最小二乘法数据拟合
最小二乘法的基本原理和多项式拟合

最小二乘法的基本原理和多项式拟合GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-最小二乘法的基本原理和多项式拟合一最小二乘法的基本原理从整体上考虑近似函数同所给数据点 (i=0,1,…,m)误差(i=0,1,…,m)的大小,常用的方法有以下三种:一是误差(i=0,1,…,m)绝对值的最大值,即误差向量的∞—范数;二是误差绝对值的和,即误差向量r的1—范数;三是误差平方和的算术平方根,即误差向量r的2—范数;前两种方法简单、自然,但不便于微分运算,后一种方法相当于考虑 2—范数的平方,因此在曲线拟合中常采用误差平方和来度量误差 (i=0,1,…,m)的整体大小。
数据拟合的具体作法是:对给定数据 (i=0,1,…,m),在取定的函数类中,求,使误差(i=0,1,…,m)的平方和最小,即=从几何意义上讲,就是寻求与给定点 (i=0,1,…,m)的距离平方和为最小的曲线(图6-1)。
函数称为拟合函数或最小二乘解,求拟合函数的方法称为曲线拟合的最小二乘法。
在曲线拟合中,函数类可有不同的选取方法.6—1二多项式拟合假设给定数据点 (i=0,1,…,m),为所有次数不超过的多项式构成的函数类,现求一,使得(1)当拟合函数为多项式时,称为多项式拟合,满足式(1)的称为最小二乘拟合多项式。
特别地,当n=1时,称为线性拟合或直线拟合。
显然为的多元函数,因此上述问题即为求的极值问题。
由多元函数求极值的必要条件,得(2)即(3)(3)是关于的线性方程组,用矩阵表示为(4)式(3)或式(4)称为正规方程组或法方程组。
可以证明,方程组(4)的系数矩阵是一个对称正定矩阵,故存在唯一解。
从式(4)中解出 (k=0,1,…,n),从而可得多项式(5)可以证明,式(5)中的满足式(1),即为所求的拟合多项式。
我们把称为最小二乘拟合多项式的平方误差,记作由式(2)可得(6)多项式拟合的一般方法可归纳为以下几步:(1) 由已知数据画出函数粗略的图形——散点图,确定拟合多项式的次数n;(2) 列表计算和;(3) 写出正规方程组,求出;(4) 写出拟合多项式。
最小二乘法的数据拟合

四川理工学院《数值计算方法》课程设计题目:用最小二乘法实现数据拟合专业:数学与应用数学班级:2013级2班姓名:李宁、李鑫、骆丹、冯莉娟目录:一、摘要............................ 错误!未定义书签。
二、应用计算方法的基本原理.......... 错误!未定义书签。
1.最小二乘法线性拟合............... 错误!未定义书签。
1.1算法描述........................ 错误!未定义书签。
1.2误差估计 (3)2.最小二乘法非线性拟合 (3)三、例题的计算结果 (4)1. 最小二乘法线性拟合 (4)2.最小二乘法非线性拟合 (5)四、总结及心得体会 (7)五、参考文献........................ 错误!未定义书签。
六、附录程序 (8)一、摘要本文主要依据最小二乘法对任意一组数据进行线性拟合和非线性拟合。
因为在实际生活中,我们在工厂、车间、工作室等地方将遇见很多数据,这些数据可能有关系,及线性关系,正比关系,一些简单和复杂的关系。
但是更多的数据是杂乱无章的。
对于这些无规律的数据,我们得出对我们有利的结论。
然而分析数据有是我们这个时代发展的必不可少的研究,所以只有将数据转化成为我们需要的形式,才能进一步分析。
将数据转化为必要的形式的一种重要的方式则是最小二乘法中的数据拟合。
但是在拟合的时候,有些非线性的数据需要我们进行变量代换。
在本文中就举出了一个非线性拟合的例子,通过此例子来演示如何把非线性拟合转化为线性拟合求解。
本文中还有重要的模块是用matlab编写程序,在使用c语言调用子程序时,我们只需要建立大M文件,而我们所工作的区间就是主程序。
我们可以初步绘制出散点图,观察散点图的趋势来确定用什么拟合。
用最小二乘法拟合数据大概分为两类:线性拟合和非线性拟合。
一般先测量数据在直角坐标平面上描出散点图,看一看散点同哪类曲线图形接近,然后选用相近的线性或非线性的曲线去拟合数据,非线性的曲线再通过适当的变量替换转化为线性拟合问题,进而用matlab编写程序求出拟合函数表达式。
最小二乘法的拟合

一、最小二乘法与最小一乘法1.什么时候用最小二乘法在研究两个变量之间的关系时,可以用回归分析的方法进行分析。
当确定了描述两个变量之间的回归模型后,就可以使用最小二乘法估计模型中的参数,进而建立经验方程.例如,在现实世界中,这样的情形大量存在着:两个变量X和Y(比如身高和体重)彼此有一些依赖关系,由X 可以部分地决定Y的值,但这种关系又是不确定的.人们常常借助统计学中的回归模型来寻找两个变量之间的关系,而模型的建立当然是依据观测数据.首先通过试验或调查获得x和Y的一组对应关系(x1,Y1),(x2,Y2),…,(x n,Y n),然后回答下列5个问题:1. 这两个变量是否有关系?(画出散点图,作直观判断)2. 这些关系是否可以近似用函数模型来描述?(利用散点图、已积累的函数曲线形状的知识和试验数据,选择适当的回归模型,如一元线性模型y=b0+b1x,二次函数模型y=b0+b1x+b2x2等)3. 建立回归模型.4. 对模型中的参数进行估计,最小二乘法是这些参数的一种常用估计方法.5. 讨论模型的拟合效果.在上述第3步中,设所建立的回归模型的一般形式是,其中Y称为响应变量,x称为解释变量或协变量;是一个由参数决定的回归函数;是一个不可观测的随机误差.为了通过试验数据来估计参数的值,可以采用许多统计方法,而最小二乘法是目前最常用、最基本的.由的估计值决定的方程称为经验回归方程或经验方程.教科书中涉及的回归模型是最简单的一元线性模型Y=b0+b1x+,此时模型的拟合效果可以通过Pearson相关系数来描述。
事实上,在线性回归模型中可以证明相关指数等于相关系数的平方.2.什么是最小二乘法思想简单地说,最小二乘的思想就是要使得观测点和估计点的距离的平方和达到最小.这里的“二乘”指的是用平方来度量观测点与估计点的远近(在古汉语中“平方”称为“二乘”),“最小”指的是参数的估计值要保证各个观测点与估计点的距离的平方和达到最小.例如,对于回归模型,若,…,为收集到的观测数据,则应该用来估计,这里是的估计值。
最小二乘法excel拟合

在Excel中进行最小二乘法线性拟合的步骤如下:
1.在Excel中输入或打开要进行最小二乘法拟合的数据。
2.按住“shift”键的同时,用鼠标左键单击以选择数据。
3.单击菜单栏上的“插入”》“图表”》“散点图”图标。
4.弹出下拉列表,单击“散点图”》“仅带数据标记的散点图”图标。
5.此时,在窗口中间弹出散点图窗口。
6.鼠标左键单击其上的散点,单击鼠标右键,弹出列表式对话框,
再单击“添加趋势线(R)”。
7.弹出“设置趋势线格式”对话框。
8.勾选“设置截距(S)”、“显示公式(E)和“显示R平均值(R)”前的
方框,此时,在原散点图中增加了一条趋势线及其公式、R平均值。
以上步骤仅供参考,具体操作可能会因Excel版本的不同而略有差异。
如果需要更详细的信息,建议查看Excel的帮助文档或相关教程。
excel最小二乘拟合

excel最小二乘拟合
在Excel中进行最小二乘法拟合的步骤如下:
1. 输入或打开要进行最小二乘法拟合的数据。
2. 选择要进行拟合的数据,可以按住“Shift”键同时选择数据。
3. 单击菜单栏上的“插入”,然后选择“图表”,再选择“散点图”图标。
4. 在弹出的下拉列表中,单击“散点图”下的“仅带数据标记的散点图”图标。
5. 此时,在窗口中间会弹出散点图窗口,其中包含所选择数据的散点图。
6. 鼠标左键单击散点图上的散点,然后单击鼠标右键,在弹出列表式对话框中单击“添加趋势线(R)”。
7. 弹出“设置趋势线格式”对话框,在该对话框中勾选“设置截距(S)”、“显示公式(E)和“显示R平均值(R)”前的方框。
8. 此时,在原散点图中就会增加一条趋势线及其公式、R平均值。
以上步骤仅适用于Excel的一般情况,对于具体的数据和要求,可能需要进行一些调整。
如果需要更高级的功能或者对数据的拟合度有更高的要求,可能需要使用专门的统计软件来进行拟合。
最小二乘拟合过程

最小二乘拟合过程最小二乘拟合是一种常用的数学方法,用于找到一条曲线或者函数来拟合一组数据点。
它在各个领域中都有广泛的应用,例如经济学、统计学、工程学等。
最小二乘拟合的目标是找到一条曲线或者函数,使得该曲线与给定的数据点之间的误差平方和最小。
这里的误差是指每个数据点在y 轴方向上的偏差。
最小二乘拟合通过调整曲线或者函数的参数,使得误差平方和最小化。
最小二乘拟合的过程可以分为以下几个步骤:1. 收集数据:首先需要收集一组数据点,这些数据点是待拟合的对象。
数据点可以是实验测量得到的,也可以是已知的理论值。
2. 建立模型:在进行最小二乘拟合之前,需要选择一个合适的模型来拟合数据。
模型可以是线性的,也可以是非线性的。
线性模型的形式为y = ax + b,非线性模型的形式可以根据具体的问题来选择。
3. 计算误差:将数据点代入模型中,计算每个数据点在y轴方向上的偏差。
偏差可以用实际观测值与模型预测值之间的差值来表示。
4. 计算误差平方和:将每个数据点的偏差平方相加,得到误差平方和。
误差平方和越小,说明模型与数据点之间的拟合程度越好。
5. 最小化误差平方和:通过调整模型的参数,使得误差平方和最小化。
这可以通过最优化算法来实现,例如梯度下降法、牛顿法等。
6. 拟合曲线:在找到使得误差平方和最小的模型参数之后,可以得到一条拟合曲线。
这条曲线可以用来预测未知的数据点或者进行其他分析。
最小二乘拟合的优点在于它是一种简单而直观的方法,易于理解和实现。
它可以拟合各种类型的数据,包括线性和非线性的数据。
此外,最小二乘拟合还可以提供关于拟合曲线参数的置信区间和假设检验等统计信息。
然而,最小二乘拟合也有一些限制和注意事项。
首先,它要求数据点之间是独立同分布的,即每个数据点的误差是相互独立且服从相同分布的。
其次,最小二乘拟合对异常值比较敏感,一个异常值可能对拟合结果产生较大的影响。
此外,最小二乘拟合不能保证拟合曲线是唯一的,可能存在多个拟合曲线与数据点拟合程度相同。
精华资料最小二乘法数据拟合

最小二乘法数据拟合设给定数据),(i i f x ,),,2,1(m i =在集合},,,{Span 10n ϕϕϕ =Φ中找一个函数)()(***x a x S k nk k ϕ∑==,)(m n < (1)其误差是i i i f x S -=)(*δ,),,2,1(m i = (2)使)(*x S 满足21)(2*112])()[(min ])()[(i i mi i x S i i mi i mi if x S x f x S x -=-=∑∑∑=Φ∈==ωωδ(3)0)(≥x ω是],[b a 上给定的权函数。
上述求逼近函数)(*x S 的方法就称为曲线拟合的最小二乘法。
满足关系式(3)的函数)(*x S 称为上述最小二乘问题的最小二乘解。
并且有结论:1)对于给定的函数表),(i i f x ,),,2,1(m i =,在函数类},,,{Span 10n ϕϕϕ =Φ中存在唯一的函数)()(*0**x a x S knk kϕ∑==,使得关系式(3)成立。
2)最小二乘解的系数**1*0,,,n a a a 可以通过解法方程),(),(0ϕϕϕf aknk jk=∑=,),,2,1,0(n j = (4)作为曲线拟合的一种常用的情况,如果讨论的是代数多项式拟合,即取},,,,1{},,,{210n n x x x =ϕϕϕ那么相应的法方程(4)就是⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡∑∑∑∑∑∑∑∑∑∑∑∑++i n i i i i i i i n n i i n ii n ii n ii ii i i nii ii i f x f x f a a a x xx xxx x xωωωωωωωωωωωω102112 (5)其中,)(i i x ωω=,并且将∑=mi 1简写成“∑”。
此时,knk kxa x S ∑==**)(,称它为数据拟合多项式,上述拟合称为多项式拟合。
最小二乘法在数据拟合中的应用

最小二乘法在数据拟合中的应用最小二乘法是数学中的一种常见方法,用于在一组数据中找到最符合数据特征的函数模型。
在数据分析和拟合中,使用最小二乘法可以对实验数据进行比较准确的模型推导和预测。
最小二乘法的原理最小二乘法的核心思想是通过对目标函数中的平方误差求和,并将误差平方和最小化来确定函数参数值。
简言之,就是用一个函数去拟合一些数据点,找出最能够符合这些数据点的函数方程,从而得到预测或分析的标准。
具体而言,最小二乘法会先提供一组有n个坐标的点(x1, y1), (x2, y2), ..., (xn, yn),然后根据这些数据点来求出一个一定形式的函数y = f(x),使得y值与每个点的目标值yr之间的误差平方之和最小。
求这个函数就是求最小二乘的函数方程。
应用最小二乘法的过程用最小二乘法对数据进行拟合的步骤如下:1. 收集实验数据,并把数据图表显示出来;2. 根据数据情况选择函数模型;3. 对选择的函数模型变量进行求解;4. 通过计算每组实验数据与模型曲线之间的距离平方和,得到拟合函数的误差;5. 对误差函数求导取极小值,从而确定拟合函数的系数和截距;6. 最后将得到的拟合函数与实验数据绘制到同一张图表上,检验拟合效果。
实际应用在实际的科学研究和工程应用中,最小二乘法在数据分析和拟合中被广泛应用。
例如,最小二乘法可以用于分析物理实验数据,以推导出实验工作曲线;在经济学中,最小二乘法可以用于分析价格和销售数据之间的关系,以预测市场走势;在金融学中,最小二乘法可以应用于证券交易中,以实现资产组合优化。
最小二乘法还可以应用于数字信号处理和机器学习等领域。
例如,在数字信号处理中,最小二乘法可以用于降噪和滤波信号;在机器学习中,最小二乘法可以用于模型训练和预测。
总结从原理到实际应用,最小二乘法在科学研究和工程领域中具有广泛的应用。
这种方法可以对实验数据进行准确的模型推导和预测,帮助科学家和工程师更好地理解数据,并从中获得更多信息。
最小二乘法拟合

4.最小二乘法线性拟合我们知道,用作图法求出直线的斜率a 和截据b ,可以确定这条直线所对应的经验公式,但用作图法拟合直线时,由于作图连线有较大的随意性,尤其在测量数据比较分散时,对同一组测量数据,不同的人去处理,所得结果有差异,因此是一种粗略的数据处理方法,求出的a 和b 误差较大。
用最小二乘法拟合直线处理数据时,任何人去处理同一组数据,只要处理过程没有错误,得到的斜率a 和截据b 是唯一的。
最小二乘法就是将一组符合Y=a+bX 关系的测量数据,用计算的方法求出最佳的a 和b 。
显然,关键是如何求出最佳的a 和b 。
(1) 求回归直线设直线方程的表达式为:bx a y += (2-6-1)要根据测量数据求出最佳的a 和b 。
对满足线性关系的一组等精度测量数据(x i ,y i ),假定自变量x i 的误差可以忽略,则在同一x i 下,测量点y i 和直线上的点a+bx i 的偏差d i 如下:111bx a y d --=222bx a y d --=n n n bx a y d --=显然最好测量点都在直线上(即d 1=d 2=……=d n =0),求出的a 和b 是最理想的,但测量点不可能都在直线上,这样只有考虑d 1、d 2、……、d n 为最小,也就是考虑d 1+d 2+……+d n 为最小,但因d 1、d 2、……、d n 有正有负,加起来可能相互抵消,因此不可取;而|d 1|+|d 2|+……+ |d n |又不好解方程,因而不可行。
现在采取一种等效方法:当d 12+d 22+……+d n2对a 和b 为最小时,d 1、d 2、……、d n 也为最小。
取(d 12+d 22+……+d n 2)为最小值,求a 和b 的方法叫最小二乘法。
令 ∑==ni idD 12=2112][i i ni ni ib a y dD --==∑∑== (2-6-2)D 对a 和b 分别求一阶偏导数为:][211∑∑==---=∂∂ni i n i i x b na y a D][21211∑∑∑===---=∂∂n i i n i i n i i i x b x a y x b D再求二阶偏导数为:n a D 222=∂∂; ∑==∂∂ni i x b D 12222 显然: 0222≥=∂∂n a D ; 021222≥=∂∂∑=n i i x b D 满足最小值条件,令一阶偏导数为零:011=--∑∑==ni i ni ix b na y(2-6-3)01211=--∑∑∑===ni i ni i ni ii x b x a yx (2-6-4)引入平均值: ∑==n i i x n x 11; ∑==ni i y n y 11;∑==n i i x n x 1221; ∑==ni i i y x n xy 11则: 0=--x b a y02=--x b x a xy (2-6-5) 解得: x b y a -= (2-6-6)22xx y x xy b --=(2-6-7)将a 、b 值带入线性方程bx a y +=,即得到回归直线方程。
最小二乘估计方法

最小二乘估计方法最小二乘估计方法数学中的最小二乘估计方法广泛应用于数据分析、统计学和经济学等领域,为研究问题提供了一个可靠的数学手段。
最小二乘估计方法的基本思想是基于数据的统计分布特性,使用最小化误差平方和的方法对数据进行拟合估计。
一、基本概念最小二乘法是一种数据拟合方法,它通过拟合方程与观测值之间的残差平方和,来评估拟合程度。
在进行最小二乘法时,首先需要建立合适的函数模型,然后将实际观测值代入模型,获得拟合值。
最后,将残差平方和最小化,确定拟合值。
二、实际应用最小二乘法在实际应用中非常广泛,例如我们可以通过最小二乘法来解决以下问题:1. 数据拟合问题:通过最小化残差平方和来拟合一组数据,可以得到最优解,同时可以帮助我们探索数据之间的关系。
2. 函数拟合问题:对于一些复杂的函数,我们可以使用最小二乘法来确定其参数,从而得到最优的函数拟合。
3. 数据处理问题:在处理实际数据时,我们可以使用最小二乘法来去除数据中的误差,从而得到更准确的结果。
三、特点优势最小二乘法有着广泛的应用和优势,其中一些重要的特点包括:1. 精度高:通过最小二乘法,我们可以在一定程度上排除测量误差,从而得到更精确的估计结果。
2. 建模灵活:最小二乘法的建模过程相对较灵活,可以适应不同的数据分布和模型建立。
3. 稳定性好:对于数据分布存在小波动情况的数据,最小二乘估计方法也有较好的稳定性。
四、总结在科学研究和实际应用中,最小二乘法是一种强大的工具,可以用来拟合数据、解决函数拟合问题以及处理数据中的误差。
它具有精度高、建模灵活和稳定性好等优点,成为了数据科学领域的重要方法之一。
最小二乘法的基本原理和多项式拟合

最小二乘法的基本原理和多项式拟合1. 建立模型:首先需要确定要拟合的模型形式,可以选择线性模型或多项式模型等适应数据的形式。
多项式拟合是其中一种常见的形式。
多项式模型是一种多项式方程,表示为:y = a0 + a1x + a2x^2 + ... + anx^n,其中y是因变量,x是自变量,a0, a1, ..., an是要估计的参数。
2.确定误差:通过计算观测值与模型预测值之间的差异,来度量拟合程度。
误差可以通过残差来表示,即实际观测值与预测值之间的差异。
对于多项式拟合,可以使用观测点的纵坐标与拟合曲线的纵坐标之间的距离来描述误差。
3. 构建目标函数:通过最小化误差的平方和来确定最佳拟合曲线。
这可以通过构建一个目标函数来实现,该函数是误差平方和的函数。
目标函数是一个关于参数a0, a1, ..., an的函数,通过选择合适的参数值,可以使得目标函数达到最小值。
4.最小化目标函数:通过计算目标函数对参数的偏导数,设置偏导数为零,得到关于参数的一系列线性方程。
通过求解这个线性方程组,可以得到最佳参数的估计值。
5.进行拟合:将得到的最佳参数估计值带入模型中,得到最佳拟合曲线。
这条曲线将是观测值与预测值之间的最佳拟合线。
多项式拟合是一种常见的最小二乘法应用。
它的基本原理是通过拟合多项式函数来逼近数据点。
多项式拟合可以通过设置多项式的阶数来调整拟合的灵活性。
较低阶数的多项式可能无法很好地拟合数据,而较高阶数的多项式则可能会产生过拟合问题。
多项式拟合具体的步骤包括:1.选择多项式阶数:首先需要选择合适的多项式阶数。
低阶的多项式通常比较简单,但可能无法很好地拟合数据。
高阶的多项式可以更好地适应数据,但可能会存在过拟合问题。
选择合适的多项式阶数需要在简单性和拟合度之间进行权衡。
2. 构建多项式模型:根据选择的多项式阶数,构建多项式模型。
多项式模型是一个多项式方程,表示为:y = a0 + a1x + a2x^2 + ... + anx^n。
最小二乘法求拟合直线公式

最小二乘法求拟合直线公式
直线拟合求最佳经验公式的一种数据处理方法是最小二乘法(又称作
一元线性回归),它可克服用作图法求直线公式时图线的绘制引入的误差,结果更精确,在科学实验中得到了广泛的应用。
1.最小二乘法的理论基础:
若两物理量x、y满足线性关系,并由实验等精度地测得一组实验数据,且假定实验误差主要出现在上,设拟合直线公式为,当所测各值与拟
合直线上各估计值之间偏差的平方和最小,即时,所得拟合公式即为最佳
经验公式。
2.用最小二乘法求最佳经验公式:
设由实验数据求得最佳经验公式为y=a+bx,根据最小二乘法原理有:即:
化为:
其解为:
将得出的、代入即可得最佳经验公式。
的不确定度与很多因素有关,如实验数据的多少、实验数据之间的关
系与直线关系的符合程度(即以下介绍的相关系数)、实验数据的分散度
等等,在此不作介绍。
最小二乘法及数据拟合

实验五 最小二乘法及数据拟合建模的回归分析一、实验目的:1.掌握用最小二乘建立回归数学模型。
2.学习通过几个数据拟合的回归分析来判断曲线(直线)拟合的精度,通过回归分析来判断模型建立是否正确。
3.应用建立的模型进行预测。
二、基本原理和方法 1.建立回归数学模型在进行建模和仿真分析时,人们经常面临用已知系统实测数据应用数学模型描述对应系统,即对数据进行拟合。
拟合的目的是寻找给定的曲线(直线),它在某种准则下最佳地拟合数据。
最佳拟合要在什么准则下的最佳?以及用什么样的曲线模型去拟合。
常用的拟合方法之一是多项式的最小二乘拟合,其准则是最小误差平方和准则,所用的拟合曲线为多项式。
本实验在Matlab 平台上,以多项式最小二乘拟合为例,掌握回归模型的建立(包括参数估计和模型建立)和用模型进行预测的方法,并学习回归分析的基本方法。
2.在MATLAB 里,用于求解最小二乘多项式拟合问题的函数如下: polyfit 最小二乘多项式拟合p=polyfit(x,y,n) 对输入数据y 的n 阶最小二乘拟合多项式p(x)的系数Y=polyval(p,x) 求多项式的函数值Y )1n (p x )n (p x )2(p x )1(p Y 1n n +++++=−L以下是一个多项式拟合的例子。
已知 x=0,0.1,0.2,0.3,...,0.9,1 共11个点(自变量),实测数据y=-0.447, 1.978, 3.28, 6.16, 7.08, 7.34, 7.66, 9.56,9.48, 9.30, 11.2求:2阶的预测方程,并用8阶的预测方程与之比较。
x=linspace(0,1,11);y=[-.447 1.978 3.28 6.16 7.08 7.34 7.66 9.56 9.48 9.30 11.2]; p=polyfit(x,y,2)%求2阶的预测方程 2210x b x b b y ++= 的系数 p= b 2 b 1 b 0z=polyval(p,x); %求预测的y 值 (z 表示y )) p2=polyfit(x,y,8) %求8阶的预测方程 z1=polyval(p2,x);plot(x,y,'om',x,z,':*r'x,z1, ':+b')图中:”0” 代表散点图 “+”代表8阶预测方程“*”代表2阶预测方程图1 散点图与2阶预测方程3.回归模型的检验回归模型的检验是判断数据拟合的好坏即模型建立的正确与否,为建立模型和应用模型提供支持。
线性最小二乘法拟合

线性最小二乘法拟合
线性最小二乘法(Linear Least Squares,LLS)是一种用来对观测数据建立数学模型的最常见的统计学方法,它可以有效地从数据中恢复出一组最优参数值。
它可以用来拟合各种类型的多项式曲线,甚至可以应用到混合型曲线,并且具有良好的拟合效果。
一、线性最小二乘法的定义
线性最小二乘法是一种数学方法,记为$argmin \ \sum_{i=1}^{n} (Y_i - f(X_i))^2$,表明最小二乘法通过最小化残差(残差是指观测值与实际值的差异)的平方和,来估计参数模型的参数。
二、线性最小二乘法的原理
线性最小二乘法即最小误差平方和法,即参数估计问题关于误差平方和有最小值时参数向量,该参数向量即构成最小二乘解。
另外,在假定数据舍入误差符合高斯分布的情况下,最小二乘法可以被认为是可行统计方法的最优的一种。
三、线性最小二乘法的应用
(1)拟合函数式在数学及工程中,最小二乘法非常常见,主要用于拟合函数式,特别是二元一次函数式,如曲线或抛物线;
(2)计算未知参数线性最小二乘法可以用来解决只有已知数据,而求解未知参数的最小二乘问题,它除了可以拟合多项式表达式,还可以拟合非线性方程;
(3)建立数据模型经过数据分析处理,可以使用最小二乘法的方法建立数据模型,来求解某些复杂的问题。
四、线性最小二乘法的优缺点
(1)优点:算法简单,收敛速度快,适用于线性拟合;
(2)缺点:模型不一定适用所有数据,受输入噪声影响,不适用高次函数拟合。
线性最小二乘法是广泛用于统计学和工程领域的有效方法,它不仅可以提供良好的拟合效果,而且可以有效地恢复出参数模型的最优参数值,可以满足许多不同的场景的需求,也被广泛认可和使用。
普通最小二乘法的拟合曲线准则

普通最小二乘法的拟合曲线准则1. 什么是普通最小二乘法?普通最小二乘法(Ordinary Least Squares, OLS)是一种经典的统计学和数学工具,用于拟合数据点与数学模型的关系。
通过最小化观测数据点与拟合曲线之间的残差平方和来确定最佳拟合曲线,从而推断出数据点之间的潜在关系。
2. 拟合曲线的准则在进行数据拟合时,选择合适的拟合曲线准则对最终结果具有至关重要的影响。
常见的拟合曲线准则包括最小化残差平方和、最小化残差绝对值和最小化残差的百分比等。
其中,最小二乘法的核心就是最小化残差平方和,使得拟合曲线与观测数据点之间的误差达到最小。
3. 评估拟合曲线的深度和广度为了全面评估拟合曲线的深度和广度,我们可以从以下几个方面进行考虑:- 数据拟合的准确性:通过分析拟合曲线与实际观测数据点之间的误差大小和分布情况,可以评估拟合曲线对数据的拟合程度。
一般来说,残差应该在一定范围内呈现随机分布,同时残差的平方和应该足够小,这样才能认为拟合曲线较好地拟合了数据点。
- 拟合曲线的泛化能力:除了拟合实际观测数据点外,我们还需要考虑拟合曲线在未知数据的泛化能力。
拟合曲线是否能够很好地适应新的数据点,是否具有较好的预测能力,这些都是评价拟合曲线广度的重要指标。
- 模型的复杂度:复杂的拟合曲线可能会过度拟合观测数据点,导致在未知数据上的预测能力降低;而过于简单的拟合曲线可能无法很好地拟合实际观测数据点。
我们需要对拟合曲线的复杂度进行合理的权衡,以达到最佳的拟合效果。
4. 个人观点和理解在我看来,普通最小二乘法是一种较为可靠和普遍适用的拟合方法,其核心准则即最小化残差平方和可以帮助我们得到相对较好的拟合效果。
然而,需要注意的是,在进行数据拟合时,我们应该不断地评估拟合曲线的准确性和泛化能力,并合理地考虑拟合曲线的复杂度,以得到更加可靠和实用的结果。
通过对普通最小二乘法的拟合曲线准则进行充分的评估,我们可以更深入地理解数据拟合的原理和方法,从而在实际应用中取得更加准确和可靠的结果。
”最小二乘法”在回归中的作用是什么?

”最小二乘法”在回归中的作用是什么?最小二乘法是一种常用的统计学方法,用于建立回归模型并对数据进行拟合。
它通过最小化数据实际值与回归模型预测值之间的差异,来确定最佳的拟合函数和模型参数。
在回归分析中,最小二乘法具有重要的作用,不仅可以提供准确可靠的预测结果,还能够揭示变量之间的关系和影响程度。
最小二乘法在回归中的作用主要体现在以下几个方面:1. 拟合数据:最小二乘法通过选择最佳拟合函数,使其与实际数据之间的误差最小化。
通过对数据进行拟合,我们可以更好地理解数据集的特征和趋势,并在此基础上进行进一步的分析和预测。
最小二乘法能够提供准确的预测结果,并将其应用于实际问题中。
2. 确定模型参数:回归模型通常包含一些参数,通过最小二乘法,我们可以确定模型中这些参数的取值。
最小二乘法能够通过最小化残差平方和,找到使得预测值与实际值之间误差最小的参数组合,从而得到最佳的回归模型。
这使得我们能够更好地理解变量之间的关系,并根据具体情况对模型进行调整和优化。
3. 检验回归模型的拟合程度:最小二乘法还可以用于评估回归模型的拟合程度。
我们可以通过计算残差平方和,以及回归平方和与残差平方和之间的比值,来判断模型的拟合效果。
当残差平方和较小且回归平方和远大于残差平方和时,说明模型能够很好地拟合数据,具有较高的解释力和预测能力。
4. 探索变量关系和影响程度:基于最小二乘法建立的回归模型,可以帮助我们探索变量之间的关系和影响程度。
通过分析模型中各个系数的取值和符号,我们可以了解不同变量对目标变量的影响方向和大小。
这有助于我们理解问题背后的机制和规律,并在决策过程中作出更准确的选择。
综上所述,最小二乘法在回归中具有重要的作用。
它通过拟合数据集,确定模型参数,并评估模型的拟合程度,帮助我们理解变量之间的关系和影响程度。
最小二乘法不仅是统计学中的重要工具,也在实际问题解决中发挥着重要作用。
最小二乘法在数据拟合中的应用

最小二乘法在数据拟合中的应用最小二乘法是一种常用的数学方法,它在数据拟合中有着广泛的应用。
通过最小二乘法,可以对数据进行拟合,从而得到数据之间的关系,进而可以进行预测和分析。
本文将介绍最小二乘法在数据拟合中的应用,包括其基本原理、具体步骤和实际案例分析。
1. 基本原理最小二乘法是一种通过最小化误差的方法来拟合数据的数学技术。
它的基本原理是通过找到一条曲线或者直线,使得这条曲线或者直线与给定的数据点之间的误差平方和最小。
这里的误差是指数据点到拟合曲线或者直线的距离。
2. 具体步骤最小二乘法的具体步骤如下:(1)建立数学模型:首先要确定要拟合的数据的数学模型,可以是线性模型、多项式模型或者其他非线性模型。
(2)确定误差函数:然后要确定用来衡量拟合效果的误差函数,通常是残差平方和。
(3)最小化误差:接着要通过数学计算的方法,找到使误差函数最小化的参数,这些参数就是最佳拟合的结果。
(4)评估拟合效果:最后要对拟合结果进行评估,看拟合效果是否满足要求。
3. 实际案例分析下面通过一个实际案例来说明最小二乘法在数据拟合中的应用。
假设有一组数据点{(1, 2), (2, 3), (3, 4), (4, 5)},我们希望通过最小二乘法找到一条直线来拟合这些数据点。
首先我们建立线性模型y = ax + b,然后确定误差函数为残差平方和Σ(yi - (axi + b))^2,接着通过数学计算找到使误差函数最小化的参数a和b。
经过计算我们得到最佳拟合直线为y = 1x + 1,拟合效果如图所示。
可以看到,通过最小二乘法得到的拟合直线与原始数据点之间的误差较小,拟合效果较好。
综上所述,最小二乘法是一种在数据拟合中广泛应用的数学方法,通过最小化误差实现数据的拟合。
通过合理建模和数学计算,可以得到最佳拟合的结果,从而实现数据的预测和分析。
希望本文对读者了解最小二乘法在数据拟合中的应用有所帮助。
最小二乘法做数据拟合

最小二乘法做数据拟合最小二乘法是一种常用的数据拟合方法,通过最小化实际观测值与拟合函数之间的残差平方和,来找到最佳拟合曲线或函数。
该方法广泛应用于统计学、经济学、物理学等领域。
在数据拟合问题中,我们经常面临这样的情况:我们有一组离散的实际观测数据点,我们希望通过一个数学模型来拟合这些数据,以便更好地了解数据之间的关系。
最小二乘法的基本思想是,我们通过调整模型函数的参数,使得模型预测值与实际观测值之间的差异最小化。
具体地说,我们选择一个合适的数学模型,假设模型中有一些参数需要确定,然后找到这些参数的最佳值,使得模型的预测值与实际观测值之间的误差最小。
假设我们有m个数据点,可以表示为(x1,y1),(x2,y2),...,(xm,ym)。
我们要拟合的模型可以表示为一个函数f(x,θ),其中x是自变量,θ是待确定的参数。
我们的目标是找到这些参数的最佳值,使得模型的预测值f(xi,θ)与实际观测值yi之间的差异最小。
假设我们用平方误差来表示模型预测值和实际观测值之间的差异,即:E(θ) = (f(xi, θ) - yi)²我们目标是找到使得总的预测误差最小的参数θ。
最小二乘法的核心思想是最小化预测误差的平方和,即:min θ ∑ (f(xi, θ) - yi)²我们将这个问题转化为求解一个最优化问题,通过对目标函数E(θ)进行求导,令导数等于0,我们可以得到最佳参数θ的解。
对目标函数E(θ)求导,可以得到:∂E(θ)/∂θ = 0对于一些简单的模型,我们可以通过直接求导来解出最佳参数θ的解析解。
但对于复杂的模型,解析解往往很难求得,这时就需要通过数值优化算法来求解。
常见的数值优化算法有梯度下降法、牛顿法、拟牛顿法等。
最小二乘法的优点是简单易懂,计算方法相对直观。
它在很多领域都得到了广泛的应用,比如曲线拟合、时间序列预测、回归分析等。
然而,最小二乘法也存在一些限制。
首先,它假设误差是独立同分布的,这个假设在一些实际应用中并不成立;其次,最小二乘法对异常值比较敏感,一些极端值可能会对拟合结果产生较大的影响。
最小二乘法拟合曲线公式

最小二乘法拟合曲线公式
最小二乘法是一种常用的数学方法,可以用来拟合一条曲线,使得曲线上的点与实际观测值的误差最小化。
最小二乘法拟合曲线的公式为:
y = a + bx
其中,y 是因变量,x 是自变量,a 和 b 是拟合曲线的系数。
最小二乘法通过最小化误差平方和来确定 a 和 b 的值,即:
b = (n∑xy - ∑x∑y) / (n∑x^2 - (∑x)^2)
a = (∑y - b∑x) / n
其中,n 是数据点的个数,∑表示求和符号,x 和 y 分别表示自变量和因变量的值。
拟合曲线的误差可以通过计算残差平方和来评估,即:
SSR = ∑(y - )^2
其中,y 是实际观测值,是拟合曲线的预测值。
最小二乘法拟合曲线的优点在于可以用简单的数学公式表示,易于理解和应用。
- 1 -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最小二乘法数据拟合
设给定数据),(i i f x ,),,2,1(m i =
在集合},,,{Span 10n ϕϕϕ =Φ中找一个函数
)()(*
0**
x a x S k n
k k ϕ∑==,)(m n < (1) 其误差是
i i i f x S -=)(*δ,),,2,1(m i = (2)
使)(*
x S 满足
2
1
)(2
*1
1
2
])()[(min ])()[(i i m
i i x S i i m
i i m
i i
f x S x f x S x -=-=∑∑∑=Φ
∈==ωωδ
(3)
0)(≥x ω是],[b a 上给定的权函数。
上述求逼近函数)(*x S 的方法就称为曲线拟合的最小二
乘法。
满足关系式(3)的函数)(*
x S 称为上述最小二乘问题的最小二乘解。
并且有结论:
1)对于给定的函数表),(i i f x ,),,2,1(m i =,在函数类},,,{Span 10n ϕϕϕ =Φ中存在唯一的函数)()(*0**
x a x S k n
k k ϕ∑==
,使得关系式(3)成立。
2)最小二乘解的系数*
*1*0,,,n a a a 可以通过解法方程
),(),(0
ϕϕϕf a
k
n
k j
k
=∑=,),,2,1,0(n j = (4)
作为曲线拟合的一种常用的情况,如果讨论的是代数多项式拟合,即取
},,,,1{},,,{210n n x x x =ϕϕϕ
那么相应的法方程(4)就是
⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢
⎣⎡∑∑∑∑∑∑∑∑∑∑∑∑++i n i i i i i i i n n i i n i
i n i
i n i
i i
i i i n
i
i i
i i
f x f x f a a a x x
x x
x
x x x ωωωωωωωωωωωω
102112 (5)
其中,)(i i x ωω=,并且将
∑
=m
i 1
简写成“
∑
”。
此时,k
n
k k
x
a x S ∑==
**
)(,称它为数据拟合多项式,上述拟合称为多项式拟合。
例:已知某高度传感器测得的数据如下表:
试用最小二乘法求多项式曲线与此数据组拟合。
(一)算法:
解:取二次方多项式去拟合(当然也可以取三次、四次等,次数越高计算越复杂),
2210)(x a x a a x f y ++==
由式(5)可建立法方程组(其中取1)(=i x ω)
⎥⎥⎥
⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡∑∑∑∑∑∑∑∑∑∑∑∑============712
7
171
21071
7
1
7143271717132717
17
12
1i i i i i i i i i i i i i
i i i i i i
i i i i i
i
y x y x y a a a x x
x x x x x x
(6)
由表1的数据可以计算出
∑=71
i i x ,∑=7
1
2i i
x
,
∑=7
1
3i i
x
,
∑=7
1
4i i
x
,
∑=71
i i
y ,∑=71
i i
i y x ,∑=7
1
2i i i
y x
将表2中算得的结果代入法方程(6),可得:
⎪⎩
⎪
⎨⎧=++=++=++14762
-354100304926-10030101980-30104210210210a a a a a a a a a 解方程组可得:
⎪⎩⎪
⎨⎧-==-=88.3445472
10a a a 故所求拟合曲线为:
23864.04321.33185.1)(x x x f y -+-==
(二)用MATLAB 编程求解: 多项式函数 使用 polyfit (x,y,n ),n 为次数
拟合曲线 x=[1,2,3,4,6,7,8]; y=[2,3,6,7,5,3,2];
解:MATLAB 程序如下:
x=[1,2,3,4,6,7,8]; y=[2,3,6,7,5,3,2]; p=polyfit(x,y,2) x1=0:0.01:10; y1=polyval(p,x1); plot(x,y,'*r',x1,y1,'-b')
计算结果为: p =
-0.3864 3.4318 -1.3182。