2012-2013南通市高三数学一模
江苏省南通市高三第一次调研测试 数学试题.pdf
江苏省南通市2012届高三3月第一次调研测试 数学Ⅰ 参考公式: (1),,…,的方差,其中. (2)的导函数,其中都是常数. 一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上.1. 在平面直角坐标系中,双曲线的离心率为 ▲ . 2.(是虚数单位),则z?=? ▲ . 3. 在右图的算法中,最后输出的a,b的值依次是 ▲ . 4. 9.9,?10,a,?10.2的平均数为10,则该组数据的方差 为 ▲ . 5.Z,集合,则 ▲ .(用列举法表示) 6. 在平面直角坐标系中,已知向量,,则?设P是函数图象上异于原点的动点,且该图象在点P处的切线的倾斜角为,则 的取值范围是 ▲ . 9.,,的图象上, 且矩形的边分别平行于两坐标轴. 若点A的纵坐标为2,则点D的坐标为 ▲ . 10., , , , …… 猜想: ▲ (). 11.中,、分别为棱、上的动点,点为正方形 的中心. 则空间四边形在该正方体各个面上的正投影构成的图形中,面积的最大 值为 ▲ . 12.对任意的都成立,则的最小值为 ▲ . 13.()的左、右焦点,B,C分别为椭 圆的上、下顶点,直线BF2与椭圆的另一交点为. 若,则直线的斜率为 ▲ . 14.?>?0)的等差数列,后三项依次成公比为q的 等比数列. 若,则q的所有可能的值构成的集合为 ▲ . 二、解答题:本大题共6小题,共90分.请在答题卡指定区域内作答. 解答时应写出文字说明、证 明过程或演算步骤. 1.(本小题满分14分)中,角A,B,C的对边分别为 a,b,c. (1)若,求的值; (2)若,求的值. 16.(本小题满分14分)如图,在六面体中,,,.求证: (1)(2) 17.(本小题满分14分)名分成组,组捆,组捆.假定(1)根据,每小时,种植一捆沙棘树苗用时小时.应如何分配A,B两组的人数,? (2)在按(1)分配的人数后,每小时, 而每小时,从组抽调名18.(本小题满分1分)中,已知圆:,圆:.(1)若过点的直线被圆截得的弦长为 ,求直线的方程; (2)设动圆同时平分圆的周长、圆的周长.C在一条定直线上运动; ②动圆是否经过定点?若经过,求出定点的 坐标;若不经过,请说明理由.19.(本小题满分1分). (1)设P,Q是函数图象上相异的两点,证明:直线PQ的斜率大于0; (2)求实数的取值范围,使不等式在上恒成立. 数列{}为“Jk型”数列. (1)若数列{}是“J2型”数列,且,,求; (2)若数列{}既是“J3型”数列,又是“J4型”数列,证明:数列{}是等比数列. 数学Ⅱ(附加题) 21.【选做题】A、B、C、D四小题... A.几何证明选讲(本小题满分10分)AB是半圆O的直径,延长AB到C,使BC,CD切半圆O于点D, DE⊥AB,垂足 为E.若AE∶EB?3∶1,求DE的长. B.矩阵与变换(本小题满分10分)直线在矩阵对应的变换下得到的直线过点,求实数的值. C.坐标与参数方程(本小题满分10分) 在极坐标系中,()与相切,求实数a的值. .不等式选讲(本小题满分10分) ,,满足,求证:.【必做题】第22、23题,每小题10分,共计20分.解答时应写出文字说明、证明过程或演算步骤. (本小题满分10分) }满足:,. (1)求,的值; (2)证明:不等式对于任意都成立. 23.(本小题满分10分)中,抛物线的顶点在原点,焦点为F(1,0).轴上 方的不同两点、作抛物线的切线、,与轴分别交于、两点,且与交于 点,直线与直线交于点.轴; (3)若直线与轴的交点恰为F(1,0), 求证:直线过定点.一、填空题:.每小题5分,共70分. 中,双曲线的离心率为 ▲ . 答案: 2.(是虚数单位),则z?=? ▲ . 答案:1?+?2i 3. 在右图的算法中,最后输出的a,b的值依次是 ▲ . 答案:2,1 4. 9.9,?10,a,?10.2的平均数为10,则该组数据的方差为 ▲ . 答案:0.02 5.Z,集合,则 ▲ (用列举法表示). 答案:{0,1} 6. 在平面直角坐标系中,已知向量,,则0 7. 将甲、乙两个球随机放入编号为1,2,3的3个盒子中,每个盒子的放球数量不限,则在1,2 号盒子中各有1个球的概率为 ▲ . 答案: 8. ?设P是函数图象上异于原点的动点,且该图象在点P处的切线的倾斜角为,则 的取值范围是 ▲ . 答案: 9.,,的图象上,且矩形 的边分别平行于两坐标轴. 若点A的纵坐标为2,则 点D的坐标为 ▲ . 答案: 10., , , , …… 猜想: ▲ (). 11.中,、分别为棱、上的动点,点为正方形 的中心. 则空间四边形在该正方体各个面上的正投影所构成的图形中,面积的最 大值为 ▲ . 答案:12 12.对任意的都成立,则的最小值为 ▲ . 答案: 13.()的左、右焦点,B,C分别为椭圆 的上、下顶点,直线BF2与椭圆的另一交点为. 若 ,则直线的斜率为 ▲ . 答案: 14.?>?0)的等差数列,后三项 依次成公比为q的等比数列. 若,则q的所有可能的值构成的集合为 ▲ . 答案: 二、解答题15..分.中,角A,B,C的对边分别为 a,b,c. (1)若,求的值; (2)若,求的值. 解. 从而可化为. …………………………3分 由余弦定理,得. 整理得,即. ……………………………………………………7分 (2)在斜三角形中,, 所以可化为, 即.……………………………………10分 故. 整理,得, ………………………12分 因为△ABC是斜三角形,所以sinAcosAcosC, 所以.………………………………………14分 16..分.如图,在六面体中,,, .求证: (1)(2) 证明:(1)取线段的中点,连结、, 因为,, 所以,.…………………………3分 又,平面,所以平面. 而平面, 所以.………………………………………7分 (2)因为, 平面,平面, 所以平面.………………………………9分 又平面,平面平面,………11分 所以.同理得, 所以.…………………………………………14分 17..分.名分成组,组捆,组捆.假定(1)根据,每小时,种植一捆沙棘树苗用时小时.应如何分配A,B两组的人数,? (2)在按(1)分配的人数后,每小时, 而每小时,从组抽调名解设人数为,且,;…………………………2分 B组活动所需时间.………………………4分 令,即,解得. 所以两组同时开始的植树活动所需时间 …………………………………6分 所以当组人数为时, (2)(小时),…………………10分 B组所需时间为(小时), ………………12分 所以植树活动所持续的时间为小时. ………………………14分 18..分.中,已知圆:,圆:.的直线被圆截得的弦长为 ,求直线的方程; (2)设动圆同时平分圆的周长、圆的周长.①证明:动圆圆心C在一条定直线上运动; ②动圆是否经过定点?若经过,求出定点的 坐标;若不经过,请说明理由.的方程为,即. 因为直线被圆截得的弦长为,而圆的半径为1, 所以圆心到:的距离为.…………………………3分 化简,得,解得或. 所以直线的方程为或.,由题意,得, 即. 化简得, 即动圆圆心C在定直线上运动.过定点,设, 则动圆C的半径为. 于是动圆C的方程为. 整理,得.得或 所以定点的坐标为,.19..分.. (1)设P,Q是函数图象上相异的两点,证明:直线PQ的斜率大于0; (2)求实数的取值范围,使不等式在上恒成立. 解:(1)由题意,得. 所以函数在R上单调递增. 设,,则有,即.时,恒成立.时,令, .,即时,, 所以在上为单调增函数. 所以,符合题意.,即时,令, 于是.,所以,从而. 所以在上为单调增函数. 所以,即, 亦即.,即时,, 所以在上为单调增函数.于是,符合题意.,即时,存在,使得 当时,有,此时在上为单调减函数, 从而,不能使恒成立. 综上所述,实数的取值范围为.……………………………………………………16分 20..分.{}的各项均为正数.若对任意的,存在,使得成立,则称 数列{}为“Jk型”数列. (1)若数列{}是“J2型”数列,且,,求; (2)若数列{}既是“J3型”数列,又是“J4型”数列,证明:数列{}是等比数列. 解:(1)由题意,得,,,,…成等比数列,且公比, 所以.{}是“型”数列,得 ,,,,,,…成等比数列,设公比为. …………………………6分 由{}是“型”数列,得 ,,,,,…成等比数列,设公比为; ,,,,,…成等比数列,设公比为; ,,,,,…成等比数列,设公比为; 则,,. 所以,不妨记,且. ……………………………12分 , , 所以,故{}为等比数列.……………………………………………16分 数学Ⅱ附加题参考答案及评分建议 21.【选做题】 A.几何证明选讲.分.AB是半圆O的直径,延长AB到C,使BC,CD切半圆O于点D, DE⊥AB,垂足 为E.若AE∶EB?3∶1,求DE的长. 解:连接AD、DO、DB. 由AE∶EB3∶1,得∶2∶1. 又DE⊥AB,所以. 故△为正三角形.……………………………5分 于是. 而,故. 所以. 在△中,.……………………………………………………………10分 B.矩阵与变换.分.直线在矩阵对应的变换下得到的直线过点,求实数的值. ,则,即…………………………5分 代入直线,得. 将点代入上式,得k4.……………………………………………………………10分 C.坐标与参数方程.分.在极坐标系中,()与相切,求实数a的值. 化成普通方程为,整理,得. 将直线化成普通方程为. ……………………………………6分 由题意,得.解得..不等式选讲.分.,,满足,求证:. ………………………4分 (当且仅当时等号成立).【必做题】.分.}满足:,. (1)求,的值; (2)证明:不等式对于任意都成立. (1)解:由题意,得. ……………………………………………2分 (2)证明:①当时,由(1),知,不等式成立.…………………4分 ②设当时,成立,………………………6分 则当时,由归纳假设,知. 而, 所以, 即当时,不等式成立. 由①②,得不等式对于任意成立.………………10分 23.【必做题】.分.中,抛物线的顶点在原点,焦点为F(1,0).轴上 方的不同两点、作抛物线的切线、,与轴分别交于、两点,且与交 于点,直线与直线交于点.轴; (3)若直线与轴的交点恰为F(1,0), 求证:直线过定点., 由题意,得,即. 所以抛物线的标准方程为.………………………………3分 (2)设,,且,. 由(),得,所以. 所以切线的方程为,即. 整理,得, ① 且C点坐标为. 同理得切线的方程为,② 且D点坐标为. 由①②消去,得.…………………………………5分 直线的方程为. ④ 由③④消去,得. 所以,即轴. ……………………………………7分 (3)由题意,设,代入(1)中的①②,得,. 所以都满足方程. 所以直线的方程为. 故直线过定点. 高考学习网( 您身边的高考专家 欢迎广大教师踊跃来稿,稿酬丰厚。
江苏省南通市2013年高考数学学科基地秘卷模拟试卷1苏教版
β⊂m α⊂n n m //2013年江苏高考数学模拟试卷(一)第1卷(必做题,共160分)一、填空题:本大题共14小题,每小题5分,共70分.1.设复数z 满足()i i z i 23+-=+(i 为虚数单位),则z 的实部是 . 2.若全集U {}23|||2,{|log (1)1}x x A x x =<=-<,则A =U ð .3.某单位招聘员工,有200名应聘者参加笔试,随机抽查了其中20名应聘者笔试试卷,统计他们的成绩如下表:若按笔试成绩择优录取40名参加面试,由此可预测参加面试的分数线为 分. 4.若将一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具),先后抛掷2次,则出现向上的点数之和为4的概率是 . 5.运行如图所示程序框图后,输出的结果是 . 6.设m ,n 是两条不同的直线,α,β是两个不同的平面,给出下列命题:(1)若,, , ,则 ; (2)若, , , ,则 ;(3)若βα⊥,α⊥m ,β//n ,则n m //; (4)若βα⊥,α⊥m ,β⊥n ,则n m ⊥. 上面命题中,所有真命题的序号为 .7.已知圆C 经过直线022=+-y x 与坐标轴的两个交点,又经过抛物线x y 82=的焦点,则圆C 的一般方程为 .8.已知集合2{|(1),}A x x a a x a =+≤+∈R ,a ∃∈R ,使得集合A 中所有整数的元素和为28, 则a 的范围是 ____ ____.9.如图,ABC ∆是边长为P 是以C 为圆心, 1为半径的圆上的任意一点,则BP AP ∙的最小值 .10.已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D ,且2=,则C 的离心率为 . (第9题图)PBAC(第5题图)βα//βα//β⊥m α//n n m ⊥11.已知数列{a n }是公差不为0的等差数列,{b n }是等比数列,其中a 1=3,b 1=1,a 2=b 2,3a 5=b 3,若存在常数u ,v 对任意正整数n 都有a n =3log u b n +v ,则u +v = . 12.已知△ABC 中,设,,,,,a b c A B C ∠∠∠分别为的对边长,AB 边上的高与AB 边的长相等,则2b a c a b ab++的最大值为 . 13.将一个长宽分别是,(0)a b b a <<的铁皮的四角切去相同的正方形,然后折成一个无盖的长方体的盒子,若这个长方体的外接球的体积存在最小值,则ab的取值范围是 .14.已知实数b a ,分别满足15323=+-a a a ,55323=+-b b b , 则b a +的值为 .二、解答题:本大题共6小题,共90分. 15.(本小题满分14分)已知函数21()(1)sin sin()sin()tan 44f x x m x x x ππ=+++-, (1) 当m =0时,求()f x 在区间(0,)2π上的取值范围;(2) 当tan 2α=时, 3()5f α=,求m 的值.16.(本小题满分14分)已知正方体1111ABCD-A B C D ,1AA =2,E 为棱1CC 的中点.(1) 求证:11B D AE ⊥; (2) 求证://AC 平面1B DE .17.(本题满分14分)如图,有一位于A处的雷达观测站发现其北偏东45°,与A相距海里的B处有一货船正以匀速直线行驶,20分钟后又测得该船只位于观测站A北偏东45θ︒+(其中1tan,0455θθ=︒<<︒)且与观测站A相距海里的C处.(1)求该船的行驶速度v(海里/小时);(2)在离观测站A的正南方20海里的E处有一暗礁(不考虑暗礁的面积),如货船不改变航向继续前行,该货船是否有触礁的危险?试说明理由.北BA18.(本小题满分16分)已知双曲线221. 62x y-=(1)点P在以双曲线的顶点为焦点,焦点为顶点的椭圆E上,点C(2,1)关于坐标原点的对称点为D,直线CP和DP的斜率都存在且不为0,试问直线CP和DP的斜率之积是否为定值?若是,求此定值;若不是,请说明理由;(2)平行于CD的直线l交椭圆E于M、N两点,求CMN∆面积的最大值,并求此时直线l的方程.19.(本小题满分16分)设12,x x 是()()321,,032a b f x x x x a b R a -=++∈>的两个极值点,()f x 的导函数是()y f x '=(1)如果1224x x <<< ,求证:()23f '->; (2)如果1212,2x x x <-= ,求b 的取值范围;(3)如果2a ≥ ,且()21122,,x x x x x -=∈时,函数()()()22g x f x x x '=+-的最小值为()h a ,求()h a 的最大值.20.(本小题满分16分)如果无穷数列{a n }满足下列条件:① a n +a n +22≤a n +1;② 存在实数M ,使得a n ≤M,其中n ∈N *,那么我们称数列{a n }为Ω数列.(1) 设数列{b n }的通项为b n =5n -2n,且是Ω数列,求M 的取值范围; (2) 设{c n }是各项为正数的等比数列,S n 是其前n 项和,c 3=14,S 3=74,证明:数列{S n }是Ω数列;(3) 设数列{d n }是各项均为正整数的Ω数列,求证:d n ≤d n +1.第Ⅱ卷(附加题,共40分)21.[选做题]本题包括A 、B 、C 、D 四小题,每小题10分;请选定其中两题,并在相应的答..............题区域内作答....... A .(选修4-1:几何证明选讲)从⊙O 外一点P 向圆引两条切线PA 、PB 和割线PCD.从A 点作弦AE 平行于CD ,连结BE 交CD 于F.求证:BE 平分CD.B .(选修4-2:矩阵与变换)已知二阶矩阵A =⎣⎢⎡⎦⎥⎤a 3c1,矩阵A 属于特征值λ1=-1的一个特征向量为α1=⎣⎢⎡⎦⎥⎤ 1-1.(1) 求矩阵A 的另一个特征值及其对应的一个特征向量;(2) 若向量m =⎣⎢⎡⎦⎥⎤-1-4,求A 4m .C .(选修4-4:坐标系与参数方程)在极坐标系中,点A ⎝⎛⎭⎪⎫22,-π4,圆O 1:ρ=4cos θ+4sin θ.(1) 将圆O 1的极坐标方程化为直角坐标方程; (2) 判断点A 与圆O 1的位置关系.D .(选修4-5:不等式选讲)已知a ,b ,x ,y 均为正数,且1a >1b ,x >y .求证:x x +a >yy +b.【必做题】第22题、第23题,每题10分,共计20分.22.已知甲盒有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球.现从甲、乙两个盒内各任取2个球.(1)求取出的4个球中恰有1个红球的概率;(2)设ξ为取出的4个球中红球的个数,求ξ的分布列和数学期望.23. 已知2012(1)(1)(1)(1),(*).n n n x a a x a x a x n N +=+-+-++-∈(1) 求0a 及1nn i i S a ==∑;(2) 试比较n S 与2(2)22n n n -+的大小,并说明理由.。
2012南通高三数学第一次调研考试试卷(二模)
2012届高三模拟考试试卷(五)南通市2012届高三第一次调研测试数 学(满分160分,考试时间120分钟)2012.3参考公式:样本数据x 1,x 2,…,x n 的方差s 2=1n (x i -x -)2,其中x -=1n x i .一、 填空题:本大题共14小题,每小题5分,共70分.1. 在平面直角坐标系xOy 中,双曲线y 2-x 2=1的离率心为____________.2. 若复数z 满足(1+2i)z =-3+4i(i 是虚数单位),则z =____________.3. 在右图的算法中,最后输出的a 、b 的值依次是____________. a←1b←2c←3c←a a←b b←cPrint a ,b(第3题)4. 一组数据9.8,9.9,10,a,10.2的平均数为10,则该组数据的方差为______________.5. 设全集U =Z ,集合A ={x|x 2-x -2≥0,x ∈Z },则U A =____________(用列举法表示).6. 在平面直角坐标系xOy 中,已知向量a =(1,2),a -12b =(3,1),则a·b =____________. 7. 将甲、乙两个球随机放入编号为1、2、3的3个盒子中,每个盒子的放球数量不限,则在1、2号盒子中各有1个球的概率为____________.8. 设P 是函数y =x(x +1)图象上异于原点的动点,且该图象在点P 处的切线的倾斜角为θ,则θ的取值范围是____________.9. 如图,矩形ABCD 的三个顶点A 、B 、C 分别在函数y =log 22x ,y =x 12,y =⎝ ⎛⎭⎪⎫22x 的图象上,且矩形的边分别平行于两坐标轴.若点A 的纵坐标为2,则点D 的坐标为__________.(第9题)10. 观察下列等式: 13=1, 13+23=9,13+23+33=36,13+23+33+43=100, …猜想:13+23+33+43+…+n 3=____________(n ∈N *).11. 在棱长为4的正方体ABCDA 1B 1C 1D 1中,E 、F 分别为棱AA 1、D 1C 1上的动点,点G 为正方形B 1BCC 1的中心.则空间四边形AEFG 在该正方体各个面上的正投影所构成的图形中,面积的最大值为____________.12. 若a 1x≤sinx≤a 2x 对任意的x ∈⎣⎡⎦⎤0,π2都成立,则a 2-a 1的最小值为____________.13. 如图,在平面直角坐标系xOy 中,F 1,F 2分别为椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,B 、C 分别为椭圆的上、下顶点,直线BF 2与椭圆的另一交点为D.若cos ∠F 1BF 2=725,则直线CD 的斜率为__________.(第13题)14. 各项均为正偶数的数列a 1,a 2,a 3,a 4中,前三项依次成公差为d(d >0)的等差数列,后三项依次成公比为q 的等比数列.若a 4-a 1=88,则q 的所有可能的值构成的集合为____________.二、 解答题:本大题共6小题,共90分. 解答时应写出必要的文字说明、证明过程或演算步骤.15. (本小题满分14分)在斜三角形ABC 中,角A 、B 、C 的对边分别为a 、b 、c.(1) 若2sinAcosC =sinB ,求ac 的值; (2) 若sin(2A +B)=3sinB ,求tanAtanC 的值.16.(本小题满分14分)如图,在六面体ABCDA 1B 1C 1D 1中,AA 1∥CC 1,A 1B =A 1D ,AB =AD.求证: (1) AA 1⊥BD ;(2) BB 1∥DD 1.将52名志愿者分成A 、B 两组参加义务植树活动,A 组种植150捆白杨树苗,B 组种植200捆沙棘树苗.假定A 、B 两组同时开始种植.(1) 根据历年统计,每名志愿者种植一捆白杨树苗用时25小时,种植一捆沙棘树苗用时12小时.应如何分配A 、B 两组的人数,使植树活动持续时间最短?(2) 在按(1)分配的人数种植1小时后发现,每名志愿者种植一捆白杨树苗仍用时25小时,而每名志愿者种植一捆沙棘树苗实际用时23小时,于是从A 组抽调6名志愿者加入B 组继续种植,求植树活动所持续的时间.如图,在平面直角坐标系xOy 中,已知圆C 1:(x +1)2+y 2=1,圆C 2:(x -3)2+(y -4)2=1.(1) 若过点C 1(-1,0)的直线l 被圆C 2截得的弦长为65,求直线l 的方程; (2) 设动圆C 同时平分圆C 1的周长、圆C 2的周长. ① 证明:动圆圆心C 在一条定直线上运动;② 动圆C 是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.已知函数f(x)=x +sinx.(1) 设P 、Q 是函数f(x)图象上相异的两点,证明:直线PQ 的斜率大于0;(2) 求实数a 的取值范围,使不等式f(x)≥axcosx 在⎣⎡⎦⎤0,π2上恒成立.设数列{a n}的各项均为正数.若对任意的n∈N*,存在k∈N*,使得a2n+k=a n·a n+2k成立,则称数列{a n}为“J k型”数列.(1) 若数列{a n}是“J2型”数列,且a2=8,a8=1,求a2n;(2) 若数列{a n}既是“J3型”数列,又是“J4型”数列,证明:数列{a n}是等比数列.2012届高三模拟考试试卷(五)数学附加题(满分40分,考试时间30分钟)21. 【选做题】 在A 、B 、C 、D 四小题中选做2题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修41:几何证明选讲) 如图,AB 是半圆O 的直径,延长AB 到C ,使BC =3,CD 切半圆O 于点D ,DE ⊥AB ,垂足为E.若AE ∶EB =3∶1,求DE 的长.B. (选修42:矩阵与变换)在平面直角坐标系xOy 中,直线y =kx 在矩阵⎣⎢⎡⎦⎥⎤0 11 0对应的变换下得到的直线过点P(4,1),求实数k 的值.C. (选修44:坐标系与参数方程)在极坐标系中,已知圆ρ=asinθ(a >0)与直线ρcos ⎝⎛⎭⎫θ+π4=1相切,求实数a 的值.D. (选修45:不等式选讲)已知正数a ,b ,c 满足abc =1,求证:(a +2)(b +2)(c +2)≥27.【必做题】 第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 已知数列{a n }满足:a 1=12,a n +1=2a na n +1(n ∈N *).(1) 求a 2,a 3的值;(2) 证明:不等式0<a n <a n +1对于任意n ∈N *都成立.23.如图,在平面直角坐标系xOy中,抛物线的顶点在原点,焦点为F(1,0).过抛物线在x轴上方的不同两点A、B作抛物线的切线AC、BD,与x轴分别交于C、D两点,且AC与BD交于点M,直线AD与直线BC交于点N.(1) 求抛物线的标准方程;(2) 求证:MN⊥x轴;(3) 若直线MN与x轴的交点恰为F(1,0),求证:直线AB过定点.2012届高三模拟考试试卷(五)(南通)数学参考答案及评分标准1. 22. 1+2i3. 2,14. 0.025. {0,1}6. 07. 298. ⎣⎡⎭⎫π3,π29. ⎝⎛⎭⎫12,1410.⎣⎡⎦⎤n n +122 11. 12 12. 1-2π 13. 1225 14. ⎩⎨⎧⎭⎬⎫53,8715. 解:(1) 由正弦定理,得sinA sinB =ab , 从而2sinAcosC =sinB 可化为2acosC =b ,(3分) 由余弦定理,得2a×a 2+b 2-c 22ab =b , 整理得a =c ,即ac =1.(7分)(2) 在斜三角形ABC 中,A +B +C =π,所以sin(2A +B)=3sinB 可化为sin[π+(A -C)]=3sin[π-(A +C)], 即-sin(A -C)=3sin(A +C),(10分)故-sinAcosC +cosAsinC =3(sinAcosC +cosAsinC), 整理,得4sinAcosC =-2cosAsinC ,(12分)因为△ABC 是斜三角形,所以sinAcosAcosC≠0, 所以tanA tanC =-12.(14分)16. 证明:(1) 取线段BD 的中点M ,连结AM 、A 1M ,因为A 1D =A 1B ,AD =AB ,所以BD ⊥AM ,BD ⊥A 1M ,(3分)又AM∩A 1M =M ,AM 、A 1M 平面A 1AM ,所以BD ⊥平面A 1AM , 而AA 1平面A 1AM , 所以AA 1⊥BD.(7分) (2) 因为AA 1∥CC 1,AA 1平面D 1DCC 1,CC 1平面D 1DCC 1, 所以AA 1∥平面D 1DCC 1.(9分)又AA 1平面A 1ADD 1,平面A 1ADD 1∩平面D 1DCC 1=DD 1,(11分) 所以AA 1∥DD 1,同理得AA 1∥BB 1, 所以BB 1∥DD 1.(14分)17. 解:(1)设A 组人数为x ,且0<x <52,x ∈N *, 则A 组活动所需时间f(x)=150×25x =60x ,(2分) B 组活动所需时间g(x)=200×1252-x =10052-x ,(4分)令f(x)=g(x),即60x =10052-x,解得x =392,所以两组同时开始的植树活动所需时间F(x)=⎩⎨⎧60x ,x≤19,x ∈N *,10052-x ,x≥20,x ∈N *,(6分)而F(19)=6019,F(20)=258,故F(19)>F(20),所以当A 、B 两组人数分别为20、32时,使植树活动持续时间最短.(8分) (2) A 组所需时间为1+150×25-20×120-6=367(小时),(10分)B 组所需时间为1+200×23-32×132+6=323(小时),(12分)所以植树活动所持续的时间为367小时.(14分)18. 解:(1) 设直线l 的方程为y =k(x +1),即kx -y +k =0,因为直线l 被圆C 2截得的弦长为65,而圆C 2的半径为1,所以圆心C 2(3,4)到l :kx -y +k =0的距离为|4k -4|k 2+1=45.(3分)化简,得12k 2-25k +12=0,解得k =43或k =34, 所以直线l 的方程为4x -3y +4=0或3x -4y +3=0.(6分) (2) ① 证明:设圆心C(x ,y),由题意,得CC 1=CC 2, 即x +12+y 2=x -32+y -42, 化简得x +y -3=0,即动圆圆心C 在定直线x +y -3=0上运动.(10分) ② 圆C 过定点,设C(m,3-m),则动圆C 的半径为1+CC 21=1+m +12+3-m 2, 于是动圆C 的方程为(x -m)2+(y -3+m)2=1+(m +1)2+(3-m)2, 整理,得x 2+y 2-6y -2-2m(x -y +1)=0,(14分)由⎩⎪⎨⎪⎧x -y +1=0,x 2+y 2-6y -2=0,得⎩⎨⎧x =1+322,y =2+322;或⎩⎨⎧x =1-322,y =2-322.所以定点的坐标为⎝⎛⎭⎫1-322,2-322,⎝⎛⎭⎫1+322,2+322.(16分)19. (1) 证明:由题意,得f′(x)=1+cosx≥0,所以函数f(x)=x +sinx 在R 上单调递增,设P(x 1,y 1),Q(x 2,y 2),则有y 1-y 2x 1-x 2>0,即k PQ >0.(6分) (2) 解:当a≤0时,f(x)=x +sinx≥0≥axcosx 恒成立.(8分)当a >0时,令g(x)=f(x)-axcosx =x +sinx -axcosx ,g′(x)=1+cosx -a(cosx -xsinx)=1+(1-a)cosx +axsinx.① 当1-a≥0,即0<a≤1时,g′(x)=1+(1-a)cosx +axsinx >0,所以g(x)在⎣⎡⎦⎤0,π2上为单调增函数, 所以g(x)≥g(0)=0+sin0-a×0×cos0=0,符合题意.(10分)② 当1-a <0,即a >1时,令h(x)=g′(x)=1+(1-a)cosx +axsinx ,于是h′(x)=(2a -1)sinx +axcosx ,因为a >1,所以2a -1>0,从而h′(x)≥0,所以h(x)在⎣⎡⎦⎤0,π2上为单调增函数, 所以h(0)≤h(x)≤h ⎝⎛⎭⎫π2,即2-a≤h(x)≤π2a +1, 亦即2-a≤g′(x)≤π2a +1.(12分)(ⅰ) 当2-a≥0,即1<a≤2时,g′(x)≥0,所以g(x)在⎣⎡⎦⎤0,π2上为单调增函数.于是g(x)≥g(0)=0,符合题意.(14分) (ⅱ) 当2-a <0,即a >2时,存在x 0∈⎝⎛⎭⎫0,π2,使得 当x ∈(0,x 0)时,有g′(x)<0,此时g(x)在(0,x 0)上为单调减函数,从而g(x)<g(0)=0,不能使g(x)>0恒成立,综上所述,实数a 的取值范围为a≤2.(16分)20. (1) 解:由题意,得a 2,a 4,a 6,a 8,…成等比数列,且公比q =⎝⎛⎭⎫a 8a 213=12, 所以a 2n =a 2q n -1=⎝⎛⎭⎫12n -4.(4分) (2) 证明:由{a n }是“J 4 型”数列,得a 1,a 5,a 9,a 13,a 17,a 21,…成等比数列,设公比为t ,(6分)由{a n }是“J 3型”数列,得a 1,a 4,a 7,a 10,a 13,…成等比数列,设公比为α1;a 2,a 5,a 8,a 11,a 14,…成等比数列,设公比为α2;a 3,a 6,a 9,a 12,a 15,…成等比数列,设公比为α3;则a 13a 1=α41=t 3,a 17a 5=α42=t 3,a 21a 9=α43=t 3, 所以α1=α2=α3,不妨记α=α1=α2=α3,且t =α43,(12分)于是a 3k -2=a 1αk -1=a 1(3α)(3k -2)-1,a3k-1=a5αk-2=a1tαk-2=a1αk-23=a1(3α)(3k-1)-1,a3k=a9αk-3=a1t2αk-3=a1αk-13=a1(3α)3k-1,所以a n=a1(3α)n-1,故{a n}为等比数列.(16分)2012届高三模拟考试试卷(五)(南通) 数学附加题参考答案及评分标准 21. A. 选修41:几何证明选讲解:连结AD 、DO 、DB.由AE ∶EB =3∶1,得DO ∶OE =2∶1.又DE ⊥AB ,所以∠DOE =60°.故△ODB 为正三角形.(5分)于是∠DAC =30°=∠BDC.而∠ABD =60°,故∠C =30°=∠BDC.所以DB =BC = 3.在△OBD 中,DE =32DB =32.(10分)B. 选修42:矩阵与变换解:设变换T :⎣⎢⎡⎦⎥⎤x y ―→⎣⎢⎡⎦⎥⎤x′y′,则⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤0 110⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤y x ,即⎩⎪⎨⎪⎧ x′=y ,y′=x.(5分) 代入直线y =kx ,得x′=ky′.将点P(4,1)代入上式,得k =4.(10分)C. 选修44:坐标系与参数方程解:将圆ρ=asinθ化成普通方程为x 2+y 2=ay ,整理,得x 2+⎝⎛⎭⎫y -a 22=a 24. 将直线ρcos ⎝⎛⎭⎫θ+π4=1化成普通方程为x -y -2=0.(6分) 由题意,得⎪⎪⎪⎪-a 2-22=a2.解得a =4+2 2.(10分)D. 选修45:不等式选讲证明:(a +2)(b +2)(c +2)=(a +1+1)(b +1+1)(c +1+1)(4分)≥3·3a·3·3b·3·3c=27·3abc=27(当且仅当a =b =c =1时等号成立).(10分)22. (1) 解:由题意,得a 2=23,a 3=45.(2分)(2) 证明:① 当n =1时,由(1),知0<a 1<a 2,不等式成立.(4分)② 设当n =k(k ∈N *)时,0<a k <a k +1成立,(6分)则当n =k +1时,由归纳假设,知a k +1>0.而a k +2-a k +1=2a k +1a k +1+1-2a k a k +1=2a k +1a k +1-2a k a k +1+1a k +1+1a k +1=2a k +1-a k a k +1+1a k +1>0, 所以0<a k +1<a k +2,即当n =k +1时,不等式成立.由①②,得不等式0<a n <a n +1对于任意n ∈N *成立.(10分)23. 解:(1) 设抛物线的标准方程为y 2=2px(p >0),由题意,得p 2=1,即p =2.所以抛物线的标准方程为y 2=4x.(3分)(2) 设A(x 1,y 1),B(x 2,y 2),且y 1>0,y 2>0.由y 2=4x(y >0),得y =2x ,所以y′=1x. 所以切线AC 的方程为y -y 1=1x 1(x -x 1),即y -y 1=2y 1(x -x 1). 整理,得yy 1=2(x +x 1), ①且C 点坐标为(-x 1,0).同理得切线BD 的方程为yy 2=2(x +x 2), ②且D 点坐标为(-x 2,0).由①②消去y ,得x M =x 1y 2-x 2y 1y 1-y 2.(5分) 又直线AD 的方程为y =y 1x 1+x 2(x +x 2), ③ 直线BC 的方程为y =y 2x 1+x 2(x +x 1). ④ 由③④消去y ,得x N =x 1y 2-x 2y 1y 1-y 2. 所以x M =x N ,即MN ⊥x 轴.(7分)(3) 由题意,设M(1,y 0),代入(1)中的①②,得y 0y 1=2(1+x 1),y 0y 2=2(1+x 2), 所以A(x 1,y 1),B(x 2,y 2)都满足方程y 0y =2(1+x).所以直线AB 的方程为y 0y =2(1+x).故直线AB 过定点(-1,0).(10分)你脸上云淡风轻,谁也不知道你牙咬得多紧。
1 南通市教研室2012年高考全真模拟试卷一(数学)
南通市教研室2012年数学全真模拟试卷一试题Ⅰ一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位......置上... 1. 已知集合{}1 3 5 9U =,,,,{}1 3 9A =,,,{}1 9B =,,则()U A B =U ð ▲ . 2. 若9z z ⋅=(其中z 表示复数z 的共轭复数),则复数z 的模为 ▲ . 3. 已知函数()a f x x=在1x =处的导数为2-,则实数a 的值是 ▲ .4. 根据国家质量监督检验检疫局发布的《车辆驾驶人员血液、呼气酒精含量阈值与检验》(GB19522—2004)中规定车辆驾驶人员血液酒精含量:“饮酒驾车”的临界值为20mg/100ml ;“醉酒驾车”的临界值为80mg/100ml .某地区交通执法部门统计了5月份的执法记录数据:根据此数据,可估计该地区5月份“饮酒驾车” 发生的频率等于 ▲ .5. 要得到函数sin 2y x =的函数图象,可将函数()πsin 23y x =+的图象向右至少..平移 ▲ 个单位.6.在平面直角坐标系xOy 中,“直线y x b =+,b ∈R 与曲线21x y =-相切”的充要条件是“ ▲ ”.7. 如图,i N 表示第i 个学生的学号,i G 表示第i 个学生的成绩,已知学号在1~10的学生的成绩依次为401、392、385、359、 372、327、354、361、345、337,则打印出的第5组数据是 ▲ . 8. 在△ABC 中,若tan :A tan :tan 1:2:3B C =,则A = ▲ . 9. 已知()y f x =是R 上的奇函数,且0x >时,()1f x =,则不等式2()(0)f x x f -<的解集为 ▲ .血液酒精含量(单位:mg/100ml ) 0~20 20~40 40~60 60~80 80~100 人数18011522Y开始 1i ←360i G ≥i i N G 打印, 1i i ←+N50i >N10.设正四棱锥的侧棱长为1,则其体积的最大值为 ▲ . 11.已知平面向量a ,b ,c 满足1=a ,2=b ,a ,b 的夹角等于π3,且()()0-⋅-=a c b c ,则c 的取值范围是 ▲ .12.在平面直角坐标系xOy 中,过点11( 0)A x ,、22( 0)A x ,分别作x 轴的垂线与抛物线22x y =分别交于点12A A ''、,直线12A A ''与 x 轴交于点33( 0)A x ,,这样就称12x x 、确定了3x .同样,可由23x x 、确定4x ,…,若12x =,23x =,则5x = ▲ . 13.定义:min {x ,y }为实数x ,y 中较小的数.已知{}22min 4b h a a b=+,,其中a ,b 均为正实数,则h 的最大值是 ▲ .14.在平面直角坐标系xOy 中,直角三角形ABC 的三个顶点都在椭圆222 1 (1)x y a a +=>上,其中0 1A (,)为直角顶点.若该三角形的面积的最大值为278,则实数a 的值为 ▲ .二、解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本题满分14分)已知函数()()2ππ()sin 23sin cos sin sin 44f x x x x x x x =+++-∈R ,.(1)求()f x 的最小正周期和值域;(2)若0x x =()0π02x ≤≤为()f x 的一个零点,求0sin 2x 的值.16.(本题满分14分)如图,在边长为1的菱形ABCD 中,将正三角形....BCD 沿BD 向上折起,折起后的点C 记为C ',且CC a '=(03a <<).DC '(1)若32a =,求二面角C —BD —C '的大小;(2)当a 变化时,线段CC '上是否总存在一点E ,使得A C '//平面BED ?请说明理由.17.(本题满分15分)在平面直角坐标系xOy 中,设A 、B 是双曲线2212y x -=上的两点,(12)M ,是线段AB 的中点,线段AB 的垂直平分线与双曲线相交于C 、D 两点. (1)求直线AB 与CD 的方程;(2)判断A 、B 、C 、D 四点是否共圆?若共圆,请求出圆的方程;若不共圆,请说明理由.18.(本题满分15分)某省高考数学阅卷点共有400名阅卷老师,为了高效地完成文、理科数学卷的阅卷任务,需将400名阅卷老师分成两组同时展开阅卷工作,一组完成269捆文科卷,另一组完成475捆理科卷.根据历年阅卷经验,文科每捆卷需要一位阅卷老师工作3天完成,理科每捆卷需要一位阅卷老师工作4天完成.(假定每位阅卷老师工作一天的阅卷量相同,每捆卷的份数也相同)(1)如何安排文、理科阅卷老师的人数,使得全省数学阅卷时间最省?(2)由于今年理科阅卷任务较重,理科实际每捆卷需要一位阅卷老师工作4.5天完成,在按(1)分配的人数阅卷4天后,阅卷领导小组决定从文科组抽调20名阅卷老师去阅理科卷,试问完成全省数学阅卷任务至少需要多少天?(天数精确到小数点后第3位)(参考数据:807 6.782119≈,95 6.78614≈,331 3.34399≈,1013.5 3.367301≈)19.(本题满分16分)已知函数()f x 的导函数()f x '是二次函数,且()0f x '=的两根为1±.若()f x 的极大值与极小值之和为0,(2)2f -=. (1)求函数()f x 的解析式;(2)若函数在开区间(99)m m --,上存在最大值与最小值,求实数m 的取值范围. (3)设函数()()f x x g x =⋅,正实数a ,b ,c 满足()()()0ag b bg c cg a ==>,证明:a b c ==.20.(本题满分16分)设首项为1的正项数列{}n a 的前n 项和为n S ,数列{}2n a 的前n 项和为n T ,且24()3n n S p T --=, 其中p 为常数. (1)求p 的值;(2)求证:数列{}n a 为等比数列;(3)证明:“数列n a ,12x n a +,22y n a +成等差数列,其中x 、y 均为整数”的充要条件是“1x =,且2y =”.试题Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作..................答..若 多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.A .(几何证明选讲)D如图,AB 是半圆的直径,C 是AB 延长线上一点,CD 切 半圆于点D ,CD =2,DE ⊥AB ,垂足为E ,且E 是OB 的 中点,求BC 的长.B .(矩阵与变换)已知矩阵122a ⎡⎤⎢⎥⎣⎦的属于特征值b 的一个特征向量为11⎡⎤⎢⎥⎣⎦,求实数a 、b 的值.C .(极坐标与参数方程)在平面直角坐标系xOy 中,已知点(1 2)A -,在曲线22 2 x pt y pt ⎧=⎪⎨=⎪⎩,(t 为参数,p 为正常数),求p 的值.D .(不等式选讲)设123 a a a ,,均为正数,且1231a a a ++=,求证:1231119.a a a ++≥【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.22.已知函数2()2(1)ln(1)2f x x x x x =++--,[)0x ∈+∞,,求()f x 的最大值.23.(1)已知*k n ∈N 、,且k n ≤,求证:11C C k k n n k n --=;(2)设数列0a ,1a ,2a ,…满足01a a ≠,112i i i a a a -++=(i =1,2,3,…).证明:对任意的正整数n,011222012()C (1)C (1)C (1)C n n n n n n n n n n p x a x a x x a x x a x --=-+-+-+⋅⋅⋅+是 关于x 的一次式.南通市教研室2012年数学全真模拟试卷一参考答案1. {}5;2. 3;3. 2;4. 0.09;5. π6; 6. 2b =-; 7. 8361,;8. π4;9. (01),; 10. 4327; 11. 737322⎡⎤-+⎢⎥⎣⎦,; 12. 12; 13. 12; 14.3. 答案解析1.易得{}1 3 9A B A ==,,U ,则()U A B =U ð{}5; 2. 3z z z =⋅=;3. 易得2()a f x x '=-,则(1)2f a '=-=-,即2a =; 4. “饮酒驾车” 发生的频率等于11520.09200++=;5. 将()()πsin 2sin 23y x x π=+=+6向右至少平移π6个单位得sin 2y x =;6. 易得12b =,且0b <,即2b =-;7. 打印出的第5组数据是学号为8号,且成绩为361,故结果是8361,; 8. 设tan A k =,则t a n B k =,tan 3C k =,且0k >,利用t an t a n t a n t a n ()1t a n t a nA B C A B A B +=-+=--可 求得1k =,所以A π=4; 9. 易得(0)0f =,20x x -<,故所求解集为(0 1),; 10. 法1 设正四棱锥的底面边长为x ,则体积()22422112326x V x x x =-=-,记()22y t t =-,0t >,利用导数可求得当43t =时,max 3227y =,此时max 4327V =;法2设正四棱锥的侧棱与底面所成角为θ,则()22122cos sin 1sin sin 33V θθθθ=⨯⨯=-⨯,0<θπ<2,记()21 01y t t t =-<<,,利用导数可求得当33t =时,max 239y =,此时max 4327V =;11. 如图,设 a b c OAOB OC ===,,,u u r u u u r u u u r△ABC 中,由余弦定理得3AB =uu u r , 由()()0-⋅-=a c b c 知,点C 的轨迹是以AB 为直径的圆M ,且72OM =,故12737322c OC OC ⎡⎤-+⎡⎤∈=⎢⎥⎣⎦⎣⎦,,uuu r uuu u r ; 12. 设()21 2n n n A x x ,、()21111 2n n n A x x +++,,则割线n A 1n A +的方程为:2212111122()2n n n nn nx x y x x x x x ++--=--, 令0y =得121n nn n nx x x x x +++=+,即21111n n n x x x ++=+,不难得到34515171266x x x ===,,;13. 易得22211144442ab h a b a b a b b a b a==++⋅≤≤,所以12h ≤(当且仅当4a b b a =时取等号); 14. 设AB 的方程为:1(0)y kx k =+>,则AC 的方程为:11y x k =-+,由22211y kx x y a =+⎧⎪⎨+=⎪⎩,得 2222(1)20a k x a k x ++=,解得22221B a k x a k -=+,用“1k -”替换“k ”得2222C a k x a k=+, 故22222222221111a k a k AB k AC a k a k k =⋅+=⋅+++,, 所以()()44222222242122(1)121(1)()1ABCa k a k k k S AB AC a k a k a k a k ∆++=⋅==+++++, 令12t k k=+≥,则4322222(1)1ABC a a S a a a t t∆=--+≤(当且仅当212a t a -=>时等号成立), 由322781a a =-得2(3)(839)0a a a ---=解得3a =,或329716a +=(舍去),所以3a =.15.命题立意:本题主要考查三角函数的图像与性质、两角和与差的正、余弦公式,考查运算求解 能力.O AB2CM1C (第11题图)(1)易得()2221()sin 3sin 2sin cos 2f x x x x x =++-1cos213sin 2cos222x x x -=+-13s i n 2c o s 22x x =-+=()π12sin 262x -+,(5分) 所以()f x 周期π,值域为35 22⎡⎤-⎢⎥⎣⎦,;(7分) (2)由()00π1()2sin 2062f x x =-+=得()0π1sin 2064x -=-<,(9分) 又由0π02x ≤≤得02ππ5π666x ≤≤--,所以02ππ0 66x ≤≤--,故()015πcos 264x -=,(11分) 此时,()0ππsin 2sin 266x x ⎡⎤=-+⎢⎥⎣⎦()()0ππππsin 2cos cos 2sin 6666x x =-+-315114242=-⨯+⨯1538-=.(14分)16.命题立意:本题主要考查直线与平面、平面与平面的位置关系,考查空间想象、推理论证能力.解:(1)连结AC ,交BD 于点O ,连结OC ', 菱形ABCD 中,CO BD ⊥,因三角形BCD 沿BD 折起,所以C O BD '⊥, 故C OC '∠为二面角C —BD —C '的平面角,(5分) 易得32C O CO '==,而32CC '=,所以C OC π'∠=3,二面角C —BD —C '的大小为π3;(7分) (2)当a 变化时,线段CC '的中点E 总满足A C '//平面BED ,下证之:(9分) 因为E ,O 分别为线段CC ',AC 的中点, 所以//OE AC ',(11分) 又AC '⊄平面BED ,OE ⊂平面BED , 所以A C '//平面BED . (14分) 17.命题立意:本题主要考查求双曲线、直线、圆等基础知识,考查运算求解与探究能力.解:(1)设A 11()x y ,,则11(24)B x y --,, 代入双曲线2212y x -=得2211221112(4)(2)12y x y x ⎧-=⎪⎪⎨-⎪--=⎪⎩,, 解得110x y ⎧⎨=⎩=-1,或1134x y =⎧⎨=⎩,, 即A B 、的坐标为10-(,)、34(,),(第16题图) DC 'A B CO E所以AB :1y x =+,CD :3y x =-+;(7分)(2)A 、B 、C 、D 四点共圆,下证之:(9分)证明:由3y x =-+与2212y x -=联立方程组可得C D 、的坐标为()325625--+,、()325625-+-,,(11分) 由三点A 、B 、C 可先确定一个圆22(3)(6)40x y ++-=①,(13分)经检验()325625D -+-,适合①式,所以A 、B 、C 、D 四点共圆.(15分)(注:本题亦可以利用圆的几何性质判断四点共圆)18.命题立意:本题主要考查数学建模和解决实际问题的能力,考查运算求解能力. 解:(1)设文科阅卷人数为x ,且x ∈*N ,则阅卷时间为2693119.246()4754119.246400x xf x x x⨯⎧⎪=⎨⨯⎪>-⎩≤,,,,(5分)而(119) 6.782f =,(120) 6.786f =,故(119)(120)f f <,答:当文、理科阅卷人数分别是119,281时,全省阅卷时间最省;(8分)(2)文科阅卷时间为:1269311943347.34399⨯-⨯⨯⨯+=,(11分) 理科阅卷时间为:1475 4.52814 4.54.547.367301⨯-⨯⨯⨯+=,(14分) 答:全省阅卷时间最短为7.367天.(15分)19.命题立意:本题主要考查利用导数研究三次函数的图像与性质等基础知识,考查灵活运用数形结合、化归与转化思想进行运算求解、推理论证的综合能力. 解:(1)设()(1)(1)f x a x x '=+-,则可设()3()3x f x a x c =-+,其中c 为常数. 因为()f x 的极大值与极小值之和为0, 所以(1)(1)0f f -+=,即0c =, 由(2)2f -=得3a =-,y x11-22-O (第19题图)2 2-所以3()3f x x x =-;(5分)(2)由(1)得3()3f x x x =-,且()3(1)(1)f x x x '=-+- 列表:由题意得,三次函数在开区间上存在的最大值与最小值必为极值(如图),(7分)又(2)2f -=,故(2)2f =-, 所以192m <-≤,且291m --<-≤, 解得78m <≤;(10分)(3)题设等价与222(3)(3)(3)a b b c c a -=-=-,且a ,b ,c >0, 所以a ,b ,c 均小于3.假设在a ,b ,c 中有两个不等,不妨设a ≠b ,则a >b 或a <b . 若a >b ,则由22(3)(3)a b b c -=-得2233b c -<-即b c >, 又由22(3)(3)b c c a -=-得c >a . 于是a >b >c >a ,出现矛盾. 同理,若a <b ,也必出现出矛盾.故假设不成立,所以a b c ==.(16分)20.命题立意:本题主要考查等差、等比数列的定义与通项公式、求和公式等基础知识,考查灵活运用基本量进行探索求解、推理分析能力.解:(1)n = 1时,由24(1)13p --=得p = 0或2,(2分)若p = 0时,243n n S T -=,当2n =时,22224(1)13a a -++=,解得20a =或212a =-,而0n a >,所以p = 0不符合题意,故p = 2;(5分)(2)当p = 2时,241(2)33n n T S =-- ①,则21141(2)33n n T S ++=--②,②-①并化简得1134n n n a S S ++=-- ③,则22134n n n a S S +++=-- ④,x(21)--, 1-(11)-,1(12), y '-0 + 0 -y↘ 极小值2-↗极大值2↘④-③得2112n n a a ++=(n *∈N ),又易得2112a a =, 所以数列{a n }是等比数列,且112n n a -=;(10分) (3)充分性:若x = 1,y = 2,由112n n a -=知n a ,12x n a +,22y n a +依次为112n -,22n ,142n +, 满足112142222n n n -+⨯=+,即a n ,2x a n +1,2y a n +2成等差数列;(12分) 必要性:假设n a ,12x n a +,22y n a +成等差数列,其中x 、y 均为整数,又112n n a -=, 所以11111222222x y n n n -+⋅⋅=+⋅, 化简得2221x y --=显然2x y >-,设(2)k x y =--,因为x 、y 均为整数,所以当2k ≥时,2221x y -->或2221x y --<,故当1k =,且当1x =,且20y -=时上式成立,即证. (16分)21.A .命题立意:本题主要考查三角形、圆的有关知识,考查推理论证、运算求解能力.解:连接OD ,则OD ⊥DC ,在Rt △OED 中,12OE =OB 12=OD , 所以∠ODE =30°,(5分)在Rt △ODC 中,∠DCO =30°,由DC =2得OD =DC tan30°=233, 所以BC 233=.(10分) B .命题立意:本题主要考查二阶矩阵的特征值与特征向量,考查运算求解能力.解:由二阶矩阵的特征值与特征向量的概念知122a ⎡⎤⎢⎥⎣⎦11⎡⎤⎢⎥⎣⎦=11b ⎡⎤⎢⎥⎣⎦,(5分) 所以3 2 b b a =⎧⎨=+⎩,,解得1 3a b ==,.(10分) C .命题立意:本题主要考查参数方程,考查运算求解能力.解:由22 2 x pt y pt ⎧=⎪⎨=⎪⎩,,(t 为参数,p 为正常数),消去参数t 得22y px =,(8分) 将点(1 2)A -,代入22y px =得2p =.(10分)D .命题立意:本题主要考查证明不等式的基本方法,考查推理论证能力.证明:因为a 1,a 2,a 3均为正数,且12310a a a ++=>, 所以123111a a a ++()123123111()a a a a a a =++++()()1133123123111339a a a a a a ⋅=≥,(8分) 当且仅当12313a a a ===时等号成立, 所以1239111a a a ++≥.(10分) 22.命题立意:本题主要考查复合函数求导等知识,考查运算求解、推理论证能力.证明:由2()2(1)ln(1)2f x x x x x =++--得()2ln(1)2f x x x '=+-,(2分)令()2ln(1)2g x x x =+-,则22()211x g x x x-'=-=++, 当10x -<<时,()0g x '>,()g x 在(1 0)-,上为增函数; 当x >0时,()0g x '<,()g x 在(0)+∞,上为减函数, 所以()g x 在x =0处取得极大值,且(0)0g =,(6分)故()0f x '≤(当且仅当0x =时取等号),所以函数()f x 为[)0+∞,上的减函数,(8分)则()(0)0f x f =≤,即()f x 的最大值为0.(10分)23.命题立意:本题主要考查组合数的性质、二项式定理,考查推理论证能力.(1)证明:左边!!C !()!(1)!()!kn n n k k k n k k n k ==⋅=---, 右边(1)!!(1)!()!(1)!()!n n n k n k k n k -=⋅=----, 所以11C C k k n n k n --=;(3分) (2)证明:由题意得数列0a ,1a ,2a ,…为等差数列,且公差为100a a -≠.(5分)则011222012()C (1)C (1)C (1)C n n n n n n n n n n p x a x a x x a x x a x --=-+-+-+⋅⋅⋅+ [][]0110010010C (1)+()C (1)+()C n n n n n n n a x a a a x x a n a a x -=-+--+⋅⋅⋅+-01111222010C (1)C (1)C ()C (1)+2C (1)C n n n n n n n n n n n n n n a x x x x a a x x x x n x ---⎡⎤⎡⎤=-+-+⋅⋅⋅++---+⋅⋅⋅+⎣⎦⎣⎦[]011211010111(1)()C (1)+C (1)C nn n n n n n n a x x a a nx x x x x -------⎡⎤=-++---+⋅⋅⋅+⎣⎦ []1010()(1)n a a a nx x x -=+-+-010()a a a nx =+-, 所以对任意的正整数n ,()p x 是关于x 的一次式.(10分)。
江苏省南通市2013届高三第一次调研考试数学试题(WORD解析版)
2013年江苏省南通市高考数学一模试卷一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应的位置上.1.(5分)已知全集U=R,集合A={x|x+1>0},则∁U A={x|x≤﹣1}.考点:补集及其运算.专题:计算题.分析:求解一元一次不等式化简集合A,然后直接利用补集运算求解.解答:解:由集合A={x|x+1>0}={x|x>﹣1},又U=R,所以∁U A={x|x≤﹣1}.故答案为{x|x≤﹣1}.点评:本题考查了补集及其运算,是基础的会考题型.2.(5分)已知复数z=(i是虚数单位),则复数z所对应的点位于复平面的第三象限.考点:复数代数形式的乘除运算.专题:计算题.分析:利用复数的除法运算把复数z化简为a+bi(a,b∈R)的形式,则复数z所对应的点位于复平面的象限可求.解答:解:由z==.所以复数z所对应的点Z(﹣2,﹣3).则复数z所对应的点位于复平面的第三象限.故答案为三.点评:本题考查了复数代数形式的乘除运算,考查了复数的几何意义,复数的除法,采用分子分母同时乘以分母的共轭复数,是基础题.3.(5分)已知正四棱锥的底面边长是6,高为,这个正四棱锥的侧面积是48.考点:棱柱、棱锥、棱台的侧面积和表面积.专题:空间位置关系与距离.分析:由已知正四棱锥的底面边长是6,高为,可以求出棱锥的侧高,代入棱锥侧面积公式,可得答案.解答:解:∵正四棱锥的底面边长是6,高为,正四棱锥的侧高为=4∴正四棱锥的侧面积是4××6×4=48故答案为:48点评:本题考查的知识点是棱锥的侧面积,其中根据已知结合勾股定理求出棱锥的侧高是解答的关键.4.(5分)定义在R上的函数f(x),对任意x∈R都有f(x+2)=f(x),当x∈(﹣2,0)时,f(x)=4x,则f(2013)=.考点:函数的周期性;函数的值.专题:压轴题;函数的性质及应用.分析:利用函数的周期性把要求的式子化为f(﹣1),再利用x∈(﹣2,0)时,f(x)=4x,求得f (﹣1)的值.解答:解:∵定义在R上的函数f(x),对任意x∈R都有f(x+2)=f(x),则f(2013)=f(2×1006+1)=f(1)=f(﹣1).∵当x∈(﹣2,0)时,f(x)=4x,∴f(﹣1)=4﹣1=,故答案为.点评:本题主要考查利用函数的周期性求函数的值,属于基础题.5.(5分)已知命题p:“正数a的平方不等于0”,命题q:“若a不是正数,则它的平方等于0”,则p是q的否命题.(从“逆命题、否命题、逆否命题、否定”中选一个填空)考点:四种命题的真假关系.专题:规律型.分析:写出命题P与命题q的条件与结论,再根据四种命题的定义判断即可.解答:解:命题P的条件是:a>0,结论是:a2≠0;命题q的条件是:a≤0,结论是:a2=0;故命题P是命题q的否命题.故答案是否命题.点评:本题考查四种命题的定义.6.(5分)已知双曲线的一个焦点与圆x2+y2﹣10x=0的圆心重合,且双曲线的离心率等于,则该双曲线的标准方程为.考点:双曲线的标准方程;双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:将圆化成标准方程得圆x2+y2﹣10x=0的圆心为F(5,0),可得c==5,结合双曲线的离心率e==算出a=,由平方关系得到b2=20,由此即可得出该双曲线的标准方程.解答:解:∵圆x2+y2﹣10x=0化成标准方程,得(x﹣5)2+y2=25∴圆x2+y2﹣10x=0的圆心为F(5,0)∵双曲线的一个焦点为F(5,0),且的离心率等于,∴c==5,且=因此,a=,b2=c2﹣a2=20,可得该双曲线的标准方程为故答案为:点评:本题给出双曲线的离心率,并且一个焦点为已知圆的圆心,求双曲线的标准方程,着重考查了圆的标准方程、双曲线的基本概念和简单几何性质等知识,属于基础题.7.(5分)若S n为等差数列{a n}的前n项和,S9=﹣36,S13=﹣104,则a5与a7的等比中项为.考点:等比数列的性质;等差数列的前n项和.专题:等差数列与等比数列.分析:由条件利用等比数列的性质可得9a5=﹣36,13a7=﹣104,解得a5=﹣4,a7=﹣8,从而求得a5与a7的等比中项±的值.解答:解:∵S n为等差数列{a n}的前n项和,S9=﹣36,S13=﹣104,则由等比数列的性质可得9a5=﹣36,13a7=﹣104.解得a5=﹣4,a7=﹣8,则a5与a7的等比中项±=,故答案为.点评:本题主要考查等比数列的性质,等比数列求和公式的应用,属于中档题.8.(5分)已知实数x∈[1,9],执行如图所示的流程图,则输出的x不小于55的概率为.。
(2021年整理)南通市2013届高三第一次调研测试数学参考答案及讲评建议(word)
(完整)南通市2013届高三第一次调研测试数学参考答案及讲评建议(word) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)南通市2013届高三第一次调研测试数学参考答案及讲评建议(word))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)南通市2013届高三第一次调研测试数学参考答案及讲评建议(word)的全部内容。
南通市2013届高三第一次调研测试数学I参考答案与评分标准(考试时间:120分钟 满分:160分)一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应的位置上. 1.已知全集U =R ,集合{}10A x x =+>,则U A = ▲ .2.已知复数z =32i i-(i 是虚数单位),则复数z 所对应的点位于复平面的第 ▲ 象限.3.已知正四棱锥的底面边长是6,高为,这个正四棱锥的侧面积是 ▲ . 4.定义在R 上的函数()f x ,对任意x ∈R 都有(2)()f x f x +=,当(2,0)x ∈- 时,()4x f x =,则(2013)f = ▲ .5.已知命题p :“正数a 的平方不等于0",命题q :“若a 不是正数,则它的平方等于0”, 则p 是q 的 ▲ .(从“逆命题、否命题、逆否命题、否定”中选一个填空)6.已知双曲线22221y x a b-=的一个焦点与圆x 2+y 2-10x =0的圆心重合,,则该双曲线的标准方程为 ▲ . 7.若S n 为等差数列{a n }的前n 项和,S 9=-36,S 13=-104,则a 5与a 7的等比中项为 ▲ .8.已知实数x ∈[1,9],执行如右图所示的流程图,则输出的x 不小于55的概率为 ▲ .9.在△ABC 中,若AB =1,AC||||AB AC BC +=,则||BA BC BC ⋅= ▲ .10.已知01a <<,若log (21)log (32)a a x y y x -+>-+,且x y <+λ,则λ的最大值为 ▲ . 11.曲线2(1)1()e (0)e 2x f f x f x x '=-+在点(1,f (1))处的切线方程为 ▲ . 12.如图,点O 为作简谐振动的物体的平衡位置,取向右方向为正方向,若振幅为3cm ,周期为3s ,且物体向右运动到距平衡位置最远处时开始计时.则该物体5s 时刻的位移为 ▲ cm .13.已知直线y =ax +3与圆22280x y x ++-=相交于A ,B 两点,点00(,)P x y 在直线y =2x 上,且PA =PB ,则0x 的取值范围为 ▲ .14.设P (x ,y )为函数21yx =-(x >图象上一动点,记353712x y x y m x y +-+-=+--,则当m 最小(第12题)ABC DEF A 1B 1C 1(第15题)时,点 P 的坐标为 ▲ .二、解答题:本大题共6小题,共计90分.请把答案写在答题卡相应的位置上.解答时应写出文字说明,证明过程或演算步骤. 15.(本题满分14分)如图,在正三棱柱ABC -A 1B 1C 1中,E 是侧面AA 1B 1B 对角线的交点,F 是侧面AA 1C 1C 对角线的交点,D 是棱BC 的中点.求证: (1)//EF 平面ABC ;(2)平面AEF ⊥平面A 1AD .解:(1)连结11A B AC 和.因为E F 、分别是侧面11AA B B 和侧面11AA C C 的对角线的交点,所以E F 、分别是11A B AC 和的中点.所以//EF BC . ………………………………………………………3分 又BC ⊂平面ABC 中,EF平面ABC 中,故//EF 平面ABC . ………………………………………………6分 (2)因为三棱柱111ABC A B C -为正三棱柱, 所以1A A ⊥平面ABC ,所以1BC A A ⊥.故由//EF BC ,得1EF A A ⊥. ………………………………………8分 又因为D 是棱BC 的中点,且ABC ∆为正三角形,所以BC AD ⊥. 故由//EF BC,得EF AD ⊥. …………………………………………………………………10分而1A A AD A =,1,A A AD ⊂平面1A AD ,所以EF ⊥平面1A AD .…………………………………12分又EF ⊂平面AEF,故平面AEF ⊥平面1A AD .………………………………………………………14分ABC DEF A 1B 1C 1(第15题)16.(本题满分14分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,sin sin tan cos cos A B C A B+=+.(1)求角C 的大小;(2)若△ABC 的外接圆直径为1,求22a b +的取值范围. 解:(1)因为sin sin tan cos cos A B C A B+=+,即sin sin sin cos cos cos C A B CA B+=+,所以sin cos sin cos cos sin cos sin C A C B C A C B +=+, 即 sin cos cos sin cos sin sin cos C A C A C B C B -=-, 得sin()sin()C A B C -=-. ……………………………………………………………………………4分所以C A B C -=-,或()C A B C π-=--(不成立). 即2C A B=+, 得3C π=. …………………………………………………………………7分(2)由πππ,,,333C A B αα==+=-设2πππ0,,333A B α<<<<知-. 因2sin sin ,2sin sin a R A A b R B B ====, …………………………………………………………8分故22221cos 21cos 2sin sin 22A B a b A B --+=+=+=12π2π11cos(2)cos(2)1cos 22332⎡⎤-++-=+⎢⎥⎣⎦ααα. ………………………………………11分ππ2π2π,2,3333αα<<<<由-知-1cos 212α-<≤,故223342a b <+≤. (14)分17.(本题满分14分)某公司为一家制冷设备厂设计生产一种长方形薄板,其周长为4米,这种薄板须沿其对角线折叠后使用.如图所示,()ABCD AB AD >为长方形薄板,沿AC 折叠后,AB '交DC 于点P .当△ADP 的面积最大时最节能,凹多边形ACB PD '的面积最大时制冷效果最好.(1)设AB =x 米,用x 表示图中DP 的长度,并写出x 的取值范围;ABCD(第17题)B 'P(2)若要求最节能,应怎样设计薄板的长和宽?(3)若要求制冷效果最好,应怎样设计薄板的长和宽?解:(1)由题意,AB x =,2BC x =-.因2x x >-,故12x <<. ……………………………2分设DP y =,则PC x y =-.因△ADP ≌△CB P ',故PA PC x y ==-.由 222PA AD DP =+,得 2221()(2)2(1)x y x y y x-=-+⇒=-,12x <<.……………………5分(2)记△ADP 的面积为1S ,则11(1)(2)S x x=-- ………………………………………………………………………………………6分23()2x x=-+≤-当且仅当x =∈(1,2)时,S 1取得最大值.…………………………………………………………8分故当薄板长为米,宽为2米时,节能效果最好. ………………………………………9分(3)记△ADP 的面积为2S ,则221114(2)(1)(2)3()22S x x x x x x=-+--=-+,12x <<. (10)分于是,3222142(2)02x S x x x x-+'=--==⇒=11分关于x 的函数2S 在上递增,在上递减. 所以当x =时,2S 取得最大值. ……………………………………………………13分故当薄板长为米,宽为2米时,制冷效果最好. ………………………………………14分18.(本题满分16分)已知数列{a n }中,a 2=1,前n 项和为S n ,且1()2n n n a a S -=.(1)求a 1;(2)证明数列{a n }为等差数列,并写出其通项公式; (3)设1lg 3n n na b +=,试问是否存在正整数p ,q (其中1〈p <q ),使b 1,b p ,b q 成等比数列?若存在,求出所有满足条件的数组(p ,q );若不存在,说明理由.解:(1)令n =1,则a 1=S 1=111()2a a -=0. ………………………………………………………………3分 (2)由1()2n n n a a S -=,即2nn naS =, ①得 11(1)2n n n a S +++=. ②②-①,得 1(1)n n n a na +-=.③于是,21(1)n n na n a ++=+. ④③+④,得212n n n na na na +++=,即212n n n a a a +++=. ……………………………………………7分又a 1=0,a 2=1,a 2-a 1=1,所以,数列{a n }是以0为首项,1为公差的等差数列. 所以,a n =n -1. ………………………………………………………………………………………9分(3)假设存在正整数数组(p ,q ),使b 1,b p ,b q 成等比数列,则lg b 1,lg b p ,lg b q 成等差数列,于是,21333p qp q=+. …………………………………………………………………………………11分 所以,213()33q p p q =-(☆). 易知(p,q )=(2,3)为方程(☆)的一组解. ……………………………………………………………13分当p ≥3,且p ∈N *时,112(1)224333p p p p p p +++--=<0,故数列{23pp}(p ≥3)为递减数列, 于是2133p p -≤323133⨯-〈0,所以此时方程(☆)无正整数解.综上,存在唯一正整数数对(p ,q )=(2,3),使b 1,b p ,b q 成等比数列. …………………………16分注 在得到③式后,两边相除并利用累乘法,得通项公式并由此说明其为等差数列的,亦相应评分.但在做除法过程中未对n ≥2的情形予以说明的,扣1分.19.(本题满分16分)已知左焦点为F (-1,0)的椭圆过点E (.过点P (1,1)分别作斜率为k 1,k 2的椭圆的动弦AB ,CD ,设M ,N 分别为线段AB ,CD 的中点. (1)求椭圆的标准方程;(2)若P 为线段AB 的中点,求k 1;(3)若k 1+k 2=1,求证直线MN 恒过定点,并求出定点坐标. 解:依题设c =1,且右焦点F '(1,0).所以,2a =EF EF '+=b 2=a 2-c 2=2,故所求的椭圆的标准方程为22132y x +=. …………………………………………………………4分 (2)设A (1x ,1y ),B (2x ,2y ),则2211132x y +=①,2222132x y +=②.②-①,得 21212121()()()()032x x x x y y y y -+-++=.所以,k 1=212121212()423()63P P y y x x x x x y y y -+=-=-=--+. ………………………………………………………9分(3)依题设,k 1≠k 2.设M (M x ,M y ),直线AB 的方程为y -1=k 1(x -1),即y =k 1x +(1-k 1),亦即y =k 1x +k 2, 代入椭圆方程并化简得 2221122(23)6360k x k k x k +++-=. 于是,1221323M k k x k -=+,221223Mk y k =+. ……………………………………………………………11分同理,1222323N k k x k -=+,122223N k y k =+. 当k 1k 2≠0时,(完整)南通市2013届高三第一次调研测试数学参考答案及讲评建议(word)直线MN 的斜率k =M N M N y y x x -=-222211212146()9()k k k k k k k k +++-+=21211069k k k k --.……………………………………13分直线MN 的方程为2211222211121063()92323k k k k k y x k k k k ---=--++, 即 21211222221211110610632()992323k k k k k k k y x k k k k k k --=+⋅+--++,亦即 2121106293k k y x k k -=--.此时直线过定点2(0,)3-. (15)分当k 1k 2=0时,直线MN 即为y 轴,此时亦过点2(0,)3-.综上,直线MN 恒过定点,且坐标为2(0,)3-. (16)分20。
南通市2012届高三第一次调研考试数学试题文科
一、选择题(36分)1.删去正整数数列1,2,3,……中的所有完全平方数,得到一个新数列.这个数列的第2003项是(A) 2046 (B) 2047 (C) 2048 (D) 20492.设a,b∈R,ab≠0,那么直线ax-y+b=0和曲线bx2+ay2=ab的图形是3.过抛物线y2=8(x+2)的焦点F作倾斜角为60°的直线,若此直线与抛物线交于A、B两点,弦AB 的中垂线与x轴交于点P,则线段PF的长等于(A) 163 (B) 83 (C) 1633 (D) 834.若x∈[-512 ,-3 ],则y=tan(x+23 )-tan(x+6 )+cos(x+6 )的最大值是(A) 1252 (B) 1162 (C) 1163 (D) 12535.已知x,y都在区间(-2,2)内,且xy=-1,则函数u=44-x2+99-y2的最小值是(A) 85 (B) 2411 (C) 127 (D) 1256.在四面体ABCD中,设AB=1,CD=3,直线AB与CD的距离为2,夹角为3,则四面体ABCD 的体积等于(A) 32 (B) 12 (C) 13 (D) 33二.填空题(每小题9分,共54分)7.不等式|x|3-2x2-4|x|+3<0的解集是.8.设F1、F2是椭圆x29+y24=1的两个焦点,P是椭圆上一点,且|PF1|∶|PF2|=2∶1,则△PF1F2的面积等于.9.已知A={x|x2-4x+3<0,x∈R},B={x|21-x+a≤0,x2-2(a+7)x+5≤0,x∈R}若AB,则实数a的取值范围是.10.已知a,b,c,d均为正整数,且logab=32,logcd=54,若a-c=9,则b-d= .11.将八个半径都为1的球分放两层放置在一个圆柱内,并使得每个球都和其相邻的四个球相切,且与圆柱的一个底面及侧面都相切,则此圆柱的高等于.12.设Mn={(十进制)n位纯小数0.-a1a2…an|ai只取0或1(i=1,2,…,n-1),an=1},Tn 是Mn中元素的个数,Sn是Mn中所有元素的和,则limn→∞SnTn= .三、(20分)13.设32≤x≤5,证明不等式2x+1+2x-3+15-3x<219.四、(20分)14.设A、B、C分别是复数Z0=ai,Z1=12+bi,Z2=1+ci(其中a,b,c都是实数)对应的不共线的三点.证明:曲线Z=Z0cos4t+2Z1cos2tsin2t+Z2sin4t (t∈R)与△ABC中平行于AC的中位线只有一个公共点,并求出此点.五、(本题满分20分)15.一张纸上画有一个半径为R的圆O和圆内一个定点A,且OA=a,折叠纸片,使圆周上某一点A刚好与点A重合.这样的每一种折法,都留下一条折痕.当A取遍圆周上所有点时,求所有折痕所在直线上点的集合.2013年全国高校自主招生数学模拟试卷六参考答案一、选择题(每小题6分,共36分)1.删去正整数数列1,2,3,……中的所有完全平方数,得到一个新数列.这个数列的第2003项是(A) 2046 (B) 2047 (C) 2048 (D) 2049解:452=2025,462=2116.在1至2025之间有完全平方数45个,而2026至2115之间没有完全平方数.故1至2025中共有新数列中的2025-45=1980项.还缺2003-1980=23项.由2025+23=2048.知选C.2.设a,b∈R,ab≠0,那么直线ax-y+b=0和曲线bx2+ay2=ab的图形是解:曲线方程为x2a+y2b=1,直线方程为y=ax+b.由直线图形,可知A、C中的a<0,A图的b>0,C图的b<0,与A、C中曲线为椭圆矛盾.由直线图形,可知B、D中的a>0,b<0,则曲线为焦点在x轴上的双曲线,故选B.3.过抛物线y2=8(x+2)的焦点F作倾斜角为60°的直线,若此直线与抛物线交于A、B两点,弦AB 的中垂线与x轴交于点P,则线段PF的长等于(A) 163 (B) 83 (C) 1633 (D) 83解:抛物线的焦点为原点(0,0),弦AB所在直线方程为y=3x,弦的中点在y=pk=43上,即AB中点为(43,43),中垂线方程为y=-33(x-43)+43,令y=0,得点P的坐标为163.∴ PF=163.选A.4.若x∈[-512 ,-3],则y=tan(x+23)-tan(x+6)+cos(x+6)的最大值是(A) 1252 (B) 1162 (C) 1163 (D) 1253解:令x+6=u,则x+23=u+2,当x∈[-512,-3]时,u∈[-4,-6],y=-(cotu+tanu)+cosu=-2sin2u+cosu.在u∈[-4,-6]时,sin2u与cosu都单调递增,从而y单调递增.于是u=-6时,y取得最大值1163,故选C.5.已知x,y都在区间(-2,2)内,且xy=-1,则函数u=44-x2+99-y2的最小值是(A) 85 (B) 2411 (C) 127 (D) 125解:由x,y∈(-2,2),xy=-1知,x∈(-2,-12)∪(12,2),u=44-x2+9x29x2-1=-9x4+72x2-4-9x4+37x2-4=1+3537-(9x2+4x2).当x∈(-2,-12)∪(12,2)时,x2∈(14,4),此时,9x2+4x2≥12.(当且仅当x2=23时等号成立).此时函数的最小值为125,故选D.6.在四面体ABCD中,设AB=1,CD=3,直线AB与CD的距离为2,夹角为3,则四面体ABCD的体积等于(A) 32 (B) 12 (C) 13 (D) 33解:如图,把四面体补成平行六面体,则此平行六面体的体积=1×3×sinπ3×2=3.而四面体ABCD的体积=16×平行六面体体积=12.故选B.二.填空题(每小题9分,共54分)7.不等式|x|3-2x2-4|x|+3<0的解集是.解:即|x|3-2|x|2-4|x|+3<0,(|x|-3)(|x|-5-12)(|x|+5+12)<0.|x|<-5+12,或5-12<|x|<3.∴解为(-3,-5-12)∪(5-12,3).8.设F1、F2是椭圆x29+y24=1的两个焦点,P是椭圆上一点,且|PF1|∶|PF2|=2∶1,则△PF1F2的面积等于.解:F1(-5,0),F2(5,0);|F1F2|=25.|PF1|+|PF2|=6,|PF1|=4,|PF2|=2.由于42+22=(25)2.故PF1F2是直角三角形55.∴ S=4.9.已知A={x|x2-4x+3<0,x∈R},B={x|21-x+a≤0,x2-2(a+7)x+5≤0,x∈R}若AB,则实数a的取值范围是.解:A=(1,3);又,a≤-21-x∈(-1,-14),当x∈(1,3)时,a≥x2+52x -7∈(5-7,-4).∴-4≤a≤-1.10.已知a,b,c,d均为正整数,且logab=32,logcd=54,若a-c=9,则b-d=解:a3=b2,c5=d4,设a=x2,b=x3;c=y4,d=y5,x2-y4=9.(x+y2)(x-y2)=9.∴ x+y2=9,x-y2=1,x=5,y2=4.b-d=53-25=125-32=93.11.将八个半径都为1的球分放两层放置在一个圆柱内,并使得每个球都和其相邻的四个球相切,且与圆柱的一个底面及侧面都相切,则此圆柱的高等于.解:如图,ABCD是下层四个球的球心,EFGH是上层的四个球心.每个球心与其相切的球的球心距离=2.EFGH在平面ABCD上的射影是一个正方形.是把正方形ABCD绕其中心旋转45而得.设E的射影为N,则MN=2-1.EM=3,故EN2=3-(2-1)2=22.∴ EN=48.所求圆柱的高=2+48.12.设Mn={(十进制)n位纯小数0.-a1a2…an|ai只取0或1(i=1,2,…,n-1),an=1},Tn 是Mn中元素的个数,Sn是Mn中所有元素的和,则limn→∞SnTn= .解:由于a1,a2,…,an-1中的每一个都可以取0与1两个数,Tn=2n-1.在每一位(从第一位到第n-1位)小数上,数字0与1各出现2n-2次.第n位则1出现2n-1次.∴ Sn=2n-20.11…1+2n-210-n.∴ limn→∞SnTn=1219=118.三、(本题满分20分)13.设32≤x≤5,证明不等式2x+1+2x-3+15-3x<219.解:x+1≥0,2x-3≥0,15-3x≥0.32≤x≤5.由平均不等式x+1+x+1+2x-3+15-3x4≤x+1+x+1+2x-3+15-3x4≤14+x4.∴ 2x+1+2x-3+15-3x=x+1+x+1+2x-3+15-3x≤214+x.但214+x在32≤x≤5时单调增.即214+x≤214+5=219.故证.四、(本题满分20分)14.设A、B、C分别是复数Z0=ai,Z1=12+bi,Z2=1+ci(其中a,b,c都是实数)对应的不共线的三点.证明:曲线Z=Z0cos4t+2Z1cos2tsin2t+Z2sin4t (t∈R)与△ABC中平行于AC的中位线只有一个公共点,并求出此点.解:曲线方程为:Z=aicos4t+(1+2bi)cos2tsin2t+(1+ci)sin4t=(cos2tsin2t+sin4t)+i(acos4t+2bcos2tsin2t+csin4t)∴x=cos2tsin2t+sin4t=sin2t(cos2t+sin2t)=sin2t.(0≤x≤1)y=acos4t+2bcos2tsin2t+csin4t=a(1-x)2+2b(1-x)x+cx2即y=(a-2b+c)x2+2(b-a)x+a (0≤x≤1).①若a-2b+c=0,则Z0、Z1、Z2三点共线,与已知矛盾,故a-2b+c0.于是此曲线为轴与x 轴垂直的抛物线.AB中点M:14+12(a+b)i,BC中点N:34+12(b+c)i.与AC平行的中位线经过M(14,12(a+b))及N(34,12(b+c))两点,其方程为4(a-c)x+4y-3a-2b+c=0.(14≤x≤34).②令4(a-2b+c)x2+8(b-a)x+4a=4(c-a)x+3a+2b-c.即4(a-2b+c)x2+4(2b-a-c)x+a-2b+c=0.由a-2b+c0,得4x2+4x+1=0,此方程在[14,34]内有惟一解:x=12.以x=12代入②得,y=14(a+2b+c).∴所求公共点坐标为(12,14(a+2b+c)).五、(本题满分20分)15.一张纸上画有一个半径为R的圆O和圆内一个定点A,且OA=a,折叠纸片,使圆周上某一点A刚好与点A重合.这样的每一种折法,都留下一条折痕.当A取遍圆周上所有点时,求所有折痕所在直线上点的集合.解:对于⊙O上任意一点A,连AA,作AA的垂直平分线MN,连OA.交MN于点P.显然OP+PA=OA=R.由于点A在⊙O内,故OA=a<R.从而当点A取遍圆周上所有点时,点P的轨迹是以O、A为焦点,OA=a为焦距,R(R>a)为长轴的椭圆C.而MN上任一异于P的点Q,都有OQ+QA=OQ+QA>OA.故点Q在椭圆C外.即折痕上所有的点都在椭圆C上及C外.反之,对于椭圆C上或外的一点S,以S为圆心,SA为半径作圆,交⊙O于A,则S在AA的垂直平分线上,从而S在某条折痕上.最后证明所作⊙S与⊙O必相交.1 当S在⊙O外时,由于A在⊙O内,故⊙S与⊙O必相交;2 当S在⊙O内时(例如在⊙O内,但在椭圆C外或其上的点S),取过S的半径OD,则由点S在椭圆C外,故OS+SA≥R(椭圆的长轴).即SA≥SD.于是D在⊙S内或上,即⊙S与⊙O必有交点.于是上述证明成立.综上可知,折痕上的点的集合为椭圆C上及C外的所有点的集合.。
2012南通市一模数学试卷及答案-高考试卷
江苏省南通市2012届高三数学模拟试题一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答卷纸的相.....应位置上..... 1.若复数z 满足(3)4i z i =(i 是虚数单位),则z = ▲ .2.已知集合A ={x |6x +a >0},若1∉A ,则实数a 的取值范围是 ▲ .3.命题p :函数y =tanx 在R 上单调递增,命题q :△ABC 中,∠A >∠B 是sinA >sinB 的充要条件,则p ∨q 是 ▲ 命题.(填“真”“假”) 4.某地区为了解中学生的日平均睡眠时间(单位:h ), 随机选择了n 位中学生进行调查,根据所得数据 画出样本的频率分布直方图如图所示,且从左到 右的第1个、第4个、第2个、第3个小长方形 的面积依次构成公差为0.1的等差数列,又第一小组的频数是10,则=n ▲ .5.把一颗骰子投掷2次,观察出现的点数,记第一次出现的点数为a ,第二次出现的点数为b ,则方程组3,2 2.ax by x y +=⎧⎨+=⎩只有一个解的概率为 ▲ .6.如果2(tan )sin 5sin cos f x x x x =-, 那么(5)f = ▲ .7.已知双曲线1922=-my x 的一个焦点在圆05422=--+x y x 上,则双曲线的渐近线方程为 ▲ .注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求 1.本试卷共4页,包含填空题(第1题——第14题)、解答题(第15题——第20题).本卷满分160分,考试时间为120分钟.考试结束后,请将答题卡交回.2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5毫米黑色墨水的签字笔.请注意字体工整,笔迹清楚.4. 如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.5. 请保持答题卡卡面清洁,不要折叠、破损.一律不准使用胶带纸、修正液、可擦洗的圆珠笔.8.程序框图如下,若恰好经过....6.次.循环输出结果,则a = ▲ .9.将函数y =sin (2x +56π)的图象向左平移至少 ▲ 个单位,可得一个偶函数的图象. 10. 已知直线l ⊥平面α,直线m ⊂平面β,给出下列命题: ① 若//αβ,则l m ⊥; ②若αβ⊥,则//l m ; ③ 若//l m ,则αβ⊥; ④若l m ⊥,则//αβ.其中正确命题的序号是 ▲ .11左至右以及从上到下都是无限的.此表中,主对角线上数列1,2,5,10,17,…的一个通项公式n a = ▲ . 12. 在ABC ∆中,A (1,1),B (4,5),C (—1,1), 则与角A 的平分线共线且方向相同的单位向量 为 ▲ .13. 已知函数f (x )满足f (1)= 41,f (x )+ f (y )=4 f (2y x +)f (2y x -)(x ,y ∈R ),则f (—2011)=▲ .14. 已知二次函数2(),f x x x k k Z =-+∈,若函数2)()(-=x f x g 在31,2⎛⎫- ⎪⎝⎭上有两个不同的零点,则)(2)]([2x f x f +的最小值为 ▲ .二、解答题:本大题共6小题,共计90分.请把答案写在答题卡相应的位置上.解答时应写出文字说明,证明过程或演算步骤.15.(本题满分14分)已知∆ABC 的面积S满足4S ≤≤,且AB AC ⋅=—8.(Ⅰ)求角A 的取值范围;(Ⅱ)若函数22cos2sin cos 4444()x x x x f x -+⋅=,求()f A 的最大值.16.(本题满分14分)如图,把长、宽分别为4、3的长方形ABCD 沿对角线AC 折成直二面角. (Ⅰ)求顶点B 和D 之间的距离;(Ⅱ)现发现BC 边上距点C 的31处有一缺口E ,请过点E 作一截面,将原三棱锥分割成一个三棱锥和一个棱台两部分,为使截去部分体积最小,如何作法?请证明你的结论.17.(本题满分15分)如图,已知:椭圆M 的中心为O ,长轴的两个端点为A 、B ,右焦点为F ,AF=5BF .若椭圆M 经过点C ,C 在AB 上的射影为F ,且△ABC 的面积为5. (Ⅰ)求椭圆M 的方程;(Ⅱ)已知圆O :22+x y =1,直线:l mx ny +=1,试证明:当点P (m ,n )在椭圆M 上运动时,直线l 与圆O 恒相交;并求直线l 被圆O 截得的弦长的取值范围.ABCDE .CD18.(本题满分15分)各项均为正数的等比数列}{n a ,a 1=1,2a 4a =16,单调增数列}{n b 的前n 项和为n S ,43a b =,且2632n n n S b b =++(*N n ∈). (Ⅰ)求数列}{n a 、}{n b 的通项公式; (Ⅱ)令n n nb c a =(*N n ∈),求使得1n c >的所有n 的值,并说明理由. (Ⅲ) 证明}{n a 中任意三项不可能构成等差数列.19.(本题满分16分)由一个小区历年市场行情调查得知,某一种蔬菜在一年12个月内每月销售量()P t (单位:吨)与上市时间t (单位:月)的关系大致如图(1)所示的折线ABCDE 表示,销售价格()Q t (单位:元/千克)与上市时间t (单位:月)的大致关系如图(2)所示的抛物线段GHR 表示(H 为顶点).(Ⅰ)请分别写出()P t ,()Q t 关于t 的函数关系式,并求出在这一年内3到6月份的销售额最大的月份?(Ⅱ)图(1)中由四条线段所在直线....围成的平面区域为M ,动点(,)P x y 在M 内(包括边界),求5z x y =-的最大值;(Ⅲ) 由(Ⅱ),将动点(,)P x y 所满足的条件及所求的最大值由加法运算类比到乘法运算(如1233x y ≤-≤类比为2313x y≤≤),试列出(,)P x y 所满足的条件,并求出相应的最大值.(图1) (图2)20.(本题满分16分)如果实数x ,y ,t 满足|x —t |≤|y —t |,则称x 比y 接近t . (Ⅰ)设a 为实数,若a |a | 比a 更接近1,求a 的取值范围;(Ⅱ)f (x )=ln 11+-x x ,证明:2()nk f k =∑22(1)n n +更接近0(k ∈Z ).数学附加题(满分40分,考试时间30分钟)21.【选做题】在A ,B ,C ,D 四小题中只能选做2题,每小题10分,共计20分.解答应写出文字说明、证明过程或演算步骤. A .选修4—1 几何证明选讲已知 ABC ∆中,AC AB =,D 是ABC ∆外接圆劣弧AC 上 的点(不与点C A ,重合),延长BD 至E . 求证:AD 的延长线平分CDE ∠.B .选修4—2 矩阵与变换已知矩阵⎥⎦⎤⎢⎣⎡=41b a A ,若矩阵A 属于特征值1的一个特征向量为α1=⎥⎦⎤⎢⎣⎡-13,属于特征值5的一个特征向量为α2=⎥⎦⎤⎢⎣⎡11.求矩阵A ,并写出A 的逆矩阵.C .选修4—4 参数方程与极坐标已知圆C 的参数方程为()为参数θθθ⎩⎨⎧+=+=sin 23,cos 21y x ,若P 是圆C 与x 轴正半轴的交点,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,设过点P 的圆C 的切线为l ,求直线l 的极坐标方程.D .选修4—5 不等式证明选讲设c b a ,,均为正数,证明:c b a ac c b b a ++≥++222.【必做题】第22题、第23题,每题10分,共计20分.解答应写出文字说明、证明过程或演算步骤.22.已知一口袋中共有4只白球和2只红球(1)从口袋中一次任取4只球,取到一只白球得1分,取到一只红球得2分,设得分为随机变量X ,求X 的分布列与数学期望;(2)从口袋中每次取一球,取后放回,直到连续出现两次白球就停止取球,求6次取球后恰好被停止的概率.23.在平面直角坐标系xoy 中,已知焦点为F 的抛物线y x 42=上有两个动点A 、B ,且满足FB AF λ=, 过A 、B 两点分别作抛物线的切线,设两切线的交点为M. (1) 求:→--OA →--⋅OB 的值; (2) 证明:AB FM ⋅为定值.参考答案一、填空题1. —1+2. (,6]-∞-3. 真4. 1005.11126. 07. x y 322±= 8. 2 9.3π 10.①③ 11. (n —1)2+1 12. )552,55(- 13. 14 14.2881二、解答题15. (Ⅰ)∵AB AC ⋅ =—8,∴||||cos AB AC AB AC A ⋅⋅⋅==—8,∴ ||||AB AC ⋅=8cos A- ① ∵|1|||sin 2BA AC S A ⋅=⋅ ②将①代入②得4tan S A =-,由4S ≤≤tan 1A ≤≤-, 又(0,)A π∈,∴23,34A ππ⎡⎤∈⎢⎥⎣⎦.(Ⅱ)22()cos2sin cos 4444A A A A f A =-+⋅=1(1cos )(1cos )2222A A A+--+=31cos 22222A A +-=113(cos )22222A A +- =13(sincos cos sin )26262A A ππ+-=13sin()262A π+-, 当262A ππ+=,即A =32π时,sin()26A π+ 取得最大值, 同时,()f A 取得最大值52.16. (Ⅰ)ACD OD ACD BO AC ACD ABC ABC BO 面面面面面面面⊂⊥⇒⎪⎪⎭⎪⎪⎬⎫=⋂⊂⊥∆ACD ABC O 垂足为AC,⊥BO 中作ABC 在BO OD ⎫⇒⊥⎬⎭由已知BO=512,OD=5193在Rt △BOD 中, BD=5337. (Ⅱ)方案(一)过E 作EF//AC 交AB 于F ,EG//CD,交BD于G,EEG EF ACD 面EG//同理 ////=⋂⇒⎪⎭⎪⎬⎫⊂⊄ACD EF ACD AC ACD EF ACEF 面面面,⇒⎪⎪⎪⎭⎪⎪⎪⎬⎫平面EFG//平面ACD 原三棱锥被分成三棱锥B-EFG 和三棱台EFG-CAD 两部分,此时278)32(3==--ACD B EFG B V V . 方案(二)过E 作EP//BD 交CD 于P ,EQ//AB,交AC 于Q,同(一)可证平面EPQ//平面ABD,原三棱锥被分割成三棱锥C-EPQ 和三棱台EPQ-BDA 两部分,此时271)31(3==--BDAC EPQ C V V , 为使截去部分体积最小,故选用方案(二).17. (Ⅰ)由题意设椭圆方程为22221x y a b+=,半焦距为c ,由AF=5BF ,且AF=a+c,BF=a —c ,∴a+c=5(a-c ),得2a=3c .(1)由题意CF ⊥AB ,设 点C 坐标(c ,y ),C 在M 上,代入得22222222()(1)c a c y b a a -=-= ∴22a c y a-=. 由△ABC 的面积为5,得221252a c a a-⋅⋅=,22a c -=5.(2) 解(1)(2)得a =3, c =2. ∴222b ac =-=9—4=5.∴所求椭圆M 的方程为:22195x y +=.(Ⅱ) 圆O 到直线:l mx ny +=1距离d ,由点P (m,n )在椭圆M 上,则22195m n +=,显然22m n +>2295m n +,∴22m n +>1,>1, ∴dABCD E.=<1,而圆O 的半径为1,直线l 与圆O 恒相交.弦长t,由22195m n +=得225(1)9m n =-, ∴22219445m n m =++, t=2, ||m a ≤,∴209m ≤≤,24544581m ≤+≤,∴2498154459m ≤-≤+ ,弦长t 的取值范围是[53]. 18.(Ⅰ)∵2a 4a =244116a q q ==,2q =4,∵0n a >,∴q =2, ∴12-=n n a ∴b 3=4a =8. ∵263n n n S b b =++2 ① 当n≥2时,211163n n n S b b ---=++2 ②①-②得2211633n n n n n b b b b b --=-+-即111()()3()n n n n n n b b b b b b ---+-=+∵0>n b ∴1n n b b --=3,∴}{n b 是公差为3的等差数列. 当n =1时,211163b b b =++2,解得1b =1或1b =2,当1b =1时,32n b n =-,此时3b =7,与83=b 矛盾;当31=b 时31n b n =-,此时此时3b =8=4a ,∴31n b n =-.(Ⅱ)∵31n b n =-,∴n n nb c a ==1312n n --,∴1c =2>1,2c =52>1,3c =2>1,4118c =>1,578c =<1,下面证明当n ≥5时,1n c < 事实上,当n ≥5时,11323122n n nn n n c c +-+--=-=432n n-<0 即1n n c c +<,∵578c =<1 ∴当n ≥5时,1<n C ,故满足条件1>n C 的所有n 的值为1,2,3,4.(Ⅲ)假设}{n a 中存在三项p ,q ,r (p <q <r ,p ,q ,R ∈N *)使a p , a q , a r 构成等差数列, ∴ 2a q =a p +a r ,即22q —1=2p —1+2r —1.∴2q —p +1=1+2r —p . 因左边为偶数,右边为奇数,矛盾.∴假设不成立,故不存在任意三项能构成等差数列.19.解(Ⅰ)503,136,()1169,7912t t t t P t t t t t -+≤≤⎧⎪-<≤⎪=⎨-+<≤⎪⎪-<≤⎩21()(4)6(012)16Q t t t =--+≤≤. 21()()(1)[(4)6]16P t Q t t t ⋅=---+ (36)t <≤'23(()())[(3)33]16P t Q t t ⋅=---0>在(3,6]t ∈恒成立,所以函数在]6,3(上递增当t =6时,max [()()]P t Q t =34.5. ∴6月份销售额最大为34500元 . (Ⅱ) ⎩⎨⎧≤-≤≤+≤71115y x y x ,z =x —5y .令x —5y=A (x +y )+B(x —y ),则⎩⎨⎧=-=⇒⎩⎨⎧-=-=+3251B A B A B A , ∴z =x —5y=—2(x +y )+3(x —y ).由10)(222-≤+-≤-y x ,21)(33≤-≤y x , ∴1911z -≤≤,则(z )max =11 .(Ⅲ)类比到乘法有已知⎪⎩⎪⎨⎧≤≤≤≤71115y x xy ,求5y x z =的最大值.由5y x =(xy )A ·(y x )B⎩⎨⎧=-=⇒⎩⎨⎧-=-=+3251B A B A B A .∴251)(12112≤≤-xy ,343)(13≤≤xy ∴253431211≤≤z ,则(z )max = 25343. 20. (Ⅰ)|a |a |—1|≤|a —1| (1)当0<a <1时, |a 2—1|≤|a —1|1-a 2≤1—a ,得a ≥1或a ≤0(舍去)(2)当a ≥1时,a 2—1≤a —1, 得a = 1;(3)当 a ≤0时, a 2+1≤1—a ,—1≤a ≤0 .综上, a 的取值范围是{a |—1≤a ≤0或a =1} (Ⅱ) ∵+=∑=31ln )(2nk k f 42ln +53ln +…+11ln +-n n =)1(2ln +n n , ∴2|()0|nk f k =--∑2|0|=)1(22)1(2ln 2+-+-+-n n n n n n .令n (n +1)=t ,2≥n ∴t ∈),6[+∞,且t ∈Z ,则 F (t )=t t t 222ln--- =t t t 22ln 2ln --+-. =-⋅--=x x xx xx F 2)2(12221)('x x x x 42224--=04)2(22<--xx x∴F (x )在),2[+∞单调递减 ∴F (t )≤f (6)<F(2)=—ln 1—0=0 .∴0222ln ≤---t t t ,即)1(22)1(2ln 2+-+-+-n n n n n n ≤0. ∴2()nk f k =∑2更接近0.附加题参考答案及评分标准A .选修4—1 几何证明选讲 解(Ⅰ)设F 为AD 延长线上一点 ∵D CB A ,,,四点共圆,∴CDF ABC ∠=∠ 3分 又AC AB = ∴ACB ABC ∠=∠, 5分 且ACB ADB ∠=∠, ∴CDF ADB ∠=∠, 7分 对顶角ADB EDF ∠=∠, 故CDF EDF ∠=∠, 即AD 的延长线平分CDE ∠. 10分 B .选修4—2 矩阵与变换解:由矩阵A 属于特征值1的一个特征向量为α1=⎥⎦⎤⎢⎣⎡-13可得,⎥⎦⎤⎢⎣⎡41b a ⎥⎦⎤⎢⎣⎡-13=⎥⎦⎤⎢⎣⎡-13, 即33=-b a ; 3分由矩阵A 属于特征值5的一个特征向量为α2=⎣⎢⎡⎦⎥⎤11,可得⎥⎦⎤⎢⎣⎡41b a ⎥⎦⎤⎢⎣⎡11=5⎥⎦⎤⎢⎣⎡11, 即5=+b a , 6分 解得⎩⎨⎧==32b a 即A =⎥⎦⎤⎢⎣⎡4312, 7分A 的逆矩阵是⎥⎥⎥⎦⎤-⎢⎢⎢⎣⎡-52535154 10分C .选修4—4 参数方程与极坐标解 由题设知,圆心 ()()0.2, 3,1P C 2分 ∠CPO=60°,故过P 点的切线的倾斜角为30° 4分 设()θρ,M 是过P 点的圆C 的切线上的任一点,则在△PMO 中,∠MOP=θ 00150, 30=∠-=∠OPM OMP θ 由正弦定理得()θρ-=∴∠=∠0030sin 2sin150, sin sin OMP OP OPM OM 8分 ()()()130sin 160cos 00=-=+∴θρθρ或,即为所求切线的极坐标方程. 10分D .选修4—5 不等式证明选讲证明: )()()(222222a ac c c b b b a c b a a c c b b a +++++=+++++ 3分 c b a 222++≥ 9分即得c b a ac c b b a ++≥++222. 10分 另证 利用柯西不等式.232221232221332211b b b a a a b a b a b a ++++≤++取a b c b b b ac a cb a ba a ======321321,,,,,代入即证.22.解:(1)X 的可能取值为4、5、6.P(X=4)= 1514644=C CP(X=5)= 158461234=C C C P(X=6)= 156462224=C C C ∴X 的分布列为∴3156155154)(=⨯+⨯+⨯=X E 5分 (2)设 “6次取球后恰好被停止”为事件A则72944323231]32)31(323132)31[()(2233=⨯⨯⨯⨯+⨯⨯+=C A P ∴6次取球后恰好被停止的概率为7294410分23.解:设)4,(),4,(222211x x B x x A焦点F (0,1)∴)14,(),41,(222211-=--=x x FB x x AFFB AF λ=∴⎪⎩⎪⎨⎧-=-=-)14(41222121x x x x λλ 消λ得0)41()14(212221=-+-x x x x 化简整理得0)14)((2121=+-x x x x 21x x ≠ 421-=∴x x144222121=⋅=∴x x y y∴32121-=+=⋅y y x x OB OA (定值)(2)抛物线方程为241x y =x y 21='∴ ∴过抛物线A 、B 两点的切线方程分别为4)(212111x x x x y +-=和4)(212222x x x x y +-= 即421211x x x y -=和421222x x x y -=联立解出两切线交点M 的坐标为⎪⎭⎫⎝⎛-+1,221x x⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-+=⋅∴4,2.221221221x x x x x x AB FM =022********=---x x x x (定值)。
南通市2013届高三第一次调研测试数学参考答案及评分标准(word)2013.1.24
南通市2013届高三第一次调研测试数学I参考答案与评分标准(考试时间:120分钟 满分:160分)一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应的位置上.1.已知全集U =R ,集合{}10A x x =+>,则U A =ð ▲ . 答案:(,1]-∞-.2.已知复数z =32i i -(i 是虚数单位),则复数z 所对应的点位于复平面的第 ▲ 象限.答案:三.3.已知正四棱锥的底面边长是6,这个正四棱锥的侧面积是 ▲ . 答案:48.4.定义在R 上的函数()f x ,对任意x ∈R 都有(2)()f x f x +=,当(2,0)x ∈- 时,()4x f x =, 则(2013)f = ▲ . 答案:14. 5.已知命题p :“正数a 的平方不等于0”,命题q :“若a 不是正数,则它的平方等于0”, 则p 是q 的 ▲ .(从“逆命题、否命题、逆否命题、否定”中选一个填空) 答案:否命题.6.已知双曲线22221yx a b-=的一个焦点与圆x 2+y 2-10x =0的圆心重合,,则该双曲线的标准方程为 ▲ .答案:221520y x -=. 7.若S n 为等差数列{a n }的前n 项和,S 9=-36,S 13=-104, 则a 5与a 7的等比中项为 ▲ . 答案:±8.已知实数x ∈[1,9],执行如右图所示的流程图, 则输出的x 不小于55的概率为 ▲ .答案:38.9.在△ABC 中,若AB =1,AC||||AB AC BC += ,则||BA BC BC ⋅ = ▲ .ABC DEF A 1B 1C 1(第15题)答案:12. 10.已知01a <<,若log (21)log (32)a a x y y x -+>-+,且x y <+λ,则λ的最大值为▲ . 答案:-2. 11.曲线2(1)1()e (0)e 2x f f x f x x '=-+在点(1,f (1))处的切线方程为 ▲ . 答案:1e 2y x =-. 12.如图,点O 为作简谐振动的物体的平衡位置,取向右方向为正方向,若振幅为3cm ,周期为3s ,且物体向右运动到距平衡位置最远处时开始计时.则该物体5s 时刻的位移为 ▲ cm . 答案:-1.5.13.已知直线y =ax +3与圆22280x y x ++-=相交于A ,B 两点,点00(,)P x y 在直线y =2x 上,且P A =PB ,则0x 的取值范围为 ▲ . 答案:(1,0)(0,2)- .14.设P (x ,y )为函数21y x =-(x >图象上一动点,记353712x y x y m x y +-+-=+--,则当m 最小时,点 P 的坐标为 ▲ . 答案:(2,3).二、解答题:本大题共6小题,共计90分.请把答案写在答题卡相应的位置上.解答时应写出文字说明,证明过程或演算步骤. 15.(本题满分14分)如图,在正三棱柱ABC -A 1B 1C 1中,E 是侧面AA 1B 1B 对角线的交点,F 是侧面AA 1C 1C 对角线的交点,D 是棱BC 的中点.求证: (1)//EF 平面ABC ; (2)平面AEF ⊥平面A 1AD .解:(1)连结11A B A C 和.因为E F 、分别是侧面11AA B B 和侧面11AA C C 的对角线的交点, 所以E F 、分别是11A B A C 和的中点.所以//EF BC . ………………………………………………………3分(第12题)OEF A 1B 1C 1又BC ⊂平面ABC 中,EF Ø平面ABC 中,故//EF 平面ABC . ………………………………………………6分 (2)因为三棱柱111ABC A B C -为正三棱柱, 所以1A A ⊥平面ABC ,所以1BC A A ⊥.故由//EF BC ,得1EF A A ⊥. ………………………………………8分 又因为D 是棱BC 的中点,且ABC ∆为正三角形,所以BC AD ⊥. 故由//EF BC,得EF AD ⊥. …………………………………………………………………10分而1A A AD A= ,1,A A AD ⊂平面1A A D ,所以EF ⊥平面1A A D .…………………………………12分又EF ⊂平面AEF ,故平面AEF ⊥平面1A A D .………………………………………………………14分16.(本题满分14分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,sin sin tan A B C +=. (1)求角C 的大小;(2)若△ABC 的外接圆直径为1,求22a b +的取值范围. 解:(1)因为sin sin tan A B C +=,即sin sin sin C A B +=,所以sin cos sin cos cos sin cos sin C A C B C A C B +=+, 即 sin cos cos sin cos sin sin cos C A C A C B C B -=-, 得sin()sin()C A B C -=-. ……………………………………………………………………………4分所以C A B C -=-,或()C A B C π-=--(不成立). 即2C A B=+, 得3C π=. …………………………………………………………………7分(2)由πππ,,,333C A B αα==+=-设2πππ0,,333A B α<<<<知-.因2sin sin ,2sin sin a R A A b R B B ====, …………………………………………………………8分故22221cos 21cos 2sin sin 22A B a b A B --+=+=+=12π2π11cos(2)cos(2)1cos22332⎡⎤-++-=+⎢⎥⎣⎦ααα. ………………………………………11分ππ2π2π,2,3333αα<<<<由-知-1cos 212α-<≤,故223342a b <+≤.……………………………14分17.(本题满分14分)某公司为一家制冷设备厂设计生产一种长方形薄板,其周长为4米,这种薄板须沿其对角线折叠后使用.如图所示,()ABCD AB AD >为长方形薄板,沿AC 折叠后,AB '交DC 于点P .当△ADP 的面积最大时最节能,凹多边形ACB PD '的面积最大时制冷效果最好.(1)设AB =x 米,用x 表示图中DP 的长度,并写出x 的取值范围; (2)若要求最节能,应怎样设计薄板的长和宽? (3)若要求制冷效果最好,应怎样设计薄板的长和宽?解:(1)由题意,AB x=,2BC x =-.因2x x >-,故12x <<. ……………………………2分设DP y =,则PC x y =-.因△ADP ≌△CB P ',故PA PC x y ==-. 由22PA A D D P =+,得 2221()(2)2(1)x y x yy x-=-+⇒=-,12x <<.……………………5分(2)记△ADP 的面积为1S ,则11(1)(2)S x x=-- ………………………………………………………………………………………6分23()2x =-+≤-当且仅当x ∈(1,2)时,S 1取得最大值.…………………………………………………………8分故当薄板长为米,宽为2米时,节能效果最好. ………………………………………9分ABCD(第17题)B 'P(3)记△ADP 的面积为2S ,则221114(2)(1)(2)3()22S x x x x x x =-+--=-+,12x <<.……………………………………………10分于是,3222142(2)02x S x x x x -+'=--==⇒11分关于x 的函数2S 在(1上递增,在上递减.所以当x 时,2S 取得最大值. ……………………………………………………13分故当薄板长为米,宽为2米时,制冷效果最好. ………………………………………14分18.(本题满分16分)已知数列{a n }中,a 2=1,前n 项和为S n ,且1()2n n n a a S -=. (1)求a 1;(2)证明数列{a n }为等差数列,并写出其通项公式; (3)设1lg 3n n na b +=,试问是否存在正整数p ,q (其中1<p <q ),使b 1,b p ,b q 成等比数列?若存在,求出所有满足条件的数组(p ,q );若不存在,说明理由.解:(1)令n =1,则a 1=S 1=111()2a a -=0. ………………………………………………………………3分 (2)由1()2n n n a a S -=,即2n n naS =, ① 得 11(1)2n n n a S +++=. ② ②-①,得 1(1)n n n ana +-=. ③ 于是,21(1)n n na n a ++=+. ④ ③+④,得212n n n na na na +++=,即212n n n a a a +++=. ……………………………………………7分又a 1=0,a 2=1,a 2-a 1=1,所以,数列{a n }是以0为首项,1为公差的等差数列.所以,a n =n -1. ………………………………………………………………………………………9分(3)假设存在正整数数组(p ,q ),使b 1,b p ,b q 成等比数列,则lg b 1,lg b p ,lg b q 成等差数列,于是,21333p q p q=+. …………………………………………………………………………………11分所以,213()3q p p q =-(☆). 易知(p,q )=(2,3)为方程(☆)的一组解. ……………………………………………………………13分当p ≥3,且p ∈N *时,112(1)224333p p p p p p +++--=<0,故数列{23pp}(p ≥3)为递减数列, 于是2133pp -≤323133⨯-<0,所以此时方程(☆)无正整数解. 综上,存在唯一正整数数对(p ,q )=(2,3),使b 1,b p ,b q 成等比数列. …………………………16分注 在得到③式后,两边相除并利用累乘法,得通项公式并由此说明其为等差数列的,亦相应评分.但在做除法过程中未对n ≥2的情形予以说明的,扣1分.19.(本题满分16分)已知左焦点为F (-1,0)的椭圆过点E (1).过点P (1,1)分别作斜率为k 1,k 2的椭圆的动弦AB ,CD ,设M ,N 分别为线段AB ,CD 的中点. (1)求椭圆的标准方程;(2)若P 为线段AB 的中点,求k 1;(3)若k 1+k 2=1,求证直线MN 恒过定点,并求出定点坐标. 解:依题设c =1,且右焦点F '(1,0).所以,2a =EF EF '+=b 2=a 2-c 2=2,故所求的椭圆的标准方程为22132y x +=. …………………………………………………………4分(2)设A (1x ,1y ),B (2x ,2y ),则22111x y +=①,22221x y +=②.②-①,得 21212121()()()()032x x x x y y y y -+-++=.所以,k 1=212121212()423()63P P y y x x xx x y y y -+=-=-=--+. ………………………………………………………9分(3)依题设,k 1≠k 2.设M (M x ,M y ),直线AB 的方程为y -1=k 1(x -1),即y =k 1x +(1-k 1),亦即y =k 1x +k 2,代入椭圆方程并化简得 2221122(23)6360k x k k x k +++-=. 于是,1221323M k k x k -=+,221223M k y k =+. ……………………………………………………………11分同理,1222323N k k x k -=+,122223N k y k =+. 当k 1k 2≠0时, 直线MN的斜率k =M N M Ny y x x -=-222211212146()9()k k k k k k k k +++-+=21211069k k k k --.……………………………………13分 直线MN 的方程为2211222211121063()92323k k k k k y x k k k k ---=--++, 即 21211222221211110610632()2323k k k k k k k y x k k --=+⋅+++, 亦即 21211062k k y x -=-.此时直线过定点2(0,)3-. ………………………………………………………………………………15分当k 1k 2=0时,直线MN 即为y 轴,此时亦过点2(0,)3-.综上,直线MN恒过定点,且坐标为2(0,)3-. ……………………………………………………16分20.(本题满分16分)已知函数()(0ln x f x ax x x=->且x ≠1).(1)若函数()f x 在(1,)+∞上为减函数,求实数a 的最小值;(2)若212,[e,e ]x x ∃∈,使f (x 1)≤2()f x a '+成立,求实数a 的取值范围.解:(1)因f (x )在(1,)+∞上为减函数,故2ln 1()0(ln )x f x a x -'=-≤在(1,)+∞上恒成立. ………………2分所以当(1,)x ∈+∞时,max ()0f x '≤. 又()22ln 111()ln ln (ln )x f x a a x x x -'=-=-+-()2111ln 24a x =--+-, 故当11ln 2x =,即2e x =时,max 1()4f x a '=-.所以10,4a -≤于是14a ≥,故a 的最小值为1. ……………………………………………………6分 (2)命题“若212,[e,e ],x x ∃∈使()12()f x f x a '≤+成立”等价于 “当2[e,e ]x ∈时,有()m i n m a x()f x f x a '≤+”. ……………………………………………………7分 由(1),当2[e,e ]x ∈时,max 1()4f x a '=-,∴()max 14f x a '+=.问题等价于:“当2[e,e ]x ∈时,有m i n 1()4f x ≤”. ……………………………………………………8分01当14a ≥时,由(1),()f x 在2[e,e ]上为减函数,则min()f x =222e 1(e )e 24f a =-≤,故21124ea ≥-. ……………………………………………10分2当1a <时,由于()f x '()2111ln 24a x =--+-在2[e,e ]上为增函数, 故()f x '的值域为2[(e),(e )]f f '',即1[,]4a a --.(i )若0a -≥,即0a ≤,()0f x '≥在2[e,e ]恒成立,故()f x 在2[e,e ]上为增函数, 于是,min()f x =1(e)e e e>4f a =-≥,不合. …………………………………………………12分(ii )若0a -<,即104a <<,由()f x '的单调性和值域知,∃唯一20(e,e )x ∈,使0()0f x '=,且满足:当0(e,)x x ∈时,()0f x '<,()f x 为减函数;当20(,e )x x ∈时,()0f x '>,()f x 为增函数;所以,min ()f x =00001()ln 4x f x ax x =-≤,20(e,e )x ∈. 所以,2001111111ln 44e 244ln e a x x ≥->->-=,与104a <<矛盾,不合. ………………………15分综上,得21124ea ≥-.………………………………………………………………………………16分AB EFDCO(第21A 题)南通市2013届高三第一次调研测试数学附加题参考答案与评分标准(考试时间:30分钟 满分:40分)21.【选做题】本题包括A ,B ,C ,D 共4小题,请从这4题中选做2小题,每小题10分,共20分.请在答题卡上准确填涂题目标记,解答时应写出文字说明、证明过程或演算步骤.A .选修4-1:几何证明选讲如图,△ABC 是⊙O 的内接三角形,若AD 是△ABC 的高,AE 是⊙O 的直径,F 是 BC的中点.求证:(1)AB AC AE AD ⋅=⋅; (2)FAE FAD ∠=∠.证明:(1)连BE ,则E C ∠=∠,又Rt ABE ADC ∠=∠=∠,所以△ABE ∽△ADC ,所以AB AE AD AC =.∴AB AC AE AD ⋅=⋅. ……………………………………………………………………………………5分(2)连OF ,∵F 是 BC的中点,∴BAF CAF ∠=∠. 由(1),得B A ∠=∠,∴FAE FAD ∠=∠. …………………………………………………10分B .选修4-2:矩阵与变换已知曲线2:2C y x = ,在矩阵M 1002⎡⎤=⎢⎥⎣⎦对应的变换作用下得到曲线1C ,1C 在矩阵N 0110-⎡⎤=⎢⎥⎣⎦对应的变换作用下得到曲线2C ,求曲线2C 的方程.解:设A =NM ,则A 011002100210--⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, ………………………………………………………3分 设()','P x y 是曲线C 上任一点,在两次变换下,在曲线2C 上的对应的点为(),P x y ,则02'2'10''x x y y y x --⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦, 即2',',x y y x =-⎧⎨=⎩∴',1'.2x y y x =⎧⎪⎨=-⎪⎩ ……………………………7分 又点()','P x y 在曲线2:2C y x = 上,∴21()22x y-=,即218y x =.………………………………10分C .选修4-4:坐标系与参数方程已知极坐标系的极点在直角坐标系的原点,极轴与x 轴的正半轴重合.曲线C 的极坐标方程为2222cos 3sin 3+=ρθρθ,直线l的参数方程为1x y t ⎧=⎪⎨=+⎪⎩(t 为参数,t ∈R ).试在曲线C 上求一点M ,使它到直线l 的距离最大. 解:曲线C的普通方程是2213x y +=. …………………………………………………………………2分 直线l的普通方程是0x . ………………………………………………………………4分设点M的直角坐标是,sin )θθ,则点M 到直线l 的距离是d=. …………………………………………………7分因为)4+≤πθ,所以当πsin()14θ+=-,即ππ2π(42k k θ+=-∈Z ),即3π2π(4k k θ=-∈Z )时,d 取得最大值.==θθ 综上,点M 的极坐标为7π)6时,该点到直线l 的距离最大. ………………………10分注 凡给出点M的直角坐标为(,不扣分.D .选修4-5:不等式选讲已知0,0,a b >>且21a b +=,求224S a b =-的最大值. 解:0,0,21,a b a b >>+=∴2224(2)414a b a b ab ab +=+-=-, ………………………………………………………………2分且12a b =+≥,即,1ab ≤, ……………………………………………………5分∴224S a b =-(14)ab =-41ab =-≤,当且仅当11,42a b ==时,等号成立. …………………………………………………………………10分22.(本小题满分10分).解答时应写出文字说明、证明过程或演算步骤.如图,已知定点R (0,-3),动点P ,Q 分别在x 轴和y 轴上移动,延长PQ至点M ,使1PQ QM = ,且0PR PM ⋅=.(1)求动点M 的轨迹C 1;(2)圆C 2: 22(1)1x y +-=,过点(0,1)的直线l 依次交C 1于A ,D 两点(从左到右),交C 2于B ,C 两点(从左到右),求证:AB CD ⋅为定值.解:(1)法一:设M (x ,y ),P (x 1,0),Q (0,y 2),则由10,2PR PM PQ QM ⋅==及R (0,-3),得11122()(3)0,1,211.22x x x y x x y y y ⎧⎪--+-=⎪⎪-=⎨⎪⎪=-⎪⎩化简,得24x y =. ……………………………………………………………4分所以,动点M 的轨迹C 1是顶点在原点,开口向上的抛物线. ………………………………………5分法二:设M (x ,y ).由12PQ QM = ,得 (,0),(0,)23xyP Q -.(第22题)所以,3(,3),(,)22x xPR PM y =-= .由0PR PM =,得3(,3)(,)022x x y -⋅=,即23304x y -=.化简得 24x y =. …………………4分所以,动点M 的轨迹C 1是顶点在原点,开口向上的抛物线. ………………………………………5分(2)证明:由题意,得 A B C D A B C D ⋅=⋅,⊙C 2的圆心即为抛物线C 1的焦点F . 设11(,)A x y ,22(,)D x y ,则1111AB FA FB y y =-=+-=. ……………………………………7分同理 2C D y =. 设直线l 的方程为 (1)x k y =-.由2(1),1,4x k y y x =-⎧⎪⎨=⎪⎩得221(1)4y k y =-,即2222(24)0k y k y k --+=. 所以,121AB CD AB CD y y ⋅=⋅==. ………………………………………………………………10分23.(本小题满分10分).解答时应写出文字说明、证明过程或演算步骤.已知数列{a n }满足:1*1122,1()n a n a a a a n -+=-=+∈N . (1)若1a =-,求数列{a n }的通项公式;(2)若3a =,试证明:对*n ∀∈N ,a n 是4的倍数. 解:(1)当1a =-时,1114,(1)1n a n a a -+=-=-+.令1n n b a =-,则115,(1)n b n b b +=-=-. 因15b =-为奇数,n b 也是奇数且只能为1-, 所以,51,2n n b n -=⎧=⎨-≥⎩即4,1,0, 2.n n a n -=⎧=⎨≥⎩………………………………………………………3分(2)当3a =时,1114,31n a n a a -+==+. ………………………………………………………………4分下面利用数学归纳法来证明:a n 是4的倍数.当1n =时,1441a ==⨯,命题成立;设当*()n k k =∈N 时,命题成立,则存在t ∈N *,使得4k a t =,1414(1)1313127(41)1k a t t k a ---+∴=+=+=⋅-+27(41)14(277)m m =⋅++=+,其中,4(1)14544434(1)4(1)4(1)44C 4(1)C 4C 4t t r r t r t t t t m --------=-⋅++-⋅+-⋅ ,m ∴∈Z ,∴当1n k =+时,命题成立.∴由数学归纳法原理知命题对*n ∀∈N 成立. …………………………………………………10分南通市2013届高三第一次调研测试数学Ⅰ讲评建议第1题 考查集合运算.注意集合的规范表示法,重视集合的交并补的运算.第2题 考查复数的基本概念及几何意义.对复数的概念宜适当疏理,防止出现知识盲点. 第3题 考查常见几何体的表面积与体积的计算.应熟练掌握常见几何体的表面积的计算,灵活应用等体积法计算点面距.第4题 本题考查一般函数的性质——周期性在解题中的应用.第5题 本题考查简易逻辑的知识.应注意四种命题及其关系,注意全称命题与特称性命题的转换.第6题 本题考查双曲线的标准方程、简单性质与圆的有关知识.对双曲线的讲评不宜过分引申.第7题 本题主要考查等差数列的基本概念及其简单运算.法一 用性质.S 9=9a 5= -36,S 13= 13a 7= -104,于是a 5= -4,a 7= -8,等比中项为±法二 用基本量.S 9=9a 1+36d = -36,S 13=13a 1+78d = -104,解得a 1=4,d = -2.下同法一.第8题 本题主要考查算法及几何概型等知识.法一 当输入x =1时,可输出x =15;当输入x =9时,可输出y =79.于是当输入x的取值范围为[1,9]时,输出x 的取值范围为[15,79],所求概率为7955379158-=-.法二 输出值为87x +.由题意:8755x +≥,故69x ≤≤. 第9题 本题主要考查向量与解三角形的有关知识.满足||||AB AC BC +=的A ,B ,C 构成直角三角形的三个顶点,且∠A 为直角,于是BA BC ⋅ =2BA =1.第10题 本题主要考查对数与线性规划的基础知识及简单运算.讲评时应强调对数的真数应大于0.强调对数函数的单调性与底数a 之间的关系.第11题 本题主要考查基本初等函数的求导公式及其导数的几何意义. (1)()e (0)e x f f x f x ''=-+1(1)(1)e (0)1ef f f ''⇒=-+(0)1f ⇒=. 在方程2(1)1()e (0)e 2x f f x f x x '=-+中,令x =0,则得(1)e f '=. 讲评时应注意强调“在某点处的切线”与“过某点处的切线”的区别. 第12题 本题主要考查三角函数及其应用.考题取自教材的例题.教学中应关注课本,以及有关重要数学模型的应用,讲评时还要强调单位书写等问题.S (t )=103sin()32t ππ+,求S (5)= -1.5即可.第13题 本题主要考查直线与圆的有关知识. 圆心C (-1,0)到直线l :y =ax +3的距离为3d =<,解得a >0或a <34-. 由P A =PB ,CA =CB ,得PC ⊥l ,于是1PC k a =-,进而可求出x 0的取值范围.第14题 考查灵活运用所学知识分析问题与解决问题的能力,考查运用基本不等式解决问题.讲评时应注意加强对学生运用整体法观察问题解决问题能力的培养.法一 2223631013x x x x m x x +-+-=+--2231613x x x x --=++--. 当且仅当223113x x x x --=--,即2x =时m 取得最小,此时点P 的坐标为(2,3). 法二 33213612x y x y m x y -+--+-=+--21612y x x y --=++--.当且仅当2112y x x y --=--时m 取得最小值.下略. 第15题 本题主要考查空间点线面的位置关系,考查逻辑推理能力以及空间想象能力.讲评时应注意强调规范化的表达.注意所用解题依据都应来自于课本的有关定义、公理、定理等.第16题 本题主要考查三角函数及解三角形的有关知识,涉及两角和与差的三角公式、正余弦定理等.讲评时,应适当渗透切化弦、化同名、边角互化、减少变量等策略,同时注意三角形内本身一些关系在解决问题时的应用,例如两边之和大于第三边,sin (A +B )=sinC ,面积公式及等积变换等.(2)法一:由πππ,,,333C A B αα==+=-设2πππ0,,333A B α<<<<知-.因2sin sin ,2sin sin a R A A b R B B ====, 故22221cos 21cos 2sin sin 22A B a b A B --+=+=+=12π2π11cos(2)cos(2)1cos22332ααα⎡⎤-++-=+⎢⎥⎣⎦.ππ2π2π,2,3333αα<<<<由-知-1cos 212α-<≤,故223342a b <+≤. 法二:由正弦定理得:2sin c R C ==.由余弦定理得:2222cos c a b ab C =+-,故2234a b ab +=+.因为0,0a b >>,所以2234a b +>.又222a b ab +≤,故2222342a b a b +++≤,得2232a b +≤.因此,223342a b <+≤.第17题 本题主要考查应用所学数学知识分析问题与解决问题的能力.试题以常见的图形为载体,再现对基本不等式、导数等的考查.讲评时,应注意强调解决应用问题的一般步骤与思维规律,教学中应帮助学生克服解决应用题时的畏惧心理,在学生独立解决应用问题的过程中不断增强他们的自信心.在使用基本不等式应注意验证取等号的条件,使用导数时应谨慎决断最值的取值情况.第18题 本题主要考查等差数列与等比数列的基础知识及基本运算,考查创新能力.两个基本数列属C 能要求,属高考必考之内容,属各级各类考试之重点.第(3)问中,若数列{a n }为等差数列,则数列{n a k }(k >0且k ≠1)为等比数列;反之若数列{a n }为等比数列,则数列{log a n a }(a >0且a ≠1)为等差数列.第(3)问中,如果将问题改为“是否存在正整数m ,p ,q (其中m <p <q ),使b m ,b p ,b q 成等比数列?若存在,求出所有满足条件的数组(m ,p ,q );若不存在,说明理由.”那么,答案仍然只有唯一组解.此时,在解题时,只须添加当m ≥2时,说明方程组无解即可,其说明思路与原题的解题思路基本相同.对于第(2)问,在得到关系式:1(1)n n n a na +-=后,亦可将其变形为11n n a n a n +=-,并进而使用累乘法(迭乘法),先行得到数列{a n }的通项公式,最后使用等差数列的定义证明其为等差数列亦可.但需要说明n ≥2.考虑到这是全市的第一次大考,又是考生进入高三一轮复习将近完成后所进行的第一次大规模的检测,因而在评分标准的制定上,始终本着让学生多得分的原则,例如本题中的第(1)问4分,不设置任何的障碍,基本让学生能得分.第19题 本题主要考查直线与椭圆的基础知识,考查计算能力与独立分析问题与解决问题的能力.讲评本题时,要注意对学生耐挫能力的培养.第(2)问,亦可设所求直线方程为y -1=k 1(x -1),与椭圆方程联立,消去一个变量或x 或y ,然后利用根与系数的关系,求出中点坐标与k 1的关系,进而求出k 1的值.第(3)问,可有一般的情形:过定椭圆内的定点作两条斜率和为定值的动弦,则两动弦的中点所在直线过定值.此结论在抛物线中也成立.另外,也可以求过两中点所在直线的斜率的最值.近几年江苏高考解析几何大题的命题趋势:多考一点“算”,少考一点“想”. 第20题 本题主要考查函数与导数的知识,考查运用所学数学知识分析问题与解决问题的能力.第(2)可另解为:命题“若212,[e,e ],x x ∃∈使()12()f x f x a '+≤成立”等价于“21[e,e ]x ∃∈,使()1max ()f x f x a '+≤”.由(1),当2[e,e ]x ∈时,max 1()4f x a '=-,于是()max 14f x a '+=.故21[e,e ]x ∃∈,使11111()ln 4x f x ax x =-≤,即21[e,e ]x ∃∈,使1111ln 4a x x -≥.所以当2[e,e ]x ∈时,()min11a -≥.记211(),[e,e ]ln 4g x x x x =-∈,则222224(ln )11()(ln )44(ln )x x g x x x x x x -+-'=+=⋅.因2[e,e ]x ∈,故224[4e,4e ],(ln )[1,4]x x ∈∈,于是2()0,[e,e ]g x x '<∀∈恒成立. 所以,11()ln 4g x x x =-在2[e,e ]上为减函数,所以,min 2221111()2ln e 4e 4e g x =-=-.所以,21124ea -≥.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南通市2013届高三第一次调研测试数学I(考试时间:120分钟满分:160分)一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应的位置上.1.已知全集U=R,集合{}10A x x=+>,则UA=ð▲.答案:(,1]-∞-.2.已知复数z=32ii-(i是虚数单位),则复数z所对应的点位于复平面的第▲象限.答案:三.3.已知正四棱锥的底面边长是6,这个正四棱锥的侧面积是▲.答案:48.4.定义在R上的函数()f x,对任意x∈R都有(2)()f x f x+=,当(2,0)x∈-时,()4xf x=,则(2013)f=▲.答案:14.5.已知命题p:“正数a的平方不等于0”,命题q:“若a不是正数,则它的平方等于0”,则p是q的▲.(从“逆命题、否命题、逆否命题、否定”中选一个填空)答案:否命题.6.已知双曲线22221yxa b-=的一个焦点与圆x2+y2-10x=0的圆心重合,,则该双曲线的标准方程为▲.答案:221yx-=.7.若S n为等差数列{a n}的前n项和,S9=-36,S13=-104,则a5与a7的等比中项为▲.答案:±8.已知实数x∈[1,9],执行如右图所示的流程图,则输出的x不小于55的概率为▲.答案:38.9.在△ABC中,若AB=1,AC||||AB AC BC+=,则||BA BCBC⋅= ▲.ABCDEF A 1B 1C 1(第15题)答案:12. 10.已知01a <<,若log (21)log (32)a a x y y x -+>-+,且x y <+λ,则λ的最大值为▲ . 答案:-2. 11.曲线2(1)1()e (0)e 2x f f x f x x '=-+在点(1,f (1))处的切线方程为 ▲ . 答案:1e 2y x =-. 12.如图,点O 为作简谐振动的物体的平衡位置,取向右方向为正方向,若振幅为3cm ,周期为3s ,且物体向右运动到距平衡位置最远处时开始计时.则该物体5s 时刻的位移为 ▲ cm . 答案:-1.5.13.已知直线y =ax +3与圆22280x y x ++-=相交于A ,B 两点,点00(,)P x y 在直线y =2x 上,且PA =PB ,则0x 的取值范围为 ▲ .答案:(1,0)(0,2)- .14.设P (x ,y )为函数21y x =-(x 图象上一动点,记353712x y x y m x y +-+-=+--,则当m 最小时,点 P 的坐标为 ▲ .答案:(2,3).二、解答题:本大题共6小题,共计90分.请把答案写在答题卡相应的位置上.解答时应写出文字说明,证明过程或演算步骤.15.(本题满分14分)如图,在正三棱柱ABC -A 1B 1C 1中,E 是侧面AA 1B 1B 对角线的交点,F 是侧面AA 1C 1C 对角线的交点,D 是棱BC 的中点.求证: (1)//EF 平面ABC ; (2)平面AEF ⊥平面A 1AD . 解:(1)连结11A B A C 和.因为E F 、分别是侧面11AA B B 和侧面11AA C C 的对角线的交点, 所以E F 、分别是11A B A C 和的中点.所以//EF BC . ……………………………………………3分 又BC ⊂平面ABC 中,EF Ø平面ABC 中,故//EF 平面ABC . …………………………………6分(第12题)OABCDEF A 1B 1C 1(第15题)(2)因为三棱柱111ABC A B C -为正三棱柱, 所以1A A ⊥平面ABC ,所以1BC A A ⊥.故由//EF BC ,得1EF A A ⊥. ………………………………………8分 又因为D 是棱BC 的中点,且ABC ∆为正三角形,所以BC AD ⊥. 故由//EF BC ,得EF AD ⊥. …………………10分 而1A A AD A = ,1,A A AD ⊂平面1A AD ,所以EF ⊥平面1A AD .…………………………………12分又EF ⊂平面AEF ,故平面AEF ⊥平面1A AD .………………14分 16.(本题满分14分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,sin sin tan A B C +=.(1)求角C 的大小;(2)若△ABC 的外接圆直径为1,求22a b +的取值范围. 解:(1)因为sin sin tan cos cos A B C A B +=+,即sin sin sin cos cos cos C A B C A B+=+,所以sin cos sin cos cos sin cos sin C A C B C A C B +=+, 即 sin cos cos sin cos sin sin cos C A C A C B C B -=-,得 sin()sin()C A B C -=-. ………………………………………………………4分 所以C A B C -=-,或()C A B C π-=--(不成立).即 2C A B =+, 得 3C π=. ………………………………7分(2)由πππ,,,333C A B αα==+=-设2πππ0,,333A B α<<<<知-.因2sin sin ,2sin sin a R A A b R B B ====, …………………………………8分 故22221cos 21cos 2sin sin A B a b A B --+=+=+=12π2π11cos(2)cos(2)1cos22332⎡⎤-++-=+⎢⎥⎣⎦ααα. …………………11分ππ2π2π,2,3333αα<<<<由-知-1cos 212α-<≤,故2233a b <+≤.………14分ABCDB 'P17.(本题满分14分)某公司为一家制冷设备厂设计生产一种长方形薄板,其周长为4米,这种薄板须沿其对角线折叠后使用.如图所示,()ABCD AB AD >为长方形薄板,沿AC 折叠后,AB '交DC 于点P .当△ADP 的面积最大时最节能,凹多边形ACB PD '的面积最大时制冷效果最好.(1)设AB =x 米,用x 表示图中DP 的长度,并写出x 的取值范围; (2)若要求最节能,应怎样设计薄板的长和宽? (3)若要求制冷效果最好,应怎样设计薄板的长和宽?解:(1)由题意,AB x =,2BC x =-.因2x x >-,故12x <<. …………2分设DP y =,则PC x y =-.因△ADP ≌△CB P ',故PA PC x y ==-.由 222PA AD DP =+,得 2221()(2)2(1)x y x y y x -=-+⇒=-,12x <<.……5分(2)记△ADP 的面积为1S ,则11(1)(2)S x x =-- ………………………………………………6分23()2x x=-+≤-当且仅当x =∈(1,2)时,S 1取得最大值.…………………………………8分2- …………………9分 (3)记△ADP 的面积为2S ,则221114(2)(1)(2)3()S x x x x =-+--=-+,12x <<.…………………………10分于是,3222142(2)02x S x x x x -+'=--==⇒11分关于x 的函数2S 在(1上递增,在上递减.所以当x 2S 取得最大值. ……………………13分2- …………………14分 18.(本题满分16分)已知数列{a n }中,a 2=1,前n 项和为S n ,且1()2n n n a a S -=. (1)求a 1;(2)证明数列{a n }为等差数列,并写出其通项公式; (3)设1lg 3n n na b +=,试问是否存在正整数p ,q (其中1<p <q ),使b 1,b p ,b q 成等比数列?若存在,求出所有满足条件的数组(p ,q );若不存在,说明理由.解:(1)令n =1,则a 1=S 1=111()2a a -=0. ………………………………3分 (2)由1()2n n n a a S -=,即2n n naS =, ① 得 11(1)2n n n a S +++=. ② ②-①,得 1(1)n n n a na +-=. ③ 于是,21(1)n n na n a ++=+.④③+④,得212n n n na na na +++=,即212n n n a a a +++=. ………………………7分 又a 1=0,a 2=1,a 2-a 1=1,所以,数列{a n }是以0为首项,1为公差的等差数列.所以,a n =n -1. ……………………………………………………9分(3)假设存在正整数数组(p ,q ),使b 1,b p ,b q 成等比数列,则lg b 1,lg b p ,lg b q 成等差数列,于是,2133pq p q=+. ……………………………………………11分 所以,213()33q p p q =-(☆). 易知(p ,q )=(2,3)为方程(☆)的一组解. …………………………13分 当p ≥3,且p ∈N *时,112(1)224333p p p p p p +++--=<0,故数列{23p p}(p ≥3)为递减数列, 于是2133p p -≤323133⨯-<0,所以此时方程(☆)无正整数解.综上,存在唯一正整数数对(p ,q )=(2,3),使b 1,b p ,b q 成等比数列. ………16分注 在得到③式后,两边相除并利用累乘法,得通项公式并由此说明其为等差数列的,亦相应评分.但在做除法过程中未对n ≥2的情形予以说明的,扣1分.19.(本题满分16分)已知左焦点为F (-1,0)的椭圆过点E (1).过点P (1,1)分别作斜率为k 1,k 2的椭圆的动弦AB ,CD ,设M ,N 分别为线段AB ,CD 的中点. (1)求椭圆的标准方程;(2)若P 为线段AB 的中点,求k 1;(3)若k 1+k 2=1,求证直线MN 恒过定点,并求出定点坐标. 解:依题设c =1,且右焦点F '(1,0).所以,2a =EF EF '+=b 2=a 2-c 2=2,故所求的椭圆的标准方程为22132y x +=. ……………………………4分(2)设A (1x ,1y ),B (2x ,2y ),则22111x y +=①,22221x y +=②.②-①,得 21212121()()()()032x x x x y y y y -+-++=.所以,k 1=212121212()423()63P P y y x x x x x y y y -+=-=-=--+. ………………………………9分 (3)依题设,k 1≠k 2.设M (M x ,M y ),直线AB 的方程为y -1=k 1(x -1),即y =k 1x +(1-k 1),亦即y =k 1x +k 2,代入椭圆方程并化简得 2221122(23)6360k x k k x k +++-=.于是,1221323M k k x k -=+,221223M k y k =+. …………………………………11分 同理,1222323N k k x k -=+,122223N k y k =+. 当k 1k 2≠0时,直线MN 的斜率k =M N M N y y x x -=-222211212146()k k k k +++=21211069k k k k --.………………13分 直线MN 的方程为2211222211121063()92323k k k k k y x k k k k ---=--++, 即 21211222221211110610632()992323k k k k k k k y x k k k k k k --=+⋅+--++,亦即 2121106293k k y x k k -=--.此时直线过定点2(0,)3-. ……………………………………………15分当k 1k 2=0时,直线MN 即为y 轴,此时亦过点2(0,)3-.综上,直线MN 恒过定点,且坐标为2(0,)3-. ……………………………16分20.(本题满分16分)已知函数()(0ln x f x ax x x=->且x ≠1).(1)若函数()f x 在(1,)+∞上为减函数,求实数a 的最小值;(2)若212,[e,e ]x x ∃∈,使f (x 1)≤2()f x a '+成立,求实数a 的取值范围.解:(1)因f (x )在(1,)+∞上为减函数,故2ln 1()0(ln )x f x a x -'=-≤在(1,)+∞上恒成立. ………………2分所以当(1,)x ∈+∞时,max ()0f x '≤. 又()22ln 111()ln ln (ln )x f x a a x x x -'=-=-+-()2111ln 24a x =--+-, 故当11ln 2x =,即2e x =时,max 1()4f x a '=-.所以10,4a -≤于是14a ≥,故a 的最小值为14. ……………………………6分(2)命题“若212,[e,e ],x x ∃∈使()12()f x f x a '≤+成立”等价于“当2[e,e ]x ∈时,有()min max ()f x f x a '≤+”. ……………………………7分 由(1),当2[e,e ]x ∈时,max 1()4f x a '=-,∴()max 14f x a '+=.问题等价于:“当2[e,e ]x ∈时,有min 1()4f x ≤”. …………………………8分01当14a ≥时,由(1),()f x 在2[e,e ]上为减函数,则min ()f x =222e 1(e )e f a =-≤,故21124ea ≥-. ………………………10分2当14a <时,由于()f x '()2111ln 24a x =--+-在2[e,e ]上为增函数, 故()f x '的值域为2[(e),(e )]f f '',即1[,]4a a --.(i )若0a -≥,即0a ≤,()0f x '≥在2[e,e ]恒成立,故()f x 在2[e,e ]上为增函数, 于是,min ()f x =1(e)e e e>4f a =-≥,不合. …………………………12分(ii )若0a -<,即104a <<,由()f x '的单调性和值域知,∃唯一20(e,e )x ∈,使0()0f x '=,且满足:当0(e,)x x ∈时,()0f x '<,()f x 为减函数;当20(,e )x x ∈时,()0f x '>,()f x 为增函数;所以,min ()f x =00001()ln 4x f x ax x =-≤,20(e,e )x ∈. 所以,2001111111ln e a ≥->->-=,与104a <<矛盾,不合. ………15分综上,得21124ea ≥-. …………………………………………………16分南通市2013届高三第一次调研测试数学附加题参考答案与评分标准21.【选做题】本题包括A ,B ,C ,D 共4小题,请从这4题中选做2小题,每小题10分,共20分.请在答题卡上准确填涂题目标记,解答时应写出文字说明、证明过程或演算步骤. B .选修4-2:矩阵与变换已知曲线2:2C y x = ,在矩阵M 1002⎡⎤=⎢⎥⎣⎦对应的变换作用下得到曲线1C ,1C 在矩阵N 0110-⎡⎤=⎢⎥⎣⎦对应的变换作用下得到曲线2C ,求曲线2C 的方程. 解:设A =NM ,则A 011002100210--⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, …………………………………3分 设()','P x y 是曲线C 上任一点,在两次变换下,在曲线2C 上的对应的点为(),P x y , 则 02'2'10''x x y y y x --⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦, 即2',',x y y x =-⎧⎨=⎩∴',1'.2x y y x =⎧⎪⎨=-⎪⎩ ……………7分 又点()','P x y 在曲线2:2C y x = 上,∴ 21()22x y -=,即218y x =.…………10分C .选修4-4:坐标系与参数方程已知极坐标系的极点在直角坐标系的原点,极轴与x 轴的正半轴重合.曲线C 的极坐标方程为2222cos 3sin 3+=ρθρθ,直线l的参数方程为,1x y t⎧=⎪⎨=+⎪⎩(t 为参数,t ∈R ).试在曲线C 上求一点M ,使它到直线l 的距离最大.解:曲线C 的普通方程是2213x y +=. ……………………………………2分直线l的普通方程是0x . ………………………………………4分 设点M的直角坐标是,sin )θθ,则点M 到直线l 的距离是d =. ………………………………7分因为)4+πθ,所以当πsin()14θ+=-,即ππ2π(42k k θ+=-∈Z ),即3π2π(4k k θ=-∈Z )时,d 取得最大值.==θθ. 综上,点M的极坐标为7π)6时,该点到直线l 的距离最大. ……………………10分注 凡给出点M的直角坐标为(,不扣分. 22.(本小题满分10分).解答时应写出文字说明、证明过程或演算步骤.如图,已知定点R (0,-3),动点P ,Q 分别在x 轴和y 轴上移动,延长PQ 至点M ,使1PQ QM = ,且0PR PM ⋅=.(1)求动点M 的轨迹C 1;(2)圆C 2: 22(1)1x y +-=,过点(0,1)的直线l 依次交C 1于A ,D 两点(从左到右),交C 2于B ,C 两点(从左到右),求证:AB CD ⋅为定值.解:(1)法一:设M (x ,y ),P (x 1,0),Q (0,y 2),则由10,2PR PM PQ QM ⋅==及R (0,-3),得11122()(3)0,1,211.22x x x y x x y y y ⎧⎪--+-=⎪⎪-=⎨⎪⎪=-⎪⎩化简,得24x y =. ……………………………………4分 所以,动点M 的轨迹C 1是顶点在原点,开口向上的抛物线. ……………………5分 法二:设M (x ,y ).由12PQ QM = ,得 (,0),(0,)23x yP Q -.所以,3(,3),(,)22x xPR PM y =-= .由0PR PM = ,得 3(,3)(,)022x x y -⋅=,即23304x y -=.化简得 24x y =. …4分所以,动点M 的轨迹C 1是顶点在原点,开口向上的抛物线. ……………………5分 (2)证明:由题意,得 AB CD AB CD ⋅=⋅,⊙C 2的圆心即为抛物线C 1的焦点F .设11(,)A x y ,22(,)D x y ,则1111AB FA FB y y =-=+-=. ……………………7分 同理 2CD y =.设直线l 的方程为 (1)x k y =-.由2(1),1,4x k y y x =-⎧⎪⎨=⎪⎩得221(1)4y k y =-,即2222(24)0k y k y k --+=.所以,121AB CD AB CD y y ⋅=⋅==. …………………………………10分 23.(本小题满分10分).解答时应写出文字说明、证明过程或演算步骤.已知数列{a n }满足:1*1122,1()n a n a a a a n -+=-=+∈N . (1)若1a =-,求数列{a n }的通项公式;(2)若3a =,试证明:对*n ∀∈N ,a n 是4的倍数. 解:(1)当1a =-时,1114,(1)1n a n a a -+=-=-+.令1n n b a =-,则115,(1)n b n b b +=-=-. 因15b =-为奇数,n b 也是奇数且只能为1-,所以,5,1,1,2,n n b n -=⎧=⎨-≥⎩即4,1,0, 2.n n a n -=⎧=⎨≥⎩………………………………3分(2)当3a =时,1114,31n a n a a -+==+. ………………………………………4分下面利用数学归纳法来证明:a n 是4的倍数. 当1n =时,1441a ==⨯,命题成立;设当*()n k k =∈N 时,命题成立,则存在t ∈N *,使得4k a t =,1414(1)1313127(41)1k a t t k a ---+∴=+=+=⋅-+27(41)14(277)m m =⋅++=+,其中,4(1)14544434(1)4(1)4(1)44C 4(1)C 4C 4t t r r t r t t t t m --------=-⋅++-⋅+-⋅ ,第11页(共11页) m ∴∈Z ,∴当1n k =+时,命题成立. ∴由数学归纳法原理知命题对*n ∀∈N 成立. ……………………………10分 .。