
4.解答右端所注分数,表示考生正确做到这一步应得的累加分数.
5.每题评分时只给整数分数.
一.精心选一选(每小题3分,本大题满分24分)
题号
1
2
3
45678 Nhomakorabea答案
B
A
A
D
C
D
B
D
二.细心填一填(每小题3分,本大题满分24分)
∴ .∴ .4分
∴△MPH的面积为 .
当 时, .5分
当 < ≤3时,设MH与CD相交于点E,△MPH与矩形AOCD重合部分的面积即
△PEH的面积.
过点M作 于G, 交HP的延长线于点F.


由△HPE∽△HFM,得 .
∴ .∴ .8分
∴△PEH的面积为 .
当 时, .
综上所述,若△MPH与矩形AOCD重合部分的面积为1, 为1或 .9分
中位数为6万元;4分
平均数为 (万元).5分
(3)如果想让一半左右的员工都能达到目标,个人年利润可以定为6万元.因为从样本情况看,个人年利润在6万元以上的有7人,占总数的一半左右.可以估计,如果个人年利润定为6万元,将有一半左右的员工获得奖励.7分
(说明:答对“6万元”得1分,理由大致相同,得1分)
咸宁中考数学试题答案
湖北省咸宁市
数学试题参考答案及评分说明
说明:
1.如果考生的解答正确,思路与本参考答案不同,可参照本评分说明制定相应的评分细则评分.
2.每题都要评阅完毕,不要因为考生的解答中出现错误而中断对该题的评阅.当考生的解答在某一步出现错误,影响了后继部分时,如果该步以后的解答未改变这道题的内容和难度,则可视影响的程度决定后面部分的给分,但不得超过后面部分应给分数的一半;如果这一步以后的解答有较严重的错误,就不给分.
在Rt△ABC中,
∵ ,∴ .
∴ .3分
在Rt△AOD中,
,∴ .6分
∵ ,∴ .8分
解法二:连接BE.
∵AB为直径,∴ .
∴ .
∴ .3分
在Rt△ABC中,
∵ ,
∴ .∴ .6分
∵ ,∴ .8分
20.解:(1)设样本容量为 ,则
,所以 .
即样本容量为15.1分
(补全条形统计图如图所示)2分
(2)样本的众数为4万元;3分
9.>10.
11.1912. (不带单位不扣分)
13.(如图)14. 15.
16.②③(多填、少填或错填均不给分)
三.专心解一解(本大题满分72分)
17.解:原式 4分
.6分
18.解:两边同时乘以 ,得
.3分
解这个方程,得 .7分
检验: 时 ,
不是原分式方程的解,原分式方程无解.8分
19.解法一:∵BC是⊙O的切线,∴ .
如果想确定一个较高的目标,个人年利润可以定为万元.因为在样本的众数,中位数和平均数中,平均数最大.可以估计,如果个人年利润定为万元,大约会有 的员工获得奖励.9分
(说明:答对“万元”得1分,理由大致相同,得1分)
21.解:(1) .4分
(2) .
当 时, 有最大值1250.
因此,每桶柴油降价15元后出售,可获得最大利润.8分

因此,与降价前比较,每天销售这种柴油可多获利450元.9分
22.(1)在Rt△ABE和Rt△AGE中, , ,
∴△ABE≌△AGE.∴ .1分
同理, .
∴ .2分
(2) .3分
∵ , ,
∴ .∴ .
又∵ , ,
∴△AMN≌△AHN.∴ .5分
∵ , ,
∴ .∴ .
∴ .∴ .6分
(3)由(1)知, , .
∵平移的路径长为 ,∴50≤ ≤56.∴≤ ≤42.9分
而点Q的坐标为正整数,因此点Q的坐标为 , .10分
24.解:(1) , .1分
当 时, , .
所以直线AB与CD交点的坐标为 .2分
(2)当0< < 时,△MPH与矩形AOCD重合部分的面积即△MPH的面积.
过点M作 ,垂足为N.
由△AMN∽△ABO,得 .
(3) 有最小值.
连接PB,CH,则四边形PHCB是平行四边形.
∴ .∴ .
当点C,H,Q在同一直线上时, 的值最小.11分
∵点C,Q的坐标分别为 , ,∴直线CQ的解析式为 ,
∴点H的坐标为 .因此点P的坐标为 .12分
设 ,则 , .
∵ ,
∴ .
解这个方程,得 , (舍去负根).
∴ .8分
∴ .
在(2)中, , ,
∴ .9分
设 ,则 .
∴ .即 .10分
23.解:(1)(说明:描点正确得1分,坐标填写正确得1分)2分
(2) ; ; .5分
(说明:写对一个解析式得1分)
(3)设点Q的坐标为 ,依题意,
解这个方程组,得到点Q的坐标为 .7分
相关文档
最新文档