第六章 测量误差
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用改正数计算观测值中误差 m =± ± [v2 ] n-1
求最或是值的中误差
l1 + l2 + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ln L= n 1 1 1 dL = dl1 + dl2 + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ dln n n n
根据误差传播定律有: 根据误差传播定律有:
1 2 1 2 1 2 n 2 M = 2 m + 2 m + ⋅⋅⋅⋅⋅⋅ 2 m = 2 m n n n n
1、等精度直接观测平差(求最或是值;评定精度) 、等精度直接观测平差(求最或是值;
真误差: 真误差: ∆1 = l1 – X ∆2 = l2 – X ············ ∆n =ln – X [∆ ] =[ l ] –[ X] n n n [∆ ] X=L- n (n→∞) ) [ X] [ l] [∆ ] n = n – n X=L 单一观测值与真值之差
k
k→∞
2
1
1
k
f2
2
[∆ x ] + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ + f [∆ x ]
2
n
k
n
k
σ = f σ + f σ + ⋅⋅⋅⋅⋅⋅⋅⋅ f σ
2 2 2 2 2 2 Z 1 1 2 2 n
2 n
有限时: 当 k 有限时:
mZ = f1 m1 + f 2 m2 + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ f n mn
2
[v ] m M =± =± n(n − 1) n
2
5.5 不等精度直接观测平差
1、权的概念 、
设对某量进行了两组观测 设第一组观测了4次 设第一组观测了 次 l1 , l2 , l3 , l4 设第二组观测了3次 设第二组观测了 次 l`1 , l`2 , l`3 每组分别取平均值: L1= 每组分别取平均值:
p2 =
λ
m2
2
··················
pn =
λ
mn
2
3、加权平均值的中误差 、
对同一未知量进行了n 次不等精度观测。 对同一未知量进行了 次不等精度观测。
观测值为:l1 , l2 , ·················· ln 。 观测值为: 对应权为:p1 , p2 , ·················· pn 。 对应权为:
∆z(1) = f1 ∆x(1)1 + f 2 ∆x(1)2 + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ + f n ∆x(1)n ∆z(2) = f1 ∆x(2)1 + f 2 ∆x(2)2 + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ + f n ∆x(2)n
…………………………………………
∆z(k) = f1 ∆x(k)1 + f 2 ∆x(k)2 + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ + f n ∆x(k)n
2
mα (k cos α ) m l + ( − kl sin 2α ) ρ
2 2 2 2
2
0
m D = ± (k cos α ) m l
2
ml :视距间隔 l 的读数误差 ≈±1.71×10-5 D 视距间隔 ± × mD = ±100 × 1.71×10-5 Dcos2α × 考虑其它因数影响视距测量的距离精度一般可达到: 考虑其它因数影响视距测量的距离精度一般可达到:
根据误差传播定律有: 根据误差传播定律有:
1 2 1 2 1 2 n 2 M = 2 m + 2 m + ⋅⋅⋅⋅⋅⋅ 2 m = 2 m n n n n
2
m M= n
图示
M 1.8 0.8 0.6 0.4 0.2 5 10 15 20 n
m M= n
5.4 等精度直接观测平差
平差:
根据多余观测求未知量最 可靠值 最或是值)并平定精度(求中误差) (最或是值)并平定精度(求中误差)的过程。 直接平差 间接平差
2 2 2 2 2 2
2 2
2
∂F 2 ∂F 2 ∂F 2 mn m1 + m2 + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ mZ = ∂x ∂x ∂x 1 2 n
2
举例
例1、 设测得圆形的半径 r =1.465m,已知其中误差 m = ± 0.002m, 求 、 , 其周长 l 及其中误差 m l 。 解: l=2πr =2π× 1.465 =9.205 又: dl=2πdr 根据误差传播定律 m l 2 = (2π)2 m 2 m l = 2π( ±0.002)=±0.013m ± 最后得 l = 9.205 ±0.013m
∂F ∂F ∂F dz = dx1 + dx 2 + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ + dx n ∂x 1 ∂x 2 ∂x n
用增量形式表示如下: 用增量形式表示如下:
∆ z = f 1 ∆ x1 + f 2 ∆ x 2 + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ + f n ∆ x n
设想对x 次观测: 设想对 i 进行了 k 次观测:
m2 p1 = =4 2 m1 m2 p2 = =3 2 m2
2、权与中误差的关系 、 m 1 m = = m n 4
1
m 1 m2 = = m n 3
权与中误差成反比,中误差越大,权越小。因此,可用中误差来定义权。 权与中误差成反比,中误差越大,权越小。因此,可用中误差来定义权。
p1 =
λ
m1
2
第6 讲 测量误差
测量误差 系统误差 偶然误差 单一观测值与真值之差 [∆∆] n 衡量一组观测值的精度
真误差: 真误差: ∆i = Li – X 中误差: m = σ`= ± 中误差: 极限误差: 极限误差: ∆极 = 3 m 容许误差: 容许误差: ∆容 = 3 m 高精度测量时 容许误差: 容许误差: ∆容 = 2 m
[ v ]=0
= 12 [(l1 - X) + (l2 - X) + -----+ (ln - X) ] 2 n
∆
δ2
= 12 [∆1 + ∆2+ -----+ ∆n ] 2 n 1 = 2 [∆ 2 ] + 2 (∆1 ∆2+ ∆1 ∆3 -----) n = 12 [∆ 2 ] n [∆2 ]= [v2 ] + nδ2 [∆ 2 ] [∆2 ]= [v2 ] + n [∆ 2 ] ( n-1 ) = [v2 ] n [∆ 2 ] [v2 ] = n n-1
m = σ`= ±
[∆∆] n ∆----真误差无法获得 真误差无法获得 v----或是误差(观测值的改正数) 或是误差(观测值的改正数) 或是误差 令 :x – X=δ i=1,2,3,---------- n
∆i = li – X vi = li – x ∆i – vi= x - X 则:∆i = vi + δ
)
=
[p] [p]
2
m 02 =
[p]
m 02
加权平均值的中误差
一般用观测值的改正 数计算中误差即: 数计算中误差即:
m =± =±
[v2 ] n-1
[∆2 ] =± =± n
M0
2
1 ( p1 2 m 1 2 + p 2 2 m 2 2 + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ p n 2 m n 2 ) = [ p ]2
2 2 2
1
2
2
2
n
k源自文库
2
k
n
k
i , j =1 i≠ j
∑
n
fi f j
[∆ x ∆ x ]
i j
k
对上式两边取极限 k
∞ Lim k→∞
2
根据偶然误差的第四个特性可知: 根据偶然误差的第四个特性可知:
[∆xi ∆xj] k
2
=0
2
[∆ z ] = Lim f [∆ x ] + Lim
2 2 k→∞
l1 + l2 + l3+ l4 4 l`1 + l`2 + l`3 3 l1 + l2 + l3+ l4 + L`1 + l`2 + l`3 7
L2=
观测值的最终结果应该是: 观测值的最终结果应该是: L= 上式实际是: 上式实际是: L=
4L1 + 3L2 4+3
4L1 + 3L2 L= 4+3 4 3 L= L1 + 7 7
推导可以看出: 趋于无穷大时, 从以上推导可以看出:当观测次数 n 趋于无穷大时,算术平均值就 趋向与未知量的真值。 有限时, 趋向与未知量的真值。当n 有限时,通常算术平均值作为未知量的最后结 果称为最或是值 果称为最或是值 2、评定精度(求观测值和最或是值的中误差) 、评定精度(求观测值和最或是值的中误差)
例2、 用误差传播定律分析视线倾斜时的视距测量精度。 、 用误差传播定律分析视线倾斜时的视距测量精度。
D=kLcos2α
∂D = k cos 2 α ∂l ∂D = − k l sin 2α ∂α
所以水平距离D的中误差为: 所以水平距离 的中误差为: 的中误差为
mD = ± =±
2 ∂D ∂D mα ml + ⋅ ρ ∂l ∂α 2 2
∆i = vi + δ
对上式两边平方得: 对上式两边平方得:
i=1,2,3,---------- n
∆i ∆i = vi2 + δ2 + 2δ vi
求和
[∆2 ]= [v2 ] + nδ2 + 2δ[ v ] [∆2 ]= [v2 ] + nδ2 δ2 = (x – X) 2 =( [ l ] - X) 2 = 12 ([l ] – nX) 2 n n
1/300
例3、 对某段距离测量了 次,观测值为 1 , l2 , ··············· ln为相 、 对某段距离测量了n次 观测值为l 互独立的等精度观测值,观测中误差为m,试求其算术平均值的 互独立的等精度观测值,观测中误差为 试求其算术平均值的 中误差。 中误差。 解:
l1 + l2 + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ln L= n 1 1 1 dL = dl1 + dl2 + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ dln n n n
有极限( 有极限(3m) 大小规律
偶然误差
符号规律 抵偿性
Lim n→∞
[∆] n
=0
5.3 误差传播定律
在未知量是通过其它观测值间接求得的情况下。 在未知量是通过其它观测值间接求得的情况下。 例如: 例如:视距测量
平距 D=kLcos2 α 高差 h= k L sin2 α + i – s 一般形式: 一般形式:Z=f ( x1, x2, x3 ············ xn ) 已知各观测值的中误差: 已知各观测值的中误差: m1, m2, m3 ············ mn 求 mz =? 取函数 Z 的全微分
2 1
(p
m1 + p 2 m 2 + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ p n m n
2 2 2 2
2
) = nm
2 0
m1
2
∆ 21 = 1
2 2
mi
2
∆ 2i = 1
2 2
单一观测值的中误差
(p
2
2 1
∆1 + p2 ∆ 2 + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ pn ∆ n
2
) = nm
对上式两边平方求和并除以 k :
[∆ z ] =
2
k
f
2
1
[∆ x ] + f [∆ x ] + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ + f [∆ x ] +
2 2 2
1
k
2 2
2
k
2 n
n
k
i , j =1 i≠ j
∑
n
fi f j
[∆ x ∆ x ]
i j
k
[∆ z ] =
2
k
f
2
1
[∆ x ] + f [∆ x ] + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ + f [∆ x ] +
最或是值的计算公式为: 最或是值的计算公式为:
L0 = p 1l1 + p 2 l 2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ p n l n [ pl ] = [p ] p1 + p 2 + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ p n
L0 =
p 1l1 + p 2 l 2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ p n l n [ pl ] = [p ] p1 + p 2 + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ p n
根据误差传播定律: 根据误差传播定律:
M0
2
1 ( p1 2 m 1 2 + p 2 2 m 2 2 + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ p n 2 m n 2 ) = [ p ]2
因为: 因为:
pi =
M 02 =
λ
mi
[p ]
1
2
且取λ=
m02
2 2
则:
2
(p m
1
2
0
+ p2m0 + ⋅⋅⋅⋅⋅⋅ pnm0
的精度不相同, 由于L1 和 L2 的精度不相同,故在最终结 果中所占的比重也不相同。 果中所占的比重也不相同。
L2
权
权是赋予某一量值(观测值)在最后结果中所占比重大小的数值。 权是赋予某一量值(观测值)在最后结果中所占比重大小的数值。 只有其相对意义。 只有其相对意义。
加权平均值
L=
P1 L1 + p2 L2 p1+ p2