不等式选讲习题 含答案

合集下载

答案第42讲 不等式选讲--高考数学习题和答案

答案第42讲 不等式选讲--高考数学习题和答案
则 (ab + 1)2 > (a + b)2 ,
即 a + b < ab + 1 ,
证毕.
11.【解析】(Ⅰ)当 a = 2 时, f (x) = | 2x − 2 | +2 . 解不等式 | 2x − 2 | +2 6 ,得 −1 x 3. 因此, f (x) ≤ 6 的解集为{x | −1 x 3} . (Ⅱ)当 x ∈ R 时, f (x) + g(x)= | 2x − a | +a+ |1− 2x |
值为 3,故当且仅当 a ≥ 3 且 b ≥ 2 时, f (x) ≤ ax + b 在[0, +∞) 成立,因此 a + b 的
最小值为 5. 4.D.【证明】由柯西不等式,得 (x2 + y2 + z2 )(12 + 22 + 22 ) ≥ (x + 2 y + 2z)2 .
因为 x + 2 y + 2z=6 ,所以 x2 + y2 + z2 ≥ 4 ,
2010-2018 年
−2, x ≤ −1, 1.【解析】(1)当 a = 1时, f (x) =| x +1| − | x −1| ,即 f (x=) 2x, −1 < x < 1,
2, x ≥1. 故不等式 f (x) > 1 的解集为{x | x > 1}.
2 (2)当 x ∈ (0,1) 时| x +1| − | ax −1|> x 成立等价于当 x ∈ (0,1) 时| ax −1|< 1 成立.
专题十六 不等式选讲
第四十二讲 不等式选讲

全国通用2020_2022三年高考数学真题分项汇编专题20不等式选讲(含答案及解析)

全国通用2020_2022三年高考数学真题分项汇编专题20不等式选讲(含答案及解析)

全国通用2020_2022三年高考数学真题分项汇编:20 不等式选讲1.【2022年全国甲卷】已知a,b,c均为正数,且a2+b2+4c2=3,证明:(1)a+b+2c≤3;(2)若b=2c,则1a +1c≥3.【答案】(1)见解析(2)见解析【解析】【分析】(1)根据a2+b2+4c2=a2+b2+(2c)2,利用柯西不等式即可得证;(2)由(1)结合已知可得0<a+4c≤3,即可得到1a+4c ≥13,再根据权方和不等式即可得证.(1)证明:由柯西不等式有[a2+b2+(2c)2](12+12+12)≥(a+b+2c)2,所以a+b+2c≤3,当且仅当a=b=2c=1时,取等号,所以a+b+2c≤3;(2)证明:因为b=2c,a>0,b>0,c>0,由(1)得a+b+2c=a+4c≤3,即0<a+4c≤3,所以1a+4c ≥13,由权方和不等式知1a +1c=12a+224c≥(1+2)2a+4c=9a+4c≥3,当且仅当1a =24c,即a=1,c=12时取等号,所以1a +1c≥3.2.【2022年全国乙卷】已知a,b,c都是正数,且a32+b32+c32=1,证明:(1)abc≤19;(2)ab+c +ba+c+ca+b≤2√abc;【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)利用三元均值不等式即可证明;(2)利用基本不等式及不等式的性质证明即可.(1)证明:因为a >0,b >0,c >0,则a 32>0,b 32>0,c 32>0, 所以a 32+b 32+c 323≥√a 32⋅b 32⋅c 323,即(abc )12≤13,所以abc ≤19,当且仅当a 32=b 32=c 32,即a =b =c =√193时取等号.(2)证明:因为a >0,b >0,c >0,所以b +c ≥2√bc ,a +c ≥2√ac ,a +b ≥2√ab , 所以a b+c≤2√bc=a 322√abc,b a+c≤2√ac=b 322√abc,ca+b≤2√ab =322√abc a b +c +b a +c +ca +b ≤a 322√abc +b 322√abc c 322√abc=a 32+b 32+c 322√abc=12√abc当且仅当a =b =c 时取等号.3.【2021年甲卷文科】已知函数()2,()2321f x x g x x x =-=+--.(1)画出()y f x =和()y g x =的图像; (2)若()()f x a g x +≥,求a 的取值范围. 【答案】(1)图像见解析;(2)112a ≥ 【解析】 【分析】(1)分段去绝对值即可画出图像;(2)根据函数图像数形结和可得需将()y f x =向左平移可满足同角,求得()y f x a =+过1,42A ⎛⎫⎪⎝⎭时a 的值可求.【详解】(1)可得2,2()22,2x x f x x x x -<⎧=-=⎨-≥⎩,画出图像如下:34,231()232142,2214,2x g x x x x x x ⎧-<-⎪⎪⎪=+--=+-≤<⎨⎪⎪≥⎪⎩,画出函数图像如下:(2)()|2|f x a x a +=+-,如图,在同一个坐标系里画出()(),f x g x 图像,()y f x a =+是()y f x =平移了a 个单位得到,则要使()()f x a g x +≥,需将()y f x =向左平移,即0a >,当()y f x a =+过1,42A ⎛⎫⎪⎝⎭时,1|2|42a +-=,解得112a =或52-(舍去),则数形结合可得需至少将()y f x =向左平移112个单位,112a ∴≥.【点睛】关键点睛:本题考查绝对值不等式的恒成立问题,解题的关键是根据函数图像数形结合求解. 4.【2021年乙卷文科】已知函数()3f x x a x =-++. (1)当1a =时,求不等式()6f x ≥的解集; (2)若()f x a >-,求a 的取值范围. 【答案】(1)(][),42,-∞-+∞.(2)3,2⎛⎫-+∞ ⎪⎝⎭. 【解析】 【分析】(1)利用绝对值的几何意义求得不等式的解集.(2)利用绝对值不等式化简()f x a >-,由此求得a 的取值范围. 【详解】(1)[方法一]:绝对值的几何意义法当1a =时,()13f x x x =-++,13x x -++表示数轴上的点到1和3-的距离之和, 则()6f x ≥表示数轴上的点到1和3-的距离之和不小于6,当4x =-或2x =时所对应的数轴上的点到13-,所对应的点距离之和等于6, ∴数轴上到13-,所对应的点距离之和等于大于等于6得到所对应的坐标的范围是4x ≤-或2x ≥,所以()6f x ≥的解集为(][),42,-∞-+∞.[方法二]【最优解】:零点分段求解法 当1a =时,()|1||3|f x x x =-++. 当3x ≤-时,(1)(3)6-+--≥x x ,解得4x ≤-; 当31x -<<时,(1)(3)6-++≥x x ,无解; 当1≥x 时,(1)(3)6-++≥x x ,解得2x ≥. 综上,|1||3|6-++≥x x 的解集为(,4][2,)-∞-+∞. (2)[方法一]:绝对值不等式的性质法求最小值 依题意()f x a >-,即3a x a x -+>-+恒成立,333x a x x a a x -++-+=≥++,当且仅当()()30a x x -+≥时取等号,()3min f x a ∴=+, 故3a a +>-,所以3a a +>-或3a a +<, 解得32a >-.所以a 的取值范围是3,2⎛⎫-+∞ ⎪⎝⎭.[方法二]【最优解】:绝对值的几何意义法求最小值由||x a -是数轴上数x 表示的点到数a 表示的点的距离,得()|||3||3|f x x a x a =-++≥+,故|3|a a +>-,下同解法一. [方法三]:分类讨论+分段函数法 当3a ≤-时,23,,()3,3,23,3,x a x a f x a a x x a x -+-<⎧⎪=--≤≤-⎨⎪-+>-⎩则min [()]3=--f x a ,此时3-->-a a ,无解. 当3a >-时,23,3,()3,3,23,,x a x f x a x a x a x a -+-<-⎧⎪=+-≤≤⎨⎪-+>⎩则min [()]3=+f x a ,此时,由3a a +>-得,32a >-.综上,a 的取值范围为32a >-.[方法四]:函数图象法解不等式由方法一求得()min 3f x a =+后,构造两个函数|3|=+y a 和y a =-,即3,3,3,3a a y a a --<-⎧=⎨+≥-⎩和y a =-, 如图,两个函数的图像有且仅有一个交点33,22⎛⎫- ⎪⎝⎭M ,由图易知|3|a a +>-,则32a >-.【整体点评】(1)解绝对值不等式的方法有几何意义法,零点分段法. 方法一采用几何意义方法,适用于绝对值部分的系数为1的情况, 方法二使用零点分段求解法,适用于更广泛的情况,为最优解;(2)方法一,利用绝对值不等式的性质求得()3min f x a =+,利用不等式恒成立的意义得到关于a 的不等式,然后利用绝对值的意义转化求解;方法二与方法一不同的是利用绝对值的几何意义求得()f x 的最小值,最有简洁快速,为最优解法方法三利用零点分区间转化为分段函数利用函数单调性求()f x 最小值,要注意函数()f x 中的各绝对值的零点的大小关系,采用分类讨论方法,使用与更广泛的情况;方法四与方法一的不同在于得到函数()f x 的最小值后,构造关于a 的函数,利用数形结合思想求解关于a 的不等式.5.【2020年新课标1卷理科】已知函数()|31|2|1|f x x x =+--. (1)画出()y f x =的图像;(2)求不等式()(1)f x f x >+的解集. 【答案】(1)详解解析;(2)7,6⎛⎫-∞- ⎪⎝⎭.【解析】 【分析】(1)根据分段讨论法,即可写出函数()f x 的解析式,作出图象; (2)作出函数()1f x +的图象,根据图象即可解出. 【详解】(1)因为()3,1151,1313,3x x f x x x x x ⎧⎪+≥⎪⎪=--<<⎨⎪⎪--≤-⎪⎩,作出图象,如图所示:(2)将函数()f x 的图象向左平移1个单位,可得函数()1f x +的图象,如图所示:由()3511x x --=+-,解得76x =-.所以不等式()(1)f x f x >+的解集为7,6⎛⎫-∞- ⎪⎝⎭.【点睛】本题主要考查画分段函数的图象,以及利用图象解不等式,意在考查学生的数形结合能力,属于基础题.6.【2020年新课标2卷理科】已知函数2()|21|f x x a x a =-+-+.(1)当2a =时,求不等式()4f x ≥的解集;(2)若()4f x ≥,求a 的取值范围.【答案】(1)32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭;(2)(][),13,-∞-+∞.【解析】 【分析】(1)分别在3x ≤、34x <<和4x ≥三种情况下解不等式求得结果;(2)利用绝对值三角不等式可得到()()21f x a ≥-,由此构造不等式求得结果. 【详解】(1)当2a =时,()43f x x x =-+-.当3x ≤时,()43724f x x x x =-+-=-≥,解得:32x ≤;当34x <<时,()4314f x x x =-+-=≥,无解; 当4x ≥时,()43274f x x x x =-+-=-≥,解得:112x ≥; 综上所述:()4f x ≥的解集为32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭.(2)()()()()22222121211f x x a x a x a x a a a a =-+-+≥---+=-+-=-(当且仅当221a x a -≤≤时取等号), ()214a ∴-≥,解得:1a ≤-或3a ≥,a ∴的取值范围为(][),13,-∞-+∞.【点睛】本题考查绝对值不等式的求解、利用绝对值三角不等式求解最值的问题,属于常考题型. 7.【2020年新课标3卷理科】设a ,b ,c ∈R ,a +b +c =0,abc =1. (1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c }. 【答案】(1)证明见解析(2)证明见解析. 【解析】 【分析】(1)方法一:由()22222220a b c a b c ab ac bc ++=+++++=结合不等式的性质,即可得出证明;(2)方法一:不妨设{}max ,,a b c a =,因为0,1a b c abc ++==,所以0,a >0,b <0,c <()()a b c=-+-≥34,a ≥a【详解】(1)[方法一]【最优解】:通性通法()22222220a b c a b c ab ac bc ++=+++++=,()22212ab bc ca a b c ∴++=-++. 1,,,abc a b c =∴均不为0,则2220a b c ++>,()222120ab bc ca a b c ∴++=-++<. [方法二]:消元法由0a b c ++=得()b a c =-+,则()ab bc ca b a c ca ++=++()2a c ac =-++()22a ac c =-++223024c a c ⎛⎫=-+-≤ ⎪⎝⎭,当且仅当0a b c ===时取等号,又1abc =,所以0ab bc ca ++<. [方法三]:放缩法方式1:由题意知0,a ≠0,a b c ++=(),a c b =-+()222224a c b c b cb bc =+=++≥,又()ab bc ca a b c bc ++=++2a bc =-+224a a ≤-+2304a =-<,故结论得证.方式2:因为0a b c ++=,所以()22220222a b c a b c ab bc ca =++=+++++ ()()()22222212222a b b c c a ab bc ca ⎡⎤=++++++++⎣⎦()()122222232ab bc ca ab bc ca ab bc ca ≥+++++=++. 即0ab bc ca ++≤,当且仅当0a b c ===时取等号, 又1abc =,所以0ab bc ca ++<. [方法四]:因为0,1a b c abc ++==,所以a ,b ,c 必有两个负数和一个正数,不妨设0,a b c ≤<<则(),a b c =-+()20ab bc ca bc a c b bc a ∴++=++=-<.[方法五]:利用函数的性质方式1:()6b a c =-+,令()22f c ab bc ca c ac a =++=---,二次函数对应的图像开口向下,又1abc =,所以0a ≠, 判别式222Δ430a a a =-=-<,无根, 所以()0f c <,即0ab bc ca ++<.方式2:设()()()()()31f x x a x b x c x ab bc ca x =---=+++-,则()f x 有a ,b ,c 三个零点,若0ab bc ca ++≥,则()f x 为R 上的增函数,不可能有三个零点, 所以0ab bc ca ++<.(2)[方法一]【最优解】:通性通法不妨设{}max ,,a b c a =,因为0,1a b c abc ++==,所以0,a >0,b <0,c <()()a b c =-+-≥则34,a a ≥≥.故原不等式成立. [方法二]:不妨设{}max ,,a b c a =,因为0,1a b c abc ++==,所以0a >,且,1,b c a bc a +=-⎧⎪⎨=⎪⎩则关于x 的方程210x ax a++=有两根,其判别式24Δ0a a =-≥,即a故原不等式成立. [方法三]:不妨设{}max ,,a b c a =,则0,a >(),b a c =-+1,abc =()1,a c ac -+=2210ac a c ++=,关于c 的方程有解,判别式()22Δ40a a =-≥,则34,a a ≥≥.故原不等式成立. [方法四]:反证法假设{}max ,,a b c0a b ≤<<1ab c =>a b c --=1132a b ---≥=={}max ,,a b c ≥证. 【整体点评】(1)方法一:利用三项平方和的展开公式结合非零平方为正数即可证出,证法常规,为本题的通性通法,也是最优解法;方法二:利用消元法结合一元二次函数的性质即可证出;方法三:利用放缩法证出;方法四:利用符号法则结合不等式性质即可证出;方法五:利用函数的性质证出.(2)方法一:利用基本不等式直接证出,是本题的通性通法,也是最优解;方法二:利用一元二次方程根与系数的关系以及方程有解的条件即可证出;方法三:利用消元法以及一元二次方程有解的条件即可证出;方法四:利用反证法以及基本不等式即可证出.。

高三数学不等式选讲试题答案及解析

高三数学不等式选讲试题答案及解析

高三数学不等式选讲试题答案及解析1.不等式的解集是.【答案】【解析】由绝对值的几何意义,数轴上之间的距离为,结合图形,当落在数轴上外时.满足不等式,故答案为.【考点】不等式选讲.2.不等式的解集是【答案】【解析】原不等式可化为,解得.考点:绝对值不等式解法3.已知函数(Ⅰ)证明:;(Ⅱ)求不等式:的解集.【答案】(Ⅰ)祥见解析;(Ⅱ).【解析】(Ⅰ)通过对x的范围分类讨论将函数f(x)=|x-2|-|x-5|中的绝对值符号去掉,转化为分段函数,即可解决;(Ⅱ)结合(1)对x分x≤2,2<x<5与x≥5三种情况讨论解决即可.试题解析:(Ⅰ)当所以(Ⅱ)由(1)可知,当的解集为空集;当时,的解集为:;当时,的解集为:;综上,不等式的解集为:;【考点】绝对值不等式的解法.4.设函数=(1)证明:2;(2)若,求的取值范围.【答案】(2)【解析】本题第(1)问,可由绝对值不等式的几何意义得出,从而得出结论;对第(2)问,由去掉一个绝对值号,然后去掉另一个绝对值号,解出的取值范围.试题解析:(1)证明:由绝对值不等式的几何意义可知:,当且仅当时,取等号,所以.(2)因为,所以,解得:.【易错点】在应用均值不等式时,注意等号成立的条件:一正二定三相等.【考点】本小题主要考查不等式的证明、绝对值不等式的几何意义、绝对值不等式的解法、求参数范围等不等式知识,熟练基础知识是解答好本类题目的关键.5.(5分)(2011•陕西)(请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)A.(不等式选做题)若不等式|x+1|+|x﹣2|≥a对任意x∈R恒成立,则a的取值范围是.B.(几何证明选做题)如图,∠B=∠D,AE⊥BC,∠ACD=90°,且AB=6,AC=4,AD=12,则AE= .C.(坐标系与参数方程选做题)直角坐标系xoy中,以原点为极点,x轴的正半轴为极轴建极坐标系,设点A,B分别在曲线C1:(θ为参数)和曲线C2:p=1上,则|AB|的最小值为.【答案】(﹣∞,3] 2 1【解析】A.首先分析题目已知不等式|x+1|+|x﹣2|≥a恒成立,求a的取值范围,即需要a小于等于|x+1|+|x﹣2|的最小值即可.对于求|x+1|+|x﹣2|的最小值,可以分析它几何意义:在数轴上点x 到点﹣1的距离加上点x到点2的距离.分析得当x在﹣1和2之间的时候,取最小值,即可得到答案;B.先证明Rt△ABE∽Rt△ADC,然后根据相似建立等式关系,求出所求即可;C.先根据ρ2=x2+y2,sin2+cos2θ=1将极坐标方程和参数方程化成直角坐标方程,根据当两点连线经过两圆心时|AB|的最小,从而最小值为两圆心距离减去两半径.解:A.已知不等式|x+1|+|x﹣2|≥a恒成立,即需要a小于等于|x+1|+|x﹣2|的最小值即可.故设函数y=|x+1|+|x﹣2|.设﹣1、2、x在数轴上所对应的点分别是A、B、P.则函数y=|x+1|+|x﹣2|的含义是P到A的距离与P到B的距离的和.可以分析到当P在A和B的中间的时候,距离和为线段AB的长度,此时最小.即:y=|x+1|+|x﹣2|=|PA|+|PB|≥|AB|=3.即|x+1|+|x﹣2|的最小值为3.即:k≤3.故答案为:(﹣∞,3].B.∵∠B=∠D,AE⊥BC,∠ACD=90°∴Rt△ABE∽Rt△ADC而AB=6,AC=4,AD=12,根据AD•AE=AB•AC解得:AE=2,故答案为:2C.消去参数θ得,(x﹣3)2+y2=1而p=1,则直角坐标方程为x2+y2=1,点A在圆(x﹣3)2+y2=1上,点B在圆x2+y2=1上则|AB|的最小值为1.故答案为:1点评:A题主要考查不等式恒成立的问题,其中涉及到绝对值不等式求最值的问题,对于y=|x﹣a|+|x﹣b|类型的函数可以用分析几何意义的方法求最值.本题还考查了三角形相似和圆的参数方程等有关知识,同时考查了转化与划归的思想,属于基础题.6.(2012•广东)不等式|x+2|﹣|x|≤1的解集为_________.【答案】【解析】∵|x+2|﹣|x|=∴x≥0时,不等式|x+2|﹣|x|≤1无解;当﹣2<x<0时,由2x+2≤1解得x≤,即有﹣2<x≤;当x≤﹣2,不等式|x+2|﹣|x|≤1恒成立,综上知不等式|x+2|﹣|x|≤1的解集为故答案为7.设函数,若,则实数的取值范围是()A.B.C.D.【答案】C【解析】由的图象,可知在处取得最小值,∵, ,即,或.∴实数的取值范围为,选C.8.已知不等式的解集与不等式的解集相同,则的值为()A.B.C.D.【答案】C【解析】解不等式得或,所以的两个根为和,由根与系数的关系知.故选.【考点】绝对值不等式的解法,一元二次不等式的解法.9.设函数,其中。

高三数学不等式选讲试题答案及解析

高三数学不等式选讲试题答案及解析

高三数学不等式选讲试题答案及解析1.设函数,,记的解集为M,的解集为N.(1)求M;(2)当时,证明:.【答案】(1);(2)详见解析.【解析】(1)由所给的不等式可得当时,由,或当时,由,分别求得它们的解集,再取并集,即得所求.(2)由,求得N,可得.当x∈M∩N时,f(x)=1-x,不等式的左边化为,显然它小于或等于,要证的不等式得证.(1)当时,由得,故;当时,由得,故;所以的解集为.(2)由得解得,因此,故.当时,,于是.【考点】1.其他不等式的解法;2.交集及其运算.2.设不等式的解集为M,.(1)证明:;(2)比较与的大小,并说明理由.【答案】(1)证明过程详见解析;(2)|1-4ab|>2|a-b|.【解析】本题主要考查绝对值不等式的解法、绝对值的运算性质、作差法比较大小等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,先利用零点分段法将化为分段函数,解不等式求出M,再利用绝对值的运算性质化简得,由于,代入得;第二问,利用第一问的结论,作差比较大小,由于和均为正数,所以都平方,作差比较大小.(1)记f(x)=|x-1|-|x+2|=由-2<-2x-1<0解得,则. 3分所以. 6分(2)由(1)得,.因为|1-4ab|2-4|a-b|2=(1-8ab+16a2b2)-4(a2-2ab+b2)=(4a2-1)(4b2-1)>0, 9分所以|1-4ab|2>4|a-b|2,故|1-4ab|>2|a-b|. 10分【考点】绝对值不等式的解法、绝对值的运算性质、作差法比较大小.3.阅读:已知、,,求的最小值.解法如下:,当且仅当,即时取到等号,则的最小值为.应用上述解法,求解下列问题:(1)已知,,求的最小值;(2)已知,求函数的最小值;(3)已知正数、、,,求证:.【答案】(1)9;(2)18;(3)证明见解析.【解析】本题关键是阅读给定的材料,弄懂弄清给定材料提供的方法(“1”的代换),并加以运用.主要就是,展开后就可应用基本不等式求得最值.(1);(2)虽然没有已知的“1”,但观察求值式子的分母,可以凑配出“1”:,因此有,展开后即可应用基本不等式;(3)观察求证式的分母,结合已知有,因此有此式中关键是凑配出基本不等式所需要的两项,如与合并相加利用基本不等式有,从而最终得出.(1), 2分而,当且仅当时取到等号,则,即的最小值为. 5分(2), 7分而,,当且仅当,即时取到等号,则,所以函数的最小值为. 10分(3)当且仅当时取到等号,则. 16分【考点】阅读材料问题,“1”的代换,基本不等式.4.已知不等式的解集与不等式的解集相同,则的值为()A.B.C.D.【答案】C【解析】解不等式得或,所以的两个根为和,由根与系数的关系知.故选.【考点】绝对值不等式的解法,一元二次不等式的解法.5.在实数范围内,不等式的解集为___________.【答案】【解析】因此解集为.【考点】本题主要考查绝对值不等式的解法,考查运用能力.6.已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3.(1)当a=-2时,求不等式f(x)<g(x)的解集;(2)设a>-1,且当x∈[-,)时, f(x)≤g(x),求a的取值范围.【答案】(1){x|0<x<2}(2)(-1,]【解析】(1)当a=-2时,不等式f(x)<g(x)化为|2x-1|+|2x-2|-x-3<0.设函数y=|2x-1|+|2x-2|-x-3,则y=,其图象如图所示.从图象可知,当且仅当x∈(0,2)时,y<0.所以原不等式的解集是{x|0<x<2}.(2)当x∈[-,)时, f(x)=1+a.不等式f(x)≤g(x)化为1+a≤x+3.所以x≥a-2对x∈[-,)都成立.故-≥a-2,即a≤.从而a的取值范围是(-1,]7.已知关于x的不等式的解集不是空集,则a的最小值是__________。

高三数学不等式选讲试题答案及解析

高三数学不等式选讲试题答案及解析

高三数学不等式选讲试题答案及解析1.若不等式的解集是区间的子集,则实数的范围为__________.【答案】.【解析】不等式x2<|x-1|+a等价为x2-|x-1|-a<0,设f(x)=x2-|x-1|-a,若不等式x2<|x-1|+a的解集是区间(-3,3)的子集,则,即,解得a≤5,故答案为:(-∞,5]【考点】不等式的解法及应用.2.不等式的解集是【答案】【解析】原不等式可化为,解得.考点:绝对值不等式解法3.若不等式对任意的恒成立,则的最大值是.【答案】9【解析】∵,∴,∴==5+≥5+=5+4=9,当且仅当,即时,取等号,所以的最小值为9,所以≤9,所以的最大值为9.考点: 基本不等式;转化与化归思想4.若不等式|x-a|-|x|<2-a2对x∈R恒成立,则实数a的取值范围是。

【答案】【解析】,所以原式恒成立,即,即,解得【考点】不等式恒成立问题5.设a、b、c为正数,a+b+9c2=1,则的最大值是,此时a+b+c= .【答案】【解析】由柯西不等式得,所以,当且仅当且,即,所以的最大值是,此时.【考点】柯西不等式.6.已知关于x的不等式(其中),若不等式有解,则实数a的取值范围是()A.B.C.D.【答案】C【解析】∵设故,即的最小值为,所以有解,则解得,即的取值范围是,选C.7.若存在实数x使|x-a|+|x-1|≤3成立,则实数a的取值范围是()A.-2≤a≤2B.-1≤a≤1C.-2≤a≤4D.-1≤a≤2【答案】C【解析】由题意知左边的最小值小于或等于3,根据不等式的性质得|(x-a)-(x-1)|≤3,∴|a-1|≤3,∴-2≤a≤4.选C.8.已知函数f(x)=|x-a|,其中a>1.(1)当a=2时,求不等式f(x)≥4-|x-4|的解集;(2)已知关于x的不等式|f(2x+a)-2f(x)|≤2的解集为{x|1≤x≤2},求a的值.【答案】(1){x|x≤1或x≥5}.(2)3【解析】(1)当a=2时, f(x)+|x-4|=当x≤2时,由f(x)≥4-|x-4|得-2x+6≥4,解得x≤1;当2<x<4时, f(x)≥4-|x-4|无解;当x≥4时,由f(x)≥4-|x-4|得2x-6≥4,解得x≥5;所以f(x)≥4-|x-4|的解集为{x|x≤1或x≥5}.(2)记h(x)=f(2x+a)-2f(x),则h(x)=由|h(x)|≤2,解得≤x≤又已知|h(x)|≤2的解集为{x|1≤x≤2}.所以=1且=2于是a=3.9.不等式<0的解集为()A.{x|﹣2<x<3}B.{x|x<﹣2}C.{x|x<﹣2或x>3}D.{x|x>3}【答案】A【解析】∵,得到(x﹣3)(x+2)<0即x﹣3>0且x+2<0解得:x>3且x<﹣2所以无解;或x﹣3<0且x+2>0,解得﹣2<x<3,所以不等式的解集为﹣2<x<3故选A10.已知,且,求的最小值.【答案】1.【解析】观察已知条件与所求式子,考虑到柯西不等式,可先将条件化为,此时,由柯西不等式得,即,当且仅当,即,或时,等号成立,从而可得的最小值为1.试题解析:, ,,,当且仅当,或时的最小值是1.【考点】柯西不等式.11.设a,b,c,d∈R,且a>b,c>d,则下列结论正确的是()A.a+c>b+d B.a-c>b-dC.ac>bd D.>【答案】A【解析】选A.因为a>b,c>d,所以a+c>b+d.12.若正数a,b满足ab=a+b+3,则ab的取值范围是.【答案】[9,+∞)【解析】令=t(t>0),由ab=a+b+3≥2+3,则t2≥2t+3,所以t≥3或t≤-1(舍去),所以≥3,ab≥9,当a=b=3时取等号.13.当0≤x≤时,函数y=x2(1-5x)的最大值为()A.B.C.D.无最大值【答案】C【解析】选C.y=x2(1-5x)=x2=x·x·.因为0≤x≤,所以-2x≥0,所以y≤=,=.当且仅当x=-2x,即x=时,ymax14.对于实数x,y,若|x-1|≤1,|y-2|≤1,则|x-2y+1|的最大值为()A.5B.4C.8D.7【答案】A【解析】选A.由题意得,|x-2y+1|=|(x-1)-2(y-1)|≤|x-1|+|2(y-2)+2|≤1+2|y-2|+2≤5,即|x-2y+1|的最大值为5.15.若x<5,n∈N,则下列不等式:①<5;②|x|lg<5lg;③xlg<5;④|x|lg<5.其中能够成立的有.(填序号)【答案】④【解析】因为0<<1,所以lg<0,由x<5不能确定|x|与5的关系,所以可以否定①②③,而|x|lg <0,所以④成立.16.已知|x-a|<b(a、b∈R)的解集为{x|2<x<4},求a-b的值.【答案】2【解析】由|x-a|<b,得a-b<x<a+b.又|x-a|<b(a、b∈R)的解集为{x|2<x<4},所以a-b=2. 17.已知函数.(1)当时,解不等式;(2)当时,恒成立,求的取值范围.【答案】(1);(2).【解析】(1)利用零点分段法,去分为.三种情况绝对值,在每种情况下解不等式;求三次交集,最后再求一次并集,属于基础问题,关键是把绝对值去掉,并且不要忘记求交集;(2)当时,将其中一个绝对值去掉,问题转化为恒成立,,利用公式将绝对值去掉,并且反解,转化为或恒成立的最值问题,因为.,所以只能大于等于的最大值.此题属于基础题型.试题解析:(1) 2分当时,,即,解得当时,,即,解得当时,,即,解得不等式的解集为 5分(2)恒成立即 10分【考点】1解不等式;2.恒成立问题.18.已知a2+2b2+3c2=6,若存在实数a,b,c,使得不等式a+2b+3c>|x+1|成立,求实数x的取值范围.【答案】-7<x<5【解析】由柯西不等式得(a+2b+3c)2≤(a2+2b2+3c2)(1+2+3),当且仅当a=b=c=1时,等号成立.故a+2b+3c的最大值为6,故|x+1|<6,解得-7<x<5.19.设x,y,z>0,x+y+z=3,依次证明下列不等式,(1)(2-)≤1.(2)≥.(3)++≥2.【答案】见解析【解析】证明:(1)由(2-)=-[()2-2+1]+1=-(-1)2+1≤1,得(2-)≤1.当且仅当xy=1时取等号.(2)≥=,因为2+≤2+,且由(1)知(2-)≤1,当且仅当x=y=1时取等号.所以≥=①.(3)同理可得≥②,≥③,由柯西不等式得(++)(a+b+c)≥9,对于a,b,c>0,++≥④,利用不等式④,由①,②,③及已知条件x + y + z =3得++≥++≥==2.20.已知函数f(x)=|2x-a|+a.若不等式f(x)≤6的解集为{x|-2≤x≤3},则实数a的值为________.【答案】a=1【解析】由|2x-a|+a≤6得,|2x-a|≤6-a,∴a-6≤2x-a≤6-a,即a-3≤x≤3,∴a-3=-2,∴a=1.21.设a,b,c为正数,且a+b+4c=1,则++的最大值是________.【答案】【解析】由柯西不等式得(++)2≤·[()2+()2+()2]=×1∴++≤.22.已知a,b,c∈R,a+2b+3c=6,则a2+4b2+9c2的最小值为________.【答案】12【解析】∵(x+y+z)2=x2+y2+z2+2xy+2yz+2zx≤3(x2+y2+z2),∴a2+4b2+9c2≥ (a+2b+3c)2==12.∴a2+4b2+9c2的最小值为12.23. A.(不等式选讲)已知函数.若关于x的不等式的解集是,则的取值范围是B.(坐标系与参数方程选做题)在极坐标系中,已知曲线与直线相切,则实数的值为_______【答案】A:;B:或【解析】根据题意,由于,则可知的解集为R,则说明了对一切实数都成立,则可知。

不等式A+B(有答案)

不等式A+B(有答案)

不等式选讲[基础训练A 组]一、选择题1.下列各式中,最小值等于2的是( )A .x y y x +B .4522++x x C .1tan tan θθ+ D .22x x-+2.若,x y R ∈且满足32x y +=,则3271xy++的最小值是( )A .B .1+C .6D .7 3.设0,0,1x y x y A x y +>>=++, 11x y B x y=+++,则,A B 的大小关系是( )A .AB = B .A B <C .A B ≤D .A B > 4.若,,x y a R +∈,且y x a y x +≤+恒成立,则a 的最小值是( )A .2B C .1 D .125.函数46y x x =-+-的最小值为( )A .2BC .4D .6 6.不等式3529x ≤-<的解集为( )A .[2,1)[4,7)-B .(2,1](4,7]-C .(2,1][4,7)--D .(2,1][4,7)-二、填空题1.若0a b >>,则1()a b a b +-的最小值是_____________。

2.若0,0,0a b m n >>>>,则b a , a b , m a m b ++, nb n a ++按由小到大的顺序排列为 3.已知,0x y >,且221x y +=,则x y +的最大值等于_____________。

4.设1010101111112212221A =++++++- ,则A 与1的大小关系是_____________。

5.函数212()3(0)f x x x x=+>的最小值为_____________。

三、解答题1.已知1a b c ++=,求证:22213a b c ++≥2.解不等式7340x x +--+>3.求证:221a b ab a b +≥++-4.证明:1)1...<++<不等式选讲 [基础训练A 组]一、选择题1.D20,20,222x x x x -->>∴+≥ 2.D3331117x y ++≥== 3.B 11111x y x y x y B A x y x y y x x y+=+>+==++++++++,即A B < 4.B,)22x y x y +≥+,≥,而y x a y x +≤+,1a ≥恒成立,得12a a ≤≥即5.A 46462y x x x x =-+-≥-+-=6.D 259925927253,2534,1253x x x x x x x x ⎧-<-<-<-<<⎧⎧⎪⇒⇒⎨⎨⎨-≥-≤-≥≤-≥⎩⎩⎪⎩或或,得(2,1][4,7)-二、填空题1.31()3()a b b b a b -++≥=-2.b b m a n a a a m b n b ++<<<++ 由糖水浓度不等式知1b b ma a m+<<+, 且1b b n a a n +<<+,得1a a n b b n +>>+,即1a n ab n b+<<+ 32x yx y +≤+≤=4.1A < 101010101110101010211111111122122212222A =++++<++++=++-个5.92212331212()3922x x f x x x x =+=++=三、解答题1.证明:2222()(222)a b c a b c ab bc ac ++=++-++2222()2()a b c a b c ≥++-++22223()()1a b c a b c ∴++≥++= 22213a b c ∴++≥另法一:22222221()33a b c a b c a b c ++++-=++-2222221(222222)31[()()()]03a b c ab bc ac a b b c a c =++---=-+-+-≥22213a b c ∴++≥另法二:2222222(111)()()1a b c a b c ++++≥++=即2223()1a b c ++≥,22213a b c ∴++≥2.解:原不等式化为73410x x +--+>当43x >时,原不等式为7(34)10x x +-->得5x <,即453x <<; 当473x -≤≤时,原不等式为7(34)10x x ++->得12x >-1423x -<≤; 当7x <-时,原不等式为7(34)10x x +-->得6x >,与7x <-矛盾;所以解为152x -<<3.证明:22()(1)a b ab a b +-++-2222222222211(222222)21[(2)(21)(21)]21[()(1)(1)]02a b ab a b a b ab a b a ab b a a b b a b a b =+---+=+---+=-++-++-+=-+-+-≥221a b ab a b ∴+≥++- 4.证明:<<∴<<1)1...∴<++<不等式选讲 [综合训练B 组]一、选择题1.C 24a c a c a b b c a b b c b c a ba b b c a b b c a b b c ---+--+---+=+=++≥------114a b b c a c ∴+≥---,而ca n cb b a -≥-+-11恒成立,得4n ≤2.C 2(1)1111222222(1)x x y x x x --=+=+≤-=----3.B =>>P R >;又>R Q >,所以P R Q >>4.B 222,()()a ab b a b a b a b ab ++=++-+=,而2()04a b ab +<<所以22()0()()4a b a b a b +<+-+<,得413a b <+<5.D ()()()(1)(1)(1)a b c a b c a b c b c a c a b M a b c abc+++++++++=---=8abc≥=6.A ,a b≠>>>>二、填空题1.3- 13333y x x =--≤-=-max 3y =-2.> 设36log 4,log 7a b ==,则34,67a b==,得7346423abbb⋅=⋅=⋅⋅即4237b a b-⋅=,显然1,22b b >>,则423107b a b a b a b -⋅=>⇒->⇒> 3. 214a 2222222(123)()(23)x yzx y z a ++++≥++=即222214()x y z a ++≥,222214a x y z ∴++≥4.3 1()4M a b c a b d a c d b c d ≥+++++++++++ 3()34a b c d =+++=,即min 3M =5.12 l g l gl g222l g ()1l g l g l g 1x y z x y zx y z⋅⋅≥⇒++≥ 而2222lg lg lg (lg lg lg )2(lg lg lg lg lg lg )x y z x y z x y y z z x ++=++-++2[lg()]2(lg lg lg lg lg lg )12(lg lg lg lg lg lg )1xyz x y y z z x x y y z z x =-++=-++≥即lg lg lg lg lg lg 0x y y z z x ++≤,而lg ,lg ,lg x y z 均不小于0 得lg lg lg lg lg lg 0x y y z z x ++=,此时lg lg 0x y ==,或lg lg 0y z ==,或lg lg 0z x ==, 得1,10x y z ===,或1,10y z x ===,或1,10x z y ===12x y z ++=三、解答题1.解:34(3)(4)1x x x x -+-≥---= min (34)1x x ∴-+-=当1a ≤时,34x x a -+-<解集显然为φ, 所以1a >2.证明:2222222(111)()()a b c a b c ++++≥++2222()39a b c a b c ++++∴≥3a b c++≥3.证明:12112(11)1...12(1)n n n n nn n n n n n C C C C C C n -=+=+++≥+++=+22(1)nn ∴≥+(本题也可以用数学归纳法)4.证明:2222()()1,2a b a b a b c ab c c +-++=-==- ,a b ∴是方程22(1)0x c x c c --+-=的两个不等实根, 则22(1)4()0c c c =---> ,得113c -<< 而2()()()0c a c b c a b c ab --=-++> 即22(1)0c c c c c --+->,得20,3c c <>或 所以103c -<<,即413a b <+<不等式选讲[综合训练B 组]一、选择题1.设,a b c n N >>∈,且ca nc b b a -≥-+-11恒成立,则n 的最大值是( ) A .2 B .3 C .4 D .62. 若(,1)x ∈-∞,则函数22222x x y x -+=-有( )A .最小值1B .最大值1C .最大值1-D .最小值1-3.设P =Q =R =,,P Q R 的大小顺序是( ) A .P Q R >> B .P R Q >> C .Q P R >> D .Q R P >>4.设不等的两个正数,a b 满足3322a b a b -=-,则a b +的取值范围是( ) A .(1,)+∞ B .4(1,)3C .4[1,]3D .(0,1)5.设,,a b c R +∈,且1a b c ++=,若111(1)(1)(1)M a b c=---,则必有( )A .108M ≤<B .118M ≤< C .18M ≤< D .8M ≥6.若,a b R +∈,且,a b M≠=N =M 与N 的大小关系是 A .M N > B .M N < C .M N ≥ D .M N ≤二、填空题1.设0x >,则函数133y x x=--的最大值是__________。

高考数学复习:不等式选讲练习及答案

高考数学复习:不等式选讲练习及答案
(x- 1)+( x+ 2) ≥5
- 2<x<1, 或
-( x- 1)+( x+ 2) ≥5
x≤-2, 或
-( x-1)-( x+ 2) ≥5, 解得 x≥2或 x≤-3. 故原不等式的解集为 { x|x≤- 3 或 x≥2}. 答案 { x|x≤- 3 或 x≥2} 高频考点二 不等式的证明
例 2.【 2017 课标 II ,理 23】已知
.
( 2)当 x 1,1 时, g x 2 .
所以
的解集包含 1,1 ,等价于当 x 1,1 时 f x 2 .
又 f x 在 1,1 的学科 & 网最小值必为 f 1 与 f 1 之一,所以 f 1 2 且 f 1 2 ,得 1 a 1 .
所以 a 的取值范围为 1,1 .
1.【 2016 高考新课标 1 卷】(本小题满分 10 分) ,选修 4—5:不等式选讲
4. ( 2018 年江苏卷) [ 选修 4—5:不等式选讲 ] 学 -科网
若 x, y, z 为实数,且 x+2 y+2z=6,求
的最小值.
【答案】 4
【解析】证明:由柯西不等式,得

,故当且仅当
因为
,所以

当且仅当
时,不等式取等号,此时

所以
的最小值为 4.
1.【 2017 课标 II ,理 23】已知
1. ( 2018 年全国 I 卷理数) [选修 4–5:不等式选讲 ]
已知
.
( 1)当 时,求不等式
的解集;
( 2)若
时不等式
成立,求 的取值范围 .
【答案】(1)

(2) . 【解析】 [来源 学科网 ZXXK]

AZ第二十五讲 不等式选讲(选考部分)真题精练答案部分

AZ第二十五讲 不等式选讲(选考部分)真题精练答案部分

第二十五讲 不等式选讲(选考部分)真题精练答案部分1.【解析】(1)如图所示:(2)()4133212342x x f x x x x x ⎧⎪--⎪⎪=--<<⎨⎪⎪-⎪⎩,≤,,≥,()1f x >. 当1x -≤,41x ->,解得5x >或3x <,1x -∴≤. 当312x -<<,321x ->,解得1x >或13x <, 113x -<<∴或312x <<, 当32x ≥,41x ->,解得5x >或3x <,332x <∴≤或5x >, 综上,13x <或13x <<或5x >, ()1f x >∴,解集为()()11353⎛⎫-∞+∞ ⎪⎝⎭,,,.2.【解析】(1)当12x <-时,()11222f x x x x =---=-,若112x -<<-; 当1122x -≤≤时,()111222f x x x =-++=<恒成立; 当12x >时,()2f x x =,若()2f x <,112x <<. 综上可得,{}|11M x x =-<<.(2)当()11a b ∈-,,时,有()()22110a b -->,即22221a b a b +>+, 则2222212a b ab a ab b +++>++,则()()221ab a b +>+, 即1a b ab +<+,证毕.3.【解析】(1)当2a =时,()|22|2f x x =-+.解不等式|22|26x -+…,得13x-剟. 因此,()6f x ≤的解集为{|13}x x -剟.(2)当x R ∈时,()()|2||12|f x g x x a a x +=-++-|212|x a x a -+-+…|1|a a =-+,当12x =时等号成立, 所以当x R ∈时,()()3f x g x +…等价于|1|3a a -+…. ①当1a …时,①等价于13a a -+…,无解.当1a >时,①等价于13a a -+…,解得2a ….所以a 的取值范围是[2,)+∞.4.【解析】(1)当1a =时,不等式()1f x >化为|1|2|1|10x x +--->,当1x -≤时,不等式化为40x ->,无解;当11x -<<时,不等式化为320x ->,解得213x <<; 当1x ≥时,不等式化为20x -+>,解得12x <≤.所以()1f x >的解集为2{|2}3x x <<. (2)有题设可得,12,1()312,112,x a x f x x a x a x a x aì--<-ïï=+--íï-++>ïî≤≤,所以函数()f x 图象与x 轴围成的三角形的三个顶点分别为21(,0),(21,0),(,1)3a A B a C a a -++,ABC D 的面积为22(1)3a +.有题设得22(1)63a +>,故2a >.所以a 的取值范围为(2,)+?. 5.【解析】(1)由||x ab +<,得b a x b a --<<-.则2,4,b a b a --=⎧⎨-=⎩解得3a =-,1b =.=≤4==.1=,即1t =时等号成立,故max 4=.6.【证明】由abb a b a b a +=+=+11,0>a ,0>b ,得1=ab . (1)由基本不等式及1=ab ,有2a b +=≥,即2a b +≥,当且仅当1a b == 时等号成立.(2)假设22<+a a 与22<+b b 同时成立,则由22<+a a 及0>a 得10<<a ;同理,10<<b ,从而1<ab ,这与1=ab 矛盾,故22<+a a 与22<+b b 不可能同时成立.7.【解析】(1)11a b =+≥,得2ab ≥,且当a b == 故33a b+≥≥,且当a b ==时取等号.所以33a b +的最小值为(2)由(1)知,23a b +≥≥.由于6>,从而不存在,a b , 使得236a b +=.8.【解析】(1)当a =-2时,不等式()f x <()g x 化为|21||22|30x x x -+---<,设函数y =|21||22|3x x x -+---,y =15, 212, 1236, 1x x x x x x ⎧-<⎪⎪⎪--≤≤⎨⎪->⎪⎪⎩, 其图像如图所示,从图像可知,当且仅当(0,2)x ∈时,y <0,∴原不等式解集是{|02}x x <<.(2)当x ∈[2a -,12)时,()f x =1a +,不等式()f x ≤()g x 化为13a x ++≤, ∴2x a -≥对x ∈[2a -,12)都成立,故2a -≥2a -,即a ≤43, ∴a 的取值范围为(-1,43]. 9.【解析】(1)2222222,2,2a b ab b c bc c a ca +≥+≥+≥,得222a b c ab bc ca ++≥++,由题设得()21a b c ++=,即2222221a b c ab bc ca +++++=. 所以()31ab bc ca ++≤,即13ab bc ca ++≤. (2)∵2222,2,2a b c b a c b a c b c a+≥+≥+≥, ∴222()2()a b c a b c a b c b c a+++++≥++, 即222a b c a b c b c a ++≥++,∴2221a b c b c a++≥. 10.【解析】(1)当3a =-时,()3323f x x x ⇔-+-厖2323x x x ⎧⇔⎨-+-⎩……或23323x x x <<⎧⇔⎨-+-⎩…或3323x x x ⎧⇔⎨-+-⎩…… 1x ⇔…或4x ….(2)原命题()4f x x ⇔-…在[1,2]上恒成立24x a x x ⇔++--…在[1,2]上恒成立22x ax ⇔---剟在[1,2]上恒成立 30a ⇔-剟.11.【解析】(1)当1a =时,()32f x x ≥+可化为|1|2x -≥.由此可得 3x ≥或1x ≤-.故不等式()32f x x ≥+的解集为{|3x x ≥或1}x ≤-.(2)由()0f x ≤ 得30x a x -+≤,此不等式化为不等式组30x a x a x ≥⎧⎨-+≤⎩ 或30x a a x x ≤⎧⎨-+≤⎩, 即4x a a x ⎧⎪⎨⎪⎩≥≤或2x a a x ⎧⎪⎨-⎪⎩≤≤, 因为0a >,所以不等式组的解集为{}|2a x x ≤-, 由题设可得2a -=1-,故2a =.。

高考数学压轴专题沧州备战高考《不等式选讲》真题汇编附答案解析

高考数学压轴专题沧州备战高考《不等式选讲》真题汇编附答案解析

【高中数学】数学高考《不等式选讲》试题含答案一、141.不等式842x x --->的解集为( ) A .{}|4x x ≤ B .{|5}x x <C .{|48}x x <≤D .{|45}x x <<【答案】B 【解析】 【分析】分三种情况讨论:4x ≤,48x <<以及8x ≥,去绝对值,解出各段不等式,即可得出所求不等式的解集. 【详解】当4x ≤时,()()848442x x x x ---=-+-=>成立,此时4x ≤; 当48x <<时,()()84841222x x x x x ---=---=->,解得5x <,此时45x <<;当8x ≥时,()()848442x x x x ---=---=-<,原不等式不成立. 综上所述,不等式842x x --->的解集为{}5x x <,故选B. 【点睛】本题考查绝对值不等式的解法,常用零点分段法,利用取绝对值进行分段讨论,进而求解不等式,也可以采用绝对值的几何意义来进行求解,考查分类讨论数学思想,属于中等题.2.若集合{}2540A x x x =-+<,{}1B x x a =-<,则“()2,3a ∈”是“B A ⊆”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又不必要条件【答案】A 【解析】 【分析】解出集合A 、B ,由B A ⊆得出关于a 的不等式组,求出实数a 的取值范围,由此可判断出“()2,3a ∈”是“B A ⊆”的充分非必要条件. 【详解】解不等式2540x x -+<,解得14x <<,{}14A x x ∴=<<. 解不等式1x a -<,即11x a -<-<,解得11a x a -<<+,{}11B x a x a ∴=-<<+.B A ⊆Q ,则有1114a a -≥⎧⎨+≤⎩,解得23a ≤≤.因此,“()2,3a ∈”是“B A ⊆”的充分非必要条件. 故选:A 【点睛】本题考查充分非必要条件的判断,一般将问题转化为集合的包含关系来判断,考查逻辑推理能力,属于中等题.3.若不等式23x a x -≤+对任意[]0,2x ∈恒成立,则实数a 的取值范围是( ) A .()1,3- B .[]1,3-C .()1,3D .[]1,3【答案】B 【解析】 【分析】将不等式去掉绝对值符号,然后变量分离转为求函数的最值问题. 【详解】不等式23x a x -≤+去掉绝对值符号得323x x a x --≤-≤+,即3223x x a x a x --≤-⎧⎨-≤+⎩对任意[]0,2x ∈恒成立,变量分离得333a x a x ≤+⎧⎨≥-⎩,只需min max (33)(3)a x a x ≤+⎧⎨≥-⎩,即31a a ≤⎧⎨≥-⎩所以a 的取值范围是[]1,3- 故选:B 【点睛】本题考查绝对值不等式的解法和恒成立问题的处理方法,属于基础题.4.已知点(3,1)P 在椭圆22221(0)x y a b a b+=>>上,点(,)M a b 为平面上一点,O 为坐标原点,则当OM 取最小值时,椭圆的离心率为( ) AB .13CD【答案】D 【解析】 【分析】点(3,1)P 在椭圆22221(0)x y a b a b +=>>上,可得22911a b +=,(,)M a b为平面上一点,||OM =a ,b 关系,代入即可.【详解】解:点(3,1)P 在椭圆22221(0)x y a b a b+=>>上,可得22911a b +=,(,)M a b 为平面上一点,22||OM a b =+,所以222222291||()()(31)4OM a b a b a b=+=+++=…,当且仅当223a b =时,取等号, 222213b e a =-=,6e =. 故选D . 【点睛】考查椭圆的性质,柯西不等式的应用,求椭圆的离心率,中档题.5.已知,,则使不等式一定成立的条件是A .B .C .D .【答案】D 【解析】因为若,则,已知不等式不成立,所以,应选答案D 。

不等式选讲

不等式选讲

x≥a, x<a, 即 a a a>0,所以不等式组的解集为x|x≤-2.
a 由题设可得- =-1,故 a=2. 2
[规律方法] 解决此类含绝对值的不等式的一般步骤为: (1)令每个绝对值符号里的一次式为 0,求出相应的根. (2)把这些根由小到大排序,它们把实数轴分为若干个区间. (3)在所分区间上,根据绝对值的定义去掉绝对值符号,讨论所 得的不等式在这个区间上的解集. (4)这些解集的并集就是原不等式的解集.
(2011· 高考陕西卷)若关于 x 的不等式|a|≥|x+1|+|x-2|存在实数 解,则实数 a 的取值范围是________. 解析:令 t=|x+1|+|x-2|,得 t 的最小值为 3,即有|a|≥3,解 得 a≥3 或 a≤-3. 答案:( -∞,-3][3,+∞)
规范思路,典题例析
[思维流程] 分区域讨论去绝对值号 在各自的区域内解不等式 在 x∈[1,2]时去绝对值号 利用[1,2]⊆[-2-a,2-a]关系求 a [题后点评] 本题考查了绝对值不等式的化简与解法及分类讨论思
想.去绝对值的方法采用的是“零点分区”的方法,即令每个绝对 值号内的式子等于零求出零点,这些零点把整个实数划分为若干区 域,在每个区域内绝对值号内的式子符号不变.
所以|h(x)|≤1,因此 k≥1.
热点一
含绝对值不等式的解法
(2011· 高考新课标全国卷)选修 4-5:不等式选讲 设函数 f(x)=|x-a|+3x,其中 a>0. (1)当 a=1 时,求不等式 f(x)≥3x+2 的解集; (2)若不等式 f(x)≤0 的解集为{x|x≤-1},求 a 的值. [思路点拨] 含绝对值的不等式转化为不含绝对值的不等式, 可利用 |x|>a 或|x|<a 的等价形式或者讨论去绝对值号.

高中数学高考总复习不等式选讲习题及详解

高中数学高考总复习不等式选讲习题及详解

高中数学高考总复习不等式选讲习题及详解一、选择题1.对任意x ∈R ,|2-x |+|3+x |≥a 2-4a 恒成立,则a 的取值范围是( ) A .-1≤a ≤5 B .-1<a ≤5 C .-1≤a <5 D .-1<a <5 [答案] A[解析] 因为|2-x |+|3+x |≥5,要使|2-x |+|3+x |≥a 2-4a 恒成立,即5≥a 2-4a ,解得-1≤a ≤5.2.(2010·山师大附中模考)已知a >0,b >0且1a +3b =1,则a +2b 的最小值为( )A .7+2 6B .2 3C .7+2 3D .14 [答案] A[解析] a +2b =(a +2b )⎝⎛⎭⎫1a +3b =7+2b a +3a b ≥7+26,等号在b =62a 时成立. 3.已知0<a <1b ,且M =11+a +11+b ,N =a 1+a +b1+b ,则M 、N 的大小关系是( )A .M <NB .M >NC .M =ND .不确定 [答案] B[解析] ∵0<a <1b ,∴ab <1,a >0,b >0,∴M -N =1-a 1+a +1-b1+b=(1-a )(1+b )+(1+a )(1-b )(1+a )(1+b )=2(1-ab )(1+a )(1+b )>0,∴M >N . 4.下列结论:①(1+x )n >1+nx (x ∈R ,n ∈N *)②(1+x )n >1+nx (x >-1,n ∈R ) ③(1+x )n >1+nx (x >-1,0<n <1) ④(1+x )n ≤1+nx (x >-1,0<n <1) ⑤(1+x )n ≥1+nx (x >-1,n <0) 其中正确的个数为( ) A .1个 B .2个 C .3个 D .4个 [答案] B[解析] 根据贝努利不等式可知,(1+x )n >1+nx 的条件为x >-1(n ∈N *,n >1); (1+x )n ≥1+nx 的条件为x >-1,n >1或n <0; (1+x )n ≤1+nx 的条件为x >-1,0<n <1. 故④⑤正确, ①②③都错.5.f (x )=2x +31-x 的最大值为( ) A .5 B.121313C.13D.522[答案] C[解析] (2x +31-x )2≤(22+32)[(x )2+(1-x )2]=13, ∴2x +31-x ≤13,等号在x2=1-x 3, 即x =413时成立.6.(2010·江苏泰州)若对任意x ∈A ,y ∈B ,(A ⊆R ,B ⊆R )有唯一确定的f (x ,y )与之对应,则称f (x ,y )为关于x ,y 的二元函数.满足下列性质的二元函数f (x ,y )称为关于实数x ,y 的广义“距离”:(1)非负性:f (x ,y )≥0,当且仅当x =y 时取等号; (2)对称性:f (x ,y )=f (y ,x );(3)三角形不等式:f (x ,y )≤f (x ,z )+f (z ,y )对任意的实数z 均成立.今给出三个二元函数:①f (x ,y )=|x -y |;②f (x ,y )=(x -y )2;③f (x ,y )=x -y . 其中能够成为关于x ,y 的广义“距离”的二元函数的序号是( )A .①B .①②C .②③D .①②③ [答案] A[解析] 对函数f (x ,y )=|x -y |,∵f (x ,y )≥0,当且仅当x =y 时取等号,满足非负性; f (y ,x )=|y -x |=|x -y |=f (x ,y ),满足对称性;由|a +b |≤|a |+|b |得|x -y |=|(x -z )+(z -y )|≤|x -z |+|z -y |对任意的实数z 均成立. 即f (x ,y )≤f (x ,z )+f (z ,y ),满足三角形不等式.故①满足广义“距离”. 对函数f (x ,y )=(x -y )2,显然满足非负性和对称性.∵当z =0时,f (x ,y )-[f (x,0)+f (0,y )]=-2xy ,显然不恒小于等于零,故不满足三角形不等式,故②不满足广义“距离”.对函数f (x ,y )=x -y ,显然不满足对称性.故③不满足广义“距离”.故选A. 7.已知x 、y 、z ∈R +,且x +y +z =1,则x 2+y 2+z 2的最小值是( ) A .1 B.13 C.12 D .3 [答案] B[解析] x 2+y 2+z 2=(12+12+12)(x 2+y 2+z 2)×13≥(1×x +1×y +1×z )2×13=13.8.已知a 、b 、c 、d ∈R +且S =a a +b +c +b b +c +d +c c +d +a +da +b +d ,则下列判断中正确的是( )A .0<S <1B .1<S <2C .2<S <3D .3<S <4 [答案] B [解析]a a +b +c +d <a a +b +c <aa +c;b a +b +c +d <b b +c +d <bd +b;c a +b +c +d <c c +d +a <cc +a ;c a +b +c +d <d d +a +b <dd +b .以上四个不等式相加得,1<S <2. 二、填空题9.(2010·陕西宝鸡)若不等式|x +1x |≥|a -2|+1对一切非零实数x 均成立,则实数a 的最大值是________.[答案] 3[解析] 令f (x )=|x +1x |,∵f (x )=|x +1x |=|x |+|1x |≥2,∴|a -2|+1≤2,解得1≤a ≤3,故a 的最大值是3.10.已知关于x 的不等式2x +2x -a≥7在x ∈(a ,+∞)上恒成立,则实数a 的最小值为________.[答案] 32[解析] 2x +2x -a =2(x -a )+2x -a +2a≥22(x -a )×2x -a+2a =2a +4≥7,∴a ≥32.故a 的最小值为32.11.(2010·南京调研)设函数f (x )=|x -1|+|x -2|,则不等式f (x )>3的解集为________. [答案] (-∞,0)∪(3,+∞)[解析] 当x <1时,有f (x )=1-x +2-x =3-2x . 由f (x )>3得3-2x >3,解得x <0; 当1≤x ≤2时,有f (x )=x -1+2-x =1. 此时,不等式f (x )>3无解;当x >2时,有f (x )=x -1+x -2=2x -3. 由f (x )>3得2x -3>3,解得x >3.故不等式f (x )>3的解集为(-∞,0)∪(3,+∞).[点评] 可画出数轴如图,∵|AB |=1,∴|PB |>1,|QA |>1,故由图可得x >3或x <0. 12.(2010·江苏无锡市调研)已知c 是椭圆x 2a 2+y 2b 2=1(a >b >0)的半焦距,则b +c a 的取值范围是________.[答案] (1,2][解析] ⎝⎛⎭⎫b +c a 2=b 2+c 2+2bca 2=b 2+c 2+2bc b 2+c 2=1+2bcb 2+c 2, ∵b ,c >0,∴1<⎝⎛⎫b +c a 2≤2,∴1<b +c a≤ 213.(2010·福建南平一中)若函数f (x )=2|x+7|-|3x -4|的最小值为2,则自变量x 的取值范围是________.[答案] [-12,5][解析] 依题意知,2|x+7|-|3x -4|≥2,∴|x +7|-|3x -4|≥1,当x >43时,不等式化为x +7-(3x -4)≥1.解得x ≤5,即43<x ≤5;当-7≤x ≤43时,不等式化为x +7+(3x -4)≥1,解得x ≥-12,即-12≤x ≤43;当x <-7时,不等式化为-x -7+(3x -4)≥1, 解得x ≥6,与x <-7矛盾. ∴自变量x 的取值范围为-12≤x ≤5.14.(2010·重庆中学)抛物线y 2=4x 的顶点为O ,点A 的坐标为(5,0),倾斜角为π4的直线l 与线段OA 相交(l 不过点O 和点A )且交抛物线于M 、N 两点,则△AMN 的最大面积为________.[答案] 8 2[解析] 设直线l 与x 轴交于点B (t,0),则由题意知0<t <5,直线l :y =x -t ,代入y 2=4x 中消去x 得,y 2-4y -4t =0.设M (x 1,y 1),N (x 2,y 2),则y 1+y 2=4,y 1y 2=-4t , ∴|y 1-y 2|=(y 1+y 2)2-4y 1y 2=41+t ,∴S △AMN =12|AB |·|y 1-y 2|=21+t ·(5-t )=2(1+t )(5-t )2 =2(2+2t )(5-t )(5-t )2≤212⎣⎡⎦⎤(2+2t )+(5-t )+(5-t )33=8 2.等号在t =1时成立. 三、解答题15.(2010·福建理)已知函数f (x )=|x -a |.(1)若不等式f (x )≤3的解集为{x |-1≤x ≤5},求实数a 的值;(2)在(1)的条件下,若f (x )+f (x +5)≥m 对一切实数x 恒成立,求实数m 的取值范围. [解析] 解法一:(1)由f (x )≤3得|x -a |≤3,解得a -3≤x ≤a +3. 又已知不等式f (x )≤3的解集为{x |-1≤x ≤5},所以⎩⎪⎨⎪⎧a -3=-1,a +3=5,解得a =2.(2)当a =2时,f (x )=|x -2|. 设g (x )=f (x )+f (x +5),于是g (x )=|x -2|+|x +3|=⎩⎪⎨⎪⎧-2x -1,x <-3;5,-3≤x ≤2;2x +1,x >2.所以当x <-3时,g (x )>5;当-3≤x ≤2时,g (x )=5;当x >2时,g (x )>5. 综上可得,g (x )的最小值为5.从而,若f (x )+f (x +5)≥m ,即g (x )≥m 对一切实数x 恒成立,则m 的取值范围为(-∞,5].解法二: (1)同解法一.(2)当a =2时,f (x )=|x -2|. 设g (x )=f (x )+f (x +5).由|x -2|+|x +3|≥|(x -2)-(x +3)|=5(当且仅当-3≤x ≤2时等号成立)得,g (x )的最小值为5.从而,若f (x )+f (x +5)≥m 即g (x )≥m 对一切实数x 恒成立,则m 的取值范围为(-∞,5].16.(2010·福建龙岩市质检)已知a ,b ,c ∈(0,+∞),且1a +2b +3c =2,求a +2b +3c 的最小值及取得最小值时a ,b ,c 的值.[解析] ⎝⎛⎭⎫1a +2b +3c (a +2b +3c )=⎝⎛⎭⎫1a 2+⎝⎛⎭⎫2b 2+⎝⎛⎭⎫3c 2[(a )2+(2b )2+(3c )2] ≥⎝⎛⎭⎫1a ·a +2b ·2b +3c ·3c 2=36. 又1a +2b +3c=2,∴a +2b +3c ≥18, 当且仅当1a a =2b 2b =3c 3c, 即a =b =c =3时等号成立.∴当a =b =c =3时,a +2b +3c 取得最小值18.17.(2010·苏北四市模考)已知函数f (x )=(x -a )2+(x -b )2+(x -c )2+(a +b +c )23(a ,b ,c为实数)的最小值为m ,若a -b +2c =3,求m 的最小值.[解析] ∵f (x )=(x -a )2+(x -b )2+(x -c )2+(a +b +c )23=3x 2-2(a +b +c )x +a 2+b 2+c 2+(a +b +c )23=3⎝⎛⎭⎫x -a +b +c 32+a 2+b 2+c 2,∴x =a +b +c3时,f (x )取最小值a 2+b 2+c 2,即m =a 2+b 2+c 2.∵a -b +2c =3,由柯西不等式得 [12+(-1)2+22]·(a 2+b 2+c 2) ≥(a -b +2c )2=9, ∴m =a 2+b 2+c 2≥96=32,当且仅当a 1=b -1=c2,即a =34,b =-34,c =32时等号成立,所以m 的最小值为32.。

高考数学真题分类十年(2014-2023)高考 专题27 不等式选讲(解析版)

高考数学真题分类十年(2014-2023)高考 专题27  不等式选讲(解析版)
(1)当 = 1时,求不等式() < 0的解集;
(2)当 ∈ (−∞, 1)时,() < 0,求的取值范围.
【答案】 (1) (−∞, 1); ( 2) 1, +∞)
【官方解析】
(1)当 = 1时,() = | − 1| + | − 2|( − 1).
当 < 1时,() = −2( − 1)2 < 0;当 ≥ 1时,() ≥ 0.
2
【答案】(Ⅰ){| 3 < < 2} (Ⅱ)(2,+∞)
分析:(Ⅰ)利用零点分析法将不等式 f(x)>1 化为一元一次不等式组来解;(Ⅱ)将()化
为分段函数,求出()与轴围成三角形的顶点坐标,即可求出三角形的面积,根据题
意列出关于的不等式,即可解出的取值范围.
解析:(Ⅰ)当 a=1 时,不等式 f(x)>1 化为|x+1|-2|x-1|>1,
( − 1)2 (当且仅当2 − 1 ≤ ≤ 2 时取等号),
∴ ( − 1)2 ≥ 4,解得: ≤ −1或 ≥ 3,
a 的取值范围为−∞, −1 ∪ 3, +∞).
【点睛】本题考查绝对值不等式的求解、利用绝对值三角不等式求解最值的问题,属于
常考题型.
3.(2020 江苏高考·第 23 题)设 ∈ ,解不等式2| + 1| + || ≤ 4.
1
【答案】{ | ≤ −5 或 ≥ − 3}
分可
3
解析:原不等式可化为{
1
解得 ≤ −5或 ≥ − 3.
3
< −2
≥ −2
或{

− − 3 ≥ 2 3 + 3 ≥ 2
1

10-3不等式选讲

10-3不等式选讲

专题10 第3讲 不等式选讲一、填空题1.(2011·陕西理,15)若关于x 的不等式|a |≥|x +1|+|x -2|存在实数解,则实数a 的取值范围是________.[答案] (-∞,-3]∪[3,+∞)[解析] |x +1|+|x -2|≥3.∴|a |≥3.∴a ≤-3或a ≥3.2.(2011·北京质检)若关于x 的不等式|ax +2|<6的解集为(-1,2),则实数a 的值等于________.[答案] -4[解析] 由已知-1,2都是方程|ax +2|=6的根,代入得a =-4.3.(2011·广东五校模拟)若不等式|x -2|+|x +3|<a 的解集为∅,则a 的取值范围为________.[答案] (-∞,5][解析] |x -2|+|x +3|≥|x -2-(x +3)|=5,要使解集是∅,则a ≤5.4.(2011·山东枣庄二模)对于任意的实数a (a ≠0)和b ,不等式|a +b |+|a -b |≥|a |(|x -1|+|x -2|)恒成立,则实数x 的取值范围是________.[答案] ⎣⎡⎦⎤12,52[解析] 原不等式可变形为|a +b |+|a -b ||a |≥|x -1|+|x -2|,而|a +b |+|a -b ||a |=|1+b a|+|1-b a| ≥|1+b a +1-b a|=2, 所以只要|x -1|+|x -2|≤2即可,解得x ∈[12,52]. 5.(2011·天津理,13)已知集合A ={x ∈R ||x +3|+|x -4|≤9},B ={x ∈R |x =4t +1t-6,t ∈(0,+∞)},则集合A ∩B =________.[答案] {x |-2≤x ≤5}[解析] 由集合A :{x ∈R ||x +3|+|x -4|≤9}解出A ={x |-4≤x ≤5},B ={x ∈R |x =4t +1t-6,t ∈(0,+∞)}={x |x ≥-2},故A ∩B ={x |-2≤x ≤5}. 6.(2011·江西理,15)对于实数x ,y ,若|x -1|≤1,|y -1| ≤1,则|x -2y +1|的最大值为________.[答案] 5[解析] |x -2y +1|=|x -1-2(y -2)-2|≤|x -1|+2|y -2|+2≤1+2×1+2=5.7.已知g (x )=|x -1|-|x -2|,则g (x )的值域为________.若关于x 的不等式g (x )≥a 2+a +1(x ∈R )的解集为空集,则实数a 的取值范围是________________.[答案] [-1,1] (-∞,-1)∪(0,+∞)[解析] 当x ≤1时,g (x )=|x -1|-|x -2|=-1;当1<x ≤2时,g (x )=|x -1|-|x -2|=2x -3,所以-1<g (x )≤1;当x >2时,g (x )=|x -1|-|x -2|=1,综合以上,知-1≤g (x )≤1.(此结果也可以由绝对值的几何意义直接得出)g (x )≥a 2+a +1(x ∈R )的解集为空集,即1=[g (x )]max <a 2+a +1,所以a ∈(-∞,-1)∪(0,+∞).8.(2011·惠州一模)若不等式|x +1|+|x -3|≥a +4a对任意的实数x 恒成立,则实数a 的取值范围是________.[答案] {a ∈R |a <0或a =2}[解析] 因为|x +1|+|x -3|≥4,所以由题意可得a +4a≤4恒成立,因a <0时显然恒成立;当a >0时,由基本不等式可知a +4a≥4,所以只有a =2时成立,所以实数a 的取值范围为{a ∈R |a <0或a =2}.二、解答题9.(2011·福建理,21)设不等式|2x -1|<1的解集为M .(1)求集合M ;(2)若a ,b ∈M ,试比较ab +1与a +b 的大小.[解析] (1)由|2x -1|<1得-1<2x -1<1,解得0<x <1.所以M ={x |0<x <1}.(2)由(1)和a ,b ∈M 可知0<a <1,0<b <1.所以(ab +1)-(a +b )=(a -1)(b -1)>0,故ab +1>a +b .10.(2011·江苏,21)解不等式:x +|2x -1|<3.[解析] 原不等式化为⎩⎪⎨⎪⎧ 2x -1≥0,x +(2x -1)<3;或⎩⎪⎨⎪⎧2x -1<0,x -(2x -1)<3. 解得12≤x <432<x <12.所以原不等式的解集是{x |-2<x <43}. 11.(2011·新课标理,24)设函数f (x )=|x -a |+3x ,其中a >0.(1)当a =1时,求不等式f (x )≥3x +2的解集.(2)若不等式f (x )≤0的解集为{x |x ≤-1},求a 的值.[解析] (1)当a =1时,f (x )≥3x +2可化为|x -1|≥2.由此可得x ≥3或x ≤-1.故不等式f (x )≥3x +2的解集为{x |x ≥3或x ≤-1}.(2)由f (x )≤0得|x -a |+3x ≤0.此不等式化为不等式组⎩⎪⎨⎪⎧x ≥a ,x -a +3x ≤0 或⎩⎪⎨⎪⎧ x <a ,a -x +3x ≤0,即⎩⎪⎨⎪⎧ x ≥a ,x ≤a 4或⎩⎪⎨⎪⎧x <a ,x ≤-a 2. 因为a >0,所以不等式组的解集为{x |x ≤-a 2}. 由题设可得-a 2=-1,故a =2. 12.设a 、b 、c 均为正数,求证:12a +12b +12c ≥1b +c +1c +a +1a +b[分析] 首先12a +12b +12c =12[(12a +12b )+(12b +12c )+(12c +12a)],然后每个括号分别用基本不等式.[解析] ∵a 、b 、c 均为正数,∴12(12a +12b )≥12ab ≥1a +b ,当a =b 时等号成立; 12(12b +12c )≥12bc ≥1b +c ,当b =c 时等号成立; 12(12c +12a )≥12ca ≥1c +a,当a =c 时等号成立. 三个不等式相加即得12a +12b +12c ≥1b +c +1c +a +1a +b,当且仅当a =b =c 时等号成立. [评析] 在多次使用基本不等式放缩时,每次等号成立的条件要一致.。

不等式选讲习题(含答案)

不等式选讲习题(含答案)

不等式选讲习题1.(2014全国新课标I 卷)若0,0,a b >>且11a b+= (I )求33a b +的最小值;(II )是否存在,,a b 使得236?a b +=并说明理由.2.(2014全国新课标II 卷)设函数1()(0).f x x x a a a=++-> (I )证明:()2;f x ≥ (II )若(3)5,f <求a 的取值范围.3.(2013全国新课标I 卷)已知函数()212,() 3.f x x x a g x x =-++=+(I )当2a =-时,求不等式()()f x g x <的解集;(II )设1,a >-且当1,22a x ⎡⎫∈-⎪⎢⎣⎭时,()()f x g x ≤,求a 的取值范围.4.(2013全国新课标II 卷)设,,a b c 均为正数,且1,a b c ++=证明:(I )1;3ab bc ac ++≤ (II )222 1.a b c b c a ++≥.5.(2012全国新课标卷)已知函数() 2.f x x a x =++-(I )当3a =-时,求不等式()3f x ≥的解集; (II )若()4f x x ≤-的解集包含[]1,2,求a 的取值范围.6.(2011全国新课标卷)设函数()3f x x a x =-+,其中0a >. (I )当1a =时,求不等式()32f x x ≥+的解集; (II )若不等式()0f x ≤的解集为{|1},x x ≤-,求a 的值.7.(2015第一次省统测)已知a 是常数,对任意实数x ,不等式|2||1||2||1|x x a x x -++≤≤--+都成立.(I )求a 的值; (II )设,0>>n m 求证:.221222a n n mn m m +≥+-+8.设函数.142)(+-=x x f(I )画出函数)(x f y =的图象; (II )若不等式ax x f ≤)(的解集非空,求a 的取值范围.不等式选讲习题参考答案1.(2014全国新课标I 卷) 解:(I11a b =+≥得2ab ≥,当且仅当a b ==所以33a b +≥==当且仅当a b ==所以33a b +的最小值为………5分(II )由(I)知23a b +≥=≥由于6>,从而不存在,,a b 使得23 6.a b +=………10分 2.(2014全国新课标II 卷) 解:(I )由0a >,有1111() 2.f x x x a x a x a a a a a a =++-≥++-=+=+≥= 所以,() 2.f x ≥………4分(II )1(3)33.f a a=++- 当03a <≤时,1(3)6f a a =-+,由(3)5,f <得165a a-+<3.a <≤ 当3a >时,1(3)f a a =+由(3)5,f <得15a a+<,解得532a +<<综上所述,a的取值范围是15(22a ++<<………10分 3.(2013全国新课标I 卷)解:(I )当2a =-时,()212 2.f x x x =-+- 由()()f x g x <,得212230x x x -+---<设()21223,f x x x x =-+---则15,,21()2,1,236, 1.x x f x x x x x ⎧-≤⎪⎪⎪=--<<⎨⎪-≥⎪⎪⎩其图象如图所示,由图象可知,当且仅当(0,2)x ∈时,()0.f x < 所以,不等式()()f x g x <的解集为(0,2).………5分(II )当1,22a x ⎡⎫∈-⎪⎢⎣⎭时,()1.f x a =+ 不等式()()f x g x ≤可化为1 3.a x +≤+ 所以,2x a ≥-对1,22a x ⎡⎫∈-⎪⎢⎣⎭都成立.故42,.23a a a -≥-≤即所以,a 的取值范围是4(1,].3-.………10分 4.(2013全国新课标II 卷). 证明:(I )222a b ab +≥2222,2,2b c bc a c ac +≥+≥222222222a b b c a c ab bc ac ∴+++++≥++,即222a b c ab bc ac ++≥++又()1a b c ++= ,即 2222221a b c a b b c a c +++++= 1222ab bc ac ab bc ac ∴---≥++,即3()1ab bc ac ++≤ 13ab bc ac ∴++≤………5分 (II )2222,2,2a b c b a c b a c b c a+≥+≥+≥ 222()2()a b c a b c a b c b c a ∴+++++≥++,即2221.a b c a b c b c a ++≥++= 2221.a b c b c a∴++≥………10分5.(2012全国新课标卷)解:(I )不等式()3f x ≥的解集为(,1][4,)-∞+∞ (II )()4f x x ≤-24x a x x ∴++-≤-,即42x x x a ---≥+当[]1,2x ∈时,由42x x x a ---≥+,得42x x x a -+-≥+,即2x a +≤ 解得22a x a --≤≤-又因为()4f x x ≤-的解集包含[]1,2 所以,21a --≤且22a -≥,即30.a -≤≤ 所以,a 的取值范围是[3,0].- 6.(2011全国新课标卷)解:(Ⅰ)当1a =时,()32f x x ≥+可化为12x -≥,由此可得 13x x ≤-≥或 故不等式()32f x x ≥+的解集为{|13}x x x ≤-≥或.(Ⅱ) 由()0f x ≤ 得30x a x -+≤此不等式化为不等式组30x a a x x ≤⎧⎨-+≤⎩或30x a x a x >⎧⎨-+≤⎩即2x a a x ≤⎧⎪⎨≤-⎪⎩或4x aa x >⎧⎪⎨≤⎪⎩ 又因为0a >,所以不等式30x a x -+≤的解集为|2a x x ⎧⎫≤-⎨⎬⎩⎭由题意知12a-=-,解得 2.a =7.(2015第一次省统测)(I )解:3|21||2||1|=-++≤--+x x x x对任意实数x ,不等式a x x ≤--+|2||1|都成立..3≥∴a3|21||2||1|=-++≥-++x x x x对任意实数x ,不等式|2||1|x x a -++≤都成立..3≤∴a.3=∴a(II )证明:由(I )知.3=a222)(1)()(2212n m n m n m n n mn m m -+-+-=-+-+又,0>>n m3)(1))((3)(1)()(322=---≥-+-+-∴n m n m n m n m n m n m.221222a n nmn m m +≥+-+∴8.设函数.142)(+-=x x f(I )画出函数)(x f y =的图象; (II )若不等式ax x f ≤)(的解集非空,求a 的取值范围.(Ⅰ)由于25,()23,2x x f x x x -+<2⎧=⎨-≥⎩则函数()y f x =的图像如图所示:12a ≥或2a <-时,函数()y f x =与函数y ax =的图像有交点,故不等式()f x ax ≤的解集非空时,a 的取值范围为()1,2[,)2-∞-+∞.。

不等式选讲(用柯西不等式证明不等式)

不等式选讲(用柯西不等式证明不等式)

不等式选讲(用柯西不等式证明不等式)1.(2017年2卷)已知330,0,2a b a b >>+=,证明:(1)55()()4a b a b ++≥;(2)2a b +≤.【解】(1)由柯西不等式得()()()2255334a b a b a b ++=+=≥,1a b ==时取等号.(2)因为()()()()()33232233333232244a b a b a a b ab b ab a b a b a b ++=+++=+++++=+≤)()()()()33232233333232244a b a b a a b ab b ab a b a b a b ++=+++=+++++=+, 所以()38a b +≤,即2a b +≤,当且仅当1a b ==时等号成立2.设,,x y z 均为正数,且1x y z ++=,证明:(1)13xy yz zx ++≤; (2)22212x y z y z x z x y ++≥+++. 【解】证明:(Ⅰ):因为()()()2222222222x y y z x z x y z xy yz xz +++++++=≥++ 所以22221()2223()x y z x y z xy yz xz xy yz zx =++=+++++≥++故13xy yz zx ++≤,当且仅当x y z ==时“=”成立. (Ⅰ),,x y z 均为正数,由柯西不等式得:2222[()()()]()1x y z x y y z x z x y z y z x z x y ⎛⎫+++++++≥++= ⎪+++⎝⎭即22221x y z y z x z x y ⎛⎫++≥ ⎪+++⎝⎭,故22212x y z y z x z x y ++≥+++,当且仅当x y z ==时“=”成立.3.已知,x y R ∈,且1x y +=.(1)求证:22334x y +≥; (2)当0xy >时,不等式11|2||1|a a x y+≥-++恒成立,求a 的取值范围. 【解】(1)由柯西不等式得22222)11x x ⎡⎤⎛⎡⎤+≥⋅+ ⎢⎥⎣⎦⎣⎦⎝+. Ⅰ()22243()3x y x y +⨯≥+,当且仅当3x y =时取等号.Ⅰ22334x y +≥; (2)1111()224y x x y x y x y x y ⎛⎫+=++=++≥+= ⎪⎝⎭, 要使得不等式11|2||1|a a x y+≥-++恒成立,即可转化为|2||1|4a a -++≤, 当2a ≥时,421a -≤,可得522a ≤≤,当1a 2-<<时,34≤,可得1a 2-<<, 当1a ≤-时,214a -+≤,可得312a -≤≤-,Ⅰa 的取值范围为:35[,]22-.4.(2019年3卷)设,,x y z R ∈,且1x y z ++=.(1)求222(1)(1)(1)x y z -++++的最小值;(2)若2221(2)(1)()3x y z a -+-+-≥成立,证明:3a -≤或1a ≥-. 【解析】(1) 因为 22222222[(1)(1)(1)](111)[(1)(1)(1)](1)4x y z x y z x y z -++++++≥-++++=+++=即2224(1)(1)(1)3x y z -++++≥,当且仅当111x y z -=+=+时等号成立, 而又因1x y z ++=,所以,当531313x y z ⎧=⎪⎪⎪=-⎨⎪⎪=-⎪⎩时等号成立, 所以222(1)(1)(1)x y z -++++的最小值为43. (2) 因为2221(2)(1)()3x y z a -+-+-≥, 所以222222[(2)(1)()](111)1x y z a -+-+-++≥.当且仅当21x y z a -=-=-,即22321323a x a y a z a +⎧=-⎪⎪+⎪=-⎨⎪+⎪=-⎪⎩时,有22222222[(2)(1)()](111)(21)(2)x y z a x y z a a -+-+-++=-+-+-=+成立. 所以2(2)1a +≥成立,所以有3a -≤或1a ≥-.5.已知a ,b 均为正实数,且1a b +=.(1)求2的最大值; (2)求1ab a+的最大值. 解析:(1)(2211= ()()22114141a b ≤+⋅+++()()242241212a b ⎡⎤=++=⨯+=⎣⎦,=12a b ==时,取等号,故原式的最大值为12. (2)原式112122ab b a b a ab a b ===+++, 因为()1212a b a b a b ⎛⎫+=++ ⎪⎝⎭22123b a b a a b a b ⎛⎫=+++=++ ⎪⎝⎭33≥+=+ 当且仅当2b a a b =,即12a b ⎧=⎪⎨=⎪⎩3≤=-故原式的最大值为3-。

不等式选讲习题

不等式选讲习题

知识网络§1 绝对值型不等式典例精析题型一 解绝对值不等式【例1】设函数f (x )=|x -1|+|x -2|. (1)解不等式f (x )>3;(2)若f (x )>a 对x ∈R 恒成立,求实数a 的取值范围. 【解析】(1)因为f (x )=|x -1|+|x -2|=⎪⎩⎪⎨⎧-.2>3,-22,≤≤1,11,<,23x x x x x所以当x <1时,3-2x >3,解得x <0; 当1≤x ≤2时,f (x )>3无解; 当x >2时,2x -3>3,解得x >3.所以不等式f (x )>3的解集为(-∞,0)∪(3,+∞). (2)因为f (x )=⎪⎩⎪⎨⎧-.2>3,-22,≤≤1,1<1,,23x x x x x 所以f (x )min =1.因为f (x )>a 恒成立,所以a <1,即实数a 的取值范围是(-∞,1).【变式训练1】设函数f (x )=|x +1|+|x -2|+a . (1)当a =-5时,求函数f (x )的定义域;(2)若函数f (x )的定义域为R ,试求a 的取值范围. 【解析】(1)由题设知|x +1|+|x -2|-5≥0,如图,在同一坐标系中作出函数y =|x +1|+|x -2|和y =5的图象,知定义域为(-∞,-2]∪[3,+∞).(2)由题设知,当x ∈R 时,恒有|x +1|+|x -2|+a ≥0,即|x +1|+|x -2|≥-a ,又由(1)知|x +1|+|x -2|≥3,所以-a ≤3,即a ≥-3.题型二 解绝对值三角不等式 【例2】已知函数f (x )=|x -1|+|x -2|,若不等式|a +b |+|a -b |≥|a |f (x )对a ≠0,a 、b ∈R 恒成立,求实数x 的范围.【解析】由|a +b |+|a -b |≥|a |f (x )且a ≠0得|a +b |+|a -b ||a |≥f (x ).又因为|a +b |+|a -b ||a |≥|a +b +a -b ||a |=2,则有2≥f (x ).解不等式|x -1|+|x -2|≤2得12≤x ≤52.【变式训练2】(2010深圳)若不等式|x +1|+|x -3|≥a +4a对任意的实数x恒成立,则实数a 的取值范围是 .【解析】(-∞,0)∪{2}.题型三 利用绝对值不等式求参数范围【例3】(2009辽宁)设函数f (x )=|x -1|+|x -a |. (1)若a =-1,解不等式f (x )≥3;(2)如果?x ∈R ,f (x )≥2,求a 的取值范围.【解析】(1)当a =-1时,f (x )=|x -1|+|x +1|. 由f (x )≥3得|x -1|+|x +1|≥3,①当x ≤-1时,不等式化为1-x -1-x ≥3,即-2x ≥3,不等式组⎩⎨⎧-3≥)(1,≤x f x 的解集为(-∞,-32];②当-1<x ≤1时,不等式化为1-x +x +1≥3,不可能成立, 不等式组⎩⎨⎧-3≥)(1,≤<1x f x 的解集为?;③当x >1时,不等式化为x -1+x +1≥3,即2x ≥3,不等式组⎩⎨⎧3≥)(1,>x f x 的解集为[32,+∞).综上得f (x )≥3的解集为(-∞,-32]∪[32,+∞).(2)若a =1,f (x )=2|x -1|不满足题设条件. 若a <1,f (x )=⎪⎩⎪⎨⎧+-++-1,≥1),(-2<1,<,1,≤,12x a x x a a a x a xf (x )的最小值为1-a .由题意有1-a ≥2,即a ≤-1.若a >1,f (x )=⎪⎩⎪⎨⎧+-++-,≥1),(-2,<<1,11,≤,12a x a x a x a x a x f (x )的最小值为a -1,由题意有a -1≥2,故a ≥3. 综上可知a 的取值范围为(-∞,-1]∪[3,+∞).【变式训练3】关于实数x 的不等式|x -12(a +1)2|≤12(a -1)2与x 2-3(a +1)x+2(3a +1)≤0 (a ∈R )的解集分别为A ,B .求使A ?B 的a 的取值范围.【解析】由不等式|x -12(a +1)2|≤12(a -1)2?-12(a -1)2≤x -12(a +1)2≤12(a-1)2,解得2a ≤x ≤a 2+1,于是A ={x |2a ≤x ≤a 2+1}.由不等式x 2-3(a +1)x +2(3a +1)≤0?(x -2)[x -(3a +1)]≤0,①当3a +1≥2,即a ≥13时,B ={x |2≤x ≤3a +1},因为A ?B ,所以必有⎩⎨⎧++1,3≤1,2≤22a a a 解得1≤a ≤3;②当3a +1<2,即a <13时,B ={x |3a +1≤x ≤2},因为A ?B ,所以⎩⎨⎧++2,≤1,2≤132a a a 解得a =-1.综上使A ?B 的a 的取值范围是a =-1或1≤a ≤3.总结提高1.“绝对值三角不等式”的理解及记忆要结合三角形的形状,运用时注意等号成立的条件.2.绝对值不等式的解法中,||x <a 的解集是(-a ,a );||x >a 的解集是(-∞,-a )∪(a ,+∞),它可以推广到复合型绝对值不等式||ax +b ≤c ,||ax +b ≥c 的解法,还可以推广到右边含未知数x 的不等式,如||3x +1≤x -1?1-x ≤3x +1≤x -1.3.含有两个绝对值符号的不等式,如||x -a +||x -b ≥c 和||x -a +||x -b ≤c 型不等式的解法有三种,几何解法和代数解法以及构造函数的解法,其中代数解法主要是分类讨论的思想方法,这也是函数解法的基础,这两种解法都适宜于x 前面系数不为1类型的上述不等式,使用范围更广.§2 不等式的证明(一)典例精析题型一 用综合法证明不等式【例1】 若a ,b ,c 为不全相等的正数,求证:lg a +b 2+lg b +c 2+lg a +c 2>lg a +lg b +lg c .【证明】 由a ,b ,c 为正数,得lg a +b 2≥lg ab ;lg b +c 2≥lg bc ;lg a +c 2≥lg ac .而a ,b ,c 不全相等,所以lg a +b 2+lg b +c 2+lg a +c2>lg ab +lg bc +lg ac =lg a 2b 2c 2=lg(abc )=lg a +lg b +lg c .即lg a +b 2+lg b +c 2+lg a +c 2>lg a +lg b +lg c .【点拨】 本题采用了综合法证明,其中基本不等式是证明不等式的一个重要依据(是一个定理),在证明不等式时要注意结合运用.而在不等式的证明过程中,还要特别注意等号成立的条件是否满足.【变式训练1】已知a ,b ,c ,d 都是实数,且a 2+b 2=1,c 2+d 2=1.求证:|ac +bd |≤1.【证明】因为a ,b ,c ,d 都是实数,所以|ac +bd |≤|ac |+|bd |≤a 2+c 22+b 2+d 22=a 2+b 2+c 2+d 22.又因为a 2+b 2=1,c 2+d 2=1,所以|ac +bd |≤1. 题型二 用作差法证明不等式【例2】 设a ,b ,c 为△ABC 的三边,求证:a 2+b 2+c 2<2(ab +bc +ca ). 【证明】a 2+b 2+c 2-2(ab +bc +ca )=(a -b )2+(b -c )2+(c -a )2-a 2-b 2-c 2=[(a -b )2-c 2]+[(b -c )2-a 2]+[(c -a )2-b 2].而在△ABC 中,||b -a <c ,所以(a -b )2<c 2,即(a -b )2-c 2<0.同理(a -c )2-b 2<0,(b -c )2-a 2<0,所以a 2+b 2+c 2-2(ab +bc +ca )<0.故a 2+b 2+c 2<2(ab +bc +ca ).【点拨】 不等式的证明中,比较法特别是作差比较法是最基本的证明方法,而在牵涉到三角形的三边时,要注意运用三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边.【变式训练2】设a ,b 为实数,0<n <1,0<m <1,m +n =1,求证:a 2m +b 2n≥(a+b )2.【证明】因为a 2m +b 2n -(a +b )2=na 2+mb 2mn -nm (a 2+2ab +b 2)mn=na 2(1-m )+mb 2(1-n )-2mnab mn=n 2a 2+m 2b 2-2mnab mn =(na -mb )2mn≥0,所以不等式a 2m +b 2n≥(a +b )2成立.题型三 用分析法证明不等式【例3】已知a 、b 、c ∈R +,且a +b +c =1.求证:(1+a )(1+b )(1+c )≥8(1-a )(1-b )(1-c ).【证明】因为a 、b 、c ∈R +,且a +b +c =1,所以要证原不等式成立, 即证[(a +b +c )+a ][(a +b +c )+b ][(a +b +c )+c ] ≥8[(a +b +c )-a ][(a +b +c )-b ][(a +b +c )-c ],也就是证[(a +b )+(c +a )][(a +b )+(b +c )][(c +a )+(b +c )]≥8(b +c )(c +a )(a +b ).①因为(a +b )+(b +c )≥2(a +b )(b +c )>0, (b +c )+(c +a )≥2(b +c )(c +a )>0, (c +a )+(a +b )≥2(c +a )(a +b )>0, 三式相乘得①式成立,故原不等式得证.【点拨】 本题采用的是分析法.从待证不等式出发,分析并寻求使这个不等式成立的充分条件的方法叫分析法,概括为“执果索因”.分析法也可以作为寻找证题思路的方法,分析后再用综合法书写证题过程.【变式训练3】设函数f (x )=x -a (x +1)ln(x +1)(x >-1,a ≥0). (1)求f (x )的单调区间;(2)求证:当m >n >0时,(1+m )n <(1+n )m . 【解析】(1)f ′(x )=1-a ln(x +1)-a ,①a =0时,f ′(x )>0,所以f (x )在(-1,+∞)上是增函数; ②当a >0时,f (x )在(-1,aa-1e -1]上单调递增,在[aa -1e -1,+∞)单调递减. (2)证明:要证(1+m )n <(1+n )m ,只需证n ln(1+m )<m ln(1+n ),只需证ln(1+m )m <ln(1+n )n.设g(x)=ln(1+x)x(x>0),则g′(x)=x1+x-ln(1+x)x2=x-(1+x)ln(1+x)x2(1+x).由(1)知x-(1+x)ln(1+x)在(0,+∞)单调递减,所以x-(1+x)ln(1+x)<0,即g(x)是减函数,而m>n,所以g(m)<g(n),故原不等式成立.总结提高1.一般在证明不等式的题目中,首先考虑用比较法,它是最基本的不等式的证明方法.比较法一般有“作差比较法”和“作商比较法”,用得较多的是“作差比较法”,其中在变形过程中往往要用到配方、因式分解、通分等计算方法.2.用综合法证明不等式的过程中,所用到的依据一般是定义、公理、定理、性质等,如基本不等式、绝对值三角不等式等.3.用分析法证明不等式的关键是对原不等式的等价转换,它是从要证明的结论出发,逐步寻找使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实(定义、公理或已证明的定理、性质等),从而得出要证的命题成立.4.所谓“综合法”、“分析法”其实是证明题的两种书写格式,而不是真正意义上的证明方法,并不像前面所用的比较法及后面要复习到的三角代换法、放缩法、判别式法、反证法等是一种具体的证明方法(或者手段),而只是两种互逆的证明题的书写格式.§3 不等式的证明(二)典例精析题型一用放缩法、反证法证明不等式【例1】已知a,b∈R,且a+b=1,求证:(a+2)2+(b+2)2≥252.【证明】方法一:(放缩法) 因为a+b=1,所以左边=(a+2)2+(b+2)2≥2[(a+2)+(b+2)2]2=12[(a+b)+4]2=252=右边.方法二:(反证法)假设(a+2)2+(b+2)2<252,则a2+b2+4(a+b)+8<252.由a+b=1,得b=1-a,于是有a2+(1-a)2+12<25 2.所以(a-12)2<0,这与(a-12)2≥0矛盾.故假设不成立,所以(a+2)2+(b+2)2≥25 2.【点拨】根据不等式左边是平方和及a+b=1这个特点,选用重要不等式a2+b2≥2(a+b2)2来证明比较好,它可以将具备a2+b2形式的式子缩小.而反证法的思路关键是先假设命题不成立,结合条件a +b =1,得到关于a 的不等式,最后与数的平方非负的性质矛盾,从而证明了原不等式.当然本题也可以用分析法和作差比较法来证明.【变式训练1】设a 0,a 1,a 2,…,a n -1,a n 满足a 0=a n =0,且有 a 0-2a 1+a 2≥0, a 1-2a 2+a 3≥0, …a n -2-2a n -1+a n ≥0,求证:a 1,a 2,…,a n -1≤0.【证明】由题设a 0-2a 1+a 2≥0得a 2-a 1≥a 1-a 0. 同理,a n -a n -1≥a n -1-a n -2≥…≥a 2-a 1≥a 1-a 0.假设a 1,a 2,…,a n -1中存在大于0的数,假设a r 是a 1,a 2,…,a n -1中第一个出现的正数. 即a 1≤0,a 2≤0,…,a r -1≤0,a r >0,则有a r -a r -1>0,于是有a n -a n -1≥a n -1-a n -2≥…≥a r -a r -1>0. 并由此得a n ≥a n -1≥a n -2≥…≥a r >0.这与题设a n =0矛盾.由此证得a 1,a 2,…,a n -1≤0成立. 题型二 用数学归纳法证明不等式 【例2】用放缩法、数学归纳法证明:设a n =1×2+2×3+…+n (n +1),n ∈N *,求证:n (n +1)2<a n <(n +1)22.【证明】 方法一:(放缩法)n 2<n (n +1)<n +(n +1)2,即n <n (n +1)<2n +12.所以1+2+…+n <a n <12[1+3+…+(2n +1)].所以n (n +1)2<a n <12·(n +1)(1+2n +1)2,即n (n +1)2<a n <(n +1)22.方法二:(数学归纳法)①当n =1时,a 1=2,而1<2<2,所以原不等式成立.②假设n =k (k ≥1)时,不等式成立,即k (k +1)2<a k <(k +1)22.则当n =k +1时,a k +1=1×2+2×3+…+k (k +1)+(k +1)(k +2),所以k (k +1)2+(k +1)(k +2)<a k +1<(k +1)22+(k +1)(k +2).而k (k +1)2+(k +1)(k +2)>k (k +1)2+(k +1)(k +1)=k (k +1)2+(k +1)=(k +1)(k +2)2,(k +1)22+(k +1)(k +2)<(k +1)22+(k +1)+(k +2)2=k 2+4k +42=(k +2)22.所以(k+1)(k+2)2<a k+1<(k+2)22.故当n=k+1时,不等式也成立.综合①②知当n∈N*,都有n(n+1)2<a n<(n+1)22.【点拨】在用放缩法时,常利用基本不等式n(n+1)<n+(n+1)2将某个相乘的的式子进行放缩,而在上面的方法二的数学归纳法的关键步骤也要用到这个公式.在用数学归纳法时要注意根据目标来寻找思路.【变式训练2】已知数列8×112×32,8×232×52,…,8n(2n-1)2(2n+1)2,…,S n为其前n项和,计算得S1=89,S2=2425,S3=4849,S4=8081,观察上述结果推测出计算S n的公式且用数学归纳法加以证明.【解析】猜想S n=(2n+1)2-1(2n+1)2(n∈N+).证明:①当n=1时,S1=32-132=89,等式成立.②假设当n=k(k≥1)时等式成立,即S k=(2k+1)2-1 (2k+1)2.则S k+1=S k+8(k+1)(2k+1)2(2k+3)2=(2k+1)2-1(2k+1)2+8(k+1)(2k+1)2(2k+3)2=(2k+1)2(2k+3)2-(2k+1)2(2k+1)2(2k+3)2=[2(k+1)+1]2-1[2(k+1)+1]2.即当n=k+1时,等式也成立.综合①②得,对任何n∈N+,等式都成立.题型三用不等式证明方法解决应用问题【例3】某地区原有森林木材存量为a,且每年增长率为25%,因生产建设的需要每年年底要砍伐的木材量为b,设a n为n年后该地区森林木材存量.(1)求a n的表达式;(2)为保护生态环境,防止水土流失,该地区每年森林木材量应不少于79a,如果b=1972a,那么该地区今后会发生水土流失吗?若会,需要经过几年?(取lg 2=0.30)【解析】(1)依题意得a1=a(1+14)-b=54a-b,a2=54a1-b=54(54a-b)-b=(54)2a-(54+1)b,a3=54a2-b=(54)3a-[(54)2+(54+1)]b,由此猜测a n =(54)n a -[(54)n -1+(54)n -2+…+54+1]b =(54)n a -4[(54)n -1]b (n ∈N +).下面用数学归纳法证明:①当n =1时,a 1=54a -b ,猜测成立.②假设n =k (k ≥2)时猜测成立,即a k =(54)k a -4[(54)k -1]b 成立.那么当n =k +1时,a k +1=54a k -b =54⎩⎨⎧⎭⎬⎫(54)k a -4[(54)k -1]b -b =(54)k +1a -4[(54)k +1-1]b ,即当n =k +1时,猜测仍成立.由①②知,对任意n ∈N +,猜测成立.(2)当b =1972a 时,若该地区今后发生水土流失,则森林木材存量必须少于79a ,所以(54)n a -4[(54)n -1]·1972a <79a ,整理得(54)n >5,两边取对数得n lg 54>lg 5,所以n >lg 5lg 5-2lg 2=1-lg 21-3lg 2≈1-0.301-3×0.30=7.故经过8年该地区就开始水土流失.【变式训练3】经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量y (千辆/时)与汽车的平均速度v (千米/时)之间的函数关系为y =920vv 2+3v +1 600(v >0). (1)在该时段内,当汽车的平均速度v 为多少时,车流量最大?最大车流量为多少?(精确到0.1千辆/时)(2)若要求在该时段内车流量超过10千辆/时,则汽车的平均速度应在什么范围内?【解析】(1)依题意,y =9203+(v +1 600v)≤9203+2 1 600=92083,当且仅当v =1 600v ,即v =40时,上式等号成立,所以y max =92083≈11.1(千辆/时). (2)由条件得920vv 2+3v +1 600>10,整理得v 2-89v +1 600<0,即(v -25)(v -64)<0,解得25<v <64.答:当v =40千米/时时,车流量最大,最大车流量约为11.1千辆/时.如果要求在该时段内车流量超过10千辆/时,则汽车的平均速度应大于25千米/时且小于64千米/时.总结提高1.有些不等式,从正面证如果不易说清,可以考虑反证法,凡是含有“至少”、“唯一”或者其他否定词的命题适用反证法.在一些客观题如填空、选择题之中,也可以用反证法的方法进行命题正确与否的判断.2.放缩法是证明不等式特有的方法,在证明不等式过程中常常要用到它,放缩要有目标,目标在结论和中间结果中寻找.常用的放缩方法有:(1)添加或舍去一些项,如a2+1>||a,n(n+1)>n;(2)将分子或分母放大(或缩小);(3)利用基本不等式,如n(n+1)<n+(n+1)2;(4)利用常用结论,如k+1-k=1k+1+k<12k,1 k2<1k(k-1)=1k-1-1k;1 k2>1k(k+1)=1k-1k+1(程度大);1 k2<1k2-1=1(k-1)(k+1)=12(1k-1-1k+1) (程度小).3.用数学归纳法证明与自然数有关的不等式的证明过程与用数学归纳法证明其他命题一样,先要奠基,后进行假设与推理,二者缺一不可.§4 柯西不等式和排序不等式典例精析题型一用柯西不等式、排序不等式证明不等式【例1】设a1,a2,…,a n都为正实数,证明:a21a2+a22a3+…+a2n-1a n+a2na1≥a1+a2+…+a n.【证明】方法一:由柯西不等式,有(a21a2+a22a3+…+a2n-1a n+a2na1)(a2+a3+…+a n+a1)≥(a1a2·a2+a2a3·a3+…+a na1·a1)2=(a1+a2+…+a n)2.不等式两边约去正数因式a1+a2+…+a n即得所证不等式.方法二:不妨设a1≤a2≤…≤a n,则a21≤a22≤…≤a2n,1a1≥1a2≥…≥1a n.由排序不等式有a21·1a2+a22·1a3+…+a2n-1·1a n+a2n·1a1≥a21·1a1+a22·1a2+…+a2n·1a n=a1+a2+…+a n,故不等式成立.方法三:由均值不等式有a 21a 2+a 2≥2a 1,a 22a 3+a 3≥2a 2,…,a 2na 1+a 1≥2a n ,将这n 个不等式相加得 a 21a 2+a 22a 3+…+a 2n -1a n +a 2n a 1+a 2+a 3+…+a n +a 1≥2(a 1+a 2+…+a n ),整理即得所证不等式.【点拨】 根据所证不等式的结构形式观察是否符合柯西不等式、排序不等式的结构形式或有相似之处.将其配成相关结构形式是解决问题的突破口,有时往往要进行添项、拆项、重组、配方等方法的处理.【变式训练1】已知a +b +c =1,且a 、b 、c 是正数,求证:2a +b +2b +c +2c +a≥9.【证明】左边=[2(a +b +c )](1a +b +1b +c +1c +a )=[(a +b )+(b +c )+(c +a )](1a +b +1b +c +1c +a)≥(1+1+1)2=9,(或左边=[(a +b )+(b +c )+(c +a )](1a +b +1b +c +1c +a)=3+a +b b +c +a +b c +a +b +c a +b +b +c c +a +c +a a +b +c +a b +c≥3+2ba cbc b b a ++++•+2ba a c a cb a ++++•+2cb ac a c c b ++++•=9)所以2a +b +2b +c +2c +a≥9.题型二 用柯西不等式求最值【例2】 若实数x ,y ,z 满足x +2y +3z =2,求x 2+y 2+z 2的最小值. 【解析】 由柯西不等式得,(12+22+32)(x 2+y 2+z 2)≥(x +2y +3z )2=4 (当且仅当1=kx,2=ky,3=kz 时等号成立,结合x +2y +3z =2,解得x =17,y =27,z =37),所以14(x 2+y 2+z 2)≥4.所以x 2+y 2+z 2≥27.故x 2+y 2+z 2的最小值为27.【点拨】 根据柯西不等式,要求x 2+y 2+z 2的最小值,就要给x 2+y 2+z 2再配一个平方和形式的因式,再考虑需要出现定值,就要让柯西不等式的右边出现x +2y +3z 的形式,从而得到解题思路.由此可见,柯西不等式可以应用在求代数式的最值中.【变式训练2】已知x 2+2y 2+3z 2=1817,求3x +2y +z 的最小值.【解析】因为(x2+2y2+3z2)[32+(2)2+(13)2]≥(3x+2y·2+3z·13)2≥(3x+2y+z)2,所以(3x+2y+z)2≤12,即-23≤3x+2y+z≤23,当且仅当x=-9317,y=-3317,z=-317时,3x+2y+z取最小值,最小值为-2 3.题型三不等式综合证明与运用【例3】设x>0,求证:1+x+x2+…+x2n≥(2n+1)x n.【证明】(1)当x≥1时,1≤x≤x2≤…≤x n,由排序原理:顺序和≥反序和得1·1+x·x+x2·x2+…+x n·x n≥1·x n+x·x n-1+…+x n-1·x+x n·1,即1+x2+x4+…+x2n≥(n+1)x n.①又因为x,x2,…,x n,1为序列1,x,x2,…,x n的一个排列,于是再次由排序原理:乱序和≥反序和得1·x+x·x2+…+x n-1·x n+x n·1≥1·x n+x·x n -1+…+x n-1·x+x n·1,即x+x3+…+x2n-1+x n≥(n+1)x n,②将①和②相加得1+x+x2+…+x2n≥(2n+1)x n.③(2)当0<x<1时,1>x>x2>…>x n.由①②仍然成立,于是③也成立.综合(1)(2),原不等式成立.【点拨】分类讨论的目的在于明确两个序列的大小顺序.【变式训练3】把长为9 cm的细铁线截成三段,各自围成一个正三角形,求这三个正三角形面积和的最小值.【解析】设这三个正三角形的边长分别为a、b、c,则a+b+c=3,且这三个正三角形面积和S满足:3S=34(a2+b2+c2)(12+12+12)≥34(a+b+c)2=934?S≥334.当且仅当a=b=c=1时,等号成立.总结提高1.柯西不等式是基本而重要的不等式,是推证其他许多不等式的基础,有着广泛的应用.教科书首先介绍二维形式的柯西不等式,再从向量的角度来认识柯西不等式,引入向量形式的柯西不等式,再介绍一般形式的柯西不等式,以及柯西不等式在证明不等式和求某些特殊类型的函数极值中的应用.2.排序不等式也是基本而重要的不等式.一些重要不等式可以看成是排序不等式的特殊情形,例如不等式a2+b2≥2ab.有些重要不等式则可以借助排序不等式得到简捷的证明.证明排序不等式时,教科书展示了一个“探究——猜想——证明——应用”的研究过程,目的是引导学生通过自己的数学活动,初步认识排序不等式的数学意义、证明方法和简单应用.3.利用柯西不等式或排序不等式常常根据所求解(证)的式子结构入手,构造适当的两组数,有难度的逐步调整去构造.对于具体明确的大小顺序、数目相同的两列数考虑它们对应乘积之和的大小关系时,通常考虑排序不等式.。

高二数学不等式选讲试题答案及解析

高二数学不等式选讲试题答案及解析

高二数学不等式选讲试题答案及解析1.关于的不等式的解集为.【答案】.【解析】不等式等价,方程的根为5和-2,因此不等式的解集.【考点】一元二次不等式的解法2.已知,不等式的解集(Ⅰ)求的值;(Ⅱ)若恒成立,求的取值范围.【答案】(1);(2)【解析】(1)理解绝对值的几何意义,表示的是数轴的上点到原点的距离;(2)对分类讨论,分三部分进行讨论;(3)掌握一般不等式的解法:,.(2)对于恒成立的问题,常用到以下两个结论:(1),(2)试题解析:解:(1)由,得不等式的解集为当时,不合题意当时,,;记,恒成立,【考点】(1)含绝对值不等式的解法;(2)恒成立的问题.3.证明下列不等式:(1)已知,求证;(2),求证:.【答案】(1)证明详见解析;(2)证明详见解析.【解析】(1)本小题主要考查基本不等式,(当且仅当时等号成立)的应用问题,分别得到、、,进而再利用同向不等式的可加性即可得到结论;(2)本小问,主要考查放缩法与裂项求和法.先由得到,进而裂项求和得到,从而问题得证.(1) 证明:(当且仅当时等号成立),(当且仅当时等号成立),,(当且仅当时等号成立) 3分三个不等式相加可得即 6分(2)因为时,又 9分12分.【考点】1.基本不等式的应用;2.不等式的证明——放缩法;3.裂项求和.4.不等式的解集是【答案】【解析】由题意【考点】分式不等式的解法5.设x,y,z都是正实数,a=x+,b=y+,c=z+,则a,b,c三个数()A.至少有一个不大于2B.都小于2C.至少有一个不小于2D.都大于2【答案】C【解析】选C.a+b+c=x+y+z+++≥2+2+2=6,当且仅当x=y=z=1时等号成立.所以a,b,c三者中至少有一个不小于2.6.设x>0,y>0,M=,N=+,则M,N的大小关系是()A.M>N B.M<NC.M=N D.不确定【答案】B【解析】选B.N=+>+==M.7.若n是大于1的自然数,求证:+++…+<2.【答案】见解析【解析】证明:因为<=-,k=2,3,…,n,所以+++…+<+++…+=+++…+=2-<2, 所以+++…+<2.8.设a1,a2,…,an是正数,求证:++…+<.【答案】见解析【解析】证明:左边<++…+=++…+=-<=右边,故++…+<.9.已知a>b>0,则下列各式中成立的是()A.=B.> C.<D.=【答案】C【解析】选C.因为-==,因为a>b>0,a2>b2,所以b2-a2<0,即<0,所以<.10.已知△ABC中,∠C=90°,则的取值范围是() A.(0,2)B.C.D.【答案】C【解析】选C.因为∠C=90°,所以c2=a2+b2,即c=.又有a+b>c,所以1<=≤=.11.实数x,y满足=x-y,则x的取值范围是.【答案】(-∞,0)∪[4,+∞)【解析】由=x-y得x===y-1++2,当y>1时,x≥2+2=4,当且仅当y=2时取“=”,当y<1时,x≤-2+2=0,当且仅当y=0时取“=”,而y≠0,所以x<0.12.已知x,y∈R,且<1,<1,求证:+≥.【答案】见解析【解析】证明:因为<1,<1,所以>0,>0.所以+≥.故要证明结论成立,只需证≥成立,即证1-xy≥成立即可,因为(y-x)2≥0,有-2xy≥-x2-y2,所以(1-xy)2≥(1-x2)(1-y2),所以1-xy≥>0,所以不等式成立.13.“a>1”是“<1”的()A.充分但不必要条件B.必要但不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】选A.因为a>1,所以<1.而a<0时,显然<1,故由<1推不出a>1.14.若x是正数,且x3-x=2,则x与的大小关系为.【答案】x>【解析】由x3-x=2知x2-1=,所以(x2-1)(x2+1)=(x2+1)=2>4,即x4-1>4,从而x4>5,所以x>.15.要证a2+b2-1-a2b2≤0,只要证()A.2ab-1-a2b2≤0B.a2+b2-1-≤0C.-1-a2b2≤0D.(a2-1) (b2-1)≥0【答案】D【解析】选D.a2+b2-1-a2b2=-(a2-1)(b2-1),要证原不等式成立,只需证-(a2-1)(b2-1)≤0,即证(a2-1)(b2-1)≥0.16.用分析法证明:当x>1时,x>ln(1+x).【答案】见解析【解析】证明:当x>1时,要证x>ln(1+x),即证f(x)= x-ln(1+x)>0=f(0),即证f'(x)=1-=>0,显然x>1时,f'(x)>0,所以原命题成立.17.已知实数a,b满足:关于x的不等式|x2+ax+b|≤|2x2-4x-16|对一切x∈R均成立.(1)请验证a=-2,b=-8满足题意.(2)求出所有满足题意的实数a,b,并说明理由.(3)若对一切x>2,均有不等式x2+ax+b≥(m+2)x-m-15成立,求实数m的取值范围.【答案】(1)见解析 (2)a=-2,b=-8,理由见解析 (3) (-∞,2]【解析】(1)当a=-2,b=-8时,有|x2+ax+b|=|x2-2x-8|≤2|x2-2x-8|=|2x2-4x-16|.(2)在|x2+ax+b|≤|2x2-4x-16|中,分别取x=4,x=-2,得,所以,所以a=-2,b=-8,因此满足题意的实数a,b只能是a=-2,b=-8.(3)由x2+ax+b≥(m+2)x-m-15(x>2),所以x2-2x-8≥(m+2)x-m-15,即x2-4x+7≥m(x-1),所以对一切x>2,均有不等式≥m成立,而=(x-1)+-2≥2-2=2(当且仅当x=3时等号成立),所以实数m的取值范围是(-∞,2].18.函数y=(x>0)的最小值是()A.2B.2-1C.-2-1D.2-2【答案】B【解析】【解题指南】对函数表达式适当变形,使之能够利用基本不等式求最值.解:选B.y==x+=(x+1)+-1≥2-1=2-1,当且仅当x=-1时等号成立.19.若实数x,y适合不等式xy>1,x+y≥-2,则()A.x>0,y>0B.x<0,y<0C.x>0,y<0D.x<0,y>0【答案】A【解析】选A.x,y异号时,显然与xy>1矛盾,所以可排除C,D.假设x<0,y<0,则x<.所以x+y<y+≤-2与x+y≥-2矛盾,故假设不成立.又因为xy≠0,所以x>0,y>0.20.已知x>0,y>0,x,a,b,y成等差数列,x,c,d,y成等比数列,则的最小值是.【解析】因为x,a,b,y成等差数列,所以x+y=a+b,又x,c,d,y成等比数列,所以xy=cd,===++2≥2+2=4,当且仅当x=y时,取等号.21.下面四个命题:①若a>b,c>1,则algc>blgc;②若a>b,c>0,则algc>blgc;③若a>b,则a·2c>b·2c;④若a<b<0,c>0,则>.其中正确命题有.(填序号)【答案】①③④【解析】②不正确,因为0<c<1时,lgc<0.①③④正确.22.已知a>0,b>0且a2+=1,求a的最大值.【答案】【解析】a=·a·=·≤·=·=,当且仅当a2=,又a2+=1,即a=,b=时,等号成立.故所求最大值为.23.用适当方法证明:已知:,求证:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不等式选讲习题
1.(2014全国新课标I 卷)若0,0,a b >>且11a b
+= (I )求33a b +的最小值;
(II )是否存在,,a b 使得236?a b +=并说明理由. 2.(2014全国新课标II 卷)设函数1
()(0).f x x x a a a
=++-> (I )证明:()2;f x ≥
(II )若(3)5,f <求a 的取值范围.
3.(2013全国新课标I 卷)已知函数()212,() 3.f x x x a g x x =-++=+ (I )当2a =-时,求不等式()()f x g x <的解集;
(II )设1,a >-且当1,22a x ⎡⎫
∈-⎪⎢⎣⎭
时,()()f x g x ≤,求a 的取值范围.
4.(2013全国新课标II 卷)设,,a b c 均为正数,且1,a b c ++=证明:
(I )1
;3
ab bc ac ++≤ (II )222 1.a b c b c a ++≥.
5.(2012全国新课标卷)已知函数() 2.f x x a x =++- (I )当3a =-时,求不等式()3f x ≥的解集; (II )若()4f x x ≤-的解集包含[]1,2,求a 的取值范围.
6.(2011全国新课标卷)设函数()3f x x a x =-+,其中0a >. (I )当1a =时,求不等式()32f x x ≥+的解集; (II )若不等式()0f x ≤的解集为{|1},x x ≤-,求a 的值.
7.(2015第一次省统测)已知a 是常数,对任意实数x ,不等式
|2||1||2||1|x x a x x -++≤≤--+都成立.
(I )求a 的值; (II )设,0>>n m 求证:.221
22
2a n n mn m m +≥+-+
8.设函数.142)(+-=x x f
(I )画出函数)(x f y =的图象; (II )若不等式ax x f ≤)(的解集非空,求a 的取
2ab ≥,当且仅当a b ==时等号成立 当且仅当a b ==时等号成立 所以33a b +的最小值为.………5分
(II )由(I )知23a b +≥=≥ 由于6>,从而不存在,,a b 使得23 6.a b +=………10分 2.(2014全国新课标II 卷) 解:(I )由0a >,有1111() 2.f x x x a x a x a a a a a a =++-≥++-=+=+≥= 所以,() 2.f x ≥………4分 (II )1
(3)33.f a a
=+
+- 当03a <≤时,1(3)6f a a =-+,由(3)5,f <得165a a -+<,解得
1 3.2
a +<≤ 当3a >时,1
(3)f a a
=+由(3)5,f <得15a a
+<,解得532
a <<
综上所述,a 的取值范围是15(
22
a +<<………10分 3.(2013全国新课标I 卷)
解:(I )当2a =-时,()212 2.f x x x =-+-
由()()f x g x <,得212230x x x -+---< 设()21223,f x x x x =-+---则
其图象如图所示,由图象可知,当且仅当(0,2)x ∈时,()0.f x < 所以,不等式()()f x g x <的解集为(0,2).………5分
(II )当1,22a x ⎡⎫
∈-⎪⎢⎣⎭
时,()1.f x a =+ 不等式()()f x g x ≤可化为1 3.a x +≤+
所以,2x a ≥-对1,22a x ⎡⎫∈-⎪⎢⎣⎭
都成立.故4
2,.23a a a -≥-≤即
所以,a 的取值范围是4
(1,].3
-.………10分 4.(2013全国新课标II 卷).
证明:(I )222a b ab +≥Q 2222,2,2b c bc a c ac +≥+≥
222222222a b b c a c ab bc ac ∴+++++≥++,即222a b c ab bc ac ++≥++
又()1a b c ++=Q ,即 2222221a b c ab bc ac +++++=
1222ab bc ac ab bc ac ∴---≥++,即3()1ab bc ac ++≤ 1
3
ab bc ac ∴++≤
………5分 (II )222
2,2,2a b c b a c b a c b c a
+≥+≥+≥Q
222()2()a b c a b c a b c b c a ∴+++++≥++,即222
1.a b c a b c b c a ++≥++= 222
1.a b c b c a
∴++≥………10分
5.(2012全国新课标卷)
解:(I )不等式()3f x ≥的解集为(,1][4,)-∞+∞U (II )()4f x x ≤-Q
24x a x x ∴++-≤-,即42x x x a ---≥+
当[]1,2x ∈时,由42x x x a ---≥+,得42x x x a -+-≥+,即2x a +≤ 解得22a x a --≤≤-
又因为()4f x x ≤-的解集包含[]1,2 所以,21a --≤且22a -≥,即30.a -≤≤ 所以,a 的取值范围是[3,0].- 6.(2011全国新课标卷)
解:(Ⅰ)当1a =时,()32f x x ≥+可化为12x -≥,由此可得 13x x ≤-≥或 故不等式()32f x x ≥+的解集为{|13}x x x ≤-≥或.
(Ⅱ) 由()0f x ≤ 得30x a x -+≤此不等式化为不等式组
30x a a x x ≤⎧⎨-+≤⎩或30x a x a x >⎧⎨
-+≤⎩即2x a a x ≤⎧⎪⎨≤-
⎪⎩或4
x a
a x >⎧⎪
⎨≤⎪⎩ 又因为0a >,所以不等式30x a x -+≤的解集为|2a x x ⎧
⎫≤-⎨⎬⎩

由题意知12
a -=-,解得 2.a = 7.(2015第一次省统测)
(I )解:3|21||2||1|=-++≤--+x x x x Θ
对任意实数x ,不等式a x x ≤--+|2||1|都成立. 对任意实数x ,不等式|2||1|x x a -++≤都成立.
(II )证明:由(I )知.3=a 又,0>>n m Θ
8.设函数.142)(+-=x x f
(I )画出函数)(x f y =的图象; (II )若不等式ax x f ≤)(的解集非空,求a 的取值范围.
(Ⅰ)由于25,()23,2x x f x x x -+<2
⎧=⎨
-≥⎩
则函数()y f x =的图像如图所示:
(Ⅱ)由函数()y f x =与函数y ax =的图像可知,当且仅当1
2
a ≥或2a <-时,函数()y f x =与函数y ax =的图像有交点,故不等式()f x ax ≤的解集非空时,a 的取值范围为()1
,2[,)2
-∞-+∞U .。

相关文档
最新文档