BZ振荡实验

合集下载

bz振荡反应实验报告

bz振荡反应实验报告

bz振荡反应实验报告bz振荡反应实验报告引言:振荡反应是化学中一种非常有趣且复杂的现象,它常常表现出周期性的变化。

本实验旨在通过观察和研究bz振荡反应,深入了解其机理和特性。

实验目的:1. 观察bz振荡反应的现象和规律;2. 探究影响bz振荡反应的因素;3. 分析振荡反应的动力学特性。

实验材料和方法:材料:甲醛、硫酸、硫酸铁、碘化钾、硫酸铜、稀硫酸、蒸馏水等;方法:按照实验步骤进行操作。

实验步骤:1. 准备工作:清洗实验器材,准备所需试剂;2. 液体A的制备:将甲醛、硫酸和硫酸铁按一定比例混合,得到液体A;3. 液体B的制备:将碘化钾、硫酸铜和稀硫酸按一定比例混合,得到液体B;4. 实验装置的搭建:将液体A和液体B分别倒入两个烧瓶中,通过U型管将两个烧瓶连接起来;5. 观察实验现象:观察烧瓶中液体颜色的变化,记录变化的时间和规律。

实验结果与分析:在实验过程中,我们观察到了bz振荡反应的明显现象。

起初,液体A和液体B 分别呈现深蓝色和黄色。

当两者混合后,液体的颜色会发生周期性的变化,从深蓝色到无色,再到深蓝色,如此往复。

通过记录实验过程中颜色变化的时间和规律,我们发现了一些有趣的现象。

首先,颜色变化的周期并不固定,有时短暂,有时较长。

其次,液体颜色变化的速度也存在差异,有时快速,有时缓慢。

这些现象表明,bz振荡反应受到多种因素的影响。

为了更好地理解bz振荡反应的机理,我们进一步探究了影响反应速率的因素。

实验中我们改变了液体A和液体B的浓度、温度和pH值等条件。

结果显示,液体A和液体B的浓度越高,反应速率越快;温度升高也会加快反应速率;而pH值的变化则对反应速率影响较小。

此外,我们还对bz振荡反应的动力学特性进行了分析。

通过实验数据的处理和计算,我们得到了反应速率与浓度的关系曲线,发现其呈现非线性的特点。

这表明bz振荡反应可能涉及到多个中间物质的生成和消耗,反应过程较为复杂。

结论:通过本次实验,我们深入了解了bz振荡反应的特性和机理。

物理化学实验报告-BZ振荡反应

物理化学实验报告-BZ振荡反应

物理化学实验报告BZ 振荡反应1.实验报告(1)了解BZ 反应的基本原理。

(2)观察化学振荡现象。

(3)练习用微机处理实验数据和作图。

2. 实验原理化学振荡:反应系统中某些物理量随时间作周期性的变化。

BZ 体系是指由溴酸盐,有机物在酸性介质中,在有(或无)金属离子催化剂作用下构成的体系。

有苏联科学家Belousov 发现,后经Zhabotinski 发现而得名。

本实验以+4~ CH 2(COOH)2 ~ H 2SO 4作为反映体系。

该体系的总反应为:体系中存在着下面的反应过程。

过程A :23过程B :45 6Br -的再生过程:当[Br -]足够高时,主要发生过程A ,2反应是速率控制步骤。

研究表明,当达到准定态当[Br -]低时,发生过程B ,Ce +3被氧化。

4反应是速率控制步骤。

4.5反应将自催化产生HBrO 2可以看出:Br -和HbrO 2的。

当K 3 [Br -]>K4时,自催化过程不可能发生。

自催化是BZ 振荡反应中必不可少的步骤,否则该振荡不能发生。

研究表明,Br -的临界浓度为:若已知实验的初始浓度,可由上式估算[Br -]crit 。

体系中存在着两个受溴离子浓度控制的过程A 和过程B ,当[Br -]高于临界浓度[Br -]crit 时发生过程A ,当[Br -]低于[Br -]crit 时发生过程B 。

[Br -]起着开关的作用,他控制着A,B 之间的变化。

这样体系就在过程A 、过程B 间往复振荡。

在反应进行时,系统中[Br -]、[HbrO 2]、[Ce +3]、[Ce +4]都随时间作周期性的变化,实验中,可以用溴离子选择电极测定[Br -],用铂丝电极测定[Ce +4]、[Ce +3]随时间变化的曲线。

溶液的颜色在黄色和无色之间振荡,若再加入适量的FeSO 4邻菲咯啉溶液,溶液的颜色将在蓝色和红色之间振荡。

从加入硫酸铈铵到开始振荡的时间为t诱 ,诱导期与反应速率成反比。

实验三十七BZ振荡反应

实验三十七BZ振荡反应
实验数据及结果处理
根据t诱与温度数据作lnl/t诱~1/T图,求出表现活化能。
实验讨论
1、实验中溴酸钾试剂纯度要求高。 2、217 型甘汞电极用lmol·L -1H2SO4作液接。 3、配 0.004 mol·L -1的硫酸铈铵溶液时,一定要在 0.20 mol·L -1硫酸介质中配制。防止发 生水解呈混浊。 4、所使用的反应容器一定要冲洗干净,转子位置及速度都必须加以控制。
kf
kf + knr
(38-10)
Φ=
k f [ A* ]
=
kf
k f ⋅[ A* ] + knr ⋅[ A* ] + kq ⋅[Q] ⋅[ A* ] k f + knr + kq ⋅[Q]
(38-11)
Φ0、Φ分别表示不加和加猝灭剂时的光量子产率。而
I0 = Φ0 =
k f /(k f + knr )
度后,再稳定 5 分钟,加入 10mL硫酸铈铵(4X10-3mol/L)后,点击“开始实验”,输入文件名,
保存实验波形及数据。注意观察溶液颜色的变化及信号电压值的变化。观察反应曲线,待反
应完成后,按“查看峰谷值”键可观察各波的峰、谷值。
7.如果需要打印此次实验波形,按下“打印”键,选择打印比例,程序根据操作者选择的
BrO3- + HBrO2 + H+ KK3 4
2BrO2 + H2O
(37-3)
BrO2 + Ce+3 + H+
HBrO2 + Ce+4
(37-4)
2HBrO2 KK5 5
BrO3- + HOBr + H+

BZ振荡反应

BZ振荡反应

BZ振荡反应刘恺 1120123036一、实验目的(1)了解BZ(Belousov-Zhabotinski)反应的基本原理。

(2)观察化学振荡现象。

(3)练习用微机处理实验数据和作图。

二、实验原理化学振荡:反应系统中,某些物理量(如某组分浓度)随时间做周期性变化。

BZ体系:溴酸盐、有机物在酸性条件以及在有(或无)金属离子催化剂作用下构成的体系。

BZ振荡反应机理(FKN机理):总反应:(A)2H++2Br03-+2CH2(COOH)2→2BrCH(COOH)2+3CO2+4H2O过程(1):(B)BrO3-+Br-+H+→HBrO2+HOBr(C)HBrO2+Br-+H+→2HOBr过程(2):(D)BrO3-+HBrO2+H+→2BrO2+H2O(E)BrO2+Ce3++H+→HBrO2+Ce4+(F)2HBrO2→BrO3-+HOBr+H+Br-再生过程(G)4Ce4++BrCH(COOH)2+H2O+HOBr→2Br-+4Ce3++3CO2+6H+ 体系中存在着两个受溴负离子浓度控制的过程(1)与(2)。

当溴负离子含量足够高时,主要发生过程(1),其中步骤B是速率控制步骤。

当溴负离子含量低时,主要发生过程(2),其中D是速率控制步骤。

如此,体系在过程(1)与(2)之间往复振荡。

反应进行时,系统中Br-、HBrO2、Ce3+、Ce4+的浓度均随时间做周期性变化。

实验中,可选用溴离子选择电极测定Br-,用铂丝电极测定Ce4+、Ce3+随时间变化。

从加入硫酸铈铵到体系开始振荡的时间为t诱,诱导期与反应速率成反比,即1/t诱正比于k=Aexp(-E表/RT),并且有,Ln(1/t诱)=LnA-E表/RT.作图Ln(1/t诱)-1/T,根据斜率可求出表观活化能E表。

三、仪器与试剂BZ反应数据采集接口系统、微型计算机、恒温槽、反应器、磁力搅拌器、丙二酸(0.45mol/L)、溴酸钾(0.25mol/L)、硫酸(3.00mol/L)、硫酸铈铵(4×10-3mol/L).四、实验步骤(1)恒温槽水浴接通电源,设置温度为30℃。

化学振荡B-Z反应

化学振荡B-Z反应

实验21 化学振荡——B-Z 反应一.目的要求1. 了解Belousov-Zhabotinsky 反应(简称BZ 反应)的基本原理,掌握研究化学振荡反应的一般方法。

2. 掌握硫酸介质中铈离子作催化剂时,丙二酸被溴酸氧化体系的基本原理。

3. 了解化学振荡反应的电势测定方法。

4. 测定硫酸-丙二酸-HBrO 3–硝酸铈铵化学振荡体系振荡反应的诱导期与振荡周期,并求出有关反应的活化能。

二.实验原理有些自催化反应有可能使反应体系中某些物质的浓度随时间(或空间)发生周期性的变化,这类反应称为化学振荡反应。

最著名的化学振荡反应是1959年首先由别诺索夫(Belousov)观察发现,随后柴波廷斯基(Zhabotinsky)继续了该反应的研究,并报道了以金属铈离子作催化剂时,柠檬酸被HBrO 3氧化可发生化学振荡现象。

后来又发现了一批溴酸盐的类似反应,人们把这类反应统称为BZ 振荡反应。

例如丙二酸在溶有硫酸铈的酸性溶液中被溴酸钾氧化的反应就是一个典型的BZ 振荡反应。

典型的BZ 系统中,铈离子和溴离子浓度的振荡曲线如图2-21-2所示。

对于以BZ 反应为代表的化学振荡现象,目前被普遍认同的是Field ,Körös 和Noyes 在1972年提出的FKN 机理。

FKN 机理提出反应由三个主过程组成:过程A (1) Br –+BrO 3–+2H +→HBrO 2+HBrO(2) Br –+HBrO 2+H +→2HBrO过程B (3) HBrO 2+BrO 3–+H +→2BrO 2+H 2O(4) BrO 2+Ce 3++H +→HBrO 2+Ce 4+(5) 2HBrO 2→BrO 3–+H ++HBrO过程C (6) 4Ce 4++BrCH(COOH)2+H 2O +HBrO →2Br –+4Ce 3++3CO 2+6H + 过程A 是消耗Br -,产生能进一步反应的HBrO 2,HBrO 为中间产物。

bz振荡反应实验对原理的理解及数据补充

bz振荡反应实验对原理的理解及数据补充

bz振荡反应实验对原理的理解及数据补充以bz振荡反应实验对原理的理解及数据补充为标题的文章引言:化学实验是学习化学知识的重要方式之一,它能够帮助我们更好地理解化学原理。

本文将以bz振荡反应实验为例,探讨其原理以及通过补充数据进一步加深对该实验的理解。

一、bz振荡反应实验的原理bz振荡反应也被称为贝尔神奇反应,是一种自发发生的非平衡反应,其反应物主要包括苹果酸、次硫酸钠、溴化钾和硫酸等。

反应过程中出现的颜色变化是这一实验的显著特点。

实验步骤如下:1. 在试管中加入适量的苹果酸溶液;2. 加入适量的次硫酸钠溶液,使溶液呈现酸性;3. 加入适量的溴化钾溶液,使溶液呈现黄色;4. 缓慢加入硫酸,促使反应发生。

反应过程中液体的颜色会发生变化,从黄色逐渐变为蓝色,然后再变为无色,不断重复这一过程,形成振荡。

二、对bz振荡反应实验的理解bz振荡反应实验的原理与反应速率的变化密切相关。

在反应初始阶段,溴化钾与次硫酸钠反应生成溴离子,此时反应物浓度较高,反应速率较快,溶液呈现黄色。

随着反应的进行,溴离子逐渐被氧化,溶液中的溴浓度减小。

当溴浓度低于某个临界值时,反应速率降低,溶液呈现蓝色。

当溴离子完全被氧化完毕时,反应速率再次增加,溶液变为无色。

这种速率的变化导致了溶液颜色的振荡变化。

通过实验数据的补充,我们可以更深入地理解bz振荡反应实验。

例如,可以通过改变反应物浓度、温度等条件来观察振荡的频率和颜色变化。

实验数据的补充可以帮助我们建立更准确的数学模型,以解释bz振荡反应的机理。

此外,还可以通过添加不同的催化剂来观察其对反应速率和振荡行为的影响,进一步揭示反应的动力学过程。

三、实验数据的补充以下是一组实验数据,通过改变反应物浓度来观察振荡的行为。

实验条件:- 反应物A:苹果酸溶液浓度为0.1mol/L;- 反应物B:次硫酸钠溶液浓度为0.2mol/L;- 反应物C:溴化钾溶液浓度为0.05mol/L;- 反应物D:硫酸溶液浓度为0.5mol/L。

物理化学实验报告-BZ振荡反应

物理化学实验报告-BZ振荡反应

物理化学实验报告-BZ振荡反应
BZ振荡反应是一种经典的化学振荡反应,其特点在于反应体系呈现周期性的颜色变化。

本实验通过观察和分析BZ振荡反应的颜色变化规律,探究了振荡反应机制以及影响反应速率的因素。

实验步骤:
1. 准备工作:准备好测量药品、试管、电子秤等实验装置。

2. 实验操作:将准备好的药品按比例加入试管中,同时加入适量的稀盐酸,用玻璃
棒搅拌均匀。

观察试管液体的颜色变化,当液体呈现蓝色时加入适量的碘离子,不断观察
颜色变化。

3. 观察结果:当反应发生时,液体的颜色会出现周期性变化,从蓝色开始逐渐变为
无色、黄色、橙色、红色等颜色,然后再逐渐回到蓝色。

4. 分析结果:在反应过程中,反应物和产物的浓度随时间而变化,从而导致反应速
率的变化。

此外,碘离子的加入可促进反应的发生,同时稀盐酸的存在也可能影响反应速率。

5. 实验探究:改变反应物的浓度、温度等因素,可以对BZ振荡反应进行更深入的探究,以了解其反应机制和影响因素。

结论:
BZ振荡反应是一种周期性的化学振荡反应,其反应速率随着反应物和产物的浓度变化而变化。

碘离子的加入可促进反应的发生,而稀盐酸的存在也可能影响反应速率。

通过改
变反应物的浓度、温度等因素,可以进一步探究BZ振荡反应的反应机制及影响因素。

物理化学-实验二十六:BZ化学振荡反应

物理化学-实验二十六:BZ化学振荡反应

实验二十六BZ化学振荡反应一、实验目的及要求1. 了解BZ振荡(Belousov-Zhabotinski) 反应的基本原理及研究化学振荡反应的方法。

2. 掌握在硫酸介质中以金属铈离子作催化剂时,丙二酸被溴酸钾氧化过程的基本原理。

3. 测定上述系统在不同温度下的诱导时间及振荡周期,计算在实验温度范围内反应的诱导活化能和振荡活化能。

二、实验原理化学振荡是一种周期性的化学现象,即反应系统中某些物理量如组分的浓度随时间作周期性的变化。

早在17世纪,波义耳就观察到磷放置在留有少量缝隙的带塞烧瓶中时,会发生周期性的闪亮现象。

这是由于磷与氧的反应是一支链反应,自由基累积到一定程度就发生自燃,瓶中的氧气被迅速耗尽,反应停止。

随后氧气由瓶塞缝隙扩散进入,一定时间后又发生自燃。

1921年,勃雷(Bray W C)在一次偶然的机会发现H2O2与KIO3在稀硫酸溶液中反应时,释放出O2的速率以及I2 的浓度会随时间呈现周期性的变化。

从此,这类化学现象开始被人们所注意,特别是1959年,由贝洛索夫(Belousov B P)首先观察到并随后被扎波廷斯基(Zhabotinsky A M)深入研究的反应,即丙二酸在溶有硫酸铈的酸性溶液中被溴酸钾氧化的反应:3H++3BrO- 3+5CH2(COOH)2−−→−+3Ce3BrCH(COOH)2+4CO2+5H2O+2HCOOH这使人们对化学振荡发生了广泛的兴趣,并发现了一批可呈现化学振荡现象的含溴酸盐的反应系统,这类反应称为B-Z振荡反应。

而水溶液中KBrO3氧化丙二酸CH2(COOH)2的反应是化学振荡反应中最为著名,且研究的最为详细的一例,其催化剂为Ce4+/Ce3+或Mn3+/ Mn2+。

人们曾经对BZ反应做过多方面的探讨,并提出了不少历程来解释BZ振荡反应,其中说服力较强的是KFN历程(即Fidld.Koros及Noyes三姓的简称)。

按此历程,反应是由三个主过程组成:过程A (1) Br-+BrO3-+2H+→ HBrO2+HBrO(2) Br-+HBrO2+H+→ 2HBrO过程B (3) HBrO2+BrO3-+H+→ BrO2·+H2O(4) BrO2·+Ce3++H+→ HBrO2+Ce4+(5) 2HBrO2→ BrO3-+H++HBrO过程C (6) 4Ce4++BrCH(COOH)2+H2O+HBrO 2Br-+4Ce3++3CO2+6H+过程A是消耗Br-,产生能进一步反应的HBrO2,HBrO为中间产物。

BZ振荡实验

BZ振荡实验

BZ振荡实验一、实验目的及要求1.了解BZ(Belousov-Zhobotinski)振荡反应的基本原理,观察BZ化学振荡实验。

2.了解化学振荡反应中的电势测定方法,通过测定电位-时间曲线求得化学振荡反应的表观活化能。

二、实验原理1.BZ振荡反应化学振荡是指反应系统中的某些量(如某组分的浓度)随时间做周期性的变化。

BZ振荡实验是由贝诺索夫(Belousov)和柴波廷斯基(Zhobotinski)发现和发展起来的,是指在酸性介质中,有机物在有金属离子催化的条件下被溴酸盐氧化,某些组分的浓度发生周期性的变化。

大量实验研究表明,化学振荡反应的发生必须满足三个条件:(1)必须是远离平衡态体系;(2)反应历程中含有自催化步骤;(3)体系必须具有双稳态性,即可在稳态间来回振荡。

2.FKN机理菲尔德(Field)、科罗什(Koros)、诺伊斯(Noyes)三位科学家对BZ振荡反应实验进行了解释,称为FKN机理。

下面以BrO3~Ce4+~CH2(COOH)2~H2SO4体系为例说明。

在该体系中发生的总反应为:该反应的的核心内容是系统中存在受Br-浓度控制的A和B两个过程。

具体的说,当Br-的浓度高于某个浓度(这个浓度被称为临界浓度C临)时,BrO3-被还原成Br2,即发生A过程。

过程A:(注:HOBr产生后立即被丙二酸消耗,反应过程如下:当Br-的浓度低于临界浓度时,或者说Br-的浓度较低时,Ce3+被氧化为Ce4+,发生B过程。

过程B:(自由基反应瞬间完成)Br-再生过程:过程A是消耗Br-并产生能进一步发生反应的HBrO2,HOBr是中间产物,产生之后立即被丙二酸消耗。

过程B是一个自催化的过程(HBrO2充当催化剂),在Br-消耗到一定程度后,HBrO2才按③和④进行,并使反应不断加速,与此同时,Ce3+被氧化为Ce4+。

HBrO2的累积还受⑤的制约。

⑥反应为丙二酸被溴化为BrCH(COOH)2,与Ce4+反应生成Br-使Ce4+转化为Ce3+。

物理化学-实验二十六:BZ化学振荡反应

物理化学-实验二十六:BZ化学振荡反应

实验二十六BZ化学振荡反应一、实验目的及要求1. 了解BZ振荡(Belousov-Zhabotinski) 反应的基本原理及研究化学振荡反应的方法。

2. 掌握在硫酸介质中以金属铈离子作催化剂时,丙二酸被溴酸钾氧化过程的基本原理。

3. 测定上述系统在不同温度下的诱导时间及振荡周期,计算在实验温度范围内反应的诱导活化能和振荡活化能。

二、实验原理化学振荡是一种周期性的化学现象,即反应系统中某些物理量如组分的浓度随时间作周期性的变化。

早在17世纪,波义耳就观察到磷放置在留有少量缝隙的带塞烧瓶中时,会发生周期性的闪亮现象。

这是由于磷与氧的反应是一支链反应,自由基累积到一定程度就发生自燃,瓶中的氧气被迅速耗尽,反应停止。

随后氧气由瓶塞缝隙扩散进入,一定时间后又发生自燃。

1921年,勃雷(Bray W C)在一次偶然的机会发现H2O2与KIO3在稀硫酸溶液中反应时,释放出O2的速率以及I2 的浓度会随时间呈现周期性的变化。

从此,这类化学现象开始被人们所注意,特别是1959年,由贝洛索夫(Belousov B P)首先观察到并随后被扎波廷斯基(Zhabotinsky A M)深入研究的反应,即丙二酸在溶有硫酸铈的酸性溶液中被溴酸钾氧化的反应:3H++3BrO- 3+5CH2(COOH)2−−→−+3Ce3BrCH(COOH)2+4CO2+5H2O+2HCOOH这使人们对化学振荡发生了广泛的兴趣,并发现了一批可呈现化学振荡现象的含溴酸盐的反应系统,这类反应称为B-Z振荡反应。

而水溶液中KBrO3氧化丙二酸CH2(COOH)2的反应是化学振荡反应中最为著名,且研究的最为详细的一例,其催化剂为Ce4+/Ce3+或Mn3+/ Mn2+。

人们曾经对BZ反应做过多方面的探讨,并提出了不少历程来解释BZ振荡反应,其中说服力较强的是KFN历程(即Fidld.Koros及Noyes三姓的简称)。

按此历程,反应是由三个主过程组成:过程A (1) Br-+BrO3-+2H+→ HBrO2+HBrO(2) Br-+HBrO2+H+→ 2HBrO过程B (3) HBrO2+BrO3-+H+→ BrO2·+H2O(4) BrO2·+Ce3++H+→ HBrO2+Ce4+(5) 2HBrO2→ BrO3-+H++HBrO过程C (6) 4Ce4++BrCH(COOH)2+H2O+HBrO 2Br-+4Ce3++3CO2+6H+过程A是消耗Br-,产生能进一步反应的HBrO2,HBrO为中间产物。

B-Z震荡反应

B-Z震荡反应

B-Z 震荡反应1、引言[1]1.1 实验目的:1.了解Belousov-Zhabotinski 反应(简称B-Z 反应)的机理。

2.通过测定电位——时间曲线求得振荡反应的表观活化能。

1.2 实验原理:化学振荡:反应系统中某些物理量如组分的浓度随时间作周期性的变化。

B-Z 振荡:在金属铈离子(或铁离子、锰离子等)作催化剂的条件下,柠檬酸等有机酸(如丙二酸、苹果酸、丁酮二酸等)的溴酸氧化反应系统能出现化学振荡现象。

人们笼统地称这类反应为B-Z 反应。

由实验测得的B-Z 体系典型铈离子和溴离子浓度的振荡曲线如图1所示:图1:B-Z 体系典型铈离子和溴离子浓度的振荡曲线关于B -Z 反应的机理:目前为人们普遍接受的是关于在硫酸介质中以金属铈离子作催化剂的条件下,丙二酸被溴酸氧化的机理,简称为FKN 机理。

其主要的反应步骤及各步骤的速率或速率系数归纳如下表:序号 机理步骤 速率或速率常数 (1)22HOBr Br H Br H O -++++ƒ1116291110108----=⋅⋅⨯=sk s dm mol k(2)HOBr H Br HBrO k 222−→−+++- 16292102--⋅⋅⨯=s dm mol k (3)HOBrHBrO H Br BrO k +−→−+++--233219331.2--⋅⋅=s dm mol k(4)+-++−→−H HOBr BrO HBrO k 324213174104--⋅⋅⨯=s dm mol k注:k i 代表第i 个反应步骤的速率,MA 和BrMA 分别为CH 2(COOH)2和BrCH(COOH)2的缩写。

按照FKN 机理,对化学振荡现象解释如下:当[Br -]较大时,反应主要按表中的(1)、(2)、(3)进行,总反应为:O H Br H Br BrO 2233365+→+++-- (11)生成的Br 2按步骤(7)消耗掉。

步骤(1)、(2)、(3)、(7)组成了一条反应链,称为过程A ,其总反应为:O H COOH BrCH H COOH CH Br BrO 222233)(33)(32+→++++-- (12)当[Br -]较小时,反应按步骤(5)和(6)进行,总反应为:O H HBrO Ce H HBrO BrO Ce 2242332232++→+++++-+ (13)步骤(5)为该反应的速度控制步骤((5)的逆反应速率可忽略),这样有]][][[][2352+-=H HBrO BrO k dtHBrO d (14)上式表明HBrO 2的生成具有自催化的特点,但HBrO 2的增长要受到步骤(4)的限制。

bz振荡反应实验报告

bz振荡反应实验报告

bz振荡反应实验报告
实验目的,通过实验观察bz振荡反应的过程及其特点,了解振荡反应的基本
原理。

实验仪器与试剂:
1. 反应器,玻璃容器。

2. 试剂,溴化钾、溴化铵、硫酸亚铁、硫酸、水。

实验步骤:
1. 在玻璃容器中加入一定量的溴化钾和溴化铵溶液。

2. 向容器中加入适量的硫酸亚铁和硫酸,使反应混合物均匀。

3. 观察反应过程中的颜色变化和气泡产生情况。

实验结果:
在实验过程中,我们观察到了bz振荡反应的特点,首先是反应混合物由无色
逐渐变为黄色,然后变为蓝色,接着又变为无色,如此往复循环。

在颜色变化的同时,反应混合物中也产生了气泡,整个过程呈现出周期性的振荡变化。

实验分析:
bz振荡反应是一种典型的化学振荡反应,其发生的原理是由于反应物浓度的周期性变化所导致的。

在反应过程中,溴化钾和溴化铵的浓度会随着反应进行而周期性地变化,从而引起反应混合物颜色和气泡产生的周期性变化。

这种振荡反应在化学动力学中具有重要的意义,也为我们理解化学反应动力学提供了一个生动的实例。

实验总结:
通过本次实验,我们深入了解了bz振荡反应的特点和原理,也对化学振荡反应的周期性变化有了更深入的认识。

振荡反应的研究不仅有助于我们理解化学反应动力学的基本原理,也在化工生产和生物医学领域具有重要的应用价值。

希望通过今后的实验和学习,能够进一步深化对化学振荡反应的理解,为化学领域的发展做出更大的贡献。

以上就是本次bz振荡反应实验的报告内容,希望能对大家有所帮助。

BZ振荡反应

BZ振荡反应

(1) 必须是远离平衡态的敞开体系;
(2) 反应历程中含有自催化步骤; (3) 体系必须具有双稳态性,即可以在两个稳态间来回振荡。
二、基本原理
BZ振荡反应的机理:
2BrO3- +3CH2(COOH)2 + 2H+
Ce3+、Br-
2BrCH(COOH)2 +3CO2 +4H2O
体系中存在着两个受溴离子浓度控制的过程: 当Br-足够大时:
3 4
通过测定 (Ce3+/Ce4+)的变化周期,即可得反应的周期。
电势E/V
tu
tz 时间t/min
tz
从曲线中可以得到诱导时间(tu)和振荡周期(tz),根据阿 仑尼乌斯公式
ln E 1 u ln Au tu RT
1 Ez ln ln Az tz RT
通过上式可以分别计算诱导反应和振荡反应的表观活化能。
(1 / tu ) 2 Eu (T2 T1 ) ln (1 / tu )1 RT1T2
(1 / t z ) 2 Ez (T2 T1 ) ln (1 / t z )1 RT1T2
资料:
1958年贝罗索夫(Belousov):金属铈离子作催化剂时,柠 檬酸被HBrO3氧化时呈现化学振荡现象。 柴波廷斯基(Zhabotinskii):有些反应可呈现空间有序。 之后发现了一类振荡反应,称为B-Z 振荡反应。 1969年普利高津(I.Prigogine):在一次理论物理与生物学 的国际会议上,提出了“耗散结构理论”。 普利高津领导的布鲁塞尔学派,是国际上著名的菲平衡态 统计物理学派之一。普利高津曾获1977年诺贝尔奖金。 1978年以来, “耗散结构理论” 在我国得到广泛传播。

实验十二 B-Z振荡反应

实验十二 B-Z振荡反应

实验十二 B-Z振荡反应1.目的要求1)了解、熟悉化学振荡反应的机理;2)通过测定电位一时问曲线求得化学振荡反应的表观活化能。

2.基本原理人们通常所研究的化学反应,其反应物和产物的浓度呈单调变化,最终达到不随时间变化的平衡状态。

而某些化学反应体系中,会出现非平衡非线性现象,即有些组分的浓度会呈现周期性变化,该现象称为化学振荡。

为了纪念最先发现、研究这类反应的两位科学家(BelouS0v和Zhabotinskii),人们将可呈现化学振荡现象的含溴酸盐的反应系统笼统地称为BZ振荡反应(Bz Oscillating Reaction)。

大量的实验研究表明,化学振荡现象的发生必须满足3个条件:(1)必须是远离平衡的敞开体系;(2)反应历程中应含有自催化步骤;(3)体系必须具有双稳态性(bistability),即可在两个稳态间来回振荡。

有关BZ振荡反应的机理,目前为人们所普遍接受的是FKN机理,即由Field、Kоrоs和Noyes三位学者提出的机理。

对于下列著名的化学振荡反应(A)FKN机理认为,在硫酸介质中以铈离子作催化剂的条件下,丙二酸被漠酸盐氧化的过程至少涉及9个反应。

1.当上述反应中[Br-]较大时,BrO3-是通过下面系列反应被还原为Br2的,(1)(2)(3)其中反应(10.A)是控制步骤。

上述反应产生的Br2使丙二酸溴化(4)因此,导致丙二酸溴化的总反应(10.1)为上述四个反应之和而形成一条反应链,(α)2.当[Br-]较小时,溶液中的下列反应导致了铈离子的氧化(5)(6)(7)上面三个反应的总和组成了下列反应链,(β)该反应链是振荡反应发生所必需的自催化反应,其中反应式(Ⅱ一15—6)是速度控制步骤。

最后,Br-可通过下列两步反应而得到再生,(8)上述两式偶合给出的净反应为:(γ)如将反应式(α)、(β)和(γ),)相加就组成了反应系统中的一个振荡周期,即得到总反应式(A)。

必须指出,在总反应中铈离子和溴离子已对消,起到了真正的催化作用。

振荡反应实验报告范文(3篇)

振荡反应实验报告范文(3篇)

第1篇一、实验目的1. 了解Belousov-Zhabotinski(B-Z)振荡反应的基本原理及其化学振荡现象。

2. 通过实验,掌握B-Z振荡反应的条件控制,观察并记录反应过程中的颜色变化和电位变化。

3. 分析B-Z振荡反应的周期性规律,探究影响反应周期的因素。

4. 理解自催化过程在振荡反应中的作用,加深对非线性动力学机制的认识。

二、实验原理B-Z振荡反应是一种典型的化学振荡现象,它是由有机物在酸性介质中被催化溴氧化的一类反应。

该反应体系主要由以下几种物质组成:丙二酸(MA)、溴酸钾(KBrO3)、硫酸(H2SO4)和催化剂(Ce4+)。

反应过程中,丙二酸被溴酸钾氧化生成溴代丙二酸,同时生成Ce4+离子。

Ce4+离子作为催化剂,参与反应的氧化还原过程,使得反应系统产生周期性的振荡。

B-Z振荡反应的机理可以概括为以下三个过程:1. 过程A:丙二酸与溴酸钾反应生成溴代丙二酸和Ce4+离子。

\[ 2MA + 2BrO3^- + 2H^+ \rightarrow 2BrMA + Ce4^+ + 2H2O \]2. 过程B:溴代丙二酸在Ce4+离子的催化下,再次被溴酸钾氧化,生成Br2和Ce4+离子。

\[ BrMA + BrO3^- + H^+ \rightarrow Br2 + Ce4^+ + 2H2O \]3. 过程C:Ce4+离子在反应过程中被还原为Ce3+离子,Ce3+离子与溴酸钾反应生成Ce4+离子,从而维持反应的持续进行。

\[ Ce4^+ + e^- \rightarrow Ce3^+ \]\[ Ce3^+ + BrO3^- + 2H^+ \rightarrow Ce4^+ + Br2 + H2O \]三、实验材料与仪器材料:- 丙二酸(MA)- 溴酸钾(KBrO3)- 硫酸(H2SO4)- 硫酸铜(CuSO4)- 硫氰酸钾(KSCN)- 0.1mol/L pH缓冲溶液- 蒸馏水- 铂电极- 217型甘汞电极- 饱和甘汞电极- 电位计- 秒表- 容量瓶- 烧杯- 玻璃棒- 滴定管仪器:- 酸度计- 离子色谱仪- 恒温水浴- 镜子四、实验步骤1. 溶液配制:- 配制0.1mol/L的MA溶液。

BZ振荡反应-实验报告(特选资料)

BZ振荡反应-实验报告(特选资料)

B-Z 振荡反应实验日期:2016/11/24 完成报告日期:2016/11/251 引言1.1 实验目的1. 了解Belousov-Zhabotinski 反应(简称B-Z 反应)的机理。

2. 通过测定电位——时间曲线求得振荡反应的表观活化能。

1.2 实验原理对于以B-Z 反应为代表的化学振荡现象,目前被普遍认同的是Field ,kooros 和Noyes 在1972年提出的FKN 机理,,他们提出了该反应由萨那个主过程组成:过程A ①322BrO Br H HBrO HOBr --+++→+ ②22HBrO Br H HOBr -+++→式中2HBrO 为中间体,过程特点是大量消耗Br -。

反应中产生的HOBr 能进一步反应,使有机物MA 如丙二酸按下式被溴化为BrMA,(A1)22HOBr Br H Br H O -+++→+ (A2)2Br MA BrMA Br H -++→++过程B ③32222BrO HBrO H BrO H O -++++僩 ④342222222BrO Ce H HBrO Ce ++++→+g这是一个自催化过程,在Br -消耗到一定程度后,2HBrO 才转化到按以上③、④两式进行反应,并使反应不断加速,与此同时,催化剂3Ce +氧化为4Ce +。

在过程B 的③和④中,③的正反应是速率控制步骤。

此外,2HBrO 的累积还受到下面歧化反应的制约。

⑤232HBrO BrO HOBr H -+→++过程C MA 和BrMA 使4Ce +离子还原为3Ce +,并产生Br -(由BrMA )和其他产物。

这一过程目前了解得还不够,反应可大致表达为:⑥24Ce ++MA +BrMA →f Br -+23Ce ++其他产物式中f 为系数,它是每两个4Ce +离子反应所产生的Br -数,随着BrMA 与MA 参加反应的不同比例而异。

过程C 对化学振荡非常重要。

如果只有A 和B ,那就是一般的自催化反应或时钟反应,进行一次就完成。

17B-Z振荡

17B-Z振荡

100实验十七 B-Z 振荡反应一、目的与要求1. 了解Belousov-Zhabotinskii 反应(简称B-Z 反应)的基本原理;2. 掌握研究化学振荡反应的一般方法,初步认识体系远离平衡态下的复杂行为。

二、预习与思考1.预习B-Z 振荡反应的基本原理;2.本实验记录的电势主要代表了什么意思?它与Nernst 方程求得的电势有何不同?为什么?三、实验原理非平衡非线性问题是自然科学领域中普遍存在的问题。

目前,这一新兴的研究领域受到了足够重视,大量的研究工作正在进行,该领域研究的主要问题是:体系在非平衡态下,由于本身的非线性动力学机制而产生宏观时空有序结构、Prigogine 等人称其为耗散结构(dissipative structure )。

最经典的耗散结构是B-Z 体系的时空有序结构。

所谓B-Z 体系,是指由溴酸盐、有机物在酸性介质中,在有(或无)金属离子催化剂催化下构成的体系。

它是由前苏联科学家Belousov 发现,后经Zhabotinskii 发展而得名。

1972年,R.J. Field ,E. K ờr ờs, R. M. Noyes 等人通过实验对B-Z 振荡反应作出了解释。

其主要思想是:体系中存在两个受溴离子浓度控制得过程A 和B ;当Br -浓度高于临界浓度[Br -]crit 时,发生A 过程,当Br -浓度高于临界浓度[Br -]crit 时,发生B 过程。

也就是说:Br -浓度起着开关作用,它控制着A 到B 过程,再由B 过程到A 过程的转变。

在A 过程,由于化学反应Br -浓度降低,当Br -浓度达到[Br -]crit 时,B 过程发生。

在B 过程中,Br -=再生,Br -浓度增加,当Br -浓度达到[Br -]crit 时,A 过程发生。

这样,体系就在A 过程、B 过程间往复振荡。

下面以BrO 3—Ce 4+-MA-H 2SO 4体系为例说明。

当Br -浓度足够高时,发生下列A 过程HOBr HBrO H Br BrO k +−→−+++--2312 (17.1) HOBr H Br HBrO k 222−→−+++- (17.2)其中反应(17.1)是速率控制步,当达到准定态时,有]][[][3212+-=H BrO k k HBrO 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

BZ振荡实验
一、实验目的及要求
1.了解BZ(Belousov-Zhobotinski)振荡反应的基本原理,观察BZ化学振荡
实验。

2.了解化学振荡反应中的电势测定方法,通过测定电位-时间曲线求得化学振荡反应的表观活化能。

二、实验原理
振荡反应
化学振荡是指反应系统中的某些量(如某组分的浓度)随时间做周期性的变化。

BZ振荡实验是由贝诺索夫(Belousov)和柴波廷斯基(Zhobotinski)发现和发展
起来的,是指在酸性介质中,有机物在有金属离子催化的条件下被溴酸盐氧化,某些组分的浓度发生周期性的变化。

大量实验研究表明,化学振荡反应的发生必须满足三个条件:(1)必须是远离平衡态体系;(2)反应历程中含有自催化步骤;(3)体系必须具有双稳态性,即可在稳态间来回振荡。

机理
菲尔德(Field)、科罗什(Koros)、诺伊斯(Noyes)三位科学家对BZ振荡反应
实验进行了解释,称为FKN机理。

下面以BrO
3~Ce4+~CH
2
(COOH)
2
~H
2
SO
4
体系为例说
明。

在该体系中发生的总反应为:
该反应的的核心内容是系统中存在受Br-浓度控制的A和B两个过程。

具体的说,
当Br-的浓度高于某个浓度(这个浓度被称为临界浓度C
临)时,BrO
3
-被还原成Br
2

即发生A过程。

过程A:
(注:HOBr产生后立即被丙二酸消耗,反应过程如下:
当Br-的浓度低于临界浓度时,或者说Br-的浓度较低时,Ce3+被氧化为Ce4+,发生B过程。

过程B:
(自由基反应瞬间完成)
Br-再生过程:
过程A是消耗Br-并产生能进一步发生反应的HBrO
2
,HOBr是中间产物,产
生之后立即被丙二酸消耗。

过程B是一个自催化的过程(HBrO
2
充当催化剂),在Br-消耗到一定程度后,
HBrO
2
才按③和④进行,并使反应不断加速,与此同时,Ce3+被氧化为Ce4+。

HBrO
2
的累积还受⑤的制约。

⑥反应为丙二酸被溴化为BrCH(COOH)
2
,与Ce4+反应生成Br-使Ce4+转化为Ce3+。

这个反应使得Br-和Ce3+再生,形成周期振荡,并且控制A过程和B过程发生的离子是Br-。

-的临界浓度
过程A中,慢反应②控制整个A过程的速度,当过程A达到准定态,即υ
①=υ

,这时:
k 1[BrO
3
-][Br-][H+]2=k
2
[HBrO
2
][Br-][H+],得:[HBrO
2
]
A
=k
1
/k
2
[BrO
3
-][H+]。

过程B中,慢反应③产生的自由基BrO
2
·立即反应,当反应达到准定态,
即υ
③=υ

,这时
k 3[BrO
3
-][HBrO
2
][H+]=k
5
[HBrO
2
]2,得:[HBrO
2
]
B
=k
3
/k
5
[BrO
3
-][H+]。

观察②反应和③反应,Br-和BrO
3
-均要与HBrO
2
反应,形成竞争反应。


k 2[HBrO
2
][Br-][H+]>k
3
[BrO
3
-][HBrO
2
][H+]时,即k
2
[Br-]>k
5
[BrO
3
-]时,反应②进
行,反应③不能进行。

而k
2[Br-]<k
3
[BrO
3
-]时,反应②不能进行,反应③进行。

所以Br-临界浓度为
[Br-]
临=k
3
/k
2
[BrO
3
-]=5×10-6[BrO
3
-]。

4.实验方法
本实验采用电化学方法,即在不同的温度下通过测定因[Ce3+]和[Ce4+]之比
产生的电势随时间变化的曲线,分别从曲线中得到诱导时间(t
u )和振荡周期(t
z
)。

改变体系温度,可以发现,ln(1/t
u )、ln(1/t
z
)均与温度呈线性关系,即
ln(1/t
u )=—E
u
/RT+C
1
ln(1/t
z )=—E
z
/RT+C
2
式中,C
1、C
2
为常数;E
u
和E
z
分别为诱导期和振荡期的表观活化能,单位为kJ·mol-1。

三、实验仪器与试剂
实验仪器:ZD-BZ振荡仪器、超级恒温槽、217型甘汞电极、铂电极、移液管
实验试剂:·L-1硫酸铈铵 3mol·L-1H
2SO
4
·L-1丙二酸·L-1KBrO
3
四、实验步骤
1.电极准备。

配制1mol/L的硫酸溶液,装入饱和甘汞电极中。

2.分别用蒸馏水配制·L-1硫酸铈铵(必须在·L-1H
2SO
4
中配制) 、
3mol·L-1H
2SO
4
、·L-1丙二酸、·L-1KBrO
3
各100mL。

3.连接实验仪器,打开仪器电源预热,同时开启恒温槽的电源,并调节温度
为30o C,打开恒温槽的循环水开关。

4.移取配好的硫酸铈铵、硫酸和丙二酸溶液各10mL于已洗干净的电解杯中,同时移取10mL溴酸钾在恒温槽中恒温。

调节电磁搅拌的旋钮,使搅拌子以合适的速度转动,并将电势选为2V档。

将短接线插入正负电极,按清零键,消除系统误差。

分别将饱和甘汞电极和铂电极插入电解池,并甘汞电极另一端接负极,铂电极一端接正极。

5.打开桌面上的BZ振荡实验系统,点击运行按钮。

当示数基本不发生变化时加入恒温的溴酸钾溶液,观察曲线变化。

记录3-4个完整周期即可停止实验。

6.改变恒温槽温度,重复上述步骤。

五、数据处理
1.分别记录各个温度下的电势并E-t图,求出各个温度下的诱导时间t
u

振荡周期t
z。

2.分别作ln(1/t
u )-1/T和ln(1/t
z
)-1/T图,根据图中的直线斜率求出诱导
活化能E
u 和振荡活化能E
z。

五、注意事项
1.硫酸铈铵必须在·L-1H
2SO
4
中配制,以防硫酸铈铵发生水解。

2.将溴酸钾放于恒温槽中恒温,恒温时间要在10分钟以上。

3.电解池、电极等一切与溶液相接触的器皿一定要洗干净,这是实验成败的关键。

4.实验过程中搅拌子的速度要保持一致。

5.浓硫酸稀释时注意酸加入水中。

相关文档
最新文档