高中数学单调性与最大(小)值教案(第一课时)新课标 人教版 必修1(A)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单调性与最大(小)值(第一课时)

教学目标:1.使学生理解增函数、减函数的概念;

2.使学生掌握判断某些函数增减性的方法;

3.培养学生利用数学概念进行判断推理的能力;

4.培养学生数形结合、辩证思维的能力;

5.养成细心观察、认真分析、严谨论证的良好思维习惯。

教学重点:函数单调性的概念

教学难点:函数单调性的判断和证明

教学方法:讲授法

教学过程:

(I)复习回顾

1.函数有哪几个要素?

2.函数的定义域怎样确定?怎样表示?

3.函数的表示方法常见的有哪几种?各有什么优点?

4.区间的表示方法.

前面我们学习了函数的概念、表示方法以及区间的概念,现在我们来研究一下函数的性质(导入课题,板书课题)。

(II)讲授新课

1.引例:观察y=x2的图象,回答下列问题(投影1)

问题1:函数y=x2的图象在y轴右侧的部分是上升的,说明什么?

⇒随着x的增加,y值在增加。

问题2:怎样用数学语言表示呢?

⇒设x1、x2∈[0,+∞],得y1=f(x1), y2=f(x2).当x1

f(x2).

(学生不一定一下子答得比较完整,教师应抓住时机予以启发)。

结论:这时,说y1= x2在[0,+∞]上是增函数。(同理分析y轴左

侧部分)由此可有:

2.定义:(投影2)

一般地,设函数f(x)的定义域为I:

如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1

如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1f(x2).那么就是f(x)在这个区间上是减函数(decreasing function)。

如果函数y=f(x)在某个区间是增函数或减函数,那么就说函说y=f(x)在这一区间具有(严格的)单调性,这一区间叫做y=f(x)的单调区间,在单调区间上增函数的图象是

上升的,减函数的图象是下降的。

注意:(1)函数的单调性也叫函数的增减性;

(2)注意区间上所取两点x1,x2的任意性;

(3)函数的单调性是对某个区间而言的,它是一个局部概念。

(III)例题分析

例1.下图是定义在闭区间[]5,5-上的函数y=f(x)的图象,根据图象说出函数的单调区间,以及在每一个区间上的单调性(课本P34例1)。

-,[)3,1上是减函数;在区间[)1,2-,[)5,3上是增函数,那么在两个区间的问题3:y=f(x)在区间[)2,5-

公共端点处,如:x=-2,x=-1,x=3处是增函数还是减函数?

分析:函数的单调性是对某个区间而言的,对于单独的一点,由于它的函数值是唯一确定的常数,因此没有增减变化,所以不存在单调性问题;另一方面,中学阶段研究的是连续函数或分段连续函数,对于闭区间的连续函数而言,只要在开区间单调,则它在闭区间也单调。因此在考虑它的单调区间时,包括不包括端点都可以(要注意端点是否在定义域范围内)。

说明:要了解函数在某一区间上是否具有单调性,从图上进行观察是一种常用而又粗略的方法。严格地说,它需要根据单调函数的定义进行证明。

例2.证明函数f(x)=3x+2在R上是增函数。

证明:设任意x1、x2∈R,且x1

则f(x1)- f(x2)=(3x1+2)-(3x2+2)=3(x1-x2).

由x1

∴f(x)=3x+2 在R上是增函数。

分析:判定函数在某个区间上的单调性的方法步骤:

a.设x1、x2∈给定区间,且x1

b.计算f(x1)- f(x2)至最简;

c.判断上述差的符号;

d.下结论。

例3.教材第34页例2。

(IV)课堂练习课本P35“探究题”和P38练习1—3

注意:通过观察图象,对函数是否具有某种性质作出一种猜想,然后通过推理的办法,证明这种猜想的正确性,是发现和解决问题的一种常用数学方法。

(V)课时小结

本节课我们学习了函数单调性的知识,同学们要切记:单调性是对某个区间而言的,同时在理解定义的基础上,要掌握证明函数单调性的方法步骤,正确进行判断和证明。

(VI)课后作业

1、书面作业:课本P45习题1.3A组题1、

2、

3、4题。

2、预习作业:

(1)预习内:容函数的最大值与最小值(P35—P38);

(2)预习提纲:

a.函数最大值与最小值的含义是什么?

b. 函数最大值与最小值和函数的单调性有何关系?

相关文档
最新文档