辽宁省大连市高三双基考试数学(理)试题(word版,含答案)
辽宁省大连市2019届高三下学期第一次(3月)双基测试数学(理)试题(解析版)

大连市2019届高三双基测试卷数学(理科)一.选择题:本题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项符合题目要求.1.已知集合,则()A. B.C. D.【答案】B【解析】【分析】直接利用交集的定义求解即可.【详解】,,故选B.【点睛】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合且属于集合的元素的集合.2.=()A. B. C. D.【答案】A【解析】【分析】利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数即可.【详解】因为,故选A.【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.3.已知直线和平面,且,则“”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】由线面垂直的判定定理可得充分性成立;由或可得必要性不成立,从而可得结论.【详解】由线面垂直的判定定理可得,若,则,充分性成立;若,,则或,必要性不成立,所以若,则“”是“”的充分不必要条件,故选A.【点睛】本题通过线面垂直的判断主要考查充分条件与必要条件,属于中档题.判断充分条件与必要条件应注意:首先弄清条件和结论分别是什么,然后直接依据定义、定理、性质尝试.对于带有否定性的命题或比较难判断的命题,除借助集合思想化抽象为直观外,还可利用原命题和逆否命题的等价性判断;对于范围问题也可以转化为包含关系来处理.4.函数的最小正周期为()A. B. C. D.2【答案】D【解析】【分析】利用函数的最小正周期为得出结论.【详解】函数的是小正周期为,故选D.【点睛】本题主要考查正切函数的周期性,属于基础题. 函数的周期为.5.已知某高中的一次测验中,甲.乙两个班级的九科平均分的雷达图如图所示,下列判断错误的是()A. 乙班的理科综合成绩强于甲班B. 甲班的文科综合成绩强于乙班C. 两班的英语平均分分差最大D. 两班的语文平均分分差最小【答案】D【分析】先对图象数据进行处理,再逐一进行判断即可得到结果.【详解】由甲、乙两个班级的九科平均分的雷达图可得:乙班的理科综合成绩强于甲班,即选项正确,甲班的文科综合成绩强于乙班,即选项正确,两班的英语平均分分差最大,即选项正确,两班地理平均分分差最小,即选项错误,故选D.【点睛】本题考查了对图象数据的处理能力,意在考查灵活应用所学知识解答问题的能力,属于中档题.6.已知向量,则=()A. 6B. -6C. -1D. 1【答案】B【解析】【分析】先求得,再代入计算可得结果.【详解】因为所以,故选B.【点睛】本题考查了平面向量的减法运算以及数量积的性质及其运算,意在考查对基础知识的掌握与应用,属于基础题.7.函数的值域为()A. B. C. D.【答案】B【解析】【分析】根据分式函数分子常数化,结合指数函数,分式函数的性质进行求解即可.【详解】,,,即,即函数的值域为,故选B .【点睛】本题主要考查函数的值域的求解,利用分式函数分子常数化以及指数函数,属于中档题.求函数值域的基本方法:①观察法;②利用常见函数的值域;③分离常数法,将形如的函数分离常数,结合的取值范围确定函数的值域;④换元法;⑤配方法;⑥数形结合法;⑦单调性法(也可结合导数);⑧基本不等式法;⑨判别式法;⑩有界性法.8.已知的内角所对边分别为,且满足,则()A. B. C. D.【答案】A【解析】【分析】利用正弦定理以及两角和的正弦公式、诱导公式可得结果.【详解】,,由,根据正弦定理:可得,所以,那么,故选A.【点睛】本题考查正弦定理和三角形的内角和定理以及两角和的正弦公式的运用,考查运算能力,属于基础题.正弦定理是解三角形的有力工具,其常见用法有以下三种:(1)知道两边和一边的对角,求另一边的对角(一定要注意讨论钝角与锐角);(2)知道两角与一个角的对边,求另一个角的对边;(3)证明化简过程中边角互化;(4)求三角形外接圆半径.9.已知正实数满足,则的最小值为()A. 1B.C. 2D. 4【答案】C【解析】【分析】利用,可得,从而可求出的最小值.【详解】,当且仅当时取等号,,,故的最小值为2,故选C.【点睛】本题主要考查了基本不等式的应用,意在考查对基础知识掌握的熟练程度,属于基础题.10.我国古代数学名著《九章算术》中有如下问题:“今有羡除,下广六尺,上广一丈,深三尺,末广八尺,无深,袤七尺,问积几何”,羡除是一个五面体,其中三个面是梯形,另两个面是三角形,已知一个羡除的三视图如图粗线所示,其中小正方形网格的边长为1,则该羡除的表面中,三个梯形的面积之和为()A. 40B. 43C. 46D. 47【答案】C【解析】【分析】画出几何体的直观图,利用三视图所给数据,结合梯形的面积公式,分别求解梯形的面积即可.【详解】由三视图可知,该几何体的直现图如图五面体,其中平面平面,,底面梯形是等腰梯形,髙为3 ,梯形的高为4 ,等腰梯形的高为,三个梯形的面积之和为,故选C.【点睛】本题考查空间几何体的三视图,求解表面积,属于中档题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.11.已知抛物线的焦点为,点在抛物线上,以为边作一个等边三角形,若点在抛物线的准线上,则()A. 1B. 2C. 2D. 2【答案】B【解析】【分析】求出抛物线的焦点坐标,利用抛物线的定义求出直线的倾斜角,可得直线方程,直线方程与抛物线方程联立求得点坐标,再利用抛物线的定义求解即可.【详解】抛物线的焦点坐标,由抛物线的定义可得等于到准线的距离,因为在准线上,所以与准线垂直与轴平行,因为三角形为正三角形,所以可得直线,可得,可得,则,,等于到准线的距离,故选B.【点睛】本题考查抛物线的定义与简单性质的应用,属于难题. 与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到点的距离与点到直线的距离的转化:(1)将抛线上的点到准线距离转化为该点到焦点的距离;(2)将抛物线上的点到焦点的距离转化为到准线的距离,使问题得到解决.12.若是函数的极大值点,则实数的取值集合为()A. B.C. D.【答案】A【解析】【分析】利用排除法,时,时,分别利用导数可得在上递增,不是极值点,排除;从而可得结果.【详解】时,,,在上递增,不是极值点,排除;时,,,在上递增,不是极值点,排除,故选A.【点睛】本题主要考查利用导数研究函数的极值、排除法解选择题,属于难题. 特殊法是“小题小做”的重要策略,排除法解答选择题是高中数学一种常见的解题思路和方法,这种方法即可以提高做题速度和效率,又能提高准确性,这种方法主要适合下列题型:(1)求值问题(可将选项逐个验证);(2)求范围问题(可在选项中取特殊值,逐一排除);(3)图象问题(可以用函数性质及特殊点排除);(4)解方程、求解析式、求通项、求前项和公式问题等等.二.填空题:本题共4小题,每小题5分,共20分.13.展开式中的常数项为__________.【答案】24【解析】【分析】先求出二项式的展开式的通项公式,令的指数等于0,求出的值,即可求得展开式中的常数项.【详解】二项式的展开式的通项公式,令,可得,所以展开式中的常数项为,故答案为24.【点睛】本题主要考查二项展开式定理的通项与系数,属于简单题. 二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和与各项的二项式系数和;(3)二项展开式定理的应用.14.若满足约束条件,则的最大值为__________.【答案】8【解析】【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论.【详解】画出满足约束条件的平面区域,如图所示:由,得,平移,显然直线过时,最大,由,解得,所以的最大值为,故答案为8.【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数最优解的对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.键.15.已知定义在上的函数,若函数为偶函数,函数为奇函数,则=_____.【答案】0【解析】【分析】根据函数为偶函数,函数为奇函数可得和,可得,则函数是周期为4的周期函数,结合函数的对称性可得且,从而可得结果.【详解】根据题意,为偶函数,则函数的图象关于直线对称,则有,若函数为奇函数,则函数的图象关于点对称,则有,则有,设,则变形可得,则函数是周期为4的周期函数,又由函数的图象关于点对称,则且,则有,可得,,故答案为0.【点睛】本题主要考查函数的奇偶性、周期性与对称性的判定以及应用,属于难题. 函数的三个性质:单调性、奇偶性和周期性,在高考中一般不会单独命题,而是常将它们综合在一起考查,其中单调性与奇偶性结合、周期性与抽象函数相结合,并结合奇偶性求函数值,多以选择题、填空题的形式呈现,周期性与奇偶性相结合,此类问题多考查求值问题,常利用奇偶性及周期性进行交换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.16.已知双曲线的左、右焦点分别为、,上存在一点满足,且到坐标原点的距离等于双曲线的虚轴长,则双曲线的渐近线方程为__________.【答案】【解析】【分析】设,由双曲线的定义可得,结合,分别在、,中利用余弦定理列等式,消去可得,从而可得结果.【详解】设 ,可得 ,可得(1),在中,由余弦定理可得(2),因为,所以在,中分别利用余弦定理可得,,两式相加可得 ,分别与(1)、(2)联立得,消去可得,所以双曲线的渐近线方程为,即,故答案为 .【点睛】本题考查双曲线的方程、定义与渐近线方程,以及余弦定理的应用,属于难题. 求解与双曲线性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.三.解答题:共70分,解答应写出文字说明,证明过程或演算步骤。
辽宁省大连市2024届高三上学期期末双基测试数学检测卷(有答案)

辽宁省大连市2024届高三上学期期末双基测试数学检测卷注意事项:1.请在答题纸上作答,在试卷上作答无效2.本试卷分和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.第I 卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求1.已知集合,则( ){}*11,2,3,4,5,2x A B x ⎧⎫-==∈⎨⎬⎩⎭N A B ⋂=A.B.C.D.{}5{}2,4{}3,5{}1,3,52.设复数,则( )1i4i 1i z -=++z =A.0B.1C.2D.33.在中,若,则( )ABC 1,3AD mDB CD CA CBλ==+ λ=A. B. C. D.231313-23-4.在财务审计中,我们可以用“本•福特定律”来检验数据是否造假.本福特定律指出,在一组没有人为编造的自然生成的数据(均为正实数)中,首位非零的数字是这九个事件不是等19~可能的.具体来说,随机变量是一组没有人为编造的首位非零数字,则χ.则根据本•福特定律,首位非零数字是1与首位非零数字()1lg,1,2,,9k P k k k χ+=== 是8的概率之比约为( )(保留至整数,参考数据:).lg20.301,lg30.477==A.4B.6C.7D.85.已知曲线“表示焦点在轴上的椭圆”的一个充分非()()22:log 2024log 20241a b C x y +=y必要条件是( )A.B.0a b <<1a b<<C. D.32a b <<1b a<<6.已知函数,若存在实数满足()()[]2log ,0,2πsin ,2,104x x f x x x ⎧∈⎪=⎨⎛⎫∈ ⎪⎪⎝⎭⎩1234,,,x x x x ,且,则的值是( )()()()()1234f x f x f x f x ===1234x x x x <<<34124x x x x +⋅A.3B.6C.8D.127.设,则( )11155,2ln sin cos ,ln48844a b c ⎛⎫==+= ⎪⎝⎭A.B.a b c <<b a c<<C. D.c b a <<a c b <<8.已知函数满足下列条件:①对任意()sin πcos π(1,1,0)f x a x b x a b ωωω=+>>>恒成立;②在区间上是单调函数;③经过点()1,4xf x f ⎛⎫∀∈≤ ⎪⎝⎭R ()f x 34,77⎡⎤⎢⎥⎣⎦的任意一条直线与函数图像都有交点,则的取值范围是()()b ()y f x =ωA.B.(]280,13,9⎡⎤⋃⎢⎥⎣⎦()280,13,9⎡⎤⋃⎢⎥⎣⎦C.D.][(0,13,5⎤⋃⎦()30,1,52⎡⎤⋃⎢⎥⎣⎦二、多项选择题:(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.)9.在中,角的对边分别是,若,ABC ,,A B C ,,a b c cos sin a B b A c +=,则()222sin a ab c ab C =+-=A. B.tan 2C =π3A =C.D.的面积为b =ABC10.如图,在棱长为1的正方体中,分别是的中点,1111ABCD A B C D -M N P 、、1111C D C C A A 、、则()A.平面截正方体所得截面为等腰梯形1A MN B.三棱锥的体积为1D MNB -112C.异面直线与MN 1D P D.1A D BM⊥11.已知三个盒子,其中盒子内装有2个红球,1个黄球和1个白球;盒子内装,,A B C A B 有2个红球,1个白球;盒子内装有3个红球,2个黄球.若第一次先从盒子内随机抽取C A 1个球,若取出的球是红球放入盒子中;若取出的球是黄球放入盒子中;若取出的球是A B 白球放入盒子中,第二次从第一次放入盒子中任取一个球,则下列说法正确的是()C A.在第一次抽到黄球的条件下,第二次抽到红球的概率为12B.第二次抽到红球球的概率为13C.如果第二次抽到的是红球,则它来自号盒子的概率最大B D.如果将5个不同的小球放入这三个盒子内,每个盒子至少放1个,则不同的放法有150种12.已知椭圆左焦点,左顶点,经过的直线交椭圆于两点(点22:143x y E +=F C F l ,A B 在第一象限),则下列说法正确的是( )A A.若,则的斜率2AF FB=l k =B.的最小值为4AF BF +274C.以为直径的圆与圆相切AF 224x y +=D.若直线的斜率为,则,AC BC 12,k k 1294k k ⋅=-第II 卷三、填空题:(本大题共4小题,每小题5分,共20分,把答案填在答卷纸的相应位置上)13.如图所示是一个样本容量为100的频率分布直方图,则由图形中的数据,可知其分60%位数为__________.14.十九世纪下半叶集合论的创立,奠定了现代数学的基础.著名的“康托三分集”是数学理性思维的构造产物,具有典型的分形特征,其操作过程如下:将闭区间均分为三段,去掉中[]0,1间的区间段,记为第一次操作:再将剩下的两个区间...分为三段,并各12,33⎛⎫ ⎪⎝⎭120,,,133⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦自去掉中间的区间段,记为第二次操作...,如此这样,每次在上一次操作的基础上,将剩下的各个区间分别均分为三段,同样各自去掉中间的区间段.操作过程不断地进行下去,以至无穷,剩下的区间集合即是“康托三分集”.若使去掉的各区间长度之和小于,则操作的次18212024数的最大值为__________.n (参考数据:)456722220.1975,0.1317,0.0878,0.05853333⎛⎫⎛⎫⎛⎫⎛⎫≈≈≈≈ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭15.已知,若点是抛物线上的任意一点,点是圆上任意()3,0A P 28y x =Q 22(2)1x y -+=一点,则最小值是__________.2||PA PQ16.如图所示,在圆锥内放入两个球,它们都与圆锥相切(即与圆锥的每条母线相切,12,O O 切点圆分别为.这两个球都与平切,切点分别为,丹德林(G.Dandelin )12,C C α12,F F 利用这个模型证明了平面与圆锥侧面的交线为椭圆,为此椭圆的两个焦点,这两个α12,F F 球也称为G.Dandelin 双球.若圆锥的母线与它的轴的夹角为,的半径分别为3012,C C 2,5,点为上的一个定点,点为椭圆上的一个动点,则从点沿圆锥表面到达M 2C P P 的路线长与线段的长之和的最小值是__________.M 1PF 四、解答题:(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知函数,其中,__________.()()sin 2cos2f x x xϕ=++π2ϕ<请从以下二个条件中任选一个,补充在题干的横线上,并解答下列问题:①是的一个零点;②.π12-()f x ()π03f f ⎛⎫= ⎪⎝⎭(1)求的值;ϕ(2)当时,若曲线与直线恰有一个公共点,求的取值范围.ππ,63x ⎡⎤∈-⎢⎥⎣⎦()y f x =y m =m 注:如果选择条件①和条件②分别解答,按第一个解答计分.18.(本小题满分12分)如图,多面体,四边形是矩形,梯形平面ABCDNM DBMN ,ABCD AD ∥,BC DN ⊥,为中点,.π,2ABCD CBD ∠=E AB 2,1AD BD DN BC ====(1)证明:平面;AN ∥MDE (2)求平面和平面所成角余弦值.MNC MNA 19.(本小题满分12分)已知数列满足.设.{}n a ()*111,1,N 2,n n n a n a a n a n +-⎧==∈⎨⎩为奇数为偶数21nn b a -=(1)证明:数列为等比数列,并求出的通项公式;{}2n b -{}n b (2)求数列的前项和.{}n a 2n 20.(本小题满分12分)某农场2021年在3000亩大山里投放一大批鸡苗,鸡苗成年后又自行繁育,今年为了估计山里成年鸡的数量,从山里随机捕获400只成年鸡,并给这些鸡做上标识,然后再放养到大N 山里,过一段时间后,从大山里捕获1000只成年鸡,表示捕获的有标识的成年鸡的数目.X (1)若,求的数学期望;10000N =X (2)已知捕获的1000只成年鸡中有20只有标识,试求的估计值(以使得最N ()20P X =大的的值作为的估计值).N N 21.(本小题满分12分)已知抛物线经过点,经过点的直线与抛物线交两2:2(0)G x py p =>()2,1()0,2l G ,A B 点,过两点作抛物线的切线相交于点为线段(两点除外)上一动点,,A B G ,P Q AB ,A B 直线与抛物线交两点.PQ G ,C D (1)若的的面积为,求直线方程;PABl (2)求证.PCPD CQDQ=22.(本小题满分12分)已知函数(为自然对数的底数).()ln 1x a x f x e a x +=--e (1)若,求实数的值;()0f x ≥a (2)证明:;()21sin 2ln x x xe x x->+-(3)对恒成立,求取值范围.2π,,2cos 2x x xe ax x x x ∞⎛⎫∈-+≥+- ⎪⎝⎭a 答案与评分标准数学说明:一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对解答题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半:如果后继部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数.四、只给整数分数,选择题和填空题不给中间分第I 卷一、单项选择题1.C2.D3.A2.D3.A4.B5.C6.A7.B8.A.7.解:,构造函数由211111ln sin cos ln 1sin ,1ln 188444b c ⎛⎫⎛⎫⎛⎫⎛⎫=+=+=++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭得,构造函数()sin ,ln 1x x x x <+<11111sin ,ln 1sin sin ,;44444a b ⎛⎫>+<<> ⎪⎝⎭()()()2211ln 1,11(1)(1)x xf x x f x x x x x =+-='-=++++在上单调递增,即,故()f x []0,1c a >c a b>>另法:1111ln ,1ln 1444x x x c ⎛⎫⎛⎫-<=++>⎪ ⎪⎝⎭⎝⎭8.方法一:由函数可知函数周期是,()sin πcos π(0)f x a x b x ωωω=+>2π2πωω=因为①对任意恒成,所以函数的一条对称轴是,()1,4x f x f ⎛⎫∀∈≤ ⎪⎝⎭R 14x =又因为在区间是单调函数,所以,()f x 34,77⎡⎤⎢⎥⎣⎦()11347114147m m ωω⎧+⨯≤⎪⎪⎨⎪++⨯≥⎪⎩所以,所以为0或1.12,m m -<≤∈Z m 当时,;当时,0m =2809ω<≤1m =285659ω≤≤由已知得,因为经过点的任意一条直线与函数图像max ()f x =()b ()y f x =,所以.b a≥因为①对任意恒成,所以.()1,4x f x f ⎛⎫∀∈≤ ⎪⎝⎭R 1πππcos sin 0444f a b ωωω'⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭所以,ππtan,1tan 144a b ωω=-≤≤由或,得或,所以或2809ω<≤285659ω≤≤ππ044ω<≤3ππ7π449ω≤≤01ω<≤2839ω≤≤方法二:()()ππ,tan ,0,,2b f x x a ωϕϕϕ⎛⎫⎛⎫=+=∈ ⎪ ⎪⎝⎭⎝⎭由①可知:,即(*)1πππ42m ωϕ⨯+=+()πππ,42m m Z ωϕ=-++∈由②可知:,()34ππ,π77x ωϕωϕωϕ⎡⎤+∈++⎢⎥⎣⎦因为函数在上是单调函数,所以34,77⎡⎤⎢⎥⎣⎦()34πππ,ππ,π,7722k k k Z ωϕωϕ⎡⎤⎡⎤++⊆-++∈⎢⎥⎢⎥⎣⎦⎣⎦将(*)带入化简可得:3724721127k k T πωπϕππωπϕπ⎧+≥-+⎪⎪⎪+≤+⎨⎪⎪≥⎪⎩2828()5528(),()907k m k m k m Z ωωω⎧≥-+-⎪⎪⎪≤--∈⎨⎪<≤⎪⎪⎩所以,下同方法一.2828560,,959ω⎛⎤⎡⎤∈⋃ ⎥⎢⎥⎝⎦⎣⎦二、多项选择题9.AC10.ACD11.AD12.BCD10.解:对于,在正方体中,连接,因为分别为中点,所以A 11,CD AB ,M N 111,CD C C ,在正方体中,,所以,又因为MN ∥1D C 1A B ∥1D C MN ∥1A B 1MA NB ==所以平面截正方体所得截面为等腰梯形,A 正确;1A MN 对于B ,错误;1111111111,3322224D MNB B D MN D MN V V BC S B--==⨯⨯=⨯⨯⨯⨯= 对于C ,因为,所以异面直线与所成角即为直线与所成角,MN∥1D C MN 1DP 1D C 1D P 设所成角为,则,C 正θ222222111132||cos 2D P D C CP D P D C θ⎛⎫+-+-===⋅确;对于,在正方体中易知平面平面,所以正D 1A D ⊥11,ABC D BM ⊂11ABC D 1,D A D BM ⊥确.11.解:记第一次抽到第红、黄、白球的事件分别为,则有123,,A A A ,对于,在第一次抽到黄球的条件下,则黄球放入盒()()()12311,24P A P A P A ===A B 子内,因此第二次抽到红球的概率为正确;21,A42P ==于B ,记第二次在第盒内抽到白球的事件分别为,而两两互,,A B C ()1,2,3i B i =123,,A A A 斥,和为,记第二次在第号盒内抽到红球的事件分别为,而Ω,,A B C ()1,2,3i C i =两两互斥,和为,错;记第123,,A A A Ω()()()112233111,,,222P C A P C A P C A B ===∣∣∣二次抽到红球的事件为,C ()()()33111111111()2242422i i i i i i i P C P AC P A P C A ==⎡⎤==⋅=⨯+⨯+⨯=⎣⎦∑∑∣若取出的球是红球放入盒子中;若取出的球是黄球放入盒子中;若取出的球是白球放入A B 盒子中,第二次从第一次放入盒子中任取一个球,C ()()()()()()()()111222121111112242,112422P A P C A P A P C A P A C P A C P C P C ⨯⨯⋅⋅======∣∣∣∣,,()()()()333311142142P A P C A P A C P C ⨯⋅===∣∣即第二次抽到的是红球,则它来自盒子的概率最大,不正确;A C 把5个不同的小球分成3组的不同分组方法数是种,22353522C C C A ⎛⎫+ ⎪⎝⎭将每一种分组方法分成的小球放在3个盒子中有种不同放法,33A 由分步乘法计数原理得不同的放法种数是种,D 正确.2233535322150C C C A A ⎛⎫+⋅= ⎪⎝⎭易知:,对于,若,显然直线的斜率存在且大于0,设()()121,0,1,0F F -A 112AF F B =1l 直线,联立椭圆方程,化简整理得()()()111221(0),,,,l y k x k A x y B x y =+>()221143y k x x y ⎧=+⎪⎨+=⎪⎩,显然,又()22224384120k x k x k +++-=221212228412Δ0,,4343k k x x x x k k -->+==++,故,整理得,由()()1111221,,1,AF x y F B x y =---=+()12121x x --=+1223x x +=-解得,又,故错误;21221221228432341243k x x k x x k x x k ⎧-+=⎪+⎪⎪+=-⎨⎪-⎪=⎪+⎩254k =0k >k A =对于,易知直线的斜率不为0,设直线,联立椭圆方B 1l()()11122:1,,,,l x my A x y B x y =-程,化简整理得,显然221143x my x y =-⎧⎪⎨+=⎪⎩()2234690m y my +--=,由点在轴的上方,显然,又12122269Δ0,,3434m y y y y m m ->+==++A x 120,0y y ><,1112,AF yBF y ====()()2221121211143439134m m AF BF m m +++=====++,故()11111111114311332744554444BF AF AF BF AF BF AF BF AF BF ⎛⎛⎫⎛⎫ +=++=++≥+= ⎪ ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝,当且仅当,即时取等,正确;11114BF AF AF BF =112AF BF =B 对于,设的中点为,则,又C ()111,,A x y AF P 111,22x y P -⎛⎫⎪⎝⎭,由椭圆定义知:,即,22AF OP ==21222AF AF +=122AF OP =-又的圆心为,半径为2,故以为直径的圆与圆内切,224x y +=()0,0O 1AF 224x y +=正确;C 方法二:12.解:易知:,对于,若,显然直线的斜率存在且大于()()121,0,1,0F F -A 112AF F B=1l0,设直线,联立椭圆方程,化简整理得()()111221,,,,l x my A x y B x y =-221143x my x y =-⎧⎪⎨+=⎪⎩,显然()2234690mx my +--=12122269Δ0,,,3434m y y y y m m ->+==++又,故,()()1111221,,1,AF x y F B x y =---=+122y y =-由,解得,又,故,A 错误;122122126349342m y y m y y m y y ⎧+=⎪+⎪-⎪=⎨+⎪=-⎪⎪⎩245m =0k>k =对于,由点在轴的上方,显然,又B A x 120,0y y ><,1112,AF y BF y ==()()2221121211143439134m m AF BF m m +++=====++,故()11111111114311332744554444BF AF AF BF AF BF AF BF AF BF ⎛⎛⎫⎛⎫ +=++=++≥+= ⎪ ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝,当且仅当,即时取等,正确;11114BF AF AF BF =112AF BF =B 对于D ,,2121212122222698124,,,34343434m m y y y y x x x x m m m m ---++==+==++++()()()212122*********934,D124822244243434AC BCy y y y m k k m x x x x x x m m -+⋅====--+-++++++⋅+++正确第II 卷三、填空题:(本大题共4小题,每小题5分,共20分,把答案填在答卷纸的相应位置上)13.1414.5解:记表示第次去掉的长度,,第2次操作,去掉的线段长为,n a n 113a ∴=222,3a =第次操作,去掉的线段长度为,n 123n n na -=,则,12133212313nnn S ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦∴==- ⎪⎝⎭-21821220310.10033202432024n n<>⎛⎫⎛⎫-⇒≈ ⎪ ⎪⎝⎭⎝⎭由的最大值为5.56220.1317,0.0878,33n⎛⎫⎛⎫≈≈∴ ⎪ ⎪⎝⎭⎝⎭15.4-解:由题意得抛物线的焦点为,准线方程为.28y x =()2,0F 2x =-又点是抛物线上一点,点是圆上任意一点,P Q 22(2)1x y -+=max ||1,PQ PF ∴=+∴.令,点的坐标为,则,22||||1PA PA PQ PF ≥+1t PF =+P (),P P x y ()233P X PF t t =-=-≥,()()()222222||338(33)83412P P P P PA x y x x t t t t ∴=-+=-+=--+-=-+,当且仅当,即22||412124441PA t t t PF t t -+∴==+-≥-=+12t t =时t =等号成立.的最小值为.2||PA PQ∴4-16.6解:在椭圆上任取一点,连接交球于点,交球于点,P VP 1O Q 2O R连接,在与中有:111112,,,,O Q O F PO PF O R 11ΔO PF 1ΔO PQ ,(为圆的半径,为圆的半径,),111O Q O F =1r 1C 2r 2C ,11190O QP O F P ∠∠== 为公共边,所以,所以,1O P 111ΔΔO PF O PQ ≅1PF PQ =设点沿圆锥表面到达的路线长为,P M PM d 则,1PM PM PF d PQ d PQ PR QR+=+≥+=当且仅当为直线与椭圆交点时取等号,P VM ,所以最小值为6,125261sin302r r QR --===四、解答题:(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)解:选条件①(1)由题设.πππsin cos 01266f ϕ⎛⎫⎛⎫⎛⎫-=-++-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以.πsin 6ϕ⎛⎫-= ⎪⎝⎭因为,所以.ππ22ϕ-<<2πππ363ϕ-<-<所以.ππ63ϕ-=-所以.π6ϕ=-(2)由(1)()π1sin 2cos2cos262f x x x x x⎛⎫=-+=+ ⎪⎝⎭.πsin 26x ⎛⎫=+ ⎪⎝⎭令ππ5π2t 666t x ⎛⎫=+- ⎪⎝⎭……所以在单调递增,在单调递减,y sint =ππ,62⎡⎤-⎢⎥⎣⎦π5π,26⎡⎤⎢⎥⎣⎦于是,当且仅当,即时,取得最大值1;ππ262x +=π6x =()f x 当且仅当,即时,取得最小值.ππ266x +=-π6x =-()f x 12-又,即时,.π5π266x +=π3x =π5π1sin 362f ⎛⎫==⎪⎝⎭所以的取值范围是.m {}11,122⎡⎫-⋃⎪⎢⎣⎭选条件②.(1)由题设.2π2πsin cos0sin cos33ϕϕ⎛⎫+=++ ⎪⎝⎭整理得.πsin 6ϕ⎛⎫-= ⎪⎝⎭以下同选条件(1).18.(本小题满分12分)证明:(1)连接线段交与于点,连接,BN DM O OE 四边形是矩形,点是线段中点, DBMN ∴O BN 点是中点,, E AB OE ∴∥AN 平面平面,OE ⊂ ,MDE AN ⊄MDE平面.AN ∴∥MDE (2),AD ∥π,,2BC CBD DA DB ∠=∴⊥平面平面,DN ⊥ ,,ABCD DA DB ⊂,,ABCD DN DA DN DB ∴⊥⊥三条直线两两互相垂直,,,DN DA DB ∴以为原点,以为轴正方向建立空间直角坐标系,D ,,DA DB DN,,x y z ()()()()0,2,2,0,0,2,2,0,0,1,2,0M N A C -设平面的法向量为,MNA ()()(),,z ,0,2,0,2,0,2m x y NM NA ===-,令,则0220,200m NA x z y m NM ⎧⋅=-=⎧⎪∴⎨⎨=⋅=⎩⎪⎩ 1x =()1,0,1m = 设平面的法向量为,MNC ()()(),,,0,2,0,1,0,2n a b c NM MC ===--,令,则,020,200n MC a c b n NM ⎧⋅=--=⎧⎪∴⎨⎨=⋅=⎩⎪⎩ 2a =()2,0,1n =- 设平面与平面所成角为,则MNC MNA θ||cos |cos ,|||||m n m n m n θ⋅=<>===平面与平面.∴MNC MNA 19.(本小题满分12分)解:(1)由题意可知:,111b a ==,()121221212212222n n n n n n b a a a a b ++--===-=-=-故,()11222,210,20n n n b b b b +-=--=-≠∴-≠ 得,1222n n b b +-=-故是以为首项,以为公比的等比数列,{}2n b -121b -=-2q =且,故1*22,n n b n --=-∈N 1*22,N n nb n -=-+∈(2)由(1)知,,即,1*22,N n n b n -=-+∈1*2122,N n n a n --=-+∈由题意知:,故,()*11,212,2n n n a n k a k N a n k +-=-⎧=∈⎨=⎩*2211,n n a a n N -=-∈故数列的前项和{}n a 2n ()()2135212462n n n S a a a a a a a a -=+++++++++ ()135212n a a a a n-=++++- ()0121222222n n n-⎡⎤=-+++++-⎣⎦ 1122322312n n n n+-=-⨯+=-++-20.(本小题满分12分)解:(1)以服从超几何分布,且,X 10000,400N M ==故.()40010004010000E X =⨯=(2)当时,;1380N <()200P X ==当时,1380N ≥()20980400400100020N NC C P X C -⋅==令,则()2010004004001000N N C C f N C -⋅=()()()()()()20980400140010001209804004001000111000140011400980N N N NC C f N N N C C C f N N N C +-+-⋅++-+-==⋅++--22139899939913781379N N N N -+⨯=--,22139899939913781379,19999N N N N N -+⨯≥--∴≤当时,;当时,138019999N ≤≤()()1f N f N ≤+20000N ≥,()()1f N f N >+所以当或20000时,最大,所以的值为19999或20000.19999N =()f N N 21.(本小题满分12分)解:(1)已知抛物线经过点,所以抛物线2:2(0)G x py p =>()2,12:4G x y =设,由题意可知直线斜率存在,设直线方程为,()()1122,,,A x y B x y AB AB 2y kx =+联立方程组,可得,242x y y kx ⎧=⎨=+⎩2480x kx --=所以,21212Δ16320,4,8k x x k x x =+>+==-所以弦长2AB x =-=,所以切线方程:,即①12y x '=AP ()11112y y x x x -=-2111124y x x x =-同理可得切线方程:②BP 2221124y x x x =-联立①和②方程组21122211241124y x x x y x x x ⎧=-⎪⎪⎨⎪=-⎪⎩解得:,所以,122,22x x x k y +===-()2,2P k -又因为点到直线距离P AB d 所以,()3221422ABPS AB d k =⨯=+=ò可得,即,所以直线方程为21k =1k =±AB 2y x =±+(2)方法一:设,设,()()()003344,,,,,Q x y C x y D x y (),,1,1PC CQ PD DQ λμλμ==≠-≠-所以,所以,()()3303032,2,x k y x x y y λ-+=--03032121k x x y y λλλλ+⎧=⎪⎪+⎨-+⎪=⎪+⎩代入抛物线方程得:,()()()2002412k x y λλλ+=+-+化简得()()22200004448480,xy kx y k λλ-+-+++=同理,()()22200004448480x y kx y k μμ-+-+++=即是方程的两根,,λμ()()22200004448480xy x kx y x k -+-+++=因为点在直线上,即,()00,Q x y AB 004480kx y -+=所以方程化为,可得,()222004480xy x k -++=0λμ+=即成立.PCPD CQDQ=方法二:设,()()()3344,,,,,Q Q Q x y C x y D x y 由题意知直线的斜率存在,设直线方程为:,PQ PQ ()()22,y m x k m k +=-≠联立方程组,可得,()2422,x y y m x k ⎧=⎪⎨+=-⎪⎩24880x mx km -++=,()23434Δ164880,4,88m km x x m x x km =-+>+==+因为,3,QPC x DQ x =-=-4,,Q PD x CQ x =-=-因为所以()()()()344320,20Q Q k x x x k x xx -->-->||||||||QPC DQ PD CQ x -=----()()()23434341422Q m k x x x k x x x x ⎡⎤=+---++⎣⎦③()()()()221448164124Q Q m k m x km m k m x km ⎡⎤⎡⎤=+-++=+-++⎣⎦⎣⎦由两条直线联立:,可得,()222y m x k y kx ⎧+=-⎨=+⎩24Q km x k m +=-+代入③可知()()22441240km PC DQ PD CQ m k m km k m +⎡⎤-=+-++=⎢⎥-+⎣⎦即成立.PCPD CQDQ=22.(本小题满分12分)解(1)方法一:,()()()ln 0,ln 10,ln 10x x x f x xe a x x e a x x +≥∴-+-≥∴-+-≥ 令,对任意恒成立,令,ln ,.10tt x x t R e at =+∈∴--…t ∈R ()1t h t e at =--当时,,与恒成立矛盾,不合题意;0a <101220a h e e a ⎛⎫=-<-< ⎪⎝⎭()0h t …当时,,与恒成立矛盾,不合题意;0a =()()111,1110t h t e h e e -=--=-=-<()0h t …当时,在上递减,在上递增,0a >()(),t h t e a h t =-'(),ln a ∞-()ln ,a ∞+的最小值为.()h t ∴()ln ln 1h a a a a =--令,则,知在上递增,在上递减,()ln 1a a a a ϕ=--()ln a a ϕ'=-()a ϕ()0,1()1,∞+,要使,当且仅当.()max ()10a ϕϕ∴==()ln 10a a a a ϕ=--…1a =综上,实数的值为1.a 方法二:,()()()ln 0,ln 10,ln 10x x x f x xe a x x e a x x +≥∴-+-≥∴-+-≥ 令,对任意恒成立,ln ,.10tt x x t e at =+∈∴--R …t ∈R 当时,,因为,所以;0t >1t e a t -≤1111t e t t t -+->=1a ≤当时,,因为,所以;0t <1t e a t -≥1111t e t t t -+-<=1a ≥当时,不等式恒成立;0t =综上,实数的值为1.a 方法三:将等价为,当时,()0f x ≥()ln 10x g x xe ax a x =---≥0a <,与恒成立矛盾,不合题意,当时,也不合题意101220a h e e a ⎛⎫=-<-< ⎪⎝⎭()0h t …0a =当时0a >,()()()()()()1111x xxx xe a x x e a x a g x x e a x x x '+-+-+=+--==令,所以在单调递增,()()(),10x x h x xe a h x x e ==+'->()h x ()0,∞+因为,()()()00,10a a h a h a ae a a e =-<=-=->所以,使得,即,即,()00,x ∞∃∈+()00h x =00x X e a =00ln ln x x a +=当,即,所以单调递减;()()000,,0x x h x '∈<()0g x '<()g x 当,即,所以单调递增,()()00,,0x x h x ∞'∈+>()0g x '>()g x 所以()()0min 000000()ln 1ln 1ln 1x g x g x x e ax a x a a x x a a a ==---=-+-=--令,()()ln 1,ln a a a a aϕϕ'=--=-当单调递增;当单调递减,()()()0,1,0,a a a ϕϕ>'∈()()()1,,0,a a a ∞ϕϕ∈+<'可知.()()10a ϕϕ≤=所以当且仅当时成立.1a =()ln 10x g x xe ax a x =---≥即时,.()0f x ≥1a =(2)方法一:证明:由(1)知,当时,,即,1a =ln 10x xe x x ---…ln 1xxe x x ++…,22ln x x e x x x x ∴++…证明:等价于证明下面证明()21sin 2ln xx xe x x->+-,()()2ln 2ln 21sin x x x x x x x ++>+--即证.222sin 0x x x -+->令.()()222sin ,212cos g x x x x g x x x-+=-'=--当时,显然单调递增,,01x <…()g x '()()π112cos112cos03g x g '=-'<-=…在上单调递减,,()g x ∴(]0,1()()122sin10g x g =->…当时,显然,即.1x >222sin 0x x x -+-…()0g x >故对一切,都有,即.()0,x ∞∈+()0g x >()()2ln 2ln 21sin x x x x x x x ++>+--故原不等式成立.()()22ln 21sin x x e x x x >+--方法二:证明:由(1)知,当时,,即,1a =ln 10x xe x x ---…ln 1xxe x x ++…22ln x x e x x x x∴++…证明:等价于证明下面证明()21sin 2ln xx xe x x->+-,()()2ln 2ln 21sin x x x x x x x ++>+--即证.222sin 0x x x -+->因为,所以.2221(1)0x x x x -+--=-≥221x x x -+≥+因为,显然.sin ,1sin x x x >≥222sin 0x x x -+-…故原不等式成立.()()22ln 21sin x x e x x x >+--(3)方法一:令,()()2cos ,sin x x g x e ax x g x e a x=--+=--'①若,当时,,1a >0x ≥()cos x g x e x =-''在单调递增,()()0,g x g x >'∴'' [)0,∞+,()()()100,1sin 1110a g g a e a a a a +=+=--+>+-'-'= 故存在唯一,使得,则当为减函数,()00,x ∞∈+()00g x '=()()00,,x x g x ∈,此时,与题意不符(舍).()()()00,00g g x g =∴<'= ()0xg x ∴<②若1a ≤(i )当,则由①可知,在单调递增,0x ≥()()cos 0,x g x e x g x =-≥'''[)0,∞+在单调递增,所以()()()010,g x g a g x ∴-≥'>'>[)0,∞+()()00g x g ≥=所以成立.22cos x xe ax x x x ≥+-(ii )当在单调递增,()()()π,0,cos ,sin ,2x x x g x e x g x e x g x ⎛⎫∈-=-=+ '⎪⎝⎭'''''''π,02⎛⎫- ⎪⎝⎭,故存在唯一,使得,()π2π01,102g g e -⎭''''⎛⎫=-=-< '⎪'⎝ 0π,02x ⎛⎫∈- ⎪⎝⎭()00g x '''=当时,在上单调递减,0π,2x x ⎛⎫∈- ⎪⎝⎭()()0,g x g x <'''''0π,2x ⎛⎫- ⎪⎝⎭当时,在上单调递增,()0,0x x ∈()()"'0,g x g x >''()0,0x ,故存在唯一,使得,()π2π00,02g g e -⎛'⎫=-='''> ⎪⎝⎭10π,2x x ⎛⎫∈- ⎪⎝⎭()10g x ''=当时,在上单调递增,1π,2x x ⎛⎫∈- ⎪⎝⎭()()0,g x g x >'''1π,2x ⎛⎫- ⎪⎝⎭当时,在上单调递减,()1,0x x ∈()()0,g x g x <'''()1,0x 在恒成立,()()π2π010,10,02g a g e a g x -⎛⎫=->-=-+>∴> ⎪⎝⎭''' π,02⎛⎫- ⎪⎝⎭在单调递增恒成立,()g x ∴π,02⎛⎫- ⎪⎝⎭()()()00,0g x g xg x ∴<=∴>时,恒成立,1a ∴≤()0xg x >综上所述,1a ≤方法二:因为,所以.22cos xxe ax x x x ≥+-()2cos 0x x e ax x --+≥当时,恒成立,所以恒成立,0x ≥2cos 0x e ax x --+≥2cos xe x ax -+≥令在上()()()2cos ,sin 11sin 10,x x x e x x x e x x x x ϕϕϕ=-+-=--≥+--≥'[)0,x ∞∈+单调递增,,所以,所以.()()00x ϕϕ≥=2cos xe x x ax -+≥≥1a ≤当时,恒成立,所以恒成立,π02x -<≤2cos 0x e ax x --+≤2cos x e x ax -+≤令,()()2cos ,sin 1x x x e x x x e x ϕϕ=-+-'-=-当时,,令,使得,0x <()cos xx e x ϕ=-''0πcos 0,,02x e x x ⎛⎤-=∃∈- ⎥⎝⎦00cos x e x =当时,在上单调递增,0π,2x x ⎛⎫∈- ⎪⎝⎭()()0,x x ϕϕ>'∴''π,02⎛⎫- ⎪⎝⎭当时,在上单调递减,()0,0x x ∈()()0,x x ϕϕ<'∴''()0,0x ,()ππ22ππ00,sin 1022e e ϕϕ--⎛⎫⎛⎫=-=---=> ⎪ ⎪⎝'⎝⎭'⎭ 恒成立,()π,0,02x x ϕ⎛⎤∴ ''∀∈->⎥⎝⎦在上单调递增减,在上单调递增,()x ϕ'π,02x ⎛⎤∈- ⎥⎝⎦()()()00,x x ϕϕϕ'≥='π,02x ⎛⎤∈- ⎥⎝⎦所以,所以,所以.综上所述.()()00x ϕϕ≤=2cos xe x x ax -+≤≤1a ≤1a ≤方法三:()2cos 0x x e ax x --+≥①当时,恒成立,即在恒成立,令0x >2cos 0x e ax x --+≥2cos x e xa x -+≤()0,∞+,()()()21sin 2cos 2cos (0),x x x e x x x e xh x x h x x x --+--+=='>令在上单调()()()()()1sin 2cos ,cos 0,x x g x x e x x x g x x e x g x =--+>'-=-∴()0,∞+递增,在上单调递增,()()()()00,0,g x g h x h x ∴>'>=∴∴()0,∞+,由洛必达法则()()0h x h ∴>()01,1h a =∴≤②当时,恒成立,即在恒成立,π02x -<<2cos 0xe ax x --+≤2cos x e x a x -+≤π,02⎛⎫- ⎪⎝⎭同方法一①,,()()cos 0,cos x x g x x e x e x=-=∴='存在唯一,使得,0π,02x ⎛⎫∈- ⎪⎝⎭()00g x '=当时,在上单调递减,0π,2x x ⎛⎫∈- ⎪⎝⎭()()()cos 0,x g x x e x g x =-<'0π,2x ⎛⎫- ⎪⎝⎭当时,在上单调递增,()0,0x x ∈()()()cos 0,x g x x e x g x =->'()0,0x ,()π2πππ00,10222g g e -⎛⎫⎛⎫=-=---< ⎪ ⎪⎝⎭⎝⎭ 在恒成立,在单调递减,()0g x ∴<π,02⎛⎫- ⎪⎝⎭()()0,h x h x <∴'∴π,02⎛⎫- ⎪⎝⎭,()()0h x h ∴>用洛必达法则.()01,1h a =∴≤③当时,恒成立,0x =()2cos 0x x e ax x --+≥综上所述,1a ≤(用洛必达法则扣1分)。
大连市2019年高三年级双基测试题数学理

辽宁省大连市2019年高三年级双基测试卷数学试题(理科)说明: 1.本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22—24题为选考题,其它题为必考题。
共150分。
考试时间120分钟。
2.考生作答时时,将答案答在答题纸上,在本试卷上答题无效。
第I 卷(共60分)一、选择题(本大题共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的) 1.设复数i z i z 32,4321+-=-=,则21z z -在复平面内对应的点位于 ( )A .第一象限B .第二象限C .第三象限D .第四象限1.已知全集U=R ,集合}20{<<=x M ,集合}1{≥=x N ,则集合)(N C M U ⋂等于( ) A .}10|{<<x x B .}20|{<<x xC .}1|{<x xD .φ3.若数列}{n a 的前n 项和为n S )(2R a n an ∈+=,则下列关于数列}{n a 的说法正确的是( )A .}{n a 一定是等差数列B .}{n a 从第二项开始构成等差数列C .0≠a 时,}{n a 是等差数列D .不能确定其为等差数列4.已知b a ,是两个非零向量,给定命题|||||:|b a b a p =⋅,命题R t q ∈∃:,使得tb a =,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 5.为保证树苗的质量,林业管理部门在每年3月12日植树节前都对树苗进行检测,现从甲、乙两种树苗中各抽测了10株树苗的高度(单位长度:cm ),其茎叶图如图 1所示,则下列描述正确的是 ( ) A .甲种树苗的平均高度大于乙种树苗的平均高度,甲种树苗比乙种树苗长得整齐 B .甲种树苗的平均高度大于乙种树苗的平均高度,乙种树苗比甲种树苗长得整齐 C .乙种树苗的平均高度大于甲种树苗的平均高度,乙种树苗比甲种树苗长得整齐 D9 1 040 95310 2 67 1237 3 044667图16.若一个几何体的三视图如图 2所示(单位长度:cm ),则此几何体的表面积是 ( ) A .2)2420(cm +B .221cmC .2)2424(cm +D .224cm7.某程序框图如图3所示,现输入如下四个函数,则可以输出的函数是 ( )A .2)(x x f =B .xx f 1)(=C .xe xf =)(D .x x f sin )(=8.图4为)||,0,0)(sin()(πϕωϕω<>>+=A x A x f 的图象的一段,则其解析式为( ) A . )3sin(3π-=x yB .)32sin(3π-=x yC .)32sin(3π+=x yD .)32sin(3π-=x y9.如图5,用4种不同的颜色对图中5个区域涂色(4种颜色全部使用),要求每个区域涂一种颜色,相邻的区域不能涂相同的颜色,则不同的涂色种数有 ( ) A .72种 B .96种 C .108种 D .120种 10.函数672)(2-+-=x x x f 与函数x x g -=)(的图象所围成的封闭图形的面积为 ( ) A .32B .2C .38D .311.过抛物线)0(22>=p px y 的焦点F 的直线l 与抛物线在第一象限的交点为A ,与抛物线的准线的交点为B ,点A 在抛物线准线上的射影为C ,若48,=⋅=BC BA FB AF ,则抛物线的方程为( )A .x y 42=B .x y 82= C .x y 162=D .x y 242=12.若)2(2)()(,0|,lg |)(ba fb f a f b a x x f +==<<=,则b 的值所在的区间为( )A .(1,2)B .(2,3)C .(3,4)D .(4,5)第Ⅱ卷(共90分)二、填空题(本大题共4小题,每小题5分,共20分。
大连市2022年高三双基测试数学试卷及答案

2022年大连市高三双基测试卷数 学命题人:王爽 张振华 张甲乾 校对人:王爽注意事项:1.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.2.考生作答时,将答案答在答题卡上,在本试卷上答题无效.考试结束后,将本试卷和答题卡一并交回.第I 卷(选择题 共60分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1. 若集合A ={x|x 2−2x −8<0}, B ={x|x <3},则A ∩B = ( ) (A )(−∞,4) (B )(−∞,−2) (C )(−2,3) (D )(3,4)2. 复数1+i 1−i的共轭复数是(i 为虚数单位) ( )(A )i (B )−i (C )2i (D )−2i3. 将函数f(x)=3sin(x +π6)的图像向右平移π4个单位长度后,所得图像对应的函数解析式可以是 ( ) (A )y =3sin(x −π12) (B )y =3sin(x +2π3)(C )y =3sin(x +5π12) (D )y =3sin(x −π3)4. 1970年4月24日中国第一颗人造地球卫星“东方红一号”成功发射,东方红一号发射的目标被归结为12个字:“上得去、抓得住、听得到、看得见”.然而,卫星本身是一个直径只有1米的球形72面体,在轨道上被太阳照射时亮度相当于7等星,而在天气、光线都好的情况下,人的肉眼基本看不见7等星.设计师们釆用“借箭显星”:在第三级火箭上安装一个可以撑开的球(也称“观测球”),观测球撑开时在太阳照射下的亮度相当于2等星,这样就实现了“看得见”这一目标.已知两颗星的星等与亮度满足:m 1− m 2=2.5(lg E 2−lg E 1) ,其中星等为m i 的星的亮度为E i (i =1,2),则在太阳照射下,观测球的亮度是卫星亮度的( )倍(A )100 (B )50 (C )10 (D )55. 已知双曲线C:x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,曲线C 上存在一点P使得ΔPF 1F 2为等腰直角三角形,则双曲线C 的离心率为 ( ) (A )√2−1 (B )√2 (C )√5+12(D )√2+16.五行学说是华夏民族创造的哲学思想,是华夏文明的重要组成部分.古人认为,天下万物皆由金、木、水、火、土五种属性的物质组成,如图,分别是金、木、水、火、土这五行彼此之间存在的相生相克的关系.若从这五行中任选不同的两行,则这两行相克的概率为( ) (A )35(B )12(C )25(D )147. 函数f (x )=x 3cosx e x +e −x的图像大致是 ( )(A ) (B )(C ) (D )8. 如图所示,正方体ABCD −A 1B 1C 1D 1中,点O 为底面ABCD 的中心,点P 在侧面BCC 1B 1的边界及其内部移动,若D 1O ⊥OP ,则异面直线D 1P 与AB 所成角的余弦值的最大值为 ( ) (A )23(B )√22(C )√53(D ) √63二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分.)9. 变量x 与变量y 的20对数据记为(x i ,y i ),其中i ∈N ∗,i ≤20,201120i i x x ==∑,201120i i y y ==∑,根据最小二乘法求得回归直线方程是y ̂=b ̂x +a ̂,变量间的相关系数为r ,则下列说法中正确的是( )(A )利用回归直线方程计算所得的y ̂i 与实际值y i 必有误差 (B )回归直线y ̂=b ̂x +a ̂必过点(x,y)(C )若所有的点(x i ,y i )都在回归直线y ̂=b ̂x +a ̂上,则|r|=1 (D )若变量x 与y 正相关,则0r >1(第8题图)(第6题图)10. 已知两个正四棱锥,它们的所有棱长均为2,下列说法中正确的是 ( ) (A )若将这两个正四棱锥的底面完全重合,得到的几何体的顶点都在半径为√2的球面上 (B )若将这两个正四棱锥的底面完全重合,得到的几何体中有6对棱互相平行 (C )若将这两个正四棱锥的一个侧面完全重合,则两个棱锥的底面互相垂直 (D )若将这两个正四棱锥的一个侧面完全重合,得到的几何体的表面积为8+6√3 11.若圆C 1:x 2+y 2−4ax +4a 2−4=0和圆C 2:x 2+y 2+4by −16+4b 2=0(a,b ∈R) 恰有三条公切线,则下列结论正确的是 ( ) (A )b+3a−3≥1 (B )−3√2≤a +b ≤3√2(C )4≤(a −3)2+(b −4)2≤64 (D )−3≤ab ≤3 12. 如图所示,将平面直角坐标系中的格点(横、纵坐标均为整数的点)的横、纵坐标之和作为标签,例如:原点处标签为0,记为a 0;点(1,0)处标签为1,记为a 1;点(1,1)处标签为2,记为a 2;点(0,1)处标签为1,记为a 3;点(−1,1)处标签为0,记为a 4;……以此类推,格点(i,j)(i,j ∈Z)处标签为i +j ,记S n =a 1+a 2+⋯+a n ,则 ( ) (A )a 2022=−2 (B )S 2022=−1 (C )a 8n =0 (D )S 4n 2+3n =n(n−1)2第Ⅱ卷(非选择题 共90分)三、填空题(本大题共4小题,每小题5分,共20分.)13. 已知向量a =(−1,2),b =(3,m),若(a +b)⊥a ,则|a −b|= . 14. 已知在(x −2)n 的展开式中,第3项和第10项的二项式系数相等,则展开式的系数和为 .15. 已知抛物线E:y 2=4x 的焦点为F ,过F 作一条直线与抛物线E 及其准线都相交,交点从左到右依次为A ,B ,C ,若BA ⃗⃗⃗⃗⃗ +√5BF ⃗⃗⃗⃗⃗ =0,则线段BC 的中点到x 轴的距离为 . 16. 已知函数f(x)=e x −8x m−x +2x 2e x(m ≠0)有三个零点x 1,x 2,x 3,且有x 1<x 2<x 3,则(2−e x 1x 1)√(2−e x 2x 2)(2−e x 3x 3)的值为 .四、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.) 17. (本小题满分10分)已知等比数列{a n }中,公比q >0,a 1+a 2=6,a 3−a 2=4. (I)求{a n }的通项公式; (II) 记b n =log 2a n ,求数列11{}n n b b 的前n 项和T n .18. (本小题满分12分)ΔABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2b =2a cos C −c . (I)求角A 的大小;(II)若点D 为BC 的中点,且AD =2,求边a 的最大值.如图,在四棱锥P −ABCD 中,AB ∥CD ,BC =CD =AD =12AB =2, PB ⊥AD . (I)证明:AD ⊥平面PBD ;(II)在下面三个条件中选择两个条件: ,求点A 到平面PBC 的距离. ① PB =PD ;②二面角P −AD −B 为60°;③直线PB 与平面ABCD 成角为60°.20. (本小题满分12分) 已知椭圆E:x 2a2+y 2b 2=1(a >b >0)的左,右焦点为F 1,F 2,离心率e =23,P 为椭圆E 上任意一点,且满足PF 1⃗⃗⃗⃗⃗⃗⃗ ⋅PF 2⃗⃗⃗⃗⃗⃗⃗ 的最小值为1. (I)求椭圆E 的标准方程;(II)经过右焦点F 2的直线l 与椭圆E 交于A ,B 两点,若ΔF 1AB 的三边长|F 1A |,|AB |,|BF 1|成等差数列,求ΔF 1AB 的面积.DC BAP(第19题图)某地区出现了一种病毒性传染病疫情,该病毒是一种人传人,不易被人们直接发现,潜伏时间长,传染性极强的病毒.我们把与该病毒感染者有过密切接触的人群称为密切接触者,一旦发现感染者,社区会立即对其进行流行病学调查,找到其密切接触者进行隔离观察.通过病毒指标检测,每位密切接触者为阳性的概率为1−p(0<p<1),且每位密切接触者病毒指标是否为阳性相互独立.调查发现某位感染者共有10位密切接触者,将这10位密切接触者隔离之后立即进行病毒指标检测.检测方式既可以采用逐个检测,又可以采用“k合1检测法”.“k合1检测法”是将k个样本混合在一起检测,混合样本中只要发现阳性,则该组中各个样本必须再逐个检测;若混合样本为阴性,则可认为该混合样本中每个人都是阴性.(I)若逐个检测,发现恰有2个人样本检测结果为阳性的概率为f(p),求f(p)的最大值点p0;(II)若采用“5合1检测法”,总检测次数为X,求随机变量X的分布列及数学期望E(X);(III) 若采用“10合1检测法”,总检测次数Y的数学期望为E(Y),以(I)中确定的p0作为p的值,试比较E(X)与E(Y)的大小(精确到0.1).附:215=32768.22. (本小题满分12分)已知函数f(x)=e x−ax,g(x)=ax−ln x,其中a∈R.(I)若x>0时,f(x)⋅g(x)>0恒成立,求实数a的取值范围;(II)若函数F(x)=f(x)+g(x)的最小值为m,试证明:函数G(x)=e x−m−ln x有且仅有一个零点.2022年大连市高三双基测试数学参考答案与评分标准说明:一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对解答题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数,选择题和填空题不给中间分. 一.单项选择题1.(C )2.(B )3.(A )4.(A )5.(D )6.(B )7.(B )8.(C ) 二.多项选择题9.(B )(C )(D ) 10.(A )(B )(D ) 11.(B )(C ) 12.(A )(D ) 二.填空题13.5 14. −1 15.1 16.12 三.解答题17.解:(Ⅰ)由123264a a a a +=⎧⎨-=⎩,可知1121164a a q a q a q +=⎧⎨-=⎩,即2164q q q +=-, 解得13q =-(舍),或2q =……………………………………………………………………….2分 将2q =代入,126a a +=中 ,得12a =所以112n n n a a q -==……………………………………………………………………………..5分 (Ⅱ)22log log 2n n n b a n ===………………………………………………………………..7分 所以()1111111n n b b n n n n +==-++ 所以122311********* (1122311)n n n T b b b b b b n n n +=+++=-+-++-=-++……..10分 18.解:(Ⅰ)由22cos b a C c =-,得2sin 2sin cos sin B A C C =-,所以()2sin 2sin cos sin A C A C C +=-,所以2sin cos 2cos sin 2sin cos sin A C A C A C C +=- 即1cos 2A=-………………………………………………………………………………………3分 23A π=………………………………………………………………………………………..……4分 (Ⅱ)由于2AB AC AD +=,所以()()222AB ACAD +=,22216AB AC AB AC ++⋅=,即2216AB AC AB AC +-⋅=…….①由于BC AC AB =-,所以()22BC AC AB=-2222BC AC AB AB AC =+-⋅,即222BC AC AB AB AC =++…….②将①式代入②中,得:2162BC AB AC =+………..………………………………………8分 又由①式可知22162AB AC AB AC AB AC +⋅=+≥⋅所以16AB AC ⋅≤,当且仅当AB AC =时等号成立, …………………………………10分 所以216248BC AB AC =+≤,即43BC ≤所以a 边的最大值为b c =.…………………………………………………………12分 19.解:(I )取AB 中点E ,连接DE ,可知四边形BCDE 是平行四边形,所以AD AB BC DE ===21,所以点D 在以AB 为直径的圆上,所以BD AD ⊥,且ADE ∆是等边三角形……………..2分 又因为PB AD ⊥,B BD PB = ,且PB ,⊂BD 平面PBD , 所以⊥AD 平面PBD . ……………………………………….4分(II )选①②,因为⊥AD 平面PBD ,所以PD AD ⊥,又因为BD AD ⊥,所以二面角B AD P --的平面角为PDB ∠,所以︒=∠60PDB ,又因为PB PD =,所以PBD ∆是等边三角形. ………………………………………………….6分EDC BAP因为⊥AD 平面PBD ,⊂AD 平面ABCD ,所以平面ABCD ⊥平面PBD ,连接CE 交BD 于O ,则O 为BD 的中点,连接PO ,则PO ⊥BD ,因为平面ABCD ⊥平面PBD ,平面ABCD 平面BD PBD =,所以PO ⊥平面ABCD ,所以PO OE ⊥,由题意易知OE ∥AD ,所以OE ⊥BD .所以,,OE OB OP 两两互相垂直。
辽宁省大连市2023届高三上学期期末双基测试数学试题解析版

2023年大连市高三双基测试数学注意事项:1.请在答题纸上作答,在试卷上作答无效.2.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.第Ⅰ卷━.单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求.1.已知集合{}1,2,3,4,5A =,12x B x Z ⎧⎫-=∈⎨⎬⎩⎭,则A B = ()A.{}5 B.{}3,5 C.{}1,3,5 D.{}2,4【答案】C 【解析】【分析】逐一验证集合{}1,2,3,4,5A =中的元素是否也属于集合12x B x Z ⎧⎫-=∈⎨⎬⎩⎭即可.【详解】因为集合{}1,2,3,4,5A =,12x B xZ ⎧⎫-=∈⎨⎬⎩⎭可得1x =时,11012Z B -=∈⇒∈;2x =时,211222Z B -=∉⇒∉;3x =时,31132Z B -=∈⇒∈;4x =时,413422Z B -=∉⇒∉;5x =时,51252Z B -=∈⇒∈;综上,集合,A B 的公共元素为1,3,5,所以A B = {}1,3,5,故选:C.2.i 是虚数单位,若复数543i z =+,则z 的共轭复数z =()A.43i 55+ B.43i 55- C.43i 55-+ D.43i 55--【答案】A 【解析】【分析】根据复数除法运算可化简得到z ,由共轭复数定义可得结果.【详解】()()()543i 543i 43i 43i 43i 43i 555z --====-++- ,43i 55z ∴=+.故选:A.3.已知命题0:p x ∃∈R ,20010x x -+<,则p ⌝是()A.0x ∃∈R ,20010x x -+≥ B.0x ∀∈R ,20010x x -+<C.x ∀∈R ,210x x -+≥ D.x ∀∈R ,210x x -+>【答案】C 【解析】【分析】由特称命题的否定可直接得到结果.【详解】由特称命题的否定可知p 为:x ∀∈R ,20010x x -+≥.故选:C.4.开普勒(Johannes Kepler ,1571~1630),德国数学家、天文学家,他发现所有行星运行的轨道与公转周期的规律:所有行星绕太阳运动的轨道都是椭圆,且所有行星轨道的半长轴的三次方跟它的公转周期的二次方的比都相等.已知金星与地球的公转周期之比约为2:3,地球运行轨道的半长轴为a ,则金星运行轨道的半长轴约为()A.0.66aB.0.70aC.0.76aD.0.96a【答案】C 【解析】【分析】设金星运行轨道的半长轴为1a ,金星和地球的公转周期分别为1t ,2t ,根据题意可得1123a a =,进而结合332.512 2.1>>,即可得出结果.【详解】设金星运行轨道的半长轴为1a ,金星和地球的公转周期分别为1t ,2t ,由开普勒定律得3312212a a t t =.因为1223t t =,所以33149a a =,即13a a =.因为函数3y x =在(),-∞+∞上单调递增,且12592611281000>>,且3312592612.5, 2.181000==,所以332.512 2.1>>,因此112 2.50.700.933a a a a <=<<,故选:C.5.若二项式()6210ax a x ⎛⎫+> ⎪⎝⎭的展开式中所有项的系数和为64,则展开式中的常数项为()A.10B.15C.25D.30【答案】B 【解析】【分析】根据赋值法可得系数和,进而求解1a =,由二项式展开式的通项公式即可求解常数项.【详解】令1x =,则所有的项的系数和为()6164a +=,由于0a >,所以1a =,621x x ⎛⎫+ ⎪⎝⎭展开式的通项为6263166C C r r r r rr T x x x ---+==,故当630r -=时,即2r =,此时展开式中的常数项为26C 15=,故选:B6.若ππ,42α⎛⎫∈ ⎪⎝⎭,且2π1cos cos 222αα⎛⎫++=- ⎪⎝⎭.则tan α=()A.B.2C.3D.【答案】C 【解析】【分析】根据二倍角公式以及诱导公式化简得21cos 2cos sin 2ααα-=-,进而根据齐次式以及弦切互化即可求解.【详解】由2π1cos cos 222αα⎛⎫++=-⎪⎝⎭得22221cos 2cos sin 1cos 2cos sin 2cos sin 2αααααααα--=-⇒=-+,进而得212tan 11tan 2αα-=-+,化简得:2tan 4tan 30αα-+=,所以tan 3α=或tan 1α=,由于ππ,42α⎛⎫∈ ⎪⎝⎭,所以tan 1α>,故tan 3α=,故选:C7.已知()4324ln 32ea -=,1e b =,c =,则()A.a c b<< B.c<a<b C.a b c<< D.b a c<<【答案】A 【解析】【分析】构造函数()ln xf x x=,其中0x >,利用导数分析函数()f x 的单调性,可得出()4ln 32e a f -=、()e b f =、()2c f =,比较4ln 32e -、2、e 的大小关系,结合函数()f x 在(]0,e 上的单调性可得出a 、b 、c 的大小关系.【详解】构造函数()ln x f x x =,其中0x >,则()21ln xf x x -'=,当0e x <<时,()0f x ¢>;当e x >时,()0f x '<.所以,函数()f x 的增区间为()0,e ,减区间为()e,+∞.因为()()4ln3244ln32324ln 324ln 32e e e a f ----==,()e e 1b f ==,()e log 4ln 42ln 2ln 224442c f ======,因为24ln 3242e e e 12648-⎛⎫==< ⎪⎝⎭,则4ln 32e 2e -<<,则()()()4ln 32e 2ef f f -<<,故a c b <<.故选:A.8.已知函数(),()f x g x 的定义域均为R ,且()(2)5,()(4)7f x g x g x f x +-=--=.若()y g x =的图像关于直线2x =对称,(2)4g =,则()221k f k ==∑()A.21-B.22- C.23- D.24-【答案】D 【解析】【分析】根据对称性和已知条件得到()(2)2f x f x +-=-,从而得到()()()352110f f f +++=- ,()()()462210f f f +++=- ,然后根据条件得到(2)f 的值,再由题意得到()36g =从而得到()1f 的值即可求解.【详解】因为()y g x =的图像关于直线2x =对称,所以()()22g x g x -=+,因为()(4)7g x f x --=,所以(2)(2)7g x f x +--=,即(2)7(2)g x f x +=+-,因为()(2)5f x g x +-=,所以()(2)5f x g x ++=,代入得[]()7(2)5f x f x ++-=,即()(2)2f x f x +-=-,所以()()()()35212510f f f +++=-⨯=- ,()()()()46222510f f f +++=-⨯=- .因为()(2)5f x g x +-=,所以(0)(2)5f g +=,即()01f =,所以()(2)203f f =--=-.因为()(4)7g x f x --=,所以(4)()7g x f x +-=,又因为()(2)5f x g x +-=,联立得,()()2412g x g x -++=,所以()y g x =的图像关于点()3,6中心对称,因为函数()g x 的定义域为R ,所以()36g =因为()(2)5f x g x ++=,所以()()1531f g =-=-.所以()()()()()()()()221123521462213101024()k f f f f f f f f f k =+++++++++=----=-⎡⎤⎡⎤⎣⎦⎣⎦=∑ .故选:D【点睛】含有对称轴或对称中心的问题往往条件比较隐蔽,考生需要根据已知条件进行恰当的转化,然后得到所需的一些数值或关系式从而解题.二、多项选择题:(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.)9.将函数()()cos 2πf x x =-图象上所有的点向左平移π6个单位长度,得到函数()g x 的图象,则()A.()g x 的最小正周期为πB.()g x 图象的一个对称中心为7π,012⎛⎫⎪⎝⎭C.()g x 的单调递减区间为()π5ππ,π36k k k ⎡⎤++∈⎢⎥⎣⎦Z D.()g x 的图象与函数πsin 26⎛⎫=-- ⎪⎝⎭y x 的图象重合【答案】ABC 【解析】【分析】根据三角函数平移变换和诱导公式可得()πcos 23g x x ⎛⎫=-+⎪⎝⎭;根据余弦型函数最小正周期可知A 错误;利用代入检验法可知B 错误;根据余弦型函数单调区间的求法可知C 正确;利用诱导公式化简()g x 解析式可得()πsin 26g x x ⎛⎫=- ⎪⎝⎭,知D 错误.【详解】由题意知:()πππcos 2πcos 2633g x f x x x ⎛⎫⎛⎫⎛⎫=+=+-=-+ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭;对于A ,()g x 的最小正周期2ππ2T ==,A 正确;对于B ,当7π12x =时,π7ππ3π23632x +=+=,此时()3πcos02g x =-=,7π,012⎛⎫∴ ⎪⎝⎭是()g x 的一个对称中心,B 正确;对于C ,令()ππ2π22π3k x k k -+≤+≤∈Z ,解得:()2ππππ36k x k k -+≤≤-+∈Z ,即()π5πππ36k x k k +≤≤+∈Z ,()g x ∴的单调递减区间为()π5ππ,π36k k k ⎡⎤++∈⎢⎥⎣⎦Z ,C正确;对于D ,()π2ππππcos 2πcos 2cos 2sin 233266g x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫=+-=-=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,()g x ∴与πsin 26⎛⎫=--⎪⎝⎭y x 图象不重合,D 错误.故选:ABC.10.下列结论正确的有()A.若随机变量()2~1,N ξσ,()40.77P ξ≤=,则()20.23P ξ≤-=B.若随机变量1~10,3X B ⎛⎫ ⎪⎝⎭,则()3119D X -=C.已知回归直线方程为10.8y bx=+ ,且4x =,50y =,则9.8b = D.已知一组数据丢失了其中一个,剩下的六个数据分别是3,3,5,3,6,11.若这组数据的平均数、中位数、众数依次成等差数列,则丢失数据的所有可能值的和为22【答案】AC 【解析】【分析】根据正态分布对称性知A 正确,计算()()32920D X D X +==,B 错误,将()x y代入回归直线,计算得到C 正确,讨论三种情况得到可能数据的和为12,D 错误,得到答案.【详解】对于A ,()()2410.770.23P P ξξ≤-=≥=-=,故A 正确;对于B ,()122010339D X =⨯⨯=,所以()220313209D X -=⨯=,故B 不正确;对于C ,回归直线方程经过点(),x y ,将4x =,50y =代入求得9.8b= ,故C 正确;对于D ,设丢失的数据为x ,则这组数据的平均数为317x+,众数为3,当3x ≤时,中位数为3,此时36731x ++=,解得10-;当35x <<时,中位数为x ,此时31327xx ++=,解得4x =;当5x ≥时,中位数为5,此时113073x+=+,解得18x =.所以所有可能x 的值和为1041812-++=,故D 不正确.故选AC.11.正方体1111ABCD A B C D -的棱长为1,E ,F ,G 分别为BC ,11,CC BB 的中点,则()A .直线1D D 与直线AF 垂直B.直线1A G 与平面AEF 平行C.平面AEF 截正方体所得的截面面积为98D.点1A 与点D 到平面AEF 的距离相等【答案】BCD 【解析】【分析】根据棱柱的结构特征,建立以D 为原点,以DA 、DC 、1D D 所在的直线为x 轴、y 轴、z 轴的空间直角坐标系D xyz -,利用向量法即可判断A ,根据线线平行即可判断B,根据梯形面积即可判断C,根据中点关系即可判断D.【详解】在棱长为1的正方体1111ABCD A B C D -中,建立以D 为原点,以DA 、DC 、1D D 所在的直线为x 轴、y 轴、z 轴的空间直角坐标系D xyz -,如图所示:E 、F 、G 分别为BC 、1CC 、1BB 的中点,则()0,0,0D ,()10,0,1D ,()1,0,0A ,10,1,2F ⎛⎫ ⎪⎝⎭,对于A,()10,0,1DD = ,11,1,2AF ⎛⎫=- ⎪⎝⎭,∴1102DD AF ⋅=≠ ,故A 错误;对于B :连接1AD ,1D F ,1//AD EF ,A ∴,1D ,E ,F 四点共面,由于11//A D GF ,11=A D GF ,所以四边形11A D FG 为平行四边形,故11//AG D F ,又1AG ⊂/平面AEF ,1D F ⊂平面AEF ,1//A G ∴平面AEF ,故B 正确,对于C ,连接1AD ,1FD ,1//AD EF ,∴四边形1AD FE 为平面AEF截正方体所得的截面,1AD ==2EF =,12D F AE ===,∴四边形1AD FE324=,则四边形1AD FE的面积为192248⎫⨯+⨯=⎪⎪⎭,故C 正确;对于D,连接1A D 交1AD 于点O ,故O 是1A D 的中点,且O 是线段1A D 与平面1AD FE 的交点,因此点1A 和点D 到平面AEF 的距离相等,故D 正确.故选:BCD .12.已知点F 是抛物线24y x =的焦点,AB ,CD 是经过点F 的弦且AB CD ⊥,直线AB的斜率为k ,且0k >,C ,A 两点在x 轴上方,则()A.3OC OD ⋅=-B.四边形ABCD 面积最小值为64C.1114AB CD += D.若16AF BF ⋅=,则直线CD 的斜率为【答案】ACD 【解析】【分析】由抛物线的方程可得焦点F 的坐标,设直线AB 的方程,与抛物线的方程联立,可得两根之和及两根之积,由抛物线的性质可得弦长||AB ,同理可得||CD 的值,由均值不等式可得四边形的面积的最小值,经过判断可得命题的真假.【详解】由抛物线的方程可得焦点(1F ,0),由题意可得直线AB ,CD 的斜率存在且不为0,设直线CD 的方程为:1(0)x my m =+<,设1(C x ,1)y ,2(D x ,2)y ,联立214x my y x=+⎧⎨=⎩,整理可得:2440y my --=,显然0∆>,124y y m +=,124y y =-,21212()242x x m y y m +=++=+,21212()116y y x x ==,所以12121(4)3OC OD x x y y ⋅=+=+-=-,所以A 正确;由于21244CD x x p m =++=+,1AB CDk k =-,所以将CD 中的m 换成1m -代入CD 中得2144AB m=+,()()22222411114182823222ACBDm S AB CD m m m m +⎛⎫⎛⎫=⋅=⨯+⋅=++= ⎪ ⎪ ⎪⎝⎭⎝⎭四边形,当且仅当1m =-时等号成立,所以四边形的最小面积为32,所以B 不正确;设3(A x ,3)y ,4(B x ,4)y ,若||||16AF BF ⋅=,即343434(1)(1)116x x x x x x ++=+++=,整理可得4343()116x x x x +++=,即21411126m ⎛⎫+++= ⎪⎝⎭,解得213m =,即33m =±,而直线CD 的斜率10k m =<,所以直线CD的斜率为D 正确;可得弦长()2||41CD m =+,21||41AB m ⎛⎫=+ ⎪⎝⎭,所以2221111||||4(1)4(1)4m AB CD m m +=+=++,所以C 正确;故选:ACD第Ⅱ卷三、填空题:(本大题共4小题,每小题5分,共20分,把答案填在答卷纸的相应位置上)13.设向量()(),2,2,1a m b == ,且222||a b a b +=+ ,则m =_________.【答案】1-【解析】【分析】根据向量模长的坐标公式即可代入求解.【详解】由()(),2,2,1a m b == 得()2,3a b m +=+ ,根据222||a b a b +=+ 得()2222925m m ++=++,解得1m =-,故答案为:1-14.若直线3y ax =-为函数()1ln f x x x=-图像的一条切线,则a 的值是________.【答案】2【解析】【分析】根据切点求解函数()f x 的切线方程,列方程组得02000112,ln 13a x x x x +=--=-,进而可求解0x ,即可得a .【详解】设()1ln f x x x =-的切点为00(,)x y ,其中0001ln y x x =-,由()211f x x x'=+得切线的斜率为()020011k f x x x '==+,所以切线方程为:()002000111ln y x x x x x x ⎛⎫-+=+- ⎪⎝⎭,即02000112ln 1y x x x x x ⎛⎫=++-- ⎪⎝⎭,直线3y ax =-是()f x 的切线,所以2000112ln 13a x x x x ⎧+=⎪⎪⎨⎪--=-⎪⎩,记()2ln 2,g x x x =-+则()2120g x x x'=+>,所以()g x 在定义域内单调递增,而()10g =,所以方程2ln 20x x-+=的根为1x =,因此01x =,进而得200112a x x =+=,故答案为:215.已知()()12,0,,0F c F c -为椭圆2222:1x y C a b+=的两个焦点,P 为椭圆C 上一点(P 不在y 轴上),12PF F △的重心为G ,内心为M ,且12//GM F F ,则椭圆C 的离心率为___________.【答案】12##0.5【解析】【分析】根据重心坐标公式以及内切圆的半径,结合等面积法,得到,a c 的关系,即可求解离心率.【详解】设()()000,0P x y x ≠,由于G 是12PF F △的重心,由重心坐标公式可得00,33x y G ⎛⎫⎪⎝⎭,由于12//GM F F ,所以M 的纵坐标为03M y y =,由于M 是12PF F △的内心,所以12PF F △内切圆的半径为03y r =,由椭圆定义得12212,2PF PF a F F c +==,()2121210120122111223PF F MF F MF P MPF y S S S S F F y F F PF F P =++⇒⋅=++ ,()001222232y c y a c a c e =+⇒=⇒=,故答案为:1216.已知菱形ABCD 边长为6,2π3ADC ∠=,E 为对角线AC 上一点,3AE =ABD △沿BD 翻折到A BD ' 的位置,E 移动到E '且二面角A BD A '--的大小为π3,则三棱锥A BCD -'的外接球的半径为______;过E '作平面α与该外接球相交,所得截面面积的最小值为__________.【答案】①.21②.9π【解析】【分析】设AC BD O = ,证明出BD ⊥平面A CO ¢,分析可知π3AOA '∠=,以点O 为坐标原点,OC 、OB 所在直线分别为x 、y 轴,平面AOA '内过点O 且垂直于AC 的直线为z 轴建立空间直角坐标系,设三棱锥A BCD -'的外接球球心为(),,M x y z ,根据题意可得出关于x 、y 、z 的方程组,可求得球心M 的坐标,即可求出球M 的半径长,求出ME ',可求得截面圆半径的最小值,再利用圆的面积公式可求得截面圆面积的最小值.【详解】设AC BD O = ,翻折前,在菱形ABCD 中,则AC BD ⊥,即AO BD ⊥,CO BD ⊥,翻折后,则有A O BD '⊥,所以,二面角A BD A '--的平面角为π3AOA '∠=,在菱形ABCD 中,2π3ADC ∠=,则π3BAD ∠=,又因为6AB AD ==,所以,ABD △是边长为6的等边三角形,同理可知,BCD △是边长为6的等边三角形,因为A O BD '⊥,CO BD ⊥,A O CO O '⋂=,A O '、CO ⊂平面A CO ¢,BD ∴⊥平面A CO ¢,以点O 为坐标原点,OC 、OB 所在直线分别为x 、y 轴,平面AOA '内过点O 且垂直于AC 的直线为z轴建立如下图所示的空间直角坐标系,则点()0,3,0B、()C 、()0,3,0D -、339,0,22A ⎛⎫'- ⎪ ⎪⎝⎭、()E ',设三棱锥A BCD -'的外接球球心为(),,M x y z ,由MB MDMB MC MB MA ⎧='⎪=⎨⎪=⎩可得()()()(()222222222222222222333339322x y z x y z x y z x y z x y z x y z ⎧⎪+-+=+++⎪⎪⎪+-+=-++⎨⎪⎪⎛⎛⎫+-+=+++-⎪ ⎪ ⎝⎭⎪⎝⎭⎩,解得03x y z ⎧=⎪=⎨⎪=⎩,所以,三棱锥A BCD -'的球心为)M,球M的半径为MB =.ME '=,设球心M 到截面α的距离为d ,平面α截球M 的截面圆的半径为r,则d ME '≤=,3r ∴=≥=,过E '作平面α与该外接球相交,所得截面面积的最小值为2π39π⨯=.;9π.【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径;③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可;④坐标法:建立空间直角坐标系,设出外接球球心的坐标,根据球心到各顶点的距离相等建立方程组,求出球心坐标,利用空间中两点间的距离公式可求得球的半径.四、解答题:(本大题共6小题共70分,解答应写出文字说明x 证明过程或演算步骤)17.已知公差为正数的等差数列{}n a 的前n 项和为1,1n S a =,________.请从以下二个条件中任选一个,补充在题干的横线上,并解答下列问题:①248S S S 、、成等比数列,②251072a a a -=.(1)求数列{}n a 的通项公式;(2)若11n n n b a a +=,求数列{}n b 的前n 项和n T .【答案】(1)21n a n =-(2)21n nT n =+【解析】【分析】(1)先设等差数列{}n a 的公差为(0)d d >,再根据等差数列的求和公式和等比中项的性质,根据条件①②分别列出关于首项1a 与公差d 的方程,解出d 的值,即可计算出数列{}n a 的通项公式;(2)先根据第(1)题的结果计算出数列{}n b 的通项公式,再运用裂项相消法即可计算出前n 项和n T .【小问1详解】由题意,设等差数列{}n a 的公差为(0)d d >,方案一:选择条件①41121816,43442822,8S a d a S a d d d S a +=+==+⨯=+,根据248S S S 、、成等比数列得2428S S S =,代入得()()()1121462828a d d a a d +=++,又11a =,化简整理,可得220d d -=,由于0d >,所以2d =,12(1)21n a n n ∴=+-=-,*n ∈N .方案二:选择条件②由251072a a a -=,可得()()211149(6)2a d a d a d ++-+=,又11a =,解得2d =,12(1)21n a n n ∴=+-=-,*n ∈N 【小问2详解】由(1)可得111111(21)(21)22121n n n b a a n n n n +⎛⎫===- ⎪-+-+⎝⎭,则12n nT b b b =++⋅⋅⋅+1111111112323522121n n ⎛⎫⎛⎫⎛⎫=⨯-+⨯-+⋅⋅⋅+⨯- ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭111111123352121n n ⎛⎫=⨯-+-+⋅⋅⋅+- ⎪-+⎝⎭111221n ⎛⎫=⨯- ⎪+⎝⎭21nn =+.18.记ABC 内角A 、B 、C 的对边分别为a 、b 、c ,且()()()sin sin sin sin b c B C A C a +-=-.(1)求B 的值;(2)若ABC,2b =,求ABC 周长.【答案】(1)π3B =(2)6【解析】【分析】(1)利用正弦定理结合余弦定理可求得cos B 的值,结合角B 的取值范围可求得角B 的值;(2)利用三角形的面积公式可求得ac 的值,再利用余弦定理可求得a c +的值,即可求得ABC 的周长.【小问1详解】解:由()()()sin sin sin sin b c B C A C a +-=-,根据正弦定理可得()()()b c b c a c a +-=-,所以,222a c b ac +-=,由余弦定理可得2221cos 22a c b B ac +-==,()0,πB ∈ ,因此,π3B =.【小问2详解】解:因为1sin 24ABC S ac B ac === ,4ac ∴=,由余弦定理可得()()22222222cos 3124b a c ac B a c ac a c ac a c =+-=+-=+-=+-=,4a c ∴+=,因此,ABC 的周长为6a b c ++=.19.如图多面体ABCDEF ,正方形ABCD 的边长为4,AF ⊥平面ABCD ,2AF =,//AF DE ,DE AF <.(1)求证://CE 平面ABF ;(2)若二面角B CF E --的大小为α,且310cos 10α=,求DE 长.【答案】(1)证明见解析(2)1DE =【解析】【分析】(1)利用线面平行和面面平行的判定可证得平面//CDE 平面ABF ,由面面平行的性质可证得结论;(2)以A 为坐标原点建立空间直角坐标系,设()02DE t t =<<,利用二面角的向量求法可构造方程求得t 的值,即为DE 的长.【小问1详解】//AF DE ,//AB CD ,DE ⊄平面ABF ,CD ⊄平面ABF ,AF ⊂平面ABF ,AB ⊂平面ABF ,//DE ∴平面ABF ,//CD 平面ABF ,CD DE D = ,,CD DE ⊂平面CDE ,∴平面//CDE 平面ABF ,CE ⊂ 平面CDE ,//CE ∴平面ABF .【小问2详解】以A 为坐标原点,,,AB AD AF正方向为,,x y z轴,可建立如图所示空间直角坐标系,设()02DE t t =<<,则()4,0,0B ,()4,4,0C ,()0,0,2F ,()0,4,E t ,()0,4,0BC ∴= ,()4,4,2CF =-- ,()4,0,CE t =-,设平面BCF 的法向量(),,n x y z =,则404420BC n y CF n x y z ⎧⋅==⎪⎨⋅=--+=⎪⎩ ,令1x =,解得:0y =,2z =,()1,0,2n ∴= ;设平面CEF 的法向量(),,m a b c =,则442040CF m a b c CE m a tc ⎧⋅=--+=⎪⎨⋅=-+=⎪⎩,令4c =,解得:a t =,2b t =-,(),2,4m t t ∴=- ;cos cos ,10m n m n m n α⋅∴=<>==⋅ ,解得:1t =或134t =(舍),1DE =∴.20.某地区为居民集体筛查新型传染病毒,需要核酸检测,现有()*N ,2k k k ∈≥份样本,有以下两种检验方案,方案一,逐份检验,则需要检验k 次;方案二:混合检验,将k 份样本分别取样混合在一起检验一次,若检验结果为阴性,则k 份样本均为阴性,若检验结果为阳性,为了确定k 份样本的阳性样本,则对k 份本再逐一检验.逐份检验和混合检验中的每一次检验费用都是16元,且k 份样本混合检验一次需要额外收20元的材料费和服务费.假设在接受检验的样本中,每份样本是否为阳性是相互独立的,且据统计每份样本是阴性的概率为()01p p <<.(1)若()*N ,2k k k ∈≥份样本采用混合检验方案,需要检验的总次数为X ,求X 分布列及数学期望;(2)①若5,k p =>性;②若p =,采用方案二总费用的数学期望低于方案一,求k 的最大值.参考数据:ln20.7,ln3 1.1,ln7 1.9,ln10 2.3,ln11 2.4=====【答案】(1)见解析(2)①见解析,②k 的最大值为11【解析】【分析】(1)X 的可能值为1和1k +,分别求出对应的概率,再结合期望公式,即可求解,(2)①结合期望公式,求出方案二的期望,再结合作差法,即可求解.②结合期望公式,以及利用导数研究函数的单调性,即可求解.【小问1详解】X 的可能值为1和1k +,(1)k P X p ==,(1)1k P X k p =+=-,所以随机变量X 的分布列为:所以()1(1)[1]1【小问2详解】①设方案二总费用为Y ,方案一总费用为Z ,则1620Y X =+,所以方案二总费用的数学期望为:()16()2016[1]20k E Y E X k kp =+=+-+,又5k =,所以55()16[65]2080116E Y p p =-+=-+,又方案一的总费用为51680Z =⨯=,所以()55()80801168036Z E Y p p --+=--=,当p >50.451p <<,508036p <-,,所以()>Z E Y ,所以该单位选择方案二合理.②由①方案二总费用的数学期望()16()2016[1]20k E Y E X k kp =+=+-+,当p =79()1612016(e )4k k E Y k k k k -⎡⎤=+-+=+-⎢⎥⎢⎥⎣⎦,又方案一的总费用为16Z k =,令()<E Y Z 得:7916e 164kk k k -⎛⎫+-< ⎪⎝⎭,所以79e4kk ->,即79ln e ln 4k k -⎛⎫> ⎪⎝⎭,所以9ln ln 074k k -->,设9()ln ln [2,)74x f x x x =--∈+∞,所以117(),[2,)77-=-=∈+∞'x f x x x x,令()0f x '>得27x <,()0f x '<得7x >,所以()f x 在区间[2,7)上单调递增,在区间(7,)+∞上单调递减,()max ()7f x f =ln712(ln3ln2)0.10=---=>,888(8)3ln22(ln3ln2)5ln22ln3 1.30777f =---=--=->,999(9)2ln32(ln3ln2)2ln2 1.40777f =---=-=->,1010(10)ln102(ln3ln2) 1.5077f =---=->,1111(11)ln112(ln3ln2) 1.6077f =---=->,121212(12)ln122(ln3ln2)4ln2ln3 1.70777f =---=--=-<,所以k 的最大值为11.21.已知双曲线222:1x Q y a-=的离心率为,经过坐标原点O 的直线l 与双曲线Q 交于A ,B 两点,点()11,A x y 位于第一象限,()22,C x y 是双曲线Q 右支上一点,AB AC ⊥,设113,2y D x ⎛⎫- ⎪⎝⎭(1)求双曲线Q 的标准方程;(2)求证:C ,D ,B 三点共线;(3)若ABC 面积为487,求直线l 的方程.【答案】(1)2214x y -=(2)证明见解析(3)13y x =【解析】【分析】(1)根据离心率即可求解2a =,(2)利用坐标运算,结合点差法以及向量共线的坐标表示即可求解,(3)根据三角形面积公式,利用联立方程,韦达定理,代入化简即可得到关于k 的方程,【小问1详解】由双曲线222:1x Q y a -=,所以152e a ==,解得2a =,所以双曲线Q 的标准方程为2214x y -=【小问2详解】由()11,A x y 得()11,B x y --,又()22,C x y ,所以()11,OA x y =,()2121,AC x x y y =--,由OA AC ⊥得()()1211210x x x y y y -+-=①,由于()11,A x y ,()22,C x y 在双曲线上,所以222212121,144x x y y -=-=,相减得()221222121212121244y y x x x xy y y y x x -+-=+⇒=--②由①②得1211214x x x y y y =-++③,()2121111,,2,,2BC x x y y BD x y ⎛⎫=++=- ⎪⎝⎭ 由于110,0x y >>,所以()21212121111121222y y x x y y x x x x y y ++++-=+-,将③代入得()()212121112111112012224y y x x y y x x y y x y y y ⎛⎫+-+++-=⎪⎝- ⎭+=,所以//BC BD,因此C ,D ,B 三点共线【小问3详解】设直线l 的方程为()0y kx k =>,联立直线l 与双曲线的方程为:()222214414y kx k x x y =⎧⎪⇒-=⎨-=⎪⎩,故2114002k k ->⇒<<,所以212414x k =-,直线AC 的方程为()111y y x x k -=--,联立()21121111222148144014y y x x x x k x y x y k k k k x y ⎧-=--⎪⎪⎛⎫⎛⎫⎛⎫⇒-++-+-=⎨ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎪-=⎪⎩,所以()111228,04x ky x x k ++=-∆>-由于//AD y 轴,10y >,所以152AD y =,所以()()()()211111111121122281551010224444ABC x y ky x ky x ky S y x x y y k k k+++=⨯+=⨯=⨯=⨯--- ,由于11y kx =,212414x k =-代入得()()()()3232323211122224221440101010401414444174417ABC k k k kx k x k k x k k k k S k k k k k k k ⎛⎫++ ⎪+++⎝⎭-=====----+⎛⎫+- ⎪⎝⎭,令10k t k+=>,则240484257ABC t S t ==- ,化简得224351500t t --=,由于0t >,所以103t =,因此1103k k +=,解得3k =或13k =由于102k <<,所以13k =,故直线l 方程为13y x =【点睛】方法点睛:解析几何中的弦长以及面积问题以及最值是常见的类型,对于这类问题一般有两种方法:一是几何意义,特别是用曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将解析几何中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法求解.22.已知函数()()()22111ln ln ,e 22ex f x x x kx k g x x f x =++-=--,(1)若–1k ≤时,求证:函数()f x )只有一个零点;(2)对12x x ∀≠时,总有()()12122g x g x x x ->-恒成立,求k 的取值范围.【答案】(1)见解析(2)1e k ≤-【解析】【分析】(1)求导,利用导数确定函数的单调性,进而结合零点存在性定理即可求解,(2)将问题等价转化为()2g x x -在定义域内单调递增,构造函数()()2F x g x x =-,只需要证明()0F x '≥,进而分离参数,问题转化成21()=e e ln 12x x p x x x----,只()k p x ≤恒成立,利用导数求解最值即可.【小问1详解】由()21ln ln 2f x x x kx k =++-得()ln 1x f x k x x'=++,记()()()2ln 1ln ,x x h x f x k h x x x x -''==++=,则当01x <<时,()0h x '>,当1x >时,()0h x '<,因此()h x 在01x <<单调递增,在1x >单调递减,故()()11h x h k ≤=+,当1k ≤-时,10k +≤,所以()0h x ≤,因此()0f x '≤,所以()f x 在定义域()0,∞+单调递减,而()10f =,因此函数()f x )只有一个零点【小问2详解】不妨设12x x <,则由()()12122g x g x x x ->-得()()()()()12121122222g x g x x x g x x g x x <-<-⇒--,故函数()2g x x -在定义域内单调递增,记()()2F x g x x =-,则()0F x '≥,即()()()22112e 2ln 12e e 0e x x F x x k x xg x f x '''=-=-------=≥-,所以21n 2e e l 1x x k x x----≥,记21()=e e ln 12x x p x x x----,只需要()k p x ≤恒成立即可,22222ln ln 2e ()=2e x xx x x x p x x =+'+,记()()22ln ,=2e 0x q x x x x +>,()()21=41e 0x q x x x x'++>,所以()q x 在()0,∞+单调递增,()2221e 112e 0,2e 12e 10e q q -⎛⎫=>=-<-< ⎪⎝⎭,所以存在01,1x e ⎛⎫∈ ⎪⎝⎭,使得()00q x =,即022002n 0e l x x x +=,所以0200000l 11ln 2n 1e x x x x x x ==-,由于01,1x e ⎛⎫∈ ⎪⎝⎭,所以()01ln 0,1x ∈,令()e x t x x =,由于当0x >时,0,e 0x x >>,且函数,e x y x y ==均为单调递增的函数,所以()ex t x x =由020001ln 12e x x x x =得()0012ln t x t x ⎛⎫= ⎪⎝⎭,所以0012ln x x =,即0201e x x =,当00x x <<时,()0p x '<,()p x 单调递减,当0x x >时,()0p x '>,()p x 单调递增,所以()()()0002min 0000112ln 111e 122e e ex x x x x x p x p x ---==---==---,故1ek ≤-【点睛】本题主要考查利用导数研究函数的单调性、求函数的最值以及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:①分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);②数形结合(()y f x =图象在()y g x =上方即可);③分类讨论参数.。
2019年大连市高三双基测试卷数学理科

2019年大连市高三双基测试卷数学(理科)说明:24题为选考题,其它题为必考题。
2.考生作答时,将答案答在答题卡上,在本试卷上答题无效,考试结束后,将本试卷和答题卡一并交回。
参考公式:锥体体积公式13V Sh =,其中S 为底面积,h 为高。
第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知121,63ia a i +=+则的值为()A .3 B .-3 C .4 D .-4 2.已知全集U=R ,集合2{|1}M y y x ==-,集合2{|4}N x y x ==-,则()UC M N Ç=()A .(-2,-1)B .[-2,-1)C .[-2,1)D .[-2,1] 3.关于直线,a b 以及平面,a b ,给出下列命题:①若//,//,//a b a b a a 则②若//,,a b a b a a ^^则③若//,//,//a b b a a a 则④若,//,a a a b a b^^则其中真命题的个数为()A .0 B .1 C .2 D .3 4.在等比数列{}n a 中,若292369101232,a a a a a a a =则的值为()A .4 B .2 C .-2 D .-4 5.给定性质:①最小正周期为p ;;②图象关于直线3x p=对称,则下列四个函数中,同时具有性质①、②的是()A .sin()26x y p =+B .sin(2)6yx p=+C .sin(2)6y x p =-D .sin ||y x =6.将A 、B 、C 、D 、E 、F 六位同学排成一排,要求A 、B 、C 、D 在排列中顺序为“A 、B 、C 、D ”或“D 、C 、B 、A ”(可以不相邻),则排列的种数为,则排列的种数为( )A .20 B .30 C .40 D .60 7.已知函数222(1)()65(1)x x f x x x x -£ì=í-+>î,则函数()ln f x x -的零点个数为的零点个数为 ( )A .1 B .2 C .3 D .4 8.如图1,点P 在正方形ABCD 所在平面外,PD ^平面ABCD ,PD=AD ,则P A 与BD 所成角的度数为所成角的度数为 ( )A .30°B .45°C .60°D .90°9.下列说法正确的是.下列说法正确的是 ( )A .命题:“已知函数(),(1)(1)f x f x f x +-若与均为奇函数,则()f x 为奇函数,”为直命题”为直命题B .“1x >”是“||1x >”的必要不充分条件。
辽宁省大连市2019届高三下学期第一次(3月)双基测试数学(理)试题(含答案)

大连市2019届高三双基测试卷数学(理科)2019、3第I 卷(选择题共60分)一、选择题:本题共12小题,每小题5分,共60分、 在每小题给出的四个选项中,只有一项符合题目要求、 1、已知集合A ={x |0<x <2},B ={x |一1<x <1},则A ∩B =( ) (A ){x |一1<x <2} (B ) {x |0<x <1} (C ){x |0<x <2} (D ){x |一1<x <1}2、11ii+-=( ) (A )i (B )-i (C )2i · (D )-2i3、已知直线l 和平面α、β,且l ⊂α,则“l ⊥β”是“α⊥β”的( )(A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D)既不充分也不必要条件4、函数y =tan(123x π+)的最小正周期为( ) (A )4π (B )2π(C )π (D) 2π5、已知某高中的一次测验中,甲、乙两个班级的九科平均分的雷达图如图所示,下列判断错误的是( )(A )乙班的理科综合成绩强于甲班 (B )甲班的文科综合成绩强于乙班 (C )两班的英语平均分分差最大 (D )两班的语文平均分分差最小 6、已知向量AB =(1,2),AC =(-3,1),则AB BC ∙=( ) (A ) 6 (B )一6 (C )一1 (D ) 17、函数2()21xxy x R =∈+的值域为 (A )(0,+∞) (B )(0,1) (C ) (1,+∞) (D ) (0,12) 8、已知△ABC 的内角A 、B 、C 所对边分别为a 、b 、c ,且满足3a tanA =bcosC+ccosB ,则∠A =( ) (A )6π (B )56π (C )3π(D) 23π9、已知正实数a ,b 满足a +b =12()ab ,则a b 的最小值为,( )(A ) 1 (B )2 (C ) 2 (D )4‘10、我国古代数学名著《九章算术》中有如下问题:“今有羡除,下广六尺,上广一丈,深三尺,末广八尺,无深,袤七尺。
2020届辽宁省大连市高三双基考试数学(理)试题(解析版)

【解析】根据定义域为R的奇函数满足 ,代入即可求得 的值.
【详解】
因为 是定义在R上的奇函数
所以满足
代入可得
解得
故答案为:
【点睛】
本题考查了奇函数的性质与简单应用,注意只有当定义域为R时奇函数才满足 ,属于基础题.
15.我国南宋数学家秦九留撰写的名著《数书九章》第五卷提出了“三斜求积术”,即已知三角形三边长,求三角形面积的公式.设三角形的三条边长分别为a,b,c,则三角形的面积S可由公式 求得,其中p为三角形周长的一半,这个公式也被称为“海伦—秦九韶”公式,现有一个三角形的边长满足 , ,则三角形面积的最大值为________.
当 时,满足 ,即
因为 ,所以方程无解.即不存在 时使得 在点A和点B处的切线互相垂直
当 时,满足 ,即 .因为 ,所以
所以 ,所以A、B错误;
对于C,可知 ,令 ,
所以
令 ,得
所以当 时, ,则 在 时单调递减
所以 在 时取得极小值,即最小值为 ,无最大值,所以C错误;
对于D,可知
令 ,
则
令 ,解得
【详解】
设直线 的方向向量 , ,
所以 分别是平面 的法向量,
二面角 的大小为60°,
的夹角为 或 ,
因为异面直线所的角为锐角或直角,
所以 与 所成的角为 .
故选:C.
【点睛】
本题考查二面角与二面角平面的法向量的关系,属于基础题.
6.下列四个函数中,以 为最小正周期,且在区间 上单调递减的是()
A. B. C. D.
【答案】 . .
【解析】(1)将 代入条件等式,化简可得 ,由 ,
可得 ,结合 的范围,求得 ;
《精编》辽宁省大连市高三数学双基测试理试题 理 新人教A版.doc

大连市高三双基测试卷数学〔理〕试题本试卷分第I 卷〔选择题〕和第II 卷〔非选择题〕两局部,其中第II 卷第22题~第24题为选考题,其它题为必考题.考生作答时,将答案答在答题卡上,在本试卷上答题无效.考试结束后,将本试卷和答题卡一并交回. 参考公式:球的体积公式334R V π=.其中R 为球半径. 用最小二乘法求线性回归方程系数公式1221n i ii n i i x y nx y b xnx ==-=-∑∑,a y bx =-.第I 卷一.选择题:〔本大题共12小题,每题5分,共60分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的〕1. 复数i z +=1的虚部是A .1B .1-C .iD .i -2.集合{}{}0)3lg(|,034|2>-=<+-=x x N x x x M ,那么MN =A .}31|{<<x xB .}21|{<<x xC .φD .}32|{<<x x 3.函数2)cos (sin )(x x x f += 的最小正周期为A .4π B .2π C .π D .π2 4.抛物线212x y =的焦点F 到准线l 的距离是 A . 2 B .1 C .21 D .415.执行如以下列图的程序框图,如果6=n ,那么输出的s 的值是A .76B .87C .65D .546.n S 为等差数列{}n a 的前n 项和,682=+a a ,那么=9SA .227 B .27 C .54 D .108 7.把一枚骰子连续掷两次,在第一次抛出的是偶数点的情况下,第二次抛出的也是偶数点的概率为A .1B .12C .13D .148.以下函数中,与函数3x y =-的奇偶性相同且在)0,(-∞上单调性也相同的是A .1y x =-B .2log y x =C .21y x =-D .31y x =- 9.以下说法中,正确的选项是A .命题“假设22am bm <,那么a b <〞的逆命题是真命题B .命题“p 或q 〞为真命题,那么命题“p 〞和命题“q 〞均为真命题C .∈x R ,那么“1x >〞是“2x >〞的充分不必要条件D .命题“∈∃x R ,02>-x x 〞的否认是:“∈∀x R ,02≤-x x 〞 10.设O 在ABC ∆的的内部,有230OA OB OC ++=,那么0ABC ∆的面积和AOC ∆且的面积之比为A .3B .533C .2D .23第5题图11.()f x 是定义在R 上的且以2为周期的偶函数,当01x ≤≤时,2()f x x =,如果函数)()()(m x x f x g +-=有两个零点,那么实数m 的值为A .k 2〔∈k Z 〕B .k 2或412+k 〔∈k Z 〕C .0D .k 2或412-k 〔∈k Z 〕 12.SC 为球O 的直径,B A ,是该球球面上的两点,4,2π=∠=∠=BSC ASC AB ,假设棱锥SBC A -那么球O 体积为A .43πB .323πC .π27D .π34第II 卷 本卷包括必考题和选考题两局部,第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二.填空题:〔本大题共4小题,每题5分,共20分,把答案填在答卷纸的相应位置上〕13.一个几何体的三视图及其尺寸如下〔单位:cm 〕:那么该几何体的外表积为 cm 2. 14.以下表格所示的数据的回归直线方程为a x y+=8.3ˆ,那么a 的值为___ ___.4 主视图 左视图 俯视图 第13题图15.数列{}n a 满足:33)1()12(531321+⋅-=⋅-+⋅⋅⋅++++n n n a n a a a ,那么数列{}n a 的通项公式n a = .16.点A ,B 〕,且动点P 满足2PA PB -=,那么动点P的轨迹与直线)2(-=x k y 有两个交点的充要条件为∈k .三.解答题:〔本大题共6小题,共70分,解容许写出文字说明、证明过程或演算步骤〕17.〔本小题总分值12分〕 C B A ,,是ABC ∆的三个内角,向量m )sin ,sin (sin C B A -=,向量n )sin sin ,sin sin 2(B A C A +-=,m//n〔Ⅰ〕求角B ;〔Ⅱ〕假设53sin =A ,求C cos 的值. 18.〔本小题总分值12分〕 为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行抽样检查,测得身高情况的频率分布直方图如下:样本中身高在[150,155〕cm 的女生有1人.〔Ⅰ〕求出样本中该校男生的人数和女生的人数;〔Ⅱ〕估计该校学生身高在170~190cm 之间的概率;〔Ⅲ〕从样本中身高在185~190cm 之间的男生和样本中身高在170~180cm 之间的女生中随机抽取3人,记被抽取的3人中的女生人数为X .求随机变量X 的分布列和数学期望()E X .8 1507 1501 /cm 组距频率 组距频率第18题图19.〔本小题总分值12分〕如图,四棱锥P ABCD -中,底面ABCD 为梯形,60DAB ∠=︒,AB ∥CD , 22AD CD AB ===,PD ⊥底面ABCD ,M 为PC 的中点. 〔Ⅰ〕证明:BD PC ⊥;〔Ⅱ〕假设12PD AD =,求二面角D BM P --的余弦值.20.〔本小题总分值12分〕设A ,B 分别是直线x y 22=和x y 22-=上的动点,且2=AB ,设O 为坐标原点,动点P 满足OB OA OP +=.〔Ⅰ〕求点P 的轨迹方程; 〔Ⅱ〕过点)0,3(做两条互相垂直的直线21,l l ,直线21,l l 与点P 的轨迹相交弦分别为CD 、EF ,设CD 、EF 的弦中点分别为M 、N ,求证:直线MN 恒过一个定点.21.〔本小题总分值12分〕函数2ln )(ax x x f -=〔∈a R 〕.〔Ⅰ〕求函数)(x f 的单调区间;〔Ⅱ〕当81=a 时,证明:存在),2(0+∞∈x ,使)1()(0f x f =; 〔Ⅲ〕当41=a 时,证明:43142)(4-+≤x x f .A BCD P M第19题图请考生在22,23,24三题中任选一题作答,如果多做,那么按所做的第一题记分.做答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑.22.〔本小题总分值10分〕选修4-1:几何证明选讲如图,直线AB 经过⊙O 上的点C ,并且OA=OB ,CA=CB ,⊙O 交直线OB 于E 、D , 连结EC 、CD .〔Ⅰ〕求证:直线AB 是⊙O 的切线; 〔Ⅱ〕假设tan ∠CED=21,⊙O 的半径为3,求OA 的长.23.〔本小题总分值10分〕选修4-4:坐标系与参数方程在直角坐标系xoy 中,以原点o 为极点,x 轴的正半轴为极轴建立极坐标系. 射线:l 4πθ=与曲线:C ⎩⎨⎧-=+=,)1(,12t y t x 〔t 为参数〕,相交于B A ,两点. 〔Ⅰ〕写出射线l 的参数方程和曲线C 的直角坐标系方程;〔Ⅱ〕求线段AB 的中点极坐标.24.〔本小题总分值10分〕选修4-5:不等式选讲实数t ,假设存在]3,21[∈t 使得不等式21521-+-≥---x x t t 成立,求实数x 的取值范围.OA B C D E 第22题图。
辽宁省大连市2020届高三双基测试试题 · 数学(理) · Word版含答案

2020年大连市高三双基测试卷数学(理科)说明:本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第II 卷第22题~第23题为选考题,其它题为必考题。
考生作答时,将答案答在答题纸上,在本试卷上答题无效。
考试结束后,将本试卷和答题纸一并交回。
第I 卷一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={x|x 2-3x -10<0},B ={x|2x <2},则A ∩B =(A)(-2,1) (B)(-5,1) (C)∅ (D){0}2.设z =-1-i ,则在复平面内z 对应的点位于(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限3.命题“∀x ∈R ,x 2-4≥0”的否定是(A)∀x ∈R ,x 2-4≤0(B)∀x ∈R ,x 2-4<0 (C)∃x ∈R ,x 2-4≥0 (D)∃x ∈R ,x 2-4<04.为了解某商品销售量y(件)与其单价x(元)的关系,统计了的10组值,并画成散点图如图,则由其图得到的回归方程可能是(A)ˆ10198yx =-+ (B)ˆ10198y x =-- (C)ˆ10198y x =+ (D)ˆ10198yx =- 5.已知二面角α-l -β的大小为60°,b 和c 是两条异面直线,且b ⊥α,c ⊥β,则b 与c 所成的角的大小为(A)120° (B)90° (C)60° (D)30°6.下列四个函数中,以π为最小正周期,且在区间(2π,π)上单调递减的是 (A)y =cosx (B)y =2|sinx| (C)y =cos 2x (D)y =tanx 7.“剑桥学派”创始人之一数学家哈代说过:“数学家的造型,同画家和诗人一样,也应当是美丽的”;古希腊数学家毕达哥拉斯创造的“黄金分割”给我们的生活处处带来美;我国古代数学家赵爽创造了优美“弦图”。
辽宁省大连市高三双基测试数学试卷(理科).docx

2016年辽宁省大连市高三双基测试数学试卷(理科)一.选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U={2,4,6,8,10},集合A,B满足∁U(A∪B)={8,10},A∩∁U B={2},则集合B=()A.{4,6}B.{4}C.{6}D.Φ2.已知复数z=1+i,则z4=()A.﹣4i B.4i C.﹣4 D.43.已知函数f(x)定义域为R,则命题p:“函数f(x)为偶函数”是命题q:“∃x0∈R,f (x0)=f(﹣x0)”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.执行如图的程序框图,输出的C的值为()A.3 B.5 C.8 D.135.已知互不重合的直线a,b,互不重合的平面α,β,给出下列四个命题,错误的命题是()A.若a∥α,a∥β,α∩β=b,则a∥b B.若α⊥β,a⊥α,b⊥β则a⊥bC.若α⊥β,α⊥γ,β∩γ=a,则a⊥αD.若α∥β,a∥α,则a∥β6.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为()A.钱B.钱C.钱D.钱7.△ABC中,AB=2,AC=3,∠B=60°,则cosC=()A.B.C.D.8.已知点(x,y)满足不等式组,则z=x﹣2y的最大值为()A.﹣7 B.﹣1 C.1 D.29.若抛物线y2=4x上一点P到其焦点F的距离为2,O为坐标原点,则△OFP的面积为()A.B.1 C.D.210.已知直线y=x+m和圆x2+y2=1交于A、B两点,O为坐标原点,若,则实数m=()A.±1 B.C.D.11.在区间[0,π]上随机地取两个数x、y,则事件“y≤sinx”发生的概率为()A.B.C. D.12.函数f(x)是定义在(0,+∞)上的单调函数,且对定义域内的任意x,均有f(f(x)﹣lnx﹣x3)=2,则f(e)=()A.e3+1 B.e3+2 C.e3+e+1 D.e3+e+2二.填空题(本大题共4小题,每小题5分,共20分)13.双曲线x2﹣2y2=1的渐近线方程为.14.的展开式中,x4项的系数为(用数字作答).15.数列{a n}前n项和,则a n=.16.如图,在小正方形边长为1的网格中画出了某多面体的三视图,则该多面体的外接球表面积为.三.解答题(本大题共5小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.已知函数f(x)=2sin(ωx+φ)(ω>0,|φ|<π)经过点(,﹣2),(,2),且在区间(,),上为单调函数.(Ⅰ)求ω,φ的值;(Ⅱ)设a n=nf()(n∈N*),求数列{a n}的前30项和S30.18.2015年“双十一”当天,甲、乙两大电商进行了打折促销活动,某公司分别调查了当天在甲、乙电商购物的1000名消费者的消费金额,得到了消费金额的频数分布表如下:甲电商:[0,1)[1,2)[2,3)[3,4)[4,5]消费金额(单位:千元)频数50 200 350 300 100乙电商:[0,1)[1,2)[2,3)[3,4)[4,5]消费金额(单位:千元)频数250 300 150 100 200 (Ⅰ)根据频数分布表,完成下列频率分布直方图,并根据频率分布直方图比较消费者在甲、乙电商消费金额的中位数的大小以及方差的大小(其中方差大小给出判断即可,不必说明理由);(Ⅱ)(ⅰ)根据上述数据,估计“双十一”当天在甲电商购物的大量的消费者中,消费金额小于3千元的概率;(ⅱ)现从“双十一”当天在甲电商购物的大量的消费者中任意调查5位,记消费金额小于3千元的人数为X,试求出X的期望和方差.19.如图,四棱锥P﹣ABCD中,底面ABCD是边长为3的菱形,∠ABC=60°.PA⊥面ABCD,且PA=3.F在棱PA上,且AF=1,E在棱PD上.(Ⅰ)若CE∥面BDF,求PE:ED的值;(Ⅱ)求二面角B﹣DF﹣A的大小.20.已知椭圆C:=1(a>b>0)的左焦点分别为F1(﹣c,0),F2(c,0),过F2作垂直于x轴的直线l交椭圆C于A、B两点,满足|AF2|=c.(1)求椭圆C的离心率;(2)M、N是椭圆C短轴的两个端点,设点P是椭圆C上一点(异于椭圆C的顶点),直线MP、NP分别和x轴相交于R、Q两点,O为坐标原点,若|OR|•|OQ|=4,求椭圆C的方程.21.设函数(x∈R,实数a∈[0,+∞),e=2.71828…是自然对数的底数,).(Ⅰ)若f(x)≥0在x∈R上恒成立,求实数a的取值范围;(Ⅱ)若e x≥lnx+m对任意x>0恒成立,求证:实数m的最大值大于2.3.[选修4-1:几何证明选讲](共1小题,满分10分)22.如图,AB是⊙O的直径,DA⊥AB,CB⊥AB,DO⊥CO(Ⅰ)求证:CD是⊙O的切线;(Ⅱ)设CD与⊙O的公共点为E,点E到AB的距离为2,求+的值.[选修4-4:坐标系与参数方程](共1小题,满分0分)23.在平面直角坐标系xOy中,曲线C1:(φ为参数,实数a>0),曲线C2:(φ为参数,实数b>0).在以O为极点,x轴的正半轴为极轴的极坐标系中,射线l:θ=α(ρ≥0,0≤α≤)与C1交于O、A两点,与C2交于O、B两点.当α=0时,|OA|=1;当α=时,|OB|=2.(Ⅰ)求a,b的值;(Ⅱ)求2|OA|2+|OA|•|OB|的最大值.[选修4-5:不等式选讲](共1小题,满分0分)24.设函数f(x)=|2x+a|+|x﹣|(x∈R,实数a<0).(Ⅰ)若f(0)>,求实数a的取值范围;(Ⅱ)求证:f(x)≥.2016年辽宁省大连市高三双基测试数学试卷(理科)参考答案与试题解析一.选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U={2,4,6,8,10},集合A,B满足∁U(A∪B)={8,10},A∩∁U B={2},则集合B=()A.{4,6}B.{4}C.{6}D.Φ【考点】交、并、补集的混合运算.【分析】由A与B并集的补集得到元素8,10不属于B,再由A与B补集的交集得到元素2不属于B,即可得出B,【解答】解:∵全集U={2,4,6,8,10},∁U(A∪B)={8,10},∴A∪B={2,4,6},又∵A∩{∁U B}={2},∴B={4,6}.故选:A.2.已知复数z=1+i,则z4=()A.﹣4i B.4i C.﹣4 D.4【考点】复数代数形式的乘除运算.【分析】直接利用复数代数形式的乘除运算化简得答案.【解答】解:∵z=1+i,∴z2=(1+i)2=2i,则z4=(2i)2=﹣4.故选:C.3.已知函数f(x)定义域为R,则命题p:“函数f(x)为偶函数”是命题q:“∃x0∈R,f (x0)=f(﹣x0)”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据函数奇偶性的定义结合充分条件和必要条件的定义进行判断即可.【解答】解:若函数f(x)为偶函数,则∀x∈R,f(﹣x)=f(x),则∃x0∈R,f(x0)=f (﹣x0)成立,则充分性成立,若f(x)=x2,﹣1≤x≤2,满足f(﹣1)=f(1),但函数f(x)不是偶函数,故必要性不成立,即p是q的充分不必要条件,故选:A.4.执行如图的程序框图,输出的C的值为()A.3 B.5 C.8 D.13【考点】程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算变量C的值并输出,模拟程序的运行,对程序运行过程中各变量的值进行分析,不难得到输出结果.【解答】解:模拟执行程序,可得A=1,B=1,k=3满足条件k≤5,C=2,A=1,B=2,k=4满足条件k≤5,C=3,A=2,B=3,k=5满足条件k≤5,C=5,A=3,B=5,k=6不满足条件k≤5,退出循环,输出C的值为5.故选:B.5.已知互不重合的直线a,b,互不重合的平面α,β,给出下列四个命题,错误的命题是()A.若a∥α,a∥β,α∩β=b,则a∥b B.若α⊥β,a⊥α,b⊥β则a⊥bC.若α⊥β,α⊥γ,β∩γ=a,则a⊥αD.若α∥β,a∥α,则a∥β【考点】空间中直线与平面之间的位置关系.【分析】由线线平行的性质定理能判断A的正误;由面面垂直和线面垂直的性质定理能判断B的正误;由线面垂直的判定定理能判断C的正误;在D中,a∥β或a⊂β.【解答】解:由互不重合的直线a,b,互不重合的平面α,β,知:在A中,由于α∩β=b,a∥α,a∥β,过直线a作与α、β都相交的平面γ,记α∩γ=d,β∩γ=c,则a∥d且a∥c,∴d∥c.又d⊂α,α∩β=b,∴d∥b.∴a∥b.故A正确;在B中,若α⊥β,a⊥α,b⊥β,则由面面垂直和线面垂直的性质得a⊥b,故B正确;在C中,若α⊥β,α⊥γ,β∩γ=a,则由线面垂直的判定定理得a⊥α,故C正确;在D中,若α∥β,a∥α,则a∥β或a⊂β,故D错误.故选:D.6.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为()A.钱 B.钱C.钱D.钱【考点】等差数列的通项公式.【分析】依题意设甲、乙、丙、丁、戊所得钱分别为a﹣2d,a﹣d,a,a+d,a+2d,由题意求得a=﹣6d,结合a﹣2d+a﹣d+a+a+d+a+2d=5a=5求得a=1,则答案可求.【解答】解:依题意设甲、乙、丙、丁、戊所得钱分别为a﹣2d,a﹣d,a,a+d,a+2d,则由题意可知,a﹣2d+a﹣d=a+a+d+a+2d,即a=﹣6d,又a﹣2d+a﹣d+a+a+d+a+2d=5a=5,∴a=1,则a﹣2d=a﹣2×=.故选:B.7.△ABC中,AB=2,AC=3,∠B=60°,则cosC=()A.B.C.D.【考点】正弦定理.【分析】由已知及正弦定理可得sinC==,又AB<AC,利用大边对大角可得C为锐角,根据同角三角函数基本关系式即可求得cosC得值.【解答】解:∵AB=2,AC=3,∠B=60°,∴由正弦定理可得:sinC===,又∵AB<AC,C为锐角,∴cosC==.故选:D.8.已知点(x,y)满足不等式组,则z=x﹣2y的最大值为()A.﹣7 B.﹣1 C.1 D.2【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用z的几何意义,利用数形结合即可得到结论.【解答】解:作出不等式组对应的平面区域如图:由z=x﹣2y,得y=,平移直线y=,由图象可知当直线y=经过点B时,直线y=的截距最小,此时z最大,由,解得,即B(5,2),此时z max=5﹣2×2=1.故选:C.9.若抛物线y2=4x上一点P到其焦点F的距离为2,O为坐标原点,则△OFP的面积为()A.B.1 C.D.2【考点】抛物线的简单性质.【分析】利用抛物线的定义,求出P的坐标,然后求出三角形的面积.【解答】解:由抛物线定义,|PF|=x P+1=2,所以x P=1,|y P|=2,所以,△PFO的面积S=|y P|==1.故选:B10.已知直线y=x+m和圆x2+y2=1交于A、B两点,O为坐标原点,若,则实数m=()A.±1 B.C.D.【考点】直线与圆的位置关系;平面向量数量积的运算.【分析】联立,得2x2+2mx+m2﹣1=0,由此利用根的判别式、韦达定理、向量的数量积能求出m.【解答】解:联立,得2x2+2mx+m2﹣1=0,∵直线y=x+m和圆x2+y2=1交于A、B两点,O为坐标原点,∴△=4m2+8m2﹣8=12m2﹣8>0,解得m>或m<﹣,设A(x1,y1),B(x2,y2),则x1+x2=﹣m,,y1y2=(x1+m)(x2+m)=x1x2+m(x1+x2)+m2,=(﹣x1,﹣y1),=(x2﹣x1,y2﹣y1),∵,∴=+y12﹣y1y2=1﹣﹣+m2﹣m2=2﹣m2=,解得m=.故选:C.11.在区间[0,π]上随机地取两个数x、y,则事件“y≤sinx”发生的概率为()A.B.C. D.【考点】几何概型.【分析】确定区域的面积,即可求出事件“y≤sinx”发生的概率.【解答】解:在区间[0,π]上随机地取两个数x、y,构成区域的面积为π2;事件“y≤sinx”发生,区域的面积为=2,∴事件“y≤sinx”发生的概率为.故选:D.12.函数f(x)是定义在(0,+∞)上的单调函数,且对定义域内的任意x,均有f(f(x)﹣lnx﹣x3)=2,则f(e)=()A.e3+1 B.e3+2 C.e3+e+1 D.e3+e+2【考点】函数单调性的性质.【分析】由题意得f(x)﹣lnx﹣x3是定值,令f(x)﹣lnx﹣x3=t,得到lnt+t3+t=2,求出t 的值,从而求出f(x)的表达式,求出f(e)即可.【解答】解:∵函数f(x)对定义域内的任意x,均有f(f(x)﹣lnx﹣x3)=2,则f(x)﹣lnx﹣x3是定值,不妨令f(x)﹣lnx﹣x3=t,则f(t)=lnt+t3+t=2,解得:t=1,∴f(x)=lnx+x3+1,∴f(e)=lne+e3+1=e3+2,故选:B二.填空题(本大题共4小题,每小题5分,共20分)13.双曲线x2﹣2y2=1的渐近线方程为y=±x.【考点】双曲线的简单性质.【分析】将双曲线的方程化为标准方程,求得a,b,由渐近线方程为y=±x,即可得到所求方程.【解答】解:双曲线x2﹣2y2=1即为x2﹣=1,可得a=1,b=,渐近线方程为y=±x,即为y=±x.故答案为:y=±x.14.的展开式中,x4项的系数为﹣15(用数字作答).【考点】二项式系数的性质.【分析】根据二项式(x﹣)10的展开式中通项公式,求出展开式中x4项的系数.【解答】解:(x﹣)10的展开式中的通项为=•(﹣)r•x10﹣2r,T r+1令10﹣2r=4,解得r=3,所以展开式中x4项的系数为•=﹣15.故答案为:﹣15.15.数列{a n}前n项和,则a n=.【考点】数列递推式.【分析】由数列的前n项和求出首项,再由n≥2时,a n=S n﹣S n求得通项公式,验证首项﹣1后可得数列{a n}的通项公式.【解答】解:∵,∴a1=S1=2,=2n﹣2n﹣1=2n﹣1,当n≥2时,a n=S n﹣S n﹣1当n=1时,2n﹣1=1≠a1,∴,故答案为:a n=.16.如图,在小正方形边长为1的网格中画出了某多面体的三视图,则该多面体的外接球表面积为34π.【考点】简单空间图形的三视图;球的体积和表面积.【分析】由三视图知,该几何体是一个侧面与底面垂直的三棱锥,画出直观图,再建立空间直角坐标系,求出三棱锥外接球的球心与半径,从而求出外接球的表面积.【解答】解:由三视图知,该几何体是三棱锥S﹣ABC,且三棱锥的一个侧面SAC与底面ABC垂直,其直观图如图所示;由三视图的数据可得OA=OC=2,OB=OS=4,建立空间直角坐标系O﹣xyz,如图所示;则A(0,﹣2,0),B(4,0,0),C(0,2,0),S(0,0,4),则三棱锥外接球的球心I在平面xOz上,设I(x,0,z);由得,,解得x=z=;∴外接球的半径R=|BI|==,∴该三棱锥外接球的表面积S=4πR2=4π×=34π.故答案为:34π.三.解答题(本大题共5小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.已知函数f(x)=2sin(ωx+φ)(ω>0,|φ|<π)经过点(,﹣2),(,2),且在区间(,),上为单调函数.(Ⅰ)求ω,φ的值;(Ⅱ)设a n=nf()(n∈N*),求数列{a n}的前30项和S30.【考点】数列的求和;正弦函数的图象.【分析】(Ⅰ)由题可得+φ=2kπ﹣, +φ=2kπ+,(k∈Z),从而解得;(Ⅱ)化简a n=nf()=2nsin(﹣)(n∈N*),而数列{2sin(﹣)}的周期为3;从而可得a3n﹣2+a3n﹣1+a3n=﹣,从而解得.【解答】解:(Ⅰ)由题可得+φ=2kπ﹣, +φ=2kπ+,(k∈Z);解得ω=2,φ=2kπ﹣(k∈Z),∵|φ|<π,∴φ=﹣.(Ⅱ)∵a n=nf()=2nsin(﹣)(n∈N*),而数列{2sin(﹣)}的周期为3;前三项依次为2sin0=0,2sin=,2sin=﹣,∴a3n﹣2+a3n﹣1+a3n=﹣,∴S30=(a1+a2+a3)+…+(a28+a29+a30)=﹣10.18.2015年“双十一”当天,甲、乙两大电商进行了打折促销活动,某公司分别调查了当天在甲、乙电商购物的1000名消费者的消费金额,得到了消费金额的频数分布表如下:甲电商:消费金额(单位:千元)[0,1)[1,2)[2,3)[3,4)[4,5]频数50 200 350 300 100乙电商:消费金额(单位:千元)[0,1)[1,2)[2,3)[3,4)[4,5]频数250 300 150 100 200 (Ⅰ)根据频数分布表,完成下列频率分布直方图,并根据频率分布直方图比较消费者在甲、乙电商消费金额的中位数的大小以及方差的大小(其中方差大小给出判断即可,不必说明理由);(Ⅱ)(ⅰ)根据上述数据,估计“双十一”当天在甲电商购物的大量的消费者中,消费金额小于3千元的概率;(ⅱ)现从“双十一”当天在甲电商购物的大量的消费者中任意调查5位,记消费金额小于3千元的人数为X,试求出X的期望和方差.【考点】离散型随机变量的期望与方差;频率分布直方图;离散型随机变量及其分布列.【分析】(Ⅰ)由频数分布表,能作出下列频率分布直方图,并根据频率分布直方图比较消费者在甲、乙电商消费金额的中位数的大小以及方差的大小.(Ⅱ)(i)利用等可能事件概率计算公式求解.(ii)利用二项分布的性质求解.【解答】解:(Ⅰ)频率分布直方图如下图所示,…甲的中位数在区间[2,3]内,乙的中位数在区间[1,2)内,所以甲的中位数大.由频率分布图得甲的方差大.…(Ⅱ)(ⅰ)估计在甲电商购物的消费者中,购物小于3千元的概率为;…(ⅱ)由题可得购物金额小于3千元人数X~B(5,),…∴E(X)==3,D(X)=5××=.…19.如图,四棱锥P﹣ABCD中,底面ABCD是边长为3的菱形,∠ABC=60°.PA⊥面ABCD,且PA=3.F在棱PA上,且AF=1,E在棱PD上.(Ⅰ)若CE∥面BDF,求PE:ED的值;(Ⅱ)求二面角B﹣DF﹣A的大小.【考点】二面角的平面角及求法;直线与平面平行的判定.【分析】(Ⅰ)根据线面平行的性质定理进行推理得到E为PD中点即可求PE:ED的值;(Ⅱ)根据二面角的定义作出二面角的平面角,即可求二面角B﹣DF﹣A的大小.【解答】证明:(Ⅰ)过E作EG∥FD交AP于G,连接CG,连接AC交BD于O,连接FO.∵EG∥FD,EG⊄面BDF,FD⊂面BDF,∴EG∥面BDF,又EG∩CE=E,CE∥面BDF,EG,CE⊂面CGE,∴面CGE∥面BDF,…又CG⊂面CGE,∴CG∥面BDF,又面BDF∩面PAC=FO,CG⊂面PAC,∴FO∥CG.又O为AC中点,∴F为AG中点,∴FG=GP=1,∴E为PD中点,PE:ED=1:1.…(Ⅱ)过点B作BH⊥直线DA交DA延长线于H,过点H作HI⊥直线DF交DF于I,…∵PA⊥面ABCD,∴面PAD⊥面ABCD,∴BH⊥面PAD,由三垂线定理可得DI⊥IB,∴∠BIH是二面角B﹣DF﹣A的平面角.由题易得AH=,BH=,HD=,且=,∴HI=,∴tan∠BIH=×=,…∴二面角B﹣DF﹣A的大小为arcran.…20.已知椭圆C:=1(a>b>0)的左焦点分别为F1(﹣c,0),F2(c,0),过F2作垂直于x轴的直线l交椭圆C于A、B两点,满足|AF2|=c.(1)求椭圆C的离心率;(2)M、N是椭圆C短轴的两个端点,设点P是椭圆C上一点(异于椭圆C的顶点),直线MP、NP分别和x轴相交于R、Q两点,O为坐标原点,若|OR|•|OQ|=4,求椭圆C的方程.【考点】椭圆的简单性质.【分析】(1)令x=c,求得y,由题意可得=c,再由离心率公式,解方程可得e;(2)求出椭圆上下顶点坐标,设P(x o,y o),R(x1,0),Q(x2,0),利用M,P,R三点共线求出R,Q的横坐标,利用P在椭圆上,推出|OR|•|OQ|=a2即可得到a,b的值,进而得到椭圆方程.【解答】解:(1)令x=c,可得y2=b2(1﹣),即有y=±,由题意可得=c,即为6a2﹣6c2=ac,即有6﹣6e2=e,解得e=;(2)由椭圆方程知M(0,b),N(0,﹣b),另设P(x o,y o),R(x1,0),Q(x2,0),由M,P,R三点共线,知=,所以x1=;同理得x2=.|OR|•|OQ|=…①,又P在椭圆上所以+=1,即b2﹣y02=代入①得|OR|•|OQ|=a2=4,即有a=2,又e==,可得c=,b=1,椭圆的方程为+y2=1.21.设函数(x∈R,实数a∈[0,+∞),e=2.71828…是自然对数的底数,).(Ⅰ)若f(x)≥0在x∈R上恒成立,求实数a的取值范围;(Ⅱ)若e x≥lnx+m对任意x>0恒成立,求证:实数m的最大值大于2.3.【考点】利用导数求闭区间上函数的最值.【分析】(Ⅰ)分离参数,构造函数,利用导数求出函数的最值,问题得以解决;(Ⅱ)构造函数设,利用导数求出函数的最值,即可证明.【解答】解:(Ⅰ)∵,f(x)≥0在x∈R上恒成立,∴a≤,设h(x)=,∴h′(x)=,令h′(x)=0,解得x=,当x>,即h′(x)>0,函数单调递增,当x<,即h′(x)<0,函数单调递减,∴h(x)min=h()=,∴0<a≤,故a的取值范围为;(Ⅱ)设,∴,g'(x)>0,可得;g'(x)<0,可得.∴g(x)在(,+∞)上单调递增;在上单调递减.∴g(x)≥g()=,∵,∴>1.6,∴g(x)>2.3.由(Ⅰ)可得e x>x+,∴e x﹣lnx的最小值大于2.3,故若e x≥lnx+m对任意x>0恒成立,则m的最大值一定大于2.3.[选修4-1:几何证明选讲](共1小题,满分10分)22.如图,AB是⊙O的直径,DA⊥AB,CB⊥AB,DO⊥CO(Ⅰ)求证:CD是⊙O的切线;(Ⅱ)设CD与⊙O的公共点为E,点E到AB的距离为2,求+的值.【考点】与圆有关的比例线段.【分析】(Ⅰ)证明CO是∠BCD的平分线,圆心O到CD的距离等于半径,即可证明:CD 是⊙O的切线;(Ⅱ)分类讨论,过E作EF⊥AB交AB于F,过C作CG⊥AD交AD于G,交EF于H,由(Ⅰ)可得DA=DE,CB=CE.在△CGD中,有,即可求+的值.【解答】(Ⅰ)证明:由题可知DA,BC为⊙O的切线.∵∠DOC=90°,∴∠AOD+∠BOC=90°;∵∠OBC=90°,∴∠OCB+∠BOC=90°;∴∠AOD=∠OCB,∴△AOD∽△BCO,∴=,…又∵AO=OB,∴=,∴Rt△OCD∽Rt△BCO,∴∠OCD=∠BCO,∴CO是∠BCD的平分线,∴圆心O到CD的距离等于半径,∴CD是⊙O的切线;…(Ⅱ)解:若DA=CB,显然可得+=1.…若DA≠CB,不妨设DA>CB.过E作EF⊥AB交AB于F,过C作CG⊥AD交AD于G,交EF于H.由(Ⅰ)可得DA=DE,CB=CE.在△CGD中,有,即=,化简得+=1.综上: +=1.…[选修4-4:坐标系与参数方程](共1小题,满分0分)23.在平面直角坐标系xOy中,曲线C1:(φ为参数,实数a>0),曲线C2:(φ为参数,实数b>0).在以O为极点,x轴的正半轴为极轴的极坐标系中,射线l:θ=α(ρ≥0,0≤α≤)与C1交于O、A两点,与C2交于O、B两点.当α=0时,|OA|=1;当α=时,|OB|=2.(Ⅰ)求a,b的值;(Ⅱ)求2|OA|2+|OA|•|OB|的最大值.【考点】参数方程化成普通方程;简单曲线的极坐标方程.【分析】(I)由曲线C1:(φ为参数,实数a>0),利用cos2φ+sin2φ=1即可化为普通方程,再利用极坐标与直角坐标互化公式即可得出极坐标方程,进而得出a的值.同理可得b的值.(II)由(I)可得C1,C2的方程分别为ρ=cosθ,ρ=2sinθ.可得2|OA|2+|OA|•|OB|=2cos2θ+2sinθcosθ=+1,利用三角函数的单调性与值域即可得出.【解答】解:(Ⅰ)由曲线C1:(φ为参数,实数a>0),化为普通方程为(x﹣a)2+y2=a2,展开为:x2+y2﹣2ax=0,其极坐标方程为ρ2=2aρcosθ,即ρ=2acosθ,由题意可得当θ=0时,|OA|=ρ=1,∴a=.曲线C2:(φ为参数,实数b>0),化为普通方程为x2+(y﹣b)2=b2,展开可得极坐标方程为ρ=2bsinθ,由题意可得当时,|OB|=ρ=2,∴b=1.(Ⅱ)由(I)可得C1,C2的方程分别为ρ=cosθ,ρ=2sinθ.∴2|OA|2+|OA|•|OB|=2cos2θ+2sinθcosθ=sin2θ+cos2θ+1=+1,∵2θ+∈,∴+1的最大值为+1,当2θ+=时,θ=时取到最大值.[选修4-5:不等式选讲](共1小题,满分0分)24.设函数f(x)=|2x+a|+|x﹣|(x∈R,实数a<0).(Ⅰ)若f(0)>,求实数a的取值范围;(Ⅱ)求证:f(x)≥.【考点】绝对值不等式的解法;分段函数的应用.【分析】(Ⅰ)去掉绝对值号,解关于a的不等式组,求出a的范围即可;(Ⅱ)通过讨论x 的范围,结合基本不等式的性质求出求出f(x)的最小值即可.【解答】(Ⅰ)解:∵a<0,∴f(0)=|a|+|﹣|=﹣a﹣>,即a2+a+1>0,解得a<﹣2或﹣<a<0;(Ⅱ)证明:f(x)=|2x+a|+|x﹣|=,当x≥﹣时,f(x)≥﹣﹣;当<x<﹣时,f(x)>﹣﹣;当x≤时,f(x)≥﹣a﹣,∴f(x)min=﹣﹣≥2=,当且仅当﹣=﹣即a=﹣时取等号,∴f(x)≥.2016年10月17日。
辽宁省大连市2019届高三下学期第一次(3月)双基测试数学(理)试题(解析版)

的关系转化为元素间的关系,本题实质求满足属于集合 且属于集合 的元素的集合.
2. =( )
A.
B.
C.
D.
【答案】A
【解析】
【分析】
利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数即可.
【详解】因为
,故选 A.
【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌
D. 两班的语文平均分分差最小
【答案】D 【解析】
【分析】
先对图象数据进行处理,再逐一进行判断即可得到结果.
【详解】由甲、乙两个班级的九科平均分的雷达图可得:
乙班的理科综合成绩强于甲班,即选项 正确,
甲班的文科综合成绩强于乙班,即选项 正确,
两班的英语平均分分差最大,即选项 正确,
两班地理平均分分差最小,即选项 错误,
,
故选 C.
【点睛】本题考查空间几何体的三视图,求解表面积,属于中档题.三视图问题是考查学生空间想象能力最
常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要
素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影 响.
11.已知抛物线
【答案】A
【解析】
【分析】
由线面垂直的判定定理可得充分性成立;由 或 可得必要性不成立,从而可得结论.
【详解】由线面垂直的判定定理可得,若 , 则 ,充分性成立;
若 , ,则 或 ,必要性不成立,
所以若 ,则“ ”是“ ”的充分不必要条件,故选 A.
【点睛】本题通过线面垂直的判断主要考查充分条件与必要条件,属于中档题.判断充分条件与必要条件应
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年大连市高三双基测试卷数 学(理科)说明:1. 本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,其中第II 卷第22题~第24题为选考题,其它题为必考题.2.考生作答时,将答案答在答题卡上,在本试卷上答题无效.考试结束后,将本试卷和答题卡一并交回.参考公式:球的表面积公式:24R S π=,其中R 为半径.第I 卷(选择题 共60分)一.选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知全集{2,4,6,8,10}U =,集合A ,B 满足(){8,10},{2}U U C A B A C B ==,则集合B =(A ){4,6}(B){4}(C){6}(D)Φ2.已知复数1z i =+,则4z = (A )4i -(B)4i(C)4-(D)43.已知函数()f x 定义域为R ,则命题p :“函数()f x 为偶函数”是命题q :“000,()()x R f x f x ∃∈=-”的(A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D)既不充分也不必要条件 4.执行如图的程序框图,输出的C 的值为 (A )3 (B )5(C )8 (D )135.已知互不重合的直线,a b ,互不重合的平面,αβ,给出下列四个命题,错.误.的命题是 (A )若a //α,a //β,b αβ=,则a //b(B)若βα⊥,a α⊥,β⊥b 则b a ⊥ (C)若βα⊥,γα⊥,a =γβ ,则a α⊥ (D)若α//β,a //α,则a //β6.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为 (A )54钱 (B )43钱(C )32钱 (D )53钱 7.ABC ∆中,2,3,60AB AC B ==∠=,则cos C =(A(B)(C)(D8.已知点(,)x y 满足不等式组43021032190x y x y x y -+≤⎧⎪--≥⎨⎪+-≤⎩,则2z x y =-的最大值为(A )7-(B )1-(C )1(D )29.若抛物线24y x =上一点P 到其焦点F 的距离为2,O 为坐标原点,则OFP ∆的面积为 (A )12(B )1(C )32(D )2 10.已知直线m x y +=和圆122=+y x 交于B A 、两点,O 为坐标原点,若32AO AB ⋅=,则实数=m (A )1±(B )23±(C )22±(D )21± 11.在区间[]0,π上随机地取两个数x 、y ,则事件“sin y x ≤”发生的概率为(A )1π(B )2π(C )21π(D )22π12.函数()f x 是定义在(0,)+∞上的单调函数,且对定义域内的任意x ,均有3(()ln )2f f x x x --=,则()f e =(A )31e + (B )32e +(C )31e e ++ (D )32e e ++第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分,第13题第21题为必考题,每个试题考生都必须做答.第22题第24题为选考题,考生根据要求做答. 二.填空题(本大题共4小题,每小题5分,共20分)13.双曲线2221x y -=的渐近线方程为. 14.101()2x x-的展开式中,4x 项的系数为(用数字作答). 15.数列{}n a 前n 项和2n n S =,则n a =.16.如图,在小正方形边长为1的网格中画出了某多面体的三视图,则该多面体的外接球表面积为.三.解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分) 已知函数()2sin()(0,||)f x x ωϕωϕπ=+><经过点7(,2),(,2)1212ππ-,且在区间7(,)1212ππ上为单调函数.(Ⅰ)求,ωϕ的值; (Ⅱ)设*()()3n n a nf n N π=∈,求数列{}n a 的前30项和30S . 18.(本小题满分12分)2015年“双十一”当天,甲、乙两大电商进行了打折促销活动,某公司分别调查了当天在甲、乙电商购物的1000名消费者的消费金额,得到了消费金额的频数分布表如下: 甲电商: 乙电商: (Ⅰ)根据频数分布表,完成下列频率分布直方图,并根据频率分布直方图比较消费者在甲、乙电商消费金额的中位数的大小以及方差的大小(其中方差大小给出判断即可,不必说明理由);(第16题图)(甲) (乙)(Ⅱ)(ⅰ)根据上述数据,估计“双十一”当天在甲电商购物的大量的消费者中,消费金额小于3千元的概率;(ⅱ)现从“双十一”当天在甲电商购物的大量的消费者中任意调查5位,记消费金额小于3千元的人数为X ,试求出X 的期望和方差.19.(本小题满分12分)如图,四棱锥ABCD P -中,底面ABCD 是边长为3的菱形,60=∠ABC .⊥PA 面ABCD ,且3=PA .F 在棱PA 上,且1=AF ,E 在棱PD 上.(Ⅰ)若//CE 面BDF ,求ED PE :的值; (Ⅱ)求二面角A DF B --的大小.20. (本小题满分12分)已知椭圆C :22221(0)x y a b a b+=>>的左右焦点分别为12(,0),(,0)F c F c -,过2F 作垂直于x 轴的直线l 交椭圆C 于B A 、两点,满足2||AF =. (Ⅰ)求椭圆C 的离心率;(Ⅱ)N M 、是椭圆C 短轴的两个端点,设点P 是椭圆C 上一点(异于椭圆C 的顶点),直线NP MP 、分别和x 轴相交于Q R 、两点,O 为坐标原点,若4OR OQ ⋅=,求椭圆C 的方程.21. (本小题满分12分) 设函数2)(aax e x f x --=(x R ∈,实数[0,)a ∈+∞, 2.71828e =⋅⋅⋅是自然对数的底数1.64872=⋅⋅⋅).(Ⅰ)若0)(≥x f 在x R ∈上恒成立,求实数a 的取值范围;(Ⅱ)若m x e x+≥ln 对任意0>x 恒成立,求证:实数m 的最大值大于2.3.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.做答时请写清题号.EF CADBP (第19题图)22.(本小题满分10分)选修4-1:几何证明选讲如图,AB 是⊙O 的直径,,,DA AB CB AB DO CO ⊥⊥⊥. (Ⅰ)求证:CD 是⊙O 的切线;(Ⅱ)设CD 与⊙O 的公共点为E ,点E 到AB 的距离为2,求11CE DE+的值. 23.(本小题满分10分)选修4-4:坐标系与参数方程 在平面直角坐标系xOy 中,曲线1C :⎩⎨⎧=+=ϕϕsin cos a y a a x (ϕ为参数,实数0>a ),曲线2C :⎩⎨⎧+==ϕϕsin cos b b y b x (ϕ为参数,实数0>b ).在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线)20,0(:παραθ≤≤≥=l 与1C 交于A O 、两点,与2C 交于B O 、两点.当0=α时,1||=OA ;当2πα=时,2||=OB .(Ⅰ)求b a ,的值;(Ⅱ)求||||||22OB OA OA ⋅+的最大值. 24.(本小题满分10分)选修4-5:不等式选讲 设函数|1||2|)(ax a x x f -++=(x R ∈,实数0a <). (Ⅰ)若25)0(>f ,求实数a 的取值范围; (Ⅱ)求证:2)(≥x f .2016年大连市高三双基测试数学(理科)参考答案及评分标准说明:一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对解答题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数,选择题和填空题不给中间分.(第22题图)一.选择题1.A2.C3.A4.B5.D6.B7.D8.C9.B 10.C 11.D 12.B 二.填空题13.y x = 14.15- 15.12,12,2n n n -=⎧⎨≥⎩16.34π 三.解答题 17.解: (Ⅰ)由题可得72,2()122122k k k Z ωππωππϕπϕπ+=-+=+∈,……………………3分解得2ω=,22()3k k Z πϕπ=-∈,∵||ϕπ<,∴23πϕ=-. ………………………6分 (Ⅱ)∵*222sin()()33n n a n n N ππ=-∈,数列*22{2sin()}()33n n N ππ-∈的周期为3.前三项依次为,…………………………………………………………………9分∴32313(32)0(31)3(n n n a a a n n n --++=-⨯+-⨯=*()n N ∈,∴30123282930()()S a a a a a a =+++⋅⋅⋅+++=-. ………………………………12分18. (Ⅰ)频率分布直方图如下图所示,…………………………………………………4分甲的中位数在区间)3,2[内,乙的中位数在区间[1,2)内,所以甲的中位数大.……………………………………………………6分(Ⅱ)(ⅰ)估计在甲电商购物的消费者中,购物小于3千元的概率为35;…………………8分 (ⅱ)由题可得购物金额小于3千元人数3~(5,)5X B ,………………………………10分 ∴3326()53,()55555E X D X =⨯==⨯⨯=.……………………………………………12分))19. (Ⅰ)法一:过E 作//EG FD 交AP 于G ,连接CG , 连接AC 交BD 于O ,连接FO .∵//EG FD ,EG ⊄面BDF ,FD ⊂面BDF ,∴//EG 面BDF ,又EG CE E =,//CE 面BDF ,,EG CE ⊂面CGE ,∴面//CGE 面BDF ,………………………………3分 又CG ⊂面CGE ,∴//CG 面BDF ,又面BDF 面PAC FO =,CG ⊂面PAC , ∴//FO CG .又O 为AC 中点,∴F 为AG 中点,∴1FG GP ==, ∴E 为PD 中点,:1:1PE ED =.…………………6分 法二:取BC 中点G ,连接AG ,∵ABCD 是 60=∠ABC 的菱形, ∴AG AD ⊥,又⊥PA 面ABCD ,∴分别以AG 、AD 、AP 为x 、y 、z 轴正方向建立空间直角坐标系A xyz -如图所示.则33(0,3,0),,0),,0),(0,0,1),(0,0,3),22D B C F P - ∴339(0,3,1),(,0)2DF DB =-=-,…………………………………………………2分 设面BDF 的一个法向量(,,)n x y z =,则由00n DF n DB ⎧⋅=⎪⎨⋅=⎪⎩可得30902y z x y -+=⎧-=,不妨令3z =,则解得1x y ==, ∴(3,1,3)n =.……………………………………………………………………………4分设(0,3,3)PE PD λλλ==-,则3(3,33)2CE CP PE λλ=+=-+-, ∵//CE 面BDF ,∴0n CE ⋅=,即93399022λλ--++-=,解得12λ=. ∴:1:1PE ED =.……………………………………………………………………………6分(Ⅱ)法一:过点B 作BH ⊥直线DA 交DA 延长线于H ,过点H 作HI ⊥直线DF 交DF 于I ,……………………………………………8分∵⊥PA 面ABCD ,∴面PAD ⊥面ABCD , ∴BH ⊥面PAD ,由三垂线定理可得DI IB ⊥,∴BIH ∠是二面角A DF B --的平面角.由题易得39,22AH BH HD ===,且HI AF HD DF ==,∴HI =,∴tan BIH ∠==,…………………………………………………10分 ∴二面角A DF B --的大小为……………………………………………12分法二:接(Ⅰ)法二,显然面PAD 的一个法向量(1,0,0)m =,………………………8分∴39cos ,||||m n m n m n ⋅<>==⋅.………………………………………………………10分 ∴二面角A DF B --的大小为.…………………………………………12分 20.解: (Ⅰ)法一:A 点横坐标为c ,代入椭圆得22221c y a b+=,解得22||||b y AF a ==,∴2b a =.……………………………………………………2分即22a c -=,设cea=,∴210e -=,解得e =…………………4分 法二:直角12AF F ∆中,122||2,||F F c AF ==,∴由勾股定理得22211||412AF c c =+,即1||AF =,……………………………………………………………………………2分∴2a ==,∴c a =e =……………………………4分 (Ⅱ)设00(0,),(0,),(,)M b N b P x y -, 则MP 方程为00y b y x b x -=+,令0y =得到R 点横坐标为bx b y -;…………………6分 NP 方程为00y b y x b x +=-,令0y =得到Q 点横坐标为bx b y +;……………………8分 222222220222200()||||4,b y a b b x b OR OQ a b y b y -∴⋅====-- ∴223,1c b ==,∴椭圆C 的方程为2214x y +=.………………………………………12分21. 解:(Ⅰ) 法一:'()xf x e a =-.(1)当0a =时,()xf x e =,∴0)(≥x f 在x R ∈上恒成立;……………………1分(2)当0a >时,'()0f x >可得ln x a >,'()0f x <可得ln x a <.∴()f x 在(,ln )a -∞为减函数,在(ln ,)a +∞为增函数.∴()(ln )ln 2af x f a a a a ≥=--, 要使得0)(≥x f 在x R ∈上恒成立,必有ln 02aa a a --≥,即a ≤. 综上实数a的取值范围为.…………………………………………………………4分 法二:若0)(≥x f 在x R ∈上恒成立,即1()2x e a x ≥+. (1) 当12x ≤-时,∵0a ≥,0x e >,∴原不等式显然成立;…………………………1分(2)当12x >-时,有12xe a x ≤+,设()12xe h x x =+,则21()2'()1()2x e x h x x -=+. ∴'()h x 在1(,)2+∞上大于0;在11(,)22-上小于0.∴()h x 在1(,)2+∞上单调递增;在11(,)22-上单调递减.min 1()()2h x h ==a ≤综上:实数a的取值范围为.………………………………………………………4分(Ⅱ)设()ln (0)g x x x =+>,则1'()(0)g x x x=>, '()0g x >,可得x >;'()0g x <,可得0x <<. ∴()g x在)+∞上单调递增;在上单调递减.……………………………8分∴()g x g ≥=1.64872=⋅⋅⋅1.6>,∴()2.3g x >.…10分 由(Ⅰ)可得x e ≥,∴ln x e x -的最小值大于2.3,若m x e x +≥ln 对任意0>x 恒成立,则m 的最大值一定大于2.3.……………………………………………………12分 22.(Ⅰ)证明:由题可知,DA BC 为⊙O 的切线.∵90DOC ∠=,∴90AOD BOC ∠+∠=;∵90OBC ∠=,∴90OCB BOC ∠+∠=; ∴AOD OCB ∠=∠,∴AOD ∆∽BCO ∆,∴OC BCOD OA=,…………………………2分 又∵AO OB =,∴OC BCOD OB=,∴Rt OCD ∆∽Rt BCO ∆,∴OCD ∠=BCO ∠, ∴CO 是BCD ∠的平分线,∴圆心O 到CD 的距离等于半径OB ,∴CD 是⊙O 的切线.………………………………5分(Ⅱ)若DA CB =,显然可得111CE DE +=.…………6分若DA CB ≠,不妨设DA CB >.过E 作EF AB ⊥交AB 于F ,过C 作CG AD ⊥交AD 于G ,交EF 于H .由(Ⅰ)可得,DA DE CB CE ==,在CGD ∆中, 有EH CE GD CD =,即2CE CE DE CE CE DE -=-+,化简得111CE DE+=. 综上:111CE DE +=.………………………………………………………………………10分 23.解:(Ⅰ)将1C 化为普通方程为222()x a y a -+=,其极坐标方程为2cos a ρθ=,由题可得当0θ=时,||1OA ρ==,∴12a =.……………………………………………2分 将2C 化为普通方程为222()x y b b +-=,其极坐标方程为2sin b ρθ=,由题可得当2πθ=时,||2OB ρ==,∴1b =.………………………………………………………………4分 (Ⅱ)由,a b 的值可得1C ,2C 的方程分别为cos ρθ=,2sin ρθ=,∴222||||||2cos 2sin cos sin 2cos 21OA OA OB θθθθθ+⋅=+=++)14πθ=++,………………………………………………………………………6分52[,],)14444ππππθθ+∈++最大值为1,当2,428πππθθ+==时取到.……………………………………………………………………………………………10分24. (Ⅰ)∵0<a ,∴115(0)||||2f a a a a =+-=-->,即25102a a ++>, 解得2a <-或102a -<<.…………………………………………………………………4分 (Ⅱ)13,2111()|2|||,2113,a x a x a a f x x a x x a x a a a x a x a a ⎧+-≥-⎪⎪⎪=++-=---<<-⎨⎪⎪--+≤⎪⎩, …………………………………………………………………………………………………6分当2a x ≥-时,1()2a f x a ≥--;当12a x a <<-时,1()2a f x a>--; 当1x a ≤时,2()f x a a ≥--.………………………………………………………………8分∴min 1()2a f x a =--≥=,当且仅当12a a -=-即a = ∴2)(≥x f .………………………………………………………………………………10分。