八年级数学上册第14章勾股定理14.2勾股定理的应用习题课件(新版)华东师大版
最新华师版八年级数学上第14章《勾股定理》小结与复习ppt公开课优质课件

∴△ABC是直角三角形,
∴∠B=90°.
方法总结 勾股定理及其逆定理均体现了数形结合思想 . 勾股定理是 由图形的特征(三角形中有一个角是直角)得到数量之间的关 系(三角形的三边长 a , b , c 满足 a2+b2=c2 ) ; 勾股定理的逆定
理由数量之间的关系(a2+b2=c2)得到图形的特征(以a,b,c
第14章 勾股定理
小结与复习
要点梳理
考点讲练
课堂小结
课后作业
要点梳理
1.勾股定理 勾股定理:直角三角形两条直角边的平方和等于斜边的 平方 . 即:对于任意的直角三角形,如果它的两条直角边分别 为a、b,斜边为c ,那么一定有 a2+b2=c2 . 勾股定理表达式的常见变形:a2=c2-b2, b2=c2-a2, .a 2 c a 2 b2 , a c 2 b2 , b c 2 勾股定理分类计算:如果已知直角三角形的两边是a、 b(且a>b),那么,当第三边c是斜边时,c=_________ a 2 b2 ; a 2 b2 . 当a是斜边时,第三边c=_________ [注意] 只有在直角三角形里才可以用勾股定理,运用时要 分清直角边和斜边.
解:①在 Rt△ABC1 中, 2 2 2 2 2 AC2 1 =AB + BC 1=4 + 3 =5 , ∴AC1 = 25. ②在 Rt△ACC1 中, 2 2 2 2 AC2 1 = AC + CC 1=6 +1 =37, ∴AC1 = 37. ③在 Rt△AB1 C1 中, 2 2 2 2 AC2 1 = AB 1+ B1 C1 =5 +2 =29, ∴AC1 = 29. ∵25<29<37, ∴沿图①的方式爬行路线最短,最短路线长是 5.
1 ∴4× 2ab+(b-a)2=c2,
八年级数学上册 第14章 勾股定理14.2 勾股定理的应用第2课时课件 华东师大级上册数学课件

12/11/2021
第十六页,共十八页。
课堂 小 (kètáng) 结
实际问题构 造直 角三 角形数学问题 (在直角三角形中两 已边 知,可以 求出第三边。)
(在直角三角形中,知道一边及另两边 (liǎngbiān)关系,可以求出未知的两边(liǎngbiān).)
12/11/2021
第十七页,共十八页。
第十五页,共十八页。
聪明的葛藤 葛藤是一种刁钻的植物,它自己腰杆不硬,为了得到阳光的沐浴,常 常会选择高大的树木为依托,缠绕其树干盘旋而上。如左图所示。
葛藤又是一种聪明的植物,它绕树干攀升的路线,总是沿着(yán zhe) 最短路径——螺旋线前进的。若将树干的侧面展开成一个平面,如右 图所示,可清楚的看出葛藤在这个平面上是沿直线上升的。
① AB 32(12)2 18
A
3
② AB( 1+ 3) 22220
A
3
③
AB( 3+ 2) 1 12/11/2021
22
26
A1
3
第十页,共十八页。
B 2
1
C B
1
2
C
B 2 C
如果长方形的长、宽、高分别(fēnbié)是a、b、c (a>b>c),则从顶点A到B的最短线是:
a2 (bc)2
B
A
A
3
12/11/2021
B
12
第八页,共十八页。
分析:蚂蚁由A爬到B过程中较短的路线有多少 种情况? (duōshǎo)
B
(1)经过(jīngguò)前面和上底面;
2
(2)经过前面和右面; (3)经过左面和上底面.
1
A
3
C
B
华东师大版八年级上册14.反证法课件(共23张)

怎样的推理方法?
王戎的推理方法是:
假设李子不苦 则因树在“道”边,李子早就被别人采摘, 这与“多子”产生矛盾. 所以假设不成立,李为苦李.
生活实例: 妈妈:小华,听说邻居小芳全家这几天在外 地旅游. 小华:不可能,我上午还在学校碰到了她和 她妈妈呢!
上述对话中,小华要告知妈妈的命题是什么?
课后作业
1、已知:一个整数的平方能被2整除.
求证:这个数是偶数.
2、已知a≠0,证明x的方程ax=b有且只有一个根.
3、已知x>0,y>0,x+y>2.
求证:1+x y
,1+y x
中至少有一个小于2.
4、求证: 2 是无理数.
5、求证:在三角形的内角中,至少有一个角大于 或等于60º. 6、证明:等腰三角形的两底角必定是锐角. 7、证明:两直线平行,同旁内角互补. 8、如图,已知AB∥CD,
当∠B是_钝__角__时,则_∠__B_+__∠__C_>__1_8_0_°
这与__三__角__形__的__三__个__内__角__和__等__于__1_8_0_°_矛盾; 综上所述,假设不成立. ∴∠B一定是锐角.
强调 用反证法证题时,应注意的事项 : (1)周密考察原命题结论的否定事项, 防止否定不当或有所遗漏; (2)推理过程必须完整,否则不能说 明命题的真伪性; (3)在推理过程中,要充分使用已知条 件,否则推不出矛盾,或者不能断 定推出的结果是错误的。
P
a
证明: 假设c与b不相交,
则c∥b.
b c
∵ a∥b,
∴ a∥c,
这与“c、a相交于点P”矛盾, ∴ 假设不成立,故c与b相交.
变式练习
华师大版八年级数学上册14.2 勾股定理的应用(课件)【新版】

(2)图 14.2.6 中,△ABC、 △ABE 、 △ABD 、 △ACE、 △ACD、 △AED就是所要画的等 腰三角形.
知3-讲
例6 如图 14. 2. 7,已知 CD= 6 m,AD= 8 m, ∠ADC= 90°,BC = 24 m, AB= 26 m.求图 中着色部分 的面积.
知3-练
2 如图,在长方形ABCD中,点E在边AB上,将长方 形ABCD沿直线DE折叠,点A恰好落在BC边上的 点F处,若AE=5,BF=3,则CD的长是( ) A.7 B.8 C.9 D.10
应用勾股定理解决实际问题的一般思路:将实际 问题转化为数学模型,然后利用勾股定理列出方程, 再解方程求解.由于勾股定理反映了直角三角形三边 之间的关系,因此往往与方程进行联系.即应用时要 注意两点:(1)在解决实际问题时,注意从“形”到 “数”的转化;(2)在解决实际问题时,注意构造直角 三角形模型,结合方程进行求解.
知2-练
2 如图(单位:m),一个三级台阶,它的每一级的长、 宽和高分别为20 m,3 m,2 m,A和B是这个台阶 两个相对的端点,A点有一只蚂蚁,想到B点去吃可 口的食物,则蚂蚁沿着台阶面爬到B点的最短路程 是________.
知识点 3 勾股定理的其他应用
知3-讲
1.在一些求高度、宽度、长度、距离等量的问题中, 首先要结合题意画出符合要求的直角三角形,也就 是把实际问题转化为数学问题,进而把要求的量看 成直角三角形的一条边,然后利用勾股定理进行求 解.
解: 在 Rt △ADC中,
知3-讲
∵AC2 = AD2 + CD2 (勾股定理)
=82 + 62 = 100,
第14章 勾股定理复习 华东师大版数学八年级上册课件2

知识点目标
1.了解勾股定理的内容和名字的由来, 并会用它来解决一些有关直角三角形的 计算问题。 2.理解勾股定理常见的证明方法,并会 用这种思想来求一些图形面积问题。 3.会用勾股定理判断是否是一组勾股数。
4.理解勾股定理逆定理的含义,并会用 它来判断一个三角形是否是直角三角形。 5.能区分和辨认勾股定理与勾股定理逆 定理,并会简单的综合运用。 6.能用勾股定理解决生活中的实际问题。
c2=a2 + b2
cb
由上可知:已知直角三角形
a
的任意两边可求第三边 。
填空题
1.在Rt△ABC中,∠C=90°,
①若a=5,b=12,则c=____1_3______; ②若a=15,c=25,则b=___2_0_______; ③若c=61,b=60,则a=__1_1_______; ④若a∶b=3∶4,c=10则SRt△ABC=___2_4____。
2.已知,△ABC中,AB=17cm,BC=16cm,BC 边上的中线AD=15cm,试说明△ABC是等腰三 角形。
提示:先运用勾股定理证明中线AD⊥BC,再利 用等腰三角形的判定方法就可以说明了。
解答题
3.已知,如图,在Rt△ABC中,∠C=90°, 将△ACD沿AD折叠,使得C点与E点重合 , CD=1.5, BD=2.5,求AC的长。
C
D
A
B E
思考题
如图,在△ABC中,AB=AC,P为BC上任意一 点,请用学过的知识说明:AB2-AP2=PB×PC。
A
B
P
如图,在△ABC中,AB=AC,P为BC上任 意一点,试说明:AB2-AP2=PB×PC。
解:过A点做AD⊥BC
华东师范大学出版社初中数学八年级上册 14.2 勾股定理的应用 (24张PPT))

勾股定理 如果直角三角形两直角边分别为 a,b,斜边为c,那么a²+b²=c²。
∵ 在Rt△ABC中, ∠C=90°,AB=c,AC=b,BC=a,
A
a2+b2=c2.
cb
B aC
设境导入 :☞
如图,学校有一块长方形草地,有极少数
人为了避开拐角走“捷径”,在草地内走出
了一条“路”,仅仅少走了___4_____步路, 却
8m
A
6m B
新知探究
例1 如图,一圆柱体的底面周长为20cm,高 AB为4cm,BC是上底面的直径.一只蚂蚁从 点A出发,沿着圆柱的侧面爬行到点C,试求 出爬行的最短路程.(精确到0.01cm)
(1)自制一个圆柱,尝试从A点 到C点沿圆柱侧面画出几条路线,
你认为哪条路线最短呢?
(2)如图,将圆柱侧面剪开展成 一个长方形,从A点到C点的最短
B
C1
A
4
1 2C
B 2
A
A1
4
C
解:(1)当蚂蚁经过前面和上底面时,如图,最 短路程为
C1
C1
2
1
A
4
A
AB= AC2 BC2 = 42 32 = 5
(2)当蚂蚁经过前面和右面时,如图,最短路程 为
B
B
1
A
A
3
2C
AB= AC2 BC2 = 52 12 = 26
(3)当蚂蚁经过左面和上底面时,如图,最短路
例2
一辆装满货物的卡
车,其外形高2.5米,
宽1.6米,要开进厂门 A
B
形状如图的某工厂,
2.3米
问这辆卡车能否通过
华东师大版八年级数学上册第14章勾股定理折叠问题中的勾股定理课件

A
D
B
G
EC
概括:找出图中的直角三角形,用勾股定理求出 未知边。 怎么求EF?做垂线,构造直角三角形。
总结:怎么应用勾股定理解决折叠问题?
1.抓住折叠前后的图形是全等形,找出图 中的直角三角形(可做垂线段构造直角三角 形)。
2.设未知数,找等量关系,根据直角三角形 的三边关系列方程(组)。
课堂练习:
折叠问题中的勾股定理
引入:
勾股定理反应的是直角三角形三边 的关系。应用勾股定理由已知边求出 未知边。
这节课应用勾股定理来解决折叠中 的诸多问题
请按下列要求折叠矩形纸片ABCD 并画出折叠后的几何图形
• 1:把矩形边AB折在边AD上。 • 2:把矩形ABCD边AB 折在对角线AC上。 • 3:把矩形ABCD沿对角线AC对折。 • 4: 使矩形的顶点B恰好与点D重合。
D1E的长。 (3)求四边形ABCE的面积。
A
D
E
B
D1
C
AB=AB1=CD=BE=6, B1D=EC=2,
A
B1
D
AE2=AB2+BE2 =62+62=72
AE= 72
B
E
C
问题2:边AB落在AC上,你能提出哪 些问题?你能求出哪些线段长?
A
提示:ΔABE折叠到哪?AB折 在何处?
Dபைடு நூலகம்B1
∠B折在何处?图中又产生哪
些直角三角形?
B
C
E
思考:在哪个直角三角形中,有已知边,且 未知边之间有数量关系,可利用勾股定理求 出未知边呢?
x2+42=(8-x)2
得x=3.
∴DB=5
课后作业:
1,如图,在长方形纸片ABCD中,AB= 12,BC=5,点E在AB上将ΔADE沿 DE折叠,使点A落在对角线BD上的点A1 处,则AE的长为多少?
14.2 勾股定理的应用 华东师大版数学八年级上册知识考点梳理课件

在 Rt△ABG 中,AG= +
= + = (cm);
14.2 勾股定理的应用
返回目录
方案二:如图 2,当蚂蚁从点 A 出发经过 BF 到点 G
重
难
题 时(将前面和右面展开),
型
∵AB=3 cm,BC=5 cm,
设 B′E=BE=x,则 CE=4-x.
∵S△AEC=
∴
Βιβλιοθήκη CE×AB=
(4-x)×3=
AC×B′E,
×5x,解得 x=
,∴B′E=
.
14.2 勾股定理的应用
返回目录
变式衍生 1
如图,在长方形 ABCD 中,AB=8,BC=4
重
难
题 ,将长方形沿 AC折叠,点 D 落在点 D′处,则重叠部分
突
破 ,BF=6 cm,蚂蚁要沿着怎样的路线爬行,才能最快吃到饼
干渣? 这时蚂蚁走过的路程是多少?
14.2 勾股定理的应用
返回目录
[答案]解:分以下三种方案讨论:
重
难
方案一:如图 1,当蚂蚁从点 A 出发经过 EF 到点 G
题
型
突 时(将前面和上面展开),
破
∵BC=5 cm,∴FG=BC=5 cm.
对点典例剖析
考
点
典例
如图,一架 2.5 m 长的梯子AB 斜靠在墙 AC 上
清
单
解 ,梯子的顶端 A离地面的高度为 2.4 m,如果梯子的底部 B
读 向外滑出 1.3 m 后停在 DE位置上,则梯子的顶部下滑多少
华师大版八年级上册电子课本 第14章 勾股定理(新版)-

第14章勾股定理§14.1勾股定理1. 直角三角形三边的关系2. 直角三角形的判定阅读材料勾股定理史话美丽的勾股树§14.2勾股定理的应用小结复习题课题学习勾股定理的“无字证明”第14章勾股定理还记得2002年在北京召开的国际数学家大会(ICM2002)吗?在那个大会上,到处可以看到一个简洁优美的图案在流动,那个远看像旋转的纸风车的图案就是大会的会标.那是采用了1700多年前中国古代数学家赵爽用来证明勾股定理的弦图.§14.1 勾股定理1. 直角三角形三边的关系本章导图中的弦图隐含着直角三角形三边之间的一种奇妙的关系,让我们首先观察经常使用的两块直角三角尺.试一试测量你的两块直角三角尺的三边的长度,并将各边的长度填入下表:三角尺直角边a直角边b斜边c 关系12根据已经得到的数据,请猜想三边的长度a、 b、 c之间的关系.图14.1.1是正方形瓷砖拼成的地面,观察图中用阴影画出的三个正方形,很显然,两个小正方形P、 Q的面积之和等于大正方形R 的面积.即AC2+BC2=AB2,图14.1.1这说明,在等腰直角三角形ABC中,两直角边的平方和等于斜边的平方.那么在一般的直角三角形中,两直角边的平方和是否等于斜边的平方呢?试一试观察图14.1.2,如果每一小方格表示1平方厘米,那么可以得到:正方形P的面积=平方厘米;正方形Q的面积=平方厘米;(每一小方格表示1平方厘米)图14.1.2正方形R的面积=平方厘米.我们发现,正方形P、Q、R的面积之间的关系是.由此,我们得出直角三角形ABC的三边的长度之间存在关系.做一做在图14.1.3的方格图中,用三角尺画出两条直角边分别为5cm、12cm的直角三角形,然后用刻度尺量出斜边的长,并验证上述关系对这个直角三角形是否成立.(每一小格代表1平方厘米)图14.1.3概括数学上可以说明:对于任意的直角三角形,如果它的两条直角边分别为a、 b,斜边为c,那么一定有a2+b2=c2,这种关系我们称为勾股定理.勾股定理直角三角形两直角边的平方和等于斜边的平方.勾股定理揭示了直角三角形三边之间的关系.例1如图14.1.4,将长为5.41米的梯子AC斜靠在墙上,BC长为2.16米,求梯子上端A到墙的底边的垂直距离AB.(精确到0.01米)图14.1.4 解 如图14.1.4,在Rt△ABC中,BC=2.16米, AC=5.41米,根据勾股定理可得AB= -BC AC 22 =22 16.-2 41.5≈4.96(米). 答: 梯子上端A 到墙的底边的垂直距离 AB 约为4.96米. 练习1. 在Rt△ABC中, AB=c , BC=a , AC =b , ∠B=90°.(1) 已知a =6, b =10, 求c ;(2) 已知a =24, c =25, 求b .2. 如果一个直角三角形的两条边长分别是3厘米和4厘米,那么这个三角形的周长是多少厘米?试一试剪四个与图14.1.5完全相同的直角三角形,然后将它们拼成如图14.1.6所示的图形.大正方形的面积可以表示为 ,又可以表示为 .对比两种表示方法,看看能不能得到勾股定理的结论.图14.1.5 图14.1.6 用上面得到的完全相同的四个直角三角形,还可以拼成如图14.1.7所示的图形,与上面的方法类似,也能说明勾股定理是正确的.读一读我国古代把直角三角形中较短的直角边称为勾,较长的称为股,斜边称为弦.图14.1.7称为“弦图”,最早是由三国时期的数学家赵爽在为《周髀算经》作注时给出的.图14.1.8是在北京召开的2002年国际数学家大会(ICM2002)的会标,其图案正是“弦图”,它标志着中国古代的数学成就.图14.1.7 图14.1.8例2如图14.1.9,为了求出位于湖两岸的两点A 、 B 之间的距离,一个观测者在点C 设桩,使三角形ABC恰好为直角三角形.通过测量,得到AC 长160米,BC长128米.问从点A 穿过湖到点B 有多远?图14.1.9 解 如图14.1.9,在直角三角形ABC中,AC =160米, BC=128米,根据勾股定理可得AB=22BC AC -=22128160-=96(米).答: 从点A 穿过湖到点B 有96米.练习1. 如图,小方格都是边长为1的正方形,求四边形ABCD的面积与周长.2. 假期中,王强和同学到某海岛上去探宝旅游,按照探宝图(如图),他们登陆后先往东走8千米,又往北走2千米,遇到障碍后又往西走3千米,再折向北走到6千米处往东一拐,仅走1千米就找到宝藏,问登陆点A到宝藏埋藏点B的直线距离是多少千米?(第1题)(第2题)2. 直角三角形的判定古埃及人曾经用下面的方法画直角:将一根长绳打上等距离的13个结,然后如图14.1.10那样用桩钉钉成一个三角形,他们认为其中一个角便是直角.你知道这是什么道理吗?图14.1.10试一试试画出三边长度分别为如下数据的三角形,看看它们是一些什么样的三角形:(1) a=3, b=4, c=5;(2) a=4, b=6, c=8;(3) a=6, b=8, c=10.可以发现,其中按(1)、(3)所画的三角形都是直角三角形,而按(2)所画的不是直角三角形.在这三组数据中,(1)、(3)两组都满足a2+b2=c2,而组(2)不满足.以后我们会证明一般的结论:如果三角形的三边长a、 b、 c有关系: a2+b2=c2,那么这个三角形是直角三角形.古埃及人所画的三角形的三边长恰好满足这样的关系,所以其中一个角是直角.例 3 设三角形三边长分别为下列各组数,试判断各三角形是否是直角三角形:(1) 7, 24, 25;(2) 12, 35, 37;(3) 13, 11, 9.解因为 252=242+72,372=352+122,132≠112+92,所以根据前面的判定方法可知,以(1)、(2)两组数为边长的三角形是直角三角形,而以组(3)的数为边长的三角形不是直角三角形.练习1. 设三角形的三边长分别等于下列各组数,试判断各三角形是否是直角三角形.若是,指出哪一条边所对的角是直角.(1) 12, 16, 20;(2) 8, 12, 15;(3) 5, 6, 8.2. 有哪些方法可以判断一个三角形是直角三角形?习题14.11. 将图14.1.6沿中间的小正方形的对角线剪开,得到如图所示的梯形.利用此图的面积表示式验证勾股定理.(第1题)2. 已知△ABC中,∠B=90°, AC=13cm,BC=5cm,求AB的长.3. 已知等腰直角三角形斜边的长为2cm,求这个三角形的周长.4. 如图,分别以直角三角形的三边为边长向外作正方形,然后分别以三个正方形的中心为圆心、正方形边长的一半为半径作圆.试探索这三个圆的面积之间的关系.(第4题)(第5题)5. 如图,已知直角三角形ABC的三边分别为6、8、10,分别以它的三边为直径向上作三个半圆,求图中阴影部分的面积.6. 试判断以如下的a、 b、 c为边长的三角形是不是直角三角形?如果是,那么哪一条边所对的角是直角?(1) a=25, b=20, c=15;(2) a=1, b=2, c=3;(3) a=40, b=9, c=40;(4)a∶b∶c=5∶12∶13.阅读材料勾股定理史话勾股定理从被发现到现在已有五千年的历史.远在公元前三千年的巴比伦人就已经知道和应用它了.我国古代也发现了这个定理.据《周髀算经》记载,商高(公元前1120年)关于勾股定理已有明确的认识,《周髀算经》中有商高答周公的话:“勾广三,股修四,径隅五.”同书中还有另一位学者陈子(公元前六七世纪)与荣方(公元前六世纪)的一段对话:“求邪(斜)至日者,以日下为勾,日高为股,勾、股各自乘,并而开方除之,得邪至日”(如图所示),即邪至日=勾2+股2.这里陈子已不限于“三、四、五”的特殊情形,而是推广到一般情形了.人们对勾股定理的认识,经历过一个从特殊到一般的过程,其特殊情况,在世界很多地区的现存文献中都有记载,很难区分这个定理是谁最先发明的.国外一般认为这个定理是毕达哥拉斯(Pythagoras)学派首先发现的,因而称为毕达哥拉斯定理.勾股定理曾引起很多人的兴趣,世界上对这个定理的证明方法很多.1940年卢米斯(E.S. Loomis)专门编辑了一本证明勾股定理的小册子——《毕氏命题》,作者收集了这个著名定理的370种证明,其中包括大画家达·芬奇和美国第20任总统詹姆士·阿·加菲尔德(James Abram Garfield, 1831~1881)的证法.美丽的勾股树你可能去过森林公园,看到过许许多多千姿百态的植物.可是你是否见过如下的勾股树呢?你知道这是如何画出来的吗?仔细看看,你就会发现那一个个细小的部分正是我们学过的勾股图,一个一个连接在一起,构成了多么奇妙美丽的勾股树!动手画画看,相信你也能画出其他形态的勾股树.§14.2 勾股定理的应用勾股定理能解决直角三角形的许多问题,因此在现实生活和数学中有着广泛的应用.例1如图14.2.1,一圆柱体的底面周长为20cm,高AB为4cm,BC是上底面的直径.一只蚂蚁从点A 出发,沿着圆柱的侧面爬行到点C ,试求出爬行的最短路程.图14.2.1分析 蚂蚁实际上是在圆柱的半个侧面内爬行,如果将这半个侧面展开(如图14.2.2),得到矩形 ABCD ,根据“两点之间,线段最短”,所求的最短路程就是侧面展开图矩形对角线AC 之长.(精确到0.01cm )图14.2.2解 如图14.2.2,在Rt△ABC中,BC=底面周长的一半=10cm , ∴ AC=22BC AB +=22104+=229≈10.77(cm )(勾股定理).答: 最短路程约为10.77cm .例2一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图14.2.3的某工厂,问这辆卡车能否通过该工厂的厂门?图14.2.3分析由于厂门宽度足够,所以卡车能否通过,只要看当卡车位于厂门正中间时其高度是否小于CH .如图14.2.3所示,点D 在离厂门中线0.8米处,且CD⊥AB, 与地面交于H .解 在Rt△OCD 中,由勾股定理得CD=22OD OC -=228.01-=0.6米,C H=0.6+2.3=2.9(米)>2.5(米).因此高度上有0.4米的余量,所以卡车能通过厂门.做一做图14.2.4如图14.2.4,以直角三角形ABC的三边为边分别向外作正方形,其中一个正方形划分成四个形状与大小都一样的四边形.试将图中5个带色的图形拼入到大正方形中,填满整个大正方形.练习1. 如图,从电杆离地面5米处向地面拉一条7米长的钢缆,求地面钢缆固定点A 到电杆底部B 的距离.2. 现准备将一块形为直角三角形的绿地扩大,使其仍为直角三角形,两直角边同时扩大到原来的两倍,问斜边扩大到原来的多少倍?(第1题)例3如图14.2.5,在5×5的正方形网格中,每个小正方形的边长都为1,请在给定网格中按下列要求画出图形:(1)从点A出发画一条线段AB,使它的另一个端点B在格点(即小正方形的顶点)上,且长度为22;(2)画出所有的以(1)中的AB为边的等腰三角形,使另一个顶点在格点上,且另两边的长度都是无理数.分析只需利用勾股定理看哪一个矩形的对角线满足要求.图14.2.5 图14.2.6解(1)图14.2.6中AB长度为22.(2)图14.2.6中△ABC、△ABD就是所要画的等腰三角形.例4如图14.2.7,已知CD=6m, AD=8m,∠ADC=90°, BC =24m,AB=26m.求图中阴影部分的面积.图14.2.7解在Rt△ADC中,AC2=AD2+CD2=62+82=100(勾股定理),∴ AC=10m.∵ AC2+BC2=102+242=676=AB2,∴ △ACB为直角三角形(如果三角形的三边长a、 b、 c有关系: a2+b2=c2,那么这个三角形是直角三角形),∴ S阴影部分=S△ACB-S△ACD=1/2×10×24-1/2×6×8=96(m2).练习1. 若直角三角形的三边长分别为2、 4、 x,试求出x的所有可能值.2. 利用勾股定理,分别画出长度为3和5厘米的线段.习题14.21. 若等腰直角三角形的斜边长为2cm,试求出它的直角边和斜边上的高的长度.2. 下图由4个等腰直角三角形组成,其中第1个直角三角形腰长为1cm,求第4个直角三角形斜边长度.(第2题)(第3题)3. 如图,为了加固一个高2米、宽3米的大门,需在相对角的顶点间加一块木条.求木条的长度.4. 在△ABC中,AB=2, BC=4, AC=23, ∠C=30°, 求∠B 的大小.5. 已知三角形的三边分别是n +1、 n +2、 n +3,当n 是多少时,三角形是一个直角三角形?6. 如图,AD⊥CD, AB=13,BC=12,CD=4,AD=3, 若∠CAB=55°,求∠B 的大小.(第6题)小结一、 知识结构二、 概括本章研究了揭示直角三角形三条边之间关系的勾股定理和由此产生的一种判定直角三角形的方法.如果知道了直角三角形任意两边的长度,那么应用勾股定理可以计算出第三边的长度;如果知道了一直角三角形 勾股定理应用判定直角三角形的一种方法个三角形的三边的长,也可以判断这个三角形是否是直角三角形.勾股定理可以解决直角三角形中的许多问题,在现实生活中有许多重要的应用.复习题A组1. 求下列阴影部分的面积:(1)阴影部分是正方形;(2)阴影部分是长方形;(3)阴影部分是半圆.(第1题)2. 如图,以Rt△ABC的三边为直径分别向外作三个半圆,试探索三个半圆的面积之间的关系.(第2题)3. 试判断下列三角形是否是直角三角形:(1)三边长为m2+n2、 mn、 m2-n2(m>n>0);(2)三边长之比为1∶1∶2;(3)△ABC的三边长为a、 b、 c,满足a2-b2=c2.4. 一架 2.5米长的梯子靠在一座建筑物上,梯子的底部离建筑物0.7米,如果梯子的顶部滑下0.4米,梯子的底部向外滑出多远?5. 如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,求正方形A、 B、 C、D的面积和.(第5题)B组6. 在△ABC中,AB=AC=10, BD是AC边的高,DC=2,求BD的长.(第7题)7. 有一块四边形地ABCD(如图),∠B=90°,AB=4m,BC=3m, CD=12m, DA=13m,求该四边形地ABCD的面积.8. 能够成为直角三角形三条边长的正整数,称为勾股数.请你写出5组勾股数.9. 已知△ABC中,三条边长分别为a=n2-1, b=2n, c=n2+1(n>1).试判断该三角形是否是直角三角形,若是,请指出哪一条边所对的角是直角.C组10. 如图,四边形ABCD中,AB=BC=2, CD=3,DA=1,且∠B=90°,求∠DAB的度数.(第10题)(第11题)11. 如图,在矩形ABCD中,AB=5cm,在边CD上适当选定一点E,沿直线AE把△ADE折叠,使点D恰好落在边BC上一点F处,且△ABF的面积是30cm2.求此时AD的长.(第12题)12. 折竹抵地(源自《九章算术》):今有竹高一丈,末折抵地,去本三尺.问折者高几何?意即:一根竹子,原高一丈,虫伤有病,一阵风将竹子折断,其竹梢恰好抵地,抵地处离原长竹子处3尺远.问原处还有多高的竹子?课题学习勾股定理的“无字证明”在勾股定理的学习过程中,我们已经学会运用以下图形,验证著名的勾股定理:整个大正方形的面积可以表示为里面小正方形的面积与四边上的4个直角三角形的面积之和,即为(a+b) 2=c2+4·(1/2ab),由此可以推出勾股定理a2+b2=c2.这种根据图形可以极其简单地直观推论或验证数学规律和公式的方法,简称为“无字证明”.对于勾股定理,我们还可以找到一些用于“无字证明”的图形.现在请你和大家一起,查阅课本和其他有关书籍,上网查询各种相应的资料,相信你一定能够发现更多的有趣图形,验证勾股定理.实际上你还可以发现“无字证明”也可以用于验证数与代数、空间与图形等领域中的许多数学公式和规律!- 21 -。
华师版数学八年级上册 14.2勾股定理的应用 课件(共19张ppt)

新知探究
(1)自己做一个圆柱,尝试从点A到点B沿圆柱侧面画 几条路线,你觉得哪条路线最短?
B
B
B
A 方案①
A 方案②
A 方案③
(2)如图,将圆柱侧面剪开展成一个长方形,点A到
点B的最短路线是什么?你画对了吗?
B
B
A B
A
A
因为两点之间线段最短, 所以方案③的路线最短.
(3)蚂蚁从点A出发,想吃到B点上的食物,它沿圆柱 侧面爬行的最短路程是多少?
第14章 勾股定理
14.2 勾股定理的应用
学习目标
➢ 能解决与勾股定理有关的问题:立体图形中最 短路径问题、网格问题等.
➢ 能将实际问题转化为直角三角形的数学模型, 并能用勾股定理解决简单的实际问题,培养数 学应用意识.
情境引入
如图,有一个圆柱,它的高等于12 cm,底面圆的周长 为18 cm,在圆柱下底面的点A处有一只蚂蚁,它想吃 到上底面上与点A相对的点B处的食物,沿圆柱侧面爬 行的最短路程是多少?
解:设滑道AC的长度为x m,则AB的 长也为x m,AE的长度为(x-1)m.
CD
在Rt△ACE中,∠AEC=90°,
由勾股定理得AE2+CE2=AC2,
即(x-1)2+32=x2,
A
解得x=5.
EB
故滑道AC的长度为5 m.
感谢观看!
例2 如图,在公路AB旁有一危楼 C需要爆破,已知点C与公路上的 停靠站A的距离为300米,与公路 上另一停靠站B的距离为400米, 且CA⊥CB,为了安全起见,爆破点C周围250米范 围内不得进入,问:在进行爆破时,公路AB段是否 因有危险而需要暂时封锁?
华师大版八年级数学上册第14章第2节《勾股定理的应用》课件

BE C
课堂小结
最短路程问题
勾股定理 的应用
勾股定理与其逆定理的应用
D1
A1 D
A
C1
D1
C1
B1
2
C
A1 B
B1 1
A
3
B
AB= AC2 BC12 = 32 32 ≈4.24(cm).
(2)当蚂蚁经过前面和右面时,如图,最短路程为
D1 A1
D A
B1 B
C1
A1 C
A
B1
C1
1
3
B2 C
AB= AC2 CC12 = 52 12 ≈5.10(cm).
(3)当蚂蚁经过左面和上底面时,如图,最短路程为
= 42 +102
= 116 10.7(7 cm) 答:爬行的最短路程约为10.77cm.
讲授新课
一 勾股定理的应用
把几何体适当展开成平面图形,再利用“两点之间,线 段最短”性质来解决问题.
例1 如果圆柱换成如图的棱长为10cm的正方体盒子, 蚂蚁沿着表面需要爬行的最短路程又是多少呢?(精确到 0.01cm)
A1
B1
D
C
A
B
分析:蚂蚁由A爬到C1过程中较短的路线有多少种情况?
(1)经过前面和上底面;
D1
C1
(2)经过前面和右面;
2
(3)经过左面和上底面.
D1 A1
D A
B1 B
A1
A C1 A1
3
B1
B1 1
B C1
1
C
A
3
D
D1
B 2C
C1
2
A 1 A1
14.2勾股定理的应用第一课时课件华东师大版数学八年级上册

AB AC2 BC2 12 22 5
答:最短路程为 5 厘米。
例3.如果盒子换成如图长为3cm,宽为2cm,高为
1cm的长方体,蚂蚁沿着表面需要爬行的最短路程
又是多少呢?
B
分析:蚂蚁由A爬到B过程中 较短的路线有多少种情况?
1
A
3
2
(1)经过前面和上底面; (2)经过前面和右面;
B
B
2
(大门宽度一半),米 (卡车
宽度一半)在Rt△OCD中,由
勾股定理得
A
米
CD= OC 2 OD2
= 12 0.82 =米,
CH=+=>
N
因此高度上有米的余量,所以卡车能通过厂门.
B
2米
C
C
O
┏
D
B
2米 HM
例3.有一个水池,水面是一个边长 为10尺的正方形,在水池的中央有 一根新生的芦苇,它高出水面1尺, 如果把这根芦苇拉向岸边,它的顶端 恰好到达岸边的水面,问这个水池的 深度和这根芦苇的长度各是多少?
解:由题意得,在RtΔABF中 A
AF=AD=BC=10,AB=DC=8
BF AF2 AB2
8
102 82 6
∴FC =4cm
B
设EC=x,则DE=EF=(8-x),
10
6 10
D
8-X
8-X E
X
F4 C
∵EF2=EC2+FC2 ∴ (8-x)2 = x2+42
解得:x=3
试一试
1.长方形纸片ABCD中,AD=4cm,AB=10cm,按如
解:如图,在Rt∆ABC中,∠A=90
C
BC2=AB2+AC2
八年级数学上第14章勾股定理14.1勾股定理2直角三角形三边的关系__验证勾股定理授课新华东师大1

知1-讲
3.用拼图法证明命题1的思路: (1)图形经过割补拼接后,只要没有重叠,没有空隙,面
积不会改变; (2)根据同一种图形的面积的不同表示方法列出等式; (3)利用等式性质变换证明结论成立,即拼出图形→写出
图形面积的表达式→找出等量关系→恒等变形→推出 命题1的结论.
知1-讲
例1 图14.1-1是用硬纸板做成的四个两直角边长分别 是a,b,斜边长为c的全等的直角三角形和一个 边长为c的正方形,请你将它们拼成一个能证明 命题1的图形. (1)画出拼成的这个图形的示意图; (2)证明命题1.
知2-讲
(2)已知直角三角形的一边确定另两边的关系; (3)证明含有平方关系的几何问题; (4)作长为n(n≥1,且n为整数)的线段; (5)一些非直角三角形的几何问题、日常生活中的
应用问题,对于这些问题,首先要将它们转化, 建立直角三角形模型,然后利用勾股定理构建方 程或方程组解决.
知2-讲
例2 如图,Rt △ABC的斜边AC比直角边 AB长 2cm,另一直角边BC长为6 cm.求AC的长.
知2-讲
本题运用建模思想解题,根据实际问题画出直 角三角形,再运用勾股定理解答.当图形不是直角 三角形时,常常通过作垂线构造直角三角形.
知2-讲
例5 如图,有一张直角三角形纸片,两直角边AC =6 cm,BC=8 cm,现将直角边AC沿AD折 叠,使点C落在斜边AB上的点E处,试求CD 的长.
导引:利用折叠前后重合的线段相等、重合的角相等, 通过勾股定理列方程,在Rt△BDE中求出线段 DE的长,从而得到CD的长.
解: 由已知AB=AC - 2, BC =6cm, 根据勾股定理,可得 AB2 + BC2 = (AC - 2)2 +62 = AC2, 解得AC= 10(cm).
八年级数学上册第十四章勾股定理14.2勾股定理的应用2课件新版华东师大版

解:班长的安排合理.理由如下: ∵S 甲=π×( )2 S 乙=π×( )2 S 丙=π×( )2 又△ABC 是直角三角形
∴
=
+
∴S 甲=S 乙+S 丙
2.如图,铁路上A、B两点相距为25km,C、D为两村庄, DA⊥AB于A,CB ⊥AB于B,已知DA=15km,CB=10km,现 在要在铁路AB上建一个货运站E,使得C、D两村到E站距离相 等,问E站应建在离A多少千米处?
课堂小结 谈谈你这节课的收获有哪些?
会用勾股定理解决简单应用题; 学会构造直角三角形.
课后作业
1.从教材习题中选取, 2.完成练习册本课时的习题.
复习提问:
1、勾股定理的内容是什么? 2、勾股定理的逆定理是什么? 3、三角形的面积公式是什么? 4、如何解决不规则图形的问题? 我们利用图形的割或补得方法来解决此类问题。
学习新知 (2)画出所有的以(1)中所画线段为腰的等腰三角形.
例2:如图,已知CD=6m, AD=8m, ∠ADC=90°, BC=24m, AB=26m.求图中阴影部分的面积.
AE
B
C D
解:在直角三角形 ADE 中,由勾股定理,得 DE2=AD2+AE2. 在直角三角形 BEC 中,•由勾股定理,得 EC2=BE2+BC2. 因为 DE=EC,因此 DE2=EC2,所以 AD2+AE2=BE2+BC2. 所以 152+AE2=(25-AE)2+102,解得 AE=10总结出两种思想方法:一是求不规则图
形的面积方法“将不规则图化成规则”,二是求面 积中,要注意其特殊性.
巩固练习
1.如图,学校为美化校园,将形状是直角三角形的园 地△ABC,分别以三边AB、BC、CA为直径向外作半圆, 开辟为三个花坛甲、乙、丙,现分给201班同学种花. 班长准备让人数相等的两个小组同学负责.为了公平分 配任务,她安排一个小组负责花坛甲,另一个小组负责 花坛乙和丙.你认为班长的安排合理吗?请说明理由.