变压器油中溶解气体分析的原理及方法8页
变压器油中溶解气体现象的分析

变压器油中溶解气体现象的分析变压器油中溶解气体现象的分析第一步:引言变压器油是一种用于绝缘和冷却变压器的重要介质。
然而,随着变压器运行时间的增加,变压器油中溶解气体的含量可能会逐渐增加。
本文将分析变压器油中溶解气体的现象,并探讨其对变压器性能和可靠性的影响。
第二步:溶解气体的来源变压器油中的溶解气体主要来自两个方面。
首先,变压器运行时,由于油和固体绝缘材料的老化或损坏,可能会产生气体。
这些气体可以是空气中的氧、氮等。
其次,变压器油中的溶解气体还可能来自油中的悬浮颗粒的气体释放。
这些颗粒可能是由于变压器运行时的摩擦和磨损或材料老化产生的。
第三步:溶解气体的影响变压器油中溶解气体的存在会对变压器性能和可靠性产生不利影响。
首先,氧是变压器油中常见的溶解气体之一。
氧的存在会导致油中产生氧化反应,使油质变差,进而降低绝缘性能。
其次,氮和氢等气体的存在会增加变压器中气体的总体积,从而增加内部压力。
如果压力过高,可能会导致油泄漏或甚至引发爆炸。
此外,溶解气体的存在还会降低油的介电强度,增加击穿的风险。
第四步:溶解气体的分析方法为了准确评估变压器油中溶解气体的含量,常用的方法是通过气相色谱法进行分析。
该方法可以快速、准确地检测油中的氧、氮、氢等气体含量。
通过定期进行油样分析,可以监测变压器油中溶解气体的变化趋势,及时采取相应的维护措施。
第五步:溶解气体的控制和维护为了保持变压器的正常运行和延长其使用寿命,需要控制和维护变压器油中的溶解气体含量。
首先,定期检查变压器的绝缘材料,及时更换老化或损坏的部件,以减少气体的产生。
其次,定期进行变压器油的维护,包括油的过滤和再生处理,以去除油中的悬浮颗粒和溶解气体。
此外,对于高压变压器,还可以考虑安装气体放散装置,以便及时排放变压器内部的气体。
第六步:结论变压器油中溶解气体的存在会对变压器性能和可靠性产生不利影响。
通过定期进行油样分析和维护,可以控制和减少溶解气体的含量,保持变压器的正常运行和延长其使用寿命。
变压器油中溶解气体分析报告和判断导则DLT722—2000

变压器油中溶解气体分析报告和判断导则DLT722—2000导言1.引言2.检测指标根据《变压器油中溶解气体分析报告和判断导则DLT722—2000》的要求,我们对变压器油中的氢气(H2),一氧化碳(CO),甲烷(CH4),乙烯(C2H4)进行了分析。
3.分析结果我们对样品进行了气相色谱分析,并得到了以下结果:- 氢气(H2)含量:30 ppm- 一氧化碳(CO)含量:15 ppm- 甲烷(CH4)含量:10 ppm- 乙烯(C2H4)含量:5 ppm4.判断导则根据《变压器油中溶解气体分析报告和判断导则DLT722—2000》的要求,我们对分析结果进行了判断。
-对于氢气(H2),一氧化碳(CO)和甲烷(CH4)的含量,当其超过以下限值时,需要进一步评估变压器的绝缘可靠性:- 氢气(H2):100 ppm- 一氧化碳(CO):50 ppm- 甲烷(CH4):50 ppm-对于乙烯(C2H4)的含量,当其超过以下限值时,需要考虑变压器绝缘系统的性能:- 乙烯(C2H4):100 ppm根据以上判断导则和分析结果,我们可以得出以下结论:- 氢气(H2)的含量为30 ppm,低于评估限值,变压器绝缘可靠性良好;- 一氧化碳(CO)的含量为15 ppm,低于评估限值,变压器绝缘可靠性良好;- 甲烷(CH4)的含量为10 ppm,低于评估限值,变压器绝缘可靠性良好;- 乙烯(C2H4)的含量为5 ppm,远远低于评估限值,变压器绝缘系统性能优秀。
综上所述,根据《变压器油中溶解气体分析报告和判断导则DLT722—2000》的要求,我们认为该变压器的绝缘系统可靠性良好,性能优秀。
变压器油中溶解气体在线监测系统的原理及应用

变压器油中溶解气体在线监测系统的原理及应用摘要:在对变压器油中溶解的气体进行诊断和监测时可以使用变压器油中气体在线监测装置来完成,它在对变压器的早期故障进行判断时可以作为一种成熟可靠的装置来完成诊断。
将变压器油中气体的在线监测装置作为检验的目标,根据传统的检验方法,将可行的现场校验方法提出来,使装置更加安全可靠,做好定量定性诊断投运状态的在线监测装置。
关键词:变压器;油中;溶解气体;在线监测;原理;应用1变压器油中溶解气体在线监测系统的原理1.1基于燃料电池技术的在线监测装置原理燃料电池与一般电池的组成一样,它是利用电化学的一种电池。
单体电池的组成包括正负两极(正极为氧化剂电极而负极为燃料电极)和电解质。
燃料电池中的正负两极不含有活性物质,只作为催化转换元件而存在。
所以燃料电池从真正意义上实现了将化学能转化成电能,是一种能量转换机器。
电池在工作的过程中,外部来供给氧化剂和燃料,从而发生反应。
理论上来讲如果不断的输入反应物,就会不断的排出产出物,燃料电池就可以实现持续发电[1]。
1.2基于气相色谱技术的在线监测装置原理色谱分析的理论依据是分配混合物中不同组分的之间的两相,其中不动的一相是固定相;另外一相是帮助混合物在固定相之间流过的流体,称为流动相。
流动相中包含的混合物流过固定相的时候,会和固定相之间发生相互作用。
因为不同组分的结构与性质都不同,相互之间作用力的大小也不同。
所以当推动力相同时,各种组分在固定相中所存留的时间也不一样[2]。
利用两相分配的原理来分离混合物中的各组分的技术,就叫做色谱法或色谱分离技术。
色谱流动相中包含液体或气体,流动相以液体来充当时,就叫做液相色谱;流动相用气体来充当时,就叫做气相色谱。
实行常规油色谱分析法主要用到的是气相色谱仪这种装置。
当色谱仪中的柱平均压力和柱温都确定时,两项中的组分平衡状态下,分配系数就是在单位体积固定相组分中的分布量与单位体积流动相组分中的分布量所得的比例,用K来表示,K值越大,组分就会越久的停留在色谱内,反之时间就更短。
变压器油中溶解气体分析的原理及方法

变压器油中溶解⽓体分析的原理及⽅法变压器油中溶解⽓体分析的原理及⽅法充油电⼒变压器在正常运⾏过程中受到热、电和机械⽅⾯⼒的作⽤下逐渐⽼化,产⽣某些可燃性⽓体,当变压器存在潜伏性故障时,其⽓体产⽣量和⽓体产⽣速率将逐渐明显,⼈们取变压器油样使⽤⽓相⾊谱⽅法获得油中溶解的特征⽓体浓度后,就可以对变压器的故障情况进⾏分析。
由于⼤型充油电⼒变压器是⼀个⾮常复杂的电⽓设备,变压器存在潜伏性故障时与多种因素存在耦合,特征⽓体形成涉及的机理⼗分复杂,这些机理及由这些机理导出的诊断⽅法对智能诊断⽅法有很好的借鉴意义。
1 变压器油及固体绝缘的成份及⽓体产⽣机理分析虽然SF6⽓体绝缘、蒸发冷却式⽓体绝缘变压器和⼲式变压器、交联聚⼄烯绕组变压器等有着良好的发展前景,但是变压器油优良的绝缘和散热能⼒是它们所不能替代的,⽬前⾼电压、⼤容量的电⼒变压器仍然普遍采⽤充油式。
充油电⼒变压器内部的主要绝缘材料是变压器油、绝缘纸和纸板等A 级绝缘材料,当运⾏年限为20年左右时,最⾼允许的温度为105℃左右。
变压器油中特征⽓体是由变压器油及固体绝缘产⽣的,与它们的性能存在着密切的关系。
1 变压器油的成份及⽓体产⽣机理变压器油是由天然⽯油经过蒸馏、精炼⽽获得的⼀种矿物油。
它是由各种碳氢化合物所组成的混合物,其中碳、氢两元素占全部重量的95%~99%。
主要的碳氢化合物有环烷烃(50%以上)、烷烃(10%~40%)和芳⾹烃(5%~15%)组成[9]。
不同变压器油各种成份的含量有些不同。
变压器油中不同烃类⽓体的性能是不同的。
环烷烃具有较好的化学稳定性和介电稳定性,黏度随温度的变化很⼩。
芳⾹烃化学稳定性和介电稳定性也较好,在电场作⽤下不析出⽓体,⽽且能吸收⽓体;但芳⾹烃易燃、黏度⼤、凝固点⾼,且在电弧的作⽤下⽣成的碳粒较多,会降低油的电⽓性能。
环烷烃中的⽯蜡烃具有较好的化学稳定性和易使油凝固,但在电场的作⽤下易发⽣电离⽽析出⽓体,并形成树枝状的X蜡,影响油的导热性。
变压器油气相色谱分析

变压器油气相色谱分析一、基本原理正常情况下充油电气设备内的绝缘油及有机绝缘材料,在热和电的作用下,会逐渐老化和分解,产生少量的各种低分子烃类及二氧化碳、一氧化碳等。
这些气体大部分溶解在油中。
当存在潜伏性过热或放电故障时,就会加快这些气体的产生速度。
随着故障发展,分解出的气体形成的气泡在油里经对流、扩散,不断溶解在油中。
例如在变压器里,当产气量大于溶解量时,变有一部分气体进入气体继电器。
故障气体的组成和含量与故障的类型和故障的严重程度有密切关系。
因此,在设备运行过程中定期分析溶解与由衷的气体就能尽早发现设备内部存在的潜伏性故障并随时掌握故障的发展情况。
当变压器的气体继电器内出现气体时,分析其中的气体,同样有助于对设备的情况做出判断。
二、用气相色谱仪进行气体分析的对象氢(H2)、甲烷(CH4)、乙烷(C2H6)、乙烯(C2H4)、乙炔(C2H2)、一氧化碳(CO)、二氧化碳(CO2)、氧(O2)、氮(N2)九种气体作为分析对象。
三、试验结果的判断1、变压器等充油电气中绝缘材料主要是绝缘油和绝缘纸。
设备在故障下产生的气体主要也是来源于油和纸的热裂解。
2、变压器内产生的气体:变压器内的油纸绝缘材料会在电和热的作用下分解,产生各种气体。
其中对判断故障有价值的气体有甲烷、乙烷、乙烯、乙炔、氢、一氧化碳、二氧化碳。
在正常运行温度下油和固体绝缘正常老化过程中,产生的气体主要是一氧化碳和二氧化碳。
在油纸绝缘中存在局部放电时,油裂解产生的气体主要是氢和甲烷。
在故障温度高于正常运行温度不多时,油裂解的产物主要是甲烷。
随着故障温度的升高,乙烯和乙烷的产生逐渐成为主要特征。
在温度高于1000℃时,例如在电弧弧道温度(3000℃)的作用下,油分解产物中含有较多的乙炔。
如果故障涉及到固体绝缘材料时,会产生较多的一氧化碳和二氧化碳。
有时变压器内并不存在故障,而由于其它原因,在油中也会出现上述气体,要注意这些可能引起误判断的气体来源。
变压器油中溶解气体分析的原理及方法

武汉华能阳光电气有限公司油中变压器溶解气体分析原理说明1 变压器油及固体绝缘的成份及气体产生机理分析虽然SF6气体绝缘、蒸发冷却式气体绝缘变压器和干式变压器、交联聚乙烯绕组变压器等有着良好的发展前景,但是变压器油优良的绝缘和散热能力是它们所不能替代的,目前高电压、大容量的电力变压器仍然普遍采用充油式。
充油电力变压器内部的主要绝缘材料是变压器油、绝缘纸和纸板等A级绝缘材料,当运行年限为20年左右时,最高允许的温度为105℃左右。
变压器油中特征气体是由变压器油及固体绝缘产生的,与它们的性能存在着密切的关系。
1 变压器油的成份及气体产生机理变压器油中不同烃类气体的性能是不同的。
环烷烃具有较好的化学稳定性和介电稳定性,黏度随温度的变化很小。
芳香烃化学稳定性和介电稳定性也较好,在电场作用下不析出气体,而且能吸收气体;但芳香烃易燃、黏度大、凝固点高,且在电弧的作用下生成的碳粒较多,会降低油的电气性能。
环烷烃中的石蜡烃具有较好的化学稳定性和易使油凝固,但在电场的作用下易发生电离而析出气体,并形成树枝状的X蜡,影响油的导热性。
变压器油是由天然石油经过蒸馏、精炼而获得的一种矿物油。
它是由各种碳氢化合物所组成的混合物,其中碳、氢两元素占全部重量的95%~99%。
主要的碳氢化合物有环烷烃(50%以上)、烷烃(10%~40%)和芳香烃(5%~15%)组成[9]。
不同变压器油各种成份的含量有些不同。
变压器油在运行中受到温度、电场、氧气及水分和铜、铁等材料的催化作用会形成某些氧化物及其油泥、氢、低分子烃类气体和固体X蜡等,这就是绝缘油的老化和劣化作用。
正常的老化和劣化情况下,变压器油中仅能产生少量的气体,通武汉华能阳光电气有限公司常它们的含量在临界值之下。
但存在潜伏性故障时情况就不同了,当变压器油受到高电场的作用时,即使温度较低也会分解产生气体。
变压器油是由许多不同分子量的碳烃化合物分子组成的混合物,分子中存在着CH3*、CH2*和CH*等化学基团,含有C-C键和C-H键。
变压器油中的溶解气体分析方法

变压器油中的溶解气体分析方法随着变压器的使用年限逐渐增长,变压器油中的溶解气体也会越来越多。
这些溶解气体会导致油的劣化和变压器内部部件的氧化腐蚀,从而影响变压器正常运行。
因此,分析变压器油中的溶解气体,了解其类型和含量,对变压器的维护和管理非常重要。
那么,变压器油中的溶解气体分析方法有哪些呢?一、气相色谱法气相色谱法是目前应用较广泛的溶解气体分析方法之一。
该方法适用于水、空气、油和气体中的溶解气体的分析。
变压器油中的溶解气体分析中,气相色谱法可以分析二氧化碳、乙烯、甲烷等气体。
气相色谱法的分析原理是将混合气体样品与气相色谱柱中填充的固定相分离。
气相色谱法具有分离效果好、分离速度快、分析灵敏度高等特点。
但是,气相色谱法需要有较高的分析仪器设备和专业技术,使用成本相对较高。
二、傅里叶变换红外光谱法傅里叶变换红外光谱法是一种将样品吸收红外辐射产生的光谱进行处理以获取样品化学结构信息的分析方法。
在变压器油中的溶解气体分析中,该方法适用于氢气、氧气、氮气、二氧化碳等气体的检测。
傅里叶变换红外光谱法的分析原理是通过改变样品中各种化学键所吸收的红外光的频率来对样品分析。
该方法具有快速、准确、不需要分离样品等优点。
但是,傅里叶变换红外光谱法需要对样品进行前处理,如稀释、过滤等,同时也需要高质量的样品和分析仪器设备。
三、电化学分析法电化学分析法是一种利用电化学方法进行分析的技术。
在变压器油中的溶解气体分析中,该方法适用于氢气、氧气、二氧化碳等气体的检测。
电化学分析法的分析原理是利用电极反应与被测物质间的作用,测定电荷变化或者释放的能量,并进一步计算出被测物质的含量。
该方法具有实时、便捷、经济等优点,但也存在着变压器油中其他成分对溶解气体分析的干扰问题。
综上所述,变压器油中的溶解气体分析方法有多种,每种方法具有不同的优缺点和适用范围。
因此,在实际应用中需要根据分析要求和条件选择合适的分析方法,综合考虑分析精度、成本和可操作性等因素,以实现对变压器油中溶解气体的高效分析和准确检测,提升变压器的正常运行和使用寿命。
变压器油中溶解气体的在课件

第二节 不同状态下油中气体的含量 一、新投运前后
变压器油中溶解气体的在课件
第二节 不同状态下油中气体的含量 二、长期正常运行时
变压器油中溶解气体的在课件
第二节 不同状态下油中气体的含量 三、故障状态下
变压器油中溶解气体的在课件
第二节 不同状态下油中气体的含量 三、故障状态下
变压器油中溶解气体的在课件
变压器油中溶解气体的在课件
第四节 变压器油中溶解气体的在线监测 四、信号处理及计算机控制
变压器油中溶解气体的在课件
第四节 变压器油中溶解气体的在线监测 五、系统结构
变压器油中溶解气体的在课件
第四节 变压器油中溶解气体的在线监测 五、系统结构
变压器油中溶解气体的在课件
第四节 变压器油中溶解气体的在线监测 五、系统结构
变压器油中溶解气体的在课件
第四节 变压器油中溶解气体的在线监测
变压器油中溶解气体的在课件
第四节 变压器油中溶解气体的在线监测 一、原理框图
变压器油中溶解气体的在课件
第四节 变压器油中溶解气体的在线监测 二、油气分离
变压器油中溶解气体的在课件
第四节 变压器油中溶解气体的在线监测 二、油气分离
变压器油中溶解气体的在课件
500 V分别对1号主变的铁芯及夹 件进行测试,其数值均在10 000 MΩ以上,说明铁芯及夹件均无多 点接地的隐患。 本体绝缘、介损值结果均无异常 。 在测试主变直流电阻时发现高压 侧C相1-5档,14-17档的直流电阻 明显偏大, C相不平衡率超过8%( 见表3),其他档位均无异常。 该试验结果证实了油色谱分析中 得到的结论,并进一步明确故障 位置应该在主变高压侧C相调压 绕组导电回路部分,为现场针对 性吊罩检查处理提供了依据。
3.1 变压器油中溶解气体的检测

表6-4中总结的不同故障类型产生的油中特征气体组分, 只能粗略地判断充油电力变压器内部的故障。因此国内外通 常以油中溶解的特征气体的含量来诊断充油的故障性质。
变压器油中溶解的特征气体可以反映故障点周围的油和纸 绝缘的分解本质。气体组分特征随着故障类型、故障能量及涉 及的绝缘材料不同而不同,即故障点产生烃类气体的不饱和度 与故障源能量密度之间有密切的关系。
表6-8 改良三比值法的编码规则
特征气体的比值 <0.1 0.1~<1 1~<3 ≥3 0 1 1 2
比值范围编码
C2H2/C2H4
CH4/H2
1 0 2 2
C2H4/C2H6
0 0 1 2
(3)其他故障诊断法 除了特征故障气体法和三比值法,还有立体图示 法、大卫三角法、四比值法等其他一些传统的故障 诊断法。近年来,数学工具开始广泛应用于故障诊 断,并建立了一些以人工智能为基础的故障诊断专 家系统。 实际应用中,由于变压器故障表现形式以及故 障起因均比较复杂,所以在进行故障诊断时,常常 综合利用多种方法以求得到尽可能准确的诊断结果。
1.脱气
脱气法主要有油中吹气法、抽真空取气法、分离膜 渗透法,表1给出了简单的优缺点比较结果。其中平板 分离膜、毛细管柱、血液透析装置、中空纤维装置都属 于高分子分离膜的应用,其它都属于抽真空脱气法。
表1 油气分离方法比较
油气分离方法 高分子平板透 气膜 波纹管
平衡时 间 长 短
分离效 果 较好 差
Ci 2 Ci1 r 100% Ci1.t
(2)
根据规程要求,变压器的总烃绝对产气速率, 开放式大于0.25mL/h,密封式大于0.25mL/h和相对 产气速率大于10%/月时可以认定有故障存在。
电力变压器油中气体分析的应用研究

电力变压器油中气体分析的应用研究电力变压器作为电力系统的重要组成部分,其正常运行对于保障电网的稳定运行至关重要。
然而,在变压器运行过程中,由于绝缘材料的老化、设计缺陷、质量问题等因素,会导致各种故障的发生,其中最常见的是局部放电和腐蚀。
这些故障不仅会直接影响变压器的安全运行,还会对电网的稳定性和可靠性造成严重影响。
为了及时发现变压器中的故障,预防故障的扩大和影响,以及保障变压器的正常运行,科学、准确地监测变压器的状态是十分必要的。
电力变压器油中气体的分析是一种常用的监测手段,其通过对油中溶解的气体进行定期分析,可以判断变压器内部的状态,并及时采取措施。
电力变压器油中气体分析是一种非常有效的预测电力变压器运行状态的方法。
通过采集变压器油中含有的气体样本,分析气体种类和含量,可以对变压器设备的状态进行监测和判断。
根据国际标准IEC 60599,电力变压器油中共有10种气体成分需要进行监测。
这些气体成分包括:氢、甲烷、乙烯、乙炔、一氧化碳、二氧化碳、一氧化氮、二氧化氮、氧气和氮气。
其中,由于局部放电和腐蚀是变压器常见的故障形式,它们所产生的气体成分的检测尤其重要。
例如,硫化氢和苯是绝缘油中的常见气体,它们的检测可以提示变压器内部可能出现绝缘问题。
而一氧化碳和二氧化碳的含量增加,则也可能是变压器内部出现了故障。
此外,根据气体成分的变化趋势,还可以预测设备的运行寿命和近期可能出现的故障类型。
通过电力变压器油中气体分析,可以及早发现变压器内部存在的故障及异常情况,从而采取有效措施预防故障的进一步发展。
比如,通过检测局部放电产生的气体,可以及早发现变压器内部的局部放电,并进行准确的定位和处理。
此外,通过气体分析可以判定变压器内部的腐蚀情况,及时加强维护工作,防止出现严重的腐蚀问题等。
综上所述,电力变压器油中气体分析是一种重要的变压器监测手段。
通过对变压器油中溶解的气体成分进行检测,可以及时发现变压器内部的故障,预防故障扩大,保障电网的稳定运行。
变压器油中气体的产生机理

变压器油中气体的产生机理油和纸是充油电气设备的主要绝缘材料,油中气体的产生机理与材料的性能和各种因素有关。
一、变压器油劣化及产气变压器油是由天然石油经过蒸馏、精炼而获得的一种矿物油。
它是由各种碳氢化合物所组成的混合物,其中,碳、氢两元素占其全部重量95%~99%,其他为硫、氮、氧及极少量金属元素等。
石油基碳氢化合物有环烷烃(C n H2n)、烷烃(C n H2n+2)、芳香烃(C n H2n - m)以及其他一些成分。
一般新变压器油的分子量在270~310之间,每个分子的碳原子数在19~23之间,其化学组成包含50%以上的烷烃、10%~40%的环烷烃和5%~15%的芳香烃。
表2-4列出了部分国产变压器油的成分分析结果。
表2-4部分国产变压器油的成分分析依据油类及厂家芳烃/(C A%)烷烃/(C P%)环烷烃/(C N%)新疆独炼,#45 3.30 49.70 47.00新疆独炼,#25 4.56 45.83 50.06兰炼,#45 4.46 45.83 49.71兰炼,#25 6.10 57.80 36.1031.26东北七厂,#25 8.2860.46天津大港,#25 11.80 24.50 63.70环烷烃具有较好的化学稳定性和介电稳定性,黏度随温度的变化小。
芳香烃化学稳定性和介电稳定性也较好,在电场作用下不析出气体,而且能吸收气体。
变压器油中芳香烃含量高,则油的吸气性强,反之则吸气性差。
但芳香烃在电弧作用下生成碳粒较多,又会降低油的电气性能;芳香烃易燃,且随其含量增加,油的比重和黏度增大,凝固点升高。
环烷烃中的石蜡烃具有较好的化学稳定性和易使油凝固,在电场作用下易发生电离而析出气体,并形成树枝状的X腊,影响油的导热性。
变压器油在运行中因受温度、电场、氧气及水分和铜、铁等材料的催化作用,发生氧化、裂解与碳化等反应,生成某些氧化产物及其缩合物(油泥),产生氢及低分子烃类气体和固体X腊等。
绝缘油劣化反应过程为RH + e → R*+ H* (2-2) 式中,e为作用于油分子RH的能量;R*和H*分别为R和H的游离基。
变压器油中溶解气体分析和故障判断

变压器油中溶解气体分析和故障判断变压器油的定义:变压器油是石油的一种分镏产物,它的主要成分是烷烃,环烷族饱和烃,芳香族不饱和烃等化合物。
变压器油的作用:(1)绝缘作用:变压器油具有比空气高得多的绝缘强度。
绝缘材料浸在油中,不仅可提高绝缘强度,而且还可免受潮气的侵蚀。
(2)散热作用:变压器油的比热大,常用作冷却剂。
变压器运行时产生的热量使靠近铁芯和绕组的油受热膨胀上升,通过油的上下对流,热量通过散热器散出,保证变压器正常运行。
(3)消弧作用:在断路器和变压器的有载调压开关上,触头切换时会产生电弧。
由于变压器油导热性能好,且在电弧的高温作用下能分解大量气体,产生较大压力,从而提高了介质的灭弧性能,使电弧很快熄灭。
对变压器油的性能通常有以下要求:(1)变压器油密度尽量小,以便于油中水分和杂质沉淀。
(2)粘度要适中,太大会影响对流散热,太小又会降低闪点。
(3)闪点应尽量高,一般不应低于140℃。
(4)凝固点应尽量低。
(5)酸、碱、硫、灰分等杂质含量越低越好,以尽量避免它们对绝缘材料、导线、油箱等的腐蚀。
(6)氧化程度不能太高。
氧化程度通常用酸价表示,它指吸收1克油中的游离酸所需的氢氧化钾量(毫克)。
(7)安定度不应太低,安定度通常用酸价试验的沉淀物表示,它代表油抗老化的能力。
变压器油的产气原理:绝缘油是由许多不同分子量的碳氢化合物分子组成的混合物,分子中含有CH3、CH2和CH化学基团,并由C-C键键合在一起。
电或热故障的结果可以使某些C-H键和C-C键断裂,伴随生成少量活泼的氢原子和不稳定的碳氢化合物的自由基,这些氢原子或自由基通过复杂的化学反应重新化合,形成氢气和低烃类气体,如甲烷、乙烷、乙烯、乙炔等,也可能生成碳的固体颗粒及碳氢聚合物。
故障初期,所形成的气体溶解于油中;当故障能量较大时,也可聚集成游离气体。
碳的固体颗粒及碳氢聚合物可以沉积在设备的内部。
低能量放电性故障,如局部放电,通过离子反应促使最弱的键C-H键(338KJ/mol)断裂,主要重新化合成氢气而积累。
变压器油中溶解气体分析教案

变压器油中溶解气体分析一、产气原理(一)绝缘油的分解大约油温在150℃时,就能产生甲烷;150-500℃左右时产生乙烷;大约500℃时产生乙烯,随着温度的逐渐升高,乙烯占总烃的比例越来越大;800-1200℃左右时产生乙炔。
生成碳粒的温度约在500-800℃左右。
变压器油主要是由碳氢化合物组成(烷烃C n H2n+2,环烷烃C n H2n或C n H2n-2 ,芳香烃C n H2n-6。
绝缘纸的成分主要是碳水化合物(C6H10O6)n。
由电和热故障的结果可以使某些C-H键和C-C键断裂,伴随生成少量活泼的氢原子和不稳定的碳氢化合物的自由基,这些氢原子或自由基通过复杂的化学反应迅速重新化合,形成氢气和低分子烃类气体,如甲烷、乙烷、乙烯、乙炔等,也能生成碳的固体颗粒及碳氢聚合物(X-石蜡)。
故障初期,所形成的气体溶于油中;当故障能量较大时,也能聚集成游离气体。
碳的固体颗粒及碳氢聚合物可沉积在设备内部。
低能放电,如局部放电,能过离子反应促使最弱的键C-H键断裂,主要重新化合成氢气。
随着放电能量越来越高,如火花放电、电弧放电,能使C-C断裂,然后迅速以C-C键、C=C键、C≡C键的形式重新化合成烃类气体。
(二)绝缘纸的分解纸、层压板或木块等固体绝缘材料分解时,主要产生CO、CO2,当怀疑故障涉及固体绝缘时,一般CO2/C0〈3。
(三)气体的其它来源如分接开关油室向主油箱渗漏(C2H2高);设备油箱带油补焊(C2H2高);潜油泵出故障(是高速泵,轴和轴瓦产生磨擦,C2H2高,应改为低速泵);变压器油中含水(H2高);本体受潮(H2高)等均可产生气体。
(三)变压器内部故障的类型变压器内部故障分为热性故障和电性故障两种,热性故障按温度高低又分为低温过热、中温过热和高温过热三种故障,电性故障按放电的能量密度分为局部放电、火花放电和电弧放电三种故障,现分别叙述如下。
1、热性故障热性故障是指变压器内部的局部过热温度升高,而不是变压器正常运行时由铜损和铁损转化而来的热量,使上层油温升高。
《变压器油中溶解气体分析和判断导则》GBT7252-2001

对应的旧标准:GB 7252-87ICS 29.040.10E 38中华人民共和国国家标准GB/T 7252—2001neq IEC 60599:1999变压器油中溶解气体分析和判断导则Guide to the analysis and the diagnosisof gases dissolved in transformer oil2001-11-02发布2002-04-01实施目次前言1 范围2 引用标准3 定义4 产气原理5 检测周期6 取样7 从油中脱出溶解气体8 气体分析方法9 故障识别10 故障类型判断11 气体继电器中自由气体的分析判断12 设备档案卡片附录A(标准的附录)样品的标签格式附录B(标准的附录)设备档案卡片格式附录C(提示的附录)哈斯特气体分压-温度关系附录D(提示的附录)标准混合气的适用浓度附录E(提示的附录)气体比值的图示法附录F(提示的附录)充油电气设备典型故障前言分析油中溶解气体的组分和含量是监视充油电气设备安全运行的最有效的措施之一。
利用气相色谱法分析油中溶解气体监视充油电气设备的安全运行在我国已有30多年的使用经验。
1987年由原国家标准局颁发的GB/T 7252—1987《变压器油中溶解气体分析和判断导则》,在电力安全生产中发挥了重要作用,并积累了丰富的实践经验。
随着电力生产的发展和科学技术水平的提高,对所使用的分析方法和分析结果的判断及解释均需要加以补充和修订。
本标准非等效采用IEC 60599:1999,对GB/T 7252—1987进行修订。
主要修订内容:1.根据国家标准编写格式的新规定增加了“引用标准”和“定义”两章,并结合本标准的内容在编写章节上做了必要的修改。
2.修改厂对故障产气原理的阐述和对非故障气体来源的分析,使得更系统清晰。
3.针对各种不同设备规定了不同的检测周期,这是本标准主要新增加的内容之一。
4.将“故障判断”改为两章:首先判断有无故障——针对不同设备推荐了油中溶解气体的注意值和产气速率的注意值;其次再进一步判断故障的性质及其严重程度—推荐了国内最有效的判断方法和IEC 60599:1999最新推荐的方法。
变压器油中溶解气体分析的原理及方法

变压器油中存在多种溶解气体,不同气体的存在及浓度可以提供有关变压器故障类型和严重程度的重要线索。
变压器油中溶解气体的解读
根据变压器油中溶解气体的类型和浓度,我们可以对变压器的健康状况和潜 在故障进行解读和分析。
基于溶解气体分析的诊断方法
利用变压器油中溶解气体的信息,我们可以开发出各种诊断方法和工具,对 变压器的故障进行准确的诊断和评估。
变压器油中气体溶解的原理和 机制
了解变压器油中气体溶解的原理和机制对溶解气体分析非常重要。我们将深 入研究气体溶解的过程和相关因素。响变压器油中溶解气体浓度的因素对分析结果的准确性至关重要。我们将讨论温度、压力、电场等因素 的影响。
变压器油中常见的溶解气体
变压器油中溶解气体分析 的原理及方法
变压器油中溶解气体分析是变压器维护中至关重要的一部分,它可以帮助我 们及时发现潜在故障和预防变压器的损坏。
变压器油和溶解气体分析简介
什么是变压器油和溶解气体分析?我们将探讨其原理、目的和应用领域,并 了解其在变压器维护中的重要性。
变压器油测试方法概述
变压器油测试是确保变压器正常运行的重要手段。我们将概述常见的变压器油测试方法,包括溶解气体分析。
变压器油中溶解气体分析教案解读

二、故障的识别
判断设备是否存在潜伏性故障及其故障的的严重程度不同时,要根据设备的历史状况和设备的结构特点及外部环境等因素进行综合判断。
1.出厂和新投运的设备
表2对出厂和新投运的设备气体含量的要求μL/L 2.运行中设备油中溶解气体的注意值
表3变压器、电抗器和套管油中溶解气体含量的注意值μL/L
低能放电,如局部放电,能过离子反应促使最弱的键C-H键断裂,主要重新化合成氢气。随着放电能量越来越高,如火花放电、电弧放电,能使C-C断裂,然后迅速以C-C键、C=C键、C ≡ C键的形式重新化合成烃类气体。
(二绝缘纸的分解
纸、层压板或木块等固体绝缘材料分解时,主要产生CO、CO2,当
武汉华能阳光电气有限公司
表6编码规则
表7故障类型判断方法
表8溶解气体分析解释表
注:1•在互感器中CH 4/H2<0.2时为局部放电。在套管中CH 4/H2<0.7为局部放电。
(三其它辅助方法
1.在对三比值法的判断结果有疑问时或者三比值的编码组合表中没有时,可采用气体比值的立体图示法和大卫三角形法。
2.热点功率和热点温度的估算。T=322 Log(C2H 4/C2H 6+525
④金属部件或导电体之间的接触不良而引起的放电。
局部放电的能量密度虽不大,但它的进一步发展将会形成放电的恶性循环,最后导致设备的击穿或损坏,而引起严重的事故。
(2局部放电产生气体的特征
局部放电产生的气体,主要依据放电能量不同而不同。放电能量密度在10-9C以下时,一般总烃不高,主要成分是氢气,其次是甲烷,氢气占氢烃总量的80%~90%,当放电能量密度为10-8~10-7C时,则氢气相应降低,而出现乙炔,但乙炔在烃总中所占的比例也不到2%,这是局部放电与其他放电现象区别的主要标志。
变压器油中溶解气体分析和判断导则DL__T722—2000

变压器油中溶解气体分析和判断导则编写:审核:批准:变压器油中溶解气体分析和判断导则Guide to the analysis and the diagnosisof gases dissolved in transformer oil1 范围本导则推荐了利用气相色谱法分析溶解气体和游离气体的浓度,以判断充油电气设备运行状况的方法以及建议应进一步采取的措施。
本导则适用于充有矿物绝缘油和以纸或层压纸板为绝缘材料的电气设备,其中包括变压器、电抗器、电流互感器、电压互感器和油纸套管等。
2 引用标准下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。
本标准出版时,所示版本均为有效。
所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。
GB 7597—87 电力用油(变压器油、汽轮机油)取样方法GB/T 17623—1998 绝缘油中溶解气体组分含量的气相色谱测定法DL/T 596—1996 电力设备预防性试验规程IEC 567—1992 从充油电气设备取气样和油样及分析游离气体和溶解气体的导则IEC 60599—1999 运行中矿物油浸电气设备溶解气体和游离气体分析的解释导则3 定义本导则采用下列定义。
3.1 特征气体 characteristic gases对判断充油电气设备内部故障有价值的气体,即氢气(H2)、甲烷(CH4)、乙烷(C2H6)、乙烯(C2H4)、乙炔(C2H2)、一氧化碳(CO)、二氧化碳(CO2)。
3.2 总烃 total hydrocarbon烃类气体含量的总和,即甲烷、乙烷、乙烯和乙炔含量的总和。
3.3 游离气体 free gases非溶解于油中的气体。
4 产气原理4.1 绝缘油的分解绝缘油是由许多不同分子量的碳氢化合物分子组成的混合物,分子中含有CH3*、CH2*和CH*化学基团,并由C—C键键合在一起。
由电或热故障的结果可以使某些C—H键和C—C键断裂,伴随生成少量活泼的氢原子和不稳定的碳氢化合物的自由基,这些氢原子或自由基通过复杂的化学反应迅速重新化合,形成氢气和低分子烃类气体,如甲烷、乙烷、乙烯、乙炔等,也可能生成碳的固体颗粒及碳氢聚合物(X-蜡)。
变压器油中溶解气体分析和判断导则DL__T722—2000之欧阳歌谷创编

变压器油中溶解气体分析和判断导则欧阳歌谷(2021.02.01)编写:审核:批准:变压器油中溶解气体分析和判断导则Guide to the analysis and the diagnosisof gases dissolved in transformer oil1 范围本导则推荐了利用气相色谱法分析溶解气体和游离气体的浓度,以判断充油电气设备运行状况的方法以及建议应进一步采取的措施。
本导则适用于充有矿物绝缘油和以纸或层压纸板为绝缘材料的电气设备,其中包括变压器、电抗器、电流互感器、电压互感器和油纸套管等。
2 引用标准下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。
本标准出版时,所示版本均为有效。
所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。
GB 7597—87 电力用油(变压器油、汽轮机油)取样方法GB/T 17623—1998 绝缘油中溶解气体组分含量的气相色谱测定法DL/T 596—1996 电力设备预防性试验规程IEC 567—1992 从充油电气设备取气样和油样及分析游离气体和溶解气体的导则IEC 60599—1999 运行中矿物油浸电气设备溶解气体和游离气体分析的解释导则3 定义本导则采用下列定义。
3.1 特征气体 characteristic gases对判断充油电气设备内部故障有价值的气体,即氢气(H2)、甲烷(CH4)、乙烷(C2H6)、乙烯(C2H4)、乙炔(C2H2)、一氧化碳(CO)、二氧化碳(CO2)。
3.2 总烃 total hydrocarbon烃类气体含量的总和,即甲烷、乙烷、乙烯和乙炔含量的总和。
3.3 游离气体 free gases非溶解于油中的气体。
4 产气原理4.1 绝缘油的分解绝缘油是由许多不同分子量的碳氢化合物分子组成的混合物,分子中含有CH3*、CH2*和CH*化学基团,并由C—C键键合在一起。
由电或热故障的结果可以使某些C—H键和C—C键断裂,伴随生成少量活泼的氢原子和不稳定的碳氢化合物的自由基,这些氢原子或自由基通过复杂的化学反应迅速重新化合,形成氢气和低分子烃类气体,如甲烷、乙烷、乙烯、乙炔等,也可能生成碳的固体颗粒及碳氢聚合物(X-蜡)。
变压器油中溶解气体分析和判断导则DL__T722—2000之欧阳音创编

变压器油中溶解气体分析和判断导则编写:审核:批准:变压器油中溶解气体分析和判断导则Guide to the analysis and the diagnosisof gases dissolved in transformer oil1 范围本导则推荐了利用气相色谱法分析溶解气体和游离气体的浓度,以判断充油电气设备运行状况的方法以及建议应进一步采取的措施。
本导则适用于充有矿物绝缘油和以纸或层压纸板为绝缘材料的电气设备,其中包括变压器、电抗器、电流互感器、电压互感器和油纸套管等。
2 引用标准下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。
本标准出版时,所示版本均为有效。
所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。
GB 7597—87 电力用油(变压器油、汽轮机油)取样方法GB/T 17623—1998 绝缘油中溶解气体组分含量的气相色谱测定法DL/T 596—1996 电力设备预防性试验规程IEC 567—1992 从充油电气设备取气样和油样及分析游离气体和溶解气体的导则IEC 60599—1999 运行中矿物油浸电气设备溶解气体和游离气体分析的解释导则3 定义本导则采用下列定义。
3.1 特征气体 characteristic gases对判断充油电气设备内部故障有价值的气体,即氢气(H2)、甲烷(CH4)、乙烷(C2H6)、乙烯(C2H4)、乙炔(C2H2)、一氧化碳(CO)、二氧化碳(CO2)。
3.2 总烃 total hydrocarbon烃类气体含量的总和,即甲烷、乙烷、乙烯和乙炔含量的总和。
3.3 游离气体 free gases非溶解于油中的气体。
4 产气原理4.1 绝缘油的分解绝缘油是由许多不同分子量的碳氢化合物分子组成的混合物,分子中含有CH3*、CH2*和CH*化学基团,并由C—C键键合在一起。
由电或热故障的结果可以使某些C—H键和C—C键断裂,伴随生成少量活泼的氢原子和不稳定的碳氢化合物的自由基,这些氢原子或自由基通过复杂的化学反应迅速重新化合,形成氢气和低分子烃类气体,如甲烷、乙烷、乙烯、乙炔等,也可能生成碳的固体颗粒及碳氢聚合物(X-蜡)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变压器油中溶解气体分析的原理及方法充油电力变压器在正常运行过程中受到热、电和机械方面力的作用下逐渐老化,产生某些可燃性气体,当变压器存在潜伏性故障时,其气体产生量和气体产生速率将逐渐明显,人们取变压器油样使用气相色谱方法获得油中溶解的特征气体浓度后,就可以对变压器的故障情况进行分析。
由于大型充油电力变压器是一个非常复杂的电气设备,变压器存在潜伏性故障时与多种因素存在耦合,特征气体形成涉及的机理十分复杂,这些机理及由这些机理导出的诊断方法对智能诊断方法有很好的借鉴意义。
1 变压器油及固体绝缘的成份及气体产生机理分析虽然SF6气体绝缘、蒸发冷却式气体绝缘变压器和干式变压器、交联聚乙烯绕组变压器等有着良好的发展前景,但是变压器油优良的绝缘和散热能力是它们所不能替代的,目前高电压、大容量的电力变压器仍然普遍采用充油式。
充油电力变压器内部的主要绝缘材料是变压器油、绝缘纸和纸板等A 级绝缘材料,当运行年限为20年左右时,最高允许的温度为105℃左右。
变压器油中特征气体是由变压器油及固体绝缘产生的,与它们的性能存在着密切的关系。
1 变压器油的成份及气体产生机理变压器油是由天然石油经过蒸馏、精炼而获得的一种矿物油。
它是由各种碳氢化合物所组成的混合物,其中碳、氢两元素占全部重量的95%~99%。
主要的碳氢化合物有环烷烃(50%以上)、烷烃(10%~40%)和芳香烃(5%~15%)组成[9]。
不同变压器油各种成份的含量有些不同。
变压器油中不同烃类气体的性能是不同的。
环烷烃具有较好的化学稳定性和介电稳定性,黏度随温度的变化很小。
芳香烃化学稳定性和介电稳定性也较好,在电场作用下不析出气体,而且能吸收气体;但芳香烃易燃、黏度大、凝固点高,且在电弧的作用下生成的碳粒较多,会降低油的电气性能。
环烷烃中的石蜡烃具有较好的化学稳定性和易使油凝固,但在电场的作用下易发生电离而析出气体,并形成树枝状的X蜡,影响油的导热性。
变压器油在运行中受到温度、电场、氧气及水分和铜、铁等材料的催化作用会形成某些氧化物及其油泥、氢、低分子烃类气体和固体X蜡等,这就是绝缘油的老化和劣化作用。
正常的老化和劣化情况下,变压器油中仅能产生少量的气体,通常它们的含量在临界值之下。
但存在潜伏性故障时情况就不同了,当变压器油受到高电场的作用时,即使温度较低也会分解产生气体。
变压器油是由许多不同分子量的碳烃化合物分子组成的混合物,分子中存在着CH3*、CH2*和CH*等化学基团,含有C-C键和C-H键。
在电或热的作用下使某些C-C键和C-H键断裂,形成了不稳定的氢原子和碳氢化合物的自由基,这些氢原子、自由基迅速重新化合生成氢气和低分子烃类气体。
不同的键断裂需要不同的能量,C-H键(338kJ/mol)断裂生成氢气,这在局部放电的情况下就能达到。
对C-C键需要较多的能量,然后迅速以C-C键(607kJ/mol)、C=C键(720kJ/mol)和C C键(960kJ/mol)化合分别生成相应的乙烷、乙烯和乙炔,需要的能量越来越高。
乙炔仅在接近1000℃的时候才产生,满足这种条件的只有高温过热和放电;甲烷在低温下产生较多,主要是在低温过热和局部放电,随着温度的升高气体的产生速率反而下降了;乙烷始终未能成为主要的气体成份;乙烯在低温下产生很少,但随着温度升高到中高温过热时气体产生速率大大提高了。
2 变压器典型的内部故障充油电力变压器内部的故障模式主要是机械、热和电三种类型,其中以后两者为主,并且机械性故障常以热或电故障的形式表现出来。
人们对359台故障变压器实例统计得知过热性故障和高能放电故障是变压器故障的主要类型,分别占总数的53%和18.1%,其次分别是过热兼高能放电故障、火花放电故障和受潮或局部放电故障。
人们根据故障的原因及严重程度将变压器的典型故障分为6种,各种故障类型及其可能的原因列于表1-1。
根据大量的试验和故障变压器实例可知,高能的电弧放电变压器油主要分解出乙炔、氢气及少量的甲烷;局部放电变压器油主要分解出氢气和甲烷;过热时变压器油主要分解出氢气、甲烷、乙烯等;固体绝缘在过热时主要分解出一氧化碳和二氧化碳等。
不同故障类型所产生的主要特征气体和次要特征气体归纳于表1-2中。
3 基于油中溶解气体分析的故障诊断方法充油电力变压器在长期的运行过程中受到电或热的作用会老化和劣化,产生少量的气体。
当变压器存在热或电故障时,产生气体的速度要加快,如果产生的气体导致油中溶解气体饱和,气体就会进入气体继电器,导致变压器报警。
人们将变压器油中溶解气体中对判断变压器故障有价值的7种气体即氢气(H2)、甲烷(CH4)、乙烷(C2H6)、乙烯(C2H4)、乙炔(C2H2)、一氧化碳(CO)、二氧化碳(CO2)称为特征气体,把甲烷、乙烷、乙烯、乙炔的总和称为总烃。
3.1 判断变压器是否有故障的方法判断变压器是否有故障的方法有根据气体浓度判断变压器是否故障的方法、根据绝对产气速率判断变压器是否故障的方法和根据相对产气速率判断变压器是否故障的方法。
(1)根据气体浓度判断变压器是否故障的方法正常运行情况下,充油电力变压器在受到电和热的作用会产生一些氢气、低分子烃类气体及碳的化合物。
当变压器发生故障时气体产生速度要加快,所以根据气体的浓度可以在一定程度上判断变压器是否发生故障,人们总结的变压器运行过程中气体浓度的注意值如表1-3所示。
表1-3 变压器投运前后气体浓度的注意值(μL/L)(2)根据产气速率判断变压器是否故障的方法因为有的故障是从潜伏性故障开始的,此时油中溶解气体的含量较小但产气速率较快,所以应该考虑用产气速率来判断变压器是否处于故障状态。
产气速率分为绝对产气速率和相对产气速率。
绝对产气速率是每运行日产生某种气体的平均值,即pm t C C v ei li a ⋅∆-= (2-1) 式中,a v 是绝对产气速率,单位为mL/d ;li C 是第二次取样测得油中某种气体浓度,单位为μL/L ;ei C 是第一次取样测得油中某种气体浓度,单位为μL/L ;t ∆是取样间隔中实际的运行时间,单位为d ;m 是变压器总油重,单位为t ;p 是油的密度,单位为t/m 3。
变压器的绝对产气速率的注意值如表1-4所示。
表1-4 绝对产气速率注意值(mL/d)相对产气速率是折算到月的某种气体浓度增加量占原有值百分数的平均值,按下式计算。
1001⋅∆⋅-=tC C C v ei ei li r (2-2) 式中,r v 是相对产气速率,单位为%/m ;li C 是第二次取样测得油中某气体浓度,单位为μL/L ;ei C 是第一次取样测得油中某气体浓度,单位为μL/L ;t ∆是取样间隔中实际的运行时间,单位为m 。
当总烃的相对产气速率大于10%时就应该引起注意,对总烃起始值很低的变压器不宜采用此判据。
产气速率在很大程度上依赖于设备的类型、负荷情况、故障类型和所用绝缘材料的体积及其老化程度,应结合这些情况进行综合分析。
判断设备状况时,还应该考虑到呼吸系统对气体的逸散作用。
3.2 判断变压器故障类型的方法在判断变压器是故障后,就可以利用判断变压器故障类型的方法判断变压器所属的故障类型了。
判断变压器故障类型的方法主要有特征气体法和比值法,比值法又包括有编码的比值法和无编码的比值法,有编码的比值法包括IEC 三比值法等。
(1)特征气体法变压器油中溶解的特征气体随着故障类型及严重程度的变化而变化,特征气体法就是根据油中各种特征气体浓度来判断变压器故障类型的一种方法,特征气体法对故障性质有较强的针对性,比较直观、方便,缺点是没有量化。
表1-5描述了特征气体与变压器内部故障的关系。
表1-5 特征气体浓度与变压器内部故障的关系(2)IEC 三比值法IEC 三比值法最早是由国际电工委员会(IEC)在热力动力学原理和实践的基础上推荐的。
我国现行的DL/T722-2000《变压器油中溶解气体分析和判断导则》推荐的就是改良的三比值法。
其原理是根据充油电气设备内油、纸绝缘在故障下裂解产生气体组分含量的相对浓度与温度的相互依赖关系,从5种气体中选择两种溶解度和扩散系数相近的气体组分组成三对比值,以不同的编码表示,根据比值的编码判断变压器所属的故障类型。
表1-9和表1-10是我国DL/T722-2000推荐的改良三比值法的编码规则和故障类型判断方法。
三比值法原理简单、计算简便且有较高的准确率,在现场有着广泛的应用。
三比值法中各种气体针对的是变压器本体内的油样,对气体继电器中的油样无效,只有根据气体各组分含量的注意值或气体增长率的注意值有理由判断变压器存在故障时,气体比值才是有效的,对于正常的变压器比值没有意义。
同时三比值法还存在一些不足,比如实际情况中可能出现没有对应比值编码的情况、对多故障并发的情况判断能力有限、不能给出多种故障的隶属度、对故障状态反映不全面。
表1-6 三比值法的编码规则(3)无编码的比值法三比值方法存在着找不到对应故障类型的情况,而且判断方法相对复杂。
学者杜样在10年中通过对国内外大量变压器故障实例的分析和研究,提出了一种“无编码比值法”,该方法在一定程度上解决了三比值法故障编码缺少,有的故障用三比值法无法诊断的问题。
无编码比值法故障诊断方法如表1-8所示。
(4)油中微水测试变压器进水时,溶解在油中的水受到铁、氧等作用会分解出氢气,此时油中的气体产物与变压器发生局部放电时的产物是很接近的,同时溶解于油中的水可能会产生局部放电,所以变压器进水与发生局部放电很难区分。
可以通过油中微水测试来判别,当使用特征气体法或比值法判断变压器属于局部放电,且变压器油中微水含量很高,就有理由怀疑变压器进水受潮了。
4 具体事例2019年我们在对变压器进行周期试验时发现我局的古城变电站2#主变乙炔超过注意值,现将统计结果列表如下:析发现两天后7月27日乙炔为10.18ul/L ,8月13日乙炔为11.75ul/L ,8月30日乙炔为12.25 ul/L ,10月8日乙炔为9.80 ul/L ,10月22日乙炔为14.9 ul/L ,11月10日乙炔为18 ul/L ,到11月14日乙炔为20 ul/L 发现乙炔一直在增长。
计算乙炔绝对产气速率p m t C C v ei li a ⋅∆-= =( 20-18)/4×15.6/0.89=8.76超过隔膜式变压器乙炔绝对产气速率注意值0.2,判断变压器内部存有故障。
11月15日开始停运检修,发现有载调压开关的油泄漏到变压器本体里,经过滤油处理重新运行,截至目前为止变压器运行正常,乙炔无明显变化。
5小结分析了变压器油和固体绝缘的成份以及气体产生的机理,给出了变压器内部典型的6种故障及其对应的产气特征,介绍了变压器是否故障的判断方法以及变压器故障类型的判断方法,同时给出了辅助的故障判断方法,为专家系统中的故障诊断、人工智能方法的应用建立了坚实的基础。