七年级下几何证明题

合集下载

人教版七年级数学下册第五章相交线与平行线:几何计算和证明综合练习试题(含答案)

人教版七年级数学下册第五章相交线与平行线:几何计算和证明综合练习试题(含答案)

人教版七年级数学下册第五章相交线与平行线:几何计算和证明综合练习试题1、如图,已知∠2=∠3,∠C=∠D,求证:∠A=∠F.证明:∵∠2=∠3,∠1=∠2,∴∠1=∠3.∴DB∥CE.∴∠DBA=∠C.∵∠D=∠C,∴∠D=∠DBA.∴DF∥AC.∴∠A=∠F.2、如图,已知EF∥AD,∠1=∠2,∠BAC=80°,求∠AGD的度数.解:∵EF∥AD,∴∠2=∠3(两直线平行,同位角相等).∵∠1=∠2,∴∠1=∠3(等量代换).∴AB∥DG(内错角相等,两直线平行).∴∠BAC+∠AGD=180°(两直线平行,同旁内角互补).3、如图,∠1=115°,∠2=50°,∠3=65°,EG为∠NEF的平分线.求证:AB∥CD,EG∥FH.证明:∵∠1=115°,∴∠FCD=180°-∠1=180°-115°=65°.∵∠3=65°,∴∠FCD=∠3.∴AB∥CD.∵∠2=50°,∴∠NEF=180°-∠2=180°-50°=130°.∵EG为∠NEF的平分线,∴∠GEF=12∠NEF=65°.∴∠GEF=∠3.∴EG∥FH.4、如图,已知∠B=∠D,∠E=∠F,判断BC与AD的位置关系,并说明理由.解:BC∥AD,理由:∴BE∥FD.∴∠B=∠BCF.又∵∠B=∠D,∴∠BCF=∠D.∴BC∥AD.5、如图,AD⊥BC于点D,EG⊥BC于点G,∠E=∠1.求证:AD平分∠BAC.证明:∵AD⊥BC,EG⊥BC,∴∠ADC=∠EGC=90°.∴AD∥EG.∴∠1=∠2,∠E=∠3.∵∠E=∠1,∴∠2=∠3.∴AD平分∠BAC.6、如图,B,C,E三点在一条直线上,A,F,E三点在一条直线上,AB∥CD,∠1=∠2,∠3=∠4.求证:AD∥BE.证明:∵AB∥CD,∴∠4=∠BAE.∴∠3=∠BAE.∵∠1=∠2,∴∠1+∠CAF=∠2+∠CAF,即∠BAE=∠CAD.∴∠3=∠CAD.∴AD∥BE.7、如图,已知AB∥CD,试判断∠B,∠BED和∠D之间的关系,并说明理由.解:∠BED=∠B+∠D.理由如下:过点E作EF∥AB,则∠B=∠BEF.∵AB∥CD,∴EF∥CD.∴∠DEF=∠D.∵∠BED=∠BEF+∠DEF,∴∠BED=∠B+∠D.8、如图,∠AEF+∠CFE=180°,∠1=∠2,EG与HF平行吗?为什么?解:平行.理由:∵∠AEF+∠CFE=180°,∴AB∥CD.∴∠AEF=∠EFD.∴∠AEF -∠1=∠EFD -∠2,即∠GEF =∠HFE.∴EG ∥HF.9、如图,A ,B ,C 三点在同一直线上,∠1=∠2,∠3=∠D ,试判断BD 与CF 的位置关系,并说明理由.解:BD ∥CF.理由如下:∵∠1=∠2,∴AD ∥BF.∴∠D =∠DBF.∵∠3=∠D ,∴∠3=∠DBF.∴BD ∥CF.10、如图,∠ABC =∠ADC ,BF ,DE 分别是∠ABC ,∠ADC 的平分线,∠1=∠2,试说明:DC ∥AB.解:∵BF ,DE 分别是∠ABC ,∠ADC 的平分线,∴∠3=12∠ADC ,∠2=12∠ABC. ∵∠ABC =∠ADC ,∴∠3=∠2.∵∠1=∠2,∴∠1=∠3.∴DC∥AB.11、如图,AD平分∠BAC,AD⊥BC于D,点E,A,C共线,∠DAC=∠EFA,延长EF 交BC于点G.求证:EG⊥BC.证明:∵AD平分∠BAC,∴∠DAC=∠DAB.又∵∠DAC=∠EFA,∴∠DAB=∠EFA.∴AD∥EG.∴∠ADC=∠EGD.∵AD⊥BC,∴∠ADC=90°.∴∠EGD=90°.∴EG⊥BC.12、已知AB∥CD,点E为AB,CD之外任意一点.(1)如图1,探究∠BED与∠B,∠D的数量关系,并说明理由;(2)如图2,探究∠CDE与∠B,∠BED的数量关系,并说明理由.解:(1)∠B=∠BED+∠D.理由如下:过点E作EF∥AB.又∵AB∥CD,∴EF∥AB∥CD.∴∠BEF=∠B,∠D=∠DEF.∵∠BEF=∠BED+∠DEF,∴∠B=∠BED+∠D.(2)∠CDE=∠B+∠BED.理由如下:过点E作EF∥AB.又∵AB∥CD,∴EF∥AB∥CD.∴∠B+∠BEF=180°,∠CDE+∠DEF=180°.又∵∠DEF=∠BEF-∠BED,∴∠CDE+∠BEF-∠BED=∠B+∠BEF,即∠CDE=∠B+∠BED.13、如图,把一张长方形纸片ABCD沿EF折叠后,D,C分别落在D′和C′的位置上,ED′与BC的交点为G.若∠EFG=50°,求∠1,∠2,∠3的度数.解:根据折叠的性质可知,∠DEF=∠D′EF,∠EFC=∠EFC′.∵∠EFG=50°,∴∠EFC=180°-50°=130°.∴∠EFC′=∠EFC=130°.∴∠3=∠EFC′-∠EFG=130°-50°=80°.∵AD∥BC,∴∠DEF=∠EFG=50°.∴∠DED′=2∠DEF=100°.∴∠1=180°-∠DED′=180°-100°=80°.∵AD∥BC,∴∠1+∠2=180°.∴∠2=180°-∠1=100°.故∠1=80°,∠2=100°,∠3=80°.14、如图,AE⊥BC,FG⊥BC,∠1=∠2,∠D=∠3+60°,∠CBD=70°.(1)求证:AB∥CD;(2)求∠C的度数.解:(1)证明:∵AE⊥BC,FG⊥BC,∴AE∥GF.∴∠2=∠A.∵∠1=∠2,∴∠1=∠A.∴AB∥CD.(2)∵AB∥CD,∴∠D+∠CBD+∠3=180°.∵∠D =∠3+60°,∠CBD =70°,∴∠3=25°.∵AB ∥CD ,∴∠C =∠3=25°.15、(1)如图1,AB ∥CD ,则∠E +∠G 与∠B +∠F +∠D 有何关系?(2)如图2,若AB ∥CD ,又能得到什么结论?请直接写出结论.解:(1)过点E 作EM ∥AB ,过点F 作FN ∥AB ,过点G 作GH ∥CD. ∵AB ∥CD ,∴AB ∥EM ∥FN ∥GH ∥CD.∴∠1=∠B ,∠2=∠3,∠4=∠5,∠6=∠D.∴∠1+∠2+∠5+∠6=∠B +∠3+∠4+∠D ,即∠BEF +∠FGD =∠B +∠EFG +∠D.(2)∠B +∠F 1+∠F 2+…+∠F n -1+∠D =∠E 1+∠E 2+…+∠E n .16、已知E ,F 分别是AB ,CD 上的动点,P 也为一动点.(1)如图1,若AB ∥CD ,求证:∠P =∠BEP +∠PFD ;(2)如图2,若∠P =∠PFD -∠BEP ,求证:AB ∥CD ;(3)如图3,AB ∥CD ,移动E ,F ,使∠EPF =90°,作∠PEG =∠BEP ,则∠AEG∠PFD =2.证明:(1)过点P作PG∥AB,则∠EPG=∠BEP.∵AB∥CD,∴PG∥CD.∴∠GPF=∠PFD.∴∠EPF=∠EPG+∠FPG=∠BEP+∠PFD.(2)过点P作PQ∥AB,则∠QPE=∠BEP.∵∠EPF=∠PFD-∠BEP,∴∠PFD=∠EPF+∠BEP=∠EPF+∠QPE=∠FPQ. ∴DC∥PQ.∴AB∥CD.。

七年级下册数学期末考试几何大题证明必考题精选之欧阳数创编

七年级下册数学期末考试几何大题证明必考题精选之欧阳数创编

l图②C 七年级下册数学期末考试几何大题证明必考题精选类型一、正方形中三角形全等与线段长度之间的关系例1、如图①,直线l 过正方形ABCD 的顶点B ,A 、C 两顶点在直线l 同侧,过点A 、C 分别作AE ⊥直线l 、CF ⊥直线l .(1)试说明:EF =AE +CF ;(2)如图②,当A 、C 两顶点在直线l 两侧时,其它条件不变,猜想EF 、AE 、CF 满足什么数量关系(直接写出答练习: (1)l (l 不与BD ⊥l D 、E BD 、CE 、DE ,你?试对这种关系说明理由;(2)过点A 任意作一条直线l (l 与BC 相交),并作BD ⊥l ,CE ⊥l ,垂足分别为D 、E .度量BD 、CE 、DE ,你发现经们之间有什么关系?试对这种关系说明理由.例2、已知正方形的四条边都相等,四个角都是90º。

如图,正方形ABCD 和正方形AEFG 有一个公共点A ,点G 、E 分别在线段AD 、AB 上。

(1)如图1, 连结DF 、BF ,说明:DF =BF ;(2)若将正方形AEFG 绕点AA E B图1 D C G F A BD CGF图2按顺时针方向旋转,连结DG ,在旋转的过程中,你能否找到一条长度与线段DG 的长始终相等的线段?并以图2为例说明理由。

练习:如图,正方形ABCD 的边CD 在正方形ECGF 的边CE 上,B 、C 、G 三点在一条直线上,且边长分别为2和3,在BG 上截取GP =2,连结AP 、PF.(1)观察猜想AP 与PF 之间的大小关系,并说明理由. (2)图中是否存在通过旋转、平移、反射等变换能够互相重合的两个三角形?若存在,请说明变换过程;若不存在,请说明理由.(3)若把这个图形沿着PA 、PF 剪成三块,请你把它们拼成一个大正方形,在原图上画出示意图,并请求出这个大正方形的面积.AFDE32附加:如图,△ABC 与△ADE 都是等边三角形,连结CE 交点记为点F .(1)BD 与CE 相等吗?请说明理由.(2)你能求出BD 与CE 的夹角∠BFC 的度数吗?(3)若将已知条件改为:四边形ABCD 与四边形AEFG 都是正方形,连结BE 、DG 交点记为点M 和DG 之间的关系?例3、正方形四边条边都相等,四个角都是90.如图,已知正方形ABCD 在直线MN 的上方,BC 在直线MN 上,点E 是直线MN 上一点,以AE 为边在直线MN 的上方作正方形AEFG .(1)如图1,当点E 在线段BC 上(不与点B 、C 重合)时:①判断△ADG 与△ABE 是否全等,并说明理由;②过点F 作FH ⊥MN ,垂足为点H ,观察并猜测线段BE 与线段CH 的数量关系,并说明理由;(2)如图2,当点E 在射线CN 上(不与点C 重合)时: ①判断△ADG 与△ABE 是否全等,不需说明理由;②过点F 作FH ⊥MN ,垂足为点H ,已知GD =4,求△CFH FDB点(点G 与C 、D 不重合),以CG 为一边作正方形CEFG ,连结BG ,DE .(1)如图1,说明BG= DE 的理由(2)将图1中的正方形CEFG 绕着点C 按顺时针方向旋转任意角度α,得到如图2.请你猜想①BG= DE 是否仍然成立?②BG 与DE 位置关系?并选取图2验证你的猜想.类型二、探究题例1、如图,已知等边△A B C 和点P ,设点P 到△A B C 三边A B 、A C 、B C (或其延长线)的距离分别为h 1、h 2、h 3,△A B C 的高为h .在图(1)中,点P 是边B C 的中点,此时h 3=0,可得结论:hh h h =++321.在图(2)--(5)中,点P 分别在线段M C 上、M C 延长线上、△A B C 内、△A B C 外.(1)请探究:图(2)--(5)中,h 1、h 2、h 3、h 之间的关系;(直接写出结论)(2)证明图(2)所得结论; (3)证明图(4)所得结论.(4)(附加题2分)在图(6)中,若四边形R B C S 是等腰梯形,∠B =∠C =60o o,R S =n ,B C =m ,点P 在梯形内,且点P 到四边B R 、R S 、S C 、C B 的距离分别是h 1、h 2、h 3、h 4,桥形的高为h ,则h 1、h 2、h 3、h 4、h 之间的关系为:;图(4)与图(6)中的等式有何关系?练习:1、如图,在△ABC 中,AB=AC ,P点,PE ⊥AB ,PF ⊥AC ,BD ⊥AC. (1)求证:PE+PF=BD ;(2)若点P 是底边BC 的延长线上一点,其余条件不变,(1)中的结论还成立吗?如果成立,请说明理由;如果不成立,请画出图形,并探究它们的关系.2、如图,已知△ABC 三边长相等,和点P ,设点P 到△ABC 三边AB 、AC 、BC (或其延长线)的距离分别为h 1、h 2、h 3,△ABC 的高为h .在图(1)中,点P 是边BC 的中点,由S △ABP+S △ACP=S △ABC得,hBC h AC h AB ⋅=⋅+⋅21212121可得h h h =+21又因为h 3=0,所以:hh h h =++321.图(2)~(5)中,点P 分别在线段MC 上、MC 延长线上、△ABC 内、△ABC 外.(1)请探究:图(2)~(5)中,h 1、h 2、h 3、h 之间的关系;(直接写出结论) ⑵⑶⑷⑸(2)说明图(2)所得结论为什么是正确的;ABCD E P ABCDE P M (2) ABC D EM (P ) (1)ABCDE P M(5)CB APDEAB C D E P AB CDE P M (3) AB C DE P M (2) AB C DE M (P ) (1)AFC B E (3)说明图(5)所得结论为什么是正确的.例2、已知△ABC 是等边三角形,将一块含30角的直角三角板DEF 如图1放置,当点E 与点B 重合时,点A 恰好落在三角板的斜边DF 上. (1)AC=CF 吗? 为什么?(2)让三角板在BC 上向右平行移动,在三角板平行移动的过程中,(如图2)是否存在与线段EB 始终相等的线段(设AB ,AC 与三角板斜边的交点分别为GEF GEF=ABCD 的两条边分别重合在一起.现正方形ABCD 保持不动,将三角尺GEF 绕斜边EF 的中点O (点O 也是BD 中点)按顺时针方向旋转.(1)如图2,当EF 与AB 相交于点M ,GF 与BD 相交于点N 时,通过观察或测量BM ,FN 的长度,猜想BM ,FN 相等吗?并说明理由;(2)若三角尺GEF 旋转到如图3所示的位置时,线段FE 的延长线与AB 的延长线相交于点M ,线段BD 的延长线与GF 的延长线相交于点N 请说明理由.(B) C E F 图1欧阳数创编2为等边三角形,M 是BC A,且60º角的顶点E 在BC 上滑动,(点E 不与点B 、C 重合),斜边∠ACM 的平分线CF 交于点F(1)如图(1)当点B 在BC 边得中点位置时(6分) ○1猜想AE 与BF 满足的数量关系是。

初中数学几何证明试题(含答案)

初中数学几何证明试题(含答案)

第 6 页 共 15 页
4.如下图连接 AC 并取其中点 Q,连接 QN 和 QM,所以可得∠QMF=∠F,∠QNM=∠
DEN 和∠QMN=∠QNM,从而得出∠DEN=∠F。
经 典 题(二)
1.(1)延长 AD 到 F 连 BF,做 OG⊥AF,
又∠F=∠ACB=∠BHD, 可得 BH=BF,从而可得 HD=DF, 又 AH=GF+HG=GH+HD+DF+HG=2(GH+HD)=2OM
BE AD
= ,即 AD•BC=BE•AC,

BC AC
又∠ACB=∠DCE,可得△ABC∽△DEC,既得
AB = DE ,即 AB•CD=DE•AC,

AC DC
由①+②可得: AB•CD+AD•BC=AC(BE+DE)= AC·BD ,得证。
第 11 页 共 15 页
4.过 D 作 AQ⊥AE
(2)连接 OB,OC,既得∠BOC=1200,
从而可得∠BOM=600, 所以可得 OB=2OM=AH=AO, 得证。
第 7 页 共 15 页
3.作 OF⊥CD,OG⊥BE,连接 OP,OA,OF,AF,OG,AG,OQ。 由于 AD = AC = CD = 2FD = FD , AB AE BE 2BG BG
(2)过 P 点作 BC 的平行线交 AB,AC 与点 D,F。
由于∠APD>∠ATP=∠ADP,
推出 AD>AP

又 BP+DP>BP

和 PF+FC>PC

又 DF=AF

由①②③④可得:最大 L< 2 ;

七年级下册数学期末考试几何大题证明必考题

七年级下册数学期末考试几何大题证明必考题

图①DA EC BFl图②ABE F ClD七年级下册数学期末考试几何大题证明必考题精选类型一、正方形中三角形全等与线段长度之间的关系例1、如图①,直线l 过正方形ABCD 的顶点B ,A 、C 两顶点在直线l 同侧,过点A 、C 分别作AE ⊥直线l 、CF ⊥直线l . (1)试说明:EF =AE +CF ;(2)如图②,当A 、C 两顶点在直线l 两侧时,其它条件不变,猜想EF 、AE 、CF 满足什么数量关系(直接写出答案,不必说明理由).练习: 如图,△ABC 中,AB=AC ,∠BAC =90°.(1)过点A 任意一条直线l (l 不与BC 相交),并作B D ⊥l ,C E ⊥l ,垂足分别为D 、E .度量BD 、CE 、DE ,你发现它们之间有什么关系?试对这种关系说明理由; (2)过点A 任意作一条直线l (l 与BC 相交),并作B D ⊥l ,C E ⊥l ,垂足分别为D 、E .度量BD 、CE 、DE ,你发现经们之间有什么关系?试对这种关系说明理由.例2、已知正方形的四条边都相等,四个角都是90º。

如图,正方形ABCD 和正方形AEFG 有一个公共点A ,点G 、E 分别在线段AD 、AB 上。

A E B 图1D CG FA BD CG FE图2(1)如图1, 连结DF 、BF ,说明:DF =BF ; (2)若将正方形AEFG 绕点A 按顺时针方向旋转,连结DG ,在旋转的过程中,你能否找到一条长度与线段DG 的长始终相等的线段?并以图2为例说明理由。

练习:如图,正方形ABCD 的边CD 在正方形ECGF 的边CE 上,B 、C 、G 三点在一条直线上,且边长分别为2和3,在BG 上截取GP =2,连结AP 、PF. (1)观察猜想AP 与PF 之间的大小关系,并说明理由.(2)图中是否存在通过旋转、平移、反射等变换能够互相重合的两个三角形?若存在,请说明变换过程;若不存在,请说明理由.(3)若把这个图形沿着PA 、PF 剪成三块,请你把它们拼成一个大正方形,在原图上画出示意图,并请求出这个大正方形的面积.附加:如图,△ABC 与△ADE 都是等边三角形,连结BD 、CE(1)BD 与CE 相等吗?请说明理由.A BCFDE GP32B(2)你能求出BD与CE的夹角∠BFC的度数吗?(3)若将已知条件改为:四边形ABCD与四边形AEFG都是正方形,连结BE、DG交点记为点M(如图).请直接写出线段BE和DGF例3、正方形四边条边都相等,四个角都是90o.如图,已知正方形ABCD在直线MN 的上方,BC在直线MN上,点E是直线MN上一点,以AE为边在直线MN的上方作正方形AEFG.(1)如图1,当点E在线段BC上(不与点B、C重合)时:①判断△ADG与△ABE是否全等,并说明理由;②过点F作FH⊥MN,垂足为点H,观察并猜测线段BE与线段CH的数量关系,并说明理由;(2)如图2,当点E在射线CN上(不与点C重合)时:①判断△ADG与△ABE是否全等,不需说明理由;②过点F 作FH ⊥MN ,垂足为点H ,已知GD =4,求△CFH 的面积.练习:如图1,四边形ABCD 是正方形,G 是CD 边上的一个点(点G 与C 、D 不重合),以CG 为一边作正方形CEFG ,连结BG ,DE .(1)如图1,说明BG= DE 的理由(2)将图1中的正方形CEFG 绕着点C 按顺时针方向旋转任意角度 ,得到如图2.请你猜想①BG= DE 是否仍然成立?②BG 与DE 位置关系?并选取图2验证你的猜想.图 2FG DA图 1FDA类型二、探究题例1、如图,已知等边△A B C 和点P ,设点P 到△A B C 三边A B 、A C 、B C (或其延长线)的距离分别为h 1、h 2、h 3,△A B C 的高为h .在图(1)中,点P 是边B C 的中点,此时h 3=0,可得结论:h h h h =++321. 在图(2)--(5)中,点P 分别在线段M C 上、M C 延长线上、△A B C 内、△A B C 外.(1)请探究:图(2)--(5)中, h 1、h 2、h 3、h 之间的关系;(直接写出结论)(2)证明图(2)所得结论; (3)证明图(4)所得结论.(4)(附加题2分)在图(6)中,若四边形R B C S 是等腰梯形,∠B =∠C =60o ,R S =n ,B C =m ,点P 在梯形内,且点P 到四边B R 、R S 、S C 、C B 的距离分别是h 1、h 2、h 3、h 4,桥形的高为h ,则h 1、h 2、h 3、h 4、h 之间的关系为: ;图(4)与图(6)中的等式有何关系?ABC DEPM(3)ABCDE (2)ABCD EM (P )(1)练习:1、如图,在△ABC 中,AB=AC ,P 为底边上任意一点,PE ⊥AB ,PF ⊥AC ,BD ⊥AC.(1)求证:PE+PF=BD ;(2)若点P 是底边BC 的延长线上一点,其余条件不变,(1)中的结论还成立吗?如果成立,请说明理由;如果不成立,请画出图形,并探究它们的关系.CBAPDE2、如图,已知△ABC 三边长相等,和点P ,设点P 到△ABC 三边AB 、AC 、BC (或其延长线)的距离分别为h 1、h 2、h 3,△ABC 的高为h .在图(1)中, 点P 是边BC 的中点,由S △ABP+S △ACP=S △ABC 得,h BC h AC h AB ⋅=⋅+⋅21212121可得h h h =+21又因为h 3=0,所以:h h h h =++321.图(2)~(5)中,点P 分别在线段MC 上、MC 延长线上、△ABC 内、△ABC 外.(1)请探究:图(2)~(5)中, h 1、h 2、h 3、h 之间的关系;(直接写出结论)⑵ ⑶ ⑷ ⑸ (2)说明图(2)所得结论为什么是正确的; (3)说明图(5)所得结论为什么是正确的.ABC DEP ABCDEPM(3)ABCDE P M (2)ABCDEM (P )(1)ABCDEP M(5)FC B E 例2、已知△ABC 是等边三角形,将一块含30o 角的直角三角板DEF 如图1放置,当点E 与点B 重合时,点A 恰好落在三角板的斜边DF 上. (1)AC=CF 吗? 为什么?(2)让三角板在BC 上向右平行移动,在三角板平行移动的过程中,(如图2)是否存在与线段EB 始终相等的线段(设AB ,AC 与三角板斜边的交点分别为G ,H )?如果存练习:1、如图1,一等腰直角三角尺GEF (∠EGF=90°,∠GEF=∠GFE=45°,GE=GF )的两条直角边与正方形ABCD 的两条边分别重合在一起.现正方形ABCD 保持不动,将三角尺GEF 绕斜边EF 的中点O (点O 也是BD 中点)按顺时针方向旋转.(1)如图2,当EF 与AB 相交于点M ,GF 与BD 相交于点N 时,通过观察或测量BM ,FN 的长度,猜想BM ,FN 相等吗?并说明理由;(2)若三角尺GEF 旋转到如图3所示的位置时,线段FE 的延长线与AB 的延长线相交于点M ,线段BD 的延长线与GF 的延长线相交于点N ,此时,(1)中的猜想还成立C图1吗?请说明理由.2、已知:△ABC 为等边三角形,M 是BC 延长线上一点,直角三角尺的一条直角边经过点A ,且60º角的顶点E 在BC 上滑动,(点E 不与点B 、C 重合),斜边∠ACM 的平分线CF 交于点F(1)如图(1)当点B 在BC 边得中点位置时(6分) ○1猜想AE 与BF 满足的数量关系是 。

七年级下册数学期末考试几何大题证明必考题精选

七年级下册数学期末考试几何大题证明必考题精选

l图②C七年级下册数学期末测验几何大题证实必考题精选类型一.正方形中三角形全等与线段长度之间的关系例1.如图①,直线l 过正方形ABCD 的极点B ,A .C 两极点在直线l 同侧,过点A .C 分离作AE ⊥直线l .CF ⊥直线l . (1)试解释:EF =AE +CF ;(2)如图②,当A .C 两极点在直线l 两侧时,其它前提不变,猜测EF .AE .CF 知足什么数目关系(直接写出答案,不必解释来由).演习:∠ (1)l (l BD ⊥l ,CE ;(2)过点A 随意率性作一条直线l (l 与BC 订交),并作BD ⊥l ,CE ⊥l ,垂足分离为D.E .器量BD.CE.DE,你发明经们之间有什么关系?试对这种关系解释来由.例 2.已知正方形的四条边都相等,四个角都是90º.如图,正方形ABCD 和正方形AEFG 有一个公共点A,点G.E 分离在线段AD.AB 上. (1)如图1, 贯穿连接DF.BF,解释:DF =BF; (2)若将正方形AEFG绕点A 按顺时针偏向扭转,贯穿连接DG,在扭转的进程中,你可否找到一条长度与线段DGA E B图1D C G FA BD CGFE图2的长始终相等的线段?并以图2为例解释来由.演习:如图,正方形ABCD 的边CD 在正方形ECGF 的边CE 上,B.C.G 三点在一条直线上,且边长分离为2和3,在BG 上截取GP =2,贯穿连接AP.PF.(1)不雅察猜测AP 与PF 之间的大小关系,并解释来由.(2)图中是否消失经由过程扭转.平移.反射等变换可以或许互相重合的两个三角形?若消失,请解释变换进程;若不消失,请解释来由.(3)若把这个图形沿着PA.PF 剪成三块正方形,在原图上画出示意图,附加:如图,△ABC 与△ADE 记为点F .(1)BD 与CE 相等吗?请解释来由.(2)你能求出BD 与CE 的夹角∠BFC (3)若将已知前提改为:四边形ABCD 与四边形AEFG 都是正方形, 贯穿连接BE .DG 交点记为点M 之间的关系?例 3.正方形四边条边都相等,四个角都是90ABCD 在直线MN 的上方,BC 在直线MN 上,点E 是直线MN 上一点,以AE 为边在直线MN 的上方作正方形AEFG .A B2F(1)如图1,当点E 在线段BC 上(不与点B.C 重合)时: ①断定△ADG 与△ABE 是否全等,并解释来由;②过点F 作FH ⊥MN,垂足为点H,不雅察并猜测线段BE 与线段CH 的数目关系,并解释来由;(2)如图2,当点E 在射线CN 上(不与点C 重合)时: ①断定△ADG 与△ABE 是否全等,不需解释来由;②过点F 作FH ⊥MN,垂足为点H,已知GD =4,求△CFH 的面积.是正方形,G 与的来由(2)将图1中的正方形CEFG 绕着点C 按顺时针偏向扭转随意率性角度α,得到如图2.请你猜测①BG= DE 是否仍然成立?②BG 与DE 地位关系?并拔取图2验证你的猜测. 类型二.探讨题例1.如图,已知等边△A B C 和点P ,设点P 到△A B C 三边A B .A C .B C(或其延伸线)的距离分离为h 1.h 2.h 3,△A B C 的高为h .在图(1)中,点P 是边B C 的中点,此时h 3=0,可得结论:hh h h =++321.在图(2)--(5)中,点P 分离在线段M C 上.M C 延伸线上.△A B C 内.△A B C 外.(1)请探讨:图(2)--(5)中,h 1.h 2.h 3.h 之间的关系;图 2图 1(直接写出结论)(2)证实图(2)所得结论; (3)证实图(4)所得结论.(4)(附加题2分)在图(6)中,若四边形R B C S 是等腰梯形,∠B =∠C =60o o,R S =n ,B C =m ,点P 在梯形内,且点P 到四边B R .R S .S C .C B 的距离分离是h 1.h 2.h 3.h 4,桥形的高为h ,则h 1.h 2.h 3.h 4.h 之间的关系为:;图(4)与图(6)中的等式有何干系?演习:1.如图,在△ABC 中,AB=AC,P为底边上随意率性一点⊥AB,PF ⊥AC,BD ⊥AC. (1)求证:PE+PF=BD;(2)若点P 是底边BC 的延伸线上一点,其余前提不变,(1)中的,请解释来由;假如不成立,请画出图形,并探讨它们的关系.2.如图,已知△ABC 三边长相等,和点P ,设点P 到△ABC 三边AB .AC .BC (或其延伸线)的距离分离为h 1.h 2.h 3,△ABC 的高为h .在图(1)中,点P 是边BC 的中点,由S △ABP+S △ACP=S △ABC得,h BC h AC h AB ⋅=⋅+⋅21212121可得h h h =+21又因为h 3=0,所以:hh h h =++321.图(2)~(5)中,点P 分离在线段MC 上.MC 延伸线上.△ABC 内.△ABC 外.ABCDE P ABCDE P M (2) ABC D E M (P ) (1)ABCDE P M(5)CB APDEF C B E(1)请探讨:图(2)~(5)中,h 1.h 2.h 3.h 之间的关系;(直接写出结论)⑵⑶⑷⑸(2)解释图(2)所得结论为什么是准确的; (3)解释图(5)所得结论为什么是准确的.例 2.已知△ABC 是等边三角形,将一块含30角的直角三角板如图1放置,当点E 与点B 重应时,点A 正好落在三角板的斜边DF 上.(1)AC=CF 吗? 为什么?(2)让三角板在BC 上向右平行移动,在三角板平行移动的进程中,(如图2)是否消失与线段EB 始终相等的线段(设AB,AC 与三角板斜边的交点分离为G,H )?假如消失,实;假如不消失,请解释来由.GEF ABCD 的两条边分离重合,将三角尺GEF 绕斜边EF 的中点O (点O 也是BD 中点)按顺时针偏向扭转.(1)如图2,当EF 与AB 订交于点M ,GF 与BD 订交于点N 时,经由过程不雅察或测量BM ,FN 的长度,猜测BM ,FN 相等吗?并解释来由; (2)若三角尺GEF 扭转到如图3所示的地位时,线段FE 的延伸线(B) C F 图1ABCDE P ABCDEPM (3)ABC D EP M (2)ABCDEM (P )(1)AB C DE P M(5)与AB 的延伸线订交于点M ,线段BD 的延伸线与GF 的延伸线订交于点N ,此时,(12.,M 是BCA,且60º角的极点E 在BC 上滑动,(点E 不与点B.C 重合),斜边∠ACM 的等分线CF 交于点F(1)如图(1)当点B 在BC 边得中点地位时(6分) ○1猜测AE 与BF 知足的数目关系是.○2贯穿连接点E 与AB边得中点N,猜测BE和CF知足的数目关系是○3请证实你的上述猜测(4分)(2)如图(2)当点E在BC边得随意率性地位时: 此时AE和BF有如何的数目关系,并解释你的来由?图3图1 A ( B ( E )E图(2)。

初中数学-几何证明经典试题(含答案)

初中数学-几何证明经典试题(含答案)

初中数学-⼏何证明经典试题(含答案)初中⼏何证明题已知:如图,O 是半圆的圆⼼,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO .求证:CD =GF 已知:如图,P 是正⽅形ABCD 内点,∠PAD =∠PDA =150.求证:△PBC 是正三⾓形.3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正⽅形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正⽅形.4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC的延长线交MN 于E 、F .求证:∠DEN =∠F .经典题(⼆)A P C DB A F GC EBO D D 2 C 2B 2 A 2D 1 C 1 B 1C B DA A 1 BF 1、已知:△ABC 中,H 为垂⼼(各边⾼线的交点),O(1)求证:AH =2OM ;(2)若∠BAC =600,求证:AH =AO .(初⼆)2、设MN 是圆O 外⼀直线,过O 作OA ⊥MN 于A ,⾃A 及D 、E ,直线EB 及CD 分别交MN 于P 、Q .求证:AP =AQ .(初⼆)3、如果上题把直线MN 由圆外平移⾄圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN于P 、Q .求证:AP =AQ .(初⼆)4、如图,分别以△ABC 的AC 和BC 为⼀边,在△ABC 的外侧作正⽅形ACDE 和正⽅形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的⼀半.经典题(三)1、如图,四边形ABCD 为正⽅形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .求证:CE =CF .(初⼆)2、如图,四边形ABCD 为正⽅形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .(初⼆)3、设P 是正⽅形ABCD ⼀边求证:PA =PF .(初⼆)4、如图,PC 切圆O 于C ,AC 为圆的直径,PEFB 、D .求证:AB =DC ,BC =AD .(初三)经典题(四)E1、已知:△ABC 是正三⾓形,P 是三⾓形内⼀点,PA =3,PB =4,PC =5.求:∠APB 的度数.(初⼆)2、设P 是平⾏四边形ABCD 内部的⼀点,且∠PBA =∠PDA .求证:∠PAB =∠PCB .(初⼆)3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .(初三)4、平⾏四边形ABCD 中,设E 、F 分别是BC 、AB 上的⼀点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初⼆)经典难题(五)1、设P 是边长为1的正△ABC 内任⼀点,L =PA +PB +PC ,D求证:≤L<2.2、已知:P是边长为1的正⽅形ABCD内的⼀点,求PA+PB+PC的最⼩值.3、P为正⽅形ABCD内的⼀点,并且PA=a,PB=2a,PC=3a,求正⽅形的边长.4、如图,△ABC中,∠ABC=∠ACB=800,D、E分别是AB、AC上的点,∠DCA=300,∠EBA=200,求∠BED的度数.经典题(⼀)1.如下图做GH⊥AB,连接EO。

初一下册几何证明题(完整版)

初一下册几何证明题(完整版)

初一下册几何证明题初一下册几何证明题第一篇:初一下册几何证明题初一下册几何证明题1.已知在三角形ab中,be,f分别是角平分线,d是ef中点,若d到三角形三边b,ab,a的距离分别为x,,z,求证:x=+z证明;过e点分别作ab,b上的高交ab,b于m,n点.过f点分别作a,b上的高交于p,q点.根据角平分线上的点到角的2边距离相等可以知道fq=fp,em=en.过d点做b上的高交b于o点.过d点作ab上的高交ab于h点,过d点作ab上的高交a于j点.则x=do,=h,z=dj.因为d是中点,角ane=角ahd=90度.所以hd平行me,me=2hd同理可证fp=2dj。

又因为fq=fp,em=en.fq=2dj,en=2hd。

又因为角fq,do,en都是90度,所以四边形fqne是直角梯形,而d是中点,所以2do=fq+en又因为fq=2dj,en=2hd。

所以do=hd+jd。

因为x=do,=h,z=dj.所以x=+z。

在正五边形abde中,m、n分别是de、ea上的点,bm与n相交于点o,若∠bon=108°,请问结论bm=n是否成立?若成立,请给予证明;若不成立,请说明理由。

当∠bon=108°时。

bm=n还成立证明;如图5连结bd、e.在△bi)和△de中∵b=d,∠bd=∠de=108°,d=de∴δbd≌δde∴bd=e,∠bd=∠ed,∠db=∠en∵∠de=∠de=108°,∴∠bdm=∠en∵∠ob+∠ed=108°,∠ob+∠od=108°∴∠mb=∠nd又∵∠db=∠ed=36°,∴∠dbm=∠en∴δbdm≌δne∴bm=n3.三角形ab中,ab=a,角a=58°,ab的垂直平分线交a与n,则角nb=3°因为ab=a,∠a=58°,所以∠b=61°,∠=61°。

初一数学七下几何证明题

初一数学七下几何证明题

第3题填空完成推理过程:1、如图,∵AB∥EF(已知)∴∠A +=1800()∵DE∥BC(已知)∴∠DEF=()∠ADE=()2、已知:如图,∠ADE=∠B,∠DEC=115°.求∠C的度数.3、已知:如图,AD∥BC,∠D=100°,AC平分∠BCD,求∠DAC的度数.4、已知AB∥CD,∠1=70°则∠2=_______,∠3=______,∠4=_______4321AC DB5、已知:如图4,AB∥CD,直线EF分别交AB、CD于点E、F,∠BEF的平分线与∠DEF的平分线相交于点P.求∠P的度数6、直线AB、CD相交于O,OE平分∠AOC,∠EOA:∠AOD=1:4,求∠EOB的度数.ACDEFBD EB CAHG21EDC BA7、如图,AB∥CD,EF分别交AB、CD于M、N,∠EMB=50°,MG平分∠BMF,MG交CD于G,求∠1的度数.8、如图,AB ∥CD ,AE 交CD 于点C ,DE ⊥AE ,垂足为E ,∠A =37º,求∠D 的度数.9、如图,已知:21∠∠=, 50=D ∠,求B ∠的度数。

ABCDE第19题10、已知:如图,AB∥CD,∠B=400,∠E=300,求∠D的度数11、如图所示,∠1=72°,∠2=72°,∠3=60°,求∠4的度数.ba341212、已知等腰三角形的周长是16cm .(1)若其中一边长为4cm ,求另外两边的长; (2)若其中一边长为6cm ,求另外两边长; (3)若三边长都是整数,求三角形各边的长.14、如图,AB//CD,EF ⊥AB 于点E ,EF 交CD 于点F ,已知∠1=600.求∠2的度数.E DC BA15、如图所示,把一张长方形纸片ABCD 沿EF 折叠,若∠EFG=50°,求∠DEG 的度数.16、如图所示,已知AB ∥CD,分别探索下列四个图形中∠P 与∠A,∠C 的关系,请你从所得的四个关系中任选一个加以说明.PDCBA P DCBAP DCB A PDCB A(1) (2) (3) (4)17、如图,AB ∥CD ,BF ∥CE ,则∠B 与∠C 有什么关系?请说明理由.NMG F EDC BA18、如图,已知:DE ∥BC ,CD 是∠ACB 的平分线,∠B =70°,∠ACB =50°,求∠EDC 和∠BDC 的度数.19、如图AB∥CD,∠NCM =90°,∠NCB =30°,CM 平分∠BCE ,求∠B 的大小.20、如图5-24,AB ⊥BD ,CD ⊥MN ,垂足分别是B 、D 点,∠FDC =∠EBA . (1)判断CD 与AB 的位置关系;(2)BE 与DE 平行吗?为什么?NMFE DCBA21、如图5-25,∠1+∠2=180°,∠DAE =∠BCF ,DA 平分∠BDF . (1)AE 与FC 会平行吗?说明理由. (2)AD 与BC 的位置关系如何?为什么?(3)BC 平分∠DBE 吗?为什么.AB CDE第18题图ENMCD BA 第19题图图5-24F E21DCBA22、如图5-26,已知:CE =DF ,AC =BD ,∠1=∠2.求证:∠A =∠B .BC23、如图5-27,已知:AB ∥CD ,AB =CD ,求证:AC 与BD 互相平分.B24、如图5-27,已知:E 、F 分别是AB 和CD 上的点,DE 、AF 分别交BC 于G 、H ,∠A =∠D ,∠1=∠2,求证:∠B =∠C .2ABECFD H G125、如图5-28,已知:在∆A B C 中,∠=︒C 90,AC=BC ,BD 平分∠CBA ,D EA B ⊥于E ,求证:AD+DE=BE . 图5-25图5-26图5-26ADEEABCD26、如图5-29,已知:AB ∥CD ,求证:∠B +∠D +∠BED =360︒(至少用三种方法)EABCD27、直线AB 、CD 相交于O ,OE 平分∠AOC ,∠EOA :∠AOD=1:4,求∠EOB 的度数.28、如图,EF ∥AD ,∠1 =∠2,∠BAC = 70°.将求∠AGD 的过程填写完整.因为EF ∥AD ,所以 ∠2 = .又因为 ∠1 = ∠2,所以 ∠1 = ∠3. 所以AB ∥.所以∠BAC + = 180°. 又因为∠BAC = 70°, 所以∠AGD =.29、如图,已知:DE ∥BC ,CD 是∠ACB 的平分线,∠B =70°, ∠ACB =50°,求∠EDC 和∠BDC 的度数.GFEDA CFE DA30、AD ∥BC ,AB ∥DC ,∠1=100º,求∠2,∠3的度数31、∠ECF =900,线段AB 的端点分别在CE 和CF 上,BD 平分∠CBA ,并与∠CBA 的外角平分线AG 所在的直线交于一点D ,(1)∠D 与∠C 有怎样的数量关系?(直接写出关系及大小)(2)点A 在射线CE 上运动,(不与点C 重合)时,其它条件不变,(1)中结论还成立吗?说说你的理由。

七年级下几何证明题

七年级下几何证明题

HG 2 1FEDC BA几何证明题专项练习 1、直接根据图示填空:(1)∠α=_________ (2)∠α=_________ (3)∠α=_________ (4)∠α=_________ (5)∠α=_________ (6)∠α=_________(1) (2) (3)(4) (5) (6) 2、填空完成推理过程: 如图,∵AB ∥EF ( 已知 )∴∠A + =1800( ) ∵DE ∥BC ( 已知 )∴∠DEF= ( )2. ∠ADE= ( ) 3. 已知:如图,∠ADE =∠B ,∠DEC =115°. 求∠C 的度数.4. 已知:如图,AD ∥BC ,∠D =100°,AC 平分∠BCD ,求∠DAC 的度数.3.5.已知AB ∥CD ,∠1=70°则∠2=_______,∠3=______,∠4=______ 5. 4.6. 已知:如图4, AB ∥CD ,直线EF 分别交AB 、CD 于点E 、F ,∠BEF 的平分线与∠DEF 的平分线相交于点P .求∠P 的度数6. 7. 8.7.直线AB 、CD 相交于O ,OE 平分∠AOC ,∠EOA :∠AOD=1:4,求∠EOB 的度数.8. 如图,AB∥CD,EF分别交AB、CD于M、N,∠EMB=50°,MG平分∠BMF,MG交CD于G,求∠1的度数.9.如图,AB ∥CD ,AE 交CD 于点C ,DE ⊥AE ,垂足为E ,∠A =37º,求∠D 的度数.ABCD E12.9.10.11.10.如图,已知:21∠∠=,ο50=D ∠,求B ∠的度数。

11.已知:如图,AB∥CD,∠B=400,∠E=300,求∠D的度数 12.如图所示,∠1=72°,∠2=72°,∠3=60°,求∠4的度数.13,如图,AB14. 13./CD,EF ⊥AB 于点E ,EF 交CD 于点F , 已知∠1=600.求∠2的度数.15.如图所示,把一张长方形纸片ABCD 沿EF 折叠,若∠EFG=50°,求∠DEG 的度数.15.16. 如图所示,已知AB ∥CD,分别探索下列四个图形中∠P 与∠A,∠C 的关系,•请你从所得的四个关系中任选一个加以说明.(1) (2) (3) (4)17.如图,AB∥CD,BF∥CE,则∠B 与∠C 有什么关系?请说明理由.18.如图,已知:DE∥BC,CD 是∠ACB 的平分线,∠B=70°,∠ACB=50°,求∠EDC 和∠BDC 的度数.19.如图AB∥CD,∠NCM=90°,∠NCB=30°,CM 平分∠BCE,求∠B 的大小. 20.如图5-24,AB ⊥BD ,CD ⊥MN ,垂足分别是B 、D 点,∠FDC =∠EBA . (1)判断CD 与AB 的位置关系;(2)BE 与DE 平行吗?为什么?21.如图5-25,∠1+∠2=180°,∠DAE =∠BCF ,DA 平分∠BDF . (1)AE 与FC 会平行吗?说明理由. (2)AD 与BC 的位置关系如何?为什么?(3)BC 平分∠DBE 吗?为什么. 20.22.如图5-28,已知:E 、F 分别是AB 和CD 上的点,DE 、AF 分别交BC 于G 、H ,∠A =∠D ,∠1=∠2,求证:∠B =∠C .23. 22. 24. .23如图,CD 是∠ACB 的平分线,∠EDC=025,∠DCE=025, ∠B=070证:DE ο90ο37ο160图,已知:AB ∠∠∠360︒直线AB 、CD 相交于O ,OE 平分∠AOC ,∠EOA :∠AOD=1:4,求∠EOB 的度数. 28、如图,已知OB 平分∠AOC,且∠2:∠3:∠4=2:5:3,求∠1,∠2,∠3,∠4的度数. 29. 如图所示,AB ∥ED ,∠B =48°,∠D =42°, BC 垂直第17题图 第18题图第19题图图5-24图5-25OBC D A图5EABODC 图42 ABECFD HG 1 E A B CD28题HG 2 1FEDC BA于CD 吗?下面给出两种添加辅助线的方法,请选择一种,对你作出的结论加以说明.30.如图,已知:DE ∥BC ,CD 是∠ACB 的平分线,∠B =70°, ∠ACB =50°,求∠EDC 和∠BDC 的度数. ∥BC ,AB ∥DC ,∠1=100º,求∠2,∠3的度数32、如图,已知:21∠∠=,ο50=D ∠,求B ∠的度数。

七下几何证明题1(2020)倍长中线法

七下几何证明题1(2020)倍长中线法

1
A 七下几何综合题(1)
1. 如图,AD 为△ABC 的中线,问AB+AC>2AD 吗?为什么?
2.如图,AD 是△ABC 的中线,E 为AC 上一点,AE=EF. 问AC=BF 吗?为什么?
3.如图,AD 为△ABC 的角平分线,E 为BC 的中点,EF ∥AD 交CA 的延长线于F. 那么BG=CF 成立吗?请说明理由.
A
D F G
E C B D A F
4.如图,AD 是△ABC 的角平分线, DE=CD, EF=AC. 问EF ∥AB 吗?为什么?
5. 如图,AM 是△ABC 的中线,∠AMB 、∠AMC 的平分线交AB 于E,交AC 于F, 问BE +CF>EF 吗?为什么?
6.如图,在△ABC 中,BC=2AB, D 是BC 的中点,M 是BD 的中点. 问AC=2AM 吗?为什么?
E C
D A F
E C M A
F M C B D A
7.已知: 如图,△ABC 中,AB=AC, CE=BD.问DF=EF 吗?请说明理由.
8、以△ABC 的两边AB 、AC 为腰分别向外作等腰Rt △ABD 和等腰Rt △ACE,∠BAD=∠
CAE=90°,连接DE,M 、N 分别是BC 、DE 的中点.探究:AM 与DE 的位置关系及数量关系.
(1)如图①当△ABC 为直角三角形时,AM 与DE 的位置关系是 ,线段AM 与DE 的数量关系是
(2)将图①中的等腰Rt △ABD 绕点A 沿逆时针方向旋转θ°(0<θ<90)后,如图②所示,(1)问中得到的两个结论是否发生改变?并说明理由.
D B C A F。

[必刷题]2024七年级数学下册几何证明专项专题训练(含答案)

[必刷题]2024七年级数学下册几何证明专项专题训练(含答案)

[必刷题]2024七年级数学下册几何证明专项专题训练(含答案)试题部分一、选择题:1. 在下列几何图形中,哪一个图形可以通过旋转90度后与自身重合?()A. 矩形B. 等边三角形C. 正方形D. 梯形2. 下列哪个条件可以证明两个三角形全等?()A. 两边和其中一边的对角相等B. 两角和其中一角的对边相等C. 两边和它们的夹角相等D. 两角和其中一边相等3. 在直角坐标系中,点A(2,3)关于原点对称的点是()A. (2,3)B. (2,3)C. (2,3)D. (3,2)4. 下列哪个条件可以证明两个角相等?()A. 两角的度数相等B. 两角的对边相等C. 两角的邻边相等D. 两角的余角相等5. 若一个等腰三角形的底边长为10cm,腰长为13cm,则该三角形的周长为()A. 32cmB. 42cmC. 46cmD. 52cm6. 在平行四边形ABCD中,若AB=6cm,BC=8cm,则对角线AC的取值范围是()A. 2cm < AC < 14cmB. 2cm < AC < 6cmC. 2cm < AC < 8cmD. 6cm < AC < 14cm7. 下列哪个条件可以证明两个平行四边形全等?()A. 一组对边平行且相等B. 两组对边平行C. 一组对边平行,另一组对边相等D. 一组对边平行且相等,另一组对边也相等8. 在三角形ABC中,若AB=AC,∠B=60°,则三角形ABC的周角为()A. 120°B. 180°C. 240°D. 360°9. 下列哪个图形是轴对称图形?()A. 等腰梯形B. 直角梯形C. 等腰三角形D. 一般四边形10. 若一个正方形的对角线长为10cm,则该正方形的面积是()A. 50cm²B. 100cm²C. 200cm²D. 500cm²二、判断题:1. 若两个三角形的两边和夹角分别相等,则这两个三角形全等。

七年级数学典型几何证明50题

七年级数学典型几何证明50题

初一典型几何证明题1、已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 解:延长AD 到E,使AD=DE ∵D 是BC 中点 ∴BD=DC在△ACD 和△BDE 中 AD=DE ∠BDE=∠ADC BD=DC∴△ACD ≌△BDE ∴AC=BE=2 ∵在△ABE 中 AB-BE <AE <AB+BE ∵AB=4即4-2<2AD <4+2 1<AD <3 ∴AD=22、已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF ∵ BC=ED,CF=DF,∠BCF=∠EDF ∴△BCF ≌△EDF (S.A.S)ADBCA BC DEF 21∴ BF=EF,∠CBF=∠DEF 连接BE在△BEF 中,BF=EF ∴ ∠EBF=∠BEF 。

∵ ∠ABC=∠AED 。

∴ ∠ABE=∠AEB 。

∴ AB=AE 。

在△ABF 和△AEF 中 AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴△ABF ≌△AEF 。

∴ ∠BAF=∠EAF (∠1=∠2)。

3、已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC过C 作CG∥EF 交AD 的延长线于点G CG∥EF,可得,∠EFD=CGD DE =DC∠FDE=∠GDC(对顶角) ∴△EFD≌△CGD EF =CG ∠CGD=∠EFD 又,EF∥AB ∴,∠EFD=∠1 ∠1=∠2 ∴∠CGD=∠2∴△AGC 为等腰三角形, AC =CG 又 EF =CG ∴EF =AC4、已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠CBA CDF2 1 EA证明:延长AB取点E,使AE=AC,连接DE∵AD平分∠BAC∴∠EAD=∠CAD∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=∠C∵AC=AB+BD∴AE=AB+BD∵AE=AB+BE∴BD=BE∴∠BDE=∠E∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C5、已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证明:在AE上取F,使EF=EB,连接CF∵CE⊥AB∴∠CEB=∠CEF=90°∵EB=EF,CE=CE,∴△CEB≌△CEF∴∠B=∠CFE∵∠B+∠D=180°,∠CFE+∠CFA=180°∴∠D=∠CFA∵AC平分∠BAD∴∠DAC=∠FAC∵AC=AC∴△ADC≌△AFC(SAS)∴AD=AF∴AE=AF+FE=AD+BE6、如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。

七年级下几何证明题集锦

七年级下几何证明题集锦

第3题1、填空完成推理过程:[1] 如图,∵AB ∥EF ( 已知 )∴∠A + =1800( ) ∵DE ∥BC ( 已知 )∴∠DEF= ( ) ∠ADE= ( ) 2.(6分) 已知:如图,∠ADE =∠B ,∠DEC =115°. 求∠C 的度数.3. 已知:如图,AD ∥BC ,∠D =100°,AC 平分∠BCD ,求∠DAC 的度数.4.已知AB ∥CD ,∠1=70°则∠2=_______,∠3=______,∠4=______ 4321A CDB 5. 已知:如图4, AB ∥CD ,直线EF 分别交AB 、CD 于点E 、F ,∠BEF 的平分线与∠DEF 的平分线相交于点P .求∠P 的度数6、直线AB 、CD 相交于O ,OE 平分∠AOC ,∠EOA :∠AOD=1:4,求∠EOB 的度数.4.(6分) 如图,AB∥CD,EF分别交AB、CD于M、N,∠EMB=50°,MG平分∠BMF,MG交CD于G,求∠1的度数.ACD E FBDEB CAH G21FED C BAED BAC21FEDBAC如图,AB ∥CD ,AE 交CD 于点C ,DE ⊥AE ,垂足为E ,∠A =37º,求∠D 的度数.4、如图,已知:21∠∠=,50=D ∠,求B ∠的度数。

1. (本题10分)已知:如图,AB∥CD,∠B=400,∠E=300,求∠D的度数1. 如图所示,∠1=72°,∠2=72°,∠3=60°,求∠4的度数.a3412已知等腰三角形的周长是16cm .(1)若其中一边长为4cm ,求另外两边的长; (2)若其中一边长为6cm ,求另外两边长; (3)若三边长都是整数,求三角形各边的长.如图,AB//CD ,AE 交CD 于点C ,DE ⊥AE ,垂足为E ,∠A=370,求∠D 的度数.ABCDEE DC BAAB//CD,EF ⊥AB 于点E ,EF 交CD 于点F ,已知∠1=600.求∠2的度数.10.叙述并证明“三角形的内角和定理”(要求根据下图写出已知、求证并证明)1.如图所示,把一张长方形纸片ABCD 沿EF 折叠,若∠EFG=50°,求∠DEG 的度数. 索发现:如图所示,已知AB ∥CD,分别探索下列四个图形中∠P 与∠A,∠C 的关系,•请你从所得的四个关系中任选一个加以说明.PDCBA P DCBAP DCB A PDCB A(1) (2) (3) (4)如图,AB ∥CD ,BF ∥CE ,则∠B 与∠C 有什么关系?请说明理由.18.如图,已知:DE ∥BC ,CD 是∠ACB 的平分线,∠B =70°,∠ACB =50°,求∠EDC 和∠BDC 的度数.19.如图AB∥CD,∠NCM =90°,∠NCB =30°,CM 平分∠BCE ,求∠B 的大小.第17题图ABCDE第18题图ENM CD BA如图5-24,AB ⊥BD ,CD ⊥MN ,垂足分别是B 、D 点,∠FDC =∠EBA . (1)判断CD 与AB 的位置关系;(2)BE 与DE 平行吗?为什么?NMFE DCBA如图5-25,∠1+∠2=180°,∠DAE =∠BCF ,DA 平分∠BDF . (1)AE 与FC 会平行吗?说明理由. (2)AD 与BC 的位置关系如何?为什么?(3)BC 平分∠DBE 吗?为什么.F 21DCBA如图5-26,已知:CE =DF ,AC =BD ,∠1=∠2.求证:∠A =∠B .B如图5-27,已知:AB //CD ,AB =CD ,求证:AC 与BD 互相平分.C如图5-27,已知:E 、F 分别是AB 和CD 上的点,DE 、AF 分别交BC 于G 、H ,∠A =∠D ,∠1=∠2,求证:∠B =∠C .第19题图图5-24图5-25图5-26 图5-262 ABECFDHG 1如图5-28,已知:在∆ABC 中,∠=︒C 90,AC =BC ,BD 平分∠CBA ,DE AB ⊥于E ,求证:AD +DE =BE .如图5-29,已知:AB //CD ,求证:∠B +∠D +∠BED =360︒(至少用三种方法)EABCD(5分) 直线AB 、CD 相交于O ,OE 平分∠AOC ,∠EOA :∠AOD=1:4,求∠EOB 的度数.23.(6分) 如图,EF ∥AD ,∠1 =∠2,∠BAC = 70°.将求∠AGD 的过程填写完整.因为EF ∥AD ,所以 ∠2 = . 又因为 ∠1 = ∠2,所以 ∠1 = ∠3. 所以AB ∥ .所以∠BAC + = 180°. 又因为∠BAC = 70°,所以∠AGD = .24.(6分) 如图,AB∥CD,EF分别交AB、CD于M、N,∠EMB=50°,MG平分∠BMF,MG交CD于G,求∠1的度数.25.(6分) 如图所示,AB ∥ED ,∠B =48°,∠D =42°, BC 垂直于CD 吗?下面给出两种添加辅助线的方法,请选择一种,对你作出的结论加以说明.AB CDEH G21FEDC BAGFEDA CFE DB AC26. (6分) 如图,已知:DE ∥BC ,CD 是∠ACB 的平分线,∠B =70°, ∠ACB =50°,求∠EDC 和∠BDC 的度数.AD ∥BC ,AB ∥DC ,∠1=100º,求∠2,∠3的度数4、如图,已知:21∠∠=, 50=D ∠,求B ∠的度数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.填空完成推理过程:如图,∵AB ∥EF ( 已知 )∴∠A + =1800( ) ∵DE ∥BC ( 已知 )∴∠DEF= ( ) ∠ADE= ( )2.已知:如图,∠ADE =∠B ,∠DEC =115°.求∠C 的度数.3. 已知:如图,AD ∥BC ,∠D =100°,AC 平分∠BCD ,求∠DAC 的度数.4.已知AB ∥CD ,∠1=70°则∠2=_______,∠3=______,∠4=______4321A CDB5. 已知:如图4, AB ∥CD ,直线EF 分别交AB 、CD 于点E 、F ,∠BEF 的平分线与∠DEF 的平分线相交于点P .求∠P 的度数ACD E FBDEB CAH G21FEDC BA6.直线AB 、CD 相交于O ,OE 平分∠AOC ,∠EOA :∠AOD=1:4,求∠EOB 的度数.7.如图,AB∥CD,EF分别交AB、CD于M、N,∠EMB=50°,MG平分∠BMF,MG交CD于G,求∠1的度数.8.如图,AB ∥CD ,AE 交CD 于点C ,DE ⊥AE ,垂足为E ,∠A =37º,求∠D 的度数.9.如图,已知:21∠∠=, 50=D ∠,求B ∠的度数。

10.已知:如图,AB∥CD,∠B=400,∠E=300,求∠D的度数ABCDEE BAEDBAC21FEDBAC11.如图所示,∠1=72°,∠2=72°,∠3=60°,求∠4的度数.ba341212.已知等腰三角形的周长是16cm .(1)若其中一边长为4cm ,求另外两边的长; (2)若其中一边长为6cm ,求另外两边长; (3)若三边长都是整数,求三角形各边的长.13.如图,AB//CD ,AE 交CD 于点C ,DE ⊥AE ,垂足为E ,∠A=370,求∠D 的度数.14.AB//CD,EF ⊥AB 于点E ,EF 交CD 于点F ,已知∠1=600.求∠2的度数.15.叙述并证明“三角形的内角和定理”(要求根据下图写出已知、求证并证明)16.如图所示,把一张长方形纸片ABCD 沿EF 折叠,若∠EFG=50°,求∠DEG 的度数.17.如图所示,已知AB ∥CD,分别探索下列四个图形中∠P 与∠A,∠C 的关系,•请你对四个图形中的关系加以说明.PDCBA P DCBAP DCB A PDCB A(1) (2) (3) (4)NMG F EDC BA18.如图,AB ∥CD ,BF ∥CE ,则∠B 与∠C 有什么关系?请说明理由.19.如图,已知:DE ∥BC ,CD 是∠ACB 的平分线,∠B =70°,∠ACB =50°,求∠EDC 和∠BDC 的度数.20.如图,AB∥CD,∠NCM =90°,∠NCB =30°,CM 平分∠BCE ,求∠B 的大小.21.如图,AB ⊥BD ,CD ⊥MN ,垂足分别是B 、D 点,∠FDC =∠EBA . (1)判断CD 与AB 的位置关系;(2)BE 与DE 平行吗?为什么?NMFE DCBAABCDEENMCDBA22.如图,∠1+∠2=180°,∠DAE =∠BCF ,DA 平分∠BDF . (1)AE 与FC 会平行吗?说明理由. (2)AD 与BC 的位置关系如何?为什么?(3)BC 平分∠DBE 吗?为什么.F E21DCBA23.如图,已知:CE =DF ,AC =BD ,∠1=∠2.求证:∠A =∠B .B24.如图,已知:AB //CD ,AB =CD ,求证:AC 与BD 互相平分.25.如图,已知:E 、F 分别是AB 和CD 上的点,DE 、AF 分别交BC 于G 、H ,∠A =∠D ,∠1=∠2,求证:∠B =∠C .2 ABECFD HG 1⊥于E,求26.如图,已知:在∆ABC中,∠=︒C90,AC=BC,BD平分∠CBA,DE AB证:AD+DE=BE.27.如图,已知:AB//CD,求证:∠B+∠D+∠BED=360︒(至少用三种方法)A BEC D28.直线AB、CD相交于O,OE平分∠AOC,∠EOA:∠AOD=1:4,求∠EOB的度数.29.如图,EF∥AD,∠1 =∠2,∠BAC = 70°.将求∠AGD的过程填写完整.因为EF∥AD,所以∠2 = .又因为∠1 = ∠2,所以∠1 = ∠3.所以AB∥.所以∠BAC + = 180°.又因为∠BAC = 70°,所以∠AGD = .30.如图,AB∥CD,EF分别交AB、CD于M、N,∠EMB=50°,MG平分∠BMF,MG交CD于G,求∠1的度数.31.如图所示,AB∥ED,∠B=48°,∠D=42°, BC垂直于CD吗?下面给出两种添加辅助线的方法,请选择一种,对你作出的结论加以说明.AB CD E32.如图,已知:DE ∥BC ,CD 是∠ACB 的平分线,∠B =70°, ∠ACB =50°,求∠EDC 和∠BDC 的度数.33.如图,AD ∥BC ,∠B=∠D ,求证:AB ∥CD 。

34.如图CD ⊥AB ,EF ⊥AB ,∠1=∠2,求证:∠AGD=∠ACB 。

35.已知∠1=∠2,∠1=∠3,求证:CD ∥OB 。

B DE /FCA 2G3BDCABD /PCAO2336. 如图,已知∠1=∠2,∠C=∠CDO ,求证:CD ∥OP 。

37. 已知∠1=∠2,∠2=∠3,求证:CD ∥EB 。

38.如图∠1=∠2,求证:∠3=∠4。

39. 已知∠A=∠E ,FG ∥DE ,求证:∠CFG=∠B 。

40.已知,如图,∠1=∠2,∠2+∠3=1800,求证:a ∥b ,c ∥d 。

BD/PCO2BDE /CO 23B D /C A 234B DE FCA G 213a c d b41.如图,AC ∥DE ,DC ∥EF ,CD 平分∠BCA ,求证:EF 平分∠BED 。

42.如图,∠1=450,∠2=1450,∠3=450,∠4=1350,求证:l 1∥l 2,l 3∥l 5,l 2∥l 4。

43.如图,∠1=∠2,∠3=∠4,∠E=900,求证:AB ∥CD 。

44.如图,∠A=2∠B ,∠D=2∠C ,求证:AB ∥CD 。

45.如图,EF ∥GH ,AB 、AD 、CB 、CD 是∠EAC 、∠FAC 、∠GCA 、∠HCA 的平分线,求证:∠BAD=∠B=∠C=∠D 。

A B C D F E 21l l l 3412345l 21A B C D 34E BC D O A B C D F E AG H46.如图,B 、E 、C 在同一直线上,∠A=∠DEC ,∠D=∠BEA ,∠A+∠D=900,求证:AE ⊥DE ,AB ∥CD 。

47.如图,已知,BE 平分∠ABC ,∠CBF=∠CFB=650,∠EDF=500,,求证:BC ∥AE 。

48.已知,∠D=900,∠1=∠2,EF ⊥CD ,求证:∠3=∠B 。

49.如图,AB ∥CD ,∠1=∠2,∠B=∠3,AC ∥DE ,求证:AD ∥BC 。

50.如图,AD ∥BC ,AB ∥DC ,∠1=100º,求∠2,∠3的度数ABC D321B C D E A B C D EA 21B C DF3E A 21B C D 3E AH G21FEDC BAGFEDA CFE DB AC51.如图,已知:21∠∠=, 50=D ∠,求B ∠的度数。

52.如图,已知:∠ECF =900,线段AB 的端点分别在CE 和CF 上,BD 平分∠CBA ,并与 ∠CBA 的外角平分线AG 所在的直线交于一点D ,则:(1)∠D 与∠C 有怎样的数量关系?(直接写出关系及大小)(2)点A 在射线CE 上运动,(不与点C 重合)时,其它条件不变,(1)中结论还成立吗?说说你的理由。

53.阅读理解:“在一个三角形中,如果角相等,那么它们所对的边也相等。

”简称“等角对等边”,如图,在ABC 中,已知∠ABC 和∠ACB 的平分线上交于点F ,过点F 作BC 的平行线分别交AB 、AC 于点D 、E,请你用“等角对等边”的知识说明DE=BD+CE.ED BAC21FEDBA C54.如图,AB//CD ,AE 交CD 于点C ,DE ⊥AE ,垂足为E ,∠A=370,求∠D 的度数.55.如图,AB//CD,EF ⊥AB 于点E ,EF 交CD 于点F ,已知∠1=600.求∠2的度数.56.如图8,∠BAC =90°,AB =AC ,BD ⊥DE ,CE ⊥DE ,求证:DE =BD +CE .57.在△ABC 中,已知∠ABC =66°,∠ACB =54°,BE 是AC 上的高,CF 是AB 上的高,H 是BE 和CF 的交点,求∠ABE 、∠ACF 和∠BHC 的度数.58.已知:AD 为△ABC 中BC 边上的中线,CE ∥AB 交AD 的延长线于E 。

求证:(1)AB =CE ;(2)AD 21(AB + AC ) AB D CE 59.如图,已知ΔABC 中,AB=AC ,E 是AB 的中点,延长AB 到D ,使BD=BA ,求证 :CD=2CE60.如图,在Rt △ABC 中,AB=AC,∠BAC=90°,O 为BC 的中点。

(1)写出点O 到△ABC 的三个顶点A 、B 、C 的距离的关系;(2)如果点M 、N 分别在线段AB 、AC 上移动,在移动中保持AN=BM ,请判断△OMN•的形状,并证明你的结论。

NMCBOA61.如图,在ΔABC 中,AD 平分∠BAC ,DE||AC,EF ⊥AD 交BC 延长线于F 。

求证:∠FAC=∠B62.如图,ΔABC 中,过A 分别作∠ABC , ∠ ACB 的外角的平分线的垂线AD ,AE ,D ,E 为垂足。

求证: (1)ED||BC ;(2)ED=12 (AB+AC+BC );(3)若过A 分别作∠ABC ,∠ACB 的平分线的垂线AD ,AE ,垂足分别为D ,E ,结论有无变化?请加以说明。

63.如图所示,求∠A +∠B +∠C +∠D +∠E +∠F 的度数.FEDCBA64.如图,△ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,∠A=500,∠C=600, 求∠DAC 及∠BOA 。

65.如图,△ABC 中,高AD 与CE 的长分别为4㎝、6㎝,求AB 与BC 的比是多少?66.在△ABC 中,AB=2BC,AD 、CE 分别是BC 、AB 边上的高,试判断AD 和CE 的大小关系,并说明理由。

相关文档
最新文档