2019年全国各地中考数学试题分类汇编:勾股定理
2019年全国各地中考数学试题分类汇编(第二期) 专题28 解直角三角形(含解析)
解直角三角形一.选择题1. (2019•广东省广州市•3分)如图,有一斜坡AB,坡顶B离地面的高度BC为30m,斜坡的倾斜角是∠BAC,若tan∠BAC=,则此斜坡的水平距离AC为()A.75m B.50m C.30m D.12m【分析】根据题目中的条件和图形,利用锐角三角函数即可求得AC的长,本题得以解决.【解答】解:∵∠BCA=90°,tan∠BAC=,BC=30m,∴tan∠BAC=,解得,AC=75,故选:A.【点评】本题考查解直角三角形的应用﹣坡度坡角问题,解答本题的关键是明确题意,利用数形结合的思想解答.2. (2019•广西北部湾经济区•3分)小菁同学在数学实践活动课中测量路灯的高度.如图,已知她的目高AB为1.5米,她先站在A处看路灯顶端O的仰角为35°,再往前走3米站在C处,看路灯顶端O的仰角为65°,则路灯顶端O到地面的距离约为(已知sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)()A. 米B. 米C. 米D. 米【答案】C【解析】解:过点O作OE⊥AC于点F,延长BD交OE于点F,设DF=x,∵tan65°=,∴OF=xtan65°,∴BD=3+x,∵tan35°=,∴OF=(3+x)tan35°,∴2.1x=0.7(3+x),∴x=1.5,∴OF=1.5×2.1=3.15,∴OE=3.15+1.5=4.65,故选:C.过点O作OE⊥AC于点F,延长BD交OE于点F,设DF=x,根据锐角三角函数的定义表示OF的长度,然后列出方程求出x的值即可求出答案.本题考查解直角三角形,解题的关键是熟练运用锐角三角函数的定义,本题属于中等题型.二.填空题1. (2019•江苏宿迁•3分)如图,∠MAN=60°,若△ABC的顶点B在射线AM上,且AB=2,点C在射线AN上运动,当△ABC是锐角三角形时,BC的取值范围是<BC <.【分析】当点C在射线AN上运动,△ABC的形状由钝角三角形到直角三角形再到钝角三角形,画出相应的图形,根据运动三角形的变化,构造特殊情况下,即直角三角形时的BC的值.【解答】解:如图,过点B作BC1⊥AN,垂足为C1,BC2⊥AM,交AN于点C2在Rt△ABC1中,AB=2,∠A=60°∴∠ABC1=30°∴AC1=AB=1,由勾股定理得:BC1=,在Rt△ABC2中,AB=2,∠A=60°∴∠AC2B=30°∴AC2=4,由勾股定理得:BC2=2,当△ABC是锐角三角形时,点C在C1C2上移动,此时<BC<2.故答案为:<BC<2.【点评】本题考查解直角三角形,构造直角三角形,利用特殊直角三角形的边角关系或利用勾股定理求解.考察直角三角形中30°的角所对的直角边等于斜边的一半,勾股定理等知识点.2. (2 019·江苏盐城·3分)如图,在△ABC 中,BC =26+,∠C =45°,AB =2AC ,则AC 的长为________.【答案】2【解析】过A 作AD ⊥BC 于D 点,设AC =x 2,则AB =x 2,因为∠C =45°,所以AD =AC =x ,则由勾股定理得BD =x AD AB 322=-,因为AB =26+,所以AB =263+=+x x ,则x =2.则AC =2.3. (2 019·江苏盐城·3分)如图,在平面直角坐标系中,一次函数y =2x -1的图像分别交x 、y 轴于点A 、B ,将直线AB 绕点B 按顺时针方向旋转45°,交x 轴于点C ,则直线BC 的函数表达式是__________.【答案】131-=x y 【解析】因为一次函数y =2x -1的图像分别交x 、y 轴于点A 、B ,则A (21,0),B (0,-1),则AB =25. 过A 作AD ⊥BC 于点D ,因为∠ABC =45°,所以由勾股定理得AD =410,设BC =x ,则AC =OC -OA =2112--x ,根据等面积可得:AC ×OB =BC ×AD ,即2112--x =410x ,解得x =10.则AC =3,即C (3,0),所以直线BC 的函数表达式是131-=x y .4. (2019•浙江湖州•4分)有一种落地晾衣架如图1所示,其原理是通过改变两根支撑杆夹角的度数来调整晾衣杆的高度.图2是支撑杆的平面示意图,AB 和CD 分别是两根不同长度的支撑杆,夹角∠BOD =α.若AO =85cm ,BO =DO =65cm .问:当α=74°时,较长支撑杆的端点A 离地面的高度h 约为 120 cm .(参考数据:sin 37°≈0.6,cos 37°≈0.8,sin 53°≈0.8,cos 53°≈0.6.)【分析】过O 作OE ⊥BD ,过A 作AF ⊥BD ,可得OE ∥AF ,利用等腰三角形的三线合一得到OE 为角平分线,进而求出同位角的度数,在直角三角形AFB 中,利用锐角三角函数定义求出h 即可.【解答】解:过O 作OE ⊥BD ,过A 作AF ⊥BD ,可得OE ∥AF , ∵BO =DO , ∴OE 平分∠BOD ,∴∠BOE =∠BOD =×74°=37°, ∴∠F AB =∠BOE =37°,在Rt △ABF 中,AB =85+65=150cm , ∴h =AF =AB •cos ∠F AB =150×0.8=120cm , 故答案为:120【点评】此题考查了解直角三角形的应用,弄清题中的数据是解本题的关键.三.解答题1. (2019•江苏宿迁•10分)宿迁市政府为了方便市民绿色出行,推出了共享单车服务.图①是某品牌共享单车放在水平地面上的实物图,图②是其示意图,其中AB、CD都与地面l平行,车轮半径为32cm,∠BCD=64°,BC=60cm,坐垫E与点B的距离BE为15cm.(1)求坐垫E到地面的距离;(2)根据经验,当坐垫E到CD的距离调整为人体腿长的0.8时,坐骑比较舒适.小明的腿长约为80cm,现将坐垫E调整至坐骑舒适高度位置E',求EE′的长.(结果精确到0.1cm,参考数据:sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)【分析】(1)作EM⊥CD于点M,由EM=ECsin∠BCM=75sin46°可得答案;(2)作E′H⊥CD于点H,先根据E′C=求得E′C的长度,再根据EE′=CE﹣CE′可得答案【解答】解:(1)如图1,过点E作EM⊥CD于点M,由题意知∠BCM=64°、EC=BC+BE=60+15=75cm,∴EM=ECsin∠BCM=75sin64°≈67.5(cm),则单车车座E到地面的高度为67.5+32≈99.5(cm);(2)如图2所示,过点E′作E′H⊥CD于点H,由题意知E′H=80×0.8=64,则E′C==≈71,1,∴EE′=CE﹣CE′=75﹣71.1=3.9(cm).【点评】本题考查解直角三角形的应用,解题的关键是明确题意,利用锐角三角函数进行解答.2. (2019•江西•8分)图1是一台实物投影仪,图2是它的示意图,折线B-A-O表示固定支架,AO垂直水平桌面OE于点O,点B为旋转点,BC可转动,当BC绕点B顺时针旋转时,投影探头CD始终垂直于水平桌面OE,经测量:AO=6.8cm,CD=8cm,AB=30cm,BC=35cm.(结果精确到0.1)(1)如图2,∠ABC=70°,BC∥OE。
中考数学勾股定理(讲义及答案)附解析
一、选择题1.如图,在ABC ∆中,,90︒=∠=AB AC BAC ,ABC ∠的平分线BD 与边AC 相交于点D ,DE BC ⊥,垂足为E ,若CDE ∆的周长为6,则ABC ∆的面积为( ).A .36B .18C .12D .9 2.如图所示,在中,,,.分别以,,为直径作半圆(以为直径的半圆恰好经过点,则图中阴影部分的面积是( )A .4B .5C .7D .63.如图,在等腰Rt ABC △中,908C AC ∠==°,,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且保持AD CE =.连接DE 、DF 、EF .在此运动变化的过程中,下列结论:①DFE △是等腰直角三角形;②四边形CDFE 不可能为正方形;③DE 长度的最小值为4;④四边形CDFE 的面积保持不变;⑤△CDE 面积的最大值为8.其中正确的结论是( )A .①④⑤B .③④⑤C .①③④D .①②③4.如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD 、正方形EFGH 、正方形MNKT 的面积分别为S 1、S 2、S 3.若S 1+S 2+S 3=15,则S 2的值是( )A .3B .154C .5D .1525.若直角三角形的三边长分别为-a b 、a 、+a b ,且a 、b 都是正整数,则三角形其中一边的长可能为()A .22B .32C .62D .826.如图,A 、B 两点在直线l 的两侧,点A 到直线l 的距离AC=4,点B 到直线l 的距离BD=2,且CD=6,P 为直线CD 上的动点, 则PA PB -的最大值是( )A .62B .22C .210D .67.如图,在△ABC 中,∠ACB =90°,AB 的中垂线交AC 于D ,P 是BD 的中点,若BC =4,AC =8,则S △PBC 为( )A .3B .3.3C .4D .4.58.将一根 24cm 的筷子,置于底面直径为 15cm ,高 8cm 的装满水的无盖圆柱形水杯中,设筷子浸没在杯子里面的长度为 hcm ,则 h 的取值范围是( )A .h≤15cmB .h≥8cmC .8cm≤h≤17cmD .7cm≤h≤16cm9.如图,在矩形ABCD 中,AB =8,BC =4,将矩形沿AC 折叠,点B 落在点B ′处,则重叠部分△AFC 的面积为( )A .12B .10C .8D .610.有下列的判断: ①△ABC 中,如果a 2+b 2≠c 2,那么△ABC 不是直角三角形②△ABC 中,如果a 2-b 2=c 2,那么△ABC 是直角三角形③如果△ABC 是直角三角形,那么a 2+b 2=c 2以下说法正确的是( )A .①②B .②③C .①③D .②二、填空题11.如图是一个三级台阶,它的每一级的长、宽和高分别为5 dm 、3 dm 和1 dm ,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物.请你想一想,这只蚂蚁从A 点出发,沿着台阶面爬到B 点的最短路程是 dm .12.如图所示的网格是正方形网格,则ABC ACB ∠+∠=__________°(点A ,B ,C 是网格线交点).13.如图,在△ABC 中,OA =4,OB =3,C 点与A 点关于直线OB 对称,动点P 、Q 分别在线段AC 、AB 上(点P 不与点A 、C 重合),满足∠BPQ =∠BAO.当△PQB 为等腰三角形时,OP 的长度是_____.14.如图,在ABC 中,D 是BC 边中点,106AB AC ==,,4=AD ,则BC 的长是_____________.15.在ABC ∆中,90BAC ∠=︒,以BC 为斜边作等腰直角BCD ∆,连接DA ,若22AB =,42AC =,则DA 的长为______.16.如图在三角形纸片ABC 中,已知∠ABC =90º,AC =5,BC=4,过点A 作直线l 平行于BC ,折叠三角形纸片ABC ,使直角顶点B 落在直线l 上的点P 处,折痕为MN ,当点P 在直线l 上移动时,折痕的端点M 、N 也随之移动,若限定端点M 、N 分别在AB 、BC 边上(包括端点)移动,则线段AP 长度的最大值与最小值的差为________________.17.如图,30AOB ∠=︒,点,M N 分别在,OA OB 上,且6,8OM ON ==,点,P Q 分别在,OB OA 上运动,则PM PQ QN ++的最小值为______.18.如图,△ABC 中,AB=AC=13,BC=10,AD 是BAC ∠的角平分线,E 是AD 上的动点,F 是AB 边上的动点,则BE+EF 的最小值为_____.19.在ABC 中,12AB AC ==,30A ∠=︒,点E 是AB 中点,点D 在AC 上,32DE =,将ADE 沿着DE 翻折,点A 的对应点是点F ,直线EF 与AC 交于点G ,那么DGF △的面积=__________.20.如图,在等腰△ABC 中,AB =AC ,底边BC 上的高AD =6cm ,腰AC 上的高BE =4m ,则△ABC 的面积为_____cm 2.三、解答题21.在等边ABC 中,点D 是线段BC 的中点,120,EDF DE ∠=︒与线段AB 相交于点,E DF 与射线AC 相交于点F .()1如图1,若DF AC ⊥,垂足为,4,F AB =求BE 的长;()2如图2,将()1中的EDF ∠绕点D 顺时针旋转一定的角度,DF 仍与线段AC 相交于点F .求证:12BE CF AB +=.()3如图3,将()2中的EDF ∠继续绕点D 顺时针旋转一定的角度,使DF 与线段AC 的延长线交于点,F 作DN AC ⊥于点N ,若,DN FN =设,BE x CF y ==,写出y 关于x 的函数关系式.22.如图1,在△ABC 中,AB =AC ,∠BAC =90°,D 为AC 边上一动点,且不与点A 点C 重合,连接BD 并延长,在BD 延长线上取一点E ,使AE =AB ,连接CE .(1)若∠AED =20°,则∠DEC = 度;(2)若∠AED =a ,试探索∠AED 与∠AEC 有怎样的数量关系?并证明你的猜想; (3)如图2,过点A 作AF ⊥BE 于点F ,AF 的延长线与EC 的延长线交于点H ,求证:EH 2+CH 2=2AE 2.23.如图,在边长为2的等边三角形ABC 中,D 点在边BC 上运动(不与B ,C 重合),点E 在边AB 的延长线上,点F 在边AC 的延长线上,AD DE DF ==. (1)若30AED ∠=︒,则ADB =∠______.(2)求证:BED CDF △≌△.(3)试说明点D 在BC 边上从点B 至点C 的运动过程中,BED 的周长l 是否发生变化?若不变,请求出l 的值,若变,请求出l 的取值范围.24.在等腰Rt △ABC 中,AB =AC ,∠BAC =90°(1)如图1,D ,E 是等腰Rt △ABC 斜边BC 上两动点,且∠DAE =45°,将△ABE 绕点A 逆时针旋转90后,得到△AFC ,连接DF①求证:△AED ≌△AFD ;②当BE =3,CE =7时,求DE 的长;(2)如图2,点D 是等腰Rt △ABC 斜边BC 所在直线上的一动点,连接AD ,以点A 为直角顶点作等腰Rt △ADE ,当BD =3,BC =9时,求DE 的长.25.如图,△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,点D 在边AB 上,点E 在边AC 的左侧,连接AE .(1)求证:AE =BD ;(2)试探究线段AD 、BD 与CD 之间的数量关系;(3)过点C 作CF ⊥DE 交AB 于点F ,若BD :AF =1:2,CD 36,求线段AB 的长.26.如图, ABD 为边长不变的等腰直角三角形,AB AD =,90BAD ∠=︒,在 ABD外取一点 E ,以A 为直角顶点作等腰直角AEP △,其中 P 在 ABD 内部,90EAP ∠=︒,2AE AP ==,当E 、P 、D 三点共线时,7BP =.下列结论:①E 、P 、D 共线时,点B 到直线AE 的距离为5;②E 、P 、D 共线时, 13ADP ABP S S ∆∆+=+;=532ABD S ∆+③; ④作点 A 关于 BD 的对称点 C ,在 AEP 绕点 A 旋转的过程中,PC 的最小值为5+232-;⑤AEP △绕点A 旋转,当点E 落在AB 上,当点P 落在AD 上时,取BP 上一点N ,使得AN BN =,连接 ED ,则AN ED ⊥.其中正确结论的序号是___.27.如果一个三角形的两条边的和是第三边的两倍,则称这个三角形是“优三角形”,这两条边的比称为“优比”(若这两边不等,则优比为较大边与较小边的比),记为k . (1)命题:“等边三角形为优三角形,其优比为1”,是真命题还是假命题?(2)已知ABC 为优三角形,AB c =,AC b =,BC a =,①如图1,若90ACB ∠=︒,b a ≥,6b =,求a 的值.②如图2,若c b a ≥≥,求优比k 的取值范围.(3)已知ABC 是优三角形,且120ABC ∠=︒,4BC =,求ABC 的面积.28.(1)如图1,在Rt ABC ∆中,90ACB ∠=︒,60A ∠=︒,CD 平分ACB ∠.求证:CA AD BC +=.小明为解决上面的问题作了如下思考:作ADC ∆关于直线CD 的对称图形A DC '∆,∵CD 平分ACB ∠,∴A '点落在CB 上,且CA CA '=,A D AD '=.因此,要证的问题转化为只要证出A D A B ''=即可.请根据小明的思考,写出该问题完整的证明过程.(2)参照(1)中小明的思考方法,解答下列问题:如图3,在四边形ABCD 中,AC 平分BAD ∠,10BC CD ==,17AC =,9AD =,求AB 的长.29.已知ABC ∆中,90ACB ∠=︒,AC BC =,过顶点A 作射线AP .(1)当射线AP 在BAC ∠外部时,如图①,点D 在射线AP 上,连结CD 、BD ,已知21AD n =-,21AB n =+,2BD n =(1n >).①试证明ABD ∆是直角三角形;②求线段CD 的长.(用含n 的代数式表示)(2)当射线AP 在BAC ∠内部时,如图②,过点B 作BD AP ⊥于点D ,连结CD ,请写出线段AD 、BD 、CD 的数量关系,并说明理由.30.定义:在△ABC 中,若BC =a ,AC =b ,AB =c ,若a ,b ,c 满足ac +a 2=b 2,则称这个三角形为“类勾股三角形”,请根据以上定义解决下列问题:(1)命题“直角三角形都是类勾股三角形”是 命题(填“真”或“假”);(2)如图1,若等腰三角形ABC 是“类勾股三角形”,其中AB =BC ,AC >AB ,请求∠A 的度数;(3)如图2,在△ABC 中,∠B =2∠A ,且∠C >∠A .①当∠A =32°时,你能把这个三角形分成两个等腰三角形吗?若能,请在图2中画出分割线,并标注被分割后的两个等腰三角形的顶角的度数;若不能,请说明理由; ②请证明△ABC 为“类勾股三角形”.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】利用角平分定理得到DE=AD ,根据三角形内角和得到∠BDE=∠BDA ,再利用角平分线定理得到BE=AB=AC ,根据CDE ∆的周长为6求出AB=6,再根据勾股定理求出218AB =,即可求得ABC ∆的面积.【详解】∵90BAC ︒∠=,∴AB ⊥AD,∵DE BC ⊥,BD 平分ABC ∠,∴DE=AD ,∠BED=90BAC ︒∠=,∴∠BDE=∠BDA ,∴BE=AB=AC ,∵CDE ∆的周长为6,∴DE+CD+CE=AC+CE=BC=6,∵,90︒=∠=AB AC BAC∴22236AB AC BC +==,∴2236AB =, 218AB =,∴ABC ∆的面积=211922AB AC AB ⋅⋅==, 故选:D.【点睛】此题考查角平分线定理的运用,勾股定理求边长,在利用角平分线定理时必须是两个垂直一个平分同时运用,得到到角两边的距离相等的结论. 2.D解析:D【解析】【分析】先利用勾股定理计算BC 的长度,然后阴影部分的面积=以AB 为直径的半圆面积+以BC 为直径的半圆面积+-以AC 为直径的半圆面积. 【详解】解:在中 ∵,, ∴, ∴BC=3,∴阴影部分的面积=以AB 为直径的半圆面积+以BC 为直径的半圆面积+-以AC 为直径的半圆面积=6.故选D. 【点睛】本题考查扇形面积的计算和勾股定理.在本题中解题关键是用重叠法去表示阴影部分的面积. 3.A解析:A【分析】作常规辅助线连接CF ,由SAS 定理可证△CFE 和△ADF 全等,从而可证∠DFE=90°,DF=EF .所以△DEF 是等腰直角三角形;由割补法可知四边形CDFE 的面积保持不变;△DEF 是等腰直角三角形2DF ,当DF 与BC 垂直,即DF 最小时,DE 取最小值42,△CDE 最大的面积等于四边形CDEF 的面积减去△DEF 的最小面积.【详解】连接CF;∵△ABC是等腰直角三角形,∴∠FCB=∠A=45°,CF=AF=FB;∵AD=CE,∴△ADF≌△CEF;∴EF=DF,∠CFE=∠AFD;∵∠AFD+∠CFD=90°,∴∠CFE+∠CFD=∠EFD=90°,∴△EDF是等腰直角三角形.当D. E分别为AC、BC中点时,四边形CDFE是正方形.∵△ADF≌△CEF,∴S△CEF=S△ADF,∴S四边形CEFD=S△AFC.由于△DEF是等腰直角三角形,因此当DE最小时,DF也最小;即当DF⊥AC时,DE最小,此时DF=12BC=4.∴22当△CEF面积最大时,此时△DEF的面积最小.此时S△CEF=S四边形CEFD−S△DEF=S△AFC−S△DEF=16−8=8,则结论正确的是①④⑤.故选A.【点睛】本题考查全等三角形的判定与性质, 等腰直角三角形性质.要证明线段或者角相等,一般证明它们所在三角形全等,如果不存在三角形可作辅助线解决问题.4.C解析:C【解析】将四边形MTKN的面积设为x,将其余八个全等的三角形面积一个设为y,∵正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,S1+S2+S3=15,∴得出S1=8y+x,S2=4y+x,S3=x,∴S1+S2+S3=3x+12y=15,即3x+12y=15,x+4y=5,所以S2=x+4y=5,故答案为5.点睛:将四边形MTKN的面积设为x,将其余八个全等的三角形面积一个设为y,用x,y表示出S 1,S 2,S 3,再利用S 1+S 2+S 3=15求解是解决问题的关键.5.B解析:B【解析】由题可知(a-b )2+a 2=(a+b )2,解得a=4b ,所以直角三角形三边分别为3b ,4b ,5b ,当b=8时,4b=32,故选B .6.C解析:C【解析】试题解析:作点B 关于直线l 的对称点B ',连接AB '并延长,与直线l 的交点即为使得PA PB -取最大值时对应的点.P此时.PA PB PA PB AB -=-'='过点B '作B E AC '⊥于点,E 如图,四边形B DCE '为矩形,6, 2.B E CD EC B D BD ∴=====''2.AE ∴=22210.AB AE B E ''+=PA PB -的最大值为:210.故答案为:210.7.A解析:A【分析】根据线段垂直平分线的性质得到DA=DB ,根据勾股定理求出BD ,得到CD 的长,根据三角形的面积公式计算,得到答案.【详解】解:∵点D在线段AB的垂直平分线上,∴DA=DB,在Rt△BCD中,BC2+CD2=BD2,即42+(8﹣BD)2=BD2,解得,BD=5,∴CD=8﹣5=3,∴△BCD的面积=12×CD×BC=12×3×4=6,∵P是BD的中点,∴S△PBC=12S△BCD=3,故选:A.【点睛】本题考查的是线段垂直平分线的性质、直角三角形的性质、勾股定理,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.8.C解析:C【分析】筷子浸没在水中的最短距离为水杯高度,最长距离如下图,是筷子斜卧于杯中时,利用勾股定理可求得.【详解】当筷子笔直竖立在杯中时,筷子浸没水中距离最短,为杯高=8cmAD是筷子,AB长是杯子直径,BC是杯子高,当筷子如下图斜卧于杯中时,浸没在水中的距离最长由题意得:AB=15cm,BC=8cm,△ABC是直角三角形∴在Rt△ABC中,根据勾股定理,AC=17cm∴8cm≤h≤17cm故选:C【点睛】本题考查勾股定理在实际生活中的应用,解题关键是将题干中生活实例抽象成数学模型,然后再利用相关知识求解.9.B解析:B【分析】已知AD 为CF 边上的高,要求AFC △的面积,求得FC 即可,求证AFD CFB '△≌△,得B F DF '=,设DF x =,则在Rt AFD △中,根据勾股定理求x ,于是得到CF CD DF =-,即可得到答案.【详解】解:由翻折变换的性质可知,AFD CFB '△≌△,'DF B F ∴=,设DF x =,则8AF CF x ==-,在Rt AFD △中,222AF DF AD =+,即222(8)4x x -=+,解得:3x =,835CF CD FD ∴=-=-=, 1102AFC S AF BC ∴=⋅⋅=△. 故选:B .【点睛】本题考查矩形的性质、折叠的性质、勾股定理等内容,根据折叠的性质得到AFD CFB '△≌△是解题的关键.10.D解析:D【分析】欲判断三角形是否为直角三角形,这里给出三边的长,需要验证两小边的平方和等于最长边的平方即可.【详解】①c 不一定是斜边,故错误;②正确;③若△ABC 是直角三角形,c 不是斜边,则a 2+b 2≠c 2,故错误,所以正确的只有②,故选D.【点睛】本题考查了勾股定理以及勾股定理的逆定理,熟练掌握勾股定理以及勾股定理的逆定理的内容是解题的关键.二、填空题11.【解析】试题分析:将台阶展开,如图,331312,5,AC BC =⨯+⨯==222169,AB AC BC ∴=+=13,AB ∴=即蚂蚁爬行的最短线路为13.dm考点:平面展开:最短路径问题.12.45【分析】如下图,延长BA 至网络中的点D 处,连接CD. ABC ACB DAC ∠+∠=∠,只需证△ADC 是等腰直角三角形即可【详解】如下图,延长BA 至网络中的点D 处,连接CD设正方形网络每一小格的长度为1则根据网络,555BC=5,∴5其中BD 、DC 、BC 边长满足勾股定理逆定理∴∠CDA=90°∵AD=DC∴△ADC 是等腰直角三角形∴∠DAC=45°故答案为:45°【点睛】本题是在网格中考察勾股定理的逆定理,解题关键是延长BA ,构造处△ABC 的外角∠CAD13.1或78【分析】 分为三种情况:①PQ BP =,②BQ QP =,③BQ BP =,由等腰三角形的性质和勾股定理可求解.【详解】解:分为3种情况:①当PB PQ =时,4=OA ,3OB =,∴5BC AB ===, C 点与A 点关于直线OB 对称,BAO BCO ∴∠=∠,BPQ BAO ∠=∠,BPQ BCO ∴∠=∠,APB APQ BPQ BCO CBP ∠=∠+∠=∠+∠,APQ CBP ∴∠=∠,在APQ 和CBP 中,BAO BCP APQ B PQ B P C P ∠=∠⎧⎪∠=∠⎨=⎪⎩, ()APQ CBP AAS ∴△≌△,∴5AP BC ==,1OP AP OA ∴=-=;②当BQ BP =时,BPQ BQP ∠=∠,BPQ BAO ∠=∠,BAO BQP ∴∠=∠,根据三角形外角性质得:BQP BAO ∠>∠,∴这种情况不存在;③当QB QP =时,QBP BPQ BAO ∠=∠=∠,PB PA ∴=,设OP x =,则4PB PA x ==-在Rt OBP △中,222PB OP OB =+,222(4)3x x ∴-=+, 解得:78x =; ∴当PQB △为等腰三角形时,1OP =或78; 【点睛】本题考查了勾股定理,等腰三角形的性质,全等三角形的性质和判定的应用,解题的关键是熟练掌握所学的性质进行解题,注意分类讨论.14.【分析】延长AD至点E,使得DE=AD=4,结合D是中点证得△ADC≌△EDB,进而利用勾股定理逆定理可证得∠E=90°,再利用勾股定理求得BD长进而转化为BC长即可.【详解】解:如图,延长AD至点E,使得DE=AD=4,连接BE,∵D是BC边中点,∴BD=CD,又∵DE=AD,∠ADC=∠EDB,∴△ADC≌△EDB(SAS),∴BE=AC=6,又∵AB=10,∴AE2+BE2=AB2,∴∠E=90°,∴在Rt△BED中,2222=++=,BD BE DE64213∴BC=2BD=13故答案为:13【点睛】本题考查了全等三角形的判定及性质、勾股定理及其逆定理,正确作出辅助线是解决本题的关键.15.6或2.【分析】由于已知没有图形,当Rt△ABC固定后,根据“以BC为斜边作等腰直角△BCD”可知分两种情况讨论:①当D点在BC上方时,如图1,把△ABD绕点D逆时针旋转90°得到△DCE,证明A、C、E三点共线,在等腰Rt△ADE中,利用勾股定理可求AD长;②当D点在BC下方时,如图2,把△BAD绕点D顺时针旋转90°得到△CED,证明过程类似于①求解.【详解】解:分两种情况讨论:①当D点在BC上方时,如图1所示,把△ABD绕点D逆时针旋转90°,得到△DCE,则∠ABD=∠ECD,2,AD=DE,且∠ADE=90°在四边形ACDB中,∠BAC+∠BDC=90°+90°=180°,∴∠ABD+∠ACD=360°-180°=180°,∴∠ACD+∠ECD=180°,∴A、C、E三点共线.∴AE=AC+CE=42+22=62在等腰Rt△ADE中,AD2+DE2=AE2,即2AD2=(62)2,解得AD=6②当D点在BC下方时,如图2所示,把△BAD绕点D顺时针旋转90°得到△CED,则CE=AB=22,∠BAD=∠CED,AD=AE且∠ADE=90°,所以∠EAD=∠AED=45°,∴∠BAD=90°+45°=135°,即∠CED=135°,∴∠CED+∠AED=180°,即A、E、C三点共线.∴AE=AC-CE=42-22=22在等腰Rt△ADE中,2AD2=AE2=8,解得AD=2.故答案为:6或2.【点睛】本题主要考查了旋转的性质、勾股定理,解决这类等边(或共边)的两个三角形问题,一般是通过旋转的方式作辅助线,转化线段使得已知线段于一个特殊三角形中进行求解.1671【分析】分别找到两个极端,当M与A重合时,AP取最大值,当点N与C重合时,AP取最小,即可求出线段AP长度的最大值与最小值之差【详解】如图所示,当M 与A 重合时,AP 取最大值,此时标记为P 1,由折叠的性质易得四边形AP 1NB 是正方形,在Rt △ABC 中,2222AB=AC BC =54=3--,∴AP 的最大值为A P 1=AB=3如图所示,当点N 与C 重合时,AP 取最小,过C 点作CD ⊥直线l 于点D ,可得矩形ABCD ,∴CD=AB=3,AD=BC=4,由折叠的性质有PC=BC=4,在Rt △PCD 中,2222PD=PC CD =43=7--,∴AP 的最小值为AD PD=47-线段AP 长度的最大值与最小值之差为(1AP AP=347=71-- 71【点睛】本题考查勾股定理的折叠问题,可以动手实际操作进行探索.17.10【分析】首先作M 关于OB 的对称点M ′,作N 关于OA 的对称点N ′,连接M ′N ′,即为MP +PQ +QN 的最小值,易得△ONN ′为等边三角形,△OMM ′为等边三角形,∠N ′OM ′=90°,继而可以求得答案.【详解】作M 关于OB 的对称点M ′,作N 关于OA 的对称点N ′,连接M ′N ′,即为MP +PQ +QN 的最小值.根据轴对称的定义可知:∠N ′OQ =∠M ′OB =30°,∠ONN ′=60°,OM ′=OM =6,ON ′=ON =8,∴△ONN ′为等边三角形,△OMM ′为等边三角形,∴∠N ′OM ′=90°.在Rt △M ′ON ′中,M ′N 22''OM ON +. 故答案为10.【点睛】本题考查了最短路径问题,根据轴对称的定义,找到相等的线段,得到直角三角形是解题的关键.18.12013【解析】 ∵AB=AC ,AD 是角平分线,∴AD ⊥BC ,BD=CD , ∴B 点,C 点关于AD 对称,如图,过C 作CF ⊥AB 于F ,交AD 于E ,则CF=BE+FF 的最小值,根据勾股定理得,AD=12,利用等面积法得:AB ⋅CF=BC ⋅AD ,∴CF=BC AD AB ⋅=101213⨯=12013故答案为12013. 点睛:本题主要考查的是翻折的性质、垂线段最短、勾股定理的应用及三角形面积的等积法.明确当CF ⊥AB 时,CF 有最小值是解题的关键.19.39或639【分析】通过计算E 到AC 的距离即EH 的长度为3,所以根据DE 的长度有两种情况:①当点D 在H 点上方时,②当点D 在H 点下方时,两种情况都是过点E 作EH AC ⊥交AC 于点E ,过点G 作GQ AB ⊥交AB 于点Q ,利用含30°的直角三角形的性质和勾股定理求出AH,DH 的长度,进而可求AD 的长度,然后利用角度之间的关系证明AG GE =,再利用等腰三角形的性质求出GQ 的长度,最后利用2DGF AED AEG SS S =-即可求解. 【详解】①当点D 在H 点上方时,过点E 作EH AC ⊥交AC 于点E ,过点G 作GQ AB ⊥交AB 于点Q ,12AB = ,点E 是AB 中点,162AE AB ∴== . ∵EH AC ⊥,90AHE ∴∠=︒ .30,6A AE ∠=︒=,132EH AE ∴== , 22226333AH AE EH ∴=-=-=. 32DE =,2222(32)33DH DE EH ∴=-=-= ,DH EH ∴=,333AD AH DH =-=,45EDH ∴∠=︒,15AED EDH A ∴∠=∠-∠=︒ .由折叠的性质可知,15DEF AED ∠=∠=︒,230AEG AED ∴∠=∠=︒ ,AEG A ∴∠=∠,AG GE ∴= . 又GQ AE ⊥ ,132AQ AE ∴== . 30A ∠=︒ , 12GQ AG ∴=. 222GQ AQ AG += , 即2223(2)GQ GQ +=, 3GQ ∴= .2DGF AED AEG S S S =- ,112(333)36363922DGF S ∴=⨯⨯-⨯-⨯⨯=-; ②当点D 在H 点下方时,过点E 作EH AC ⊥交AC 于点E ,过点G 作GQ AB ⊥交AB 于点Q ,12AB = ,点E 是AB 中点,162AE AB ∴== . ∵EH AC ⊥,90AHE ∴∠=︒.30,6A AE ∠=︒= ,132EH AE ∴== , 22226333AH AE EH ∴=-=-=.3DE =,3DH ∴=== ,DH EH ∴=,3AD AH DH =+=,45DEH ∴∠=︒ ,90105AED A DEH ∴∠=︒-∠+∠=︒ .由折叠的性质可知,105DEF AED ∠=∠=︒,218030AEG AED ∴∠=∠-︒=︒ ,AEG A ∴∠=∠,AG GE ∴= . 又GQ AE ⊥ ,132AQ AE ∴== . 30A ∠=︒,12GQ AG ∴= . 222GQ AQ AG += , 即2223(2)GQ GQ +=,GQ ∴= .2DGF AED AEG S S S =- ,1123)36922DGF S ∴=⨯⨯⨯-⨯=,综上所述,DGF △的面积为9或9.故答案为:9或9.【点睛】本题主要考查折叠的性质,等腰三角形的判定及性质,等腰直角三角形的性质,勾股定理,含30°的直角三角形的性质,能够作出图形并分情况讨论是解题的关键.20.【分析】根据三角形等面积法求出32AC BC = ,在Rt△ACD 中根据勾股定理得出AC 2=14BC 2+36,依据这两个式子求出AC 、BC 的值.【详解】 ∵AD 是BC 边上的高,BE 是AC 边上的高, ∴12AC•BE=12BC•AD, ∵AD=6,BE =4,∴AC BC =32, ∴22AC BC =94, ∵AB=AC ,AD⊥BC,∴BD=DC =12BC , ∵AC 2﹣CD 2=AD 2,∴AC 2=14BC 2+36, ∴221364BC BC +=94, 整理得,BC 2=3648⨯, 解得:BC=∴△ABC 的面积为12×cm 2故答案为:【点睛】本题考查了三角形的等面积法以及勾股定理的应用,找出AC 与BC 的数量关系是解答此题的关键.三、解答题21.(1)BE =1;(2)见解析;(3)(2y x =【分析】(1)如图1,根据等边三角形的性质和四边形的内角和定理可得∠BED =90°,进而可得∠BDE =30°,然后根据30°角的直角三角形的性质即可求出结果;(2)过点D 作DM ⊥AB 于M ,作DN ⊥AC 于N ,如图2,根据AAS 易证△MBD ≌△NCD ,则有BM =CN ,DM =DN ,进而可根据ASA 证明△EMD ≌△FND ,可得EM =FN ,再根据线段的和差即可推出结论;(3)过点D 作DM ⊥AB 于M ,如图3,同(2)的方法和已知条件可得DM =DN =FN =EM ,然后根据线段的和差关系可得BE +CF =2DM ,BE ﹣CF =2BM ,在Rt △BMD 中,根据30°角的直角三角形的性质可得DMBM ,进而可得BE +CF(BE ﹣CF ),代入x 、y 后整理即得结果.【详解】解:(1)如图1,∵△ABC 是等边三角形,∴∠B =∠C =60°,BC =AC =AB =4.∵点D是线段BC的中点,∴BD=DC=12BC=2.∵DF⊥AC,即∠AFD=90°,∴∠AED=360°﹣60°﹣90°﹣120°=90°,∴∠BED=90°,∴∠BDE=30°,∴BE=12BD=1;(2)过点D作DM⊥AB于M,作DN⊥AC于N,如图2,则有∠AMD=∠BMD=∠AND=∠CND=90°.∵∠A=60°,∴∠MDN=360°﹣60°﹣90°﹣90°=120°.∵∠EDF=120°,∴∠MDE=∠NDF.在△MBD和△NCD中,∵∠BMD=∠CND,∠B=∠C,BD=CD,∴△MBD≌△NCD(AAS),∴BM=CN,DM=DN.在△EMD和△FND中,∵∠EMD=∠FND,DM=DN,∠MDE=∠NDF,∴△EMD≌△FND(ASA),∴EM=FN,∴BE+CF=BM+EM+CN-FN=BM+CN=2BM=BD=12BC=12AB;(3)过点D作DM⊥AB于M,如图3,同(2)的方法可得:BM=CN,DM=DN,EM=FN.∵DN =FN ,∴DM =DN =FN =EM ,∴BE +CF =BM +EM +FN -CN =NF +EM =2DM =x +y ,BE ﹣CF =BM +EM ﹣(FN -CN )=BM +NC =2BM =x -y ,在Rt △BMD 中,∵∠BDM =30°,∴BD =2BM ,∴DM =22=3BD BM BM -,∴()3x y x y +=-,整理,得()23y x =-.【点睛】本题考查了等边三角形的性质、四边形的内角和定理、全等三角形的判定与性质、30°角的直角三角形的性质以及勾股定理等知识,具有一定的综合性,正确添加辅助线、熟练掌握上述知识是解题的关键.22.(1)45度;(2)∠AEC ﹣∠AED =45°,理由见解析;(3)见解析【分析】(1)由等腰三角形的性质可求∠BAE =140°,可得∠CAE =50°,由等腰三角形的性质可得∠AEC =∠ACE =65°,即可求解;(2)由等腰三角形的性质可求∠BAE =180°﹣2α,可得∠CAE =90°﹣2α,由等腰三角形的性质可得∠AEC =∠ACE =45°+α,可得结论;(3)如图,过点C 作CG ⊥AH 于G ,由等腰直角三角形的性质可得EH 2EF ,CH =2CG ,由“AAS ”可证△AFB ≌△CGA ,可得AF =CG ,由勾股定理可得结论.【详解】解:(1)∵AB =AC ,AE =AB ,∴AB =AC =AE ,∴∠ABE =∠AEB ,∠ACE =∠AEC ,∵∠AED =20°,∴∠ABE =∠AED =20°,∴∠BAE =140°,且∠BAC =90°∴∠CAE =50°,∵∠CAE +∠ACE +∠AEC =180°,且∠ACE =∠AEC ,∴∠AEC =∠ACE =65°,∴∠DEC =∠AEC ﹣∠AED =45°,故答案为:45;(2)猜想:∠AEC ﹣∠AED =45°,理由如下:∵∠AED =∠ABE =α,∴∠BAE =180°﹣2α,∴∠CAE =∠BAE ﹣∠BAC =90°﹣2α,∵∠CAE +∠ACE +∠AEC =180°,且∠ACE =∠AEC ,∴∠AEC =45°+α,∴∠AEC ﹣∠AED =45°;(3)如图,过点C 作CG ⊥AH 于G ,∵∠AEC ﹣∠AED =45°,∴∠FEH =45°,∵AH ⊥BE ,∴∠FHE =∠FEH =45°,∴EF =FH ,且∠EFH =90°,∴EH 2EF ,∵∠FHE =45°,CG ⊥FH ,∴∠GCH =∠FHE =45°,∴GC =GH ,∴CH 2CG ,∵∠BAC =∠CGA =90°,∴∠BAF +∠CAG =90°,∠CAG +∠ACG =90°,∴∠BAF =∠ACG ,且AB =AC ,∠AFB =∠AGC ,∴△AFB ≌△CGA (AAS )∴AF =CG ,∴CH 2AF ,∵在Rt △AEF 中,AE 2=AF 2+EF 2, 2AF )2+2EF )2=2AE 2,∴EH 2+CH 2=2AE 2.【点睛】本题是综合了等腰直角三角形的性质,全等三角形的性质与判定的动点问题,三个问题由易到难,在熟练掌握各个相关知识的基础上找到问题之间的内部联系,层层推进去解答是关键.23.(1)90°;(2)证明见解析;(3)变化,234l +≤<.(1)由等边三角形的性质可得∠ABC=∠ACB=60°,由等腰三角形的性质可求DAE=∠DEA=30°,由三角形内角和定理可求解;(2)根据等腰三角形的性质,可证得∠CDF=∠DEA 和∠EDB=∠DFA ,由此可利用“ASA”证明全等;(3)根据全等三角形的性质可得l =2+AD ,根据AD 的取值范围即可得出l 的取值范围.【详解】解:(1)∵△ABC 是等边三角形,∴AB=AC=BC=2,∠ABC=∠ACB=60°,∵AD=DE∴∠DAE=∠DEA=30°,∴∠ADB=180°-∠BAD-∠ABD=90°,故答案为:90°;(2)∵AD=DE=DF ,∴∠DAE=∠DEA ,∠DAF=∠DFA ,∵∠DAE+∠DAF=∠BAC=60°,∴∠DEA+∠DFA=60°,∵∠ABC=∠DEA+∠EDB=60°,∴∠EDB=∠DFA ,∵∠ACB=∠DFA+∠CDF=60°,∴∠CDF=∠DEA ,在△BDE 和△CFD 中∵CDF DEA DE DF EDB DFA ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BDE ≌△CFD (ASA )(3)∵△BDE ≌△CFD ,∴BE=CD ,∴l =BD+BE+DE=BD+CD+AD=BC+AD=2+AD ,当D 点在C 或B 点时,AD=AC=AB=2,此时B 、D 、E 三点在同一条直线上不构成三角形,2+AD=4;当D 点在BC 的中点时,∵AB=AC ,∴BD=112BC =,AD ==此时22l AD =+=综上可知24l +≤<.本题考查全等三角形的性质和判定,勾股定理,等边三角形的性质,等腰三角形的性质,三角形内角和定理.(1)掌握等腰三角形等边对等角是解决此问的关键;(2)中注意角之间的转换;(3)中注意临界点是否可取.24.(1)①见解析;②DE =297;(2)DE 的值为 【分析】(1)①先证明∠DAE =∠DAF ,结合DA =DA ,AE =AF ,即可证明;②如图1中,设DE =x ,则CD =7﹣x .在Rt △DCF 中,由DF 2=CD 2+CF 2,CF =BE =3,可得x 2=(7﹣x )2+32,解方程即可;(2)分两种情形:①当点E 在线段BC 上时,如图2中,连接BE .由△EAD ≌△ADC ,推出∠ABE =∠C =∠ABC =45°,EB =CD =5,推出∠EBD =90°,推出DE 2=BE 2+BD 2=62+32=45,即可解决问题;②当点D 在CB 的延长线上时,如图3中,同法可得DE 2=153.【详解】(1)①如图1中,∵将△ABE 绕点A 逆时针旋转90°后,得到△AFC ,∴△BAE ≌△CAF ,∴AE =AF ,∠BAE =∠CAF ,∵∠BAC =90°,∠EAD =45°,∴∠CAD +∠BAE =∠CAD +∠CAF =45°,∴∠DAE =∠DAF ,∵DA =DA ,AE =AF ,∴△AED ≌△AFD (SAS );②如图1中,设DE =x ,则CD =7﹣x .∵AB =AC ,∠BAC =90°,∴∠B =∠ACB =45°,∵∠ABE =∠ACF =45°,∴∠DCF =90°,∵△AED ≌△AFD (SAS ),∴DE =DF =x ,∵在Rt △DCF 中, DF 2=CD 2+CF 2,CF =BE =3,∴x 2=(7﹣x )2+32,∴x =297, ∴DE =297; (2)∵BD =3,BC =9,∴分两种情况如下:①当点E 在线段BC 上时,如图2中,连接BE .∵∠BAC=∠EAD=90°,∴∠EAB=∠DAC,∵AE=AD,AB=AC,∴△EAB≌△DAC(SAS),∴∠ABE=∠C=∠ABC=45°,EB=CD=9-3=6,∴∠EBD=90°,∴DE2=BE2+BD2=62+32=45,∴DE=35;②当点D在CB的延长线上时,如图3中,连接BE.同理可证△DBE是直角三角形,EB=CD=3+9=12,DB=3,∴DE2=EB2+BD2=144+9=153,∴DE=317,综上所述,DE的值为35或317.【点睛】本题主要考查旋转变换的性质,三角形全等的判定和性质以及勾股定理,添加辅助线,构造旋转全等模型,是解题的关键.25.(1)见解析;(2)BD2+AD2=2CD2;(3)AB=2+4.【分析】(1)根据等腰直角三角形的性质证明△ACE≌△BCD即可得到结论;(2)利用全等三角形的性质及勾股定理即可证得结论;(3)连接EF,设BD=x,利用(1)、(2)求出EF=3x,再利用勾股定理求出x,即可得到答案.【详解】(1)证明:∵△ACB和△ECD都是等腰直角三角形∴AC=BC,EC=DC,∠ACB=∠ECD=90°∴∠ACB﹣∠ACD=∠ECD﹣∠ACD∴∠ACE=∠BCD,∴△ACE≌△BCD(SAS),∴AE=BD.(2)解:由(1)得△ACE ≌△BCD ,∴∠CAE =∠CBD ,又∵△ABC 是等腰直角三角形,∴∠CAB =∠CBA =∠CAE =45°,∴∠EAD =90°,在Rt △ADE 中,AE 2+AD 2=ED 2,且AE =BD ,∴BD 2+AD 2=ED 2,∵ED =2CD ,∴BD 2+AD 2=2CD 2,(3)解:连接EF ,设BD =x ,∵BD :AF =1:2AF =2x ,∵△ECD 都是等腰直角三角形,CF ⊥DE ,∴DF =EF ,由 (1)、(2)可得,在Rt △FAE 中,EF 22AF AE +22(22)x x +3x , ∵AE 2+AD 2=2CD 2,∴222(223)2(36)x x x ++=,解得x =1,∴AB =2+4.【点睛】此题考查三角形全等的判定及性质,等腰直角三角形的性质,勾股定理.26.②③⑤【分析】①先证得ABE ADP ≅,利用邻补角和等腰直角三角形的性质求得90PEB ∠=︒,利用勾股定理求出BE ,即可求得点B 到直线AE 的距离;②根据①的结论,利用APD ABP ABE APB S S S S ∆∆∆+=+AEP BEP S S ∆∆=+即可求得结论; ③在Rt AHB 中,利用勾股定理求得2AB ,再利用三角形面积公式即可求得ABD S ∆; ④当A P C 、、共线时,PC 最小,利用对称的性质,AB BC =的长,再求得AC 的长,即可求得结论;⑤先证得ABP ADE ≅,得到ABP ADE ∠=∠,根据条件得到ABP NAB ∠=∠,利用互余的关系即可证得结论.【详解】①∵ABD 与AEP 都是等腰直角三角形,∴90BAD ∠=︒,90EAP ∠=︒,AB AD =,AE AP =,45APE AEP ∠=∠=︒, ∴EAB PAD ∠=∠, ∴()ABE ADP SAS ≅,∴180********AEB APD APE ∠=∠=︒-∠=︒-︒=︒,∴1354590PEB AEB AEP ∠=∠-∠=︒-︒=︒,∴222PE BE PB +=,∵2AE AP ==,90EAP ∠=︒, ∴22PE AE ==,∴()22227BE +=, 解得:3BE =,作BH ⊥AE 交AE 的延长线于点H ,∵45AEP ∠=︒,90PEB ∠=︒, ∴180180904545HEB PEB AEP ∠=︒-∠-∠=︒-︒-︒=︒,∴26sin 453HB BE =︒==, ∴点B 到直线AE 6,故①错误; ②由①知:ABE ADP ≅,2EP =,3BE =∴APD ABP ABE APB S S S S ∆∆∆∆+=+AEP BEP S S ∆∆=+1122AE AP PE EB =⨯⨯+⨯⨯ 11222322=⨯ 13=,故②正确;③在Rt AHB 中,由①知:6EH HB ==∴622 AH AE EH=+=+,22222256623AB AH BH⎛⎫⎛⎫=+=++=+⎪ ⎪⎪ ⎪⎭⎝⎭,21153222ABDS AB AD AB∆=⋅==+,故③正确;④因为AC是定值,所以当A P C、、共线时,PC最小,如图,连接BC,∵A C、关于BD的对称,∴523AB BC==+∴225231043AC BC==+=+∴minPC AC AP=-,10432=+⑤∵ABD与AEP都是等腰直角三角形,∴90BAD∠=︒,90EAP∠=︒,AB AD=,AE AP=,在ABP和ADE中,AB ADBAP DAEAP AE=⎧⎪∠=∠⎨⎪=⎩,∴()ABP ADE SAS≅,∴ABP ADE∠=∠,∵AN BN=,∴ABP NAB∠=∠,∴EAN ADE∠=∠,∵90EAN DAN∠+∠=︒,∴90ADE DAN∠+∠=︒,∴AN DE⊥,故⑤正确;综上,②③⑤正确,故答案为:②③⑤.【点睛】本题是三角形的综合题,主要考查了等腰直角三角形的性质,全等三角形的判定和性质,勾股定理的应用,三角形的面积公式,综合性强,全等三角形的判定和性质的灵活运用是解题的关键.27.(1)该命题是真命题,理由见解析;(2)①a 的值为92;②k 的取值范围为13k ≤<;(3)ABC ∆的面积为2033或1235. 【分析】 (1)根据等边三角形的性质、优三角形和优比的定义即可判断;(2)①先利用勾股定理求出c 的值,再根据优三角形的定义列出,,a b c 的等式,然后求解即可;②类似①分三种情况分析,再根据三角形的三边关系定理得出每种情况下,,a b c 之间的关系,然后根据优比的定义求解即可;(3)如图(见解析),设BD x =,先利用直角三角形的性质、勾股定理求出AC 、AB 的长及ABC ∆面积的表达式,再类似(2),根据优三角形的定义分三种情况分别列出等式,然后解出x 的值,即可得出ABC ∆的面积.【详解】(1)该命题是真命题,理由如下:设等边三角形的三边边长为a则其中两条边的和为2a ,恰好是第三边a 的2倍,满足优三角形的定义,即等边三角形为优三角形又因该两条边相等,则这两条边的比为1,即其优比为1故该命题是真命题;(2)①90,6CB b A ∠=︒=22236c a b a ∴=++根据优三角形的定义,分以下三种情况:当2a b c +=时,26236a a +=+,整理得24360a a -+=,此方程没有实数根。
2019年全国各地中考数学试题分类汇编(第二期) 专题35 尺规作图(含解析)
尺规作图一.选择题1.(2019•贵阳•3分)如图,在△ABC中,AB=AC,以点C为圆心,CB长为半径画弧,交AB于点B和点D,再分别以点B,D为圆心,大于BD长为半径画弧,两弧相交于点M,作射线CM交AB于点E.若AE=2,BE=1,则EC的长度是()A.2 B.3 C.D.【分析】利用基本作图得到CE⊥AB,再根据等腰三角形的性质得到AC=3,然后利用勾股定理计算CE的长.【解答】解:由作法得CE⊥AB,则∠AEC=90°,AC=AB=BE+AE=2+1=3,在Rt△ACE中,CE==.故选:D.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).2. (2019•河北•3分)根据圆规作图的痕迹,可用直尺成功找到三角形外心的是()A.B.C.D.【解答】解:三角形外心为三边的垂直平分线的交点,由基本作图得到C选项作了两边的垂直平分线,从而可用直尺成功找到三角形外心.故选:C.3. (2019•河南•3分)如图,在四边形ABCD中,AD∥BC,∠D=90°,AD=4,BC=3.分别以点A,C为圆心,大于AC长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O.若点O是AC的中点,则CD的长为()A.2B.4 C.3 D.【分析】连接FC,根据基本作图,可得OE垂直平分AC,由垂直平分线的性质得出AF =FC.再根据ASA证明△FOA≌△BOC,那么AF=BC=3,等量代换得到FC=AF=3,利用线段的和差关系求出FD=AD﹣AF=1.然后在直角△FDC中利用勾股定理求出CD 的长.【解答】解:如图,连接FC,则AF=FC.∵AD∥BC,∴∠F AO=∠BCO.在△FOA与△BOC中,,∴△FOA≌△BOC(ASA),∴AF=BC=3,∴FC=AF=3,FD=AD﹣AF=4﹣3=1.在△FDC中,∵∠D=90°,∴CD2+DF2=FC2,∴CD2+12=32,∴CD=2.故选:A.【点评】本题考查了作图﹣基本作图,勾股定理,线段垂直平分线的判定与性质,全等三角形的判定与性质,难度适中.求出CF与DF是解题的关键.二.填空题1.2.3.4.三.解答题1. (2019•江苏无锡•10分)按要求作图,不要求写作法,但要保留作图痕迹.(1)如图1,A为⊙O上一点,请用直尺(不带刻度)和圆规作出⊙O的内接正方形;(2)我们知道,三角形具有性质:三边的垂直平分线相交于同一点,三条角平分线相交于一点,三条中线相交于一点,事实上,三角形还具有性质:三条高所在直线相交于一点.请运用上述性质,只用直尺(不带刻度)作图.①如图2,在▱ABCD中,E为CD的中点,作BC的中点F.②如图3,在由小正方形组成的4×3的网格中,△ABC的顶点都在小正方形的顶点上,作△ABC的高AH.【分析】(1)连结AE并延长交圆E于点C,作AC的中垂线交圆于点B,D,四边形ABCD 即为所求.(2)①连结AC,BD交于点O,连结EB交AC于点G,连结DG并延长交CB于点F,点F即为所求;②结合网格特点和三角形高的概念作图可得.【解答】解:(1)如图1,连结AO并延长交圆O于点C,作AC的中垂线交圆于点B,D,四边形ABCD即为所求.(2)①如图2,连结AC,BD交于点O,连结EB交AC于点G,连结DG并延长交CB 于点F,F即为所求②如图3所示,AH即为所求.【点评】本题主要考查作图﹣应用与设计作图,解题的关键是掌握圆的有关性质和平行四边形的性质及三角形垂心的性质.2. (2019•江苏宿迁•10分)在Rt△ABC中,∠C=90°.(1)如图①,点O在斜边AB上,以点O为圆心,OB长为半径的圆交AB于点D,交BC于点E,与边AC相切于点F.求证:∠1=∠2;(2)在图②中作⊙M,使它满足以下条件:①圆心在边AB上;②经过点B;③与边AC相切.(尺规作图,只保留作图痕迹,不要求写出作法)【分析】(1)连接OF,可证得OF∥BC,结合平行线的性质和圆的特性可求得∠1=∠OFB =∠2,可得出结论;(2)由(1)可知切点是∠ABC的角平分线和AC的交点,圆心在BF的垂直平分线上,由此即可作出⊙M.【解答】解:(1)证明:如图①,连接OF,∵AC是⊙O的切线,∴OE⊥AC,∵∠C=90°,∴OE∥BC,∴∠1=∠OFB,∵OF=OB,∴∠OFB=∠2,∴∠1=∠2.(2)如图②所示⊙M为所求.①①作∠ABC平分线交AC于F点,②作BF的垂直平分线交AB于M,以MB为半径作圆,即⊙M为所求.证明:∵M在BF的垂直平分线上,∴MF=MB,∴∠MBF=∠MFB,又∵BF平分∠ABC,∴∠MBF=∠CBF,∴∠CBF=∠MFB,∴MF∥BC,∵∠C=90°,∴FM⊥AC,∴⊙M与边AC相切.【点评】本题主要考查圆和切线的性质和基本作图的综合应用.掌握连接圆心和切点的半径与切线垂直是解题的关键,3. (2019•江西•6分)在△ABC中,AB=AC,点A在以BC为直径的半圆内.请仅用无刻度的直尺分别按下列要求画图(保留作图痕迹).(1)在图1中作弦EF,使EF//BC;(2)在图2中以BC为边作一个45°的圆周角.F(1)EF就是所求作的弦;(2)角BCQ或角CBQ就是所求作的角。
2019年全国中考数学真题分类汇编:正多边形、弧长与扇形面积(含答案)
2019年全国中考数学真题分类汇编:正多边形、弧长与扇形面积一、选择题1.(2019年山东省青岛市)如图,线段AB经过⊙O的圆心,AC,BD分别与⊙O相切于点C,D.若AC=BD=4,∠A=45°,则的长度为()A.πB.2πC.2πD.4π【考点】切线的性质、等腰直角三角形的判定和性质、弧长的计算【解答】解:连接OC、OD,∵AC,BD分别与⊙O相切于点C,D.∴OC⊥AC,OD⊥BD,∵∠A=45°,∴∠AOC=45°,∴AC=OC=4,∵AC=BD=4,OC=OD=4,∴OD=BD,∴∠BOD=45°,∴∠COD=180°﹣45°﹣45°=90°,∴的长度为:=2π,故选:B.2.(2019年山东省枣庄市)如图,在边长为4的正方形ABCD中,以点B为圆心,AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是(结果保留π)()A .8﹣πB .16﹣2πC .8﹣2πD .8﹣π【考点】正方形的性质、扇形的面积【解答】解:S 阴=S △ABD ﹣S 扇形BAE =×4×4﹣=8﹣2π, 故选:C .3. (2019年云南省)一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是( )A.48πB.45πC.36πD.32π【考点】圆锥的全面积【解答】设圆锥底面圆的半径为r ,母线长为l ,则底面圆的周长等于半圆的弧长8π,∴ ππ82=r ,∴4=r ,圆锥的全面积等于πππππ4832162=+=+=+r rl S S 底侧, 故选A4. (2019年浙江省温州市)若扇形的圆心角为90°,半径为6,则该扇形的弧长为( )A .πB .2πC .3πD .6π【考点】弧长公式计算.【解答】解:该扇形的弧长==3π. 故选:C .5. (2019年湖北省荆州市)如图,点C 为扇形OAB 的半径OB 上一点,将△OAC 沿AC 折叠,点O 恰好落在上的点D 处,且l :l =1:3(l 表示的长),若将此扇形OAB 围成一个圆锥,则圆锥的底面半径与母线长的比为( )A .1:3B .1:πC .1:4D .2:9【考点】圆锥的侧面积【解答】解:连接OD 交OC 于M .由折叠的知识可得:OM=OA,∠OMA=90°,∴∠OAM=30°,∴∠AOM=60°,∵且:=1:3,∴∠AOB=80°设圆锥的底面半径为r,母线长为l,=2πr,∴r:i=2:9.故选:D.6. (2019年西藏)如图,从一张腰长为90cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的底面半径为()A.15cm B.12cm C.10cm D.20cm【考点】圆锥的侧面积【解答】解:过O作OE⊥AB于E,∵OA=OB=90cm,∠AOB=120°,∴∠A=∠B=30°,∴OE=OA=45cm,∴弧CD的长==30π,设圆锥的底面圆的半径为r,则2πr=30π,解得r=15.故选:A.二、填空题1.(2019年重庆市)如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=60°,AB=2,分别以点A、点C为圆心,以AO的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为.(结果保留π)【考点】扇形面积公式、菱形的性质【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,∠ABO=∠ABC=30°,∠BAD=∠BCD=120°,∴AO=AB=1,由勾股定理得,OB==,∴AC=2,BD=2,∴阴影部分的面积=×2×2﹣×2=2﹣π,故答案为:2﹣π.2. (2019年山东省滨州市)若正六边形的内切圆半径为2,则其外接圆半径为.【考点】正多边形和圆、等边三角形的判定与性质、三角函数【解答】解:如图,连接OA、OB,作OG⊥AB于G;则OG=2,∵六边形ABCDEF正六边形,∴△OAB是等边三角形,∴∠OAB=60°,∴OA===,∴正六边形的内切圆半径为2,则其外接圆半径为.故答案为:.3. (2019年山东省青岛市)如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,则∠BDF的度数是°.【考点】正多边形和圆、圆周角定理【解答】解:连接AD,∵AF是⊙O的直径,∴∠ADF=90°,∵五边形ABCDE是⊙O的内接正五边形,∴∠ABC=∠C=108°,∴∠ABD=72°,∴∠F=∠ABD=72°,∴∠FAD=18°,∴∠CDF=∠DAF=18°,∴∠BDF=36°+18°=54°,故答案为:54.4. (2019年广西贵港市)如图,在扇形OAB中,半径OA与OB的夹角为120°,点A与点B的距离为2,若扇形OAB恰好是一个圆锥的侧面展开图,则该圆锥的底面半径为______.【考点】圆锥面积公式【解答】解:连接AB ,过O 作OM ⊥AB 于M ,∵∠AOB=120°,OA=OB ,∴∠BAO=30°,AM=, ∴OA=2,∵=2πr , ∴r=故答案是:5. (2019年广西贺州市)已知圆锥的底面半径是1,高是,则该圆锥的侧面展开图的圆心角是度.【考点】圆锥面积公式【解答】解:设圆锥的母线为a ,根据勾股定理得,a =4,设圆锥的侧面展开图的圆心角度数为n °,根据题意得2π•1=,解得n =90,即圆锥的侧面展开图的圆心角度数为90°.故答案为:90.6. (2019年江苏省泰州市)如图,分别以正三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若正三角形边长为6cm ,则该莱洛三角形的周长为 cm .【考点】扇形弧长公式【解答】∵l=180R n π=1806120⨯π=4π, ∴4π×3=12π. 故答案为:12π.7.(2019年江苏省无锡市)已知圆锥的母线成为5cm ,侧面积为15πcm 2,则这个圆锥的底面圆半径为 cm .【考点】圆锥侧面积【解答】圆锥底面圆的半径r=15π÷5π=3.8. (2019年江苏省扬州市)如图,AC 是⊙O 的内接正六边形的一边,点B 在弧AC 上,且BC 是⊙O 的内接正十边形的一边,若AB 是⊙O 的内接正n 边形的一边,则n=__15_。
2019年全国各地中考数学试题分类汇编第一期 专题23 直角三角形与勾股定理含解析
直角三角形与勾股定理一.选择题1. (2019?湖北十堰?3分)如图,四边形ABCD内接于⊙O,AE⊥CB交CB的延长线于点E,=,则AE=(CE)DBE若BA平分∠,AD=5,2.D.4A.3B.3 C【分析】连接AC,如图,根据圆内接四边形的性质和圆周角定理得到∠1=∠CDA,∠2=∠3,从而得到∠3=∠CDA,所以AC=AD=5,然后利用勾股定理计算AE的长.【解答】解:连接AC,如图,∵BA平分∠DBE,∴∠1=∠2,∵∠1=∠CDA,∠2=∠3,∴∠3=∠CDA,∴AC=AD=5,∵AE⊥CB,∴∠AEC=90°,2.=∴AE ==.故选:D【点评】本题考查了圆内接四边形的性质:圆内接四边形的对角互补.圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).也考查了勾股定理.2.2019??32的正六如图,取两根等宽的纸条折叠穿插,拉紧,可得边长为(分)浙江衢州)边形。
则原来的纸带宽为(D. 2C.B.A. 1C 【答案】【考点】等边三角形的性质BGAC ,【解析】解:如图,作⊥ABC2 的等边三角形,依题可得:△是边长为RtBGA 中,在△AB=2AG=1 ,,∵=BG,∴. 即原来的纸宽为C. 故答案为:BGACABC2的等边三角形,根据题意可得:作△⊥是边长为,结合题意标上字母,【分析】RtBGA. 中,根据勾股定理即可求得答案在△3..(2019?浙江绍兴?4分)如图1,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度为().D ..BC.A【分析】设DE=x,则AD=8﹣x,由长方体容器内水的体积得出方程,解方程求出DE,再由勾股定理求出CD,过点C作CF⊥BG于F,由△CDE∽△BCF的比例线段求得结果即可.【解答】解:过点C作CF⊥BG于F,如图所示:x,AD=8﹣设DE=x,则根据题意得:(8﹣x+8)×3×3=3×3×6,解得:x=4,∴DE=4,∵∠E=90°,=,由勾股定理得:CD ,90°=DCF∠=BCE∵∠.∴∠DCE=∠BCF,∵∠DEC=∠BFC=90°,∴△CDE∽△BCF,∴,,即.=∴CF故选:A.【点评】本题考查了勾股定理的应用、长方体的体积、梯形的面积的计算方法;熟练掌握勾股定理,由长方体容器内水的体积得出方程是解决问题的关键.4.(2019?浙江宁波?4分)勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出()A.直角三角形的面积B.最大正方形的面积C.较小两个正方形重叠部分的面积.最大正方形与直角三角形的面积和D222,根据正方形的面积公式、长方形的面积公式计算+【分析】根据勾股定理得到cb=a 即可.,,较短直角边为a【解答】解:设直角三角形的斜边长为c,较长直角边为b222 b=a,+由勾股定理得,c222),+b﹣c﹣ac+ab=a(阴影部分的面积=c﹣bb﹣a(c﹣)=aa a,b),宽=较小两个正方形重叠部分的长=a﹣(c﹣,﹣c)(则较小两个正方形重叠部分底面积=aa+b 知道图中阴影部分的面积,则一定能求出较小两个正方形重叠部分的面积,∴.故选:C,c,斜边长为本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b【点评】222.+b=那么ac,4)0,C(,)(﹣0A?十堰3分)如图,平面直角坐标系中,(﹣8,),B8,4湖北20195. (? DE关于BE,,连接DE.若点DBCABy反比例函数=的图象分别与线段,交于点)=(k上,则OA的对称点恰好在.A.﹣20B.﹣16C.﹣12D.﹣8【分析】根据A(﹣8,0),B(﹣8,4),C(0,4),可得矩形的长和宽,易知点D的横坐标,E的纵坐标,由反比例函数的关系式,可用含有k的代数式表示另外一个坐标,由三角形相似和对称,可用求出AF的长,然后把问题转化到三角形ADF中,由勾股定理建立方程求出k的值.【解答】解:过点E作EG⊥OA,垂足为G,设点B关于DE的对称点为F,连接DF、EF、BF,如图所示:则△BDE≌△FDE,∴BD=FD,BE=FE,∠DFE=∠DBE=90°易证△ADF∽△GFE∴,∵A(﹣8,0),B(﹣8,4),C(0,4),∴AB=OC=EG=4,OA=BC=8,=的图象上,E在反比例函数y∵D.,)(﹣8 (,4)、∴ED=﹣,=AD ,=∴OGEC8+==4+,BE∴BD∴,=,∴AF222在Rt△ADF中,由勾股定理:AD+AF=DF222 +24+=())即:(﹣12=﹣k解得:故选:C.【点评】此题综合利用轴对称的性质,相似三角形的性质,勾股定理以及反比例函数的图象和性质等知识,发现BD与BE的比是1:2是解题的关键.6 (2019?湖北孝感?3分)如图,正方形ABCD中,点E.F分别在边CD,AD上,BE与CF交于点G.若BC=4,DE=AF=1,则GF的长为().DC .A .B.【分析】证明△BCE≌△CDF(SAS),得∠CBE=∠DCF,所以∠CGE=90°,根据等角的余弦可得CG的长,可得结论.【解答】解:正方形ABCD中,∵BC=4,∴BC=CD=AD=4,∠BCE=∠CDF=90°,∵AF=DE=1,∴DF=CE=3,∴BE=CF=5,在△BCE和△CDF中,,∴△BCE≌△CDF(SAS),∴∠CBE=∠DCF,∵∠CBE+∠CEB=∠ECG+∠CEB=90°=∠CGE,,=ECG∠cos=CBE∠cos=,∴,CG﹣CG=5 ,∴GF=CF﹣=故选:A.【点评】此题主要考查了正方形的性质,全等三角形的判定和性质,勾股定理,锐角三角函数,证明△BCE≌△CDF是解本题的关键.7 (2019?湖南衡阳?3分)如图,在直角三角形ABC中,∠C=90°,AC=BC,E是AB的中点,过点E作AC和BC的垂线,垂足分别为点D和点F,四边形CDEF沿着CA方向匀速运动,点C与点A重合时停止运动,设运动时间为t,运动过程中四边形CDEF与△ABC的重叠部分面积为S.则S关于t的函数图象大致为().B .A..CD【分析】根据已知条件得到△ABC是等腰直角三角形,推出四边形EFCD是正方形,设正方形的边长为a,当移动的距离<a时,如图1S=正方形的面积﹣△EE′H的面积=22222,根at+2a2)2S2ta﹣;当移动的距离>a时,如图,S==(a﹣t=t﹣HAC′△据函数关系式即可得到结论;=ABC中,∠C90°,ACBC,=解:∵在直角三角形【解答】是等腰直角三角形,∴△ABC ,⊥∵EFBCEDAC,⊥是矩形,EFCD∴四边形.∵E是AB的中点,=BC,EF,=ACDE∴∴EF=ED,∴四边形EFCD是正方形,设正方形的边长为a,22 a的面积=﹣t;1当移动的距离<a时,S=正方形的面积﹣△EE′H如图222 a,2at+2)2a时,如图,S=S=(2a﹣t=t﹣当移动的距离>HAC′△选项,t的函数图象大致为C∴S关于故选:C.【点评】本题考查动点问题的函数图象,正方形的性质、勾股定理等知识,解题的关键是读懂题意,学会分类讨论的思想,属于中考常考题型.8. (2019?湖南邵阳?3分)如图,在Rt△ABC中,∠BAC=90°,∠B=36°,AD是斜边BC 上的中线,将△ACD沿AD对折,使点C落在点F处,线段DF与AB相交于点E,则∠BED等于()°36.D °72.C °108.B °120.A.【分析】根据三角形内角和定理求出∠C=90°﹣∠B=54°.由直角三角形斜边上的中线的性质得出AD=BD=CD,利用等腰三角形的性质求出∠BAD=∠B=36°,∠DAC=∠C=54°,利用三角形内角和定理求出∠ADC=180°﹣∠DAC﹣∠C=72°.再根据折叠的性质得出∠ADF=∠ADC=72°,然后根据三角形外角的性质得出∠BED=∠BAD+∠ADF=108°.【解答】解:∵在Rt△ABC中,∠BAC=90°,∠B=36°,∴∠C=90°﹣∠B=54°.∵AD是斜边BC上的中线,∴AD=BD=CD,∴∠BAD=∠B=36°,∠DAC=∠C=54°,∴∠ADC=180°﹣∠DAC﹣∠C=72°.∵将△ACD沿AD对折,使点C落在点F处,∴∠ADF=∠ADC=72°,∴∠BED=∠BAD+∠ADF=36°+72°=108°.故选:B.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了直角三角形斜边上的中线的性质、等腰三角形的性质、三角形内角和定理以及三角形外角的性质.9 (2019?湖南湘西州?4分)如图,在△ABC中,∠C=90°,AC=12,AB的垂直平分线=,则BC的长是(∠,若cosBDC)交EFAC于点D,连接BD2 DC..4 BA.10.82x,由AC=12=即可求x,进而求出BC;BC=5【分析】设CD=x,BD7x,则=,BDC =90°,cos∠C【解答】解:∵∠设CD=5x,BD=7x,2x,BC∴=,D于点AC交EF的垂直平分线AB∵.∴AD=BD=7x,∴AC=12x,∵AC=12,∴x=1,2;∴BC=.故选:D线段垂直平熟练掌握直角三角形函数的三角函数值,【点评】本题考查直角三角形的性质;分线的性质是解题的关键.)不是直角三角形的为(?山东省滨州市?3分)满足下列条件时,△ABC10. (20194:5 BC:AC=3:,=,BC=4AC=5B.AB.AAB:2C.∠A:∠B:∠C=﹣)=03:4:5D.|cosA|+﹣(tanB【考点】直角三角形的判定及勾股定理的逆定理【分析】依据勾股定理的逆定理,三角形内角和定理以及直角三角形的性质,即可得到结论.∵,∴△ABC是直角三角形,错误;【解答】解:A.222222B.∵(3x)+(4x)=9x+16x=25x=(5x),∴△ABC是直角三角形,错误;=,∴△CABC不:4:5,∴∠3C.∵∠A:∠B:∠C=是直角三角形,正确;2,∴∠A=∴60°,∠B=300∵D.|cosA﹣|+(tanB﹣)=,°,∴∠C=90°,∴△ABC 是直角三角形,错误;故选:C.【点评】本题考查了直角三角形的判定及勾股定理的逆定理,掌握直角三角形的判定及勾股定理的逆定理是解题的关键.11.(2019?贵州毕节?3分)如图,点E在正方形ABCD的边AB上,若EB=1,EC=2,那)的面积为(ABCD么正方形..D.5.B.3AC【分析】先根据正方形的性质得出∠B=90°,然后在Rt△BCE中,利用勾股定理得出2,即可得出正方形的面积.BC 是正方形,解:∵四边形ABCD【解答】°,=90∴∠B22222 3,=EC﹣EB=2﹣1=∴BC2∴正方形ABCD的面积=BC=3.故选:B.本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一【点评】,那定等于斜边长的平方.即如果直角三角形的两条直角边长分别是,斜边长为ca,b222 c.也考查了正方形的性质.+么ab=边上,A=50°,∠B=30AB°,点D在中,∠?(12.2019?黑龙江哈尔滨3分)在△ABC 度.的度数为60°或10ACD连接CD,若△为直角三角形,则∠BCD°,根=ACD90=【分析】当△ACD为直角三角形时,存在两种情况:∠ADC90°或∠据三角形的内角和定理可得结论.【解答】解:分两种情况:如图①1,当∠ADC°时,=90∵∠B=30°,∴∠BCD=90°﹣30°=60°;°时,90=ACD,当∠2如图②.∵∠A=50°,∠B=30°,∴∠ACB=180°﹣30°﹣50°=100°,∴∠BCD=100°﹣90°=10°,综上,则∠BCD的度数为60°或10°;故答案为:60°或10;【点评】本题考查了三角形的内角和定理和三角形外角的性质,分情况讨论是本题的关键.13.(2019?湖北黄石?3分)如图,在△ABC中,∠B=50°,CD⊥AB于点D,∠BCD和∠BDC 的角平分线相交于点E,F为边AC的中点,CD=CF,则∠ACD+∠CED=()A.125°B.145°C.175°D.190°【分析】根据直角三角形的斜边上的中线的性质,即可得到△CDF是等边三角形,进而得到∠ACD=60°,根据∠BCD和∠BDC的角平分线相交于点E,即可得出∠CED=115°,即可得到∠ACD+∠CED=60°+115°=175°.【解答】解:∵CD⊥AB,F为边AC的中点,=AC=CF,∴DF又∵CD=CF,∴CD=DF=CF,∴△CDF是等边三角形,∴∠ACD=60°,∵∠B=50°,°,130=BDC∠+BCD∴∠.∵∠BCD和∠BDC的角平分线相交于点E,∴∠DCE+∠CDE=65°,∴∠CED=115°,∴∠ACD+∠CED=60°+115°=175°,故选:C.【点评】本题主要考查了直角三角形的斜边上的中线的性质,在直角三角形中,斜边上的中线等于斜边的一半.二.填空题1. (2019?湖南邵阳?3分)公元3世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图”.如图,设勾a=6,弦c=10,则小正方形ABCD的面积是4.【分析】应用勾股定理和正方形的面积公式可求解.【解答】解:∵勾a=6,弦c=10,∴股==8,∴小正方形的边长=8﹣6=2,24 =∴小正方形的面积=24故答案是:关键是运用了数形结合的数学思想.【点评】本题运用了勾股定理和正方形的面积公式,内一△ABC,点D为cm中,∠ABCBAC=90°,AB=AC=1032.(2019,山西,分)如图,在△重合,与AC逆时针方向旋转,绕点A使AB△连接AD∠点,BAD=15°,=6cm,BD,将ABD. cm 的长为,则于点交,,连接的对应点点DEDEDEACFCF∠BAD=15°=90°由旋转可知:AD=AE,∠DAE,∠CAE=,过点【解析】A作AG⊥DE于点G CAE=60°AFD=45°;在△AEF中:∠=∠AED+∠∴∠AED AD23? =DG△ADG中:AG=在Rt2AG62?2FGGF???6,AF AFG中:在Rt△36?2AF?10CF?AC?∴10?26故答案为:3(2019,四川成都,4分)如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射????????CD,ABC,A CBAC?DAB的最小值,则△BD线的方向平移得到,分别连接为.【解析】本题考查“将军饮马”的问题BCAB lll于点,B的平行线点作过如图,CBD,以为对称轴作点的对称点连接交直线111.??BCCAC?A?AC?BC,ABC?B,C取最小,当根据平移和对称可知三点共线时11111131BB?ABAB?3AB?,又,根据勾股定理得,值,即,故答案为111°角的三角尺按如图所示的方式放置,45,山东枣庄,4分)把两个同样大小含4.(2019,且另外三个锐角顶A其中一个三角尺的锐角顶点与另一个三角尺的直角顶点重合于点=﹣,则CD.点B,C,D在同一直线上.若AB=2【分析】先利用等腰直角三角形的性质求出BC=2,BF=AF=,再利用勾股定理求出DF,即可得出结论.F,【解答】解:如图,过点A作AF⊥BC于°,△在RtABC中,∠B=45 BF=AF=AB=∴BC,=AB=2,∵两个同样大小的含45°角的三角尺,∴AD=BC=2,=,在Rt△ADF中,根据勾股定理得,DF=BC=+﹣﹣CD ﹣,∴=2BF+=DF.故答案为:﹣【点评】此题主要考查了勾股定理,等腰直角三角形的性质,正确作出辅助线是解本题的关键.5. (2019?湖北天门?3分)如图,为测量旗杆AB的高度,在教学楼一楼点C处测得旗杆顶部的仰角为60°,在四楼点D处测得旗杆顶部的仰角为30°,点C与点B在同一水平.m14.4的高度为AB,则旗杆m9.6=CD线上.已知【分析】作DE⊥AB于E,则∠AED=90°,四边形BCDE是矩形,得出BE=CD=9.6m,∠CDE=∠DEA=90°,求出∠ADC=120°,证出∠CAD=30°=∠ACD,得出AD==AD =4.8AEm,即可得出答案.=9.6m,在Rt△ADE中,由直角三角形的性质得出CD【解答】解:作DE⊥AB于E,如图所示:则∠AED=90°,四边形BCDE是矩形,∴BE=CD=9.6m,∠CDE=∠DEA=90°,∴∠ADC=90°+30°=120°,∵∠ACB=60°,∴∠ACD=30°,∴∠CAD=30°=∠ACD,∴AD=CD=9.6m,在Rt△ADE中,∠ADE=30°,=AD=4.8m,AE∴∴AB=AE+BE=4.8m+9.6m=14.4m;故答案为:14.4.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题、矩形的判定与性质、等腰三角形的判定;正确作出辅助线是解题的关键.,CD=EF=AE上两点,AC是对角线E.F中,ABCD?分)如图,在3?湖北武汉?2019(6..的大小为21°=90°,∠BCD=63°,则∠ADE∠ADFDEx,=∠ADE=,由等腰三角形的性质和直角三角形得出∠【分析】设∠ADE=xDAE,由平行四边形的性质得出2x=∠DEC=EF,得出DE=CD,证出∠DCE=AF=AE=,得出方程,解方程即可.63°﹣xBCA∠DCE=∠BCD﹣∠=,ADE=x【解答】解:设∠°,ADF=90∵AE=EF,∠,=EFDE=AF=AE∴∠DAE=∠ADE=x,,=CD∵AE=EF ,=CD∴DE ,2xDCE=∠DEC=∴∠ABCD是平行四边形,∵四边形BC,∴AD∥x,DAE=∠BCA=∴∠x,=63°﹣∴∠DCE=∠BCD﹣∠BCA ,63°﹣xx∴2=°,x=21解得:°;ADE=21即∠°.故答案为:21本题考查了平行四边形的性质、直角三角形的性质、等腰三角形的性质等知识;【点评】根据角的关系得出方程是解题的关键.,°得到△ADEA逆时针旋转60将△3分)问题背景:如图1,ABC绕点湖北武汉7 (2019?? .=PEAP,可推出结论:P+PC交于点DE与BC内MNG是△MG=75°,O=.点M6MNMNG2问题解决:如图,在△中,=,∠O一点,则点到△.MNG2三个顶点的距离和的最小值是【分析】(1)在BC上截取BG=PD,通过三角形求得证得AG=AP,得出△AGP是等边三角形,得出∠AGC=60°=∠APG,即可求得∠APE=60°,连接EC,延长BC到F,使CF=PA,连接EF,证得△ACE是等边三角形,得出AE=EC=AC,然后通过证得△APE≌△ECF(SAS),得出PE=PF,即可证得结论;(2)以MG为边作等边三角形△MGD,以OM为边作等边△OME.连接ND,可证△GMO≌△DME,可得GO=DE,则MO+NO+GO=NO+OE+DE,即当D.E.O、N四点共线时,MO+NO+GO 值最小,最小值为ND的长度,根据勾股定理先求得MF、DF,然后求ND的长度,即可求MO+NO+GO的最小值.【解答】(1)证明:如图1,在BC上截取BG=PD,在△ABG和△ADP中,∴△ABG≌△ADP(SAS),∴AG=AP,∠BAG=∠DAP,∵∠GAP=∠BAD=60°,∴△AGP是等边三角形,∴∠AGC=60°=∠APG,∴∠APE=60°,∴∠EPC=60°,连接EC,延长BC到F,使CF=PA,连接EF,∵将△ABC绕点A逆时针旋转60°得到△ADE,∴∠EAC=60°,∠EPC=60°,∵AE=AC,∴△ACE是等边三角形,∴AE=EC=AC,=APE=∠ACE°,∠180=ACB∠+ACE∠+ECF°,∠180=AEP∠+APE∠+AEP∵∠.60°,∠AED=∠ACB,∴∠PAE=∠ECF,在△APE和△ECF中∴△APE≌△ECF(SAS),∴PE=PF,∴PA+PC=PE;(2)解:如图2:以MG为边作等边三角形△MGD,以OM为边作等边△OME.连接ND,作DF⊥NM,交NM的延长线于F.∵△MGD和△OME是等边三角形∴OE=OM=ME,∠DMG=∠OME=60°,MG=MD,∴∠GMO=∠DME在△GMO和△DME中∴△GMO≌△DME(SAS),∴OG=DE∴NO+GO+MO=DE+OE+NO∴当D.E.O、M四点共线时,NO+GO+MO值最小,∵∠NMG=75°,∠GMD=60°,∴∠NMD=135°,∴∠DMF=45°,=.∵MG∴MF=DF=4,∴NF=MN+MF=6+4=10,2,==∴ND=2GO+最小值为NO ,MO∴+,2故答案为本题考查了旋转的性质,等边三角形的性质,勾股定理,最短路径问题,构造【点评】等边三角形是解答本题的关键.,、CPAPP,分別连结、BP8.(2019,四川巴中,4分)如图,等边三角形ABC内有一点=24+16.=CP10.则S+S =若AP6,BP=8,BPCABP△△【分析】将△BPC绕点B逆时针旋转60°后得△AP'B,根据旋转的性质可得∠PBP′=∠CAB =60°,BP=BP′,可得△BPP′为等边三角形,可得BP′=BP=8=PP',由勾股定理的逆定理可得,△APP′是直角三角形,由三角形的面积公式可求解.【解答】解:如图,将△BPC绕点B逆时针旋转60°后得△AP'B,连接PP′,根据旋转的性质可知,旋转角∠PBP′=∠CAB=60°,BP=BP′,∴△BPP′为等边三角形,∴BP′=BP=8=PP';,10=PC′=AP由旋转的性质可知,在△BPP′中,PP′=8,AP=6,由勾股定理的逆定理得,△APP′是直角三角形,224+16PP'×AP==S+S=SS+SBP=+×∴PABPAPBPC''APBPB'BP△△四边形△△故答案为:24+16【点评】本题考查了旋转的性质,等边三角形的性质,勾股定理,作辅助线构造出等边三角形和直角三角形是解题的关键,也是本题的难点.9. (2019?南京?2分)无盖圆柱形杯子的展开图如图所示.将一根长为20cm的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有5cm.【分析】根据题意直接利用勾股定理得出杯子内的筷子长度,进而得出答案.【解答】解:由题意可得:杯子内的筷子长度为:=15,则筷子露在杯子外面的筷子长度为:20﹣15=5(cm).故答案为:5.【点评】此题主要考查了勾股定理的应用,正确得出杯子内筷子的长是解决问题的关键.10. (2019?湖南株洲?3分)如图所示,在Rt△ABC中,∠ACB=90°,CM是斜边AB上的中线,E.F分别为MB.BC的中点,若EF=1,则AB=4.【分析】根据三角形中位线定理求出CM,根据直角三角形的性质求出AB.【解答】解:∵E.F分别为MB.BC的中点,∴CM=2EF=2,∵∠ACB=90°,CM是斜边AB上的中线,,4=CM2=AB∴.4.故答案为:掌握三角形的中位线平行于本题考查的是三角形中位线定理、直角三角形的性质,【点评】第三边,并且等于第三边的一半是解题的关键.为°,DEB=60△ABC中,∠ACB=90°,∠(11. 2019?山东省聊城市?3分)如图,在Rt=BC于点M.若,连接=BCFE并延长交AB△ABC的中位线,延长BC至F,使CF.a,则△FMB的周长为【考点】勾股定理、30°直角三角形的性质=a,在Rt△FEC中用a表示出ABC中,求出AB=2a,ACFE长,△【分析】在Rt并证明∠FEC=30°,从而EM转化到MA上,根据△FMB周长=BF+FE+EM+BM=BF+FE+AM+MB=BF+FE+AB可求周长.【解答】解:在Rt△ABC中,∠B=60°,∴∠A=30°,=aAC.AB=2a,∴是中位线,∵DE∴CE.=a在Rt△FEC中,利用勾股定理求出FE =a,∴∠FEC=30°.∴∠A=∠AEM=30°,∴EM=AM.=.AB+FE+ BFMBAMFEBFBMEMFEBFFMB△周长=+++=+++=.故答案为°直角三角形的性质、勾股定理、中位线定义,解决此题关30本题主要考查了【点评】.键是转化三角形中未知边到已知边长的线段上.三.解答题1.(2019,四川巴中,8分)如图,等腰直角三角板如图放置.直角顶点C在直线m上,分别过点A.B作AE⊥直线m于点E,BD⊥直线m于点D.①求证:EC=BD;②若设△AEC三边分别为A.B.c,利用此图证明勾股定理.【分析】①通过AAS证得△CAE≌△BCD,根据全等三角形的对应边相等证得结论;②利用等面积法证得勾股定理.【解答】①证明:∵∠ACB=90°,∴∠ACE+∠BCD=90°.∵∠ACE+∠CAE=90°,∴∠CAE=∠BCD.在△AEC与△BCD中,∴△CAE≌△BCD(AAS).∴EC=BD;②解:由①知:BD=CE=aCD=AE=b=(a+b)S(a+b)∴AEDB梯形22.b+ab+a=又∵S=S+S+S ABCAEDBAECBCD△△梯形△2 ++ab=abc2.+c=ab222 b=ab+c ∴a+ab.+222=c.整理,得a+b主要考查了同角的余角相等,全等三角形的判定和性质,勾股定理的证明,解【点评】本题的关键是判断两三角形全等.,CFFE,分别在AD,CD上,且DE=82. (2019?湖南长沙?分)如图,正方形ABCD,点.AF与BE相交于点G (1)求证:BE=AF;4的长.,求AG,DE=1(2)若AB=【分析】(1)由正方形的性质得出∠BAE=∠ADF=90°,AB=AD=CD,得出AE=DF,由SAS证明△BAE≌△ADF,即可得出结论;(2)由全等三角形的性质得出∠EBA=∠FAD,得出∠GAE+∠AEG=90°,因此∠AGE =中,由三角形面积即可得出ABE△Rt,在5=90°,由勾股定理得出BE=结果.ABCD是正方形,【解答】(1)证明:∵四边形CD,AD90BAE∴∠=∠ADF=°,AB==CF∵DE=,∴DF,AE=,ADFBAE在△和△中,,)SAS(ADF≌△BAE∴△.∴BE=AF;(2)解:由(1)得:△BAE≌△ADF,∴∠EBA=∠FAD,∴∠GAE+∠AEG=90°,∴∠AGE=90°,∵AB=4,DE=1,∴AE=3,==5,∴BE ==BE×AGAB×AE,在Rt△ABE 中,=.=∴AG【点评】本题考查了全等三角形的判定与性质、正方形的性质、勾股定理以及三角形面积公式;熟练掌握正方形的性质,证明三角形全等是解题的关键.ABC都在格点上,按要求画图:的方格纸中,点,,浙江嘉兴?8分)在6×6?3.(2019DABCD为顶点的四边形是平行四边形.,)在图1中找一个格点,,使以点,(1AB三等分(保留画图痕迹,不写画法).2中仅用无刻度的直尺,把线段(2)在图ADBCBDABCDADBDACCD'',,='====''【分析】(1)由勾股定理得:==='=;画出图形即可;)根据平行线分线段成比例定理画出图形即可.(2 【解答】解:(1)由勾股定理得:BDCDCDABBDAC,'''=,=====ADBCAD=;='='' 1画出图形如图所示;2)如图2(所示.【点评】本题考查了平行四边形的判定与性质、勾股定理、平行线分线段成比例定理;熟练掌握勾股定理好平行线分线段成比例定理是解题的关键.ABBCCD=1.5米,=1.2?10分)某挖掘机的底座高米,=0.8米,动臂4.(2019?浙江嘉兴BCCDBCDDE 所在直线与铲斗顶点1,与斗杆顶点的固定夹角∠=140°.初始位置如图DEAMECDEBCB会绕点,动臂).工作时如图,测得∠3=70°(示意图垂直地面2于点ABCD升至最高点(示意图4)转动,当点.,,在同一直线时,斗杆顶点BCABABC的度数.与(1)求挖掘机在初始位置时动臂的夹角∠D的最高点比初始位置高了多少米(精确到0.1)问斗杆顶点米)?(2sincossincos70°≈0.34,70°≈0.94(参考数据:0.7750°≈,,50°≈0.64, 1.73)CCGAMGABCGDE,再根据平行线的性质求得结果;∥作⊥于点∥,证明(【分析】1)过点CCPDEPBBQDEQCGN,如图2作,交⊥(2)过点作于点⊥于点于点,通过解,过点DE,直角三角形求得DDHAMHCCKDHK,如图3作过点于点作⊥⊥于点,通过解直角三角形求得求得,过点DH,最后便可求得结果.CCGAMG,如图1⊥,【解答】解:(1)过点于点作AMDEABAM∵⊥⊥,,DECGAB∴∥∥,CDEDCG°,°﹣∠=110∴∠=180GCDBCDBCG30=∠﹣∠°,=∴BCGABC°;150=°﹣∠180=∴∠.NCPDEPBBQDEQCGC⊥,如图于点,交,过点22)过点作作于点⊥于点,(cosCPDPRtCPD,在70△中,°≈=0.51×(米)cosBCRtBCNCN在,△中,°≈=1.04×(米)30ABQEDPCNPQDEDP=2.35+(米)=+++,所以,=KCKDHDDHAMHC⊥⊥作于点,3如图,过点,过点作于点cosDKCDRtCKD=,×中,50°≈1.16在△(米)KHDKDH +,所以,==3.16(米)DEDH=0.8所以,(米)﹣,D的最高点比初始位置高了0.8所以,斗杆顶点米.解此题主要考查了解直角三角形的应用,充分体现了数学与实际生活的密切联系,【点评】题的关键是正确构造直角三角形.,每个小正方形的顶点在如图所示的网格中,每个正方形的连长为1?7分)2019?5. (广东⌒,分别D与BC相切于点EF叫格点,△ABC的三个顶点均在格点上,以点A为圆心的.F.B.交AAC于点E ABC三边的长;(1)求△⌒CF)求图中由线段EB.BC.及FE所围成的阴影部分的面积.(2【答案】2221010262?26? =AC,,)由题意可知,(解:1AB===22584? BC== AD)连接2(.2,AB=ACAC由(1)可知,AB2+2=BC =90°,且是等腰直角三角形△ABC∴∠BAC⌒D为圆心的EF与BC相切于点∵以点A BC∴AD⊥152长度)BC·ADBC=求出AD (或用等面积法AB·∴ADAC==2S-∵S=S ABC△EAF扇形阴影1101022==20 S××ABC△2??12?52πS==5EAF扇形4∴S=20-5π阴影【考点】勾股定理及其逆定理,阴影面积的计算包括三角形和扇形的面积公式6. (2019?广西贵港?10分)已知:△ABC是等腰直角三角形,∠BAC=90°,将△ABC绕αα<180°时,作A′′C,记旋转角为D,当90°<点C顺时针方向旋转得到△A′B⊥AC,垂足为D,A′D与B′C交于点E.(1)如图1,当∠CA′D=15°时,作∠A′EC的平分线EF交BC于点F.α的度数;①写出旋转角②求证:EA′+EC=EF;(2)如图2,在(1)的条件下,设P是直线A′D上的一个动点,连接PA,PF,若AB=,求线段PA+PF的最小值.(结果保留根号)【分析】(1)①解直角三角形求出∠A′CD即可解决问题.②连接A′F,设EF交CA′于点O.在EF时截取EM=EC,连接CM.首先证明△CFA′是等边三角形,再证明△FCM≌△A′CE(SAS),即可解决问题.(2)如图2中,连接A′F,PB′,AB′,作B′M⊥AC交AC的延长线于M.证明△A′EF ≌△A′EB′,推出EF=EB′,推出B′,F关于A′E对称,推出PF=PB′,推出PA+PF =PA+PB′≥AB′,求出AB′即可解决问题.°.105解:旋转角为①)1(【解答】.理由:如图1中,∵A′D⊥AC,∴∠A′DC=90°,∵∠CA′D=15°,∴∠A′CD=75°,∴∠ACA′=105°,∴旋转角为105°.②证明:连接A′F,设EF交CA′于点O.在EF时截取EM=EC,连接CM.∵∠CED=∠A′CE+∠CA′E=45°+15°=60°,∴∠CEA′=120°,∵FE平分∠CEA′,∴∠CEF=∠FEA′=60°,∵∠FCO=180°﹣45°﹣75°=60°,∴∠FCO=∠A′EO,∵∠FOC=∠A′OE,∴△FOC∽△A′OE,=,∴,∴=∵∠COE=∠FOA′,∴△COE∽△FOA′,∴∠FA′O=∠OEC=60°,∴△A′OF是等边三角形,,F′A′=CA=CF∴.∵EM=EC,∠CEM=60°,∴△CEM是等边三角形,∠ECM=60°,CM=CE,∵∠FCA′=∠MCE=60°,∴∠FCM=∠A′CE,∴△FCM≌△A′CE(SAS),∴FM=A′E,∴CE+A′E=EM+FM=EF.(2)解:如图2中,连接A′F,PB′,AB′,作B′M⊥AC交AC的延长线于M.由②可知,∠EA′F=′EA′B′=75°,A′E=A′E,A′F=A′B′,∴△A′EF≌△A′EB′,∴EF=EB′,∴B′,F关于A′E对称,∴PF=PB′,∴PA+PF=PA+PB′≥AB′,=AB=2,∠BC′=MCB′=30°,MRt在△CB′中,CB,=,′=′M=CB1CMB ∴=∴AB′=.=+P∴A.的最小值为PF【点评】本题属于四边形综合题,考查了旋转变换,全等三角形的判定和性质,相似三角形的判定和性质,三角形的三边关系等知识,解题的关键是学会添加常用辅助线,构.造全等三角形解决问题,学会用转化的思想思考问题,属于中考压轴题.α内一点,为△ABC,D中,CA=CB,∠ACB=7. (2019?湖北十堰?10分)如图1,△ABC α,E的对应点分别为点B,得到△CBE,点A,按逆时针方向旋转角将△CAD绕点CD 三点在同一直线上.D,E且A,α的代数式表示);(用含CDE=(1)填空:∠α=60°,请补全图形,再过点C作CF⊥,若AE于点F,然后探究线段CF,)(2如图2AE,BE之间的数量关系,并证明你的结论;α5,且点G满足∠AGB=90°,BG=6,直接写出点C到(3)若90=°,AC=AG 的距离.α,即可求解;,∠DCE=(1)由旋转的性质可得CD=CE【分析】(2)由旋转的性质可得AD=BE,CD=CE,∠DCE=60°,可证△CDE是等边三角形,=,即可求解;由等边三角形的性质可得DF=EF(3)分点G在AB的上方和AB的下方两种情况讨论,利用勾股定理可求解.α得到△CBE按逆时针方向旋转角绕点【解答】解:(1)∵将△CADCαDCE=ACD∴△≌△BCE,∠∴CD=CE=∴∠CDE故答案为:=)(2AEBE+CF 理由如下:如图,∵将△CAD绕点C按逆时针方向旋转角60°得到△CBE∴△ACD≌△BCE∴AD=BE,CD=CE,∠DCE=60°∴△CDE是等边三角形,且CF⊥DE==EF∴DF∵AE=AD+DF+EF+CFBE ∴AE=(3)如图,当点G在AB上方时,过点C作CE⊥AG于点E,5,AC=BC=∵∠ACB=90°,∴∠CAB=∠ABC=45°,AB=10∵∠ACB=90°=∠AGB∴点C,点G,点B,点A四点共圆∴∠AGC=∠ABC=45°,且CE⊥AG∴∠AGC=∠ECG=45°∴CE=GE∵AB=10,GB=6,∠AGB=90°==AG8∴∵AC2=AE2+CE2,222)CE+CE,﹣=(∴(5)81=CE,(不合题意舍去)7=CE∴.若点G在AB的下方,过点C作CF⊥AG,同理可得:CF=7∴点C到AG的距离为1或7.【点评】本题是几何变换综合题,考查了全等三角形的性质,旋转的性质,等边三角形的性质,勾股定理,利用勾股定理列出方程是本题的关键.8. (2019?湖北天门?10分)如图,在平面直角坐标系中,四边形OABC的顶点坐标分别为O(0,0),A(12,0),B(8,6),C(0,6).动点P从点O出发,以每秒3个单位长度的速度沿边OA向终点A运动;动点Q从点B同时出发,以每秒2个单位长度的速度2 y.秒,PQ=t沿边BC向终点C运动.设运动的时间为2)4;+100(0≤t≤的取值范围:y关于t的函数解析式及t y=25t﹣80t1()直接写出时,求t2)当PQ=的值;3(=(k≠0)经过点D,问k的值是否变化?若(3)连接OB交PQ于点D,若双曲线y不变化,请求出k的值;若变化,请说明理由.【分析】(1)过点P作PE⊥BC于点E,由点P,Q的出发点、速度及方向可找出当运动时间为t秒时点P,Q的坐标,进而可得出PE,EQ的长,再利用勾股定理即可求出y关于t的函数解析式(由时间=路程÷速度可得出t的取值范围);3代入(1)的结论中可得出关于将PQ=t的一元二次方程,解之即可得出结论;(2)(3)连接OB,交PQ于点D,过点D作DF⊥OA于点F,利用勾股定理可求出OB的长,由BQ∥OP 可得出△BDQ∽△ODP,利用相似三角形的性质结合OB=10可求出OD=6,由CB∥OA可得出∠DOF=∠OBC,在Rt△OBC中可求出sin∠OBC及cos∠OBC的值,由OF=OD?cos∠OBC,DF=OD?sin∠OBC可求出点D的坐标,再利用反比例函数图象上点的坐标特征即可求出k值,此题得解.所示.1,如图E于点BC⊥PE作P)过点1(解:【解答】.当运动时间为t秒时(0≤t≤4)时,点P的坐标为(3t,0),点Q的坐标为(8﹣2t,6),∴PE=6,EQ=|8﹣2t﹣3t|=|8﹣5t|,222222 +100,5t|=25t﹣80tPQ∴=PE+EQ=6+|8﹣2≤+100(0t≤4).∴y=25t﹣80t2).≤t≤4(故答案为:y=25t﹣80t+100022)32)当PQ=,325t﹣80t+100=(时,(2整理,得:5t﹣16t+11=0,=.,t 解得:t=121=(k≠0y)的k值不变.3()经过点D的双曲线连接OB,交PQ于点D,过点D作DF⊥OA于点F,如图2所示.∵OC=6,BC=8,==10.∴OB,∥OPBQ∵,∽△ODP∴△BDQ∴===,∴OD=6.∵CB∥OA,∴∠DOF=∠OBC.=,∠cos∠OBCOBC=====,中,在Rt△OBCsin=6×=?,DF=ODsin ∠OBC6OBCcosODOF∴=?∠=×=,,,D∴点的坐标为()值为k)的0≠k(=y的双曲线D∴经过点.=×.【点评】本题考查了勾股定理、解直角三角形、解一元二次方程、相似三角形的判定与性质、平行线的性质以及反比例函数图象上点的坐标特征,解题的关键是:(1)利用勾3时=t的函数解析式;(2)通过解一元二次方程,求出当PQ股定理,找出y关于t D的坐标.的值;(3)利用相似三角形的性质及解直角三角形,找出点O⊙O的两条切线,DC与⊙O的直径,AM和BN是⊙?9 (2019?湖北武汉8分)已知AB是两点.于D.C相切于点E,分别交AM、BN2 BC;,求证:AB=4AD?)如图(11,求1OFC,AD =ADE并延长交AM于点F,连接CF.若∠=2∠OE2()如图2,连接图中阴影部分的面积.=,即可得出结论;,得出,证明△OC.ODAOD∽△BCO)连接【分析】(1(2)连接OD,OC,证明△COD≌△CFD得出∠CDO=∠CDF,求出∠BOE=120°,=,图中阴影部分的面积=2S﹣SOB3BC由直角三角形的性质得出=,,OBEOBC扇形△即可得出结果.【解答】(1)证明:连接OC.OD,如图1所示:∵AM和BN是它的两条切线,∴AM⊥AB,BN⊥AB,∴AM∥BN,∴∠ADE+∠BCE=180°∵DC切⊙O于E,。
2019年各地中考解析版数学试卷汇编:直角三角形与勾股定理(Word版含解析)
直角三角形与勾股定理一.选择题(共12 小题)1.如图,四边形ABCD内接于⊙ O,AE⊥ CB交 CB的延伸线于点E,若 BA均分∠ DBE,AD=5,CE=,则AE=()A. 3 B. 3 C. 4 D.2 2.如图,取两根等宽的纸条折叠穿插,拉紧,可得边长为 2 的正六边形.则本来的纸带宽为()A. 1 B.C.D.2 3.如图 1,长、宽均为3,高为 8 的长方体容器,搁置在水平桌面上,里面盛有水,水面高为 6,绕底面一棱进行旋转倾斜后,水面恰巧触到容器口边沿,图2是此时的表示图,则图 2 中水面高度为()A.B.C.D.4.勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记录.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图 2 的方式搁置在最大正方形内.若知道图中暗影部分的面积,则必定能求出()A .直角三角形的面积B .最大正方形的面积C .较小两个正方形重叠部分的面积D .最大正方形与直角三角形的面积和5.如图,平面直角坐标系中, A (﹣ 8, 0), B (﹣ 8, 4), C (0, 4),反比率函数 y = 的图象分别与线段,交于点 , ,连结.若点B 对于DE 的对称点恰幸亏上,AB BCD EDEOA则 k =()A .﹣ 20B .﹣ 16C .﹣ 12D .﹣ 86.如图,正方形ABCD 中,点E 、F 分别在边CD ,AD 上, BE与CF 交于点G .若BC =4, DE= AF =1,则GF 的长为()A .B .C .D .7.如图,在直角三角形ABC 中,∠ C = 90°, AC = BC ,E 是 AB 的中点,过点E 作的垂线, 垂足分别为点 D 和点 F ,四边形 CDEF 沿着 CA 方向匀速运动, 点 C 与点停止运动,设运动时间为 t ,运动过程中四边形 CDEF 与△ ABC 的重叠部分面积为AC 和 BCA 重合时S .则 S对于 t 的函数图象大概为()A.B.C.D.8.如图,在Rt△ABC中,∠BAC= 90°,∠B=36°,AD是斜边BC上的中线,将△ACD沿AD对折,使点C落在点 F 处,线段 DF与 AB订交于点 E,则∠ BED等于()A. 120°B. 108°C. 72°D.36°9.如图,在△ABC中,∠C=90°,AC= 12,AB的垂直均分线EF交 AC于点 D,连结 BD,若cos ∠BDC=,则BC的长是()A. 10B. 8C.4D.210.知足以下条件时,△ABC不是直角三角形的为()A.AB=,BC=4, AC=5 B.AB:BC:AC= 3:4: 5C.∠A:∠B:∠C= 3: 4: 5 D. |cos A﹣ |+ (tan B﹣2)= 011.如图,点E在正方形ABCD的边 AB上,若 EB=1,EC=2,那么正方形ABCD的面积为()A .B . 3C .D .512.如图,在△ABC 中,∠ B = 50°, CD ⊥ AB 于点D ,∠ BCD 和∠ BDC 的角均分线订交于点E ,F 为边AC 的中点,CD = CF ,则∠ACD +∠ CED =()A . 125°B . 145°C . 175°D .190°二.填空题(共 12 小题)13.在△ ABC 中,∠ A = 50°,∠ B = 30°,点 D 在 AB 边上,连结CD ,若△ ACD 为直角三角形,则∠ BCD 的度数为度.14.公元 3 世纪初,中国古代数学家赵爽注《周髀算经》时,创建了“赵爽弦图” .如图,设勾 = 6,弦 c = 10,则小正方形的面积是 .aABCD15.如图,在△ ABC 中,∠ BAC = 90°, AB =AC = 10cm ,点 D 为△ ABC 内一点,∠ BAD = 15°,= 6 ,连结 ,将△ 绕点 A 按逆时针方向旋转,使 AB 与重合,点D 的对应点ADcm BD ABDAC为点 E ,连结 DE , DE 交 AC 于点 F ,则 CF 的长为 cm .16.如图,在边长为1 的菱形 ABCD 中,∠ ABC = 60°,将△ ABD 沿射线 BD 的方向平移获得△ A ' B ' D ' ,分别连结 A ' C , A ' D , B ' C ,则 A ' C +B ' C 的最小值为 .17.把两个相同大小含45°角的三角尺按以下图的方式搁置,此中一个三角尺的锐角顶点与另一个三角尺的直角极点重合于点A ,且此外三个锐角极点B ,C ,D 在同向来线上. 若AB = 2,则 CD = .18.如图,为丈量旗杆 AB 的高度,在教课楼一楼点C 处测得旗杆顶部的仰角为 60°,在四楼点 D 处测得旗杆顶部的仰角为30°,点 C 与点 B 在同一水平线上.已知=,则CDm旗杆的高度为.AB m19.如图, 在 ?ABCD 中,E 、F 是对角线 AC 上两点, AE = EF = CD ,∠ ADF = 90°,∠ BCD =63°,则∠ ADE 的大小为.20.问题背景:如图1,将△ABC 绕点A 逆时针旋转60°获得△ADE , DE与BC 交于点P ,可推出结论:PA +PC = PE .问题解决:如图2,在△ MNG 中, MN = 6,∠ M = 75°, MG =.点O 是△ MNG 内一点,则点O 到△ MNG 三个极点的距离和的最小值是.21.如图, 等边三角形 ABC 内有一点 P ,分別连结 AP 、BP 、CP ,若 AP = 6,BP = 8,CP = 10.则S △ ABP +S △ BPC = .22.无盖圆柱形杯子的睁开图以下图.将一根长为20cm 的细木筷斜放在该杯子内,木筷露在杯子外面的部分起码有cm .23.以下图,在 Rt △中,∠ = 90°, 是斜边上的中线, 、 F 分别为、ABCACBCMABEMB BC的中点,若 EF =1,则 AB =.24.如图,在 Rt △ ABC 中,∠ ACB =90°,∠ B =60°, DE 为△ ABC 的中位线,延伸 BC 至F ,使= ,连结 FE 并延伸交 于点 .若 = ,则△ 的周长为 .CF BC AB M BC a FMB三.解答题(共 9 小题)25.如图,等腰直角三角板如图搁置.直角极点在直线 上,分别过点 、 B 作 ⊥直线C m A AEm于点 E, BD⊥直线 m于点 D.①求证: EC= BD;②若设△ AEC三边分别为a、 b、 c,利用此图证明勾股定理.26.如图,正方形ABCD,点 E, F 分别在 AD, CD上,且 DE= CF, AF与 BE订交于点 G.(1)求证:BE=AF;(2)若AB= 4,DE= 1,求AG的长.27.在 6×6 的方格纸中,点A, B, C都在格点上,按要求绘图:( 1)在图 1 中找一个格点D,使以点 A, B,C, D为极点的四边形是平行四边形.( 2)在图 2 中仅用无刻度的直尺,把线段AB三均分(保存绘图印迹,不写画法).28.某发掘机的底座高AB=米,动臂 BC=米, CD=米, BC与 CD的固定夹角∠ BCD=140°.初始地点如图1,斗杆极点 D与铲斗极点 E 所在直线 DE垂直地面 AM于点 E,测得∠CDE=70°(表示图2).工作时如图3,动臂 BC会绕点 B 转动,当点 A, B, C在同向来线时,斗杆极点D升至最高点(表示图4).( 1)求发掘机在初始地点时动臂BC与AB的夹角∠ABC的度数.( 2)问斗杆极点D的最高点比初始地点高了多少米?(精准到0.1 米)(参照数据:sin50 °≈ 0.77 , cos50 °≈ 0.64 ,sin70 °≈ 0.94 ,cos70 °≈ 0.34 ,≈1.73 )29.在以下图的网格中,每个小正方形的边长为1,每个小正方形的极点叫格点,△ ABC的三个极点均在格点上, 以点 A 为圆心的与相切于点 ,分别交、 于点 、 .BC D AB AC E F( 1)求△ ABC 三边的长;( 2)求图中由线段 EB 、BC 、 CF 及 所围成的暗影部分的面积.30.已知: △ ABC 是等腰直角三角形, ∠ BAC =90°,将△ ABC 绕点 C 顺时针方向旋转获得△A ′B ′C ,记旋转角为 α,当 90°<α< 180°时,作 A ′D ⊥AC ,垂足为 D ,A ′ D 与 B ′C 交于点 E .( 1)如图 1,当∠ CA ′ D = 15°时,作∠ A ′ EC 的均分线 EF 交 BC 于点 F .①写出旋转角 α 的度数;②求证: EA ′ +EC = EF ;( 2)如图 2,在( 1)的条件下,设P 是直线 A ′D 上的一个动点,连结 PA , PF ,若 AB=,求线段 PA +PF 的最小值.(结果保存根号)31.如图 1,△ ABC 中, CA = CB ,∠ ACB =α, D 为△ ABC 内一点,将△ CAD 绕点 C 按逆时针方向旋转角 α 获得△CBE ,点 A ,D 的对应点分别为点B ,E ,且A ,D ,E 三点在同向来线上.( 1)填空:∠CDE =(用含 α 的代数式表示) ;( 2)如图2,若 α= 60°,请补全图形,再过点C作CF ⊥ AE 于点F ,而后研究线段CF ,AE , BE 之间的数目关系,并证明你的结论;( 3)若 α= 90°, AC = 5 ,且点 G 知足∠ AGB = 90°, BG = 6,直接写出点 C 到 AG 的距离.32.如图,在平面直角坐标系中,四边形 OABC 的极点坐标分别为 O ( 0, 0),A ( 12, 0), B( 8, 6), C ( 0, 6).动点 P 从点 O 出发,以每秒 3 个单位长度的速度沿边 OA 向终点 A 运动;动点 从点B 同时出发,以每秒 2 个单位长度的速度沿边 向终点C 运动.设运QBC2动的时间为 t 秒, PQ = y .( 1)直接写出 y 对于 t 的函数分析式及 t 的取值范围:;( 2)当 PQ = 3 时,求 t 的值;( 3)连结 OB 交 PQ 于点 D ,若双曲线 y = ( k ≠ 0)经过点 D ,问 k 的值能否变化?若不变化,恳求出 k 的值;若变化,请说明原因.33.已知 AB 是⊙ O 的直径, AM 和 BN 是⊙ O 的两条切线, DC 与⊙ O 相切于点 E ,分别交 AM 、BN 于 D 、 C 两点.( 1)如图 1,求证: AB 2= 4AD ?BC ;( 2)如图 2,连结 OE 并延伸交 AM 于点 F ,连结 CF .若∠ ADE =2∠ OFC ,AD = 1,求图中暗影部分的面积.参照答案与试题分析一.选择题(共12 小题)1.如图,四边形ABCD内接于⊙ O,AE⊥ CB交 CB的延伸线于点E,若 BA均分∠ DBE,AD=5,CE=,则AE=()A. 3B. 3C.4D.2【剖析】连结AC,如图,依据圆内接四边形的性质和圆周角定理获得∠1=∠CDA,∠ 2 =∠ 3,从而获得∠3=∠CDA,所以AC=AD= 5,而后利用勾股定理计算AE的长.【解答】解:连结AC,如图,∵BA均分∠ DBE,∴∠ 1=∠ 2,∵∠ 1=∠CDA,∠ 2=∠ 3,∴∠ 3=∠CDA,∴AC=AD=5,∵ AE⊥CB,∴∠ AEC=90°,∴AE===2.应选: D.2.如图,取两根等宽的纸条折叠穿插,拉紧,可得边长为 2 的正六边形.则本来的纸带宽为()A. 1B.C.D.2【剖析】依据正六边的性质,正六边形由 6 个边长为 2 的等边三角形构成,此中等边三角形的高为本来的纸带宽度,而后求出等边三角形的高即可.【解答】解:边长为 2 的正六边形由 6 个边长为 2 的等边三角形构成,此中等边三角形的高为本来的纸带宽度,所以本来的纸带宽度=×2=.应选: C.3.如图 1,长、宽均为3,高为 8 的长方体容器,搁置在水平桌面上,里面盛有水,水面高为 6,绕底面一棱进行旋转倾斜后,水面恰巧触到容器口边沿,图2是此时的表示图,则图 2 中水面高度为()A.B.C.D.【剖析】设DE=x,则 AD=8﹣ x,由长方体容器内水的体积得出方程,解方程求出DE,再由勾股定理求出CD,过点 C作 CF⊥ BG于 F,由△ CDE∽△ BCF的比率线段求得结果即可.【解答】解:过点C作 CF⊥ BG于 F,以下图:设 DE=x,则 AD=8﹣ x,依据题意得:( 8﹣x+8)× 3× 3= 3× 3×6,解得: x=4,∴DE=4,∵∠ E=90°,由勾股定理得:CD=,∵∠ BCE=∠ DCF=90°,∴∠ DCE=∠ BCF,∵∠ DEC=∠ BFC=90°,∴△ CDE∽△ BCF,∴,即,∴CF=.应选: A.4.勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记录.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图 2 的方式搁置在最大正方形内.若知道图中暗影部分的面积,则必定能求出()A.直角三角形的面积B.最大正方形的面积C.较小两个正方形重叠部分的面积D.最大正方形与直角三角形的面积和【剖析】依据勾股定理获得c2= a2+b2,依据正方形的面积公式、长方形的面积公式计算即可.【解答】解:设直角三角形的斜边长为c,较长直角边为b,较短直角边为a,由勾股定理得,c2= a2+b2,暗影部分的面积=c2﹣b2﹣a( c﹣ b)= a2﹣ac+ab= a( a+b﹣ c),较小两个正方形重叠部分的长=a﹣( c﹣ b),宽= a,则较小两个正方形重叠部分底面积=a( a+b﹣c),∴知道图中暗影部分的面积,则必定能求出较小两个正方形重叠部分的面积,应选: C.5.如图,平面直角坐标系中,A(﹣8,0), B(﹣8,4), C(0,4),反比率函数y=的图象分别与线段AB,BC交于点D, E,连结DE.若点 B 对于DE的对称点恰幸亏OA上,则 k=()A.﹣ 20 B.﹣ 16 C.﹣ 12 D.﹣ 8【剖析】依据A(﹣8,0), B(﹣8,4), C(0,4),可得矩形的长和宽,易知点D的横坐标, E 的纵坐标,由反比率函数的关系式,可用含有k 的代数式表示此外一个坐标,由三角形相像和对称,可用求出AF的长,而后把问题转变到三角形ADF中,由勾股定理建立方程求出k 的值.【解答】解:过点 E 作 EG⊥ OA,垂足为 G,设点 B 对于 DE的对称点为F,连结 DF、 EF、BF,以下图:则△ BDE≌△ FDE,∴BD=FD, BE=FE,∠ DFE=∠ DBE=90°易证△ ADF∽△ GFE∴,∵A(﹣8,0),B(﹣8,4), C(0,4),∴ AB=OC= EG=4, OA= BC=8,∵D、E在反比率函数 y=的图象上,∴ E(, 4)、D(﹣ 8,)∴OG=EC=,AD=﹣,∴BD=4+, BE=8+∴,∴ =,AF2 2 2在 Rt △ADF中,由勾股定理:AD+AF = DF即:(﹣)2+22=( 4+ )2解得: k=﹣12应选: C.6.如图,正方形ABCD中,点 E、F 分别在边CD,AD上, BE与 CF交于点 G.若 BC=4, DE = AF=1,则 GF的长为()A.B.C.D.【剖析】证明△BCE≌△ CDF( SAS),得∠ CBE=∠ DCF,所以∠ CGE=90°,依据等角的余弦可得 CG的长,可得结论.【解答】解:正方形ABCD中,∵ BC=4,∴BC=CD= AD=4,∠ BCE=∠ CDF=90°,∵ AF=DE=1,∴DF=CE=3,∴ BE =CF = 5,在△ BCE 和△ CDF 中,,∴△ BCE ≌△ CDF ( SAS ),∴∠ CBE =∠ DCF ,∵∠ CBE +∠ CEB =∠ ECG +∠CEB = 90°=∠ CGE ,cos ∠ CBE = cos ∠ ECG = ,∴,CG =,∴ GF =CF ﹣ CG =5﹣ = ,应选: .A7.如图,在直角三角形中,∠ = 90°, = , 是AB 的中点,过点 E 作和ABC CAC BC EAC BC的垂线, 垂足分别为点D 和点,四边形沿着方向匀速运动, 点C 与点 A 重合时FCDEF CA 停止运动,设运动时间为 t ,运动过程中四边形 CDEF 与△ ABC 的重叠部分面积为S .则 S 对于 t 的函数图象大概为()A .B .C .D .【剖析】依据已知条件获得△ABC 是等腰直角三角形,推出四边形 EFCD 是正方形,设正方形的边长为 a ,当挪动的距离< a 时,如图 1S =正方形的面积﹣△ EE ′ H 的面积= a 2﹣2;当挪动的距离>a 时,如图 2, = △AC ′H = ( 2 ﹣ ) 2=2﹣ 2+2 2,依据函t S S a tt at a数关系式即可获得结论;【解答】解:∵在直角三角形ABC 中,∠ C = 90°, AC = BC ,∴△ ABC 是等腰直角三角形,∵ EF ⊥BC , ED ⊥AC ,∴四边形 EFCD 是矩形,∵ E 是 AB 的中点,∴ EF = AC , DE = BC ,∴ EF =ED ,∴四边形 EFCD 是正方形,设正方形的边长为a ,如图 1 当挪动的距离< a 时, S =正方形的面积﹣△ EE ′ H 的面积= a 2﹣ t 2;当挪动的距离> a 时,如图 2, S = S △AC ′ H = ( 2a ﹣t ) 2 = t 2﹣ 2at +2a 2 ,∴ S 对于 t 的函数图象大概为 C 选项,应选: C .8.如图,在 Rt △ ABC 中,∠ BAC = 90°,∠ B =36°, AD 是斜边BC 上的中线,将△ ACD沿对折,使点C 落在点F 处,线段与订交于点 ,则∠等于()AD DF AB E BEDA. 120°B. 108°C. 72°D.36°【剖析】依据三角形内角和定理求出∠C=90°﹣∠ B=54°.由直角三角形斜边上的中线的性质得出AD= BD= CD,利用等腰三角形的性质求出∠BAD=∠ B=36°,∠ DAC=∠ C = 54°,利用三角形内角和定理求出∠ADC=180°﹣∠ DAC﹣∠ C=72°.再依据折叠的性质得出∠ ADF=∠ ADC=72°,而后依据三角形外角的性质得出∠BED=∠ BAD+∠ ADF=108°.【解答】解:∵在Rt △ABC中,∠BAC= 90°,∠B=36°,∴∠ C=90°﹣∠ B=54°.∵AD是斜边 BC上的中线,∴ AD=BD= CD,∴∠ BAD=∠ B=36°,∠ DAC=∠ C=54°,∴∠ ADC=180°﹣∠ DAC﹣∠ C=72°.∵将△ ACD沿 AD对折,使点C落在点 F 处,∴∠ ADF=∠ ADC=72°,∴∠ BED=∠ BAD+∠ ADF=36°+72°=108°.应选: B.9.如图,在△ABC中,∠C=90°,AC= 12,AB的垂直均分线EF交 AC于点 D,连结 BD,若cos ∠BDC=,则BC的长是()A. 10B. 8C.4D.2【剖析】设CD=5x, BD=7x,则 BC=2x,由 AC=12即可求 x,从而求出BC;【解答】解:∵∠C=90°,cos∠BDC=,设 CD=5x, BD=7x,∴BC=2 x,∵AB的垂直均分线 EF交 AC于点 D,∴ AD=BD=7x,∴ AC=12x,∵AC=12,∴x=1,∴BC=2;应选: D.10.知足以下条件时,△ABC不是直角三角形的为()A.=,=4,=5 B.::=3:4:5 AB BCAC AB BC ACC.∠A:∠B:∠C= 3: 4: 5 D. |cos A﹣|+(tan B﹣)2= 0 【剖析】依照勾股定理的逆定理,三角形内角和定理以及直角三角形的性质,即可获得结论.【解答】解:、∵,∴△是直角三角形,错误;A ABCB、∵(2 2 2 2 2 23x) +( 4x)= 9x +16x= 25x=( 5x),∴△ABC是直角三角形,错误;、∵∠:∠ :∠ = 3:4: 5,∴∠ =,∴△不是C A BC C ABC直角三角形,正确;、∵ |cos ﹣|+ ( tan ﹣)2=0,∴,∴∠= 60°,∠=D A B A B30°,∴∠C= 90°,∴△ABC是直角三角形,错误;应选: C.11.如图,点E在正方形ABCD的边 AB上,若 EB=1,EC=2,那么正方形ABCD的面积为()A.B. 3 C.D.5【剖析】先依据正方形的性质得出∠B=90°,而后在Rt△ BCE中,利用勾股定理得出2BC,即可得出正方形的面积.【解答】解:∵四边形ABCD是正方形,∴∠ B=90°,2222 2∴BC= EC﹣EB=2﹣1=3,∴正方形ABCD的面积=2BC=3.应选: B.12.如图,在△ABC中,∠ B=50°, CD⊥ AB于点D,∠ BCD和∠ BDC的角均分线订交于点E,F 为边AC的中点,CD= CF,则∠ACD+∠ CED=()A. 125°B. 145°C. 175°D.190°【剖析】依据直角三角形的斜边上的中线的性质,即可获得△CDF是等边三角形,从而得到∠ ACD=60°,依据∠BCD和∠ BDC的角均分线订交于点E,即可得出∠CED=115°,即可获得∠ ACD+∠CED=60°+115°=175°.【解答】解:∵CD⊥ AB,F 为边 AC的中点,∴DF= AC= CF,又∵ CD= CF,∴CD=DF= CF,∴△ CDF是等边三角形,∴∠ ACD=60°,∵∠ B=50°,∴∠ BCD+∠ BDC=130°,∵∠ BCD和∠ BDC的角均分线订交于点E,∴∠ DCE+∠ CDE=65°,∴∠ CED=115°,∴∠ ACD+∠ CED=60°+115°=175°,应选: C.二.填空题(共12 小题)13.在△ABC中,∠A= 50°,∠B= 30°,点D在AB边上,连结CD,若△ ACD为直角三角形,则∠ BCD的度数为60°或 10度.【剖析】当△ ACD为直角三角形时,存在两种状况:∠ ADC=90°或∠ ACD=90°,依据三角形的内角和定理可得结论.【解答】解:分两种状况:①如图 1,当∠ADC= 90°时,∵∠ B=30°,∴∠ BCD=90°﹣30°=60°;②如图 2,当∠ACD= 90°时,∵∠ A=50°,∠ B=30°,∴∠ ACB=180°﹣30°﹣50°=100°,∴∠ BCD=100°﹣90°=10°,综上,则∠ BCD的度数为60°或10°;故答案为: 60°或 10;14.公元 3 世纪初,中国古代数学家赵爽注《周髀算经》时,创建了“赵爽弦图”.如图,设勾 a=6,弦 c=10,则小正方形ABCD的面积是4.【剖析】应用勾股定理和正方形的面积公式可求解.【解答】解:∵勾a = 6,弦 c = 10,∴股== 8,∴小正方形的边长= 8﹣ 6= 2,∴小正方形的面积= 22= 4故答案是: 415.如图,在△ ABC 中,∠ BAC = 90°, AB =AC = 10cm ,点 D 为△ ABC 内一点,∠ BAD = 15°,= 6 ,连结 ,将△ 绕点 A 按逆时针方向旋转,使 AB 与 重合,点D 的对应点ADcm BD ABDAC为点 E ,连结 DE , DE 交 AC 于点 F ,则 CF 的长为 (10﹣2 ) cm .【剖析】过点 A 作 AG ⊥ DE 于点 G ,由旋转的性质推出∠ AED =∠ ADG = 45°,∠ AFD =60°,利用锐角三角函数分别求出 AG , GF , AF 的长,即可求出CF = AC ﹣ AF =10﹣ 2.【解答】解:过点A 作 AG ⊥ DE 于点 G ,由旋转知: AD =AE ,∠ DAE = 90°,∠ CAE =∠ BAD = 15°,∴∠ AED =∠ ADG = 45°,在△ AEF 中,∠ AFD =∠ AED +∠ CAE = 60°,在 Rt △ADG 中, AG = DG = = 3,在 Rt △AFG 中, GF ==, AF =2FG = 2 ,∴ CF =AC ﹣ AF =10﹣ 2,故答案为: 10﹣2 .16.如图,在边长为 1 的菱形ABCD中,∠ABC= 60°,将△ABD沿射线BD的方向平移获得△ A' B' D',分别连结 A' C, A' D, B' C,则 A' C+B' C的最小值为.【剖析】依据菱形的性质获得 AB=1,∠ ABD=30°,依据平移的性质获得1,∠A′B′D=30°,当B′C⊥A′B′时,A' C+B' C的值最小,推出四边形A′ B′= AB=A′ B′CD是矩形,∠B′ A′C=30°,解直角三角形即可获得结论.【解答】解:∵在边长为 1 的菱形ABCD中,∠ ABC=60°,∴ AB=1,∠ ABD=30°,∵将△ ABD沿射线 BD的方向平移获得△A' B' D',∴A′ B′= AB=1,∠ A′B′ D=30°,当 B′C⊥ A′ B′时, A' C+B' C的值最小,∵ AB∥A′ B′, AB= A′ B′, AB= CD, AB∥ CD,∴A′ B′= CD,A′ B′∥ CD,∴四边形 A′ B′CD是矩形,∠ B′ A′ C=30°,∴B′C=,A′C=,∴A' C+B' C的最小值为,故答案为:.17.把两个相同大小含45°角的三角尺按以下图的方式搁置,此中一个三角尺的锐角顶点与另一个三角尺的直角极点重合于点A,且此外三个锐角极点B,C,D在同向来线上.若AB=2,则CD=﹣.【剖析】先利用等腰直角三角形的性质求出BC=2,BF=AF=,再利用勾股定理求出 DF,即可得出结论.【解答】解:如图,过点 A 作 AF⊥BC于 F,在 Rt △ABC中,∠B= 45°,∴BC= AB=2, BF= AF=AB=,∵两个相同大小的含45°角的三角尺,∴ AD=BC=2,在 Rt △ADF中,依据勾股定理得,DF==,∴ CD=BF+DF﹣ BC=+﹣ 2 =﹣,故答案为:﹣.18.如图,为丈量旗杆AB的高度,在教课楼一楼点C处测得旗杆顶部的仰角为60°,在四楼点 D处测得旗杆顶部的仰角为30°,点C与点B在同一水平线上.已知CD= m,则旗杆 AB的高度为m.【剖析】作DE⊥ AB于E,则∠ AED=90°,四边形BCDE是矩形,得出BE= CD= m,∠CDE=∠ DEA=90°,求出∠ADC=120°,证出∠CAD=30°=∠ ACD,得出AD= CD= m,在 Rt △ADE中,由直角三角形的性质得出AE=AD=m,即可得出答案.【解答】解:作DE⊥ AB于 E,以下图:则∠ AED=90°,四边形BCDE是矩形,∴BE=CD= m,∠ CDE=∠ DEA=90°,∴∠ ADC=90°+30°=120°,∵∠ ACB=60°,∴∠ ACD=30°,∴∠ CAD=30°=∠ ACD,∴AD=CD= m,在 Rt △ADE中,∠ADE=30°,∴ AE= AD= m,∴AB=AE+BE= m m= m;故答案为: 14.4 .19.如图,在 ?ABCD中,E、F是对角线AC上两点, AE= EF= CD,∠ ADF=90°,∠ BCD=63°,则∠ ADE的大小为21°.【剖析】设∠ ADE= x,由等腰三角形的性质和直角三角形得出∠DAE=∠ ADE=x,DE=AF = AE=EF,得出DE= CD,证出∠ DCE=∠ DEC=2x,由平行四边形的性质得出∠DCE=∠ BCD ﹣∠ BCA=63°﹣ x,得出方程,解方程即可.【解答】解:设∠ADE= x,∵AE=EF,∠ ADF=90°,∴∠ DAE=∠ ADE= x, DE=AF=AE= EF,∵AE=EF= CD,∴ DE=CD,∴∠ DCE=∠ DEC=2x,∵四边形 ABCD是平行四边形,∴ AD∥BC,∴∠ DAE=∠ BCA= x,∴∠ DCE=∠ BCD﹣∠ BCA=63°﹣x,∴ 2x=63°﹣x,解得: x=21°,即∠ ADE=21°;故答案为: 21°.20.问题背景:如图1,将△ABC绕点A逆时针旋转60°获得△ADE,DE与BC交于点P,可推出结论:PA+PC= PE.问题解决:如图2,在△MNG中,MN= 6,∠M= 75°,MG=.点O是△ MNG内一点,则点O到△ MNG三个极点的距离和的最小值是 2 .【剖析】( 1)在BC上截取BG=PD,经过三角形求得证得AG= AP,得出△ AGP是等边三角形,得出∠ AGC=60°=∠ APG,即可求得∠ APE=60°,连结 EC,延伸 BC到 F,使 CF=PA,连结 EF,证得△ ACE是等边三角形,得出AE= EC=AC,而后经过证得△APE≌△ ECF (SAS),得出 PE= PF,即可证得结论;(2)以MG为边作等边三角形△MGD,以OM为边作等边△OME.连结ND,可证△GMO≌△DME,可得 GO=DE,则 MO+NO+GO=NO+OE+DE,即当D、 E、 O、 N 四点共线时, MO+NO+GO 值最小,最小值为ND的长度,依据勾股定理先求得MF、 DF,而后求 ND的长度,即可求MO+NO+GO的最小值.【解答】( 1)证明:如图1,在BC上截取BG=PD,在△ ABG和△ ADP中,∴△ ABG≌△ ADP( SAS),∴AG=AP,∠ BAG=∠ DAP,∵∠ GAP=∠ BAD=60°,∴△ AGP是等边三角形,∴∠ AGC=60°=∠ APG,∴∠ APE=60°,∴∠ EPC=60°,连结 EC,延伸 BC到 F,使 CF= PA,连结 EF,∵将△ ABC绕点 A 逆时针旋转60°获得△ ADE,∴∠ EAC=60°,∠ EPC=60°,∵ AE=AC,∴△ ACE是等边三角形,∴AE=EC= AC,∵∠ PAE+∠ APE+∠ AEP=180°,∠ ECF+∠ ACE+∠ ACB=180°,∠ ACE=∠ APE=60°,∠AED=∠ ACB,∴∠ PAE=∠ ECF,在△ APE和△ ECF中∴△ APE≌△ ECF( SAS),∴PE=PF,∴PA+PC= PE;( 2)解:如图 2:以MG为边作等边三角形△MGD,以 OM为边作等边△ OME.连结 ND,作DF⊥ NM,交 NM的延伸线于F.∵△ MGD和△ OME是等边三角形∴OE=OM= ME,∠ DMG=∠ OME=60°, MG= MD,∴∠ GMO=∠ DME在△ GMO和△ DME中∴△ GMO≌△ DME( SAS),∴OG=DE∴NO+GO+MO= DE+OE+NO∴当 D、 E、 O、 M四点共线时, NO+GO+MO值最小,∵∠ NMG=75°,∠ GMD=60°,∴∠ NMD=135°,∴∠ DMF=45°,∵MG=.∴MF=DF=4,∴NF=MN+MF=6+4=10,∴ND===2,∴MO+NO+GO最小值为2,故答案为 2,21.如图,等边三角形ABC内有一点 P,分別连结 AP、BP、CP,若 AP=6,BP=8,CP=10.则S△ABP+S△BPC=24+16.【剖析】 将△ BPC 绕点 B 逆时针旋转 60°后得△ AP ' B ,依据旋转的性质可得∠PBP ′=∠CAB = 60°, BP = BP ′,可得△ BPP ′为等边三角形,可得BP ′= BP = 8=PP ' ,由勾股定理的逆定理可得,△ APP ′是直角三角形,由三角形的面积公式可求解.【解答】解:如图,将△BPC 绕点 B 逆时针旋转 60°后得△ AP ' B ,连结 PP ′,依据旋转的性质可知,旋转角∠ PBP ′=∠ CAB =60°, BP = BP ′,∴△ BPP ′为等边三角形, ∴ BP ′= BP = 8= PP ' ;由旋转的性质可知, AP ′= PC = 10, 在△ BPP ′中, PP ′= 8,AP = 6,由勾股定理的逆定理得,△ APP ′是直角三角形,2×PP ' × AP =24+16∴ S △ABP +S △ BPC = S 四边形 AP' BP = S △ BP' B +S △AP' P =BP +故答案为: 24+1622.无盖圆柱形杯子的睁开图以下图.将一根长为 20cm 的细木筷斜放在该杯子内,木筷露在杯子外面的部分起码有5.cm【剖析】依据题意直接利用勾股定理得出杯子内的筷子长度,从而得出答案.【解答】解:由题意可得:杯子内的筷子长度为: = 15,则筷子露在杯子外面的筷子长度为:20﹣ 15=5( cm ).故答案为: 5.23.以下图,在 Rt △中,∠ = 90°, 是斜边 上的中线, 、 F 分别为、ABC ACBCM AB E MB BC的中点,若 EF =1,则 AB = 4 .【剖析】依据三角形中位线定理求出CM ,依据直角三角形的性质求出AB .【解答】解:∵ E 、 F 分别为 MB 、 BC 的中点,∴ CM =2EF = 2,∵∠ ACB = 90°, CM 是斜边 AB 上的中线,∴ AB =2CM = 4,故答案为: 4.24.如图,在 Rt △ ABC 中,∠ ACB =90°,∠ B =60°, DE 为△ ABC 的中位线,延伸BC 至 F ,使 CF = BC ,连结 FE 并延伸交 AB 于点 M .若 BC = a ,则△ FMB 的周长为.【剖析】在 Rt △中,求出 = 2 , = ,在 Rt △顶用 a 表示出 FE 长,并证ABC AB a ACaFEC明∠ FEC = 30°,从而 EM 转变到 MA 上,依据△ FMB 周长= BF +FE +EM +BM = BF +FE +AM +MB =BF +FE +AB 可求周长.【解答】解:在 Rt △ ABC 中,∠ B = 60°,∴∠ A = 30°,∴ AB =2a , AC = a .∵ DE 是中位线, ∴ CE =a .在 Rt △FEC 中,利用勾股定理求出FE = a ,∴∠ FEC=30°.∴∠ A=∠ AEM=30°,∴EM=AM.△ FMB周长= BF+FE+EM+BM= BF+FE+AM+MB=BF+FE+AB=.故答案为.三.解答题(共9 小题)25.如图,等腰直角三角板如图搁置.直角极点C在直线 m上,分别过点A、B 作 AE⊥直线m于点 E, BD⊥直线 m于点 D.①求证: EC= BD;②若设△ AEC三边分别为a、 b、 c,利用此图证明勾股定理.【剖析】①经过AAS证得△ CAE≌△ BCD,依据全等三角形的对应边相等证得结论;②利用等面积法证得勾股定理.【解答】①证明:∵∠ACB=90°,∴∠ ACE+∠ BCD=90°.∵∠ ACE+∠ CAE=90°,∴∠ CAE=∠ BCD.在△ AEC与△ BCD中,∴△ CAE≌△ BCD( AAS).∴EC=BD;②解:由①知: BD= CE=a CD= AE= b∴S 梯形AEDB=( a+b)(a+b)=a2+ab+ b2.又∵ S 梯形AEDB=S△AEC+S△BCD+S△ABC=ab+ ab+ c2=ab+ c2.∴a2+ab+ b2= ab+ c2.整理,得 a2+b2=c2.26.如图,正方形ABCD,点 E, F 分别在 AD, CD上,且 DE= CF, AF与 BE订交于点 G.(1)求证:BE=AF;(2)若AB= 4,DE= 1,求AG的长.【剖析】( 1)由正方形的性质得出∠BAE=∠ ADF=90°, AB= AD= CD,得出 AE= DF,由SAS证明△ BAE≌△ ADF,即可得出结论;( 2 )由全等三角形的性质得出∠EBA=∠ FAD,得出∠ GAE+∠ AEG=90°,所以∠ AGE=90°,由勾股定理得出BE==5,在Rt△ ABE中,由三角形面积即可得出结果.【解答】( 1)证明:∵四边形ABCD是正方形,∴∠ BAE=∠ ADF=90°, AB= AD=CD,∵DE=CF,∴ AE=DF,在△ BAE和△ ADF中,,∴△ BAE≌△ ADF( SAS),∴BE=AF;( 2)解:由( 1)得:△BAE≌△ADF,∴∠ EBA=∠ FAD,∴∠ GAE+∠ AEG=90°,∴∠ AGE=90°,∵AB=4, DE=1,∴ AE=3,∴ BE===5,在 Rt △ABE中,AB×AE=BE×AG,∴ AG==.27.在6×6 的方格纸中,点A, B, C都在格点上,按要求绘图:( 1)在图( 2)在图1 中找一个格点D,使以点 A, B,C, D为极点的四边形是平行四边形.2 中仅用无刻度的直尺,把线段AB三均分(保存绘图印迹,不写画法).【剖析】(1)由勾股定理得:CD= AB= CD'==;画出图形即可;,BD= AC=BD'' =,AD'= BC= AD''(2)依据平行线分线段成比率定理画出图形即可.【解答】解:( 1)由勾股定理得:CD= AB= CD'=,BD=AC=BD''=,AD'= BC= AD''=;画出图形如图 1 所示;( 2)如图 2 所示.28.某发掘机的底座高 AB = 0.8 米,动臂 BC = 米, CD =米, BC 与 CD 的固定夹角∠= 140°.初始地点如图 1,斗杆极点D 与铲斗极点E 所在直线垂直地面于点 ,BCDDEAM E测得∠ = 70°(表示图 2).工作时如图 3,动臂会绕点 B 转动,当点, , 在CDEBCA B C同向来线时,斗杆极点D 升至最高点(表示图4).( 1)求发掘机在初始地点时动臂BC与AB 的夹角∠ABC 的度数.( 2)问斗杆极点D 的最高点比初始地点高了多少米?(精准到0.1 米)(参照数据:sin50°≈ 0.77 , cos50 °≈ 0.64 ,sin70°≈ 0.94 ,cos70 °≈ 0.34 ,≈1.73 )【剖析】( 1)过点 C 作 CG ⊥ AM 于点 G ,证明 AB ∥ CG ∥ DE ,再依据平行线的性质求得结果;( 2)过点 C 作 CP ⊥ DE 于点 P ,过点 B 作 BQ ⊥ DE 于点 Q ,交 CG 于点 N ,如图 2,经过解直角三角形求得 DE ,过点 D 作 DH ⊥ AM 于点 H ,过点 C 作 CK ⊥ DH 于点 K ,如图 3,经过解直角三角形求得求得DH ,最后即可求得结果.【解答】解:( 1)过点 C 作 CG ⊥ AM 于点 G ,如图 1,∵AB⊥AM, DE⊥AM,∴ AB∥CG∥ DE,∴∠ DCG=180°﹣∠ CDE=110°,∴ BCG=∠ BCD﹣∠ GCD=30°,∴∠ ABC=180°﹣∠ BCG=150°;( 2)过点C作CP⊥DE于点P,过点B作BQ⊥DE于点Q,交CG于点N,如图 2,在 Rt △CPD中,DP=CD×cos70 °≈ 0.51 (米),在Rt △BCN中,CN=BC×cos30 °≈1.04 (米),所以, DE= DP+PQ+QE= DP+CN+AB=(米),如图 3,过点D作DH⊥AM于点H,过点C作CK⊥DH于点K,在 Rt △CKD中,DK=CD×sin50 °≈ 1.16(米),所以, DH= DK+KH=(米),所以, DH﹣ DE=(米),所以,斗杆极点 D的最高点比初始地点高了米.29.在以下图的网格中,每个小正方形的边长为1,每个小正方形的极点叫格点,△ABC 的三个极点均在格点上,以点 A 为圆心的与BC相切于点D,分别交AB、AC于点E、F.(1)求△ABC三边的长;(2)求图中由线段EB、BC、CF及所围成的暗影部分的面积.【剖析】( 1)依据勾股定理即可求得;( 2)依据勾股定理求得2 2 2AD,由(1)得, AB +AC=BC,则∠BAC= 90°,依据S阴=S△ABC﹣ S 扇形AEF即可求得.【解答】解:( 1)== 2 ,ABAC==2 ,BC==4 ;( 2)由( 1)得,2+ 2 =2,AB AC BC∴∠ BAC=90°,连结 AD, AD==2 ,∴ S 阴= S△ABC﹣ S 扇形AEF=AB?AC﹣2π ?AD= 20﹣ 5π.30.已知:△ABC是等腰直角三角形,∠ BAC=90°,将△ ABC绕点C顺时针方向旋转获得△A′ B′C,记旋转角为α,当90°<α<180°时,作A′ D⊥AC,垂足为D,A′ D与B′C交于点 E.(1)如图 1,当∠CA′D= 15°时,作∠A′EC的均分线EF交BC于点F.①写出旋转角α 的度数;②求证: EA′+EC= EF;( 2)如图 2,在( 1)的条件下,设P 是直线 A′D 上的一个动点,连结PA, PF,若 AB =,求线段 PA+PF的最小值.(结果保存根号)【剖析】( 1)①解直角三角形求出∠A′ CD即可解决问题.②连结 A′ F,设 EF交 CA′于点 O.在 EF时截取 EM=EC,连结 CM.第一证明△ CFA′是等边三角形,再证明△FCM≌△ A′CE( SAS),即可解决问题.( 2)如图 2 中,连结A′F,PB′,AB′,作B′M⊥AC交AC的延伸线于M.证明△A′EF≌△ A′ EB′,推出 EF=EB′,推出 B′,F 对于 A′ E 对称,推出 PF= PB′,推出 PA+PF=PA+PB′≥ AB′,求出 AB′即可解决问题.【解答】( 1)①解:旋转角为 105°.原因:如图 1 中,∵A′ D⊥ AC,∴∠ A′ DC=90°,∵∠CA′ D=15°,∴∠ A′CD=75°,∴∠ ACA′=105°,∴旋转角为 105°.②证明:连结A′ F,设 EF交 CA′于点 O.在 EF时截取 EM= EC,连结 CM.∵∠ CED=∠ A′CE+∠ CA′E=45°+15°=60°,∴∠ CEA′=120°,∵FE均分∠ CEA′,∴∠ CEF=∠ FEA′=60°,∵∠ FCO=180°﹣45°﹣75°=60°,∴∠ FCO=∠ A′EO,∵∠ FOC=∠ A′ OE,∴△ FOC∽△ A′OE,∴=,∴=,∵∠ COE=∠ FOA′,∴△ COE∽△ FOA′,∴∠ FA′ O=∠ OEC=60°,∴△ A′ OF是等边三角形,∴CF=CA′= A′ F,∵EM=EC,∠ CEM=60°,∴△ CEM是等边三角形,∠ECM=60°, CM= CE,∵∠ FCA′=∠ MCE=60°,∴∠ FCM=∠ A′CE,∴△ FCM≌△ A′CE( SAS),∴ FM=A′ E,∴ CE+A′ E= EM+FM= EF.( 2)解:如图 2 中,连结A′ F, PB′, AB′,作 B′M⊥ AC交 AC的延伸线于M.由②可知,∠ EA′ F=′ EA′ B′=75°, A′E= A′ E, A′ F=A′ B′,∴△ A′ EF≌△ A′ EB′,∴EF=EB′,∴B′, F 对于 A′ E 对称,∴PF=PB′,∴PA+PF= PA+PB′≥ AB′,在 Rt △CB′M中,CB′=BC=AB=2,∠ MCB′=30°,∴ B′ M= CB′=1, CM=,∴AB′===.∴ PA+PF的最小值为.31.如图 1,△ABC中,CA=CB,∠ACB=α,D为△ABC内一点,将△CAD绕点C按逆时针方向旋转角α 获得△ CBE,点A,D的对应点分别为点B,E,且 A,D,E 三点在同向来线上.( 1)填空:∠CDE=(用含α 的代数式表示);( 2)如图 2,若α= 60°,请补全图形,再过点C作 CF⊥ AE于点 F,而后研究线段CF,AE, BE之间的数目关系,并证明你的结论;(3)若α= 90°,AC= 5 ,且点G知足∠AGB= 90°,BG= 6,直接写出点C到AG的距离.【剖析】( 1)由旋转的性质可得CD= CE,∠ DCE=α,即可求解;( 2)由旋转的性质可得AD= BE,CD= CE,∠ DCE=60°,可证△ CDE是等边三角形,由等边三角形的性质可得DF= EF=,即可求解;( 3)分点G在AB的上方和AB的下方两种状况议论,利用勾股定理可求解.【解答】解:( 1)∵将△绕点按逆时针方向旋转角α 获得△CADCCBE ∴△ ACD≌△ BCE,∠ DCE=α∴CD=CE∴∠ CDE=故答案为:(2)AE=BE+CF原因以下:如图,∵将△ CAD绕点 C按逆时针方向旋转角60°获得△CBE∴△ ACD≌△ BCE∴AD=BE, CD=CE,∠ DCE=60°∴△ CDE是等边三角形,且 CF⊥ DE∴DF=EF=∵AE=AD+DF+EF∴AE=BE+CF( 3)如图,当点G在 AB上方时,过点C作 CE⊥ AG于点 E,∵∠ ACB=90°, AC= BC=5,∴∠ CAB=∠ ABC=45°, AB=10∵∠ ACB=90°=∠ AGB∴点 C,点 G,点 B,点 A四点共圆∴∠ AGC=∠ ABC=45°,且 CE⊥ AG∴∠ AGC=∠ ECG=45°∴CE=GE∵AB=10, GB=6,∠ AGB=90°∴AG==8∵AC2= AE2+CE2,。
2019届中考数学复习 专题26 直角三角形、勾股定理及逆定理试题(A卷,含解析).doc
2019届中考数学复习专题26 直角三角形、勾股定理及逆定理试题(A卷,含解析)一、选择题1.(山东东营,9,3分)在△ABC中,AB=10,AC=BC边上的高AD=6,则另一边BC等于()A.10 B.8 C.6或10 D.8或10【答案】C【逐步提示】本题考查勾股定理,分类讨论思想.根据题意画出相应的图形,然后利用勾股定理分别求出BC的长.【详细解答】解:如图①所示,在Rt△ABD中,8,在Rt△ACD中,2,∴BC=BD+CD=8+2=10.如图②所示,同理求出BD=8,CD=2,∴BC=BD-CD=8-2=6.故选C.【解后反思】解答本题易出现漏解的错误,即只考虑高在三角形内部的情况,而忽视高在外部的情况,而造成漏解.【关键词】勾股定理;分类讨论思想2.(山东潍坊,7,3分)木杆AB斜靠在墙壁上,当木杆的上端A沿墙壁NO竖直下滑时,木杆的底端B也随之沿射线OM方向滑动,下列各图中用虚线画出木杆中点P随之下落的路线,其中正确的是()【答案】D【逐步提示】本题考查了直角三角形的性质,解题的关键是掌握能够观察到图中的OP是斜边AB上的中线,利用直角三角形斜边上的中线等于斜边的一半,可得OP的长度始终保持不变,然后结合图形可选出答案.【详细解答】解:连接OP,∵△AOB为直角三角形,∴12OP AB=.故点P下落路线为以O为圆心,OP为半径的一段圆弧,故选择D .【解后反思】本题在解答时需掌握直角三角形斜边上的中线等于斜边的一半,从而OP的长度不变,本题是来源于青岛版八下课本.【关键词】直角三角形;14.3.(山东省烟台市,14,3分)如图,O为数轴原点,A,B两点分别对应-3,3,作腰长为4的等腰△ABC,连接OC ,以O 为圆心,OC 长为半径画弧交数轴于点M ,则点M 对应的实数为 .【答案】7 【逐步提示】利用等腰△ABC 三线合一定理判断出AB OC ⊥,然后利用勾股定理即可求出OM 的长,则点M 对应的实数即可求出.【详细解答】解: ∵A ,B 两点分别对应-3,3,即OA=OB ,又∵△ABC 为等腰三角形,∴AB OC ⊥, ∴ OM=OC=2234-=7 ,故答案为 7 .【解后反思】1.本题考查数轴与点一一对应关系,需要借助数轴和勾股定理判断出字母对应的数值.2.在数轴上,数轴形象地反应了数与点之间的关系,数轴上的点与实数之间是一一对应的,借助于数与形的相互转化来解决数学问题,数轴具有如下作用:(1)利用数轴可以用点直观地表示数.(2)利用数轴可以比较数的大小.(3)利用数轴可以解决绝对值问题.【关键词】等腰三角形;勾股定理;数轴;数形结合思想;4.5. (浙江杭州,9,3分)已知直角三角形纸片的两条直角边长分别为m 和n (m <n ),过锐角顶点把该纸片剪成两个三角形.若这两个三角形都是等腰三角形,则( )A .m 2+2mn +n 2=0B .m 2-2mn +n 2=0C .m 2+2mn -n 2=0D .m 2-2mn -n 2=0【答案】C .【逐步提示】本题考查了直角三角形从一个顶点出发的一条射线将原三角形分成两个等腰三角形条件下的两条直角边的数量关系,解题的关键是画出符合题意的图形后,利用数形结合思想将两条直角边m 、n 及其代数式表示直角三角形的三边后用勾股定理建立等量关系.在解题时,首先画出符合题意的图形,利用斜边的垂直平分线与较长直角边的交点,得到一个等腰直角三角形后就产生了两个等腰三角形;再将等腰直角三角形的斜边用n -m 表示;最后由勾股定理,得到m 、n 的等量关系,化简后即可选择正确答案.【解析】如下图,在△ABC 中,∠C =90°,AC =m ,BC =n ,过点A 的射线AD 交BC 于点D ,且将△ABC 分成两个等腰三角形:△ACD 和△ADB ,则AC =CD =m ,AD =DB =n -m .在Rt △ACD 中,由勾股定理,得m 2+m 2=(n -m )2,2m 2=m 2-2mn +n 2,从而m 2+2mn -n 2=0,故选择C .n -mn -mm mDBC A【解后反思】解答本题的关键在于将题意用图形语言表示出来,所以说几何画图是学习好数学的基本功之一.在本题中,两个等三角形一定有一个是等腰直角三角形,另一个等腰三角形也一定是顶角为135°(45°的邻补角)的等腰三角形,此时利用线段的垂直平分线上的点到线段的两个端点距离相等来画原三角形斜边的中垂线即可.在解决了画图关后,如何用m 、n 的代数式表示等腰直角三角形的斜边就容易得多了,最后利用勾股定理不难探索出m 、n 的等量关系.综上所述,对于数学的学习,尤其是几何题,将文字语言、符号语言、图形语言三者之间的相互转换,就显得尤为重要了.【关键词】直角三角形;等腰三角形;勾股定理(淅江丽水,7,3分)如图,▱ABCD 的对角线AC ,BD 交于点O ,已知AD=8,BD=12,AC=6,则△OBC的周长为A.13B.17C.20D.26【答案】【逐步提示】根据平行四边形的性质得到BC 及OB+OC 的长,从而求得△OBC 的周长. 【解析】由题意得BC=AD=8, OB+OC=12(AC+BD)=9,所以△OBC 的周长=8+9=17,故选择B. 【解后反思】平行四边形的对角线互相平分,平行四边形的对边相等,对角相等.【关键词】平行四边形的性质;;;;6.(浙江衢州,5,3分)如图,在▱ABCD 中,M 是BC 延长线上的一点,若∠A =135°,则∠MCD 的度数是( )A.45°B.55°C.65°D.75°【答案】A.【逐步提示】利用平行四边形和平行线的性质即求.【解析】在▱ABCD 中,∵AD ∥BC ,∠A =135°,∴∠B =45°,又∵AB ∥D C ,∴∠MCD =∠B =45°,故选择A . 【解后反思】利用平行四边形的性质可以寻求线的平行关系,而平行线可以转换角的关系.【关键词】平行线的性质、平行四边形的性质、角的计算.MDC B A二、填空题1. (天津,18,3分)如图,在每个小正方形的边长为1的网格中,A ,E 为格点,B ,F 为小正方形边的中点,C 为AE ,BF 的延长线的交点.(I )AE 的长等于 .(II )若点P 在线段AC 上,点Q 在线段BC 上,且满足AP =PQ =QB ,请在如图所示的网格中,用无刻度尺的直尺,画出线段PQ ,并简要说明P ,Q 的位置是如何找到的(不要求证明) .【答案】(II)如图,AC 与网格线相交,得点P ;取格点M ,连接AM 并延长与BC 相交,得点Q .连接PQ ,线段PQ 即为所求.【逐步提示】本题考查了勾股定理,直角三角形的性质,矩形的性质,三角函数等知识.解题的关键是分析题意并构造出如图所示的三个全等的三角形.在解答本题时,应先从结论AP =PQ =PB 出发,通过构造全等三角形,分析出点P 与点Q 的形成过程,由此得出用直尺画出点P 与点Q 的方法.【解析】(I)AE(II)如图,过A .Q 作铅垂线,过A .B .P 作水平线,构造三个全等且两直角边比为1:2的直角三角形.设BH =PK =QG =a ,则QH =PG =AK =2a .则①BN =BH +PG +PK =a +2a +a =4a ;②QR =QG +AK =a +2a =3a ;③AR =KP +PG =a +2a =3a .在网格中,∵BN =6,BN =4a ,∴a =1.5,∴AK =2a =3,过点K 的水平线与AC 的交点即为点P .∵QR =AR =2a ,∠ARQ =90°,∴∠RAQ =45°,∴点Q 在AM 的延长线上,由此可确定点Q .【解后反思】在解答有关格点的问题时,应注意分析已作图形的特点,通过逆推找出用于直尺作图的网格点或直线的交点,从而得出作图的过程.【关键词】勾股定理;矩形的性质;全等三角形的性质;格点作图;2.(浙江舟山,16,4分)如图,在直角坐标系中,点A.B分别在x轴、y轴上,点A的坐标为(-1,0),∠ABO=30°,线段PQ的端点P从点O出发,沿△OBA的边按O→B→A→O运动一周,同时另一端点Q随之在x轴的非负半轴上运动,如果PQ=3,那么当点P运动一周时,点Q运动的总路程为 .【答案】4【逐步提示】本题考查了解直角三角形的应用,解题的关键是根据题意能将点Q运动的总路程正确分解成几段路径之和. 根据已知条件在Rt△AOB中求出OB=3,AB=2. 设AB的中点为C,当点P运动一周时,点Q运动的总路程可以分解为点P从“O→B”、“B→C”、“C→A”、“A→O”四段路径之和.【解析】∵A(-1,0),∴OA=1.在Rt△AOB中,∠AOB=90°,∠ABO=30°,∴AB=2,OB= 3.设AB的中点为C.当点P从点O→B运动时,点Q运动的路径长(自右到左)为3;当点P从点B→C运动时,点Q运动的路径长(自左到右)为1;当点P从点C→A运动时,点Q运动的路径长(自右到左)为2-3;当点P从点A→O运动时,点Q运动的路径长(自左到右)为1;因此当点P运动一周时,点Q运动的总路程为3+1+2-3+1=4,故答案为4 . 【解后反思】本题的难点是点P在B→A运动过程中,点Q运动的路径长,化解该难点的方法一是抓住“AB的中点C”这个特殊的零界点,而是关注点P到达A.C.B这三个特殊点时,线段AQ相应的长度,由此可确定点Q 运动的路径长.【关键词】特殊角三角函数值的运用;点的位置的确定;实验操作题型;动线题型3.(四川省广安市,24,8分)在数学活动课上,老师要求学生在5×5的正方形ABCD网格中(小正方形的边长为1)画直角三角形,要求三个顶点都在格点上,而且三边与AB或AD都不平行,画四种图形,并直接写出其周长(所画图形相似的只算一种).周长=周长=周长=周长=【逐步提示】本题考查了直角三角形的画法及勾股定理的运用,解题的关键是利用格点画出90°角.本题中,可以画出的直角三角形的两条直角边可以有以下几种关系:两直角边相等、一条直角边等于另一条直角边的2倍、一条直角边等于另一条直角边的3倍、一条直角边等于另一条直角边的4倍等.【详细解答】解:第一种(四选一):周长=周长=周长=周长=第二种(二选一):周长=周长=5第三种:第四种:第五种:周长=周长=周长=【解后反思】(1)在网格中通过画两个45°角的和画出直角;(2)相同边长的正方形网格,如果线段在网格线上,可以通过数网格得到线段的长度,如果线段不在网格线上,还需要结合勾股定理解决问题.【关键词】直角三角形;勾股定理;网格数学题型。
2019年全国各地中考数学试题分类汇编专题5 二元一次方程(组)及其应用(含解析)
二元一次方程(组)及其应用一.选择题1. (2019•天津•3分)方程组⎩⎨⎧=-=+1126723y x y x ,的解是A.⎩⎨⎧=-=51y xB.⎩⎨⎧==21y xC.⎩⎨⎧==1-3y xD.⎪⎩⎪⎨⎧==212y x【答案】D【解析】用加减消元法,⎩⎨⎧=-=+②①1126723y x y x①+②=1172623+=-++y x y x189=x 2=x 代入2=x 到①中,726=+y 则21=y ,故选D.2. (2019•广西贺州•3分)已知方程组,则2x +6y 的值是( ) A .﹣2B .2C .﹣4D .4【分析】两式相减,得x +3y =﹣2,所以2(x +3y )=﹣4,即2x +6y =﹣4. 【解答】解:两式相减,得x +3y =﹣2, ∴2(x +3y )=﹣4, 即2x +6y =﹣4, 故选:C .【点评】本题考查了二元一次方程组,对原方程组进行变形是解题的关键.二.填空题1. (2019•河北•4分)勘测队按实际需要构建了平面直角坐标系,并标示了A ,B ,C 三地的坐标,数据如图(单位:km ).笔直铁路经过A ,B 两地. (1)A ,B 间的距离为 km ;(2)计划修一条从C 到铁路AB 的最短公路l ,并在l 上建一个维修站D ,使D 到A ,C 的距离相等,则C ,D 间的距离为 km .【解答】解:(1)由A、B两点的纵坐标相同可知:AB∥x轴,∴AB=12﹣(﹣8)20;(2)过点C作l⊥AB于点E,连接AC,作AC的垂直平分线交直线l于点D,由(1)可知:CE=1﹣(﹣17)=18,AE=12,设CD=x,∴AD=CD=x,由勾股定理可知:x2=(18﹣x)2+122,∴解得:x=13,∴CD=13,故答案为:(1)20;(2)13;2. (2019•江苏宿迁•3分)下面3个天平左盘中“△”“□”分别表示两种质量不同的物体,则第三个天平右盘中砝码的质量为10.【分析】设“△”的质量为x,“□”的质量为y,由题意列出方程:,解得:,得出第三个天平右盘中砝码的质量=2x+y=10.【解答】解:设“△”的质量为x,“□”的质量为y,由题意得:,解得:,∴第三个天平右盘中砝码的质量=2x+y=2×4+2=10;故答案为:10.【点评】本题考查了二元一次方程组的应用以及二元一次方程组的解法;设出未知数,根据题意列出方程组是解题的关键.3. (2019•四川自贡•4分)某活动小组购买了4个篮球和5个足球,一共花费了466元,其中篮球的单价比足球的单价多4元,求篮球的单价和足球的单价.设篮球的单价为x元,足球的单价为y元,依题意,可列方程组为.【分析】根据题意可得等量关系:①4个篮球的花费+5个足球的花费=466元,②篮球的单价﹣足球的单价=4元,根据等量关系列出方程组即可.【解答】解:设篮球的单价为x元,足球的单价为y元,由题意得:,故答案为:,【点评】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.三.解答题1. (2019•贵阳•10分)某文具店最近有A,B两款毕业纪念册比较畅销,近两周的销售情况是:第一周A款销售数量是15本,B款销售数量是10本,销售总价是230元;第二周A 款销售数量是20本,B款销售数量是10本,销售总价是280元.(1)求A,B两款毕业纪念册的销售单价;(2)若某班准备用不超过529元购买这两种款式的毕业纪念册共60本,求最多能够买多少本A款毕业纪念册.【分析】(1)直接利用第一周A款销售数量是15本,B款销售数量是10本,销售总价是230元;第二周A款销售数量是20本,B款销售数量是10本,销售总价是280元,分别得出方程求出答案;(2)利用不超过529元购买这两种款式的毕业纪念册共60本,得出不等式求出答案.【解答】解:(1)设A款毕业纪念册的销售为x元,B款毕业纪念册的销售为y元,根据题意可得:,解得:,答:A款毕业纪念册的销售为10元,B款毕业纪念册的销售为8元;(2)设能够买a本A款毕业纪念册,则购买B款毕业纪念册(60﹣a)本,根据题意可得:10a+8(60﹣a)≤529,解得:a≤24.5,则最多能够买24本A款毕业纪念册.【点评】此题主要考查了一元一次不等式的应用以及二元一次方程组的应用,正确得出等量关系是解题关键.2. (2019•海南•10分)时下正是海南百香果丰收的季节,张阿姨到“海南爱心扶贫网”上选购百香果,若购买2千克“红土”百香果和1千克“黄金”百香果需付80元,若购买1千克“红土”百香果和3千克“黄金”百香果需付115元.请问这两种百香果每千克各是多少元?【分析】设“红土”百香果每千克x元,“黄金”百香果每千克y元,由题意列出方程组,解方程组即可.【解答】解:设“红土”百香果每千克x元,“黄金”百香果每千克y元,由题意得:,解得:;答:“红土”百香果每千克25元,“黄金”百香果每千克30元.【点评】本题考查了二元一次方程组的应用以及二元一次方程组的解法;根据题意列出方程组是解题的关键.3. (2019•河南•9分)学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A奖品和2个B奖品共需120元;购买5个A奖品和4个B奖品共需210元.(1)求A,B两种奖品的单价;(2)学校准备购买A,B两种奖品共30个,且A奖品的数量不少于B奖品数量的.请设计出最省钱的购买方案,并说明理由.【分析】(1)设A的单价为x元,B的单价为y元,根据题意列出方程组,即可求解;(2)设购买A奖品z个,则购买B奖品为(30﹣z)个,购买奖品的花费为W元,根据题意得到由题意可知,z≥(30﹣z),W=30z+15(30﹣z)=450+15z,根据一次函数的性质,即可求解;【解答】解:(1)设A的单价为x元,B的单价为y元,根据题意,得,∴,∴A的单价30元,B的单价15元;(2)设购买A奖品z个,则购买B奖品为(30﹣z)个,购买奖品的花费为W元,由题意可知,z≥(30﹣z),∴z≥,W=30z+15(30﹣z)=450+15z,当z=8时,W有最小值为570元,即购买A奖品8个,购买B奖品22个,花费最少;【点评】本题考查二元一次方程组的应用,一次函数的应用;能够根据条件列出方程组,将最优方案转化为一次函数性质解题是关键.4. (2 019·江苏盐城·10分)体育器材室有A、B两种型号的实心球,1只A型球与1只B 型球的质量共7千克,3只A型球与1只B型球的质量共13千克.(1)每只A型球、B型球的质量分别是多少千克?(2)现有A型球、B型球的质量共17千克,则A型球、B型球各有多少只?5. (2019•广东省广州市•9分)解方程组:.【分析】运用加减消元解答即可.【解答】解:,②﹣①得,4y=2,解得y=2,把y=2代入①得,x﹣2=1,解得x=3,故原方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.6. (2019•甘肃省庆阳市•6分)小甘到文具超市去买文具.请你根据如图中的对话信息,求中性笔和笔记本的单价分别是多少元?【分析】根据对话分别利用总钱数得出等式求出答案.【解答】解:设中性笔和笔记本的单价分别是x 元、y 元,根据题意可得:,解得:,答:中性笔和笔记本的单价分别是2元、6元.【点评】此题主要考查了二元一次方程组的应用,正确得出等量关系是解题关键.7.(2019•天津•10分)甲、乙两个批发店销售同一种苹果,在甲批发店,不论一次购买数量是多少,价格均为6元/kg 。
2019年各地中考解析版数学试卷汇编:直角三角形与勾股定理 (Word版 含解析)
直角三角形与勾股定理一.选择题(共12小题)1.如图,四边形ABCD内接于⊙O,AE⊥CB交CB的延长线于点E,若BA平分∠DBE,AD=5,CE=,则AE=()A.3 B.3C.4D.22.如图,取两根等宽的纸条折叠穿插,拉紧,可得边长为2的正六边形.则原来的纸带宽为()A.1 B.C.D.23.如图1,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度为()A.B.C.D.4.勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出()A.直角三角形的面积B.最大正方形的面积C.较小两个正方形重叠部分的面积D.最大正方形与直角三角形的面积和5.如图,平面直角坐标系中,A(﹣8,0),B(﹣8,4),C(0,4),反比例函数y=的图象分别与线段AB,BC交于点D,E,连接DE.若点B关于DE的对称点恰好在OA上,则k=()A.﹣20 B.﹣16 C.﹣12 D.﹣86.如图,正方形ABCD中,点E、F分别在边CD,AD上,BE与CF交于点G.若BC=4,DE =AF=1,则GF的长为()A.B.C.D.7.如图,在直角三角形ABC中,∠C=90°,AC=BC,E是AB的中点,过点E作AC和BC 的垂线,垂足分别为点D和点F,四边形CDEF沿着CA方向匀速运动,点C与点A重合时停止运动,设运动时间为t,运动过程中四边形CDEF与△ABC的重叠部分面积为S.则S关于t的函数图象大致为()A.B.C.D.8.如图,在Rt△ABC中,∠BAC=90°,∠B=36°,AD是斜边BC上的中线,将△ACD沿AD对折,使点C落在点F处,线段DF与AB相交于点E,则∠BED等于()A.120°B.108°C.72°D.36°9.如图,在△ABC中,∠C=90°,AC=12,AB的垂直平分线EF交AC于点D,连接BD,若cos∠BDC=,则BC的长是()A.10 B.8 C.4D.210.满足下列条件时,△ABC不是直角三角形的为()A.AB=,BC=4,AC=5 B.AB:BC:AC=3:4:5C.∠A:∠B:∠C=3:4:5 D.|cos A﹣|+(tan B﹣)2=0 11.如图,点E在正方形ABCD的边AB上,若EB=1,EC=2,那么正方形ABCD的面积为()A.B.3 C.D.512.如图,在△ABC中,∠B=50°,CD⊥AB于点D,∠BCD和∠BDC的角平分线相交于点E,F为边AC的中点,CD=CF,则∠ACD+∠CED=()A.125°B.145°C.175°D.190°二.填空题(共12小题)13.在△ABC中,∠A=50°,∠B=30°,点D在AB边上,连接CD,若△ACD为直角三角形,则∠BCD的度数为度.14.公元3世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图”.如图,设勾a=6,弦c=10,则小正方形ABCD的面积是.15.如图,在△ABC中,∠BAC=90°,AB=AC=10cm,点D为△ABC内一点,∠BAD=15°,AD=6cm,连接BD,将△ABD绕点A按逆时针方向旋转,使AB与AC重合,点D的对应点为点E,连接DE,DE交AC于点F,则CF的长为cm.16.如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD的方向平移得到△A'B'D',分别连接A'C,A'D,B'C,则A'C+B'C的最小值为.17.把两个同样大小含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个三角尺的直角顶点重合于点A,且另外三个锐角顶点B,C,D在同一直线上.若AB=2,则CD=.18.如图,为测量旗杆AB的高度,在教学楼一楼点C处测得旗杆顶部的仰角为60°,在四楼点D处测得旗杆顶部的仰角为30°,点C与点B在同一水平线上.已知CD=9.6m,则旗杆AB的高度为m.19.如图,在▱ABCD中,E、F是对角线AC上两点,AE=EF=CD,∠ADF=90°,∠BCD=63°,则∠ADE的大小为.20.问题背景:如图1,将△ABC绕点A逆时针旋转60°得到△ADE,DE与BC交于点P,可推出结论:PA+PC=PE.问题解决:如图2,在△MNG中,MN=6,∠M=75°,MG=.点O是△MNG内一点,则点O到△MNG三个顶点的距离和的最小值是.21.如图,等边三角形ABC内有一点P,分別连结AP、BP、CP,若AP=6,BP=8,CP=10.则S△ABP+S△BPC=.22.无盖圆柱形杯子的展开图如图所示.将一根长为20cm的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有cm.23.如图所示,在Rt△ABC中,∠ACB=90°,CM是斜边AB上的中线,E、F分别为MB、BC 的中点,若EF=1,则AB=.24.如图,在Rt△ABC中,∠ACB=90°,∠B=60°,DE为△ABC的中位线,延长BC至F,使CF=BC,连接FE并延长交AB于点M.若BC=a,则△FMB的周长为.三.解答题(共9小题)25.如图,等腰直角三角板如图放置.直角顶点C在直线m上,分别过点A、B作AE⊥直线m于点E,BD⊥直线m于点D.①求证:EC=BD;②若设△AEC三边分别为a、b、c,利用此图证明勾股定理.26.如图,正方形ABCD,点E,F分别在AD,CD上,且DE=CF,AF与BE相交于点G.(1)求证:BE=AF;(2)若AB=4,DE=1,求AG的长.27.在6×6的方格纸中,点A,B,C都在格点上,按要求画图:(1)在图1中找一个格点D,使以点A,B,C,D为顶点的四边形是平行四边形.(2)在图2中仅用无刻度的直尺,把线段AB三等分(保留画图痕迹,不写画法).28.某挖掘机的底座高AB=0.8米,动臂BC=1.2米,CD=1.5米,BC与CD的固定夹角∠BCD=140°.初始位置如图1,斗杆顶点D与铲斗顶点E所在直线DE垂直地面AM于点E,测得∠CDE=70°(示意图2).工作时如图3,动臂BC会绕点B转动,当点A,B,C在同一直线时,斗杆顶点D升至最高点(示意图4).(1)求挖掘机在初始位置时动臂BC与AB的夹角∠ABC的度数.(2)问斗杆顶点D的最高点比初始位置高了多少米?(精确到0.1米)(参考数据:sin50°≈0.77,cos50°≈0.64,sin70°≈0.94,cos70°≈0.34,≈1.73)29.在如图所示的网格中,每个小正方形的边长为1,每个小正方形的顶点叫格点,△ABC 的三个顶点均在格点上,以点A为圆心的与BC相切于点D,分别交AB、AC于点E、F.(1)求△ABC三边的长;(2)求图中由线段EB、BC、CF及所围成的阴影部分的面积.30.已知:△ABC是等腰直角三角形,∠BAC=90°,将△ABC绕点C顺时针方向旋转得到△A′B′C,记旋转角为α,当90°<α<180°时,作A′D⊥AC,垂足为D,A′D与B′C交于点E.(1)如图1,当∠CA′D=15°时,作∠A′EC的平分线EF交BC于点F.①写出旋转角α的度数;②求证:EA′+EC=EF;(2)如图2,在(1)的条件下,设P是直线A′D上的一个动点,连接PA,PF,若AB =,求线段PA+PF的最小值.(结果保留根号)31.如图1,△ABC中,CA=CB,∠ACB=α,D为△ABC内一点,将△CAD绕点C按逆时针方向旋转角α得到△CBE,点A,D的对应点分别为点B,E,且A,D,E三点在同一直线上.(1)填空:∠CDE=(用含α的代数式表示);(2)如图2,若α=60°,请补全图形,再过点C作CF⊥AE于点F,然后探究线段CF,AE,BE之间的数量关系,并证明你的结论;(3)若α=90°,AC=5,且点G满足∠AGB=90°,BG=6,直接写出点C到AG的距离.32.如图,在平面直角坐标系中,四边形OABC的顶点坐标分别为O(0,0),A(12,0),B (8,6),C(0,6).动点P从点O出发,以每秒3个单位长度的速度沿边OA向终点A 运动;动点Q从点B同时出发,以每秒2个单位长度的速度沿边BC向终点C运动.设运动的时间为t秒,PQ2=y.(1)直接写出y关于t的函数解析式及t的取值范围:;(2)当PQ=3时,求t的值;(3)连接OB交PQ于点D,若双曲线y=(k≠0)经过点D,问k的值是否变化?若不变化,请求出k的值;若变化,请说明理由.33.已知AB是⊙O的直径,AM和BN是⊙O的两条切线,DC与⊙O相切于点E,分别交AM、BN于D、C两点.(1)如图1,求证:AB2=4AD•BC;(2)如图2,连接OE并延长交AM于点F,连接CF.若∠ADE=2∠OFC,AD=1,求图中阴影部分的面积.参考答案与试题解析一.选择题(共12小题)1.如图,四边形ABCD内接于⊙O,AE⊥CB交CB的延长线于点E,若BA平分∠DBE,AD=5,CE=,则AE=()A.3 B.3C.4D.2【分析】连接AC,如图,根据圆内接四边形的性质和圆周角定理得到∠1=∠CDA,∠2=∠3,从而得到∠3=∠CDA,所以AC=AD=5,然后利用勾股定理计算AE的长.【解答】解:连接AC,如图,∵BA平分∠DBE,∴∠1=∠2,∵∠1=∠CDA,∠2=∠3,∴∠3=∠CDA,∴AC=AD=5,∵AE⊥CB,∴∠AEC=90°,∴AE===2.故选:D.2.如图,取两根等宽的纸条折叠穿插,拉紧,可得边长为2的正六边形.则原来的纸带宽为()A.1 B.C.D.2【分析】根据正六边的性质,正六边形由6个边长为2的等边三角形组成,其中等边三角形的高为原来的纸带宽度,然后求出等边三角形的高即可.【解答】解:边长为2的正六边形由6个边长为2的等边三角形组成,其中等边三角形的高为原来的纸带宽度,所以原来的纸带宽度=×2=.故选:C.3.如图1,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度为()A.B.C.D.【分析】设DE=x,则AD=8﹣x,由长方体容器内水的体积得出方程,解方程求出DE,再由勾股定理求出CD,过点C作CF⊥BG于F,由△CDE∽△BCF的比例线段求得结果即可.【解答】解:过点C作CF⊥BG于F,如图所示:设DE=x,则AD=8﹣x,根据题意得:(8﹣x+8)×3×3=3×3×6,解得:x=4,∴DE=4,∵∠E=90°,由勾股定理得:CD=,∵∠BCE=∠DCF=90°,∴∠DCE=∠BCF,∵∠DEC=∠BFC=90°,∴△CDE∽△BCF,∴,即,∴CF=.故选:A.4.勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出()A.直角三角形的面积B.最大正方形的面积C.较小两个正方形重叠部分的面积D.最大正方形与直角三角形的面积和【分析】根据勾股定理得到c2=a2+b2,根据正方形的面积公式、长方形的面积公式计算即可.【解答】解:设直角三角形的斜边长为c,较长直角边为b,较短直角边为a,由勾股定理得,c2=a2+b2,阴影部分的面积=c2﹣b2﹣a(c﹣b)=a2﹣ac+ab=a(a+b﹣c),较小两个正方形重叠部分的长=a﹣(c﹣b),宽=a,则较小两个正方形重叠部分底面积=a(a+b﹣c),∴知道图中阴影部分的面积,则一定能求出较小两个正方形重叠部分的面积,故选:C.5.如图,平面直角坐标系中,A(﹣8,0),B(﹣8,4),C(0,4),反比例函数y=的图象分别与线段AB,BC交于点D,E,连接DE.若点B关于DE的对称点恰好在OA上,则k=()A.﹣20 B.﹣16 C.﹣12 D.﹣8【分析】根据A(﹣8,0),B(﹣8,4),C(0,4),可得矩形的长和宽,易知点D的横坐标,E的纵坐标,由反比例函数的关系式,可用含有k的代数式表示另外一个坐标,由三角形相似和对称,可用求出AF的长,然后把问题转化到三角形ADF中,由勾股定理建立方程求出k的值.【解答】解:过点E作EG⊥OA,垂足为G,设点B关于DE的对称点为F,连接DF、EF、BF,如图所示:则△BDE≌△FDE,∴BD=FD,BE=FE,∠DFE=∠DBE=90°易证△ADF∽△GFE∴,∵A(﹣8,0),B(﹣8,4),C(0,4),∴AB=OC=EG=4,OA=BC=8,∵D、E在反比例函数y=的图象上,∴E(,4)、D(﹣8,)∴OG=EC=,AD=﹣,∴BD=4+,BE=8+∴,∴AF=,在Rt△ADF中,由勾股定理:AD2+AF2=DF2即:(﹣)2+22=(4+)2解得:k=﹣12故选:C.6.如图,正方形ABCD中,点E、F分别在边CD,AD上,BE与CF交于点G.若BC=4,DE =AF=1,则GF的长为()A.B.C.D.【分析】证明△BCE≌△CDF(SAS),得∠CBE=∠DCF,所以∠CGE=90°,根据等角的余弦可得CG的长,可得结论.【解答】解:正方形ABCD中,∵BC=4,∴BC=CD=AD=4,∠BCE=∠CDF=90°,∵AF=DE=1,∴DF=CE=3,∴BE=CF=5,在△BCE和△CDF中,,∴△BCE≌△CDF(SAS),∴∠CBE=∠DCF,∵∠CBE+∠CEB=∠ECG+∠CEB=90°=∠CGE,cos∠CBE=cos∠ECG=,∴,CG=,∴GF=CF﹣CG=5﹣=,故选:A.7.如图,在直角三角形ABC中,∠C=90°,AC=BC,E是AB的中点,过点E作AC和BC 的垂线,垂足分别为点D和点F,四边形CDEF沿着CA方向匀速运动,点C与点A重合时停止运动,设运动时间为t,运动过程中四边形CDEF与△ABC的重叠部分面积为S.则S 关于t的函数图象大致为()A.B.C.D.【分析】根据已知条件得到△ABC是等腰直角三角形,推出四边形EFCD是正方形,设正方形的边长为a,当移动的距离<a时,如图1S=正方形的面积﹣△EE′H的面积=a2﹣t2;当移动的距离>a时,如图2,S=S△AC′H=(2a﹣t)2=t2﹣2at+2a2,根据函数关系式即可得到结论;【解答】解:∵在直角三角形ABC中,∠C=90°,AC=BC,∴△ABC是等腰直角三角形,∵EF⊥BC,ED⊥AC,∴四边形EFCD是矩形,∵E是AB的中点,∴EF=AC,DE=BC,∴EF=ED,∴四边形EFCD是正方形,设正方形的边长为a,如图1当移动的距离<a时,S=正方形的面积﹣△EE′H的面积=a2﹣t2;当移动的距离>a时,如图2,S=S△AC′H=(2a﹣t)2=t2﹣2at+2a2,∴S关于t的函数图象大致为C选项,故选:C.8.如图,在Rt△ABC中,∠BAC=90°,∠B=36°,AD是斜边BC上的中线,将△ACD沿AD对折,使点C落在点F处,线段DF与AB相交于点E,则∠BED等于()A.120°B.108°C.72°D.36°【分析】根据三角形内角和定理求出∠C=90°﹣∠B=54°.由直角三角形斜边上的中线的性质得出AD=BD=CD,利用等腰三角形的性质求出∠BAD=∠B=36°,∠DAC=∠C =54°,利用三角形内角和定理求出∠ADC=180°﹣∠DAC﹣∠C=72°.再根据折叠的性质得出∠ADF=∠ADC=72°,然后根据三角形外角的性质得出∠BED=∠BAD+∠ADF=108°.【解答】解:∵在Rt△ABC中,∠BAC=90°,∠B=36°,∴∠C=90°﹣∠B=54°.∵AD是斜边BC上的中线,∴AD=BD=CD,∴∠BAD=∠B=36°,∠DAC=∠C=54°,∴∠ADC=180°﹣∠DAC﹣∠C=72°.∵将△ACD沿AD对折,使点C落在点F处,∴∠ADF=∠ADC=72°,∴∠BED=∠BAD+∠ADF=36°+72°=108°.故选:B.9.如图,在△ABC中,∠C=90°,AC=12,AB的垂直平分线EF交AC于点D,连接BD,若cos∠BDC=,则BC的长是()A.10 B.8 C.4D.2【分析】设CD=5x,BD=7x,则BC=2x,由AC=12即可求x,进而求出BC;【解答】解:∵∠C=90°,cos∠BDC=,设CD=5x,BD=7x,∴BC=2x,∵AB的垂直平分线EF交AC于点D,∴AD=BD=7x,∴AC=12x,∵AC=12,∴x=1,∴BC=2;故选:D.10.满足下列条件时,△ABC不是直角三角形的为()A.AB=,BC=4,AC=5 B.AB:BC:AC=3:4:5C.∠A:∠B:∠C=3:4:5 D.|cos A﹣|+(tan B﹣)2=0【分析】依据勾股定理的逆定理,三角形内角和定理以及直角三角形的性质,即可得到结论.【解答】解:A、∵,∴△ABC是直角三角形,错误;B、∵(3x)2+(4x)2=9x2+16x2=25x2=(5x)2,∴△ABC是直角三角形,错误;C、∵∠A:∠B:∠C=3:4:5,∴∠C=,∴△ABC不是直角三角形,正确;D、∵|cos A﹣|+(tan B﹣)2=0,∴,∴∠A=60°,∠B=30°,∴∠C=90°,∴△ABC是直角三角形,错误;故选:C.11.如图,点E在正方形ABCD的边AB上,若EB=1,EC=2,那么正方形ABCD的面积为()A.B.3 C.D.5【分析】先根据正方形的性质得出∠B=90°,然后在Rt△BCE中,利用勾股定理得出BC2,即可得出正方形的面积.【解答】解:∵四边形ABCD是正方形,∴∠B=90°,∴BC2=EC2﹣EB2=22﹣12=3,∴正方形ABCD的面积=BC2=3.故选:B.12.如图,在△ABC中,∠B=50°,CD⊥AB于点D,∠BCD和∠BDC的角平分线相交于点E,F为边AC的中点,CD=CF,则∠ACD+∠CED=()A.125°B.145°C.175°D.190°【分析】根据直角三角形的斜边上的中线的性质,即可得到△CDF是等边三角形,进而得到∠ACD=60°,根据∠BCD和∠BDC的角平分线相交于点E,即可得出∠CED=115°,即可得到∠ACD+∠CED=60°+115°=175°.【解答】解:∵CD⊥AB,F为边AC的中点,∴DF=AC=CF,又∵CD=CF,∴CD=DF=CF,∴△CDF是等边三角形,∴∠ACD=60°,∵∠B=50°,∴∠BCD+∠BDC=130°,∵∠BCD和∠BDC的角平分线相交于点E,∴∠DCE+∠CDE=65°,∴∠CED=115°,∴∠ACD+∠CED=60°+115°=175°,故选:C.二.填空题(共12小题)13.在△ABC中,∠A=50°,∠B=30°,点D在AB边上,连接CD,若△ACD为直角三角形,则∠BCD的度数为60°或10 度.【分析】当△ACD为直角三角形时,存在两种情况:∠ADC=90°或∠ACD=90°,根据三角形的内角和定理可得结论.【解答】解:分两种情况:①如图1,当∠ADC=90°时,∵∠B=30°,∴∠BCD=90°﹣30°=60°;②如图2,当∠ACD=90°时,∵∠A=50°,∠B=30°,∴∠ACB=180°﹣30°﹣50°=100°,∴∠BCD=100°﹣90°=10°,综上,则∠BCD的度数为60°或10°;故答案为:60°或10;14.公元3世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图”.如图,设勾a=6,弦c=10,则小正方形ABCD的面积是 4 .【分析】应用勾股定理和正方形的面积公式可求解.【解答】解:∵勾a=6,弦c=10,∴股==8,∴小正方形的边长=8﹣6=2,∴小正方形的面积=22=4故答案是:415.如图,在△ABC中,∠BAC=90°,AB=AC=10cm,点D为△ABC内一点,∠BAD=15°,AD=6cm,连接BD,将△ABD绕点A按逆时针方向旋转,使AB与AC重合,点D的对应点为点E,连接DE,DE交AC于点F,则CF的长为(10﹣2)cm.【分析】过点A作AG⊥DE于点G,由旋转的性质推出∠AED=∠ADG=45°,∠AFD=60°,利用锐角三角函数分别求出AG,GF,AF的长,即可求出CF=AC﹣AF=10﹣2.【解答】解:过点A作AG⊥DE于点G,由旋转知:AD=AE,∠DAE=90°,∠CAE=∠BAD=15°,∴∠AED=∠ADG=45°,在△AEF中,∠AFD=∠AED+∠CAE=60°,在Rt△ADG中,AG=DG==3,在Rt△AFG中,GF==,AF=2FG=2,∴CF=AC﹣AF=10﹣2,故答案为:10﹣2.16.如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD的方向平移得到△A'B'D',分别连接A'C,A'D,B'C,则A'C+B'C的最小值为.【分析】根据菱形的性质得到AB=1,∠ABD=30°,根据平移的性质得到A′B′=AB=1,∠A′B′D=30°,当B′C⊥A′B′时,A'C+B'C的值最小,推出四边形A′B′CD是矩形,∠B′A′C=30°,解直角三角形即可得到结论.【解答】解:∵在边长为1的菱形ABCD中,∠ABC=60°,∴AB=1,∠ABD=30°,∵将△ABD沿射线BD的方向平移得到△A'B'D',∴A′B′=AB=1,∠A′B′D=30°,当B′C⊥A′B′时,A'C+B'C的值最小,∵AB∥A′B′,AB=A′B′,AB=CD,AB∥CD,∴A′B′=CD,A′B′∥CD,∴四边形A′B′CD是矩形,∠B′A′C=30°,∴B′C=,A′C=,∴A'C+B'C的最小值为,故答案为:.17.把两个同样大小含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个三角尺的直角顶点重合于点A,且另外三个锐角顶点B,C,D在同一直线上.若AB=2,则CD=﹣.【分析】先利用等腰直角三角形的性质求出BC=2,BF=AF=,再利用勾股定理求出DF,即可得出结论.【解答】解:如图,过点A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴BC=AB=2,BF=AF=AB=,∵两个同样大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根据勾股定理得,DF==,∴CD=BF+DF﹣BC=+﹣2=﹣,故答案为:﹣.18.如图,为测量旗杆AB的高度,在教学楼一楼点C处测得旗杆顶部的仰角为60°,在四楼点D处测得旗杆顶部的仰角为30°,点C与点B在同一水平线上.已知CD=9.6m,则旗杆AB的高度为14.4 m.【分析】作DE⊥AB于E,则∠AED=90°,四边形BCDE是矩形,得出BE=CD=9.6m,∠CDE=∠DEA=90°,求出∠ADC=120°,证出∠CAD=30°=∠ACD,得出AD=CD=9.6m,在Rt△ADE中,由直角三角形的性质得出AE=AD=4.8m,即可得出答案.【解答】解:作DE⊥AB于E,如图所示:则∠AED=90°,四边形BCDE是矩形,∴BE=CD=9.6m,∠CDE=∠DEA=90°,∴∠ADC=90°+30°=120°,∵∠ACB=60°,∴∠ACD=30°,∴∠CAD=30°=∠ACD,∴AD=CD=9.6m,在Rt△ADE中,∠ADE=30°,∴AE=AD=4.8m,∴AB=AE+BE=4.8m+9.6m=14.4m;故答案为:14.4.19.如图,在▱ABCD中,E、F是对角线AC上两点,AE=EF=CD,∠ADF=90°,∠BCD=63°,则∠ADE的大小为21°.【分析】设∠ADE=x,由等腰三角形的性质和直角三角形得出∠DAE=∠ADE=x,DE=AF =AE=EF,得出DE=CD,证出∠DCE=∠DEC=2x,由平行四边形的性质得出∠DCE=∠BCD ﹣∠BCA=63°﹣x,得出方程,解方程即可.【解答】解:设∠ADE=x,∵AE=EF,∠ADF=90°,∴∠DAE=∠ADE=x,DE=AF=AE=EF,∵AE=EF=CD,∴DE=CD,∴∠DCE=∠DEC=2x,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠BCA=x,∴∠DCE=∠BCD﹣∠BCA=63°﹣x,∴2x=63°﹣x,解得:x=21°,即∠ADE=21°;故答案为:21°.20.问题背景:如图1,将△ABC绕点A逆时针旋转60°得到△ADE,DE与BC交于点P,可推出结论:PA+PC=PE.问题解决:如图2,在△MNG中,MN=6,∠M=75°,MG=.点O是△MNG内一点,则点O到△MNG三个顶点的距离和的最小值是2.【分析】(1)在BC上截取BG=PD,通过三角形求得证得AG=AP,得出△AGP是等边三角形,得出∠AGC=60°=∠APG,即可求得∠APE=60°,连接EC,延长BC到F,使CF=PA,连接EF,证得△ACE是等边三角形,得出AE=EC=AC,然后通过证得△APE≌△ECF (SAS),得出PE=PF,即可证得结论;(2)以MG为边作等边三角形△MGD,以OM为边作等边△OME.连接ND,可证△GMO≌△DME,可得GO=DE,则MO+NO+GO=NO+OE+DE,即当D、E、O、N四点共线时,MO+NO+GO 值最小,最小值为ND的长度,根据勾股定理先求得MF、DF,然后求ND的长度,即可求MO+NO+GO的最小值.【解答】(1)证明:如图1,在BC上截取BG=PD,在△ABG和△ADP中,∴△ABG≌△ADP(SAS),∴AG=AP,∠BAG=∠DAP,∵∠GAP=∠BAD=60°,∴△AGP是等边三角形,∴∠AGC=60°=∠APG,∴∠APE=60°,∴∠EPC=60°,连接EC,延长BC到F,使CF=PA,连接EF,∵将△ABC绕点A逆时针旋转60°得到△ADE,∴∠EAC=60°,∠EPC=60°,∵AE=AC,∴△ACE是等边三角形,∴AE=EC=AC,∵∠PAE+∠APE+∠AEP=180°,∠ECF+∠ACE+∠ACB=180°,∠ACE=∠APE=60°,∠AED=∠ACB,∴∠PAE=∠ECF,在△APE和△ECF中∴△APE≌△ECF(SAS),∴PE=PF,∴PA+PC=PE;(2)解:如图2:以MG为边作等边三角形△MGD,以OM为边作等边△OME.连接ND,作DF⊥NM,交NM的延长线于F.∵△MGD和△OME是等边三角形∴OE=OM=ME,∠DMG=∠OME=60°,MG=MD,∴∠GMO=∠DME在△GMO和△DME中∴△GMO≌△DME(SAS),∴OG=DE∴NO+GO+MO=DE+OE+NO∴当D、E、O、M四点共线时,NO+GO+MO值最小,∵∠NMG=75°,∠GMD=60°,∴∠NMD=135°,∴∠DMF=45°,∵MG=.∴MF=DF=4,∴NF=MN+MF=6+4=10,∴ND===2,∴MO+NO+GO最小值为2,故答案为2,21.如图,等边三角形ABC内有一点P,分別连结AP、BP、CP,若AP=6,BP=8,CP=10.则S△ABP+S△BPC=24+16.【分析】将△BPC绕点B逆时针旋转60°后得△AP'B,根据旋转的性质可得∠PBP′=∠CAB=60°,BP=BP′,可得△BPP′为等边三角形,可得BP′=BP=8=PP',由勾股定理的逆定理可得,△APP′是直角三角形,由三角形的面积公式可求解.【解答】解:如图,将△BPC绕点B逆时针旋转60°后得△AP'B,连接PP′,根据旋转的性质可知,旋转角∠PBP′=∠CAB=60°,BP=BP′,∴△BPP′为等边三角形,∴BP′=BP=8=PP';由旋转的性质可知,AP′=PC=10,在△BPP′中,PP′=8,AP=6,由勾股定理的逆定理得,△APP′是直角三角形,∴S△ABP+S△BPC=S四边形AP'BP=S△BP'B+S△AP'P=BP2+×PP'×AP=24+16故答案为:24+1622.无盖圆柱形杯子的展开图如图所示.将一根长为20cm的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有 5 cm.【分析】根据题意直接利用勾股定理得出杯子内的筷子长度,进而得出答案.【解答】解:由题意可得:杯子内的筷子长度为:=15,则筷子露在杯子外面的筷子长度为:20﹣15=5(cm).故答案为:5.23.如图所示,在Rt△ABC中,∠ACB=90°,CM是斜边AB上的中线,E、F分别为MB、BC 的中点,若EF=1,则AB= 4 .【分析】根据三角形中位线定理求出CM,根据直角三角形的性质求出AB.【解答】解:∵E、F分别为MB、BC的中点,∴CM=2EF=2,∵∠ACB=90°,CM是斜边AB上的中线,∴AB=2CM=4,故答案为:4.24.如图,在Rt△ABC中,∠ACB=90°,∠B=60°,DE为△ABC的中位线,延长BC至F,使CF=BC,连接FE并延长交AB于点M.若BC=a,则△FMB的周长为.【分析】在Rt△ABC中,求出AB=2a,AC=a,在Rt△FEC中用a表示出FE长,并证明∠FEC=30°,从而EM转化到MA上,根据△FMB周长=BF+FE+EM+BM=BF+FE+AM+MB=BF+FE+AB可求周长.【解答】解:在Rt△ABC中,∠B=60°,∴∠A=30°,∴AB=2a,AC=a.∵DE是中位线,∴CE=a.在Rt△FEC中,利用勾股定理求出FE=a,∴∠FEC=30°.∴∠A=∠AEM=30°,∴EM=AM.△FMB周长=BF+FE+EM+BM=BF+FE+AM+MB=BF+FE+AB=.故答案为.三.解答题(共9小题)25.如图,等腰直角三角板如图放置.直角顶点C在直线m上,分别过点A、B作AE⊥直线m于点E,BD⊥直线m于点D.①求证:EC=BD;②若设△AEC三边分别为a、b、c,利用此图证明勾股定理.【分析】①通过AAS证得△CAE≌△BCD,根据全等三角形的对应边相等证得结论;②利用等面积法证得勾股定理.【解答】①证明:∵∠ACB=90°,∴∠ACE+∠BCD=90°.∵∠ACE+∠CAE=90°,∴∠CAE=∠BCD.在△AEC与△BCD中,∴△CAE≌△BCD(AAS).∴EC=BD;②解:由①知:BD=CE=aCD=AE=b∴S梯形AEDB=(a+b)(a+b)=a2+ab+b2.又∵S梯形AEDB=S△AEC+S△BCD+S△ABC=ab+ab+c2=ab+c2.∴a2+ab+b2=ab+c2.整理,得a2+b2=c2.26.如图,正方形ABCD,点E,F分别在AD,CD上,且DE=CF,AF与BE相交于点G.(1)求证:BE=AF;(2)若AB=4,DE=1,求AG的长.【分析】(1)由正方形的性质得出∠BAE=∠ADF=90°,AB=AD=CD,得出AE=DF,由SAS证明△BAE≌△ADF,即可得出结论;(2)由全等三角形的性质得出∠EBA=∠FAD,得出∠GAE+∠AEG=90°,因此∠AGE=90°,由勾股定理得出BE==5,在Rt△ABE中,由三角形面积即可得出结果.【解答】(1)证明:∵四边形ABCD是正方形,∴∠BAE=∠ADF=90°,AB=AD=CD,∵DE=CF,∴AE=DF,在△BAE和△ADF中,,∴△BAE≌△ADF(SAS),∴BE=AF;(2)解:由(1)得:△BAE≌△ADF,∴∠EBA=∠FAD,∴∠GAE+∠AEG=90°,∴∠AGE=90°,∵AB=4,DE=1,∴AE=3,∴BE===5,在Rt△ABE中,AB×AE=BE×AG,∴AG==.27.在6×6的方格纸中,点A,B,C都在格点上,按要求画图:(1)在图1中找一个格点D,使以点A,B,C,D为顶点的四边形是平行四边形.(2)在图2中仅用无刻度的直尺,把线段AB三等分(保留画图痕迹,不写画法).【分析】(1)由勾股定理得:CD=AB=CD'=,BD=AC=BD''=,AD'=BC=AD''=;画出图形即可;(2)根据平行线分线段成比例定理画出图形即可.【解答】解:(1)由勾股定理得:CD=AB=CD'=,BD=AC=BD''=,AD'=BC=AD''=;画出图形如图1所示;(2)如图2所示.28.某挖掘机的底座高AB=0.8米,动臂BC=1.2米,CD=1.5米,BC与CD的固定夹角∠BCD=140°.初始位置如图1,斗杆顶点D与铲斗顶点E所在直线DE垂直地面AM于点E,测得∠CDE=70°(示意图2).工作时如图3,动臂BC会绕点B转动,当点A,B,C在同一直线时,斗杆顶点D升至最高点(示意图4).(1)求挖掘机在初始位置时动臂BC与AB的夹角∠ABC的度数.(2)问斗杆顶点D的最高点比初始位置高了多少米?(精确到0.1米)(参考数据:sin50°≈0.77,cos50°≈0.64,sin70°≈0.94,cos70°≈0.34,≈1.73)【分析】(1)过点C作CG⊥AM于点G,证明AB∥CG∥DE,再根据平行线的性质求得结果;(2)过点C作CP⊥DE于点P,过点B作BQ⊥DE于点Q,交CG于点N,如图2,通过解直角三角形求得DE,过点D作DH⊥AM于点H,过点C作CK⊥DH于点K,如图3,通过解直角三角形求得求得DH,最后便可求得结果.【解答】解:(1)过点C作CG⊥AM于点G,如图1,∵AB⊥AM,DE⊥AM,∴AB∥CG∥DE,∴∠DCG=180°﹣∠CDE=110°,∴BCG=∠BCD﹣∠GCD=30°,∴∠ABC=180°﹣∠BCG=150°;(2)过点C作CP⊥DE于点P,过点B作BQ⊥DE于点Q,交CG于点N,如图2,在Rt△CPD中,DP=CD×cos70°≈0.51(米),在Rt△BCN中,CN=BC×cos30°≈1.04(米),所以,DE=DP+PQ+QE=DP+CN+AB=2.35(米),如图3,过点D作DH⊥AM于点H,过点C作CK⊥DH于点K,在Rt△CKD中,DK=CD×sin50°≈1.16(米),所以,DH=DK+KH=3.16(米),所以,DH﹣DE=0.8(米),所以,斗杆顶点D的最高点比初始位置高了0.8米.29.在如图所示的网格中,每个小正方形的边长为1,每个小正方形的顶点叫格点,△ABC 的三个顶点均在格点上,以点A为圆心的与BC相切于点D,分别交AB、AC于点E、F.(1)求△ABC三边的长;(2)求图中由线段EB、BC、CF及所围成的阴影部分的面积.【分析】(1)根据勾股定理即可求得;(2)根据勾股定理求得AD,由(1)得,AB2+AC2=BC2,则∠BAC=90°,根据S阴=S△ABC ﹣S扇形AEF即可求得.【解答】解:(1)AB==2,AC==2,BC==4;(2)由(1)得,AB2+AC2=BC2,∴∠BAC=90°,连接AD,AD==2,∴S阴=S△ABC﹣S扇形AEF=AB•AC﹣π•AD2=20﹣5π.30.已知:△ABC是等腰直角三角形,∠BAC=90°,将△ABC绕点C顺时针方向旋转得到△A′B′C,记旋转角为α,当90°<α<180°时,作A′D⊥AC,垂足为D,A′D与B′C交于点E.(1)如图1,当∠CA′D=15°时,作∠A′EC的平分线EF交BC于点F.①写出旋转角α的度数;②求证:EA′+EC=EF;(2)如图2,在(1)的条件下,设P是直线A′D上的一个动点,连接PA,PF,若AB =,求线段PA+PF的最小值.(结果保留根号)【分析】(1)①解直角三角形求出∠A′CD即可解决问题.②连接A′F,设EF交CA′于点O.在EF时截取EM=EC,连接CM.首先证明△CFA′是等边三角形,再证明△FCM≌△A′CE(SAS),即可解决问题.(2)如图2中,连接A′F,PB′,AB′,作B′M⊥AC交AC的延长线于M.证明△A′EF≌△A′EB′,推出EF=EB′,推出B′,F关于A′E对称,推出PF=PB′,推出PA+PF =PA+PB′≥AB′,求出AB′即可解决问题.【解答】(1)①解:旋转角为105°.理由:如图1中,∵A′D⊥AC,∴∠A′DC=90°,∵∠CA′D=15°,∴∠A′CD=75°,∴∠ACA′=105°,∴旋转角为105°.②证明:连接A′F,设EF交CA′于点O.在EF时截取EM=EC,连接CM.∵∠CED=∠A′CE+∠CA′E=45°+15°=60°,∴∠CEA′=120°,∵FE平分∠CEA′,∴∠CEF=∠FEA′=60°,∵∠FCO=180°﹣45°﹣75°=60°,∴∠FCO=∠A′EO,∵∠FOC=∠A′OE,∴△FOC∽△A′OE,∴=,∴=,∵∠COE=∠FOA′,∴△COE∽△FOA′,∴∠FA′O=∠OEC=60°,∴△A′OF是等边三角形,∴CF=CA′=A′F,∵EM=EC,∠CEM=60°,∴△CEM是等边三角形,∠ECM=60°,CM=CE,∵∠FCA′=∠MCE=60°,∴∠FCM=∠A′CE,∴△FCM≌△A′CE(SAS),∴FM=A′E,∴CE+A′E=EM+FM=EF.(2)解:如图2中,连接A′F,PB′,AB′,作B′M⊥AC交AC的延长线于M.由②可知,∠EA′F=′EA′B′=75°,A′E=A′E,A′F=A′B′,∴△A′EF≌△A′EB′,∴EF=EB′,∴B′,F关于A′E对称,∴PF=PB′,∴PA+PF=PA+PB′≥AB′,在Rt△CB′M中,CB′=BC=AB=2,∠MCB′=30°,∴B′M=CB′=1,CM=,∴AB′===.∴PA+PF的最小值为.31.如图1,△ABC中,CA=CB,∠ACB=α,D为△ABC内一点,将△CAD绕点C按逆时针方向旋转角α得到△CBE,点A,D的对应点分别为点B,E,且A,D,E三点在同一直线上.(1)填空:∠CDE=(用含α的代数式表示);(2)如图2,若α=60°,请补全图形,再过点C作CF⊥AE于点F,然后探究线段CF,AE,BE之间的数量关系,并证明你的结论;(3)若α=90°,AC=5,且点G满足∠AGB=90°,BG=6,直接写出点C到AG的距离.【分析】(1)由旋转的性质可得CD=CE,∠DCE=α,即可求解;(2)由旋转的性质可得AD=BE,CD=CE,∠DCE=60°,可证△CDE是等边三角形,由等边三角形的性质可得DF=EF=,即可求解;(3)分点G在AB的上方和AB的下方两种情况讨论,利用勾股定理可求解.【解答】解:(1)∵将△CAD绕点C按逆时针方向旋转角α得到△CBE∴△ACD≌△BCE,∠DCE=α∴CD=CE∴∠CDE=故答案为:(2)AE=BE+CF理由如下:如图,∵将△CAD绕点C按逆时针方向旋转角60°得到△CBE∴△ACD≌△BCE∴AD=BE,CD=CE,∠DCE=60°∴△CDE是等边三角形,且CF⊥DE∴DF=EF=∵AE=AD+DF+EF∴AE=BE+CF(3)如图,当点G在AB上方时,过点C作CE⊥AG于点E,∵∠ACB=90°,AC=BC=5,∴∠CAB=∠ABC=45°,AB=10∵∠ACB=90°=∠AGB∴点C,点G,点B,点A四点共圆∴∠AGC=∠ABC=45°,且CE⊥AG∴∠AGC=∠ECG=45°∴CE=GE∵AB=10,GB=6,∠AGB=90°∴AG==8∵AC2=AE2+CE2,∴(5)2=(8﹣CE)2+CE2,∴CE=7(不合题意舍去),CE=1若点G在AB的下方,过点C作CF⊥AG,同理可得:CF=7∴点C到AG的距离为1或7.32.如图,在平面直角坐标系中,四边形OABC的顶点坐标分别为O(0,0),A(12,0),B (8,6),C(0,6).动点P从点O出发,以每秒3个单位长度的速度沿边OA向终点A 运动;动点Q从点B同时出发,以每秒2个单位长度的速度沿边BC向终点C运动.设运动的时间为t秒,PQ2=y.(1)直接写出y关于t的函数解析式及t的取值范围:y=25t2﹣80t+100(0≤t≤4);(2)当PQ=3时,求t的值;(3)连接OB交PQ于点D,若双曲线y=(k≠0)经过点D,问k的值是否变化?若不变化,请求出k的值;若变化,请说明理由.【分析】(1)过点P作PE⊥BC于点E,由点P,Q的出发点、速度及方向可找出当运动时间为t秒时点P,Q的坐标,进而可得出PE,EQ的长,再利用勾股定理即可求出y关于t 的函数解析式(由时间=路程÷速度可得出t的取值范围);(2)将PQ=3代入(1)的结论中可得出关于t的一元二次方程,解之即可得出结论;(3)连接OB,交PQ于点D,过点D作DF⊥OA于点F,利用勾股定理可求出OB的长,由BQ∥OP可得出△BDQ∽△ODP,利用相似三角形的性质结合OB=10可求出OD=6,由CB ∥OA可得出∠DOF=∠OBC,在Rt△OBC中可求出sin∠OBC及cos∠OBC的值,由OF=OD •cos∠OBC,DF=OD•sin∠OBC可求出点D的坐标,再利用反比例函数图象上点的坐标特征即可求出k值,此题得解.【解答】解:(1)过点P作PE⊥BC于点E,如图1所示.。
2019全国中考数学真题分类汇编:直角三角形、勾股定理及参考答案
一、选择题1.(2019·广元)如图,△ABC中,∠ABC=90°,BA=BC=2,将△ABC绕点C逆时针旋转60°得到△DEC,连接BD,则BD2的值是________【答案】843【解析】连接AD,过点D作DM⊥BC于点M,DN⊥AC于点N,易得△ACD是等边三角形,四边形BNDM是正方形,设CM=x,则DM=MB=x+2,∵BC=2,∴CD=AC=,∴在Rt△MCD中,由勾股定理可求得,x1,DM=MB1,∴在Rt△BDM中,BD2=MD2+MB2=843.2.(2019·绍兴)如图1,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱长进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度为 ( )A.524 B.532C.173412D.173420【答案】A【解析】如图所示:设DM =x ,则CM =8﹣x , 根据题意得:(8﹣x +8)×3×3=3×3×5, 解得:x =4,∴DM =6,∵∠D =90°,由勾股定理得:BM ==5, 过点B 作BH⊥AH,∵∠HBA+∠ABM=∠ABM+∠ABM=90°, ∴∠HBA+=∠ABM,所以Rt△ABH∽△MBD, ∴BH BD AB BM =,即385BH =,解得BH =524,即水面高度为524. 3.(2019·益阳)已知M 、N 是线段AB 上的两点,AM=MN=2,NB =1,以点A 为圆心,AN 长为半径画弧;再以点B 为圆心,BM 长为半径画弧,两弧交于点C ,连接AC 、BC ,则△ABC 一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形【答案】B【解析】如图所示, ∵AM=MN=2,NB =1,∴AB=AM=MN+NB =2+2+1=5,AC=AN=AM+MN=2+2=4,BC=BM=BN+MN1+2=3, ∴25522==AB ,16422==AC ,9322==BC , ∴222AB BC AC =+, ∴△ABC 是直角三角形.4.(2019·广元)如图,在正方形ABCD 的对角线AC 上取一点E.使得∠CDE =15°,连接BE 并延长BE 到F,使CF =CB,BF 与CD 相交于点H,若AB =1,有下列结论:①BE =DE;②CE+DE =EF;③S △DEC =134,④231DH HC.则其中正确的结论有( )A.①②③B.①②③ ④C.①②④D.①③④【答案】A【解析】①利用正方形的性质,易得△BEC ≌△DEC,∴BE =DE,①正确;②在EF 上取一点G,使CG =CE,∵∠CEG =∠CBE+∠BCE =60°,∴△CEG 为等边三角形,易得△DEC ≌△FGC,CE+DE =EG+GF =EF,②正确;③过点D 作DM ⊥AC 于点M,S △DEC =S △DMC -S △DME =13412,③正确;④tan ∠HBC =2-,∴HC =2-,DH =1-HC =-1,∴3+1DH HC,④错误.故选A.5. (2019·宁波)勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出A.直角三角形的面积B.最大正方形的面积C.较小两个正方形重叠部分的面积D.最大正方形与直角三角形的面积和【答案】C【解题过程】设图中三个正方形边长从小到大依次为:a,b,c,则S阴影=c 2-a 2-b 2+b(a+b -c),由勾股定理可知,c 2=a 2-b 2,∴S 阴影=c 2-a 2-b 2+S 重叠=S 重叠,即S 阴影=S 重叠,故选C.6.(2019·重庆B 卷)如图,在△ABC 中,∠ABC =45°,AB =3,AD ⊥BC 于点D ,BE ⊥AC 与点E ,AE =1.连接DE ,将△AED 沿直线AE 翻折至△ABC 所在的平面,得△AEF ,连接DF .过点D 作DG ⊥DE 交BE 于点G.则四边形DFEG 的周长为( ) B. C. D.【答案】D【解析】∵∠ABC =45°,AD ⊥BC , ∴△ABC 是等腰直角三角形, ∴AD=BD.∵BE ⊥AC ,AD ⊥BD , ∴∠DAC =∠DBH ,4212题图F∴△D BH ≌△DAC (ASA ). ∵DG ⊥DE , ∴∠BDG =∠ADE ,∴△DBG ≌△DAE (ASA ), ∴BG=AE ,DG=DE ,∴△DGE 是等腰直角三角形, ∴∠DEC =45°.在Rt △ABE 中,BE , ∴GE =,∴DE =.∵D ,F 关于AE 对称, ∴∠FEC =∠DEC =45°,∴EF=DE=DG =,DF=GE =,∴四边形DFEG 的周长为2(+2-)=.故选D . 二、填空题221221222221127.(2019·苏州)“七巧板”是我们祖先的一项卓越创造.可以拼出许多有趣的图形,被誉为“东方魔板”图①是由边长为10cm的正方形薄板分为7块制作成的“七巧板”,图②是用该“七巧板”拼成的一个“家”的图形该“七巧板”中7块图形之一的正方形边长为 cm(结果保留根号).(图①)(图②)(第15题)【解析】本题考查了正方形性质、等腰直角三角形性质的综合,由题意可知,等腰×10=5cm,设正方形阴影部分三角形①与等腰三角形②全等,且它们的斜边长都为12x=sin45°,解得x.的边长为x cm,则5第15题答图8.(2019·威海)如图,在四边形ABCD中,AB∥CD,连接AC,BD.若∠ACB=90°,AC=BC,AB=BD,则∠ADC=°【答案】105°【解析】过点D作DE⊥AB于点E,过点C作CF⊥AB垂足为F,由∠ACB=90°,AC=BC,得△ABC是等腰直角三角形,由三线合一得CF为中线,从而推出2CF=AB,由AB∥CD得DE=CF,由AB=BD得BD=2DE,在Rt△DEB中利用三角函数可得∠ABD =30°,再由AB=BD得∠BAD=∠ADB=75°,最后由AB∥CD得∠BAD+∠ADC=180°求出∠ADC=105°.9.(2019·苏州)如图,一块舍有45°角的直角三角板,外框的一条直角边长为8 cm,cm,则图中阴影部分的面积三角板的外框线和与其平行的内框线之间的距离均为为 cm:(结果保留根号).(第18题)【答案】第18题答图解析:,所以△ABC与△DEF 有公共内心O ,连接AD 、BE 、FC 并延长相交于点O ,过O 作OG ⊥AB 于G ,交DE 于H .则GH =,S △ABC =12OG ×(AB +AC +BC )=12AB ×AC ,∴OG =8AB AC AB AC BC ⨯==-+-OH =8-∵DE ∥AB ,∴△ODE ∽△OAB ,∴OH DEOGAB=8DE=,解得DE =6-S阴影= S △ABC -S △DEF =(2211861022⨯--=+10.(2019·江西)在平面直角坐标系中,A ,B ,C 三点的坐标分别为(4,0)、(4,4),(0,4),点P 在x 轴上,点D 在直线AB 上,若DA =1,CP ⊥DP 于点P ,则点P 的坐标为 .【答案】(42322216+++,0)或(42322216+-+,0)【解析】设点P 的坐标为(x ,0),(1)当点D 在线段AB 上时,如图所示:∵DA=1,∴点D 的坐标为(224-,22). ∴222)224()]224(4[-+--=CD 22)22(2416)22(+-+=2417-=, 222)22()]224([+--=x PD 222)22()224()224(2+-+--=x x 2417)28(2-+--=x x , 2224)4(+-=x PC 3282+-=x x .∵CP ⊥DP 于点P ,∴222CD PD PC =+,∴2417)28(2-+--x x 3282+-+x x 2417-=, 即032)216(22=+--x x ,∵△=3224)]216([2⨯⨯---=2322-<0, ∴原方程无解,即符合要求的点P 不存在. (2)当点D 在线段BA 的延长线上,如图所示:∵DA=1,∴点D 的坐标为(224+,22-). ∴222)]22(4[)]224(4[--++-=CD 22)224()22(++-=2417+=, 222)22()]224([-++-=x PD 222)22()224()224(2++++-=x x 2417)28(2+++-=x x , 2224)4(+-=x PC 3282+-=x x .∵CP ⊥DP 于点P ,∴222CD PD PC =+, ∴2417)28(2+++-x x 3282+-+x x 2417+=, 即032)216(22=++-x x ,∵△=3224)]216([2⨯⨯-+-=2322+>0, ∴222322216⨯+±+=x 42322216+±+=, ∴点P 的坐标为(42322216+++,0)或(42322216+-+,0).11.(2019·枣庄)把两个同样大小含45°的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个三角尺的直角顶点重合于点A,且另外三个锐角顶点B,C,D在同一直线上,若AB=2,则CD=________.过点A作AM⊥BD于点M,则AM=【解析】在等腰直角△ABC中,∵AB=2,∴BC=MC=112. (2019·巴中)如图,等边三角形ABC内有一点P,分别连接AP,BP,CP,若AP=6,BP=8,CP=10,则S△ABP+S△BPC=________.【答案】【解析】将△ABP绕点B顺时针旋转60°到△CBP',连接PP',所以BP=BP',∠PBP'因为PP'=8,P'C=60°,所以△BPP'是等边三角形,其边长BP为8,所以S=PA=6,PC=10,所以PP'2+P'C2=PC2,所以△PP'C是直角三角形,S△PP'C=24,所以S△=S△BPP'+S△PP'C=ABP+S△BPC.三、解答题13.(2019·巴中)如图,等腰直角三角板如图放置,直角顶点C在直线m上,分别过点A,B作AE⊥直线m于点E,BD⊥直线m与点D.(1)求证:EC=BD;(2)若设△AEC三边分别为a,b,c,利用此图证明勾股定理.证明:(1)∵△ABC是等腰直角三角形,∴∠ACB=90°,AC=BC, ∴∠ACE+∠BCD=90°,∵AE⊥EC, ∴∠EAC+∠ACE=90°,∴∠BCD=∠CAE,∵BD⊥CD, ∴∠AEC=∠CDB=90°,∴△AEC≌△CDB(AAS), ∴EC=BD.(2)∵△AEC≌△CDB,△AEC三边分别为a,b,c,,∴BD=EC=a,CD=AE=b,BC=AC=c,∴S梯形=12(AE+BD)ED=12(a+b)(a+b),S梯形=12ab+12c2+12ab,∴12(a+b)(a+b)=12ab+12c2+12ab,整理可得a2+b2=c2,故勾股定理得证.。
全国各地2019年中考数学真题分类解析汇编 23直角三角形与勾股定理
直角三角形与勾股定理一、选择题1. (2018•湘潭,第7题,3分)以下四个命题正确的是()4 .(第2题图)PA=3. (2018•泰州,第6题,3分)如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是()、底边上的高是,可知是顶角若MN=2,则OM=()(第4题图)60°==MD=ND=分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠MCN=()(第5题图)B﹣2,∠BC=BC=2CM==2﹣)﹣EC=2=ME==中点D重合,折痕为MN,则线段BN的长为()A.B.C. 4 D. 5考点:翻折变换(折叠问题).分析:设BN=x,则由折叠的性质可得DN=AN=9﹣x,根据中点的定义可得BD=3,在Rt△ABC中,根据勾股定理可得关于x的方程,解方程即可求解.解答:解:设BN=x,由折叠的性质可得DN=AN=9﹣x,∵D是BC的中点,∴BD=3,在Rt△ABC中,x2+32=(9﹣x)2,解得x=4.故线段BN的长为4.故选:C.点评:考查了翻折变换(折叠问题),涉及折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强,但是难度不大.7. ( 2018•广西贺州,第11题3分)如图,以AB为直径的⊙O与弦CD相交于点E,且AC=2,AE=,CE=1.则弧BD的长是()A.B.C.D.考点:垂径定理;勾股定理;勾股定理的逆定理;弧长的计算.分析:连接OC,先根据勾股定理判断出△ACE的形状,再由垂径定理得出CE=DE,故=,由锐角三角函数的定义求出∠A的度数,故可得出∠BOC的度数,求出OC的长,再根据弧长公式即可得出结论.解答:解:连接OC,∵△ACE中,AC=2,AE=,CE=1,∴AE2+CE2=AC2,∴△ACE是直角三角形,即AE⊥CD,∵sinA==,∴∠A=30°,∴∠COE=60°,∴=sin∠COE,即=,解得OC=,∵AE⊥CD,∴=,∴===.故选B.点评:本题考查的是垂径定理,涉及到直角三角形的性质、弧长公式等知识,难度适中.8.(2018•滨州,第7题3分)下列四组线段中,可以构成直角三角形的是(),9.(2019年山东泰安,第8题3分)如图,∠ACB=90°,D为AB的中点,连接DC并延长到E,使CE=CD,过点B作BF∥DE,与AE的延长线交于点F.若AB=6,则BF的长为()A.6 B.7 C.8 D.10分析:根据直角三角形斜边上的中线等于斜边的一半得到CD=AB=3,则结合已知条件CE=CD可以求得ED=4.然后由三角形中位线定理可以求得BF=2ED=8.解:如图,∵∠ACB=90°,D为AB的中点,AB=6,∴CD=AB=3.又CE=CD,∴CE=1,∴ED=CE+CD=4.又∵BF∥DE,点D是AB的中点,∴ED是△AFD的中位线,∴BF=2ED=8.故选:C.点评:本题考查了三角形中位线定理和直角三角形斜边上的中线.根据已知条件求得ED的长度是解题的关键与难点.10.(2019年山东泰安,第12题3分)如图①是一个直角三角形纸片,∠A=30°,BC=4cm,将其折叠,使点C 落在斜边上的点C′处,折痕为BD,如图②,再将②沿DE折叠,使点A落在DC′的延长线上的点A′处,如图③,则折痕DE的长为()A.cm B.2cm C.2cm D.3cm分析:根据直角三角形两锐角互余求出∠ABC=60°,翻折前后两个图形能够互相重合可得∠BDC=∠BDC′,∠CBD=∠ABD=30°,∠ADE=∠A′DE,然后求出∠BDE=90°,再解直角三角形求出BD,然后求出DE即可.解:∵△ABC是直角三角形,∠A=30°,∴∠ABC=90°﹣30°=60°,∵沿折痕BD折叠点C落在斜边上的点C′处,∴∠BDC=∠BDC′,∠CBD=∠ABD=∠ABC=30°,∵沿DE折叠点A落在DC′的延长线上的点A′处,∴∠ADE=∠A′DE,∴∠BDE=∠ABD+∠A′DE=×180°=90°,在Rt△BCD中,BD=BC÷cos30°=4÷=cm,在Rt△ADE中,DE=BD•tan30°=×=cm.故选A.点评:本题考查了翻折变换的性质,解直角三角形,熟记性质并分别求出有一个角是30°角的直角三角形是解题的关键.二.填空题1. ( 2018•福建泉州,第14题4分)如图,Rt△ABC中,∠ACB=90°,D为斜边AB的中点,AB=10cm,则CD 的长为 5 cm.CD=CD=×10=52. ( 2018•广东,第14题4分)如图,在⊙O中,已知半径为5,弦AB的长为8,那么圆心O到AB的距离为3 .考点:垂径定理;勾股定理.分析:作OC⊥AB于C,连结OA,根据垂径定理得到AC=BC=AB=3,然后在Rt△AOC中利用勾股定理计算OC即可.解答:解:作OC⊥AB于C,连结OA,如图,∵OC⊥AB,∴AC=BC=AB=×8=4,在Rt△AOC中,OA=5,∴OC===3,即圆心O到AB的距离为3.故答案为:3.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.3.(2018•新疆,第14题5分)如图,Rt△ABC中,∠ABC=90°,DE垂直平分AC,垂足为O,AD∥BC,且AB=3,BC=4,则AD的长为.AC==5OA=,∠=,即=,解得.故答案为:.4.(2018•邵阳,第17题3分)如图,在Rt △ABC 中,∠C =90°,D 为AB 的中点,DE ⊥AC 于点E .∠A=30°,AB=8,则DE 的长度是 2 .AD=25.(2018·云南昆明,第10题3分)如图,在Rt △ABC 中,∠ABC =90°,AC=10cm ,点D 为AC 的中点,则BD= cm.第10题图DCBA三.解答题1. (2018•湘潭,第19题)如图,修公路遇到一座山,于是要修一条隧道.为了加快施工进度,想在小山的另一侧同时施工.为了使山的另一侧的开挖点C在AB的延长线上,设想过C点作直线AB的垂线L,过点B作一直线(在山的旁边经过),与L相交于D点,经测量∠ABD=135°,BD=800米,求直线L上距离D点多远的C处开挖?(≈1.414,精确到1米)≈566(米)2. (2018•益阳,第20题,10分)如图,直线y=﹣3x+3与x轴、y轴分别交于点A、B,抛物线y=a(x﹣2)2+k经过点A、B,并与X轴交于另一点C,其顶点为P.(1)求a,k的值;(2)抛物线的对称轴上有一点Q,使△ABQ是以AB为底边的等腰三角形,求Q点的坐标;(3)在抛物线及其对称轴上分别取点M、N,使以A,C,M,N为顶点的四边形为正方形,求此正方形的边长.(第2题图),解得,AN=,即正方形的边长为.3. (2018•益阳,第21题,12分)如图,在直角梯形ABCD中,AB∥CD,AD⊥AB,∠B=60°,AB=10,BC=4,点P沿线段AB从点A向点B运动,设AP=x.(1)求AD的长;(2)点P在运动过程中,是否存在以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似?若存在,求出x的值;若不存在,请说明理由;(3)设△ADP与△PCB的外接圆的面积分别为S1、S2,若S=S1+S2,求S的最小值.(第3题图)≠且≠,得出△,再分两种情况讨论:①当MN=(x x x+(x+)x)x=2AD=CE=2,在DPA==,≠且≠,此时△•(•BH=BN=(xxMGN=xx x+,(x+)﹣)也成立,+x x x++x=取得最小值为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.5. (2018•株洲,第22题,8分)如图,在Rt△ABC中,∠C=90°,∠A的平分线交BC于点E,EF⊥AB于点F,点F恰好是AB的一个三等分点(AF>BF).(1)求证:△ACE≌△AFE;(2)求tan∠CAE的值.,,在CAE==;,BC===,CE=EF==;6. (2018•株洲,第23题,8分)如图,PQ为圆O的直径,点B在线段PQ的延长线上,OQ=QB=1,动点A在圆O的上半圆运动(含P、Q两点),以线段AB为边向上作等边三角形ABC.(1)当线段AB所在的直线与圆O相切时,求△ABC的面积(图1);(2)设∠AOB=α,当线段AB、与圆O只有一个公共点(即A点)时,求α的范围(图2,直接写出答案);(3)当线段AB与圆O有两个公共点A、M时,如果AO⊥PM于点N,求CM的长度(图3).(第6题图)AB=.AC=AB=,××的面积为==PD=PM=DM=AM==.AM=BM=.AC=CM==的长度为(1)求证:BE=AF;(2)若∠ABC=60°,BD=6,求四边形ADEF的面积.(第7题图)DG=×6=3,BH=DH=BE=,DE=BE=2DG=68.(2018•泰州,第25题,12分)如图,平面直角坐标系xOy中,一次函数y=﹣x+b(b为常数,b>0)的图象与x轴、y轴分别相交于点A、B,半径为4的⊙O与x轴正半轴相交于点C,与y轴相交于点D、E,点D在点E上方.(第8题图)(1)若直线AB与有两个交点F、G.①求∠CFE的度数;②用含b的代数式表示FG2,并直接写出b的取值范围;(2)设b≥5,在线段AB上是否存在点P,使∠CPE=45°?若存在,请求出P点坐标;若不存在,请说明理由.﹣xb b((﹣(﹣(FM=b b b﹣有两个交点xx+5()9. (2018•扬州,第28题,12分)已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.(第9题图)(1)如图1,已知折痕与边BC交于点O,连结AP、OP、OA.①求证:△OCP∽△PDA;②若△OCP与△PDA的面积比为1:4,求边AB的长;(2)若图1中的点P恰好是CD边的中点,求∠OAB的度数;(3)如图2,,擦去折痕AO、线段OP,连结BP.动点M在线段AP上(点M与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连结MN交PB于点F,作ME⊥BP于点E.试问当点M、N在移动过程中,线段EF的长度是否发生变化?若变化,说明理由;若不变,求出线段EF的长度.DC=AB====.DP=DP== PE=EQ=.QF=EF=EQ+QF=PQ+QB=PB==4EF=..10.( 2018•安徽省,第19题10分)如图,在⊙O中,半径OC与弦AB垂直,垂足为E,以OC为直径的圆与弦AB的一个交点为F,D是CF延长线与⊙O的交点.若OE=4,OF=6,求⊙O的半径和CD的长.考点:垂径定理;勾股定理;圆周角定理;相似三角形的判定与性质.专题:计算题.分析:由OE⊥AB得到∠OEF=90°,再根据圆周角定理由OC为小圆的直径得到∠OFC=90°,则可证明Rt△OEF∽Rt△OFC,然后利用相似比可计算出⊙O的半径OC=9;接着在Rt△OCF中,根据勾股定理可计算出C=3,由于OF⊥CD,根据垂径定理得CF=DF,所以CD=2CF=6.解答:解:∵OE⊥AB,∴∠OEF=90°,∵OC为小圆的直径,∴∠OFC=90°,而∠EOF=∠FOC,∴Rt△OEF∽Rt△OFC,∴OE:OF=OF:OC,即4:6=6:OC,∴⊙O的半径OC=9;在Rt△OCF中,OF=6,OC=9,∴CF==3,∵OF⊥CD,∴CF=DF,∴CD=2CF=6.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理、圆周角定理和相似三角形的判定与性质.11. ( 2018•珠海,第18题7分)如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,线段AB为半圆O的直径,将Rt△ABC沿射线AB方向平移,使斜边与半圆O相切于点G,得△DEF,DF与BC交于点H.(1)求BE的长;(2)求Rt△ABC与△DEF重叠(阴影)部分的面积.,所以;BC==,即=,﹣;﹣.,即BD××2=,12.(2018•温州,第22题8分)勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2证明:连结DB,过点D作BC边上的高DF,则DF=EC=b﹣A.∵S四边形ADCB=S△ACD+S△ABC=b2+aB.又∵S四边形ADCB=S△ADB+S△DCB=c2+a(b﹣a)∴b2+ab=c2+a(b﹣a)∴a2+b2=c2请参照上述证法,利用图2完成下面的证明.将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:a2+b2=c2证明:连结过点B作DE边上的高BF,则BF=b﹣a,∵S五边形ACBED= S△ACB+S△ABE+S△ADE=ab+b2+ab,又∵S五边形ACBED= S△ACB+S△ABD+S△BDE=ab+c2+a(b﹣a),∴ab+b2+ab=ab+c2+a(b﹣a),∴a2+b2=c2.ab+abab++ab+b ab=ab+a。
2019全国中考数学真题分类汇编之29:数学文化(含答案)
2019年全国中考数学真题分类汇编:数学文化一、选择题1. (2019年乐山市)《九章算术》第七卷“盈不足”中记载:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”译为:“今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱。
问人数、物价各多少?”根据所学知识,计算出人数、物价分别是( ) ()A 1,11()B 7,53 ()C 7,61 ()D 6,50【考点】二元一次方程组的解法与应用 【解答】解:设人数人,物价y 钱.⎩⎨⎧=+=-y x yx 4738解得:⎩⎨⎧==537y x ,故选B.2.(2019年重庆市)《九章算术》中有这样一个题:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?其意思为:今有甲乙二人,不如其钱包里有多少钱,若乙把其一半的钱给甲,则甲的数为50;而甲把其的钱给乙,则乙的钱数也为50,问甲、乙各有多少钱?设甲的钱数为,乙的钱数为y ,则可建立方程组为( )A .B .C .D .【考点】二元一次方程组的解法与应用 【解答】解:设甲的钱数为,乙的钱数为y ,依题意,得:.故选:A .3. (2019年山东省德州市)《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四足五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余1尺,问木长多少尺,现设绳长尺,木长y尺,则可列二元一次方程组为()A. B. C D【考点二元一次方程组的解法与应用、数学文化【解答】解:设绳长尺,长木为y尺,依题意得,故选:B.4.(2019年湖北省襄阳市)《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为人,所列方程正确的是()A.5﹣45=7﹣3 B.5+45=7+3 C.=D.=【考点】一元一次方程的应用【解答】解:设合伙人数为人,依题意,得:5+45=7+3.故选:B.5. (2019年湖北省宜昌市)古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦﹣秦九韶公式:如果一个三角形的三边长分别是a,b,c,记p=,那么三角形的面积为S=.如图,在△ABC 中,∠A,∠B,∠C所对的边分别记为a,b,c,若a=5,b=6,c=7,则△ABC的面积为()A.6B.6C.18D.【考点】二次根式的应用【解答】解:∵a=7,b=5,c=6.∴p==9,∴△ABC的面积S==6;故选:A.6.(2019年福建省)《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问君每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34685个字,设他第一天读个字,则下面所列方程正确的是( ) A .+2+4=34685 B .+2+3=34685C .+2+2=34685D .+12+14=34685【考点】由实际问题抽象出一元一次方程【解答】解:设他第一天读个字,根据题意可得:+2+4=34685, 故选:A .7.(2019年吉林省长春市)《九章算术》是中国古代重要的数学著作,其中“盈不足术”记载:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数鸡价各几何?译文:今有人合伙买鸡,每人出九钱,会多出11钱;每人出6钱,又差16钱.问人数、买鸡的钱数各是多少?设人数为,买鸡的钱数为y ,可列方程组为( ) A . B .C D .【考】由实际问题抽象出二元一次方程组【解答】解:设人数为,买鸡的钱数为y ,可列方程组为: . 故:D .8.(2019年甘肃兰州)《九章算术》是中国古代数学著作之一,书中有这样的一个问题:五只雀,六只燕共重一斤,雀重燕轻,互换一只,恰好一样重.问:每只雀、燕的重量各为多少?设一只雀的重量为斤,一只燕的重量为y 斤,则可列方程组为( ) A . B .CD .【考由际问抽出二元一次方程组 【解答】解:由题意可得, , 故:C .9.(019年湖南省长沙市)《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为尺,绳子长为y 尺,则所列方程组正确的是()A.B.C.D.考点由实际问题抽象出二元一次方程组【解答】解:由题意可得,,故选A.10.(2019年浙江省舟山市)中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹两,牛每头y两,根据题意可列方程组为()A.B.C.D【考】二元一次方程组的应用【解答】解:设马每匹两,牛每头y两,根据题意可列方程组为:.故:D.11.(2019年浙江省宁波市)勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出()A.直角三角形的面积B.最大正方形的面积C.较小两个正方形重叠部分的面积D.最大正方形与直角三角形的面积和【考点】勾股定理【解答】解:设直角三角形的斜边长为c ,较长直角边为b ,较短直角边为a , 由勾股定理得,c 2=a 2+b 2,阴影部分的面积=c 2﹣b 2﹣a (c ﹣b )=a 2﹣ac +ab =a (a +b ﹣c ), 较小两个正方形重叠部分的宽=a ﹣(c ﹣b ),长=a , 则较小两个正方形重叠部分底面积=a (a +b ﹣c ),∴知道图中阴影部分的面积,则一定能求出较小两个正方形重叠部分的面积, 故选:C . 二、填空题1. (2019年上海市)《九章算术》中有一道题的条件是:“今有大器五小器一容三斛,大器一小器五容二斛.”大致意思是:有大小两种盛米的桶,5大桶加1小桶共盛3斛米,1大桶加5小桶共盛2斛米,依据该条件,1大桶加1小桶共盛 . 斛米.(注:斛是古代一种容量单位) 【考点】二元一次方程组的解法【解答】解:设1个大桶可以盛米斛,1个小桶可以盛米y 斛, 则,故++y +5y =5, 则+y =56.答:1大桶加1小桶共盛56斛米.故答案为:56.2. (2019年辽宁省大连市)我国古代数学著作《九章算术》中记载:“今有大器五小器一容三斛,大器一小器五容二斛.问大小器各容几何.”其大意为:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,音hu ,是古代的一种容量单位).1个大桶加上5个小桶可以盛酒2斛,问1个大桶、一个小桶分别可以盛酒多少斛?若设1个大桶可以盛酒斛,1个小桶可以盛酒y 斛,根据题意,可列方程组为 . 【考点】二元一次方程组的应用【解答】解:设1个大桶可以盛酒斛,1个小桶可以盛酒y 斛, 根据题意得:, 故案为.3(2019年江苏省南通市)《九章算术》是中国传统数学最重要的著作之一.书中记载:“今有人共买鸡,人出九,盈十一;人出六,不足十六.问人数几何?”意思是:“有若干人共同出钱买鸡,如果每人出九钱,那么多了十一钱;如果每人出六钱,那么少了十六钱.问:共有几个人?”设共有个人共同出钱买鸡,根据题意,可列一元一次方程为.【解答】一元一次方程的应用【考点】解:设有个人共同买鸡,根据题意得:9﹣11=6+16.故答案为:9﹣11=6+16.4.(2019年湖南省株洲市)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?“其意思为:速度快的人走100步,速度慢的人只走60步,现速度慢的人先走100步,速度快的人去追赶,则速度快的人要走步才能追到速度慢的人.【解答】一元一次方程的应用【考点】解:设走路快的人追上走路慢的人所用时间为t,根据题意得:(100﹣60)t=100,解得:t=2.5,∴100t=100×2.5=250.答:走路快的人要走250步才能追上走路慢的人.故答案是:250.5.(2019年湖北省咸宁市)《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长尺,绳子长y尺,可列方程组为.【解答】二元一次方程组的应用【考点】解:设木条长尺,绳子长y尺,依题意,得:.答案为:..(2019年江苏省泰安市)《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银一枚各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计),问黄金、白银每枚各重多少两?设每枚黄金重两,每枚白银重y两,根据题意可列方程组为____.【解答】由实际问题抽象出二元一次方程组【考点】解:设每枚黄金重两,每枚白银重y两,由题意得:,故案为:.7(201年宁夏自治)你知道吗,对于一元二次方程,我国古代数学家还研究过其几何解法呢!以方程2+5﹣14=0即(+5)=14为例加以说明.数学家赵爽(公元3~4世纪)在其所著的《勾股圆方图注》中记载的方法是:构造图(如下面左图)中大正方形的面积是(++5)2,其中它又等于四个矩形的面积加上中间小正方形的面积,即4×14+52,据此易得=2.那么在下面右边三个构图(矩形的顶点均落在边长为1的小正方形网格格点上)中,能够说明方程2﹣4﹣12=0的正确构图是.(只填序号)【解答】一元二次方程的应用【考点】解:∵2﹣4﹣12=0即(﹣4)=12,∴构造如图②中大正方形的面积是(+﹣4)2,其中它又等于四个矩形的面积加上中间小正方形的面积,即4×12+42,据此易得=6.故答案为:②.8.(2019年甘肃白银)一个猜想是否正确,科学家们要经过反复的实验论证.下表是几位科学家“掷硬币”的实验数据:实验者德•摩根蒲丰费勒皮尔逊罗曼诺夫斯基掷币次数614040401000036000806403109204849791803139699出现“正面朝上”的次数频率0.5060.5070.4980.5010.492请根据以上数据,估计硬币出现“正面朝上”的概率为0.5(精确到0.1).【解答】利用频率估计概率【考点】解:因为表中硬币出现“正面朝上”的频率在0.5左右波动,所以估计硬币出现“正面朝上”的概率为0.5.故答案为0.5.三、解答题1.(2019年甘肃省)中国古代入民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题,原文:今有三人共车,二车空;二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问共有多少人,多少辆车?【考点】一元一次方程的解法及应用【解答】解:设共有人,根据题意得:+2=,去分母得:2+12=3﹣27,解得:=39,∴=15,则共有39人,15辆车.2.(2019年湖北省黄石市)“今有善行者行一百步,不善行者行六十步.”(出自《九章算术》)意思是:同样时间段内,走路快的人能走100步,走路慢的人只能走60步.假定两者步长相等,据此回答以下问题:(1)今不善行者先行一百步,善行者追之,不善行者再行六百步,问孰至于前,两者几何步隔之?即:走路慢的人先走100步,走路快的人开始追赶,当走路慢的人再走600步时,请问谁在前面,两人相隔多少步?(2)今不善行者先行两百步,善行者追之,问几何步及之?即:走路慢的人先走200步,请问走路快的人走多少步才能追上走路慢的人?【解答】一元一次方程的应用【考点】解:(1)设当走路慢的人再走600步时,走路快的人的走步,由题意得:600=100:60∴=1000∴1000﹣600﹣100=300答:当走路慢的人再走600步时,走路快的人在前面,两人相隔300步.(2)设走路快的人走y步才能追上走路慢的人,由题意得y=200+60y100∴y=500答:走路快的人走500步才能追上走路慢的人.。
中考数学真题分类汇编及解析(二十五)勾股定理
(2022•湖州中考)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.如图,在6×6的正方形网格图形ABCD中,M,N分别是AB,BC上的格点,BM=4,BN=2.若点P是这个网格图形中的格点,连结PM,PN,则所有满足∠MPN=45°的△PMN中,边PM的长的最大值是()A.4√2B.6C.2√10D.3√5【解析】选C.如图所示:△MNP为等腰直角三角形,∠MPN=45°,此时PM最长,根据勾股定理得:PM=√22+62=√40=2√10.(2022•宁波中考)如图,在Rt△ABC中,D为斜边AC的中点,E为BD上一点,F为CE中点.若AE=AD,DF=2,则BD的长为()A.2√2B.3C.2√3D.4【解析】选D.因为D为斜边AC的中点,F为CE中点,DF=2,所以AE=2DF=4,因为AE=AD,所以AD=4,在Rt△ABC中,D为斜边AC的中点,所以BD=12AC=AD=4A .2B .32C .12D .√55【解析】选A .由已知可得,大正方形的面积为1×4+1=5,设直角三角形的长直角边为a ,短直角边为b ,则a 2+b 2=5,a ﹣b =1,解得a =2,b =1,所以tan α=a b =21=2(2022·遵义中考)如图1是第七届国际数学教育大会(ICME )会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图2所示的四边形OABC .若AB =BC =1,∠AOB =30°,则点B 到OC 的距离为( )A .√55B .2√55C .1D .2 【解析】选B .作BH ⊥OC 于H ,因为∠AOB =30°,∠A =90°,所以OB =2AB =2,在Rt △OBC 中,由勾股定理得,OC =√OB 2+BC 2=√22+12=√5,因为∠CBO =∠BHC =90°,所以∠CBH =∠BOC ,所以cos ∠BOC =cos ∠CBH ,所以OBOC =BHBC ,所以2√5=BH 1,所以BH =2√55.(2022•十堰中考)【阅读材料】如图①,四边形ABCD中,AB=AD,∠B+∠D=180°,点E,F分别在BC,CD 上,若∠BAD=2∠EAF,则EF=BE+DF.【解决问题】如图②,在某公园的同一水平面上,四条道路围成四边形ABCD.已知CD=CB=100m,∠D=60°,∠ABC=120°,∠BCD=150°,道路AD,AB上分别有景点M,N,且DM=100m,BN=50(√3−1)m,若在M,N 之间修一条直路,则路线M→N的长比路线M→A→N的长少370 m(结果取整数,参考数据:√3≈1.7).【解析】解法一:如图,延长DC,AB交于点G,因为∠D=60°,∠ABC=120°,∠BCD=150°,所以∠A=360°﹣60°﹣120°﹣150°=30°,所以∠G=90°,所以AD=2DG,Rt△CGB中,∠BCG=180°﹣150°=30°,BC=50,CG=50√3,所以DG=CD+CG=100+50√3,所以BG=12所以AD=2DG=200+100√3,AG=√3DG=150+100√3,因为DM=100,所以AM=AD﹣DM=200+100√3−100=100+100√3,因为BG=50,BN=50(√3−1),所以AN=AG﹣BG﹣BN=150+100√3−50﹣50(√3−1)=150+50√3,AN=75+25√3,AH=√3NH=75√3+75,Rt△ANH中,因为∠A=30°,所以NH=12由勾股定理得:MN=√NH2+MH2=√(75+25√3)2+(25√3+25)2=50(√3+1),所以AM+AN﹣MN=100+100√3+150+50√3−50(√3+1)=200+100√3≈370(m).答:路线M→N的长比路线M→A→N的长少370m.解法二:如图,延长DC,AB交于点G,连接CN,CM,则∠G=90°,因为CD=DM,∠D=60°,所以△BCM是等边三角形,所以∠DCM=60°,由解法一可知:CG=50√3,GN=BG+BN=50+50(√3−1)=50√3,所以△CGN是等腰直角三角形,所以∠GCN=45°,所以∠BCN=45°﹣30°=15°,所以∠MCN=150°﹣60°﹣15°=75°=12∠BCD,由【阅读材料】的结论得:MN=DM+BN=100+50(√3−1)=50√3+50,因为AM+AN﹣MN=AD+AG﹣MN=100+100√3+150+50√3−50(√3+1)=200+100√3≈370(m).答:路线M→N的长比路线M→A→N的长少370m.答案:370.(2022•河南中考)如图,在Rt△ABC中,∠ACB=90°,AC=BC=2√2,点D为AB的中点,点P在AC上,且CP=1,将CP绕点C在平面内旋转,点P的对应点为点Q,连接AQ,DQ.当∠ADQ=90°时,AQ的长为√5或√13.【解析】如图:因为∠ACB=90°,AC=BC=2√2,所以AB=√2AC=4,因为点D为AB的中点,所以CD=AD=12AB=2,∠ADC=90°,因为∠ADQ=90°,所以点C、D、Q在同一条直线上,由旋转得:CQ=CP=CQ′=1,分两种情况:当点Q在CD上,在Rt△ADQ中,DQ=CD﹣CQ=1,所以AQ=√AD2+DQ2=√22+12=√5,当点Q在DC的延长线上,在Rt△ADQ′中,DQ′=CD+CQ ′=3,所以AQ′=√AD2+DQ′2=√22+32=√13,综上所述:当∠ADQ=90°时,AQ的长为√5或√13.答案:√5或√13是25,小正方形的面积是1,则AE=3.【解析】因为大正方形的面积是25,小正方形的面积是1,所以AB=BC=CD=DA=5,EF=FG=GH=HE=1,根据题意,设AF=DE=CH=BG=x,则AE=x﹣1,在Rt△AED中,AE2+ED2=AD2,所以(x﹣1)2+x2=52,解得:x1=4,x2=﹣3(舍去),所以x﹣1=3.答案:3(2022•泰州中考)如图所示的象棋盘中,各个小正方形的边长均为1.“马”从图中的位置出发,不走重复路线,按照“马走日”的规则,走两步后的落点与出发点间的最短距离为√2.【解析】走两步后的落点与出发点间的最短距离为√12+12=√2.答案:√2.(2022•内江中考)勾股定理被记载于我国古代的数学著作《周髀算经》中,汉代数学家赵爽为了证明勾股定理,创制了一幅如图①所示的“弦图”,后人称之为“赵爽弦图”.图②由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1、S2、S3.若正方形EFGH的边长为4,则S1+S2+S3=48.【解析】设八个全等的直角三角形的长直角边为a,短直角边是b,则:S1=(a+b)2,S2=42=16,S3=(a﹣b)2,且:a2+b2=EF2=16,所以S1+S2+S3=(a+b)2+16+(a﹣b)2=2(a2+b2)+16=2×16+16=48.。
2019全国中考数学试题分类汇编----勾股定理
(2019•湘西州)如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.==10ADB=AB DE=点O,过点O的直线EF交AD于点E,交BC于点F.(1)求证:△AOE≌△COF;(2)若∠EOD=30°,求CE的长.,DAO=∠BAD=×AD=×=×,×=CE==.(2019•巴中)若直角三角形的两直角边长为a、b,且满足,则该直角三角形的斜边长为5.,===5(2019•达州)如图,在R t △ABC 中,∠B=90°,AB=3,BC=4,点D 在BC 上,以AC 为对角线的所有□ADCE 中,DE 最小的值是( )A .2B .3C .4D .5 答案:B解析:由勾股定理,得AC =5,因为平行边形的对角线互相平分,所以,DE 一定经过AC 中点O ,当DE ⊥BC 时,DE 最小,此时OD =32,所以最小值DE =3 (2019•达州)如图,折叠矩形纸片ABCD ,使B 点落在AD 上一点E处,折痕的两端点分别在AB 、BC 上(含端点),且AB=6,BC=10。
设AE=x ,则x 的取值范围是 . 答案:2≤x ≤6解析:如图,设AG =y ,则BG =6-y ,在Rt △GAE 中,x 2+y 2=(6-y )2,即x =8(0)3y ≤≤,当y =0时,x 取最大值为6;当y =83时,x 取最小值2,故有2≤x ≤62019•雅安)在平面直角坐标系中,已知点A (﹣,0),B (,0),点C 在坐标轴上,且AC+BC=6,写出满足条件的所有点C 的坐标 (0,2),(0,﹣2),(﹣3,0),(3,0) .ABC的面积是CA.48B.60C .76D.80图1 (2019鞍山)△ABC中,∠C=90°,AB=8,cosA=,则BC的长.考点:锐角三角函数的定义;勾股定理.分析:首先利用余弦函数的定义求得AC的长,然后利用勾股定理即可求得BC的长.解答:解:∵cosA=,∴AC=AB•cosA=8×=6,∴BC===2.故答案是:2.点评:本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.(2019鞍山)如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H 分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是.考点:三角形中位线定理;勾股定理.分析:利用勾股定理列式求出BC的长,再根据三角形的中位线平行于第三边并且等于第三边的一半求出EH=FG=AD,EF=GH=BC,然后代入数据进行计算即可得解.解答:解:∵BD⊥CD,BD=4,CD=3,∴BC===5,∵E、F、G、H分别是AB、AC、CD、BD的中点,∴EH=FG=AD,EF=GH=BC,∴四边形EFGH的周长=EH+GH+FG+EF=AD+BC,又∵AD=6,∴四边形EFGH的周长=6+5=11.故答案为:11.点评:本题考查了三角形的中位线定理,勾股定理的应用,熟记三角形的中位线平行于第三边并且等于第三边的一半是解题的关键.(2019•鄂州)如图,已知直线a∥b,且a与b之间的距离为4,点A到直线a的距离为2,点B到直线b的距离为3,AB=.试在直线a上找一点M,在直线b上找一点N,满足MN⊥a且AM+MN+NB的长度和最短,则此时AM+NB=()AB=2BE==B==8却不以为然:“20层?我看没有,数数就知道了!”小明说:“有本事,你不用数也能明白!”小华想了想说:“没问题!让我们来量一量吧!”小明、小华在楼体两侧各选A、B两点,测量数据如图,其中矩形CDEF表示楼体,AB=150米,CD=10米,∠A=30°,∠B=45°,(A、C、D、B四点在同一直线上)问:(1)楼高多少米?(2)若每层楼按3米计算,你支持小明还是小华的观点呢?请说明理由.(参考数据:≈1.73,≈1.41,≈2.24)xx=﹣﹣﹣(2019•襄阳)在一张直角三角形纸片中,分别沿两直角边上一点与斜边中点的连线剪去两个三角形,得到如图所示的直角梯形,则原直角三角形纸片的斜边长是6或2.=,AB=2CD=2,EF==3,或.(2019•莆田)如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别为2,5,1,2.则最大的正方形E的面积是10.以点A为圆心,以AB长为半径画弧,交x正半轴于点C,则点C的坐标为.(2019•包头)如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3,则∠BE′C=135度.=2______________.【答案】(2019•东营)如图,圆柱形容器中,高为1.2m,底面周长为1m,在容器内壁..离容器底部0.3m的点B处有一蚊子,此时一只壁虎正好在容器外壁..的点..,离容器上沿0.3m与蚊子相对A处,则壁虎捕捉蚊子的最短距离为1.3 m(容器厚度忽略不计).2019•绍兴)在平面直角坐标系中,O是原点,A是x轴上的点,将射线OA绕点O旋转,使点A与双曲线y=上的点B重合,若点B的纵坐标是1,则点A的横坐标是2或﹣2.上的点=2(2019•黔西南州)一直角三角形的两边长分别为3和4.则第三边的长为A、5B C D、5(2019•柳州)在△ABC中,∠BAC=90°,AB=3,AC=4.AD平分∠BAC交BC于D,则BD的长为()B×5=3h+××,h=×=•BD=。
2019年全国各地中考数学试题分类汇编(第一期) 专题36 规律探索(含解析)
规律探索一.选择题1. (2019•山东省济宁市 •3分)已知有理数a ≠1,我们把称为a 的差倒数,如:2的差倒数是=﹣1,﹣1的差倒数是=.如果a 1=﹣2,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数……依此类推,那么a 1+a 2+…+a 100的值是( ) A .﹣7.5B .7.5C .5.5D .﹣5.5【考点】数字的变化【分析】求出数列的前4个数,从而得出这个数列以﹣2,,依次循环,且﹣2++=﹣,再求出这100个数中有多少个周期,从而得出答案. 【解答】解:∵a 1=﹣2, ∴a 2==,a 3==,a 4==﹣2,……∴这个数列以﹣2,,依次循环,且﹣2++=﹣, ∵100÷3=33…1,∴a 1+a 2+…+a 100=33×(﹣)﹣2=﹣=﹣7.5,故选:A .【点评】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况. 2. (2019•广东深圳•3分)定义一种新运算:⎰-=⋅-abn n n b a dx x n 1,例如:⎰-=⋅khh k xdx 222,若⎰-=--m522mdx x ,则m =( )A. -2B. 52-C. 2D.52【答案】B 【解析】⎰-=-=-=----m51122511)5(mmm m m dx x ,则m =52-,故选B.3.(2019,山东枣庄,3分)如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是( )A.B.C.D.【分析】根据题意知原图形中各行、各列中点数之和为10,据此可得.【解答】解:由题意知,原图形中各行、各列中点数之和为10,符合此要求的只有故选:D.【点评】本题主要考查图形的变化规律,解题的关键是得出原图形中各行、各列中点数之和为10.4. (2019•湖北十堰•3分)一列数按某规律排列如下:,,,,,,,,,,…,若第n个数为,则n=()A.50 B.60 C.62 D.71【分析】根据题目中的数据可以发现,分子变化是1,(1,2),(1,2,3),…,分母变化是1,(2,1),(3,2,1),…,从而可以求得第n个数为时n的值,本题得意解决.【解答】解:,,,,,,,,,,…,可写为:,(,),(,,),(,,,),…,∴分母为11开头到分母为1的数有11个,分别为,∴第n个数为,则n=1+2+3+4+…+10+5=60,故选:B.【点评】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律.5. (2019•湖北武汉•3分)观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2…已知按一定规律排列的一组数:250、251.252.…、299.2100.若250=a,用含a的式子表示这组数的和是()A.2a2﹣2a B.2a2﹣2a﹣2 C.2a2﹣a D.2a2+a【分析】由等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2,得出规律:2+22+23+…+2n=2n+1﹣2,那么250+251+252+…+299+2100=(2+22+23+…+2100)﹣(2+22+23+…+249),将规律代入计算即可.【解答】解:∵2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…∴2+22+23+…+2n=2n+1﹣2,∴250+251+252+…+299+2100=(2+22+23+...+2100)﹣(2+22+23+ (249)=(2101﹣2)﹣(250﹣2)=2101﹣250,∵250=a,∴2101=(250)2•2=2a2,∴原式=2a2﹣a.故选:C.【点评】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于得出规律:2+22+23+…+2n=2n+1﹣2.二.填空题1. (2019•江苏连云港•3分)如图,将一等边三角形的三条边各8等分,按顺时针方向(图中箭头方向)标注各等分点的序号0、1.2.3.4.5.6.7.8,将不同边上的序号和为8的两点依次连接起来,这样就建立了“三角形”坐标系.在建立的“三角形”坐标系内,每一点的坐标用过这一点且平行(或重合)于原三角形三条边的直线与三边交点的序号来表示(水平方向开始,按顺时针方向),如点A的坐标可表示为(1,2,5),点B的坐标可表示为(4,1,3),按此方法,则点C的坐标可表示为(2,4,2).【分析】根据点A的坐标可表示为(1,2,5),点B的坐标可表示为(4,1,3)得到经过点的三条直线对应着等边三角形三边上的三个数,依次为左、右,下,即为该点的坐标,于是得到结论.【解答】解:根据题意得,点C的坐标可表示为(2,4,2),故答案为:(2,4,2).【点评】本题考查了规律型:点的坐标,等边三角形的性质,找出题中的规律是解题的关键.2.(2019•浙江衢州•4分)如图,由两个长为2,宽为1的长方形组成“7”字图形。
中考数学章节考点分类突破:第21章-勾股定理(含解析)
(最新最全)2019年全国各地中考数学解析汇编(按章节考点整理)第二十一章 勾股定理21.1 勾股定理(2018广州市,7, 3分)在Rt △ABC 中,∠C=90°,AC=9,BC=12,则点C 到AB 的距离是( ) A.365 B. 1225 C. 94D. 4【解析】首先根据勾股定理求出直角三角形的斜边,利用直角三角形面积的两种求法,求出点C 到AB 的距离。
【答案】由勾股定理得AB==根据面积有等积式11BC=AB CD 22AC ∙∙,于是有CD=365。
【点评】本题用了考查常用的勾股定理,直角三角形根据面积得到的一个等积式,列方程求线段CD 的长。
(2018安徽,10,4分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是( )A.10B.54C. 10或54D.10或172 解析:考虑两种情况.要分清从斜边中点向哪个边沿着垂线段过去裁剪的. 解答:解:如下图,54)44()22(22=++⨯,1054)44()32(22=++⨯故选C . 点评:在几何题没有给出图形时,有的同学会忽略掉其中一种情况,错选A 或B ;故解决本题最好先画出图形,运用数形结合和分类讨论的数学思想进行解答,避免出现漏解.(2018四川省南充市,14,4分) 如图,四边形ABCD 中,∠BAD=∠BCD=90°,A B=AD ,若四边形ABCD 的面积是24cm 2,则AC 长是_____________cm.【解析】过点A 作AE ⊥BC 于点E ,AF ⊥CD 交CD 的延长线于点F.则⊿ABE ≌⊿ADF ,得AE=AF ,进一步证明四边形AECF 是正方形,且正方形AECF 与四边形ABCD 的面积相等.则AE =,所以2643AC ===【答案】【点评】本题考查了三角形的全等变换、正方形的性质以及勾股定理.解题的关键是正确的做出旋转的全等变换,将四边形的问题转化成正方形的问题来解决.(2018山东省荷泽市,16(2),6)(2)如图,OABC 是一张放在平面直角坐标系中的矩形纸片,O 为原点,点A 在x 轴的正半轴上,点C 在y 轴的正半轴上,OA=10,OC=8,在OC 边上取一点D,将纸片沿AD 翻折,使点O 落在BC 边上的点E 处,求D 、E 两点的坐标.【解析】根据折叠问题及矩形的性质,可以利用勾股定理求出线段的长来确定点的坐标.【答案】(1)依题意可知,折痕AD 是四边形OAED 的对称轴,∴在Rt ABE ∆中,10,8AE AO AB ===,6BE =,4CE ∴=,(4,8)E ∴. 在Rt DCE ∆中,222DC CE DE +=,又DE OD =,222(8)4OD OD ∴-+=,5OD ∴=,(0,5)D ∴.【点评】在平面直角坐标系中,求点的坐标实质就是求这个点到两轴的距离,也就是求线段的长,求线段的就是利用勾股定理、三角函数或相似三角形的对应边成比例.(2018贵州贵阳,8,3分)如图,在Rt △ABC 中,∠ACB=90°,AB 的垂直平分线DE 交BC 的延长线于F ,若∠F=30°,DE=1,则EF 的长( )A.3B.2C.3D.1解析:由已知得,BF=2BD=AB ,所以FC=AD,不难得到Rt △FEC ≌Rt △AED,故得EC=ED=1,结合∠F=30°,∠FCE=90°,可得EF=2EC=2.解答:选B .点评:本题主要考查 “直角三角形中30°度角所对的直角边等于斜边的一半”的知识,也涉及到全等三角形的判定与性质,相对综合.(2018浙江省嘉兴市,6,4分)如图,A 、B 两点在河的两岸,要测量这两点之间的距离,测量者在与A 同侧的河岸边选定一点C,测出AC=a 米,∠A=90° , ∠C=40° ,则AB 等于( )米 A. asin4o° B. acos40° C.atan4o° D.tan 40a【解析】如图,在Rt △ABC 中,∵∠A=90° , ∠C=40° , AC=a 米,∴tan40°=AB AC,∴AB =atan4o°, 故选C. 【答案】C.【点评】本题要求适当选用三角函数关系,解直角三角形.22.2 勾股定理的逆定理22.3 直角三角形的性质(2018浙江省湖州市,5,3分)如图,在Rt △ABC 中,∠ACB=900,AB=10,CD 是AB 边上的中线,则CD 的长是( )A.20B.10C.5D.25【解析】直角三角形斜边上的中线等于斜边的一半,故CD=21AB=21×10=5. 【答案】选:C .【点评】此题考查的是直角三角形的性质,属于基础题。
九年级数学全国各地中考数学试题分类汇编(第一期) 专题22 等腰三角形(含解析)
等腰三角形一.选择题1. 1.(2019•浙江衢州•3分)“三等分角”大约是在公元前五世纪由古希腊人提出来的。
借助如图所示的“三等分角仪”能三等分任一角。
这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在O点相连并可绕O转动,C点固定,OC=CD=DE,点D,E可在槽中滑动,若∠BDE=75°,则∠CDE的度数是()A. 60°B. 65°C. 75°D. 8 0°【答案】D【考点】三角形内角和定理,三角形的外角性质,等腰三角形的性质【解析】【解答】解:∵OC=CD=DE,∴∠O=∠ODC,∠DCE=∠DEC,设∠O=∠ODC=x,∴∠DCE=∠DEC=2x,∴∠CDE=180°-∠DCE-∠DEC=180°-4x,∵∠BDE=75°,∴∠ODC+∠CDE+∠BDE=180°,即x+180°-4x+75°=180°,解得:x=25°,∠CDE=180°-4x=80°.故答案为:D.【分析】由等腰三角形性质得∠O=∠ODC,∠DCE=∠DEC,设∠O=∠ODC=x,由三角形外角性质和三角形内角和定理得∠DCE=∠DEC=2x,∠CDE=180°-4x,根据平角性质列出方程,解之即可的求得x值,再由∠CDE=180°-4x=80°即可求得答案.2. (2019•湖南长沙•3分)如图,Rt△ABC中,∠C=90°,∠B=30°,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,则∠CAD的度数是()A.20°B.30°C.45°D.60°【分析】根据内角和定理求得∠BAC=60°,由中垂线性质知DA=DB,即∠DAB=∠B =30°,从而得出答案.【解答】解:在△ABC中,∵∠B=30°,∠C=90°,∴∠BAC=180°﹣∠B﹣∠C=60°,由作图可知MN为AB的中垂线,∴DA=DB,∴∠DAB=∠B=30°,∴∠CAD=∠BAC﹣∠DAB=30°,故选:B.【点评】本题主要考查作图﹣基本作图,熟练掌握中垂线的作图和性质是解题的关键.3. (2019•湖南长沙•3分)如图,△ABC中,AB=AC=10,tanA=2,BE⊥AC于点E,D是线段BE上的一个动点,则CD+BD的最小值是()A.2B.4C.5D.10【分析】如图,作DH⊥AB于H,CM⊥AB于M.由tanA==2,设AE=a,BE=2a,利用勾股定理构建方程求出a,再证明DH=BD,推出CD+BD=CD+DH,由垂线段最短即可解决问题.【解答】解:如图,作DH⊥AB于H,CM⊥AB于M.∵BE⊥AC,∴∠ABE=90°,∵tanA==2,设AE=a,BE=2a,则有:100=a2+4a2,∴a2=20,∴a=2或﹣2(舍弃),∴BE=2a=4,∵AB=AC,BE⊥AC,CM⊥AC,∴CM=BE=4(等腰三角形两腰上的高相等))∵∠DBH=∠ABE,∠BHD=∠BEA,∴sin∠DBH===,∴DH=BD,∴CD+BD=CD+DH,∴CD+DH≥CM,∴CD+BD≥4,∴CD+BD的最小值为4.故选:B.【点评】本题考查解直角三角形,等腰三角形的性质,垂线段最短等知识,解题的关键是学会添加常用辅助线,用转化的思想思考问题,属于中考常考题型.4. (2019•湖南怀化•4分)怀化是一个多民族聚居的地区,民俗文化丰富多彩.下面是几幅具有浓厚民族特色的图案,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】直接利用轴对称图形和中心对称图形的概念求解.【解答】解:A.是轴对称图形,不是中心对称图形,故此选项错误;B.是轴对称图形,不是中心对称图形,故此选项错误;C.既是中心对称图形也是轴对称图形,故此选项正确;D.是轴对称图形,但不是中心对称图形,故此选项错误.故选:C.【点评】此题主要考查了中心对称与轴对称的概念:轴对称的关键是寻找对称轴,两边图象折叠后可重合,中心对称是要寻找对称中心,旋转180°后与原图重合.5. (2019•湖南邵阳•3分)如图,在Rt△ABC中,∠BAC=90°,∠B=36°,AD是斜边BC上的中线,将△ACD沿AD对折,使点C落在点F处,线段DF与AB相交于点E,则∠BED等于()A.120°B.108°C.72°D.36°【分析】根据三角形内角和定理求出∠C=90°﹣∠B=54°.由直角三角形斜边上的中线的性质得出AD=BD=CD,利用等腰三角形的性质求出∠BAD=∠B=36°,∠DAC =∠C=54°,利用三角形内角和定理求出∠ADC=180°﹣∠DAC﹣∠C=72°.再根据折叠的性质得出∠ADF=∠ADC=72°,然后根据三角形外角的性质得出∠BED=∠BAD+∠ADF=108°.【解答】解:∵在Rt△ABC中,∠BAC=90°,∠B=36°,∴∠C=90°﹣∠B=54°.∵AD是斜边BC上的中线,∴AD=BD=CD,∴∠BAD=∠B=36°,∠DAC=∠C=54°,∴∠ADC=180°﹣∠DAC﹣∠C=72°.∵将△ACD沿AD对折,使点C落在点F处,∴∠ADF=∠ADC=72°,∴∠BED=∠BAD+∠ADF=36°+72°=108°.故选:B.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了直角三角形斜边上的中线的性质、等腰三角形的性质、三角形内角和定理以及三角形外角的性质.6. (2019•湖南岳阳•3分)下列命题是假命题的是()A.平行四边形既是轴对称图形,又是中心对称图形B.同角(或等角)的余角相等C.线段垂直平分线上的点到线段两端的距离相等D.正方形的对角线相等,且互相垂直平分【分析】由平行四边形的性质得出A是假命题;由同角(或等角)的余角相等,得出B是真命题;由线段垂直平分线的性质和正方形的性质得出C.D是真命题,即可得出答案.【解答】解:A.平行四边形既是轴对称图形,又是中心对称图形;假命题;B.同角(或等角)的余角相等;真命题;C.线段垂直平分线上的点到线段两端的距离相等;真命题;D.正方形的对角线相等,且互相垂直平分;真命题;故选:A.【点评】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10.二.填空题1. (2019•湖南怀化•4分)若等腰三角形的一个底角为72°,则这个等腰三角形的顶角为36°.【分析】根据等腰三角形的性质和三角形的内角和即可得到结论.【解答】解:∵等腰三角形的一个底角为72°,∴等腰三角形的顶角=180°﹣72°﹣72°=36°,故答案为:36°.【点评】本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.2. (2019•湖南邵阳•3分)如图,将等边△AOB放在平面直角坐标系中,点A的坐标为(4,0),点B在第一象限,将等边△AOB绕点O顺时针旋转180°得到△A′OB′,则点B′的坐标是(﹣2,﹣2).【分析】作BH⊥y轴于H,如图,利用等边三角形的性质得到OH=AH=2,∠BOA=60°,再计算出BH,从而得到B点坐标为(2,2),然后根据关于原点对称的点的坐标特征求出点B′的坐标.【解答】解:作BH⊥y轴于H,如图,∵△OAB为等边三角形,∴OH=AH=2,∠BOA=60°,∴BH=OH=2,∴B点坐标为(2,2),∵等边△AOB绕点O顺时针旋转180°得到△A′OB′,∴点B′的坐标是(﹣2,﹣2).故答案为(﹣2,﹣2).【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.也考查了等边三角形的性质.3. (2019•湖北天门•3分)如图,为测量旗杆AB的高度,在教学楼一楼点C处测得旗杆顶部的仰角为60°,在四楼点D处测得旗杆顶部的仰角为30°,点C与点B在同一水平线上.已知CD=9.6m,则旗杆AB的高度为14.4m.【分析】作DE⊥AB于E,则∠AED=90°,四边形BCDE是矩形,得出BE=CD=9.6m,∠CDE=∠DEA=90°,求出∠ADC=120°,证出∠CAD=30°=∠ACD,得出AD=CD=9.6m,在Rt△ADE中,由直角三角形的性质得出AE=AD=4.8m,即可得出答案.【解答】解:作DE⊥AB于E,如图所示:则∠AED=90°,四边形BCDE是矩形,∴BE=CD=9.6m,∠CDE=∠DEA=90°,∴∠ADC=90°+30°=120°,∵∠ACB=60°,∴∠ACD=30°,∴∠CAD=30°=∠ACD,∴AD=CD=9.6m,在Rt△ADE中,∠ADE=30°,∴AE=AD=4.8m,∴AB=AE+BE=4.8m+9.6m=14.4m;故答案为:14.4.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题、矩形的判定与性质、等腰三角形的判定;正确作出辅助线是解题的关键.4(2019,四川成都,4分)如图,在平面直角坐标系xOy中,我们把横、纵坐标都是整数的点称为“整点”.已知点A 的坐标为(5,0),点B 在x 轴的上方,△OAB 的面积为215,则△OAB 内部(不含边界)的整点的个数为.【解析】此题考查了三角形最值问题如图,已知OA =3,要使△AOB 的面积为215,则△OAB 的高度应为3(如图),当B 点在3 y 这条线段上移动时,点2B 处是以OA 为底的等腰三角形是包含的整点最多,在距离2B 的无穷远处始终会有4个整点,故整点个数有4个5.(2019▪贵州毕节▪5分)如图,以△ABC 的顶点B 为圆心,BA 长为半径画弧,交BC 边于点D ,连接A D .若∠B =40°,∠C =36°,则∠DAC 的大小为 34° .【分析】根据三角形的内角和得出∠BAC =180°﹣∠B ﹣∠C =104°,根据等腰三角形两底角相等得出∠BAD =∠ADB =(180°﹣∠B )÷2=70°,进而根据角的和差得出∠DAC =∠BAC ﹣∠BAD =34°.【解答】解:∵∠B =40°,∠C =36°, ∴∠BAC =180°﹣∠B ﹣∠C =104° ∵AB =BD∴∠BAD =∠ADB =(180°﹣∠B )÷2=70°, ∴∠DAC =∠BAC ﹣∠BAD =34°故答案为:34°.【点评】本题考查了等腰三角形的性质,三角形内角和定理,掌握等边对等角是解题的关键.6. (2019•南京•2分)如图,在△ABC中,BC的垂直平分线MN交AB于点D,CD平分∠AC B.若AD=2,BD=3,则AC的长.【分析】作AM⊥BC于E,由角平分线的性质得出==,设AC=2x,则BC=3x,由线段垂直平分线得出MN⊥BC,BN=CN=x,得出MN∥AE,得出==,NE=x,BE=BN+EN=x,CE=CN﹣EN=x,再由勾股定理得出方程,解方程即可得出结果.【解答】解:作AM⊥BC于E,如图所示:∵CD平分∠ACB,∴==,设AC=2x,则BC=3x,∵MN是BC的垂直平分线,∴MN⊥BC,BN=CN=x,∴MN∥AE,∴==,∴NE=x,∴BE=BN+EN=x,CE=CN﹣EN=x,由勾股定理得:AE2=AB2﹣BE2=AC2﹣CE2,即52﹣(x)2=(2x)2﹣(x)2,解得:x=,∴AC=2x =;故答案为:.【点评】本题考查了线段垂直平分线的性质、角平分线的性质、平行线分线段成比例定理、勾股定理等知识;熟练掌握线段垂直平分线的性质和角平分线的性质,由勾股定理得出方程是解题的关键.7. (2019•江苏苏州•3分)如图,一块含有45︒角的直角三角板,外框的一条直角边长为10cm,三角板的外框线和与其平行的内框线之间的距离均为2cm,则图中阴影部分的面积为_______cm(结果保留根号)【解答】14162+【解析】如右图:过顶点A作AB⊥大直角三角形底边由题意:2,2CD AC==∴()5222CD=-+=422-∴()()22=52422S--阴影=14162=+8.(2019▪黑龙江哈尔滨▪3分)如图,在四边形ABCD中,AB=AD,BC=DC,∠A=60°,点E为AD边上一点,连接B D.CE,CE与BD交于点F,且CE∥AB,若AB=8,CE=6,则BC的长为2.D【分析】连接AC交BD于点O,由题意可证AC垂直平分BD,△ABD是等边三角形,可得∠BAO=∠DAO=30°,AB=AD=BD=8,BO=OD=4,通过证明△EDF是等边三角形,可得DE=EF=DF=2,由勾股定理可求OC,BC的长.【解答】解:如图,连接AC交BD于点O∵AB=AD,BC=DC,∠A=60°,∴AC垂直平分BD,△ABD是等边三角形∴∠BAO=∠DAO=30°,AB=AD=BD=8,BO=OD=4∵CE∥AB∴∠BAO=∠ACE=30°,∠CED=∠BAD=60°∴∠DAO=∠ACE=30°∴AE=CE=6∴DE=AD﹣AE=2∵∠CED=∠ADB=60°∴△EDF是等边三角形∴DE=EF=DF=2∴CF=CE﹣EF=4,OF=OD﹣DF=2∴OC==2∴BC==2【点评】本题考查了等边三角形的性质和判定,勾股定理,熟练运用等边三角形的判定是本题的关键.9. (2019•湖北武汉•3分)如图,在▱ABCD中,E.F是对角线AC上两点,AE=EF=CD,∠ADF=90°,∠BCD=63°,则∠ADE的大小为21°.【分析】设∠ADE=x,由等腰三角形的性质和直角三角形得出∠DAE=∠ADE=x,DE =AF=AE=EF,得出DE=CD,证出∠DCE=∠DEC=2x,由平行四边形的性质得出∠DCE=∠BCD﹣∠BCA=63°﹣x,得出方程,解方程即可.【解答】解:设∠ADE=x,∵AE=EF,∠ADF=90°,∴∠DAE=∠ADE=x,DE=AF=AE=EF,∵AE=EF=CD,∴DE=CD,∴∠DCE=∠DEC=2x,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠BCA=x,∴∠DCE=∠BCD﹣∠BCA=63°﹣x,∴2x=63°﹣x,解得:x=21°,即∠ADE=21°;故答案为:21°.【点评】本题考查了平行四边形的性质、直角三角形的性质、等腰三角形的性质等知识;根据角的关系得出方程是解题的关键.10. (2019•湖北武汉•3分)问题背景:如图1,将△ABC绕点A逆时针旋转60°得到△ADE,DE与BC交于点P,可推出结论:P A+PC=PE.问题解决:如图2,在△MNG中,MN=6,∠M=75°,MG=.点O是△MNG内一点,则点O到△MNG三个顶点的距离和的最小值是2.【分析】(1)在BC上截取BG=PD,通过三角形求得证得AG=AP,得出△AGP是等边三角形,得出∠AGC=60°=∠APG,即可求得∠APE=60°,连接EC,延长BC到F,使CF=P A,连接EF,证得△ACE是等边三角形,得出AE=EC=AC,然后通过证得△APE≌△ECF(SAS),得出PE=PF,即可证得结论;(2)以MG为边作等边三角形△MGD,以OM为边作等边△OME.连接ND,可证△GMO≌△DME,可得GO=DE,则MO+NO+GO=NO+OE+DE,即当D.E.O、N四点共线时,MO+NO+GO值最小,最小值为ND的长度,根据勾股定理先求得MF、DF,然后求ND的长度,即可求MO+NO+GO的最小值.【解答】(1)证明:如图1,在BC上截取BG=PD,在△ABG和△ADP中,∴△ABG≌△ADP(SAS),∴AG=AP,∠BAG=∠DAP,∵∠GAP=∠BAD=60°,∴△AGP是等边三角形,∴∠AGC=60°=∠APG,∴∠APE=60°,∴∠EPC=60°,连接EC,延长BC到F,使CF=P A,连接EF,∵将△ABC绕点A逆时针旋转60°得到△ADE,∴∠EAC=60°,∠EPC=60°,∵AE=AC,∴△ACE是等边三角形,∴AE=EC=AC,∵∠P AE+∠APE+∠AEP=180°,∠ECF+∠ACE+∠ACB=180°,∠ACE=∠APE=60°,∠AED=∠ACB,∴∠P AE=∠ECF,在△APE和△ECF中∴△APE≌△ECF(SAS),∴PE=PF,∴P A+PC=PE;(2)解:如图2:以MG为边作等边三角形△MGD,以OM为边作等边△OME.连接ND,作DF⊥NM,交NM的延长线于F.∵△MGD和△OME是等边三角形∴OE=OM=ME,∠DMG=∠OME=60°,MG=MD,∴∠GMO=∠DME在△GMO和△DME中∴△GMO≌△DME(SAS),∴OG=DE∴NO+GO+MO=DE+OE+NO∴当D.E.O、M四点共线时,NO+GO+MO值最小,∵∠NMG=75°,∠GMD=60°,∴∠NMD=135°,∴∠DMF=45°,∵MG=.∴MF=DF=4,∴NF=MN+MF=6+4=10,∴ND===2,∴MO+NO+GO最小值为2,故答案为2,【点评】本题考查了旋转的性质,等边三角形的性质,勾股定理,最短路径问题,构造等边三角形是解答本题的关键.11. (2019•甘肃武威•4分)定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=或.【分析】可知等腰三角形的两底角相等,则可求得底角的度数.从而可求解【解答】解:①当∠A为顶角时,等腰三角形两底角的度数为:=50°∴特征值k==②当∠A为底角时,顶角的度数为:180°﹣80°﹣80°=20°∴特征值k==综上所述,特征值k为或故答案为或【点评】本题主要考查等腰三角形的性质,熟记等腰三角形的性质是解题的关键,要注意到本题中,已知∠A的底数,要进行判断是底角或顶角,以免造成答案的遗漏.12 ( 2019甘肃省兰州市) (5分)在△ABC中,AB=AC,∠A=400,则∠B=___________. 【答案】700.【考点】等腰三角形性质.【考察能力】空间想象能力.【难度】容易【解析】∵AB=AC,∠A=400,∴∠B=∠C=700.13 (2019甘肃省陇南市)(4分)定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=或.【分析】可知等腰三角形的两底角相等,则可求得底角的度数.从而可求解【解答】解:①当∠A为顶角时,等腰三角形两底角的度数为:=50°∴特征值k==②当∠A为底角时,顶角的度数为:180°﹣80°﹣80°=20°∴特征值k==综上所述,特征值k为或故答案为或【点评】本题主要考查等腰三角形的性质,熟记等腰三角形的性质是解题的关键,要注意到本题中,已知∠A的底数,要进行判断是底角或顶角,以免造成答案的遗漏.三.解答题1. (2019•湖北十堰•8分)如图,△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,点E为C延长线上一点,且∠CDE=∠BA C.(1)求证:DE是⊙O的切线;(2)若AB=3BD,CE=2,求⊙O的半径.【分析】(1)根据圆周角定理得出∠ADC=90°,按照等腰三角形的性质和已知的2倍角关系,证明∠ODE为直角即可;(2)通过证得△CDE∽△DAE,根据相似三角形的性质即可求得.【解答】解:(1)如图,连接OD,AD,∵AC是直径,∴∠ADC=90°,∴AD⊥BC,∵AB=AC,∴∠CAD=∠BAD=∠BAC,∵∠CDE=∠BA C.∴∠CDE=∠CAD,∵OA=OD,∴∠CAD=∠ADO,∵∠ADO+∠ODC=90°,∴∠ODC+∠CDE=90°∴∠ODE=90°又∵OD是⊙O的半径∴DE是⊙O的切线;(2)解:∵AB=AC,AD⊥BC,∴BD=CD,∵AB=3BD,∴AC=3DC,设DC=x,则AC=3x,∴AD==2x,∵∠CDE=∠CAD,∠DEC=∠AED,∴△CDE∽△DAE,∴=,即==∴DE=4,x=,∴AC=3x=14,∴⊙O的半径为7.【点评】本题考查了圆的切线的判定定理、圆周角定理、等腰三角形的性质、三角形相似的判定和性质,解题的关键是作出辅助线构造直角三角形或等腰三角形.2. (2019•湖北十堰•12分)已知抛物线y=a(x﹣2)2+c经过点A(2,0)和C(0,),与x轴交于另一点B,顶点为D.(1)求抛物线的解析式,并写出D点的坐标;(2)如图,点E,F分别在线段AB,BD上(E点不与A,B重合),且∠DEF=∠A,则△DEF能否为等腰三角形?若能,求出BE的长;若不能,请说明理由;(3)若点P在抛物线上,且=m,试确定满足条件的点P的个数.【分析】(1)利用待定系数法,转化为解方程组即可解决问题.(2)可能.分三种情形①当DE=DF时,②当DE=EF时,③当DF=EF时,分别求解即可.(3)如图2中,连接BD,当点P在线段BD的右侧时,作DH⊥AB于H,连接PD,PH,P B.设P[n,﹣(n﹣2)2+3],构建二次函数求出△PBD的面积的最大值,再根据对称性即可解决问题.【解答】解:(1)由题意:,解得,∴抛物线的解析式为y=﹣(x﹣2)2+3,∴顶点D坐标(2,3).(2)可能.如图1,∵A(﹣2,0),D(2,3),B(6,0),∴AB=8,AD=BD=5,①当DE=DF时,∠DFE=∠DEF=∠ABD,∴EF∥AB,此时E与B重合,与条件矛盾,不成立.②当DE=EF时,又∵△BEF∽△AED,∴△BEF≌△AED,∴BE=AD=5③当DF=EF时,∠EDF=∠DEF=∠DAB=∠DBA,△FDE∽△DAB,∴=,∴==,∵△AEF∽△BCE∴==,∴EB=AD=,答:当BE的长为5或时,△CFE为等腰三角形.(3)如图2中,连接BD,当点P在线段BD的右侧时,作DH⊥AB于H,连接PD,PH,P B.设P[n,﹣(n﹣2)2+3],则S△PBD=S△PBH+S△PDH﹣S△BDH=×4×[﹣(n﹣2)2+3]+×3×(n﹣2)﹣×4×3=﹣(n﹣4)2+,∵﹣<0,∴n=4时,△PBD的面积的最大值为,∵=m,∴当点P在BD的右侧时,m的最大值==,观察图象可知:当0<m<时,满足条件的点P的个数有4个,当m=时,满足条件的点P的个数有3个,当m>时,满足条件的点P的个数有2个(此时点P在BD的左侧).【点评】本题属于二次函数综合题,考查了待定系数法,全等三角形的判定和性质,相似三角形的判定和性质,等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会构建二次函数解决最值问题,学会用转化的思想思考问题,属于中考压轴题.3 (2019•湖南长沙•10分)如图,抛物线y=ax2+6ax(a为常数,a>0)与x轴交于O,A两点,点B为抛物线的顶点,点D的坐标为(t,0)(﹣3<t<0),连接BD并延长与过O,A,B三点的⊙P相交于点C.(1)求点A的坐标;(2)过点C作⊙P的切线CE交x轴于点E.①如图1,求证:CE=DE;②如图2,连接AC,BE,BO,当a=,∠CAE=∠OBE时,求﹣的值.【分析】(1)令y=0,可得ax(x+6)=0,则A点坐标可求出;(2)①连接PC,连接PB延长交x轴于点M,由切线的性质可证得∠ECD=∠COE,则CE=DE;②设OE=m,由CE2=OE•AE,可得,由∠CAE=∠OBE可得,则,综合整理代入可求出的值.【解答】解:(1)令ax2+6ax=0,ax(x+6)=0,∴A(﹣6,0);(2)①证明:如图,连接PC,连接PB延长交x轴于点M,∵⊙P过O、A.B三点,B为顶点,∴PM⊥OA,∠PBC+∠BOM=90°,又∵PC=PB,∴∠PCB=∠PBC,∵CE为切线,∴∠PCB+∠ECD=90°,又∵∠BDP=∠CDE,∴∠ECD=∠COE,∴CE=DE.②解:设OE=m,即E(m,0),由切割线定理得:CE2=OE•AE,∴(m﹣t)2=m•(m+6),∴①,∵∠CAE=∠CBD,∠CAE=∠OBE,∠CBO=∠EBO,由角平分线定理:,即:,∴②,由①②得,整理得:t2+18t+36=0,∴t2=﹣18t﹣36,∴.【点评】本题是二次函数与圆的综合问题,涉及二次函数图象与x轴的交点坐标、切线的性质、等腰三角形的判定、切割线定理等知识.把圆的知识镶嵌其中,会灵活运用圆的性质进行计算是解题的关键.4 (2019•甘肃武威•10分)如图,在△ABC中,AB=AC,∠BAC=120°,点D在BC边上,⊙D经过点A和点B且与BC边相交于点E.(1)求证:AC是⊙D的切线;(2)若CE=2,求⊙D的半径.【分析】(1)连接AD,根据等腰三角形的性质得到∠B=∠C=30°,∠BAD=∠B=30°,求得∠ADC=60°,根据三角形的内角和得到∠DAC=180°﹣60°﹣30°=90°,于是得到AC是⊙D的切线;(2)连接AE,推出△ADE是等边三角形,得到AE=DE,∠AED=60°,求得∠EAC =∠AED﹣∠C=30°,得到AE=CE=2,于是得到结论.【解答】(1)证明:连接AD,∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,∵AD=BD,∴∠BAD=∠B=30°,∴∠ADC=60°,∴∠DAC=180°﹣60°﹣30°=90°,∴AC是⊙D的切线;(2)解:连接AE,∵AD=DE,∠ADE=60°,∴△ADE是等边三角形,∴AE=DE,∠AED=60°,∴∠EAC=∠AED﹣∠C=30°,∴∠EAC=∠C,∴AE=CE=2,∴⊙D的半径AD=2.【点评】本题考查了切线的判定和性质,等腰三角形的性质,等边三角形的判定和性质,正确的作出辅助线是解题的关键.5. (2019•广西贵港•10分)已知:△ABC是等腰直角三角形,∠BAC=90°,将△ABC绕点C顺时针方向旋转得到△A′B′C,记旋转角为α,当90°<α<180°时,作A′D ⊥AC,垂足为D,A′D与B′C交于点E.(1)如图1,当∠CA′D=15°时,作∠A′EC的平分线EF交BC于点F.①写出旋转角α的度数;②求证:EA′+EC=EF;(2)如图2,在(1)的条件下,设P是直线A′D上的一个动点,连接P A,PF,若AB =,求线段P A+PF的最小值.(结果保留根号)【分析】(1)①解直角三角形求出∠A′CD即可解决问题.②连接A′F,设EF交CA′于点O.在EF时截取EM=EC,连接CM.首先证明△CF A′是等边三角形,再证明△FCM≌△A′CE(SAS),即可解决问题.(2)如图2中,连接A′F,PB′,AB′,作B′M⊥AC交AC的延长线于M.证明△A′EF≌△A′EB′,推出EF=EB′,推出B′,F关于A′E对称,推出PF=PB′,推出P A+PF=P A+PB′≥AB′,求出AB′即可解决问题.数学【解答】(1)①解:旋转角为105°.理由:如图1中,∵A′D⊥AC,∴∠A′DC=90°,∵∠CA′D=15°,∴∠A′CD=75°,∴∠ACA′=105°,∴旋转角为105°.②证明:连接A′F,设EF交CA′于点O.在EF时截取EM=EC,连接CM.∵∠CED=∠A′CE+∠CA′E=45°+15°=60°,∴∠CEA′=120°,∵FE平分∠CEA′,∴∠CEF=∠FEA′=60°,∵∠FCO=180°﹣45°﹣75°=60°,∴∠FCO=∠A′EO,∵∠FOC=∠A′OE,∴△FOC∽△A′OE,∴=,∴=,∵∠COE=∠FOA′,∴△COE∽△FOA′,∴∠F A′O=∠OEC=60°,∴△A′OF是等边三角形,∴CF=CA′=A′F,∵EM=EC,∠CEM=60°,∴△CEM是等边三角形,∠ECM=60°,CM=CE,∵∠FCA′=∠MCE=60°,∴∠FCM=∠A′CE,∴△FCM≌△A′CE(SAS),∴FM=A′E,∴CE+A′E=EM+FM=EF.(2)解:如图2中,连接A′F,PB′,AB′,作B′M⊥AC交AC的延长线于M.由②可知,∠EA′F=′EA′B′=75°,A′E=A′E,A′F=A′B′,∴△A′EF≌△A′EB′,∴EF=EB′,∴B′,F关于A′E对称,∴PF=PB′,∴P A+PF=P A+PB′≥AB′,在Rt△CB′M中,CB′=BC=AB=2,∠MCB′=30°,∴B′M=CB′=1,CM=,∴AB′===.∴P A+PF的最小值为.【点评】本题属于四边形综合题,考查了旋转变换,全等三角形的判定和性质,相似三角形的判定和性质,三角形的三边关系等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考压轴题.6. (2019•湖北天门•10分)已知△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,连接DB,D C.(1)如图①,当∠BAC=120°时,请直接写出线段AB,AC,AD之间满足的等量关系式:AB+AC=AD;(2)如图②,当∠BAC=90°时,试探究线段AB,AC,AD之间满足的等量关系,并证明你的结论;(3)如图③,若BC=5,BD=4,求的值.【分析】(1)在AD上截取AE=AB,连接BE,由条件可知△ABE和△BCD都是等边三角形,可证明△BED≌△BAC,可得DE=AC,则AB+AC=AD;(2)延长AB至点M,使BM=AC,连接DM,证明△MBD≌△ACD,可得MD=AD,证得AB+AC=;(3)延长AB至点N,使BN=AC,连接DN,证明△NBD≌△ACD,可得ND=AD,∠N=∠CAD,证△NAD∽△CBD,可得,可由AN=AB+AC,求出的值.【解答】解:(1)如图①在AD上截取AE=AB,连接BE,∵∠BAC=120°,∠BAC的平分线交⊙O于点D,∴∠DBC=∠DAC=60°,∠DCB=∠BAD=60°,∴△ABE和△BCD都是等边三角形,∴∠DBE=∠ABC,AB=BE,BC=BD,∴△BED≌△BAC(SAS),∴DE=AC,∴AD=AE+DE=AB+AC;故答案为:AB+AC=A D.(2)AB+AC=A D.理由如下:如图②,延长AB至点M,使BM=AC,连接DM,∵四边形ABDC内接于⊙O,∴∠MBD=∠ACD,∵∠BAD=∠CAD=45°,∴BD=CD,∴△MBD≌△ACD(SAS),∴MD=AD,∠M=∠CAD=45°,∴MD⊥A D.∴AM=,即AB+BM=,∴AB+AC=;(3)如图③,延长AB至点N,使BN=AC,连接DN,∵四边形ABDC内接于⊙O,∴∠NBD=∠ACD,∵∠BAD=∠CAD,∴BD=CD,∴△NBD≌△ACD(SAS),∴ND=AD,∠N=∠CAD,∴∠N=∠NAD=∠DBC=∠DCB,∴△NAD∽△CBD,∴,∴,又AN=AB+BN=AB+AC,BC=5,BD=4,∴=.【点评】本题属于圆的综合题,考查了圆周角定理,全等三角形的判定与性质,相似三角形的判定和性质,等边三角形的判定与性质等知识,解题的关键是正确作出辅助线解决问题.7. (2019•湖北武汉•8分)如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点.四边形ABCD的顶点在格点上,点E是边DC与网格线的交点.请选择适当的格点,用无刻度的直尺在网格中完成下列画图,保留连线的痕迹,不要求说明理由.(1)如图1,过点A画线段AF,使AF∥DC,且AF=D C.(2)如图1,在边AB上画一点G,使∠AGD=∠BG C.(3)如图2,过点E画线段EM,使EM∥AB,且EM=A B.【分析】(1)作平行四边形AFCD即可得到结论;(2)根据等腰三角形的性质和对顶角的性质即可得到结论;(3)作平行四边形AEMB即可得到结论.【解答】解:(1)如图所示,线段AF即为所求;(2)如图所示,点G即为所求;(3)如图所示,线段EM即为所求.【点评】本题考查了作图﹣应用与设计作图,平行线四边形的判定和性质,等腰三角形的判定和性质,对顶角的性质,正确的作出图形是解题的关键.8 (2019•湖北孝感•8分)如图,已知∠C=∠D=90°,BC与AD交于点E,AC=BD,求证:AE=BE.【分析】由HL证明Rt△ACB≌Rt△BDA得出∠ABC=∠BAD,由等腰三角形的判定定理即可得出结论.【解答】证明:∵∠C=∠D=90°,∴△ACB和△BDA是直角三角形,数学在Rt△ACB和Rt△BDA中,,∴Rt△ACB≌Rt△BDA(HL),∴∠ABC=∠BAD,∴AE=BE.【点评】本题考查了全等三角形的判定与性质、等腰三角形的判定;熟练掌握等腰三角形的判定定理,证明三角形全等是解题的关键.9 (2019•湖南衡阳•12分)如图,在等边△ABC中,AB=6cm,动点P从点A出发以lcm/s的速度沿AB匀速运动.动点Q同时从点C出发以同样的速度沿BC的延长线方向匀速运动,当点P到达点B时,点P、Q同时停止运动.设运动时间为以t(s).过点P作PE⊥AC于E,连接PQ交AC边于D.以CQ、CE为边作平行四边形CQFE.(1)当t为何值时,△BPQ为直角三角形;(2)是否存在某一时刻t,使点F在∠ABC的平分线上?若存在,求出t的值,若不存在,请说明理由;(3)求DE的长;(4)取线段BC的中点M,连接PM,将△BPM沿直线PM翻折,得△B′PM,连接AB′,当t为何值时,AB'的值最小?并求出最小值.【分析】(1)当BQ=2BP时,∠BPQ=90°,由此构建方程即可解决问题.(2)如图1中,连接BF交AC于M.证明EF=2EM,由此构建方程即可解决问题.(3)证明DE=AC即可解决问题.(4)如图3中,连接AM,AB′.根据AB′≥AM﹣MB′求解即可解决问题.【解答】解:(1)∵△ABC是等边三角形,∴∠B=60°,∴当BQ=2BP时,∠BPQ=90°,∴6+t=2(6﹣t),数学∴t=3,∴t=3时,△BPQ是直角三角形.(2)存在.理由:如图1中,连接BF交AC于M.∵BF平分∠ABC,BA=BC,∴BF⊥AC,AM=CM=3cm,∵EF∥BQ,∴∠EFM=∠FBC=∠ABC=30°,∴EF=2EM,∴t=2•(3﹣t),解得t=3.(3)如图2中,作PK∥BC交AC于K.∵△ABC是等边三角形,∴∠B=∠A=60°,∵PK∥BC,∴∠APK=∠B=60°,∴∠A=∠APK=∠AKP=60°,∴△APK是等边三角形,∴P A=PK,∵PE⊥AK,∴AE=EK,∵AP=CQ=PK,∠PKD=∠DCQ,∠PDK=∠QDC,∴△PKD≌△QCD(AAS),∴DK=DC,∴DE=EK+DK=(AK+CK)=AC=3(cm).(4)如图3中,连接AM,AB′∵BM=CM=3,AB=AC,∴AM⊥BC,∴AM==3,∵AB′≥AM﹣MB′,∴AB′≥3﹣3,∴AB′的最小值为3﹣3.【点评】本题属于四边形综合题,考查了等边三角形的性质,平行四边形的判定和性质,翻折变换,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.。
2019全国中考数学真题分类汇编:直角三角形、勾股定理及参考答案
一、选择题1.(2019 ·广元 ) 如图 , △ ABC中, ∠ABC=90°,BA=BC=2, 将△ ABC绕点 C 逆时针旋转 60°获得2△DEC,连结 BD,则 BD的值是 ________【答案】8 4 3【分析】连结 AD,过点 D 作 DM⊥BC于点 M,DN⊥AC于点 N,易得△ ACD是等边三角形 , 四边形 BNDM是正方形 , 设 CM=x, 则 DM=MB=x+2, ∵BC=2, ∴CD=AC=2 2 , ∴在 Rt△MCD中, 由勾股定理可求得 ,x = 3 1,DM=MB=2 2 23 1 ,∴在Rt△BDM中,BD =MD+MB=843.2.(2019·绍兴)如图1,长、宽均为3,高为8的长方体容器,搁置在水平桌面上,里面盛有水,水面高为6,绕底面一棱进步行旋转倾斜后,水面恰巧触到容器口边沿,图 2 是此时的表示图,则图 2 中水面高度为( )A. 24B. 32C. 12 34D. 20 3417 17 5 5【答案】 A【分析】如下图:设 DM=x,则 CM=8﹣x,依据题意得:(8﹣x+8)× 3×3=3×3×5,解得: x=4,∴ DM=6,∵∠ D=90°,由勾股定理得: BM=B D 2DM 24232=5,过点 B 作 BH⊥AH,∵∠ HBA+∠ABM=∠ ABM+∠ABM=90°,∴∠ HBA+=∠ ABM,因此 Rt△ABH∽△ MBD,∴BH BD,即BH 3,解得BH=24,即水面高度为24.AB BM855 53.(2019·益阳)已知M、N是线段AB上的两点,AM=MN=2,NB=1,以点A 为圆心,AN长为半径画弧;再以点B 为圆心,BM长为半径画弧,两弧交于点C,连结AC、BC,则△ ABC必定是()A. 锐角三角形B. 直角三角形C.钝角三角形D.等腰三角形【答案】 B【分析】如下图,∵A M=MN=2,NB=1,∴A B=AM=MN+NB=2+2+1=5,AC=AN=AM+MN=2+2=4,BC=BM=BN+MN1+2=3,∴ AB2 52 25, AC2 42 16 , BC2 32 9 ,∴AC2 BC2 AB2,∴△ ABC是直角三角形 .4.(2019 ·广元 ) 如图 , 在正方形 ABCD的对角线 AC上取一点 E. 使得∠ CDE=15°, 连接 BE并延伸BE到 F, 使 CF=CB,BF与 CD订交于点 H,若 AB=1, 有以下结论 : ①BE=DE;②CE+DE =EF;③S = 1 3 , ④DH2 3 1.则此中正确的结论有( )△DEC4 12 HCA. ①②③B. ①②③ ④C.①②④D.①③④【答案】 A【分析】①利用正方形的性质, 易得△ BEC≌△ DEC,∴BE=DE,①正确 ; ②在 EF上取一点 G,使 CG=CE,∵∠ CEG=∠ CBE+∠BCE=60° , ∴△ CEG为等边三角形 , 易得△ DEC≌△ FGC,CE+DE=EG+GF=EF, ②正确 ; ③过点 D 作 DM⊥AC 于点 M,S△DEC=S△DMC-S△DME=1 3, ③正确 ; ④ tan ∠ HBC= 2 -3,∴HC=2- 3 ,DH=1-HC= 3 -1,∴4 12DH3+1 ,④错误.应选A.HC5.(2019 ·宁波 ) 勾股定理是人类最伟大的科学发现之一 , 在我国古算书《周髀算经》中早有记录 . 如图 1, 以直角三角形的各边分别向外作正方形 , 再把较小的两张正方形纸片按图 2 的方式搁置在最大正方形内 . 若知道图中暗影部分的面积 , 则必定能求出A. 直角三角形的面积B. 最大正方形的面积C.较小两个正方形重叠部分的面积D. 最大正方形与直角三角形的面积和【答案】 C【解题过程】设图中三个正方形边长从小到大挨次为:a,b,c, 则 S 暗影= c2- a2-b2+b(a+b-c),由勾股定理可知,c 2=a2-b2,∴S暗影=c2-a2-b2+S重叠=S重叠, 即S阴影=S 重叠 , 应选 C.6.(2019·重庆 B 卷)如图,在△ABC中,∠ABC=45°,AB=3,AD⊥BC于点D,BE⊥AC与点 E,AE=1.连结 DE,将△ AED沿直线 AE翻折至△ ABC所在的平面,得△AEF,连结 DF.过点 D作 DG⊥DE交 BE于点 G.则四边形 DFEG的周长为()B. 4 2C. 2 2 4D. 3 2 2AEG FBD C12题图【答案】 D【分析】∵∠ ABC=45°, AD⊥BC,∴△ ABC是等腰直角三角形,∴A D=BD.∵B E⊥AC, AD⊥BD,∴∠ DAC=∠ DBH,∴△ D BH≌△DAC(ASA).∵D G⊥DE,∴∠ BDG=∠ ADE,∴△ DBG≌△ DAE(ASA),∴B G=AE,DG=DE,∴△ DGE是等腰直角三角形,∴∠ DEC=45°.在 Rt△ABE中,BE= 3212 2 2,∴GE=2 2 1,2∴DE=22 .∵D,F 对于AE对称,∴∠ FEC=∠ DEC=45°,2∴EF=DE=DG22 ,DF=GE2 2 1,∴四边形的周长为 2(2 2 1 +2-2)=3 2+2.应选D.DFEG2 二、填空题7.(2019·苏州) “七巧板”是我们先人的一项优秀创建.能够拼出很多风趣的图形,被誉为“东方魔板”图①是由边长为10cm 的正方形薄板分为 7 块制作成的“七巧板”,图②是用该“七巧板”拼成的一个“家”的图形该“七巧板”中7 块图形之一的正方形边长为cm (结果保存根号) .(图①)(图②)(第 15 题)【答案】5 22【分析】 此题考察了正方形性质、等腰直角三角形性质的综合,由题意可知,等腰三角形①与等腰三角形②全等, 且它们的斜边长都为 1×10=5cm ,设正方形暗影部分2的边长为 x cm ,则 x =sin45 °= 2 ,解得 x = 5 2 ,故答案为 5 2 .5 22 2第 15 题答图8.(2019·威海)如图,在四边形ABCD中, AB∥ CD,连结 AC,BD.若∠ ACB=90°, AC=BC, AB=BD, 则∠ADC=°【答案】 105°【分析】过点 D作 DE⊥ AB于点 E,过点 C作 CF⊥ AB垂足为 F,由∠ ACB=90°,AC=BC,得△ABC是等腰直角三角形,由三线合一得 CF为中线,进而推出2CF=AB,由 AB∥ CD得 DE=CF,由 AB=BD得 BD=2DE,在 Rt△DEB中利用三角函数可得∠ ABD=30°,再由AB=BD得∠BAD=∠ADB=75°,最后由AB∥CD得∠BAD+∠ADC=180°求出∠ ADC=105°.9.(2019·苏州)如图,一块舍有 45°角的直角三角板,外框的一条直角边长为8 cm,三角板的外框线和与其平行的内框线之间的距离均为 2 cm,则图中暗影部分的面积为cm :(结果保存根号).(第 18 题)【答案】 10+12 2第 18 题答图分析:如图,三角板的外框线和与其平行的内框线之间的距离均为2 cm ,因此△ ABC与△ DEF 有公共心里 O ,连结 AD 、BE 、FC 并延伸订交于点 O ,过 O 作 OG ⊥AB 于G ,交 DE 于 H .则 GH =2 , S= 1 OG × ( AB +AC +BC ) = 1△ABC22AB AC 8 8 2 ,∴ OH =8 5 2,∵AB AC BC8 8 8 48 2AB × AC , ∴ OG =∵DE ∥AB ,∴△ ODE ∽△ OAB ,∴OHDE ∴ 8-5 2 DE ,解得 DE =6- 2 2 ,OGAB 8-4 2 8S 暗影 = S △ABC - S △DEF = 1821 212 2.622102210.(2019·江西) 在平面直角坐标系中, A , B ,C 三点的坐标分别为 (4 ,0) 、(4 ,4) ,(0 ,4) ,点 P 在 x 轴上,点 D 在直线 AB 上,若 DA =1,CP ⊥DP 于点 P ,则点 P的坐标为.【答案】(16 22 32 2 ,0)或( 16 22 32 2,0)44【分析】设点P 的坐标为( x,0),( 1)当点 D 在线段 AB上时,如下图:∵DA=1,∴点 D的坐标为(4 2 ,2).2 2∴ CD2 [4 (4 2)]2 ( 4 2 )2 ( 2 )2 1642( 2 )2 1742,2 2 2 2PD 2 [ x (4 2)]2 ( 2 )2 x2 2(4 2)x (4 2 )2 ( 2 )2 x2 (8 2) x 17 4 2 ,2 2 2 2 2 PC 2(x 4)242x28x32 .∵CP⊥DP于点 P,∴PC2PD 2CD 2,∴ x2 (8 2 ) x 17 4 2 x2 8x 32 17 4 2,即 2x2(162) x 320 ,∵△ =[ (162)]2 4 2 32 =232 2 <0,∴原方程无解,即切合要求的点P不存在 .( 2)当点 D 在线段 BA的延伸线上,如下图:∵DA=1,∴点 D的坐标为(4 2 ,2).2 2∴ CD2 [4 (4 2)]2 [ 4 ( 2)]2 ( 2 )2 (4 2 )2 17 42,2 2 2 2PD 2 [ x (4 2)]2 ( 2 )2 x2 2( 4 2) x (4 2 )2 ( 2)2 x2 (8 2 ) x 17 4 2 ,2 2 2 2 2 PC 2(x 4)242x28x32 .∵CP⊥DP于点 P,∴PC2PD 2CD 2,∴ x2 (8 2) x 17 4 2 x2 8x 32 17 4 2,即 2x2(162) x 320 ,∵△ =[ (16 2)]2 4232= 2 322>,∴ x 16 2 2 322 16 2 2322,2 2 4∴点 P 的坐标为(16 22 32 2 ,0)或( 16 2 2 32 2 ,0).4 411.(2019 ·枣庄 ) 把两个相同大小含 45°的三角尺按如下图的方式搁置 , 此中一个三角尺的锐角极点与另一个三角尺的直角极点重合于点A, 且此外三个锐角极点B,C,D 在同向来线上 , 若 AB=2, 则 CD=________.【答案】6- 2【分析】在等腰直角△ ABC中, ∵AB=2, ∴BC=2 2 , 过点 A 作 AM⊥BD于点 M,则 AM =MC=1 BC=2 , 在 Rt△AMD中,AD=BC=2 2 ,AM=2 , ∴MD=6 , ∴CD=MD-MC=6-22 .12. (2019 ·巴中 ) 如图 , 等边三角形 ABC内有一点 P, 分别连结 AP,BP,CP,若 AP=6,BP=8,CP=10, 则 S△ABP+S△BPC=________.【答案】 16 3 +24【分析】将△ ABP绕点 B 顺时针旋转 60°到△ CBP', 连结 PP', 因此 BP=BP', ∠PBP' =60°, 因此△ BPP'是等边三角形 , 其边长 BP为 8, 因此 S△BPP'=16 3 , 由于 PP' =8,P'C2 2 2 =24, 因此 S=PA=6,PC=10, 因此 PP' +P'C =PC, 因此△ PP'C 是直角三角形 ,S△PP'C △ABP+S△ BPC=S△ BPP'+S△PP'C=16 3 +24..三、解答题13.(2019 ·巴中 ) 如图 , 等腰直角三角板如图搁置, 直角极点 C在直线 m上, 分别过点A,B 作 AE⊥直线 m于点 E,BD⊥直线 m与点 D.(1)求证 :EC=BD;(2)若设△ AEC三边分别为 a,b,c, 利用此图证明勾股定理 .证明:(1)∵△ ABC是等腰直角三角形 ,∴∠ ACB= 90°,AC=BC, ∴∠ ACE+∠BCD=90°,∵AE⊥EC, ∴∠ EAC+∠ACE=90°, ∴∠ BCD=∠ CAE,∵B D⊥CD, ∴∠ AEC=∠ CDB= 90°,∴△ AEC≌△ CDB(AAS), ∴EC=BD.(2)∵△ AEC≌△ CDB,△ AEC三边分别为 a,b,c, ,∴BD=EC= a,CD=AE=b,BC= AC=c,1 (AE+BD)ED=1 (a+b)(a+b),∴S梯形=2 2S 梯形=1 ab+ 1 c2+1 ab,22 2∴ 1 (a+b)(a+b) = 1 ab+1 c2+ 1 ab,2 2 2 2整理可得 a2 +b2=c2, 故勾股定理得证 .。
2019全国中考数学真题分类汇编:与圆的有关计算及参考答案
一、选择题1.(2019·德州)如图,点O为线段BC的中点,点A,C,D到点O的距离相等,若∠ABC=40°,则∠ADC的度数是()A.130°B.140°C.150°D.160°【答案】B.【解析】由题意得到OA=OB=OC=OD,作出圆O,如图所示,∴四边形ABCD为圆O的内接四边形,∴∠ABC+∠ADC=180°,∵∠ABC=40°,∴∠ADC=140°,故选B.2.(2019·滨州)如图,AB为⊙O的直径,C,D为⊙O上两点,若∠BCD=40°,则∠ABD的大小为()A.60°B.50°C.40°D.20°【答案】B【解析】如图,连接AD,∵AB为⊙O的直径,∴∠ADB=90°.∵∠A和∠BCD都是弧BD所对的圆周角,∴∠A=∠BCD=40°,∴∠ABD=90°-40°=50°.故选B.3、(2019·遂宁)如图,△ABC 内接于⊙O ,若∠A=45°,⊙O 的半径r=4,则阴影部分的面积为 ( )A.4π-8B. 2πC.4πD. 8π-8 【答案】A【解析】由题意可知∠BOC=2∠A=45°2⨯=90°,S 阴=S 扇-S △OBC ,S 扇=14S 圆=14π42=4π, S △OBC =2142⨯=8,所以阴影部分的面积为4π-8,故选A. 4.(2019·广元)如图,AB,AC 分别是 O 的直径和弦,OD ⊥AC 于点D,连接BD,BC,且AB =10,AC =8,则BD 的长为( )A.B.4C.D.4.8第6题图 【答案】C【解析】∵AB 是直径,∴∠C =90°,∴BC =6,又∵OD ⊥AC,∴OD ∥BC,∴△OAD ∽△BAC,∴CD =AD=12AC =4,∴BD =故选C.5.(2019·温州)若扇形的圆心角为90°,半径为6,则该扇形的弧长为( ) A .32π B .2π C .3π D .6π 【答案】D【解析】扇形的圆心角为90°,它的半径为6,即n=90°,r=6,根据弧长公式l=180n rπ,得6π.故选D. 6.(2019·绍兴 )如图,△ABC 内接于圆O ,∠B=65°,∠C=70°,若BC=22,则弧BC 的长为 ( )A.πB.π2C.π2D.π22【答案】A【解析】在△ABC 中,得∠A=180°-∠B -∠C=45°, 连接OB ,OC ,则∠BOC=2∠A=90°,设圆的半径为r ,由勾股定理,得22r r +=(22)2,解得r=2,所以弧BC 的长为902180π⨯=π.7.(2019·山西)如图,在Rt △ABC 中,∠ABC =90°,AB ==2,以AB 的中点O 为圆心,OA 的长为半径作半圆交AC 于点D,则图中阴影部分的面积为( )2π- 2πC.πD.2π第10题图 【答案】A【解题过程】在Rt △ABC 中,连接OD,∠ABC =90°,AB ==2,∴∠A =30°,∠DOB =60°,过点D 作DE ⊥AB 于点E,∵AB =∴AO =OD=∴DE =32,∴S 阴影=S △ABC -S △AOD -S扇形BOD=-2π2π-,故选A.8.(2019·长沙)一个扇形的半径为6,圆心角为120°,则该扇形的面积是【 】A .2π B.4π C.12π D.24π 【答案】C【解析】根据扇形的面积公式,S=120×π×62360=12π,故本题选:C .9.(2019·武汉) 如图,AB 是⊙O 的直径,M 、N 是弧AB (异于A 、B )上两点,C 是弧MN 上动点,∠ACB 的角平分线交⊙O 于点D ,∠BAC 的平分线交CD 于点E .当点C 从点M 运动到点N 时,则C 、E 两点的运动路径长的比是( )A .2B .2πC .23 D .25【答案】A【解题过程】由题得∠1=∠2=12∠C =45°,∠3=∠4,∠5=∠6 设∠3=∠4=m ,∠5=∠6=n ,得m +n =45°,∴∠AEB =∠C +m +n90°+45°=135°∴E 在以AD 为半径的⊙D 上(定角定圆)4t 2t t165432QP EDAOBC MN如图,C的路径为MN,E的路径为PQ设⊙O的半径为1,则⊙D,∴MNPQ=42136022360ttππ⨯⨯⨯10. (2019·泰安)如图,将O沿弦AB折叠,AB恰好经过圆心O,若O的半径为3,则AB的长为A.12π B.π C.2π D.3π【答案】C【解析】连接OA,OB,过点O作OD⊥AB交AB于点E,由题可知OD=DE=12OE=12OA,在Rt△AOD中,sinA=ODOA=1 2,∴∠A=30°,∴∠AOD=60°,∠AOB=120°,AB=180n rπ=2π,故选C.11. (2019·枣庄)如图,在边长为4的正方形ABCD中,以点B为圆心,AB为半径画弧,交对角线BD与点E,则图中阴影部分的面积是(结果保留π)A.8-πB.16-2πC.8-2πD.8-1 2π【答案】C【解析】在边长为4的正方形ABCD 中,BD 是对角线,∴AD =AB =4,∠BAD =90°,∠ABE =45°,∴S △ABD =12AD AB⋅⋅=8,S 扇形ABE =2454360π⋅⋅=8-2π,故选C.12. (2019·巴中)如图,圆锥的底面半径r =6,高h =8,则圆锥的侧面积是( )A.15πB.30πC.45πD.60π【答案】D【解析】圆锥的高,母线和底面半径构成直角三角形,其中r =6,h =8,所以母线为10,即为侧面扇形的半径,底面周长为12π,即为侧面扇形的弧长,所以圆锥的侧面积=12×10×12π=60π,故选D.13. (2019·凉山) 如图,在△AOC 中,OA =3cm ,OC =lcm ,将△AOC 绕点D 顺时针旋转90 °后得到△BOD ,则AC 边在旋转过程中所扫过的图形的面积为( ▲ )cm 2 A .2πB .2πC .178πD .198π【答案】B【解析】AC 边在旋转过程中所扫过的图形的面积=S △OCA +S 扇形OAB - S 扇形OCD - S △ODB ①,由旋转知:△OCA ≌△ODB ,∴S △OCA =S△ODB ,∴①式=S 扇形OAB - S 扇形OCD =3603902⨯π-3601902⨯π=2π,故选B .14.(2019·自贡)图中有两张型号完全一样的折叠式饭桌,将正方形桌面边上的四个弓形面板翻折起来后,就能形成一个圆形桌面(可近似看作正方形的外接圆),正方形桌面与翻折成的圆形桌面的面积之比最接近()A. B. C. D.【答案】C.【解析】由题意可知,⊙O是正方形ABCD的外接圆,过圆心O点作OE⊥BC于E,在Rt△OEC中,∠COE=45°,∴sin∠COE=,设CE=k,则OC=CE=k,∵OE⊥BC,∴CE=BE=k,即BC=2k.∴S正方形ABCD=BC2=4k2,⊙O的面积为πr2=π×(k)2=2πk2.∴正方形==≈.15.(2019·湖州)已知圆锥的底面半径为5cm,母线长为13cm,则这个圆锥的侧面积是()A.60πcm2 B.65πcm2 C.120πcm2 D.130πcm2【答案】B.【解析】∵r=5,l=13,∴S锥侧=πrl=π×5×13=65π(cm2).故选B.16. (2019·金华)如图,物体由两个圆锥组成,其主视图中,∠A=90°,∠ABC=105°,若上面圆锥的侧面积为1,则下面圆锥的侧面积为()32【答案】D.【解析】∵∠A=90°,∠ABC=105°,∴∠ABD=45°,∠CBD =60°,∴△ABD是等腰直角三角形,△CBD是等边三角形.设AB长为R,则BDR.∵上面圆锥的侧面积为1,即1=12lR,∴l=2R·∴下面圆锥的侧面积为12lR=12·2R.故选D.17.(2019·宁波)如图所示,矩形纸片ABCD中,AD=6cm,把它分割成正方形纸片ABFE和矩形纸片EFCD后,分别裁出扇形ABF和半径最大的圆,恰好能作为一个圆锥的底面和侧面,则AB的长为A.3.5cmB.4cmC.4.5cmD.5cm【答案】BDCBA【解析】AE=124ABπ⋅⋅,右侧圆的周长为DEπ⋅,∵恰好能作为一个圆锥的底面和侧面,∴,124ABπ⋅⋅=DEπ⋅,AB=2DE,即AE=2ED,∵AE+ED=AD=6,∴AB=4,故选B.18. (2019·衢州)如图,取两根等宽的纸条折叠穿插,拉紧,可得边长为2的正六边形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学精品复习资料(2013•湘西州)如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.考点:角平分线的性质;勾股定理分析:(1)根据角平分线性质得出CD=DE,代入求出即可;(2)利用勾股定理求出AB的长,然后计算△ADB的面积.解答:解:(1)∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=DE,∵CD=3,∴DE=3;(2)在Rt△ABC中,由勾股定理得:AB===10,∴△ADB的面积为S△ADB=AB•DE=×10×3=15.点评:本题考查了角平分线性质和勾股定理的运用,注意:角平分线上的点到角两边的距离相等.(2013•株洲)已知四边形ABCD是边长为2的菱形,∠BAD=60°,对角线AC与BD交于点O,过点O的直线EF交AD于点E,交BC于点F.(1)求证:△AOE≌△COF;(2)若∠EOD=30°,求CE的长.考点:菱形的性质;全等三角形的判定与性质;等边三角形的判定与性质;含30度角的直角三角形;勾股定理.分析:(1)根据菱形的对角线互相平分可得AO=CO,对边平行可得AD∥BC,再利用两直线平行,内错角相等可得∠OAE=∠OCF,然后利用“角边角”证明△AOE和△COF全等;(2)根据菱形的对角线平分一组对角求出∠DAO=30°,然后求出∠AEF=90°,然后求出AO的长,再求出EF的长,然后在Rt△CEF中,利用勾股定理列式计算即可得解.解答:(1)证明:∵四边形ABCD是菱形,∴AO=CO,AD∥BC,∴∠OAE=∠OCF,在△AOE和△COF中,,∴△AOE≌△COF(ASA);(2)解:∵∠BAD=60°,∴∠DAO=∠BAD=×60°=30°,∵∠EOD=30°,∴∠AOE=90°﹣30°=60°,∴∠AEF=180°﹣∠BOD﹣∠AOE=180°﹣30°﹣60°=90°,∵菱形的边长为2,∠DAO=30°,∴OD=AD=×2=1,∴AO===,∴AE=CF=×=,∵菱形的边长为2,∠BAD=60°,∴高EF=2×=,在Rt△CEF中,CE===.点评:本题考查了菱形的性质,全等三角形的判定与性质,直角三角形30°角所对的直角边等于斜边的一半的性质,勾股定理的应用,(2)求出△CEF是直角三角形是解题的关键,也是难点.(2013•巴中)若直角三角形的两直角边长为a、b,且满足,则该直角三角形的斜边长为5.考点:勾股定理;非负数的性质:绝对值;非负数的性质:算术平方根.分析:根据非负数的性质求得a、b的值,然后利用勾股定理即可求得该直角三角形的斜边长.解答:解:∵,∴a 2﹣6a+9=0,b ﹣4=0,解得a=3,b=4,∵直角三角形的两直角边长为a 、b ,∴该直角三角形的斜边长===5.故答案是:5.(2013•达州)如图,在R t △ABC 中,∠B=90°,AB=3,BC=4,点D 在BC 上,以AC 为对角线的所有□ADCE 中,DE 最小的值是( )A .2B .3C .4D .5答案:B解析:由勾股定理,得AC =5,因为平行边形的对角线互相平分,所以,DE 一定经过AC 中点O ,当DE ⊥BC 时,DE 最小,此时OD =32,所以最小值DE =3 (2013•达州)如图,折叠矩形纸片ABCD ,使B 点落在AD 上一点E处,折痕的两端点分别在AB 、BC 上(含端点),且AB=6,BC=10。
设AE=x ,则x 的取值范围是 .答案:2≤x ≤6解析:如图,设AG =y ,则BG =6-y ,在Rt △GAE 中,x 2+y 2=(6-y )2,即3612x y =-(8(0)3y ≤≤,当y =0时,x 取最大值为6;当y =83时,x 取最小值2,故有2≤x ≤62013•雅安)在平面直角坐标系中,已知点A (﹣,0),B (,0),点C 在坐标轴上,且AC+BC=6,写出满足条件的所有点C 的坐标 (0,2),(0,﹣2),(﹣3,0),(3,0) .考点:勾股定理;坐标与图形性质. 专题:分类讨论. 分析:需要分类讨论:①当点C 位于x 轴上时,根据线段间的和差关系即可求得点C 的坐标;②当点C 位于y 轴上时,根据勾股定理求点C 的坐标.解答: 解:如图,①当点C 位于y 轴上时,设C (0,b ).则+=6,解得,b=2或b=﹣2,此时C (0,2),或C (0,﹣2).如图,②当点C 位于x 轴上时,设C (a ,0).则|﹣﹣a|+|a ﹣|=6,即2a=6或﹣2a=6,解得a=3或a=﹣3,此时C(﹣3,0),或C(3,0).综上所述,点C的坐标是:(0,2),(0,﹣2),(﹣3,0),(3,0).故答案是:(0,2),(0,﹣2),(﹣3,0),(3,0).点评:本题考查了勾股定理、坐标与图形的性质.解题时,要分类讨论,以防漏解.另外,当点C在y轴上时,也可以根据两点间的距离公式来求点C的坐标.(2013•资阳)如图1,点E在正方形ABC D内,满足90∠=︒,AE=6,BE=8,则阴影部分AEB的面积是CA.48B.60C.76D.80图1 (2013鞍山)△ABC中,∠C=90°,AB=8,cosA=,则BC 的长.考点:锐角三角函数的定义;勾股定理.分析:首先利用余弦函数的定义求得AC的长,然后利用勾股定理即可求得BC的长.解答:解:∵cosA=,∴AC=AB•cosA=8×=6,∴BC===2.故答案是:2.点评:本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.(2013鞍山)如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H 分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是.考点:三角形中位线定理;勾股定理.分析:利用勾股定理列式求出BC的长,再根据三角形的中位线平行于第三边并且等于第三边的一半求出EH=FG=AD,EF=GH=BC,然后代入数据进行计算即可得解.解答:解:∵BD⊥CD,BD=4,CD=3,∴BC===5,∵E、F、G、H分别是AB、AC、CD、BD的中点,∴EH=FG=AD,EF=GH=BC,∴四边形EFGH的周长=EH+GH+FG+EF=AD+BC,又∵AD=6,∴四边形EFGH的周长=6+5=11.故答案为:11.点评:本题考查了三角形的中位线定理,勾股定理的应用,熟记三角形的中位线平行于第三边并且等于第三边的一半是解题的关键.(2013•鄂州)如图,已知直线a∥b,且a与b之间的距离为4,点A到直线a的距离为2,点B到直线b的距离为3,AB=.试在直线a上找一点M,在直线b上找一点N,满足MN⊥a且AM+MN+NB的长度和最短,则此时AM+NB=()A.6B.8C.10 D.12考点:勾股定理的应用;线段的性质:两点之间线段最短;平行线之间的距离.分析:M N表示直线a与直线b之间的距离,是定值,只要满足AM+NB的值最小即可,作点A关于直线a的对称点A′,连接A′B交直线b与点N,过点N作NM⊥直线a,连接AM,则可判断四边形AA′NM是平行四边形,得出AM=A′N,由两点之间线段最短,可得此时AM+NB的值最小.过点B作BE⊥AA′,交AA′于点E,在Rt△ABE 中求出BE,在Rt△A′BE中求出A′B即可得出AM+NB.解答:解:作点A关于直线a的对称点A′,连接A′B交直线b与点N,过点N作NM⊥直线a,连接AM,∵A到直线a的距离为2,a与b之间的距离为4,∴AA′=MN=4,∴四边形AA′NM是平行四边形,∴AM+NB=A′N+NB=A′B,过点B作BE⊥AA′,交AA′于点E,易得AE=2+4+3=9,AB=2,A′E=2+3=5,在Rt△AEB中,BE==,在Rt△A′EB中,A′B==8.故选B.点评:本题考查了勾股定理的应用、平行线之间的距离,解答本题的关键是找到点M、点N 的位置,难度较大,注意掌握两点之间线段最短.(2013•鄂州)小明、小华在一栋电梯楼前感慨楼房真高.小明说:“这楼起码20层!”小华却不以为然:“20层?我看没有,数数就知道了!”小明说:“有本事,你不用数也能明白!”小华想了想说:“没问题!让我们来量一量吧!”小明、小华在楼体两侧各选A、B两点,测量数据如图,其中矩形CDEF表示楼体,AB=150米,CD=10米,∠A=30°,∠B=45°,(A、C、D、B四点在同一直线上)问:(1)楼高多少米?(2)若每层楼按3米计算,你支持小明还是小华的观点呢?请说明理由.(参考数据:≈1.73,≈1.41,≈2.24)考点:勾股定理的应用.专题:应用题.分析:(1)设楼高为x,则CF=DE=x,在Rt△ACF和Rt△DEB中分别用x表示AC、BD 的值,然后根据AC+CD+BD=150,求出x的值即可;(2)根据(1)求出的楼高x,然后求出20层楼的高度,比较x和20层楼高的大小即可判断谁的观点正确.解答:解:(1)设楼高为x米,则CF=DE=x米,∵∠A=30°,∠B=45°,∠ACF=∠BDE=90°,∴AC=x米,BD=x米,∴x+x=150﹣10,解得x==70(﹣1)(米),∴楼高70(﹣1)米.(2)x=70(﹣1)≈70(1.73﹣1)=70×0.73=51.1米<3×20米,∴我支持小华的观点,这楼不到20层.点评:本题考查了勾股定理的应用,解答本题的关键是构造直角三角形,利用方程思想求解,难度一般.(2013•襄阳)在一张直角三角形纸片中,分别沿两直角边上一点与斜边中点的连线剪去两个三角形,得到如图所示的直角梯形,则原直角三角形纸片的斜边长是6或2.考点:图形的剪拼;勾股定理.分析:先根据题意画出图形,此题要分两种情况,再根据勾股定理求出斜边上的中线,最后根据直角三角形中,斜边上的中线等于斜边的一半即可求出斜边的长.解答:解:①如图所示:,连接CD,CD==,∵D为AB中点,∴AB=2CD=2;②如图所示:,连接EF,EF==3,∵E为AB中点,∴AB=2EF=6,故答案为:6或2.点评:此题考查了图形的剪拼,解题的关键是能够根据题意画出图形,在解题时要注意分两种情况画图,不要漏解.(2013•莆田)如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别为2,5,1,2.则最大的正方形E的面积是10.考点:勾股定理.分析:根据正方形的面积公式,结合勾股定理,能够导出正方形A,B,C,D的面积和即为最大正方形的面积.解答:解:根据勾股定理的几何意义,可得A、B的面积和为S1,C、D的面积和为S2,S1+S2=S3,于是S3=S1+S2,即S3=2+5+1+2=10.故答案是:10.点评:本题考查了勾股定理的应用.能够发现正方形A ,B ,C ,D 的边长正好是两个直角三角形的四条直角边,根据勾股定理最终能够证明正方形A ,B ,C ,D 的面积和即是最大正方形的面积.(2013•吉林省)如图,在平面直角坐标系中,点A ,B 的坐标分别为(-6,0)、(0,8).以点A 为圆心,以AB 长为半径画弧,交x 正半轴于点C ,则点C 的坐标为 .(2013•包头)如图,点E 是正方形ABCD 内的一点,连接AE 、BE 、CE ,将△ABE 绕点B 顺时针旋转90°到△CBE ′的位置.若AE=1,BE=2,CE=3,则∠BE ′C= 135 度.考点:勾股定理的逆定理;正方形的性质;旋转的性质. 分析:首先根据旋转的性质得出∠EBE ′=90°,BE=BE ′=2,AE=E ′C=1,进而根据勾股定理的逆定理求出△EE ′C 是直角三角形,进而得出答案.解答:解:连接EE ′, ∵将△ABE 绕点B 顺时针旋转90°到△CBE ′的位置,AE=1,BE=2,CE=3,∴∠EBE ′=90°,BE=BE ′=2,AE=E ′C=1,∴EE ′=2,∠BE ′E=45°,∵E ′E 2+E ′C 2=8+1=9,EC 2=9,∴E ′E 2+E ′C 2=EC 2,∴△EE ′C 是直角三角形,∴∠EE ′C=90°,CB A x y O∴∠BE′C=135°.故答案为:135.点评:此题主要考查了勾股定理以及逆定理,根据已知得出△EE′C是直角三角形是解题关键.(2013山东滨州,14,4分)在△ABC中,∠C=90°,AB=7,BC=5,则边AC的长为______________.【答案】26(2013•东营)如图,圆柱形容器中,高为1.2m,底面周长为1m,在容器内壁..离容器底部0.3m的点B处有一蚊子,此时一只壁虎正好在容器外壁..的点..,离容器上沿0.3m与蚊子相对A处,则壁虎捕捉蚊子的最短距离为1.3 m(容器厚度忽略不计).2013•绍兴)在平面直角坐标系中,O是原点,A是x轴上的点,将射线OA绕点O旋转,使点A与双曲线y=上的点B重合,若点B的纵坐标是1,则点A的横坐标是2或﹣2.考点:坐标与图形变化-旋转;反比例函数图象上点的坐标特征.分析:根据反比例函数的性质得出B点坐标,进而得出A点坐标.解答:解:如图所示:∵点A与双曲线y=上的点B重合,点B的纵坐标是1,∴点B的横坐标是,∴OB==2,∵A点可能在x轴的正半轴也可能在负半轴,∴A点坐标为:(2,0),(﹣2,0).故答案为:2或﹣2.点评:此题主要考查了勾股定理以及反比例函数的性质等知识,根据已知得出BO的长是解题关键.(2013•黔西南州)一直角三角形的两边长分别为3和4.则第三边的长为A、5B、7C、5D、5或7(2013•柳州)在△ABC中,∠BAC=90°,AB=3,AC=4.AD平分∠BAC交BC于D,则BD的长为()A.B.C.D.考点:角平分线的性质;三角形的面积;勾股定理分析:根据勾股定理列式求出BC,再利用三角形的面积求出点A到BC上的高,根据角平分线上的点到角的两边的距离相等可得点D到AB、AC上的距离相等,然后利用三角形的面积求出点D到AB的长,再利用△ABD的面积列式计算即可得解.解答:解:∵∠BAC=90°,AB=3,AC=4,∴BC===5,∴BC边上的高=×3×4÷5=,∵AD平分∠BAC,∴点D到AB、AC上的距离相等,设为h,则S△ABC=×3h+×4h=×5×,解得h=,S△ABD=×3×=BD•,解得BD=.故选A.点评:本题考查了角平分线的性质,三角形的面积,勾股定理,利用三角形的面积分别求出相应的高是解题的关键.。