立方根知识点及练习题
中考数学《平方根和立方根》知识点及练习题
平方根和立方根一.知识梳理:1.平方根定义1:一般地,如果一个数x 的平方等于a ,即x 2=a ,那么这个数x 就叫做a 的平方根(或二次方根)。
表示方法:正数a 的平方根记做“a ±”,读作“正、负根号a ”。
a 叫做被开方数。
性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。
定义2:正数a 的正的平方根叫做a a ”, 性质1:正数和零的算术平方根都只有一个,零的算术平方根是零。
性质2:算术平方根a 的双重非负性:①a ≥0 ; ②0≥a定义3:求一个数a 的平方根的运算,叫做开平方。
2.立方根定义1:一般地,如果一个数的立方等于a ,那么这个数叫做a 的立方根或三次方根。
即如果x 3=a ,那么x 叫做a 3a x =。
性质1:正数有一个正的立方根;负数有一个负的立方根;零的立方根是零。
性质2:33a a -=-,三次根号内的负号可以移到根号外面。
定义2:求一个数的立方根的运算,叫做开立方3. 实数大小的比较(1)正数大于0,负数小于0,正数大于负数;两个负数比较大小,绝对值大的反而小。
(2)实数大小比较的几种常用方法①作差法:设a 、b 是实数,,0b a b a >⇔>- ,0b a b a =⇔=-b a b a <⇔<-0.②作商法:设a 、b 是两正实数,;1;1;1b a b a b a b a b a b a <⇔<=⇔=>⇔> ③平方法:设a 、b 是两负实数,则b a b a <⇔>22④近似值法:记住这些数值:236.25732.13414.12≈≈≈;;二.课后作业1.9的算术平方根是 ;4的平方根是 。
2.-8的立方根是 ;立方根是它本身的数是______3.25的算术平方根是_____,64的立方根是5.比较大小:-3.14 π-;23。
6. 22(3)0y z -+-=,则xyz 的立方根是________7.23-的相反数是 ,绝对值是 ,倒数是 。
初中数学知识点精讲精析 立方根 (3)
3 立方根学习目标1. 了解立方根的概念,初步学会用根号表示一个数的立方根。
2. 了解开立方与立方互为逆运算,会用立方运算求某些数的立方根。
知识详解1. 立方根的概念:如果一个数x 的立方等于a ,即3x =a ,那么这个数x 就叫做a 的立方根(也叫做三次方根)。
2. 立方根的性质:一个正数有一个正的立方根;一个负数有一个负的立方根;0的立方根是0。
3. 求一个数的立方根的运算,叫做开立方。
【典型例题】 例1:32--()的立方根是 【答案】2 【解析】∵32--()=-(-8)=8,8的立方根是2,∴32--()的立方根是2. 例2:平方为0.81的数是 ,立方得-64的数是【答案】±0.9、-4 【解析】∵20.9±()=0.81,∴平方为0.81的数是±0.9,∵34-()=-64,∴立方得-64的数是-4.例3:实数8的立方根是【答案】2【解析】∵32=8,∴8的立方根是2.【误区警示】易错点1:立方根1. -8的立方根是【答案】-2 【解析】∵32-()=-8,∴-8的立方根是-2. 易错点2:正方体的棱长2. 将棱长分别为acm 和bcm 的两个正方体铝块熔化,制成一个大正方体铝块,这个大正方体的棱长为【解析】∵这个大正方体的体积为33a b +,∴这个大正方体的棱长【综合提升】针对训练1. 64的立方根是( )A .4B .±4C .8D .±8 2. 已知(x-1)的算术平方根是3,(x-2y+1)的立方根是3,求22x y -的平方根.3. 某金属冶炼厂,将27个大小相同的立方体钢锭在炉中熔化后浇铸成一个长方体钢锭,量得这个长方体钢锭的长、宽、高分别为160 cm 、80 cm 和40 cm ,求原来立方体钢锭的边长为多少?1. 【答案】A【解析】∵4的立方等于64,∴64的立方根等于4.2. 【答案】±6【解析】∵(x-1)的算术平方根是3,(x-2y+1)的立方根是3,∴x-1=9,x-2y+1=27,解得:x=10,y=-8,∴22x y -=100-64=36,∴22x y -的平方根是±6.3. 【答案】设立方体的边长为x cm ,则27 3x =160×80×40.解得x =803【解析】原来立方体钢锭体积=在炉中熔化后浇铸成的长方体钢锭的体积.【中考链接】(2014年黄冈)﹣8的立方根是( )A .﹣2B . ±2C . 2D . ﹣4【答案】A【解析】∵﹣2的立方等于﹣8, ∴﹣8的立方根等于﹣2.课外拓展实数可以用来测量连续的量。
立方根知识点及练习题
立方根知识点及练习题一、立方根的定义如果一个数的立方等于a,那么这个数叫做a 的立方根或三次方根。
这就是说,如果\(x³= a\),那么 x 叫做 a 的立方根。
记作:\(\sqrt3{a}\),读作“三次根号a”,其中a 是被开方数,3 是根指数。
例如:\(2³= 8\),所以 2 是 8 的立方根,即\(\sqrt3{8} =2\);\((-2)³=-8\),所以-2 是-8 的立方根,即\(\sqrt3{-8} =-2\)。
二、立方根的性质1、正数的立方根是正数;负数的立方根是负数;0 的立方根是 0。
2、立方根等于它本身的数有 0,1,-1。
3、\(\sqrt3{a} =\sqrt3{a}\)4、\((\sqrt3{a})^{3} = a\)5、\(\sqrt3{a^{3}}= a\)三、开立方求一个数的立方根的运算,叫做开立方。
开立方与立方互为逆运算。
例如:求\(\sqrt3{27}\),因为\(3³= 27\),所以\(\sqrt3{27} = 3\)。
四、立方根与平方根的区别1、定义不同平方根:如果一个数的平方等于 a,那么这个数叫做 a 的平方根。
立方根:如果一个数的立方等于 a,那么这个数叫做 a 的立方根。
2、表示方法不同平方根:正数 a 的平方根记为\(\pm\sqrt{a}\)。
立方根:数 a 的立方根记为\(\sqrt3{a}\)。
3、个数不同一个正数有两个平方根,它们互为相反数;0 的平方根是 0;负数没有平方根。
任何数都只有一个立方根。
4、被开方数的取值范围不同平方根中被开方数 a 是非负数,即\(a\geq 0\)。
立方根中被开方数 a 可以是任何数。
五、练习题(一)选择题1、下列说法正确的是()A -64 的立方根是-4B 0064 的立方根是 04C \(\sqrt3{-9}\)没有意义D \(\sqrt3{64}\)的平方根是 22、若\(\sqrt3{x}\)=-2,则 x 的值是()A -8B 8C \(\pm 8\)D -643、下列说法中,错误的是()A 一个数的立方根与这个数同号B 负数没有立方根C 0 的立方根是 0D 立方根等于它本身的数有 3 个(二)填空题1、\(\sqrt3{-27} =\)_____。
八年级立方根知识点总结
八年级立方根知识点总结立方根,是数学中一个非常基础的概念。
在八年级学习中,立方根作为一个重要的知识点,在数学学习中也有着广泛的应用。
为此,本文将从具有代表性的知识点角度,总结八年级学习中的立方根知识点。
一、立方根的定义在学习立方根前,首先需要明确什么是立方根。
简单来说,立方根指的是一个数的立方和等于该数本身的平方根。
例如,8的立方根为2,因为2³=8,而2的平方为4,√8=2。
具体公式表示为:∛a=√(a²/a)。
二、立方根的计算1. 整数的立方根对于整数的立方根,如果它是完全立方数,那么它的立方根就是该数的整数根;如果它不是完全立方数,那么它的立方根就是一个无理数。
2. 小数的立方根对于小数的立方根,可以通过不断的试探法来逼近它的值。
例如,对于小数27,首先可以找一个相对较小的数x,求出x³的值,如果x³小于27,则继续增大x,直到它的立方大于27,此时再减小x,依次逼近27的立方根。
3. 指数的立方根指数的立方根可以通过换元的方法化为指数幂的形式,例如(a^b)的1/3 等价于 a^(b/3)。
三、典型例题1. 求2的立方根解答:由于2不是完全立方数,因此不能直接求出它的立方根。
需要通过逼近的方法,将2逐渐逼近它的立方根。
我们尝试将2假设为它的立方根的平方,即2=∛a²,由此得到a=(2²)^(1/3)=2^(2/3)。
因此,2的立方根的值为2^(1/3)。
2. 求立方根近似值解答:将125的立方根表示为∛125,采用试探法逼近其近似值。
由于125处于100和200之间,如果取∛100=5,则∛125/5=1.25。
对于1.25的小数点后面两位,采取四舍五入的方式,得到∛125=5×1.25=6.25。
四、总结及应用立方根是数学中非常基础的一个概念,在学习过程中需要熟练掌握其定义和计算方法。
在实际应用中,立方根的运用非常广泛,例如在计算机编程、物理力学等领域中都有着广泛的应用,因此,准确高效地求出立方根对于学业和工作都有着重要的意义。
平方根和立方根知识点总结及练习
基础知识巩固一、平方根、算数平方根和立方根1、平方根1平方根的定义:如果一个数x 的平方等于a,那么这个数x 就叫做a 的平方根.即:如果a x =2,那么x 叫做a 的平方根.2开平方的定义:求一个数的平方根的运算,叫做开平方.开平方运算的被开方数必须是非负数才有意义;3平方与开平方互为逆运算:±3的平方等于9,9的平方根是±3 4一个正数有两个平方根,即正数进行开平方运算有两个结果;一个负数没有平方根,即负数不能进行开平方运算 5符号:正数a 的正的平方根可用a 表示,a 也是a 的算术平方根;正数a 的负的平方根可用-a 表示.6a x =2 <—> a x ±=a 是x 的平方 x 的平方是a x 是a 的平方根 a 的平方根是x2、算术平方根1算术平方根的定义: 一般地,如果一个正数x 的平方等于a,即a x =2,那么这个正数x叫做a 的算术平方根.a 的算术平方根记为a ,读作“根号a”,a 叫做被开方数.规定:0的算术平方根是0.也就是,在等式a x =2 x≥0中,规定a x =;2a 的结果有两种情况:当a 是完全平方数时,a 是一个有限数;当a 不是一个完全平方数时,a 是一个无限不循环小数;3当被开方数扩大时,它的算术平方根也扩大;当被开方数缩小时与它的算术平方根也缩小;一般来说,被开放数扩大或缩小a 倍,算术平方根扩大或缩小a 倍,例如=5,=50;4夹值法及估计一个无理数的大小5a x =2x≥0 <—> a x =a 是x 的平方 x 的平方是ax 是a 的算术平方根 a 的算术平方根是x 6正数和零的算术平方根都只有一个,零的算术平方根是零; a a ≥00≥a==a a 2 ;注意a 的双重非负性:-a a <0 a ≥07平方根和算术平方根两者既有区别又有联系:区别在于正数的平方根有两个,而它的算术平方根只有一个;联系在于正数的正平方根就是它的算术平方根,而正数的负平方根是它的算术平方根的相反数; 3、立方根1立方根的定义:如果一个数x 的立方等于a ,这个数叫做a 的立方根也叫做三次方根,即如果3x a =,那么x 叫做a 的立方根2一个数a 的立方根,记作3a ,读作:“三次根号a ”,其中a 叫被开方数,3叫根指数,不能省略,若省略表示平方; 3 一个正数有一个正的立方根;0有一个立方根,是它本身; 一个负数有一个负的立方根; 任何数都有唯一的立方根;4利用开立方和立方互为逆运算关系,求一个数的立方根,就可以利用这种互逆关系,检验其正确性,求负数的立方根,可以先求出这个负数的绝对值的立方根,再取其相反数,即()330a a a -=->;5a x =3 <—> 3a x =a 是x 的立方 x 的立方是a x 是a 的立方根 a 的立方根是x633a a -=-,这说明三次根号内的负号可以移到根号外面;典型例题分析知识点一:有关概念的识别 1、下列说法中正确的是 A 、的平方根是±3 B 、1的立方根是±1 C 、=±1 D 、是5的平方根的相反数2、下列语句中,正确的是A .一个实数的平方根有两个,它们互为相反数B .负数没有立方根C .一个实数的立方根不是正数就是负数D .立方根是这个数本身的数共有三个3、下列说法中:①3±都是27的立方根,②y y =33,③64的立方根是2,④()4832±=±;其中正确的有A 、1个B 、2个C 、3个D 、4个 4、()20.7-的平方根是A .0.7-B .0.7±C .0.7D .0.49 5、下列各组数中,互为相反数的组是A 、-2与2)2(- B 、-2和38- C 、-21与2 D 、︱-2︱和2知识点二:计算类题型1、25的算术平方根是_______;平方根是_____. -27立方根是_______.___________, ___________,___________.2、=-2)4( ; =-33)6( ; 2)196(= . 38-= .3、① 2+32—52 ② 771-7③ |23- | + |23-|- |12- | ④ 41)2(823--+4、1327-+2)3(--31- 233364631125.041027-++---3知识点三:利用平方根和立方根解方程1、12x-12-169=0; 212142=x 3125)2(3=+x知识点四:关于有意义的题a ,有非负性,a 0a a ≥0;要使1a有意义,必须满足a ≠0. 1、若a 的算术平方根有意义,则a 的取值范围是 A 、一切数 B 、正数 C 、非负数 D 、非零数 2、要使62-x 有意义,x 应满足的条件是3、当________x 时,式子21--x x 有意义;知识点五:有关平方根的解答题1、一个正数a 的平方根是3x ―4与2―x,则a 是多少2、若5a +1和a -19是数m 的平方根,求m 的值;3、已知x 、y 都是实数,且334y x x =--,求x y 的平方根;知识点六:非负性的应用1、已知实数x,y 满足 2x -+y+12=0,则x-y 等于解答:根据题意得,x-2=0,y+1=0,解得x=2,y=-1, 所以,x-y=2--1=2+1=3.2、已知a 、b 满足0382=-++b a ,解关于x 的方程()122-=++a b x a ;3、若0)13(12=-++-y x x ,求25y x +的值;4、若a 、b 、c 满足01)5(32=-+++-c b a ,求代数式acb -的值;5、已知a 31-和︱8b -3︱互为相反数,求ab -2-27 的值;重点知识巩固考点、平方根、算术平方根、立方根 1、概念、定义1如果一个正数x 的平方等于a,即,那么这个正数x 叫做a 的算术平方根;2如果一个数的平方等于a,那么这个数就叫做a 的平方根或二次方跟;如果,那么x 叫做a 的平方根;3如果一个数的立方等于a,那么这个数就叫做a 的立方根或a 的三次方根;如果,那么x叫做a的立方根;2、运算名称1求一个正数a的平方根的运算,叫做开平方;平方与开平方互为逆运算;2求一个数的立方根的运算,叫做开立方;开立方和立方互为逆运算;3、运算符号1正数a的算术平方根,记作“a”;2aa≥0的平方根的符号表达为;3一个数a的立方根,用表示,其中a是被开方数,3是根指数;4、运算公式4、开方规律小结,a的算术平方根a;正数的平方根有两个,它们互为相反1若a≥0,则a的平方根是a数,其中正的那个叫它的算术平方根;0的平方根和算术平方根都是0;负数没有平方根;实数都有立方根,一个数的立方根有且只有一个,并且它的符号与被开方数的符号相同;正数的立方根是正数,负数的立方根是负数,0的立方根是0;2若a<0,则a没有平方根和算术平方根;若a为任意实数,则a的立方根是;3正数的两个平方根互为相反数,两个互为相反数的实数的立方根也互为相反数;。
七年级数学下册《立方根》知识点归纳及典型例题讲解
【变式】将棱长分别为 和 的两个正方体铝块熔化,制成一个大正方体铝块,这个大正方体的棱长为____________ .(不计损耗)
【答案】 .
【思路点拨】铁块排出的64 水的体积,是铁块的体积,也是高为 烧杯的体积.
【答案与解析】
解:铁块排出的64 的水的体积,是铁块的体积.
设铁块的棱长为 ,可列方程 解得
设烧杯内部的底面半径为 ,可列方程 ,解得 6.
答:烧杯内部的底面半径为6 ,铁块的棱长 4 .
【总结升华】应该熟悉体积公式,依题意建立相等关系(方程),解方程时,常常用到求平方根、立方根,要结合实际意义进行取舍.本题体现与物理学科的综合.
类型三、利用立方根解方程
3、(2015春•北京校级期中)(x﹣2)3=﹣125.
【思路点拨】利用立方根的定义开立方解答即可.
【答案与解析】
解:(x﹣2)3=﹣125,
可得:x﹣2=﹣5,
解得:x=﹣3.
【总结升华】此题考查立方根问题,关键是先将x﹣2看成一个整体.
举一反三:
【变式】求出下列各式中的 :
立 了解立方根的含义;
2. 会表示、计算一个数的立方根,会用计算器求立方根.
【要点梳理】
【 立方根、实数,知识要点】
要点一、立方根的定义
如果一个数的立方等于 ,那么这个数叫做 的立方根或三次方根.这就是说,如果 ,那么 叫做 的立方根.求一个数的立方根的运算,叫做开立方.
要点三、立方根的性质
要点诠释:第一个公式可以将求负数的立方根的问题转化为求正数的立方根的问题.
要点四、立方根小数点位数移动规律
被开方数的小数点向右或者向左移动3位,它的立方根的小数点就相应地向右或者向左移动1位.例如, , , , .
立方根知识点讲解(含例题)
1.立方根的概念和性质(1)定义:一般地,如果一个数的立方等于a,那么这个数叫做a的__________或三次方根.这就是说,如果x3=a,那么x叫做a的立方根.例如:53=125,那么5是125的立方根.(2)表示方法:一个数a”表示,读作:“三次根号a”,其中a是被开方数,3是根指数.(3)拓展:互为相反数的两数的立方根也互为相反数.2.开立方(1)定义:求一个数的立方根的运算,叫做__________.(2)性质:①正数的立方根是正数,负数的立方根是__________,0的立方根是0;=③3==a.(3)开立方是一种运算,正如开平方与平方互为逆运算一样,开立方与立方也互为__________.开立方所得的结果就是立方根.3.平方根和立方根的区别和联系1.被开方数的取值范围不同在a是非负数,即a≥0a是任意数.2.运算后的数量不同一个正数有两个平方根,负数没有平方根,而一个正数有一个正的立方根,负数有一个负的立方根.K知识参考答案:1.(1)立方根2.(1)开立方(2)负数(3)逆运算一、求立方根和开立方根据开立方与立方互为逆运算的关系,我们可以求一个数的立方根,或者检验一个数是不是某个数的立方根.【例1】-64的立方根是A .-4B .4C .±4D .不存在【答案】A【解析】∵(−4)3=−64,∴−64的立方根是−4,故选A .【例2A .-1B .0C .1D .±1 【答案】C-1-1,故选A .【名师点睛】此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.【例3】下列计算中,错误的是A B 34=-C 112=D .25=- 【答案】D【解析】A .正确;B .正确;C .正确;D 故错误,故选D . 【例4】求下列各数的立方根:(1)-343;(2)8125. 【解析】(1)因为3(7)343-=-,所以-343的立方根是-7.(2)因为328()5125=, 所以8125的立方根是25. 【例5】求下列各式的值:(1;(23)【解析】(1(2(3 二、利用立方根的知识解方程只含有未知数或某个关于未知数的整体的三次方的方程,可以先通过“移项、合并同类项、系数化为1”等变形为x 3=m 或(ax +b )3=m 的形式,再利用开立方的方法求解.【例6】若a 3=–8,则a =__________.【答案】–2【解析】∵a 3=–8,∴a =–2.故答案为:–2.【例7】求下列各式中的x :(1)8x 3+125=0;(2)(x +3)3+27=0. 【解析】因为381250x +=, 所以38125x =-,(2)因为3(3)270x ++=,所以3(3)27x +=-,x+=-,所以33x=-.所以6三、平方根和立方根的综合应用在解决立方运算与开立方运算时,遵循的原则为正数的立方和立方根为正数,负数的立方和立方根为负数.【例8】64的平方根和立方根分别是A.8,4 B.8,±4 C.±8,±4 D.±8,4【答案】D【解析】因为(±8)2=64,43=64,所以64的平方根和立方根分别是±8,4,故选D.【例9】已知2a-1的平方根是±3,3a+b-1的立方根是4,求a+b的平方根.【名师点睛】此题主要考查了立方根和平方根的意义的应用,关键是根据平方根,求出2a-1=9,根据立方根求出3a+b-1=64,转化为解方程得问题解决.【例10】已知x+122x+y-6的立方根是2.(1)求x,y的值;(2)求3xy的平方根.【解析】(1)∵x+12的算术平方根是,2x+y-6的立方根是2.∴x+12=2=13,2x+y-6=23=8,∴x=1,y=12.(2)当x=1,y=12时,3xy=3×1×12=36,∵36的平方根是±6,∴3xy的平方根±6.【名师点睛】本题考查了算术平方根、立方根的性质,解决本题的关键是熟记平方根、立方根的定义,能熟练运用它们的逆运算是解本题的关键.。
立方根知识点及练习题
立方根知识点及练习题-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN立方根知识点及练习题一、知识点:1、立方根的概念:如果一个数x 的立方等于a ,即x 3=a ,则这个数x 叫做a 的立方根.如(-21)3=-81,所以-21是-81的立方根。
2、立方根的的表达形式:一个数a 的立方根记作“3a ”,读作“三次根号a ”, a 是被开方数,3是根指数。
如27125=(35)3,则27125的立方根是35,记作327125=35。
3、 立方根的性质:任何数都有且只有一个立方根,正数的立方根是正数,负数的立方根是负数,0的立方根是0.二、练习题:1、正数的立方根是 ,0的立方根是 ,负数的立方根是 ,每个数都有 个立方根.2、 -1的立方根是 ,271的立方根是 , 9的立方根是 .3、如果a x =3,那么x 叫做a 的 ,记作_ ____.4如果一个实数的平方根和它的立方根相等,那么这个实数是 . 5求下列各数的立方根0.064, 81-, -64, 216125-, 1066如果a 的3次幂等于2,那么a 等于( )A .23B .32C D7、一个正方体的体积是27cm 3,将它锯成27块同样大小的正方体,求得到一个小正方体的表面积.8、下面说法正确的是( )A .一个数的立方根有两个,它们互为相反数B .负数没有立方根C .如果一个数有立方根,那么它一定有平方根D .一个数的立方根与被开方数同号9x 应取( )A .x ≠0B .x ≠1C .x ≥1D .x >110 )A .-2B .2C .±2D .无意义11、0.512-的立方根是____,____.= 12、_____的立方根是零,()m n -的立方根是______.13、求下列各式中的实数x :2233(1)25490;(2)(1)0.010;(3)1253430;(4)(2)0.2160.x x x x -=+-=-=-+=14、将棱长分别为a cm 和b cm 的两个正方体铝块熔化,制成一个大正方体铝块,这个大正方体的棱长为 cm .(不计损耗)15、下列说法错误的是( )A .1的平方根是1B .-1的立方根是-1C .2是2的平方根D .-3是2)3(-的平方根16、立方根等于本身的数是( )A .-1B .0C .±1D .±1或017、9的算术平方根是 ,3的平方根是 , 0的平方根是 ,2-的立方根是 .18、一个正数的平方等于144, 则这个正数是 , 一个负数的立方等于-27,则这个负数是 , 一个数的平方等于5, 则这个数是 .19、由于用水的需要, 将一个正方体的水池的底面积扩大为原来的3倍, 则正方体的边长需要扩大为原来的几倍20、求下列各式的值 ⑴327 ⑵3641- ⑶33)21(- ⑷312564 ⑸33)8(-21、求下列各式的值 ⑴332)2()2(-+- ⑵364611+⑶3729.0- ⑷327191-⑸333125343027.0+-+-22、当x 时,2-x 有平方根,当x 时,2-x 有立方根.23、64的平方根是 ,立方根是 .2)4(-的算术平方根是 ,化简38--= .24、已知,12=y 求3y 的值.。
(完整版)平方根、算术平方根、立方根重点例题讲解
6.1平方根、算术平方根、立方根例题讲解第一部分:知识点讲解1、学前准备【旧知回顾】2.平方根( 1)平方根的定义:一般的,若是一个数的平方等于a ,那么这个数叫做 a 的平方根,也叫做二次方根。
即若 x2 a ,( a0) ,则x叫做a的平方根。
即有 x a ,(a0 )。
( 2)平方根的性质:( 3)注意事项:x a , a 称为被开方数,这里被开方数必然是一个非负数(a0 )。
( 4)求一个数平方根的方法:(5)开平方:求一个数平方根的运算叫做开平方。
它与平方互为逆运算。
3.算术平方根( 1)算术平方根的定义:若x2 a , (a 0) ,则x叫做a的平方根。
即有x a ,( a 0 )。
其中x a 叫做 a 的算术平方根。
( 2)算术平方根的性质:( 3)注意点:在今后的计算题中,像22, 5 分别指的是 2 和25 ( - 2),其中5的算术平方根。
4.几种重要的运算:①ab a ? b a 0, b 0, a ? b ab a 0,b0②a a0),a a0,b0) b(a 0,bb(ab b③(a )2a ( a 0) ,2,2aaa( - a)★★★ 若 a b 0,则(a b)2 a b a b a b5.立方根(1)立方根的定义:一般地,若是一个数的立方等于 a ,那么这个数叫做 a 的立方根,也叫做三次方根。
即若x3 a ,则x叫做a的立方根。
即有x 3 a。
(2)立方根的性质:(3)开立方求一个数的立方根的运算叫做开立方,它与立方互为逆运算。
6.几个重要公式:3ab 33,33b3ab③ a ?b a ?a 33a a3a(b 0),3(b 0) b33b bb④3333,33( a ) a (a可以为任何数),a a(- a)-a 第二部分:例题讲解题型 1:求一个数的平方根、算术平方根、立方根。
1.求平方根、算术平方根、立方根。
(1) 0 的平方根是,算术平方根是.(2) 25 的平方根是,算术平方根是.(3)1的平方根是,算术平方根是. 64(4)(9) 2的平方根是,算术平方根是.(5) 23 的平方根是,算术平方根是.(6)16的平方根是,算术平方根是.(6)(2,算术平方根是. 16)的平方根是(8)- 9的平方根是,算术平方根是.(9)8。
(完整版)平方根立方根知识点归纳及常见题型
“平方根”与“立方根”知识点小结一、知识要点1、平方根:⑴、定义:如果x 2=a ,则x 叫做a 的平方根,记作“(a 称为被开方数)。
⑵、性质:正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。
⑶、算术平方根:正数a 的正的平方根叫做a ”。
2、立方根:⑴、定义:如果x 3=a ,则x 叫做a ”(a 称为被开方数)。
⑵、性质:正数有一个正的立方根;0的立方根是0;负数有一个负的立方根。
3、开平方(开立方):求一个数的平方根(立方根)的运算叫开平方(开立方)。
二、规律总结:1、平方根是其本身的数是0;算术平方根是其本身的数是0和1;立方根是其本身的数是0和±1。
2、每一个正数都有两个互为相反数的平方根,其中正的那个是算术平方根;任何一个数都有唯一一个立方根,这个立方根的符号与原数相同。
30a ≥0。
4、公式:⑴2=a (a ≥0)(a 取任何数)。
5、非负数的重要性质:若几个非负数之和等于0,则每一个非负数都为0例1 求下列各数的平方根和算术平方根(1)64;(2)2)3(-; (3)49151; ⑷ 21(3)- 例2 求下列各式的值(1)81±; (2)16-; (3)259; (4)2)4(-.(5)44.1,(6)36-,(7)4925±(8)2)25(-例3、求下列各数的立方根:⑴ 343; ⑵10227-; ⑶ 0.729二、巧用被开方数的非负性求值.当a ≥0时,a 的平方根是±a ,即a 是非负数. 例4、若,622=----y x x 求y x 的立方根.练习:已知,21221+-+-=x x y 求y x 的值.三、巧用正数的两平方根是互为相反数求值.当a ≥0时,a 的平方根是±a ,而.0)()(=-++a a例5、已知:一个正数的平方根是2a-1与2-a ,求a 的平方的相反数的立方根.练习:若32+a 和12-a 是数m 的平方根,求m 的值.四、巧解方程例6、解方程(1)(x+1)2=36 (2)27(x+1)3=64五、巧用算术平方根的最小值求值. 0≥a ,即a=0时其值最小,换句话说a 的最小值是零.例4、已知:y=)1(32++-b a ,当a 、b 取不同的值时,y 也有不同的值.当y 最小时,求b a 的非算术平方根.23(2)0y z -++=,求xyz 的值。
(完整版)平方根与立方根典型题
(完整版)平方根与立方根典型题-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN平方根算术平方根立方根三说一、平方根、算术平方根、立方根知识点概要1. 平方根、算术平方根的概念与性质2=),那么这个数x就叫做a的平方根(或二如果一个数x的平方等于a(即x a=±,这里a是x的平方数,故a必是一个非负数即a≥0;例次方根),记作:x a如16的平方根是±4,从定义还可得出:一个正数有两个平方根,它们互为相反数;负数没有平方根;0的平方根只有一个0,即为它本身。
正数a的正的平方根叫做a的算术平方根,表示为()a a≥0,例如16的算术平方=,从定义中容易发现:算术平方根具有双重非负性:①a≥0;②根是164a≥0。
2. 平方根、算术平方根的区别与联系区别:①定义不同;②个数不同;③表示方法不同;④取值范围不同:平方根可以是正数、负数、零,而算术平方根只能取零及正数,即非负数。
联系:①它们之间具有包含关系;②它们赖以生存的条件相同,即均为非负数;③0的平方根以及算术平方根均为0。
3. 立方根的定义与性质3=),那么这个数x就叫做a的立方根(或三次如果一个数x的立方等于a(即x a=3。
方根),记作:x a立方根的性质:正数的立方根是正数,0的立方根是0,负数的立方根是负数。
二、解题中常见的错误剖析例1.求()-32的平方根。
2错解:()-=39()∴-32的平方根是-32是一个正数,故它的剖析:一个正数有两个平方根,它们互为相反数,而()-=39平方根应有两个即±3。
例2. 求9的算术平方根。
2=错解: 39∴9的算术平方根是3剖析:本题是没有搞清题目表达的意义,错误的认为是求9的算术平方根,因而导致误解,事实上本题9就是表示的9的算术平方根,而整个题目的意义是让求9的算术平方根的算术平方根。
93=,而3的算术平方根为3,故9的算术平方根应为3。
立方根(基础篇)(专项练习)-2022-2023学年七年级数学下册基础知识专项讲练(人教版)
专题6.5立方根(基础篇)(专项练习)一、单选题1.下列说法正确的是()A .3±是27的立方根B .负数没有平方根,但有立方根C .25的平方根为5D 32x 的取值范围().A .2x ≤B .2x >C .2x ≠D .全体实数3)A .4-B .2C .2±D .2-4.己知一个正方体的体积扩大为原来的n 倍,它的棱长变为原来的()A B倍C .3n 倍D .n 3倍52=-,则a的平方根为()A .2B .2±C .3±D .46.若一个数的平方根和立方根都是它的本身,则这个数是()A .0B .1C .0或1D .0或±170=,则x 与y 的关系是()A .0x y ==B .x 与y 的值相等C .x 与y 互为倒数D .x 与y 互为相反数82.868,28.68=,则a =()A .2360B .-2360C .23600D .-236009.下列说法中,正确的是()A .0.4的算术平方根是0.2B 是6的平方根C .1的立方根为1±D .a -没有平方根10.若实数m ,n 满足2(12)0m ++,则n m -的立方根为()A .3-B .3C .±3D .二、填空题11___________.12=__.13___________.145-=x ,则x =___________.15的相反数是_______.16.已知21y ==______.17.若327a =2=,则a b +=__.18.比较45--、、______<______<______.三、解答题19.求满足下列各式的未知数x .(1)24250x -=(2)()3364x -=20.计算(1)(2)21.已知某正数的两个平方根分别是21m -+和4m -,21n -的算术平方根为1.求231m n-+的立方根.22.某金属冶炼厂将27个大小相同的正方体钢锭在炉中熔化后浇铸成一个长方体钢锭,量得这个长方体钢锭的长、宽、高分别为160cm、80cm和40cm,求原来正方体钢锭的棱长.23.计算(1)2-(2)1)+(3)(4)⨯24.【发现】2(2)0 =+-=1(1)0 =+-=10(10)0=+-=11044⎛⎫+-=⎪⎝⎭……;(1)根据上述等式反映的规律,请再写出一个等式:____________.【归纳】等式①,②,③,④,所反映的规律,可归纳为一个真命题:对于任意两个有理数a,b0=,则0a b+=;【应用】根据上述所归纳的真命题,解决下列问题:(2)210616a b-=,求a的值.参考答案1.B【分析】根据平方根和立方根的概念求解即可.解:A.3是27的立方根,故选项错误,不符合题意;B.负数没有平方根,但有立方根,故选项正确,符合题意;C.25的平方根为5±,故选项错误,不符合题意;D3,27的立方根为3,故选项错误,不符合题意.故选:B.【点拨】此题考查了平方根和立方根的概念,解题的关键是熟练掌握平方根和立方根的概念.2.D【分析】根据立方根有意义的条件直接判断即可.x的取值范围是全体实数,故选:D.【点拨】本题考查了立方根有意义的条件,解题关键是明确所有实数都能开立方.3.D【分析】根据立方根的定义求解即可.2=-,故选:D.【点拨】本题考查了求一个数的立方根,掌握立方根的定义是解题的关键.4.A【分析】设正方体的原体积为1,则此时原棱长为1,再由扩大后的体积求出扩大后的棱长,然后比较即可.解:设正方体的原体积为1,根据正方体体积公式可知此时原棱长为1,体积扩大为原来的n倍后,体积为n,棱长变为原来的1故选A.【点拨】本题考查了正方体的体积公式和求一个数的立方根,解此类题时可先对一个未知量进行假设,从而简化过程.5.C【分析】根据平方根和立方根的定义可以解答.=-,∴-=-,18a∴=,a9∴的平方根为3±.a故选:C.【点拨】本题考查立方根和平方根,解题的关键是正确理解立方根和平方根的定义,本题属于基础题型.6.A【分析】根据一个数的平方根是它的本身的数是0,一个数的立方根是它本身的数是﹣1或0或1,进行解答即可.解:∵20=0,∴一个数的平方根是它的本身的数是0,∵30=0,()3-1=-1,31=1,∴一个数的立方根是它本身的数是﹣1或0或1,0,故选A.【点拨】本题考查平方根和立方根的性质,牢记一个数的平方根是它的本身的数是0,一个数的立方根是它本身的数是﹣1或0或1,是解题的关键.7.D【分析】根据立方根的性质可以得到x和y互为相反数.0=,互为相反数,故选D.【点拨】本题考查了立方根的性质和相反数,解题的关键是根据已知得到x+y=0.8.D【分析】由立方根的定义进行判断,即可得到答案.2.868,28.68==,∴2.868向右移动1位,23.6应向右移动3位得23600,考虑到符号,则a =-23600;故选:D .【点拨】本题考查了立方根的定义,解题的关键是掌握定义进行判断.9.B【分析】根据一个正数的平方根由两个互为相反数的实数组成、平方根的概念、立方根的概念判断即可.解:A .0.4B6的平方根,故正确,符合题意;C .1的立方根是1,故错误,不符合题意;D .a -中,当0a ≤时,a -有平方根,故错误,不符合题意;故选:B .【点拨】本题考查算数平方根、平方根、立方根的概念,熟记概念是关键.10.D【分析】先根据平方和算术平方根的非负性求出12=-m ,15n =-,再代入n m -中即可求解.解: 2(12)0m ++,2(12)0m ∴+≥0,120m ∴+=,150n +=,12m ∴=-,15n =-,15(12)3n m ∴-=---=-,n m ∴-的立方根为故选:D .【点拨】本题主要考查了平方和算术平方根的非负性及立方根,理解平方和算术平方根的非负性及立方根的定义是解题的关键.11.5225=,再求解倒数即可.25=,而25的倒数是52,52.故答案为5 2.【点拨】本题考查的是倒数的含义,求解一个数的立方根,掌握“立方根含义”是解本题的关键.12.5 6-【分析】直接根据立方根的概念判断即可.56-,故答案为:56-.【点拨】此题考查的是立方根的概念.如果一个数x的立方等于a,即x的三次方等于a(3x a=),那么这个数x就叫做a的立方根,也叫做三次方根。
初一数学下册知识点《立方根》经典例题及解析
初一数学下册知识点《立方根》经典例题及解析一、选择题(本大题共72小题,共216.0分)1.下列说法:①实数和数轴上的点是一一对应的;②无理数是开方开不尽的数;③负数没有立方根;④16的平方根是±4,用式子表示是山^=±4;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,其中错误的是()A.0个B.1个C.2个D.3个【答案】D【解析】【分析】此题考查了实数,数轴,相反数,绝对值,平方根及立方根,熟练掌握各自的定义是解本题的关键.解题时,根据实数,相反数,绝对值,平方根及立方根,的概念对各说法进行判断即可.【解答】解:①实数和数轴上的点是---对应的,正确;②无理数不一定是开方开不尽的数,例如兀,错误;③负数有立方根,错误;④16的平方根是±4,用式子表示是土座=±4,错误;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,正确,则其中错误的是3个.故选Q.2,在实数:3.14159,何,1.010010001-,421,兀,暑中,无理数有()A.1个B.2个C.3个D.4个【答案】B【解析】【分析】本题考查了无理数的概念:无限不循环小数叫无理数.常有三种表现形式:字母兀等;开方开不尽的数,如履等;无限不循环小数,如0.1010010001…等.故选:B.而可化为4,根据无理数的定义即可得到无理数为1.010010001 (7i)【解答】解:•.•而=4,无理数有:1.010010001-,71.故选B.3.64的立方根是()A.4B.8C.±4D.±8【答案】A【解析】解:M的立方是64,•••64的立方根是4.故选:A.如果一个数x的立方等于s那么x是a的立方根,根据此定义求解即可.此题主要考查了求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立 方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方 根与原数的性质符号相同.4. 很的算术平方根是( )A. 2B. ±2C. ^2D. +^2【答案】C【解析】解:很=2, 2的算术平方根是叫.故选:C.首先根据立方根的定义求出掘的值,然后再利用算术平方根的定义即可求出结果.此题主要考查了算术平方根的定义,注意关键是要首先计算很=2.5. -8的立方根是()A. 2 B. -2 C. ±2 D. -^2【答案】B【解析】解:-8的立方根是:\Pe=-2.故选:B.直接利用立方根的定义分析求出答案.此题主要考查了立方根,正确把握立方根的定义是解题关键.6. ¥(-1)2的立方根是()A. -1B.OC. 1D. +1【答案】C 【解析】解:¥(-1)2的立方根是1,故选:C.根据开立方运算,可得一个数的立方根.本题考查了立方根,先求蓦,再求立方根.)C.第三象限D.第四象限7.若/n<0,则点P (伽,m )在(2A.第一象限B.第二象限【答案】B【解析】解:m<0,.•.\fin<Q,所2>0,.•.点P 在第二象限.故选:B.若m<0,伽<0, m 2>0,据此判断出点P 在哪个象限即可.此题主要考查了立方根的性质和应用,要熟练掌握,解答此题的关键是要明确:一个数 的立方根只有一个,正数的立方根是正数,负数的立方根是负数,0的立方根是0.8.计算所的结果是()A. ±3也B.3也C. ±3D. 3【答案】D【解析】【分析】本题考查的是立方根的定义,即如果一个数的立方等于s 那么这个数叫做a 的立方根 或三次方根.这就是说,如果》3=a,那么x 叫做。
(完整版)平方根与立方根典型题
平方根 算术平方根 立方根三说一、平方根、算术平方根、立方根知识点概要1. 平方根、算术平方根的概念与性质如果一个数x 的平方等于a (即x a 2=),那么这个数x 就叫做a 的平方根(或二次方根),记作:x a =±,这里a 是x 的平方数,故a 必是一个非负数即a ≥0;例如16的平方根是±4,从定义还可得出:一个正数有两个平方根,它们互为相反数;负数没有平方根;0的平方根只有一个0,即为它本身。
正数a 的正的平方根叫做a 的算术平方根,表示为()a a ≥0,例如16的算术平方根是164=,从定义中容易发现:算术平方根具有双重非负性:①a ≥0;②a ≥0。
2. 平方根、算术平方根的区别与联系区别:①定义不同;②个数不同;③表示方法不同;④取值范围不同:平方根可以是正数、负数、零,而算术平方根只能取零及正数,即非负数。
联系:①它们之间具有包含关系;②它们赖以生存的条件相同,即均为非负数;③0的平方根以及算术平方根均为0。
3. 立方根的定义与性质如果一个数x 的立方等于a (即x a 3=),那么这个数x 就叫做a 的立方根(或三次方根),记作:x a =3。
立方根的性质:正数的立方根是正数,0的立方根是0,负数的立方根是负数。
二、解题中常见的错误剖析例1. 求()-32的平方根。
错解:()Θ-=392 ()∴-32的平方根是-3剖析:一个正数有两个平方根,它们互为相反数,而()-=392是一个正数,故它的平方根应有两个即±3。
例2. 求9的算术平方根。
错解:Θ392=∴9的算术平方根是3剖析:本题是没有搞清题目表达的意义,错误的认为是求9的算术平方根,因而导致误解,事实上本题9就是表示的9的算术平方根,而整个题目的意义是让求9的算术平方根的算术平方根。
Θ93=,而3的算术平方根为3,故9的算术平方根应为3。
仿此你能给出64的平方根的结果吗?三、典型例题的探索与解析例3. 已知:M a a b =++-82是a +8算数平方根,N b a b =--+324是b -3立方根,求M N+的平方根。
七年级数学下册第六章实数立方根知识点总结及常考题练习
立方根要点感知1、一般地,如果一个数的立方等于a,那么这个数叫做a的__________,即如果x3=a,那么__________叫做__________的立方根.练习1-1 (2014·黄冈)-8的立方根是( )A.-2B.±2C.2D.-1 21-2 -64的立方根是__________,-13是__________的立方根.要点感知2、求一个数的立方根的运算,叫做开立方,开立方与立方互为逆运算.正数的立方根是__________;负数的立方根是__________;0的立方根是__________.练习2-1下列说法正确的是( )A.如果一个数的立方根是这个数本身,那么这个数一定是0B.一个数的立方根不是正数就是负数C.负数没有立方根D.一个不为零的数的立方根和这个数同号,0的立方根是0要点感知3、一个数a,读作“__________”,其中__________是被开方数,__________是根指数.练习3-1【当堂练习】:知识点1 立方根1.的立方根是( )A.-1B.0C.1D.±12.若一个数的立方根是-3,则该数为( )±273.下列判断:①一个数的立方根有两个,它们互为相反数;②若x3=(-2)3,则x=-2;③15.其中正确的有( )A.1个B.2个C.3个D.4个4.立方根等于本身的数为__________.的平方根是__________.6.若x-1是125的立方根,则x-7的立方根是__________.7.求下列各数的立方根:(1)0.216; (2)0; (3)-21027; (4)-5.8.求下列各式的值:;知识点2 估算立方根10.估计96的立方根的大小在( )A.2与3之间B.3与4之间C.4与5之间D.5与6之间12.则13.(1)(2)由上表你发现了什么规律?请用语言叙述这个规律:______________________________.(3)根据你发现的规律填空:=1.442,;课后作业:14.下列说法正确的是( )A.一个数的立方根有两个,它们互为相反数B.一个数的立方根比这个数平方根小C.如果一个数有立方根,那么它一定有平方根互为相反数15.( )A.7B.-7C.±7D.无意义16.正方体A的体积是正方体B的体积的27倍,那么正方体A的棱长是正方体B的棱长的( )A.2倍B.3倍C.4倍D.5倍17.-2781__________. 18.计算:364=__________337164-=__________. 19.已知2x+1的平方根是±5,则5x+4的立方根是__________. 20.求下列各式的值:31000-364-3729351230.027********-30.001-21.比较下列各数的大小:393342与-3.4.22.求下列各式中的x :(1)8x 3+125=0; (2)(x+3)3+27=0.23.8a +(b-27)23a 3b 的立方根.24.很久很久以前,在古希腊的某个地方发生大旱,地里的庄稼都干死了,人们找不到水喝,于是大家一起到神庙里去向神祈求.神说:“我之所以不给你们降水,是因为你们给我做的正方体祭坛太小,如果你们做一个比它大一倍的祭坛放在我面前,我就会给你们降雨.”大家觉得很好办,于是很快做好了一个新祭坛送到神那里,新祭坛的棱长是原来的2倍.可是神愈发恼怒,他说:“你们竟敢愚弄我.这个祭坛的体积不是原来的2倍,我要进一步惩罚你们!”如图所示,不妨设原祭坛边长为a,想一想: (1)做出来的新祭坛是原来体积的多少倍?(2)要做一个体积是原来祭坛的2倍的新祭坛,它的棱长应该是原来的多少倍?挑战自我25.请先观察下列等式:,…(1)请再举两个类似的例子;(2)经过观察,写出满足上述各式规则的一般公式.参考答案课前预习要点感知1立方根(或三次方根) x a预习练习1-1 A1-2 -4 -1 27要点感知2 正数负数 0预习练习2-1 D要点感知3 三次根号a a 3预习练习3-1 3当堂训练1.C2.B3.B4.0,1或-15.±26.-17.(1)∵0.63=0.216,∴0.216的立方根是0.6=0.6;(2)∵03=0,∴0的立方根是0;(3)∵-21027=-6427,且(-43)3=-6427,∴-21027的立方根是-4343;(4)-5 8.(1)0.1;(2)-75;(3)-23.9.B 10.C 11.2.92 12.10.38 -0.482 0 13.(1)0.01 0.1 1 10 100(2)被开方数扩大1 000倍,则立方根扩大10倍(3)14.42 0.144 2 7.696课后作业14.D 15.B 16.B 17.0或-6 18.-4 -3419.420.(1)-10;(2)4;(3)-1;(4)0.21.<-3.4.22.(1)8x3=-125,x3=-1258,x=-52;(2)(x+3)3=-27,x+3=-3,x=-6.23.由题意知a=-8,b=27,24.(1)8倍;.25.(n≠1,且n为整数).。
立方根知识点及习题
易达彼思教育学科教师辅导讲义
例1.求下列各数的立方根
27174-0.72912588
33- 知识点2:开立方
定义:求一个数立方根的运算,叫作开立方.
说明:开立方和立方互为逆运算,借助立方运算,我们可以求一个数的立方根.
延伸拓展
开立方时,被开方数可以是正数、负数或零,当求一个带分数的立方根时,首先要把带分数化
为假分数,然后再求它的立方根.
例2.求下列各式的值
(1)381-
-(2)3125
911+ 知识点3立方根的性质 性质:(1)正数的立方根是,负数的立方根是,0的立方根是。
例1.求38的值
易错点2误认为负数没有立方根
易错指津由于受负数没有平方根的影响,也误认为负数没有立方根,从而忽视负数立方根的情况,其实,任何数都有立方根,负数的立方根是负数.
例2.已知32,1x x 求=的值.
随堂巩固
一、选择题
1、一个数的立方根是他本身,则这个数是( )
A 、1或-1
B 、0或1
C 、1、0或-1
D 、0或1
2、若一个数的平方根是8±,则这个数的立方根是( )。
A 、4
B 、4±
C 、2
D 、2±
3、下列说法正确的是( )。
A 、512的立方根是8,记作85123=
B 、负数没有立方根
11、解方程:
(1)364x =-(2)()3
327x +=-
3、已知83=x ,且(20y =,求3x y z +-的值。
第五讲 立方根-【暑假衔接】2021年新八年级数学暑假精品知识点(北师大版)(原卷版)
第五讲立方根【学习目标】了解立方根的概念,会用根号表示一个数的立方根:会用开立方运算求一个数的立方根,与立方互为逆运算,了解立方根的性质:区分立方根与平方根的不同:【基础知识】1.如果x3=a,则x叫做a的立方根;记作3a。
2.每个数a都只有一个立方根。
3.正数的立方根是正数;0的立方根是0;负数的立方根是负数。
4.a3的立方根是a,即33a=a。
5.立方根等于本身的数是0,±1。
【考点剖析】考点一:立方根的辨析例1.(1)下列说法中,错误的有()①任何数都有算术平方根;②正数的平方根一定是正数;③2a的算术平方根是a;④立方根不可能是正数;⑤任何实数都有立方根A.①②③④B.②③④⑤C.①②④⑤D.①③④⑤(2)按要求填写下列各数:①倒数是它本身的数是_________.②相反数是它本身的数是_________.③绝对值是它本身的数是_________.④平方是它本身的数是_________.⑤平方根是它本身的数是_________.⑥算术平方根是它本身的数是_________.⑦立方是它本身的数是_________.⑧立方根是它本身的数是_________.考点二:求一个数的立方根例2.(1=________.(2)计算383---=_______.考点三:利用立方根解方程例3.解下列方程:(1)2x 3=﹣16;(2)25(x 2﹣1)=24.考点四:立方根的应用例4.小燕在测量铅球的半径时,先将铅球完全浸没在一个带刻度的圆柱形小水桶中,拿出铅球时,小燕发现小水桶中的水面下降了1cm ,小燕量得小水桶的直径为12cm ,于是她就算出了铅球的半径.你知道她是如何计算的吗?请求出铅球的半径.(球的体积公式343V r π=,r 为球的半径.) 例5.如图所示的正方形纸板是由两张大小相同的长方形纸板拼接而成的,已知一个长方形纸板的面积为162平方厘米.(提示:182=324)(1)求正方形纸板的边长;(2)若将该正方形纸板进行裁剪,然后拼成一个体积为343立方厘米的正方体,求剩余的正方形纸板的面积.考点五:平方根、立方根的综合应用例6.已知43x -的算术平方根是1,26x y +-的立方根是2.(1)求x 、y 的值;(2)求3xy 的平方根.【真题演练】1.下列各式运算中,正确的是( )A 164=±B .55-=-C .224-=D .3273-=-2.下列计算正确的是( )A 93=±B 393-=-C .2(9)9=D 2(9)9-=-3.下列说法错误的是( )A .0的平方根是0B .2(2)-的平方根是2±C .算术平方根等于它本身的数是1D .立方根等于它本身的数是0,±14 )A .2B .2-C .2±D .125.若22a ==-,则a b +的值是( )A .4-B .12-或4-C .12D .12或46.已知4m +15的算术平方根是3,2-6n 的立方根是-2( )A .2B .±2C .4D .±47.2021的倒数为______;2764-的立方根为______. 8.已知3既是4x -的算术平方根,又是210x y +-的立方根,求22x y -的平方根是________.9 10.求出下列等式中x 的值:(1)2763x =;11.某正数的两个不同的平方根分别是m -12和3m -4,求这个数的立方根.12.写出下列式子所表示的意义,并计算出结果.(1)(213.回答下列问题:(1)若一个数的平方根是31m -和42m -,求m 的值,并求出该数;(2)已知26x -的一个平方根是225x y ++,的立方根是3,求22x y +的平方根.14.(120=0.2==____________.(20.5====_________.(3)从以上的结果可以看出:被开方数的小数点向左或右移动3位,立方根的小数点则向_________移动____________位.(4a ==_________=____________. 【过关检测】1的算术平方根等于( )A .9B .9±C .3D .3±2.下列说法正确的个数是( )(1)平方根等于本身的数是0,1 (2)正数和负数统称为有理数(3)2(1)1n -=(n 为正整数) (4)无理数加上无理数一定是无理数(5)立方根等于本身的数是1,1-,0 (64±A .1个B .2个C .3个D .4个3.下列四种说法中:(1)负数没有立方根:(2)1的立方根与平方根都是1;(3(4)112222=+=.其中错误的个数为( ) A .1 B .2 C .3 D .44.若2(1)289z -=,则z =__________;3(31)640x -+=则x =_______.5._______________________6 2.723===________.7.有一个体积为200cm 3的正方体,在它的八个角上分别截去1个大小相同的小正方体,余下部分的体积是75cm 3 ,则截去的每个小正方体的棱长是__________cm .8.若正实数x 的两个平方根分别为21a +和34a -,实数y 的立方根为a -,则x y +的值为___.9.(10,则(a ﹣b )2的平方根是_____;(2)若x 2=64_____;(3±3,则a =_____.104=,且2(21)0b c -+=11.根据条件求值.(1)求代数式22a ab b ++的值,其中23,3a b ==-; (2)已知21a -的一个平方根是3,36a b +的立方根是3,求2+a b 的平方根. 12.解方程:(1)216(1)10x +-=;(2)解方程:38(1)270x -+=;(33;(4(21.-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立方根知识点及练习题
一、知识点:
1、立方根的概念:如果一个数x 的立方等于a ,即x 3=a ,则这个数x 叫做a 的立方根.如(-21)3=-81,所以-21是-8
1的立方根。
2、立方根的的表达形式:一个数a 的立方根记作“3a ”,读作“三次根号a ”, a
是被开方数,3是根指数。
如27125=(35)3,则27125的立方根是3
5,记作327125=35。
3、 立方根的性质:任何数都有且只有一个立方根,正数的立
方根是正数,负数的立方根是负数,0的立方根是0.
二、练习题:
1、正数的立方根是 ,0的立方根是 ,负数的立方根是 ,每个数都有 个立方根.
2、 -1的立方根是 ,271
的立方根是 , 9的立方根是 .
3、如果a x =3
,那么x 叫做a 的 ,记作_ ____.
4如果一个实数的平方根和它的立方根相等,那么这个实数是 .
5求下列各数的立方根 0.064, 81-
, -64, 216125-, 106
6如果a 的3次幂等于2,那么a 等于( )
A .23
B .32
C D
7、一个正方体的体积是27cm 3,将它锯成27块同样大小的正方体,求得到一个小正方体的表面积.
8、下面说法正确的是( )
A .一个数的立方根有两个,它们互为相反数
B .负数没有立方根
C .如果一个数有立方根,那么它一定有平方根
D .一个数的立方根与被开方数同号
9
x 应取( ) A .x ≠0
B .x ≠1
C .x ≥1
D .x >1
10 )
A .-2
B .2
C .±2
D .无意义
11、0.512-的立方根是____,____.=
12、_____的立方根是零,()m n -的立方根是______.
13、求下列各式中的实数x :
2233(1)25490;(2)(1)0.010;
(3)1253430;(4)(2)0.2160.x x x x -=+-=-=-+=
14、将棱长分别为a cm 和b cm 的两个正方体铝块熔化,制成一个大正方体铝块,这个大正方体的棱长为 cm .(不计损耗)
15、下列说法错误的是( )
A .1的平方根是1
B .-1的立方根是-1
C .2是2的平方根
D .-3是2)3(-的平方根
16、立方根等于本身的数是( )
A .-1
B .0
C .±1
D .±1或0
17、9的算术平方根是 ,3的平方根是 , 0的平方根是 ,2-的立方根是 .
18、一个正数的平方等于144, 则这个正数是 , 一个负数的立方等于-27,则这个负数是 , 一个数的平方等于5, 则这个数是 .
19、由于用水的需要, 将一个正方体的水池的底面积扩大为原来的3倍, 则正方体的边长需要扩大为原来的几倍?
20、求下列各式的值 ⑴327 ⑵3641- ⑶33)21(- ⑷312564 ⑸33)8(-
21、求下列各式的值 ⑴332)2()2(-+- ⑵364611+ ⑶3729.0- ⑷
327191-
⑸333125343027.0+-+-
22、当x 时,2-x 有平方根,当x 时,2-x 有立方根.
23、64的平方根是 ,立方根是 .2)4(-的算术平方根是 ,化简
38--= .
24、已知,12=y 求3y 的值.。