任意角的三角函数复习
任意角的三角函数⑵
1.任意角的三角函数的(代数表示)-----定义 设 为任意角, p ( x , y )是 终边与单位圆的交点。
y
P (x, y) 正弦: sin
1 余割: csc y
o
x
1 余弦: cos x 正割: sec x 正切: tan y 余切: cot x
y o x
α在第二象限如何?其它象限如何?
五.任意角的三角函数的 (几何表示)----三角函数线
y T P(x,y)
sin y MP
o M A(1,0) x
cos x OM
MP AT tan AT OM OA
1.设的终边与单位圆交于点P(x,y),
2.过点P作x轴的垂线,垂足为M
0
k Z
转化为求00 到3600 角的三角函数值。 可把求任意角的三角函数值,
练习:1.求值 9 1) cos 4
2) sin1470
19 4) sin( 1050 ) 5) tan 3
11 3) tan( ) 6 31 6) tan( ) 4
五.任意角的三角函数的 (几何表示)----三角函数线
y x y tan cos sin x r r
2.若角
3.角
求
的终边上一点P的坐标为 4a, 3a a 0
2sin cos 的值;
3 8 的终边过点P a, cos 则 a ______ 5
,
4.角的终边在直线3 x 4 y 0上, 求2sin cos
y T P(x,y)
sin y MP
o M A(1,0) x
完整版)三角函数知识点归纳
完整版)三角函数知识点归纳三角函数一、任意角、弧度制及任意角的三角函数1.任意角1)角的概念的推广角可以按照旋转方向分为正角、负角和零角,也可以按照终边位置分为象限角和轴线角。
2)终边与角α相同的角可写成α+k·360°(k∈Z)。
3)弧度制弧度制是一种角度量,1弧度的角是指长度等于半径长的弧所对的圆心角。
弧度与角度可以互相转换。
2.任意角的三角函数定义设α是一个任意角,角α的终边上任意一点P(x,y),它与原点的距离为r(x^2+y^2),那么角α的正弦、余弦、正切分别是:sinα=y/r,cosα=x/r,tanα=y/x。
3.特殊角的三角函数值特殊角的三角函数值可以通过计算得到,如30度角的正弦为1/2,余弦为√3/2,正切为√3/3,以此类推。
注意:删除了明显有问题的段落,同时对每段话进行了小幅度的改写以提高表达清晰度。
和周期;2掌握三角函数的图像及其性质;3熟练运用诱导公式和基本关系进行化简和求值。
二、同角三角函数的基本关系与诱导公式A.基础梳理1.同角三角函数的基本关系1)平方关系:sin^2α+cos^2α=1;(在利用同角三角函数的平方关系时,若开方,要特别注意判断符号)2)商数关系:sinα/cosα=tanα,cosα/sinα=1/tanα,1+tan^2α=sec^2α,1+ cot^2α=csc^2α。
2.诱导公式公式一:sin(α+2kπ)=sinα,cos(α+2kπ)=cosα,tan(α+2kπ)=tanα其中k∈Z.公式二:sin(π+α)=-sinα,cos(π+α)=-cosα,tan(π+α)=tanα.公式三:sin(π-α)=sinα,cos(π-α)=-cosα,XXX(π-α)=-tanα.公式四:sin(-α)=-sinα,cos(-α)=cosα,tan(-α)=-tanα.公式五:sin(π/2-α)=cosα,cos(π/2-α)=sinα.公式六:sin(π/2+α)=cosα,cos(π/2+α)=-sinα.诱导公式可概括为k·±α的各三角函数值的化简公式.口诀:奇变偶不变,符号看象限.其中的奇、偶是指的奇数22倍和偶数倍,变与不变是指函数名称的变化.若是奇数倍,则函数名称要变(正弦变余弦,余弦变正弦);若是偶数倍。
高考数学复习:任意角和弧度制及任意角的三角函数
当m=- 5 时,r=2 2,点P的坐标为 ( 3, 5),
所以cos x 3 6 ,tan y 5 15 ,
r 22 4
x 3 3
综上可知,cos θ=- ,t6an θ=- 或c1o5 s θ=- , 6
2
2.若圆弧长度等于圆内接正方形的边长,则该圆弧所对
圆心角的弧度数为 ( )
A.
B.
C. 2
D. 2
4
2
2
【解析】选D.设圆的直径为2r,则圆内接正方形的边长 为 2r, 因为圆的圆弧长度等于该圆内接正方形的边长, 所以圆弧的长度为 2r, 所以圆心角弧度为 2r 2.
r
考点三 任意角三角函数的定义及应用 【明考点·知考法】
【典例】函数y= sin x 3 的定义域为________.
2
世纪金榜导学号
【解析】由题意可得sin x- ≥30,即sin x≥ .作 3
2
2
直线y= 3交单位圆于A,B两点,连接OA,OB,则OA与OB围
2
成的区域(图中阴影部分含边界)即为角x的终边的范围,
故满足条件的角x的集合为
{x|2k x 2k 2 , k Z}.
2
答案:6π
题组二:走进教材
1.(必修4P5T4改编)下列与 9 的终边相同的角的表达
4
式中正确的是 ( )
A.2kπ+45°(k∈Z) C.k·360°-315°(k∈Z)
B.k·360°+ 9 π(k∈Z)
4
D.kπ+ 5 (k∈Z)
4
【解析】选C.由定义知终边相同的角的表达式中不能
同时出现角度和弧度,应为 +2kπ或k·360°+45°
高一任意角和弧度制及任意角的三角函数复习
y r x cos a = r y tan a = x 0 x sin a =
1.根据三角函数的定义,确定它们的定 三角函数 定义域 义域 (弧度制
cos a tan a
y + o ( ) ( ( x (
sin a
R
R
p a a kp (k Z ) 2
2.确定三角函数值在各象限的符号
使比值有意义的角的集合即为三 角函数的定义域.
定义推广:
设角a 是一个任意角, P ( x, y )是终边上任意一点,点P 与原点的距离是r= x 2 y 2 0
那么① ② ③ 任意角
y r x r y x
叫做
a
a
的正弦,即 的余弦,即 的正弦,即
叫做 叫做
a
a 的三角函数值仅与a 有关,而与点 P在角的终边上的位置无关.
那么:(1) 叫做 (2) 叫做 (3) 叫做 y x
y a 的正弦,记作
,即 ,即
sin a ;
;
sin a = y
x a 的余弦,记作
cosa
cos a = x
。 tan a =
y
a 的正切,记作
,即tana
y ( x 0) x
P( x, y)
1
a
o
x
M
正弦,余弦,正切都是以角为 自变量,以单位圆上点的坐标 或坐标的比值为函数值的函数 ,我们将他们称为三角函数.
1 1 S扇形 = r = a r 2 2 2 1 1 S弓 =S扇形 S = r r r sin a 2 2 扇形周长=2r
l a = r
r=
l
a
思考:扇形的弧长和面积共含几个变量,已 知几个量,才能求出另外的量呢?
三角函数专题复习
三角函数专题复习(一)1. 三角函数(约16课时)(1)任意角、弧度制:了解任意角的概念和弧度制,能进行弧度与角度的互化。
(2)三角函数①借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义。
②借助单位圆中的三角函数线推导出诱导公式(的正弦、余弦、正切),能画出的图象,了解三角函数的周期性。
③借助图象理解正弦函数、余弦函数在,正切函数在上的性质(如单调性、最大和最小值、图象与x轴交点等)。
④理解同角三角函数的基本关系式:⑤结合具体实例,了解的实际意义;能借助计算器或计算机画出的图象,观察参数A,ω,对函数图象变化的影响。
⑥会用三角函数解决一些简单实际问题,体会三角函数是描述周期变化现象的重要函数模型。
一、要点●疑点●考点1、任意角和弧度制:①、任意角:正角(按逆时针方向旋转形成的角)、负角(按顺时针方向旋转形成的角)、零角(没有作任何旋转的角);②、象限角:角的顶点与原点重合,角的始边与x轴的正半轴重合,那么角的终边落在第几象限,我们就说这个角是第几象限的角;【注意】:如果角的终边落在坐标轴上,就认为这个角不属于任何一个象限。
③、a:终边相同的角的集合:S={β︱β=α+k·360o,k∈Z};b:终边在x轴上的角的集合:S={β︱β=k•180o,k∈Z};c:终边在y轴上的角的集合:S={β︱β=90o+k·180o,k∈Z};d:终边在坐标轴上的角的集合:S={β︱β=k·90o,k∈Z};e:终边在直线y=x上的角的集合:S={β︱β=45o+k•180o,k∈Z}④、角度制与弧度制:用度作为单位来度量角的单位制叫着角度制;用实数作为单位来度量角的单位制叫着弧度制;把长度等于半径长的弧所对的圆心角叫着1弧度的角,用符号rad表示,读着弧度。
如果半径为r的圆的圆心角α所对的弧长为l,那么,角αα的正负由角α的终边的旋转方向决定。
角度制与弧度制的转化只要通过【注意】:今后用弧度制表示角时,“弧度”二字或“rad”通常略去不写,而只写该角所对应的弧度数。
《任意角的三角函数》知识点总结及典型例题
任意角的三角函数模块一、角的概念及其推广要点一、角的相关概念 (1)角的概念角可以看成是由平面内一条射线(起始边)绕着端点旋转到一个新的位置(终边)所形成的图形。
(2)角的分类⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角要点二、终边相同角 (1)终边相同角的定义设α表示任意角,所有与α终边相同的角,包括α本身构成一个集合,这个集合可记为{},360|Z k k S ∈︒⋅+==αββ。
集合S 的每一个元素都与α的终边相等,当0=k 时,对应元素为α。
(2)注意①相等的角终边一定相同,但终边相同的角不一定相等;终边相同的角有无数个,它们相差︒360的整数倍。
②角的集合表示形式是不唯一的。
要点三、象限角与轴线角(1)象限角定义:角α顶点与原点重合,角的始边与x 轴非负半轴重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为: 第二象限角的集合为:第四象限角的集合为:终边落在x 轴正半轴上角的集合: 终边落在x 轴负半轴上角的集合: 终边在x 轴上的角的集合为: 终边落在y 轴正半轴上角的集合: 终边落在y 轴负半轴上角的集合: 终边在y 轴上的角的集合为: 终边落在坐标轴上角的集合:(2)注意:终边落在同一条直线上的角相差︒180的整数倍,终边落在同一条射线上的角相差︒360的整数倍。
要点四、区间角、区域角区间角是介于两个角之间的角的集合,区域角是介于某两角终边之间的角的集合。
区域角是无数个区间角的集合。
注意:锐角都是第一象限角,但第一象限角不都是锐角;小于90°的角不都是锐角,它还包括零角和负角,只有小于90°的正角才是锐角。
考点一、求终边相同的角的集合例1.(1)写出所有与︒-650终边相同的角的集合,并在︒︒360~0范围内,找出与︒-650角终边相同的角。
(2)把︒-2011写成)3600(360︒≤≤︒+⋅ααk 的形式。
任意角的三角函数基本知识点(要)
任意角的三角函数知识点一、终边角:与α终边相同的角表示为。
分别写出终边在下列位置时的角α的集合:1.x轴上2.y轴上3.坐标轴上4.第一象限5.第二象限6.第三象限7.第四象限 8.直线y=x上二、弧度制:1、定义:2、公式:|α|=3、换算:①度换弧度:180°=弧度; 1°=弧度②弧度换度:1弧度=度;扇形:弧长L==,面积S==三、任意角的三角函数:①定义:角α终边的终边与单位圆的交点P(x,y),则sinα= cosα= tanα=角α终边上任意一点交点P(x,y),则r= ,则sinα= cosα= tanα=②三角函数线:角的终边与单位圆交于点P,过点P作轴的垂线,垂足为M,则正弦线是余弦线是即sinα= ,cosα= .过点A(1,0)作交于点T即tonα= .③同角三角函数关系式:④三角函数的符号:(1)商数关系:(2)平方关系:⑤诱导公式:2kπ+α与απ—α与απ+α与α)(βα+C )(βα-C)(βα+S )(βα-S )(βα+T )(βα-T⑧二倍角公式: α2Sα2C α2T三角函数的图象与性质答案一、终边角:与α终边相同的角表为k ·360° + α 。
分别写出终边在下列位置时的角α的集合: 1. x 轴上 {},k k Z ααπ=∈2. y 轴上 ,2k k Z πααπ⎧⎫=+∈⎨⎬⎩⎭3. 坐标轴上,2k k Z ααπ⎧⎫=∈⎨⎬⎩⎭4. 第一象限22,2k k k Z παπαπ⎧⎫+∈⎨⎬⎩⎭5. 第二象限22,2k k k Z παπαππ⎧⎫++∈⎨⎬⎩⎭6. 第三象限322,2k k k Z παππαπ⎧⎫++∈⎨⎬⎩⎭7. 第四象限3222,2k k k Z παπαππ⎧⎫++∈⎨⎬⎩⎭8. 第一或第三象限,2k k k Z παπαπ⎧⎫+∈⎨⎬⎩⎭9. 第二或第四象限,2k k k Z παπαππ⎧⎫++∈⎨⎬⎩⎭10. 直线y =x 上,4k k Z πααπ⎧⎫=+∈⎨⎬⎩⎭11. 直线y =-x 上3,4k k Z πααπ⎧⎫=+∈⎨⎬⎩⎭二、 弧度制:1、定义:弧长等于半径的弧所对的圆心角叫一弧度的角.2、 公式:|α|=lr3、 换算:① 度换弧度:180°=π弧度;1°=180π弧度②弧度换度:1弧度=180π度;扇形: 弧长L =180n rπ= r α, 面积S =2360n r π=12lr三、 任意角的三角函数:①定义:角α终边上任意一点P(x ,y),则r =,六个三角函数的定义依次是sin y r α=、cos x r α=、tan y α=cot x α=sec r α=csc r α= ②三角函数线:角的终边与单位圆交于点P ,过点P 作x 轴的垂线,垂足为M ,则正弦线是MP 余弦线是OM即sin α=MP,cos α= OM.过点A(1,0)作 切线交 角的终边或反向延长线 于点T ,则正切线是AT 。
1.2.1 任意角的三角函数重难点题型(举一反三)(解析版)
1.2.1任意角的三角函数重难点题型【举一反三系列】【知识点1 三角函数的定义】1.任意角的三角函数定义2.三角函数的定义域:【知识点2 三角函数值的符号】第一象限角的各三角函数值都为正;第二象限角的正弦值为正,其余均为负;第三象限角的正切值为正,其余均为负;第四象限角的余弦值为正,其余均为负.注:一全正,二正弦,三正切,四余弦.【知识点3 诱导公式一】由三角函数的定义,可以知道:终边相同的角的同一三角函数的值相等,由此得到诱导公式一:【知识点4 单位圆的三角函数线定义】如图(1)PM表示α角的正弦值,叫做正弦线.OM表示α角的余弦值,叫做余弦线.如图(2)AT表示α角的正切值,叫做正切线.注:线段长度表示三角函数值大小,线段方向表示三角函数值正负.【考点1 三角函数的定义】【分析】根据三角函数的定义,列方程求出m的值.【答案】解:角α的终边上一点(1,)P m,所以0m>,故选:B.【点睛】本题考查了三角函数的定义与应用问题,是基础题.A .4B .4±C .3D .3±【分析】由题意利用任意角的三角函数的定义,求得m 的值.故选:D .【点睛】本题主要考查任意角的三角函数的定义,属于基础题.)【分析】由题意利用任意角的三角函数的定义,求得tan α的值.【答案】解:角故选:C .【点睛】本题主要考查任意角的三角函数的定义,属于基础题.【变式1-3】(2019春•牡丹江期末)角α的终边上一点(P a ,2)(0)a a ≠,则2sin cos (αα-= )【分析】由题意利用任意角的三角函数的定义,分类讨论求得结果. 【答案】解:α的终边上一点(P a ,2)(0)a a ≠, 555a a =,22555a a =,555a a=-,2555a a=-故选:D .【点睛】本题主要考查任意角的三角函数的定义,属于基础题. 【考点2 利用象限角判断三角函数的符号】【例2】(2019春•湖北期中)下列命题成立的是( ) A .若θ是第二象限角,则cos tan 0θθ< B .若θ是第三象限角,则cos tan 0θθ> C .若θ是第四象限角,则sin tan 0θθ< D .若θ是第三象限角,则sin cos 0θθ>【分析】根据角所在的象限判断三角函数值的符号进行判断即可.【答案】解:若θ是第二象限角,则cos 0θ<,tan 0θ<,则cos tan 0θθ>,故A 错误, 若θ是第三象限角,则cos 0θ<,tan 0θ>,则cos tan 0θθ<,故B 错误, 若θ是第四象限角,则sin 0θ<,tan 0θ<,则sin tan 0θθ>,故C 错误, 若θ是第三象限角,则sin 0θ<,cos 0θ<,则sin cos 0θθ>,故D 正确, 故选:D .【点睛】本题主要考查三角函数值符号的判断,结合角的象限与三角函数值符号的关系是解决本题的关键. 【变式2-1】(2019春•珠海期末)已知点(sin ,tan )M θθ在第三象限,则角θ在( ) A .第一象限B .第二象限C .第三象限D .第四象限【分析】由题意可得sin 0θ<且tan 0θ<,分别求得θ的范围,取交集得答案. 【答案】解:由题意,00sin tan θθ<⎧⎨<⎩①②,由①知,θ为第三、第四或y 轴负半轴上的角; 由②知,θ为第二或第四象限角. 则角θ在第四象限. 故选:D .【点睛】本题考查三角函数的象限符号,是基础题.【变式2-2】(2019春•玉山县校级月考)若sin cos 0θθ<,则θ在( ) A .第一、二象限B .第一、三象限C .第一、四象限D .第二、四象限【分析】判断三角函数的符号,然后判断角所在象限即可.【答案】解:sin cos 0θθ<,可知sin θ与cos θ异号,说明θ在第或第四象限. 故选:D .【点睛】本题考查三角函数的符号的判断,角所在象限,是基本知识的考查. 【变式2-3】(2018秋•安庆期末)式子sin1cos2tan4的符号为( )A.正B.负C.零D.不能确定【分析】由1,2,4分别表示第一、二、三象限的角,由此可得答案.【答案】解:1,2,4分别表示第一、二、三象限的角,<,tan40>.∴>,cos20sin10故选:B.【点睛】本题考查三角函数值的符号,是基础题.【考点3 利用诱导公式一判断三角函数的符号】【例3】(2019秋•武邑县校级期中)下列三角函数值的符号判断正确的是()【分析】根据角所在的象限、诱导公式、三角函数值的符号逐项判断即可.【答案】解:A、因为156︒在第二象限,所以sin1560︒>,故A错误;︒=︒+︒=︒,且196︒在第三象限,D、因为tan556tan(360196)tan196所以tan5560︒>,故D错误;故选:C.【点睛】本题考查了三角函数的诱导公式,及三角函数在各象限的符号的应用,属于基础题.【变式3-1】(2019秋•西陵区校级期末)下列三角函数值的符号判断错误的是() A.sin1650︒<︒>D.tan3100︒>B.cos2800︒>C.tan1700【分析】直接利用诱导公式化简,判断符号即可.【答案】解:sin1650︒=︒>,正确;︒>,正确;cos280cos800tan1700︒=-︒<,正确;︒>,错误;tan310tan500故选:C.【点睛】本题考查诱导公式的应用,三角函数值的符号的判断,是基础题.【变式3-2】(2019春•武功县期中)下列值①sin(1000)-︒;④sin2是负值-︒;②cos(2200)-︒;③tan(10)的为()A.①B.②C.③D.④【分析】根据终边相同的角的三角函数值相同,利用三角函数符号判断方法,即可得出结论.【答案】解:①sin(1000)sin1000sin 2800-︒=-︒=-︒>; ②cos(2200)cos2200cos400-︒=︒=︒>; ③tan(10)tan100-︒=-︒<;综上,是负值的序号为③. 故选:C .【点睛】本题考查了终边相同的角与三角函数符号判断问题,是基础题.【变式3-3】(2019秋•夷陵区校级月考)给出下列各函数值:①sin(1- 000)︒;②cos(2- 200)︒;③tan(10)-;A .①④B .②③C .③⑤D .④⑤【分析】利用诱导公式分别对五个选项进行化简整理,进而根据三角函数的性质判断正负. 【答案】解:①,sin(1000)sin(2360280)sin 280cos100-︒=-⨯︒-︒=-︒=︒>; ②,cos(2200)cos(636040)cos400-︒=-⨯︒-︒=︒>; ③,tan(10)tan(30.58)tan(0.58)0π-=-+=-<;,πsin2cos3tan40∴<.∴其中符号为负的是:③⑤.故选:C .【点睛】本题主要考查了运用诱导公式化简求值,解题时应正确把握好函数值正负号的判定,是基础题. 【考点4 三角函数定义域】【分析】列出使函数有意义的不等式组,即由被开方数不小于零,得三角不等式组,分别利用正弦函数和余弦函数图象解三角不等式组即可【答案】解:要使函数有意义,需解得: (k ∈Z )即2k π+≤x ≤2k π+π (k ∈Z )故答案为Z )【点睛】本题考查了函数定义域的求法,三角函数的图象和性质,解简单的三角不等式的方法 可.【答案】解:函数【点睛】本题考查了函数的概念,三角函数的定义域,解三角函数的不等式,属于中档题. 【分析】由绝对值的特点得到sin α-和0的关系,由正弦曲线和角的正弦值可以得到角的范围,写出角的范围后注意加上k 的取值. 【答案】解:|sin |sin αα=-,sin 0α∴-, sin 0α∴,由正弦曲线可以得到[2k αππ∈-,2]k π,k Z ∈, 故答案为:[2k ππ-,2]k π,k Z ∈【点睛】本题主要考查三角函数不等式,解题时最关键的是要掌握三角函数的图象,通过数形结合得到要求的角的范围,这个知识点应用非常广泛,可以和其他知识结合来考查.【变式4-3】求下列函数的定义域:(2)(2sin1)=-;y lg x【分析】利用函数的定义域以及三角函数线化简求解即可.【答案】解:(1)要使y=有意义,可得cos x≥0,解得{x|﹣,k∈Z};(2)要使y=lg(2sin x﹣1)有意义,可得2sin x﹣1>0,即:sin x,解得{x|,k∈Z};(3)要使y=有意义,可得sin x≠﹣1.所以函数的定义域为:{x|x=﹣+2kπ,k∈Z}.【点睛】本题考查三角函数的定义域的求法,三角函数线的应用,考查计算能力.【考点5 利用诱导公式一化简求值】【例5】(2019春•娄星区期中)求下列各式的值:(2)sin1170cos1440tan1845︒+︒-︒【分析】(1)利用诱导公式进行恒等变形,再利用特殊角的三角函数值计算即可求出值;(1)利用诱导公式进行恒等变形,再利用特殊角的三角函数值计算即可求出值;【答案】(本题满分10分)(2)sin1170cos1440tan1845︒+︒-︒sin(336090)cos(43600)tan(536045)=⨯︒+︒+⨯︒+︒-⨯︒+︒ sin90cos0tan45=︒+︒-︒1=.【点睛】此题考查了运用诱导公式化简求值,以及特殊角的三角函数值,熟练掌握诱导公式是解本题的关键.【变式5-1】求下列各式的值(2)9cos2708cos03tan011sin180︒+︒+︒+︒.【分析】由特殊角的三角函数值即可计算得解.1(1)(1)=+-+-1=-.(2)9cos2708cos03tan011sin180︒+︒+︒+︒ 08100=+⨯++ 8=.【点睛】本题主要考查了特殊角的三角函数值在三角函数化简求值中的应用,属于基础题. 【变式5-2】(2019春•船营区校级月考)计算下列各式的值: (1)sin(1395)cos1140cos(1020)sin750-︒︒+-︒︒; tan 4ππ; 【分析】(1)原式中的角度变形后,利用诱导公式化简,再利用特殊角的三角函数值计算即可得到结果. (2)利用诱导公式即可计算得解.【答案】解:(1)原式sin(144045)cos(108060)cos(108060)sin(72030)=-︒+︒︒+︒+-︒+︒︒+︒ sin45cos60cos60sin30=︒︒+︒︒tan 4ππ )0【点睛】此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键,属于基础题. 【变式5-3】(2019春•平罗县校级期中)求下列各式的值 )cos(570)cos(1140)tan(210)sin(690)︒-︒-︒-︒-︒【分析】(1)利用诱导公式以及特殊角的三角函数化简求值即可. (2)利用诱导公式以及特殊角的三角函数化简求值即可. )cos(570)cos(1140)tan(210)sin(690)-︒-︒=-︒-︒25)sin cos tan 463πππ=+-【点睛】本题考查诱导公式的应用,三角函数化简求值,考查计算能力. 【考点6 利用三角函数线解不等式】【例6】(2019春•泗县校级月考)利用单位圆,求适合下列条件的角的集合:【分析】在单位圆中画出三角函数线. (1)由[0,2π)内,,结合正弦线得的解集;(2)由[0,2π)内,,结合余弦线得的解集.【答案】解:在单位圆内作三角函数线如图:(1)∵在[0,2π)内,,OA,OB分别为的终边,由正弦线可知,满足的角的终边在劣弧AB内,∴的解集为{α|};(2))∵在[0,2π)内,,OC,OD分别为的终边,由余弦线可知,满足的终边在劣弧CD内,∴的解集为{α|}.【点睛】本题考查了三角函数线,考查了三角不等式的解法,训练了数形结合的解题思想方法,是中低档题.【变式6-1】求下列不等式的解集:【分析】作出单元圆,利用三角函数线进行求解即可.【答案】解:(1)正弦线大于0的角为x轴的上方,对应的角为2kπ<x<2kπ+π,k∈Z,则不等式的解集为(2kπ,2kπ+π),k∈Z.(2)余弦线小于0的角为y轴的左侧,对应的角为2kπ+<x<2kπ+,k∈Z,则不等式的解集为(2kπ+,2kπ+),k∈Z.(3)sin x>对应的区域在阴影部分,对应角的范围为2kπ+<x<2kπ+,k∈Z,则不等式的解集为(2kπ+,2kπ+),k∈Z.(4)cos x≤﹣对应的区域在阴影部分,对应角的范围为2kπ+≤x≤2kπ+,k∈Z,则不等式的解集为[2kπ+,2kπ+],k∈Z.【点睛】本题主要考查三角不等式的求解,利用三角函数的三角函数线是解决本题的关键.【变式6-2】利用三角函数线,写出满足下列条件的角x的集合:(2)tan x≥﹣1.【分析】根据三角函数线分别进行求解即可.【答案】解:(1)作出y=﹣,交单位圆于B,C,则sin x>﹣对应的区域为阴影部分,作出x=,交单位圆于E,D,则cos x>对应的区域为阴影部分OD,OE之间,则sin x>﹣且cos x>对应的区域为OC到OE之间,其中OC对应的角为﹣,OE对应的角为,则阴影部分对应的范围是2kπ﹣<x<2kπ+,k∈Z,即sin x>﹣且cos x>对应的范围是{x|2kπ﹣<x<2kπ+,k∈Z}(2)作出正切函数线AT=﹣1,则tan x≥﹣1对应的区域为阴影部分,OT对应的角为﹣,则阴影部分对应的角的范围是kπ﹣≤x<kπ+,即不等式的解集为{x|kπ﹣≤x<kπ+,k∈Z}【点睛】本题主要考查三角函数对应不等式的求解,利用三角函数线是解决本题的关键.【变式6-3】利用三角函数线,写出满足下列条件的角x的集合.(3)tan x≥﹣1;【分析】作出单位圆,由三角函数值先求出角在[0,2π]内的取值范围,再由终边相同的角的概念加上周期,由此能求出满足条件的角x的集合.【答案】解:(1)由sin x,作出单位圆,如下图,∵sin x,∴,∴满足sin x≥的角x的集合为{x|2kπ+,k∈Z}.(2)由cos x≤,作出单位圆,如下图,∵cos x≤,∴,∴满足cos x≤的角x的集合为{x|2kπ+≤x≤2kπ+,k∈Z}.(3)由tan x≥﹣1,作出单位圆,如下图,∵tan x ≥﹣1,∴﹣≤x <, ∴满足tan x ≥﹣1的角x 的集合为{x |k π﹣,k ∈Z }. (4)由sin x >且cos x >,作出单位圆,如下图,∵sin x >且cos x >,∴,∴满足sin x >且cos x >x 的集合为{x |2k π+,k ∈Z }. 【点睛】本题考查角的取值范围的求法,是基础题,解题时要注意单位圆和三角函数线的合理运用.【考点7 利用三角函数线比较大小】【例7】比较下列各组数的大小:【分析】(1)根据余弦函数单调性的大小进行比较(2)利用三角函数的诱导公式以及作差法进行比较即可.704π<-cos(π∴-02πα<<则0sin(cos <cos(sin )α222ππ-<【点睛】本题主要考查三角函数值的大小比较,结合三角函数的诱导公式以及三角函数的单调性是解决本题的关键.【变式7-1】利用三角函数线比较下列各组三角函数值的大小:【分析】根据题意,依次作出各个角的三角函数值对应的三角函数线,进而比较大小即可得答案.【点睛】本题考查的知识点是三角函数线,三角函数值的大小比较,关键是掌握三角函数线的定义.【变式7-2】比较大小:可知:21AT AT >,可知:BD BC >,【点睛】本题考察了诱导公式的化简运用,正切线的画法,属于三角函数线的基础题目.【变式7-3】比较下列各组数的大小:【分析】根据三角函数线进行比较即可.)5 cos7π=在单位圆中作出对应的三角函数线如图,则余弦线为OM,正弦线为MP,(2)在单位圆中作出对应的三角函数线如图,则正切线为AT,正弦线为MP,则AT MP>,【点睛】本题主要考查三角函数值的大小比较,根据三角函数线是解决本题的关键.。
期末复习一——任意角的三角函数
期末复习一——(任意角的三角函数)一、知识点归纳(1)正角、负角、零角、象限角、终边相同的角、角度制、弧度制; (2)1弧度角的规定、弧长公式、扇形面积公式;(3)任意圆中圆心角弧度的算法; (4)三角函数值的定义; (5)三角函数线:正弦线、余弦线、正切线; (6)三角函数值的符号判定; (7)同角三角函数间的关系公式 ①平方关系:22sin cos 1αα+= 注意: ②商数关系sin tan cos ααα= 公式的逆向使用(8)特殊角的三角函数值。
(必须熟记);(9)诱导公式:奇变偶不变,符号看象限。
二、例题解析例1(1)若弧度数为2的圆心角所对的弦长也是2cm,则这个圆心角所对的弧长是 它们所构成的扇形面积是 。
(2)若角θ满足sin θcos θ<0,cos θ-sin θ<0,则θ为第 象限角例2.(1)角θ的顶点与坐标原点O 重合,其始边与x 轴的正半轴重合,角θ的终边上有一点P(2t, -4t)(其中t ≠0),求sin θ、cos θ、tan θ的值.(2)已知sin 2cos ,θθ=-求sin θ,cos θ,tan θ.例3.求值:(1)sin(-1740°)²cos1470°+cos(-660°)²sin750°+tan405°(2)22251172sin tan ()tan()434πππ+-∙-例4.已知3sin 2cos 0αα-=,求下列各式的值22cos sin cos sin (1);(2)2sin 2sin cos 4cos .cos sin cos sin αααααααααααα-++-++-例5化简44661cos sin ;;(3)1cos sin αααα----任意角的三角函数一、选择题:1.sin600°的值是( )A.21 B.-21 C.23 D.-232.下列转化结果错误的是 ( )A.0367' 化成弧度是π83radB.π310-化成度是-600度C. 150-化成弧度是π67rad D.12π化成度是15度3.扇形的半径变为原来的2倍,而弧长也增加到原来的2倍,则( )A .扇形的面积不变B .扇形的圆心角不变C .扇形的面积增大到原来的2倍D .扇形的圆心角增大到原来的2倍 4、如果sin θ= m,m<0,180°<θ<270°,那么tan θ等于( )A .21m m- B .-21m m- C .±21mm- D .-m m 21-5、若sin θ=53+-m m ,cos θ=524+-m m ,其中θ为第二象限角,则m 的取值范围是 ( )A .m = 8B .3<m<9C .m=0或m=8D .-5<m < 9 6、使0cos sin <⋅αα成立的角α是( )A .第三、四象限角 B.第一、三象限角 C.第二、四象限角 D.第一、四象限角 7、已知θ的终边过点P (4a ,-3a ),且53sin =θ,则=θtan ( )(A )43-(B )34-(C )43(D )34 8、若βα,的终边关于y 轴对称,则必有 ( ) A Z k k ∈+=+,)12(πβα B 2πβα=+C Z k k ∈=+,2πβαD Z k k ∈+=+,22ππβα9、y =xx x x x x tan |tan ||cos |cos sin |sin |++的值域是 ( )A .{1,-1}B . {-1,1,3}C . {-1,3}D .{1,3}二、填空题:10、已知扇形的圆心角是72︒,半径为20cm,则扇形的弧长为面积为11、比较下列大小: sin1、 cos1、 tan1 ; > >12、(1)已知600,sin cos,sin cos169απαααα<<∙=--=则。
高中 任意角的三角函数 知识点+例题 全面
辅导讲义――任意角的三角函数教学内容任意角和弧度制及任意角的三角函数1.角的概念(1)分类⎩⎨⎧按旋转方向不同分为正角、负角、零角.按终边位置不同分为象限角和轴线角.(2)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z }.2.弧度的定义和公式(1)定义:长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad.(2)公式:①弧度与角度的换算:360°=2π弧度;180°=π弧度;②弧长公式:l =|α|r ;③扇形面积公式:S 扇形=12lr 和12|α|r 2.3.任意角的三角函数(1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),则sin α=y ,cos α=x ,tan α=y x (x ≠0).(2)几何表示:三角函数线可以看作是三角函数的几何表示.正弦线的起点都在x 轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP ,OM ,AT 分别叫做角α的正弦线,余弦线和正切线.1.易混概念:第一象限角、锐角、小于90°的角是概念不同的三类角.第一类是象限角,第二、第三类是区间角.2.利用180°=π rad 进行互化时,易出现度量单位的混用.3.三角函数的定义中,当P (x ,y )是单位圆上的点时有sin α=y ,cos α=x ,tan α=y x,但若不是单位圆时,如圆的半径为r ,则sin α=y r ,cos α=x r ,tan α=y x. [试一试]1.若α=k ·180°+45°(k ∈Z ),则α是第______象限角.2.已知角α的终边经过点(3,-1),则sin α=________.1.三角函数值在各象限的符号规律概括为:一全正、二正弦、三正切、四余弦;2.对于利用三角函数定义解题的题目,如果含有参数,一定要考虑运用分类讨论,而在求解简单的三角不等式时,可利用单位圆及三角函数线,体现了数形结合的思想.[练一练]若sin α<0且tan α>0,则α是第______象限角.考点一角的集合表示及象限角的判定 1.给出下列四个命题:①-3π4是第二象限角;②4π3是第三象限角;③-400°是第四象限角;④-315°是第一象限角.其中正确的命题有______个.2.终边在直线y =3x 上的角的集合为________.3.在-720°~0°范围内找出所有与45°终边相同的角为________.4.设集合M =⎩⎨⎧ x ⎪⎪⎭⎬⎫x =k 2·180°+45°,k ∈Z , N =⎩⎨⎧⎭⎬⎫x ⎪⎪x =k 4·180°+45°,k ∈Z ,那么集合M ,N 的关系是______.[类题通法]1.利用终边相同角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k 赋值来求得所需角.2.已知角α的终边位置,确定形如kα,π±α等形式的角终边的方法:先表示角α的范围,再写出kα,π±α等形式的角范围,然后就k 的可能取值讨论所求角的终边位置.考点二 三角函数的定义[典例] (1)已知角α的终边上一点P 的坐标为⎝⎛⎭⎫sin 2π3,cos 2π3,则角α的最小正值为______. (2)已知α是第二象限角,其终边上一点P (x ,5),且cos α=24x ,则sin ⎝⎛⎭⎫α+π2=________.[类题通法]用定义法求三角函数值的两种情况(1)已知角α终边上一点P的坐标,则可先求出点P到原点的距离r,然后用三角函数的定义求解;(2)已知角α的终边所在的直线方程,则可先设出终边上一点的坐标,求出此点到原点的距离,然后用三角函数的定义来求相关问题.[针对训练]已知角α的终边在直线y=-3x上,求10sin α+3cos α的值.考点三扇形的弧长及面积公式[典例](1)已知扇形周长为10,面积是4,求扇形的圆心角.(2)已知扇形周长为40,当它的半径和圆心角取何值时,才使扇形面积最大?若本例(1)中条件变为:圆弧长度等于该圆内接正方形的边长,则其圆心角的弧度数是________.[类题通法]弧度制应用的关注点(1)弧度制下l=|α|·r,S=12lr,此时α为弧度.在角度制下,弧长l=nπr180,扇形面积S=nπr2360,此时n为角度,它们之间有着必然的联系.(2)在解决弧长、面积及弓形面积时要注意合理应用圆心角所在的三角形.[针对训练]已知扇形的圆心角是α=120°,弦长AB=12 cm,求弧长l.[课堂练通考点]1.如图所示,在直角坐标系xOy中,射线OP交单位圆O于点P,若∠AOP=θ,则点P的坐标是________.2.已知扇形的周长是6 cm,面积是2 cm2,则扇形的圆心角的弧度数是________.3.已知角α的终边经过点(3a-9,a+2),且cos α≤0,sin α>0,则实数a的取值范围是________.4.在与2 010°终边相同的角中,绝对值最小的角的弧度数为________.5.已知角α 的终边经过点P (x ,-6),且tan α=-35,则x 的值为________. 6.已知sin α=13,且α∈⎝⎛⎭⎫π2,π,则tan α=______.第Ⅰ组:全员必做题1.将表的分针拨快10分钟,则分针旋转过程中形成的角的弧度数是______.2.已知cos θ·tan θ<0,那么角θ是第________象限角.3.已知角α和角β的终边关于直线y =x 对称,且β=-π3,则sin α=______. 4.点P 从(1,0)出发,沿单位圆逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为________.5.给出下列各函数值:①sin(-1 000°);②cos(-2 200°);③tan(-10);④sin 7π10cos πtan 17π9,其中符号为负的是________(填写序号).6.在直角坐标系中,O 是原点,A (3,1),将点A 绕O 逆时针旋转90°到B 点,则B 点坐标为__________.7.如图所示,在平面直角坐标系xOy 中,角α的终边与单位圆交于点A ,点A 的纵坐标为45,则cos α=________.8.设角α是第三象限角,且⎪⎪⎪⎪sin α2=-sin α2,则角α2是第________象限角.9.一个扇形OAB 的面积是1 cm 2,它的周长是4 cm ,求圆心角的弧度数和弦长AB .10.已知sin α<0,tan α>0.(1)求α角的集合;(2)求α2终边所在的象限;第Ⅱ组:重点选做题巩固基础和能力提升训练1.满足cos α≤-12的角α的集合为________. 2.如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,OP 的坐标为________.。
(完整版)三角函数知识点归纳
三角函数一、任意角、弧度制及任意角的三角函数1.任意角(1)角的概念的推广①按旋转方向不同分为正角、负角、零角.⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角②按终边位置不同分为象限角和轴线角.角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z 第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z 终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z 终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z(2)终边与角α相同的角可写成α+k ·360°(k ∈Z ).终边与角α相同的角的集合为{}360,k k ββα=⋅+∈Z (3)弧度制①1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角. ②弧度与角度的换算:360°=2π弧度;180°=π弧度.③半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是lrα= ④若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,21122S lr r α==.2.任意角的三角函数定义设α是一个任意角,角α的终边上任意一点P (x ,y ),它与原点的距离为(r r =,那么角α的正弦、余弦、正切分别是:sin α=y r ,cos α=x r ,tan α=y x.(三角函数值在各象限的符号规律概括为:一全正、二正弦、三正切、四余弦)3.特殊角的三角函数值A.基础梳理1.同角三角函数的基本关系(1)平方关系:sin 2α+cos 2α=1;(在利用同角三角函数的平方关系时,若开方,要特别注意判断符号) (2)商数关系:sin αcos α=tan α. (3)倒数关系:1cot tan =⋅αα 2.诱导公式公式一:sin(α+2k π)=sin α,cos(α+2k π)=cos_α,απαtan )2tan(=+k 其中k ∈Z . 公式二:sin(π+α)=-sin_α,cos(π+α)=-cos_α,tan(π+α)=tan α. 公式三:sin(π-α)=sin α,cos(π-α)=-cos_α,()tan tan παα-=-. 公式四:sin(-α)=-sin_α,cos(-α)=cos_α,()tan tan αα-=-. 公式五:sin ⎝⎛⎭⎫π2-α=cos_α,cos ⎝⎛⎭⎫π2-α=sin α. 公式六:sin ⎝⎛⎭⎫π2+α=cos_α,cos ⎝⎛⎭⎫π2+α=-sin_α. 诱导公式可概括为k ·π2±α的各三角函数值的化简公式.口诀:奇变偶不变,符号看象限.其中的奇、偶是指π2的奇数倍和偶数倍,变与不变是指函数名称的变化.若是奇数倍,则函数名称要变(正弦变余弦,余弦变正弦);若是偶数倍,则函数名称不变,符号看象限是指:把α看成锐角....时,根据k ·π2±α在哪个象限判断原.三角..函数值的符号,最后作为结果符号.B.方法与要点 一个口诀1、诱导公式的记忆口诀为:奇变偶不变,符号看象限.2、四种方法在求值与化简时,常用方法有:(1)弦切互化法:主要利用公式tan α=sin αcos α化成正、余弦.(2)和积转换法:利用(sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转化. (ααcos sin +、ααcos sin -、ααcos sin 三个式子知一可求二)(3)巧用“1”的变换:1=sin 2θ+cos 2θ= sin2π=tan π4 (4)齐次式化切法:已知k =αtan ,则nmk bak n m b a n m b a ++=++=++ααααααtan tan cos sin cos sin 三、三角函数的图像与性质学习目标:1会求三角函数的定义域、值域2会求三角函数的周期 :定义法,公式法,图像法(如x y sin =与x y cos =的周期是π)。
任意角的三角函数知识点及练习
任意角的三角函数知识点及练习一、任意角的概念角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。
按旋转方向,角可分为正角、负角和零角。
正角:按逆时针方向旋转形成的角。
负角:按顺时针方向旋转形成的角。
零角:射线没有作任何旋转时形成的角。
为了研究方便,我们常在直角坐标系内讨论角。
角的顶点与原点重合,角的始边与 x 轴的非负半轴重合。
那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限。
二、弧度制长度等于半径长的弧所对的圆心角叫做 1 弧度的角,用符号 rad 表示,读作弧度。
弧度与角度的换算:因为周角的弧度数为2π,角度数为 360°,所以 180°=π rad,1°=π/180 rad,1 rad =(180/π)°扇形的弧长公式:l =|α|r (α 是圆心角弧度数,r 为半径)扇形的面积公式:S = 1/2 lr = 1/2 |α|r²三、任意角的三角函数设α是一个任意角,它的终边上任意一点 P(x,y),r =|OP| =√(x²+ y²) ,那么:正弦函数:sinα = y/r余弦函数:cosα = x/r正切函数:tanα = y/x (x ≠ 0)余切函数:cotα = x/y (y ≠ 0)正割函数:secα = r/x (x ≠ 0)余割函数:cscα = r/y (y ≠ 0)三角函数值在各象限的符号:第一象限:sinα、cosα、tanα 均为正第二象限:sinα 为正,cosα、tanα 为负第三象限:tanα 为正,sinα、cosα 为负第四象限:cosα 为正,sinα、tanα 为负同角三角函数的基本关系:平方关系:sin²α +cos²α = 1商数关系:tanα =sinα/cosα诱导公式:诱导公式可以概括为“奇变偶不变,符号看象限”。
第一章 三角函数复习题(一)-学生版
知识点部分:1.任意角的三角函数的定义定义:设α是一个任意角,它的终边与单位圆交于点P(x,y),那么sin α=y,cos α=x,tan α=.2.三角函数值的符号记忆技巧:一全正、二正弦、三正切、四余弦(为正).即第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.3.诱导公式公式一:sin(α+2kπ)=sin α,cos(α+2kπ)=cosα,其中k∈Z.公式二:sin(π+α)=﹣sinα,cos(π+α)=﹣cosα,tan(π+α)=tan α.公式三:sin(﹣α)=﹣sinα,cos(﹣α)=cosα.公式四:sin(π﹣α)=sinα,cos(π﹣α)=﹣cosα.公式五:sin(﹣α)=cosα,cos(﹣α)=sinα.公式六:sin(+α)=cosα,cos(+α)=﹣sinα诱导公式记忆口诀:对于角“±α”(k∈Z)的三角函数记忆口诀“奇变偶不变,符号看象限”,“奇变偶不变”是指“当k为奇数时,正弦变余弦,余弦变正弦;当k为偶数时,函数名不变”.“符号看象限”是指“在α的三角函数值前面加上当α为锐角时,原函数值的符号”.4.三角函数的周期性①一般地,对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,非零常数T叫做这个函数的周期.②对于一个周期函数f(x),如果在它所有的周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.③函数y=Asin(ωx+φ),x∈R及函数y=Acos(ωx+φ);x∈R(其中A、ω、φ为常数,且A≠0,ω>0)的周期T=.5.正弦函数、余弦函数、正切函数的图象和性质函数y=sin x y=cos x y=tan x 图象定义域R R x≠2kπ+(k∈Z)值域[﹣1,1] [﹣1,1] R单调性递增区间:(2kπ﹣,2kπ+)(k∈Z);递减区间:(2kπ+,2kπ+)(k∈Z)递增区间:(2kπ﹣π,2kπ)(k∈Z);递减区间:(2kπ,2kπ+π)(k ∈Z)递增区间:(kπ﹣,kπ+)(k∈Z)最值x=2kπ+(k∈Z)时,ymax=1;x=2kπ﹣(k∈Z)时,ymin =﹣1x=2kπ(k∈Z)时,ymax=1;x=2kπ+π(k∈Z)时,ymin=﹣1无最值奇偶性奇函数偶函数奇函数对称性对称中心:(kπ,0)(k∈Z)对称轴:x=kπ+,k∈Z 对称中心:(kπ+,0)(k∈Z)对称轴:x=kπ,k∈Z对称中心:(,0)(k∈Z)无对称轴周期2π2ππ6.函数y=Asin(ωx+φ)的图象变换函数y=sin x的图象变换得到y=Asin(ωx+φ)(A>0,ω>0)的图象的步骤练习题部分:1.(2020春•新余期末)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示,则f()=()A.B.1 C.D.2.(2020春•驻马店期末)有以下变换方式:①先向右平移个单位长度,再将每个点的横坐标缩短为原来的倍;②先向左平移个单位长度,再将每个点的横坐标伸长为原来的2倍;③先将每个点的横坐标伸长为原来的2倍,再向左平移个单位长度;④先将每个点的横坐标缩短为原来的倍,再向右平移个单位长度.其中能将函数的图象变为函数y=2sinx的图象的是()A.①和④B.①和③C.②和④D.②和③3.(2020春•未央区校级期末)若函数f(x)=sinx+cosx﹣2sinxcosx+1﹣a在上有零点,则实数a的取值范围()A.[﹣,2] B.[﹣,] C.[﹣2,] D.[,]4.(2020春•驻马店期末)已知扇形AOB的圆心角为α,周长为4.那么当其面积取得最大值时,α的值是.5.(2020•江苏)将函数y=3sin(2x+)的图象向右平移个单位长度,则平移后的图象中与y轴最近的对称轴的方程是.6.(2019秋•新华区校级期末)若在区间[﹣a,a]上是增函数,则正实数a的最大值为;7.(2020春•沈阳期末)已知角α终边上一点坐标(1,﹣3),f(α)=.(1)求f(α)的值.(2)求f()的值.(3)求sin()cos()的值.8.(2020春•潍坊月考)已知cos(+θ)=,求+的值9.(2020春•吉林期末)已知.(1)求2+sinαcosα﹣cos2α的值;(2)求的值.10.(2019秋•遂宁期末)已知角α的终边经过点,且α为第二象限角.(1)求m、cosα、tanα的值;(2)若,求的值.11.(2019秋•上高县校级期末)已知函数.(1)化简f(x)并求的值.(2)设函数g(x)=1﹣2f(x)且,求函数g(x)的单调区间和值域.12.(2016秋•东安区校级月考)设函数f(x)=tan()(1)求函数f(x)的定义域、最小正周期、单调区间及对称中心.(2)求不等式﹣1≤f(x)≤的解集.13.(2020春•驻马店期末)已知函数的部分图象如图所示.(Ⅰ)求f(x)的解析式及对称中心坐标;(Ⅱ)先将f(x)的图象纵坐标缩短到原来的倍,再向右平移个单位,最后将图象向上平移1个单位后得到g(x)的图象,求函数y=g(x)在上的单调减区间和最值.14.(2020•宁波模拟)已知函数.(Ⅰ)求f(x)的振幅、最小正周期和初相位;(Ⅱ)将f(x)的图象向右平移个单位,得到函数y=g(x)的图象,当时,求g(x)的取值范围.15.(2016秋•福建月考)已知定义在R上的函数f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|≤),满足:最大值为2,其图象相邻两个最低点之间距离为π,且函数f(x)的图象关于点(,0)对称.(Ⅰ)求f(x)的解析式;(Ⅱ)若向量=(f(x﹣),1),=(,﹣2cosx),,设函数,求函数g(x)的值域.。
任意角、弧度制及任意角的三角函数-高考数学复习
上的角的集合为{α|α=45°+ k ·180°, k ∈Z}.
2.
若角α的终边落在第四象限,则 的终边落在第
2
二或四
象限.
解析:由结论2可知, 的终边落在第二或第四象限.2目录源自课堂演练考点 分类突破
精选考点 典例研析 技法重悟通
目录
高中总复习·数学
1. 角的概念
(1)定义:角可以看成一条射线绕着它的
端点
旋 转所成的
图形;
按旋转方向不同分为正角、负角、零角;
(2)分类:ቐ
按终边位置不同分为象限角和轴线角.
(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可
构成一个集合 S ={β|β=α+ k ·360°, k ∈Z}.
=
( x ≠0)
;
(2)定义的推广:设 P ( x , y )是角α终边上异于顶点的任意一
点,其到原点 O 的距离为 r ,则 sin
α= ,
cos
α= ,tan
α=
( x ≠0);
目录
高中总复习·数学
(3)三角函数值在各象限内的符号:一全正、二正弦、三正切、
四余弦.
目录
高中总复习·数学
2
项,所有与45°角终边相同的角可表示为β=45°+ k ·360°( k
17
∈Z),令-720°≤45°+ k ·360°≤0°( k ∈Z),解得- ≤ k ≤-
8
1
( k ∈Z),从而当 k =-2时,β=-675°;当 k =-1时,β=-
《任意角的三角函数》复习
《任意角的三角函数》复习题一、填空题:1、下列各角分别是第几象限角:-120º是_____;573º是_____;钝角是_____;2、300º=___弧度;47π=____度;32π = 度; 180 = 弧度; 52π=_____度 3、 与-170°角终边相同的角的集合是_____________________4、用“<”、“>”号填空:sin1120º___0; sin200º___0 ; cos260°_0; tan181º___0; tan 47π__0 ; Sin 1590 Sin 1560 ; sin190º___sin200º; cos 2300 cos2500; cos54π___sin (56π) 5、求下列三角函数值sin120°= , cos240°=__, cos23π= , tan1200= , tan210º=____;sin 617π=__ , cos(-325π)=_____, tan15º=___; cos105º=__ ; sin70°- cos20°=6、(1)已知角α终边一点P (3,-4),则sin α=______, cos α=_____, tan α=______(2)已知角α的终边过点P (-2,3),则sin α=______, cos α=_____, tan α=______7、如果0<a<4π,则2a 是第___象限的角。
8、若sin θcos θ>0则θ属于第________象限角。
9、如果sin α>0,cos α<0,那么α是第________象限角;如果若sin θ>0且 tan θ<0 ,则θ是第 象限角。
10、已知sin α=-53 ,cos α=54,则tan α= 。
三角函数的复习
3
4
o
5
6
o
270
360
3
2
2
o
o
四.任意角的三角函数
1.定义
设点P(x,y)是角a终边上任一点,P到原点的距离为r(r>0),则
正弦sin =
y
,余弦cos
r
y
=
y
,其中r=
x
说明:正弦、余弦总有意义.当
的终边
x2 + y2.
的终边在 y 轴上时,点P 的
y
横坐标等于0,tan
30
45
弧
度
6
4
0
o
o
60
角
o
o
o
135 150 180
度
弧
度
o
o
90
o
270
120
360
o
o
特殊角的弧度
角 o
0
度
30
45
60
弧
度
6
4
3
0
o
o
角
o
o
o
135 150 180
度
弧
度
o
o
90
o
270
120
360
o
o
特殊角的弧度
角 o
0
度
弧
度
0
o
30
6
o
o
45
60
90
4
3
2
角
o
o
三角函数基础知识复习1
三角函数基础知识复习(一)一、任意角:知识点1、角的概念的推广:1、“旋转”形成角(角包括顶点、始边、终边);2、角的分类:正角、负角、零角(逆时针、顺时针、没有旋转)。
例1、(1)钟表经过10分钟,分针转了______度;(2)若将钟表拨慢10分钟,则时针转了______度,分针转了______度。
知识点2、象限角和轴线角:1、象限角:角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角;2、轴线角:如果角的终边在坐标轴上,则这个角叫轴线角,它不属于任何象限。
如:00,900,1800,2700,3600,-900,-1800,-3600,等等。
例2、(1)3700位于第___象限;(2)-1200位于第___象限;(3)2900位于第___象限;(4)-2600位于第____象限;(5)4弧度的角位于第___象限。
例3、A={小于900的角},B={第一象限的角},则A∩B=()A、{锐角}B、{小于900的角}C、{第一象限的角}D、以上都不对例4、已知集合A={α|α=k·900-360,k∈Z},B={β|-1800<β<1800},则A∩B=()A、{-360,540} B、{-1260,1440} C、{-1260,-360,540,1440} D、{-1260,540}知识点3、终边相同的角:所有与α终边相同的角(包括α本身在内)构成一个集合, 这个集合可表示为{β|β=________________________},终边相同的角相差3600的整数倍。
例5、已知角α=450,则在区间[-7200,00]内且与α终边相同的角是____________________。
例6、已知α是第二象限的角,且2α与7α的终边相同,则α=________________________。
例7、用描述法写出下列角的集合:(1)第一象限的角___________________;(2)第二象限的角___________________;(3)第三象限的角___________________;(4)第四象限的角___________________;(5)x轴正半轴上的角________________;(6)x轴负半轴上的角_____________________;(7)x轴上的角_______________;(8) y轴正半轴上的角_________________;(6)y轴负半轴上的角___________________________;(7)y轴上的角________________;(8)坐标轴上的角______________________________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
任意角的三角函数复习
一 选择题
1.-1120°角所在象限是( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
2.半径为πcm ,中心角为120°的弧长为( )
A .3
π cm B .23πcm C .23πcm D .223π cm 3.已知4sin 5α=
,并且α是第二象限的角,那么tan α的值等于( ) A.43- B.34
- C.43 D.34 4.已知αβπ+=-,下列等式中正确的是( )
A .cos sin αβ=-
B .cos cos αβ=
C .sin sin αβ=-
D .sin sin αβ=
5.已知5sin cos 4
αα-=-,则sin cos αα等于( )
A .4
B .916-
C .932-
D .932
6.下列不等式中,不成立的是( )
A .sin130sin140>
B .cos130cos140>
C .tan130tan140>
D .cos130sin140>
7.函数x
x x x x x y tan tan cos cos sin sin ++=的值域是( ) A .{}3,1,0,1- B .{}3,0,1- C .{}3,1- D .{}1,1-
8.α是第二象限角,其终边上有一点(P x ,且cos 4
x α=,则sin α的值为( )
A B C .4
D . 9cos(2)π- )
A .sin 2cos2+
B .cos2sin 2-
C .sin 2cos2-
D .(cos 2sin 2)±-
10.下列三角函数○14sin()3n ππ+○2cos(2)6n ππ+○3sin(2)3n ππ+○4cos[(21)]6n ππ+-○5sin[(21)]()3n n Z ππ+-∈,其中函数值与sin 3π
相同的是( )
A .○1○2
B .○1○3○4
C .○2○3○5
D .○1○3○5
二 填空题
11.sin(1305)-的值是_________________
12.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是_________________
13.不等式1sin ,022
x x π<-<<的解集是_________________(用区间表示)
14.已知函数()sin tan 1f x a x b x =++,满足(5)7f =,则(5)f -的值为_________________ 15.若
sin cos 22sin cos αααα
+=-,则tan α的值是_________________ 16.已知3tan =α,23παπ<<,那么ααsin cos -的值是_________________
17.已知sin()4π
α+=3sin()4
πα-的值是_________________ 18.若集合,3A x k x k k Z ππππ⎧
⎫=+≤≤+∈⎨⎬⎩⎭,{}22B x x =-≤≤,则A B =_________________ 三 解答题
19.设3222cos sin ()2cos()1()22cos ()cos()f θθπθπθπθθ-+---+=+++-,求()3
f π的值。
20.已知sin ,cos αα是方程236210x kx k +++=的两个根,求实数k 的值。