高三数学填空、选择专项训练(一)
高三数学基础训练题集1-10套(含答案)
图2俯视图侧视图正视图4图1乙甲7518736247954368534321高三数学基础训练一一.选择题:1.复数i1i,321-=+=zz,则21zzz⋅=在复平面内的对应点位于A.第一象限B.第二象限C.第三象限D.第四象限2.在等比数列{an}中,已知,11=a84=a,则=5aA.16 B.16或-16 C.32 D.32或-323.已知向量a =(x,1),b =(3,6),a⊥b ,则实数x的值为( )A.12B.2-C.2D.21-4.经过圆:C22(1)(2)4x y++-=的圆心且斜率为1的直线方程为( )A.30x y-+=B.30x y--=C.10x y+-=D.30x y++=5.已知函数()f x是定义在R上的奇函数,当0>x时,()2xf x=,则(2)f-=( )A.14B.4-C.41- D.46.图1是某赛季甲.乙两名篮球运动员每场比赛得分的茎叶图,则甲.乙两人这几场比赛得分的中位数之和是A.62 B.63 C.64 D.657.下列函数中最小正周期不为π的是A.xxxf cossin)(⋅= B.g(x)=tan(2π+x)C.xxxf22cossin)(-=D.xxx cossin)(+=ϕ8.命题“,11a b a b>->-若则”的否命题是A.,11a b a b>-≤-若则B.若ba≥,则11-<-baC.,11a b a b≤-≤-若则D.,11a b a b<-<-若则9.图2为一个几何体的三视图,正视图和侧视图均为矩形,俯视图为正三角形,尺寸如图,则该几何体的侧面积为A .6B .24C .123D .3210.已知抛物线C 的方程为212x y =,过点A ()1,0-和点()3,t B 的直线与抛物线C 没有公共点,则实数t 的取值范围是 A .()()+∞-∞-,11,B .⎪⎪⎭⎫ ⎝⎛+∞⎪⎪⎭⎫ ⎝⎛-∞-,2222, C .()()+∞-∞-,,2222D .()()+∞-∞-,,22二.填空题:11.函数22()log (1)f x x =-的定义域为 .12.如图所示的算法流程图中,输出S 的值为 .13.已知实数x y ,满足2203x y x y y +⎧⎪-⎨⎪⎩≥,≤,≤≤,则2z x y =-的最大值为_______.14.已知c x x x x f +--=221)(23,若]2,1[-∈x 时,2)(c x f <恒成立,则实数c 的取值范围______ 三.解答题:已知()sin f x x x =+∈x (R ). (1)求函数)(x f 的最小正周期;(2)求函数)(x f 的最大值,并指出此时x 的值.高三数学基础训练二一.选择题:1.在等差数列{}n a 中, 284a a +=,则 其前9项的和S9等于 ( )A .18B .27C .36D .92.函数()()sin cos sin f x x x x =-的最小正周期为 ( )A .4π B .2πC .πD .2π 3.已知命题p: {}4A x x a=-,命题q :()(){}230B x x x =--,且⌝p 是⌝q 的充分条件,则实数 a 的取值范围是: ( )A .(-1,6)B .[-1,6]C .(,1)(6,)-∞-⋃+∞D .(,1][6,)-∞-⋃+∞ 4.用系统抽样法从160名学生中抽取容量为20的样本,将160名学生从1~160编号,按编号顺序平均分成20组(1~8号,9~16号,。
2020届高考数学选择题填空题专项练习(文理通用)15 比较大小(含解析)
2020届高考数学选择题填空题专项练习(文理通用)15比较大小第I 卷(选择题)一、单选题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(2020·福建高三(理))设12a e-=,24b e -=,12c e -=,323d e -=,则a b c d ,,,的大小关系为( ) A .c b d a >>>B .c d a b >>> C .c b a d >>>D .c d b a >>>.【答案】B 【解析】【分析】利用指数幂的运算性质化成同分母,再求出分子的近似值即可判断大小.【详解】3241e a e e ==,2416b e =,222444e c e e==,249e d e =,由于 2.7e ≈,27.39e ≈,320.09e ≈,所以c d a b >>>,故选:B .【点睛】本题主要考查比较幂的大小,属于基础题.2.(2020·湖南高三学业考试)10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12.设其平均数为a ,中位数为b ,众数为c ,则有( ).A .a b c >>B .c b a >>C .c a b >>D .b c a >>【答案】B 【解析】【分析】根据所给数据,分别求出平均数为a ,中位数为b ,众数为c ,然后进行比较可得选项. 【详解】1(15171410151717161412)14.710a =+++++++++=,中位数为1(1515)152b =+=,众数为=17c .故选:B.【点睛】本题主要考查统计量的求解,明确平均数、中位数、众数的求解方法是求解的关键,侧重考查数学运算的核心素养.3.(2020·四川省泸县第二中学高三月考(文))已知3log 6p =,5log 10q =,7log 14r =,则p ,q ,r 的大小关系为( )A .q p r >>B .p r q >>C .p q r >>D .r q p >>【答案】C 【解析】【分析】利用对数运算的公式化简,,p q r 为形式相同的表达式,由此判断出,,p q r 的大小关系.【详解】依题意得31+log 2p =,51log 2q =+,71log 2r =+,而357log 2log 2log 2>>,所以p q r >>.【点睛】本小题主要考查对数的运算公式,考查化归与转化的数学思想方法,属于基础题.4. (2020·四川省泸县第四中学高三月考(理))设{a n }是等比数列,则“a 1<a 2<a 3”是数列{a n }是递增数列的A .充分而不必要条件B .必要而不充分条件、C .充分必要条件D .既不充分也不必要条件【答案】C【解析】1212311101a a a a a a q a q q >⎧<<⇒<<⇒⎨>⎩或1001a q <⎧⎨<<⎩,所以数列{a n }是递增数列,若数列{a n }是递增数列,则“a 1<a 2<a 3”,因此“a 1<a 2<a 3”是数列{a n }是递增数列的充分必要条件,选C5.(2020·四川棠湖中学高三月考(文))设log a =log b =,120192018c =,则a ,b ,c 的大小关系是( ).A .a b c >>B .a c b >>C .c a b >>D .c b a >>【答案】C 【解析】【分析】根据所给的对数式和指数式的特征可以采用中间值比较法,进行比较大小.【详解】因为20182018201811log 2018log log ,2a =>=>=201920191log log ,2b ==102019201820181c =>=,故本题选C.【点睛】本题考查了利用对数函数、指数函数的单调性比较指数式、对数式大小的问题.6.(2020·北京八十中高三开学考试)设0.10.134,log 0.1,0.5a b c ===,则 ( )A .a b c >>B .b a c >>C .a c b >>D .b c a >>【答案】C 【解析】0.10.1341,log 0.10,00.51a b c =>=<<=<,a c b ∴>>,故选C 。
高三数学选择填空题训练(1)
高三数学选择填空题训练(1)一.填空题1.已知定义域在[-1,1]上的函数y=f(x)的值域为[-2,0];则函数y=f(cos x )的值域为 A .[-1,1] B .[―3,―1] C .[-2,0] D .不能确定 2.已知函数y=f(x)是一个以4为最小正周期的奇函数;则f(2)=A .0B .-4C .4D .不能确定3.如果采用分层抽样法从个体数为N 的总体中;抽取一个容量为n 的样本;那么每个个体被抽到的概率等于( )A .N1B .N nC .n 1D .nN4.首项系数为1的二次函数y=f(x)在x=1处的切线与x 轴平行;则A .f(arcsin31)>f(arcsin 32) B .f(arcsin 31)=f(arcsin 32) C .f(arcsin 31)>f(arcsin 32) D .f(arcsin 31)与f(arcsin 32)的大小不能确定5.关于x 的不等式ax -b>0的解集为(1,+∞);则关于x 的不等式2-+x bax >0的解集为A .(-1,2)B .(-∞,-1)∪(2,+∞)C .(1,2)D .(―∞,―2)∪(1,+∞)6.若O 为⊿ABC 的内心;且满足(OB -OC )•(OB +OC -2OA )=0A .等腰三角形B .正三角形C .直角三角形D .以上都不对 7.设有如下三个命题甲:m ∩l =A, m 、l ⊂α, m 、l ⊄β;乙:直线m 、l 中至少有一条与平面β相交; 丙:平面α与平面β相交。
当甲成立时;乙是丙的 条件。
A .充分而不必要B .必要而不充分C .充分必要D .既不充分又不必要 8.⊿ABC 中;3sinA+4cosB=6;3cosA+4sinB=1;则∠C 的大小为A .6π B .65π C .6π或65π D .3π或32π9.等体积的球和正方体;它们的表面积的大小关系是A .S 球>S 正方体B .S 球<S 正方体C .S 球=S 正方体D .S 球=2S 正方体10.若连结双曲线22a x -22by =1与其共轭双曲线的四个顶点构成面积为S 1的四边形;连结四个焦点构成面积为S 2的四边形;则21S S 的最大值为 A .4 B .2C .21 D .41 二.填空题11.函数)(cos 3sin R x x x y ∈+=的最小值是 .12.某中学高一年级400人;高二年级320人;高三年级280人;若每人被抽取的概率为;问该中学抽取一个容量为n 的样本;则n= . 13.若指数函数f(x)=a x (x ∈R)的部分对应值如下表:则不等式1-f(|x -1|)<0的解集为 。
深圳市育才中学2024年高三高考数学试题系列模拟卷(1)
深圳市育才中学2024年高三高考数学试题系列模拟卷(1)注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若5(1)(1)ax x ++的展开式中23,x x 的系数之和为10-,则实数a 的值为( )A .3-B .2-C .1-D .12.若复数z 满足(1)34i z i +=+,则z 的虚部为( )A .5B .52C .52-D .-53.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是A .B .C .D .4.已知函数,其中04?,?04b c ≤≤≤≤,记函数满足条件:(2)12{(2)4f f ≤-≤为事件A ,则事件A发生的概率为 A .14B .58C .38D .125.已知向量(1,4)a =,(2,)b m =-,若||||a b a b +=-,则m =( )A .12-B .12C .-8D .86.设抛物线2:2(0)C y px p =>的焦点为F ,抛物线C 与圆22:(3)3C x y +-='交于M ,N 两点,若||6MN =,则MNF 的面积为( )A .28B .38C .328D .3247.已知变量x ,y 间存在线性相关关系,其数据如下表,回归直线方程为 2.10.5ˆ8y x =+,则表中数据m 的值为( )变量x 01 2 3 变量y m35.57A .0.9B .0.85C .0.75D .0.58.已知函数21,0()2ln(1),0x x x f x x x ⎧-+<⎪=⎨⎪+≥⎩,若函数()()g x f x kx =-有三个零点,则实数k 的取值范围是( ) A .112⎡⎤⎢⎥⎣⎦, B .112⎛⎫ ⎪⎝⎭, C .(0,1)D .12⎛⎫+∞ ⎪⎝⎭, 9.已知1111143579π≈-+-+-,如图是求π的近似值的一个程序框图,则图中空白框中应填入A .121i n =-- B .12i i =-+ C .(1)21ni n -=+D .(1)2ni i -=+10.某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误的是( ).A .收入最高值与收入最低值的比是3:1B .结余最高的月份是7月份C .1与2月份的收入的变化率与4至5月份的收入的变化率相同D .前6个月的平均收入为40万元11.对某两名高三学生在连续9次数学测试中的成绩(单位:分)进行统计得到折线图,下面是关于这两位同学的数学成绩分析.①甲同学的成绩折线图具有较好的对称性,故平均成绩为130分; ②根据甲同学成绩折线图提供的数据进行统计,估计该同学平均成绩在区间内;③乙同学的数学成绩与测试次号具有比较明显的线性相关性,且为正相关; ④乙同学连续九次测验成绩每一次均有明显进步. 其中正确的个数为( ) A .B .C .D .12.已知双曲线2222:1x y C a b-=(0a >,0b >),以点P (,0b )为圆心,a 为半径作圆P ,圆P 与双曲线C 的一条渐近线交于M ,N 两点,若90MPN ∠=︒,则C 的离心率为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。
高三数学选择题专题训练(17套)含答案
(每个专题时间:35分钟,满分:60分)1.函数y =的定义域是( )A .[1,)+∞B .23(,)+∞ C .23[,1] D .23(,1]2.函数221()1x f x x -=+, 则(2)1()2f f = ( ) A .1 B .-1 C .35D .35-3.圆222430x y x y +-++=的圆心到直线1x y -=的距离为( )A .2 BC .1 D4.不等式221x x +>+的解集是( ) A .(1,0)(1,)-+∞ B .(,1)(0,1)-∞- C .(1,0)(0,1)- D .(,1)(1,)-∞-+∞5.sin163sin 223sin 253sin313+=( )A .12-B .12C. D6.若向量a 与b 的夹角为60,||4,(2).(3)72b a b a b =+-=-,则向量a 的模为( ) A .2 B .4 C .6 D .127.已知p 是r 的充分不必要条件,s 是r 的必要条件,q 是s 的必要条件。
那么p 是q 成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 8.不同直线,m n 和不同平面,αβ,给出下列命题 ( )①////m m αββα⎫⇒⎬⊂⎭ ② //////m n n m ββ⎫⇒⎬⎭ ③ ,m m n n αβ⊂⎫⇒⎬⊂⎭异面 ④ //m m αββα⊥⎫⇒⊥⎬⎭其中假命题有:( ) A .0个 B .1个C .2个D .3个9. 若{}n a 是等差数列,首项120032004200320040,0,.0a a a a a >+><,则使前n 项和0n S > 成立的最大自然数n 是 ( ) A .4005 B .4006 C .4007 D .400810.已知双曲线22221,(0,0)x y a b a b-=>>的左,右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则此双曲线的离心率e 的最大值为 ( )A .43B .53C .2D .7311.已知盒中装有3只螺口与7只卡口灯炮,这些灯炮的外形与功率都相同且灯口向下放着,现需要一只卡口灯炮使用,电工师傅每次从中任取一只并不放回,则他直到第3次才取得卡口灯炮的概率为 ( )A .2140B .1740C .310D .712012. 如图,棱长为5的正方体无论从哪一个面看,都有两个直通的边长为1的正方形孔,则这个有孔正方体的表面积(含孔内各面)是A .258B .234C .222D .2101.设集合U={1,2,3,4,5},A={1,3,5},B={2,3,5},则()U C A B 等于( )A .{1,2,4}B .{4}C .{3,5}D .∅2.︒+︒15cot 15tan 的值是( )A .2B .2+3C .4D .334 3.命题p :若a 、b ∈R ,则|a |+|b|>1是|a +b|>1的充要条件;命题q :函数y=2|1|--x 的定义域是(-∞,-1]∪[3,+∞).则( )A .“p 或q ”为假B .“p 且q ”为真C .p 真q 假D .p 假q 真4.已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若△ABF 2是正三角形,则这个椭圆的离心率为( )A .32 B .33 C .22 D .235.设S n 是等差数列{}n a 的前n 项和,若==5935,95S Sa a 则( ) A .1B .-1C .2D .216.已知m 、n 是不重合的直线,α、β是不重合的平面,有下列命题:其中真命题的个数是( ) ①若m ⊂α,n ∥α,则m ∥n ; ②若m ∥α,m ∥β,则α∥β; ③若α∩β=n ,m ∥n ,则m ∥α且m ∥β; ④若m ⊥α,m ⊥β,则α∥β.A .0B .1C .2D .37.已知函数y=log 2x 的反函数是y=f —1(x ),则函数y= f —1(1-x )的图象是( )8.已知a 、b 是非零向量且满足(a -2b) ⊥a ,(b -2a ) ⊥b ,则a 与b 的夹角是( )A .6π B .3π C .32π D .65π 9.已知8)(xa x -展开式中常数项为1120,其中实数a 是常数,则展开式中各项系数的和是( )A .28B .38C .1或38D .1或2810.如图,A 、B 、C 是表面积为48π的球面上三点,AB=2,BC=4,∠ABC=60º,O 为球心,则直线OA 与截面ABC 所成的角是( ) A .arcsin 63 B .arccos 63C .arcsin 33 D .arccos 3311.定义在R 上的偶函数f(x)满足f(x)=f(x +2),当x ∈[3,4] 时,f(x)= x -2,则 ( ) A .f (sin21)<f (cos 21) B .f (sin 3π)>f (cos 3π) C .f (sin1)<f (cos1) D .f (sin 23)>f (cos 23) 12.如图,B 地在A 地的正东方向4 km 处,C 地在B 地的北偏东30°方向2 km 处,河流的沿岸PQ (曲线)上任意一点到A 的距离比到B 的距离远2km ,现要在曲线PQ 上任意选一处M 建一座码头,向B 、C 两地转运货物,经测算,从M 到B 、C 两地修建公路的费用都是a 万元/km 、那么修建这两条公路的总费用最低是( )A .(7+1)a 万元B .(27-2) a 万元C .27a 万元D .(7-1) a 万元专题训练(三)1.已知平面向量a =(3,1),b =(x ,–3),且a b ⊥,则x= ( ) A .-3 B .-1 C .1 D .3 2.已知{}{}2||1|3,|6,A x x B x xx =+>=+≤则A B =( )A .[)(]3,21,2-- B .(]()3,21,--+∞C . (][)3,21,2--D .(](],31,2-∞-3.设函数2322,(2)()42(2)x x f x x x a x +⎧->⎪=--⎨⎪≤⎩在x=2处连续,则a= ( )A .12-B .14- C .14 D .134.已知等比数列{n a }的前n 项和12-=n n S ,则++2221a a …2n a +等于( )A .2)12(-nB .)12(31-nC .14-nD .)14(31-n5.函数f(x)22sin sin 44f x x x ππ=+--()()()是( ) A .周期为π的偶函数 B .周期为π的奇函数 C . 周期为2π的偶函数 D ..周期为2π的奇函数6.一台X 型号自动机床在一小时内不需要工人照看的概率为0.8000,有四台这中型号的自动机床各自独立工作,则在一小时内至多2台机床需要工人照看的概率是( )A .0.1536B . 0.1808C . 0.5632D . 0.97287.在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是( )A .23 B . 76 C . 45 D . 568.若双曲线2220)x y kk -=>(的焦点到它相对应的准线的距离是2,则k= ( ) A . 6 B . 8C . 1D . 49.当04x π<<时,函数22cos ()cos sin sin xf x x x x =-的最小值是( ) A . 4 B . 12 C .2 D . 1410.变量x 、y 满足下列条件:212,2936,2324,0,0.x y x y x y x y +≥⎧⎪+≥⎪⎨+=⎪⎪≥≥⎩ 则使z=3x+2y 的值最小的(x ,y )是 ( )A . ( 4.5 ,3 )B . ( 3,6 )C . ( 9, 2 )D . ( 6, 4 )11.若tan 4f x x π=+()(),则( ) A . 1f -()>f (0)>f (1) B . f (0)>f(1)>f (-1) C . 1f ()>f (0)>f (-1) D . f (0)>f(-1)>f (1) 12.如右下图,定圆半径为 ( b ,c ), 则直线ax+by+c=0 与直线 x –y+1=0的交点在( )A . 第四象限B . 第三象限C .第二象限D . 第一象限1.设集合P={1A .{1,2} B . {3,4} C . {1} D . {-2,-1,0,1,2}2.函数y=2cos 2x+1(x ∈R )的最小正周期为 ( )A .2πB .πC .π2D .π43.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有( )A .140种B .120种C .35种D .34种4.一平面截一球得到直径是6cm 的圆面,球心到这个平面的距离是4cm ,则该球的体积是( )A .33π100cmB . 33π208cmC . 33π500cmD . 33π3416cm 5.若双曲线18222=-by x 的一条准线与抛物线x y 82=的准线重合,则双曲线的离心率为 ( )A .2B .22C . 4D .246.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用右侧的条形图表示. 根据条形图可得这50名学生这一天平均每人的课外阅读时间为 ( )A .0.6小时B .0.9小时C .1.0小时D .1.5小时 7.4)2(x x +的展开式中x 3的系数是( ) A .6 B .12 C .24 D .488.若函数)1,0)((log ≠>+=a a b x y a 的图象过两 点(-1,0)和(0,1),则( )A .a =2,b=2B .a = 2 ,b=2C .a =2,b=1D .a = 2 ,b= 29.将一颗质地均匀的骰子(它是一种各面上分 别标有点数1,2,3,4,5,6的正方体玩具)先后抛掷3次,至少出现一次6点向上的概率是( )A .5216B .25216C .31216D .9121610.函数13)(3+-=x x x f 在闭区间[-3,0]上的最大值、最小值分别是( )A .1,-1B .1,-17C .3,-17 D.9,-1911.设k>1,f(x)=k(x-1)(x ∈R ) . 在平面直角坐标系xOy 中,函数y=f(x)的图象与x 轴交于A 点,它的反函数y=f -1(x)的图象与y 轴交于B 点,并且这两个函数的图象交于P 点. 已知四边形OAPB 的面积是3,则k 等于 ( )A .3B .32C .43D .6512.设函数)(1)(R x xxx f ∈+-=,区间M=[a ,b](a<b),集合N={M x x f y y ∈=),(},则使M=N 成立的实数对(a ,b)有 ( )A .0个B .1个C .2个D .无数多个人数(人)时间(小时)专题训练(五)1.若θθθ则角且,02sin ,0cos <>的终边所在象限是( )A .第一象限B .第二象限C .第三象限D .第四象限2.对于10<<a ,给出下列四个不等式,其中成立的是( )① )11(log )1(log a a a a +<+ ②)11(log )1(log aa a a +>+ ③aa a a 111++<④aaaa 111++>A .①与③B .①与④C .②与③D .②与④3.已知α、β是不同的两个平面,直线βα⊂⊂b a 直线,,命题b a p 与:无公共点;命题βα//:q . 则q p 是的( )A .充分而不必要的条件B .必要而不充分的条件C .充要条件D .既不充分也不必要的条件 4.圆064422=++-+y x y x 截直线x -y -5=0所得弦长等于( ) A .6 B .225 C .1 D .5 5.甲、乙两人独立地解同一问题,甲解决这个问题的概率是p 1,乙解决这个问题的概率是p 2,那么恰好有1人解决这个问题的概率是( )A .21p pB .)1()1(1221p p p p -+-C .211p p -D .)1)(1(121p p --- 6.已知点)0,2(-A 、)0,3(B ,动点2),(x y x P =⋅满足,则点P 的轨迹是( ) A .圆 B .椭圆 C .双曲线 D .抛物线 7.已知函数1)2sin()(--=ππx x f ,则下列命题正确的是( )A .)(x f 是周期为1的奇函数B .)(x f 是周期为2的偶函数C .)(x f 是周期为1的非奇非偶函数D .)(x f 是周期为2的非奇非偶函数 8.已知随机变量ξ的概率分布如下:则==)10(ξP ( )A .932 B .103 C .93 D .103 9.已知点)0,2(1-F 、)0,2(2F ,动点P 满足2||||12=-PF PF . 当点P 的纵坐标是21时,点P 到坐标原点的距离是( )A .26 B .23 C .3D .210.设A 、B 、C 、D 是球面上的四个点,且在同一平面内,AB=BC=CD=DA=3,球心到该平面的距离是球半径的一半,则球的体积是( )A .π68B .π664C .π224D .π27211.若函数)sin()(ϕω+=x x f 的图象(部分)如图所示,则ϕω和的取值是( )A .3,1πϕω==B .3,1πϕω-==C .6,21πϕω==D .6,21πϕω-== 12.有两排座位,前排11个座位,后排12个座位,现安排2人就座,规定前排中间的3个座位不能坐, 并且这2人不.左右相邻,那么不同排法的种数是( )A .234B .346C .350D .3631.设集合U A .{2} B .{2,3} C .{3} D . {1,3} 2.已知函数=-=+-=)(,21)(,11lg )(a f a f x x x f 则若( ) A .21 B .-21 C .2 D .-23.已知a +b 均为单位向量,它们的夹角为60°,那么|a +3b |=( ) A .7 B .10C .13D .44.函数)1(11>+-=x x y 的反函数是 ( )A .)1(222<+-=x x x yB .)1(222≥+-=x x x y C .)1(22<-=x x x y D .)1(22≥-=x x x y5.73)12(xx -的展开式中常数项是( )A .14B .-14C .42D .-426.设)2,0(πα∈若,53sin =α则)4cos(2πα+=( ) A .57B .51C .27 D .47.椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则||2PF =( ) A .23B .3C .27 D .48.设抛物线x y 82=的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )A .]21,21[-B .[-2,2]C .[-1,1]D .[-4,4]9.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象( )A .向右平移6π个单位长度 B .向右平移3π个单位长度 C .向左平移6π个单位长度D .向左平移3π个单位长度10.已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H ,设四面体EFGH 的表面积为T ,则ST等于( )A .91 B .94 C .41 D .31 11.从1,2,……,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是( )A .95 B .94 C .2111 D .2110 12.已知ca bc ab a c c b b a ++=+=+=+则,2,2,1222222的最小值为( )A .3-21B .21-3C .-21-3D .21+31.已知集合}032|{|,4|{22<--=<=x x x N x x M ,则集合N M ⋂=( ) A .{2|-<x x } B .{3|>x x } C .{21|<<-x x } D . {32|<<x x }2.函数)5(51-≠+=x x y 的反函数是( ) A .)0(51≠-=x x y B .)(5R x x y ∈+=C .)0(51≠+=x xy D .)(5R x x y ∈-=3.曲线1323+-=x x y 在点(1,-1)处的切线方程为( ) A .43-=x y B .23+-=x y C .34+-=x y D .54-=x y4.已知圆C 与圆1)1(22=+-y x 关于直线x y -=对称,则圆C 的方程为( )A .1)1(22=++y xB .122=+y xC .1)1(22=++y xD .1)1(22=-+y x5.已知函数)2tan(ϕ+=x y 的图象过点)0,12(π,则ϕ可以是( )A .6π-B .6π C .12π-D .12π 6.正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为( ) A .75° B .60° C .45° D .30° 7.函数xe y -=的图象( ) A .与xe y =的图象 关于y 轴对称B .与xe y =的图象关于坐标原点对称C .与x e y -=的图象关于y 轴对称D .与xe y -=的图象关于坐标原点对称 8.已知点A (1,2)、B (3,1),则线段AB 的垂直平分线的方程是( ) A .524=+y x B .524=-y x C .52=+y x D .52=-y x 9.已知向量a 、b 满足:|a |=1,|b |=2,|a -b |=2,则|a +b |=( ) A .1B .2C .5D .610.已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离均为2π,则球心O 到平面ABC 的距离为( )A .31 B .33 C .32 D .36 11.函数x x y 24cos sin +=的最小正周期为( )A .4π B .2π C .π D .2π12.在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有( ) A .56个 B .57个 C .58个 D .60个专题训练(八)1、设集合22,1,,M x y xy x R y R =+=∈∈,2,0,,N x y xy x R y R =-=∈∈,则集合MN 中元素的个数为( )A .1B .2C .3D .42、函数sin 2xy =的最小正周期是( ) A .2πB .πC .2πD .4π3、记函数13xy -=+的反函数为()y g x =,则(10)g =( ) A . 2 B . 2-C . 3D . 1- 4、等比数列{}n a 中,29,a = 5243a =,则{}n a 的前4项和为( )A . 81B . 120C .168D . 1925、圆2240x y x +-=在点(P 处的切线方程是( )A . 20x +-=B . 40x +-=C . 40x -+=D . 20x +=6、61x ⎫⎪⎭展开式中的常数项为( )A . 15B . 15-C . 20D . 20-7、若△ABC 的内角满足sin A +cos A >0,tan A -sin A <0,则角A 的取值范围是( )A .(0,4π) B .(4π,2π) C .(2π,43π) D .(43π,) 8、设双曲线的焦点在x 轴上,两条渐近线为12y x =±,则双曲线的离心率e =( )A . 5B .C .D . 549、不等式113x <+<的解集为( )A . ()0,2B . ()()2,02,4- C . ()4,0- D . ()()4,20,2--10、正三棱锥的底面边长为2,侧面均为直角三角形,则此三棱锥的体积为( )A .B .C . 3D .11、在ABC 中,3,4AB BC AC ===,则边AC 上的高为( )A .B .C . 32D .12、4名教师分配到3所中学任教,每所中学至少1名教师,则不同的分配方案共有( )A . 12 种B . 24 种C 36 种D . 48 种1.设集合U={1U A .{5} B .{0,3} C .{0,2,3,5} D . {0,1,3,4,5}2.函数)(2R x e y x∈=的反函数为( ) A .)0(ln 2>=x x y B .)0)(2ln(>=x x y C .)0(ln 21>=x x y D .)0(2ln 21>=x x y 3.正三棱柱侧面的一条对角线长为2,且与底面成45°角,则此三棱柱的体积为( ) A .26 B . 6C .66 D .36 4. 函数)1()1(2-+=x x y 在1=x 处的导数等于( ) A .1 B .2 C .3 D .45.为了得到函数xy )31(3⨯=的图象,可以把函数xy )31(=的图象( )A .向左平移3个单位长度B .向右平移3个单位长度C .向左平移1个单位长度D .向右平移1个单位长度6.等差数列}{n a 中,78,24201918321=++-=++a a a a a a ,则此数列前20项和等于 A .160 B .180 C .200 D .2207.已知函数kx y x y ==与41log 的图象有公共点A ,且点A 的横坐标为2,则k ( )A .41-B .41 C .21-D .21 8.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线0443=++y x 与圆C 相切,则圆C 的方程为( )A .03222=--+x y xB .0422=++x y xC .03222=-++x y x D .0422=-+x y x9.从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有( )A .210种B .420种C .630种D .840种10.函数))(6cos()3sin(2R x x x y ∈+--=ππ的最小值等于( ) A .-3 B .-2 C .-1 D .-511.已知球的表面积为20π,球面上有A 、B 、C 三点.如果AB=AC=BC=23,则球心到平面ABC 的距离为( )A .1B .2C .3D .212.△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边.如果a 、b 、c 成等差数列,∠B=30°,△ABC 的面积为23,那么b =( ) A .231+ B .31+ C .232+ D .32+1.设集合A .PQ P = B .P Q 包含Q C .P Q Q = D . P Q 真包含于P2. 不等式21≥-xx 的解集为( ) A . )0,1[- B . ),1[+∞- C .]1,(--∞ D .),0(]1,(+∞--∞ 3.对任意实数,,a b c 在下列命题中,真命题是( )A .""ac bc >是""a b >的必要条件B .""ac bc =是""a b =的必要条件C .""ac bc >是""a b >的充分条件D .""ac bc =是""a b =的充分条件 4.若平面向量b 与向量)2,1(-=的夹角是o 180,且53||=,则=b ( ) A . )6,3(- B . )6,3(- C . )3,6(- D . )3,6(-5.设P 是双曲线19222=-y ax 上一点,双曲线的一条渐近线方程为023=-y x ,1F 、2F 分别是双曲线的左、右焦点。
广东省阳江市第一中学高三数学(理科)大练习(一)2010.8.14
∴最后一列货车出发时已等待的时间为 (小时),
于是全部货车到达 地的时间为 .
由 可知 ,代入上式整理得
于是 .
当且仅当 ,即 (千米/时)时,等号成立.
∴26列货车都到达 地最少用10小时,此时货车速度为80千米/时.
命题意图:本题考查学生的建模能力,考查基本不等式的知识的应用,及基本的计算能力。
6.使关于 的不等式 有解的实数 的最大值是( )
7.已知点 的距离相等,则 的最小值为( )
8.如图,有一直角墙角,两边的长度足够长,在 处有一棵树与两墙的距离分别是 、 ,不考虑树的粗细.现在想用 长的篱笆,借助墙角围成一个矩形的花圃 .设此矩形花圃的面积为 , 的最大值为 ,若将这棵树围在花圃内,则函数 的图象大致是( )
所以不等式左边
(13分)
下证 ,显然.即证.(14分)
证法二:(数学归纳法)即证:当
下用数学归纳法证明:
当 时,左边 ,显然;
假设 时命题成立,即 (10分)
当 时,左边
( )
(12分)
下证: (*)
(*)
显然 .所以命题对 时成立。
综上 知不等式对一切 成立. (14分)
阳江一中2011届高三数学(理科)大练习(2010.8.14)
命题:周如钢审核:曾广荣2010年8月14日下午3:00─5:00
本试卷满分150分,考试时间120分钟.
第Ⅰ卷(选择题,共40分)
一、选择题:(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,有且只有一项是符合题目要求的.)
所以当 时, ;当 时, ;当 时,
综上可得, 的最小值为5.
所以 对一切实数 恒成立,实数 的取值范围
【好题】高三数学下期末模拟试题及答案(1)
【好题】高三数学下期末模拟试题及答案(1)一、选择题1.在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为 A .10 B .11C .12D .152.若满足sin cos cos A B Ca b c==,则ABC ∆为( ) A .等边三角形 B .有一个内角为30°的直角三角形 C .等腰直角三角形D .有一个内角为30°的等腰三角形3.已知命题p :若x >y ,则-x <-y ;命题q :若x >y ,则x 2>y 2.在命题①p ∧q ;②p ∨q ;③p ∧(⌝q );④(⌝p )∨q 中,真命题是( ) A .①③B .①④C .②③D .②④4.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4为朋友,每位朋友1本,则不同的赠送方法共有 A .4种B .10种C .18种D .20种5.甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面,不同的安排方法共有( ) A .20种 B .30种 C .40种 D .60种 6.数列2,5,11,20,x ,47...中的x 等于( ) A .28B .32C .33D .277.函数32()31f x x x =-+的单调减区间为 A .(2,)+∞B .(,2)-∞C .(,0)-∞D .(0,2)8.函数()ln f x x x =的大致图像为 ( )A .B .C .D .9.若干年前,某教师刚退休的月退休金为6000元,月退休金各种用途占比统计图如下面的条形图.该教师退休后加强了体育锻炼,目前月退休金的各种用途占比统计图如下面的折线图.已知目前的月就医费比刚退休时少100元,则目前该教师的月退休金为( ).A .6500元B .7000元C .7500元D .8000元 10.在△ABC 中,P 是BC 边中点,角、、A B C 的对边分别是,若0cAC aPA bPB ++=ru u u v u u u v u u u v ,则△ABC 的形状为( )A .直角三角形B .钝角三角形C .等边三角形D .等腰三角形但不是等边三角形.11.设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P AC B --的平面角为γ,则( ) A .,βγαγ<<B .,βαβγ<<C .,βαγα<<D .,αβγβ<<12.一个样本a,3,4,5,6的平均数是b ,且不等式x 2-6x +c <0的解集为(a ,b ),则这个样本的标准差是( ) A .1 B 2C 3D .2二、填空题13.设正数,a b 满足21a b +=,则11a b+的最小值为__________. 14.函数()23s 34f x in x cosx =-(0,2x π⎡⎤∈⎢⎥⎣⎦)的最大值是__________. 15.等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C AB D --的余弦值为33,M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 . 16.在极坐标系中,直线cos sin (0)a a ρθρθ+=>与圆2cos ρθ=相切,则a =__________.17.已知向量a r 与b r 的夹角为60°,|a r |=2,|b r |=1,则|a r+2 b r |= ______ .18.有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.19.如图,正方体1111ABCD A B C D -的棱长为1,线段11B D 上有两个动点,E F ,且22EF =,现有如下四个结论: AC BE ①⊥;//EF ②平面ABCD ;③三棱锥A BEF -的体积为定值;④异面直线,AE BF 所成的角为定值,其中正确结论的序号是______.20.()sin 5013tan10+=oo________________.三、解答题21.已知曲线C :(t 为参数), C :(为参数).(1)化C ,C 的方程为普通方程,并说明它们分别表示什么曲线; (2)若C 上的点P 对应的参数为,Q 为C 上的动点,求中点到直线(t 为参数)距离的最小值.22.已知2256x ≤且21log 2x ≥,求函数22()log 22x xf x =⋅的最大值和最小值. 23.“微信运动”是手机APP 推出的多款健康运动软件中的一款,大学生M 的微信好友中有400位好友参与了“微信运动”.他随机抽取了40位参与“微信运动”的微信好友(女20人,男20人)在某天的走路步数,经统计,其中女性好友走路的步数情况可分为五个类别:A 、02000:步,(说明:“02000:”表示大于或等于0,小于2000,以下同理),B 、20005000:步,C 、50008000:步,D 、800010000:步,E 、1000012000:步,且A 、B 、C 三种类别的人数比例为1:4:3,将统计结果绘制如图所示的柱形图;男性好友走路的步数数据绘制如图所示的频率分布直方图.(Ⅰ)若以大学生M 抽取的微信好友在该天行走步数的频率分布,作为参与“微信运动”的所有微信好友每天走路步数的概率分布,试估计大学生M 的参与“微信运动”的400位微信好友中,每天走路步数在20008000:的人数;(Ⅱ)若在大学生M 该天抽取的步数在800010000:的微信好友中,按男女比例分层抽取6人进行身体状况调查,然后再从这6位微信好友中随机抽取2人进行采访,求其中至少有一位女性微信好友被采访的概率.24.随着“互联网+交通”模式的迅猛发展,“共享自行车”在很多城市相继出现。
高三数学中难度小题
高三数学中难度小题一.选择题(共16小题)1.已知(1+x)(a﹣x)6=a0+a1x+a2x2+…+a7x7,a∈R,若a0+a1+a2+…+a6+a7=0,则a3的值为()A.35 B.20 C.5 D.﹣52.已知函数f(x)=x+e x﹣a,g(x)=ln(2x+1)﹣4e a﹣x,其中e为自然对数的底数,若存在实数x0,使f(x0)﹣g(x0)=4成立,则实数a的值为()A.ln 1﹣1 B.1﹣ln 2 C.ln 2 D.﹣ln 23.已知F为抛物线C:y2=4x的焦点,过F的直线l与C相交于A、B两点,线段AB的垂直平分线交x轴于点M,垂足为E,若|AB|=6,则|EM|的长为()A.2 B.C.2 D.4.已知函数f(x)=x3﹣2x+e x﹣,其中e为自然对数的底数,若不等式f(3a2)+f(﹣2a﹣1)≤f (0)恒成立,则实数a的取值范围为()A.[﹣]B.[﹣]C.[﹣1,]D.[]5.设等比数列{a n}的公比为q,其前n项的积为T n,并且满足条件a1>1,a9a10﹣1>0,<0,则使T n>1成立的最大自然数n的值为()A.9 B.10 C.18 D.196.如图,在正方形ABCD中,E为AB的中点,P为以A为圆心、AB为半径的圆弧上的任意一点,设向量=λ+μ,则λ+μ的取值范围为()A.[﹣1,5]B.[] C.[] D.[﹣1,]7.已知,为单位向量,且,向量满足|﹣﹣|=2,则||的范围为()A.[1,1+]B.[2﹣,2+] C.[]D.[3﹣2,3+2]8.已知椭圆C:+=1,若直线l经过M(0,1),与椭圆交于A、B两点,且=﹣,则直线l的方程为()A.y=±x+1 B.y=±x+1 C.y=±x+1 D.y=±x+19.已知函数f(x)=x2﹣xlnx﹣k(x+2)+2在区间[,+∞)上有两个零点,则实数k的取值范围为()A.B.C.D.10.函数f(x)是定义在R上的奇函数,且f(x﹣1)为偶函数,当x∈[0,1]时,,若函数g(x)=f(x)﹣x﹣b恰有一个零点,则实数b的取值集合是()A.B.C.D.11.如图,F1,F2为双曲线C的左右焦点,且|F1F2|=2.若双曲线C的右支上存在点P,使得PF1⊥PF2.设直线PF2与y轴交于点A,且△APF1的内切圆半径为,则双曲线C的离心率为()A.2 B.4 C.D.212.已知f(x)=x+xlnx,若k(x﹣2)<f(x)对任意x>2恒成立,则整数k的最大值是()A.3 B.4 C.5 D.613.若函数y=2sinωx(ω>0)在区间(﹣,)上只有一个极值点,则ω的取值范围是()A.1≤ω≤B.<ω≤3 C.3≤ω<4 D.≤ω<14.下列说法正确的是()A.若a∈R,则“<1”是“a>1”的必要不充分条件B.“p∧q为真命题”是“p∨q为真命题”的必要不充分条件C.若命题p:“∀x∈R,sinx+cosx≤”,则¬p是真命题D.命题“∃x0∈R,使得x02+2x0+3<0”的否定是“∀x∈R,x2+2x+3>0”15.已知△ABC的外接圆半径为1,圆心为O,且3,则△ABC的面积为()A.B.C.D.16.已知λ∈R,函数g(x)=x2﹣4x+1+4λ,若关于x的方程f(g(x))=λ有6个解,则λ的取值范围为()A. B.C.D.二.填空题(共12小题)17.如图,圆锥的高PO=,底面⊙O的直径AB=2,C是圆上一点,且∠CAB=30°,D为AC的中点,则直线OC和平面PAC所成角的余弦值为.18.设函数f(x)=,数列{a n}是公比大于0的等比数列,且a5a6a7=1,若f(a1)+f (a2)+…+f(a10)=a1,则a1=.19.已知四面体ABCD的每个顶点都在球O的表面上,AB=AC=5,BC=8,AD⊥底面ABC,G为△ABC 的重心,且直线DG与底面ABC所成角的正切值为,则球O的表面积为.20.如图,一块均匀的正三角形面的钢板的质量为10kg,在它的顶点处分别受力F1,F2,F3,每个力同它相邻的三角形的两边之间的角都是60°,且|F1|=|F2|=|F3|.要提起这块钢板,|F1|,|F2|,|F3|均要大于xkg,则x的最小值为.21.在数列{a n}中,首项不为零,且a n=a n﹣1(n∈N*,n≥2),S n为{a n}的前n项和,令T n=,n∈N*,则T n的最大值为.22.已知球的直径SC=2,A,B是该球球面上的两点,若AB=2,∠ASC=∠BSC=45°,则棱锥S﹣ABC 的表面积为.23.已知数列{a n}的通项为a n=,若{a n}的最小值为,则实数a的取值范围是.24.如图所示,已知点O为△ABC的重心,OA⊥OB,AB=6,则•的值为.25.已知函数f(x)=,g(x)=kx+1,若方程f(x)﹣g(x)=0有两个不同实根,则实数k的取值范围为.26.如图,网格纸上小正方形的边长为1,粗线画出的是某四面体的三视图,则该四面体的外接球体积.27.定义max{a,b}表示实数a,b中的较大的数.已知数列{a n}满足a1=a(a>0),a2=1,a n+2=(n∈N),若a2015=4a,记数列{a n}的前n项和为S n,则S2015的值为.28.已知AD、BE分别是△ABC的中线,若AD=BE=1,且•=,则与的夹角为.三.解答题(共2小题)29.一只袋中放入了大小一样的红色球3个,白色球3个,黑色球2个.(Ⅰ)从袋中随机取出(一次性)2个球,求这2个球为异色球的概率;(Ⅱ)若从袋中随机取出(一次性)3个球,其中红色球、白色球、黑色球的个数分别为a、b、c,令随机变量ξ表示a、b、c的最大值,求ξ的分布列和数学期望.30.某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下数据资料:日期1月10日2月10日3月10日4月10日5月10日6月10日昼夜温差x(℃)1011131286就诊人数y(个)222529261612该兴趣小组确定的研究方案是:先从这6组(每个有序数对(x,y)叫作一组)数据中随机选取2组作为检验数据,用剩下的4组数据求线性回归方程.(Ⅰ)求选取的2组数据恰好来自相邻两个月的概率;(Ⅱ)若选取的是1月和6月的两组数据,请根据2至5月份的数据,求出y关于x的线性回归方程;(3)若由线性回归方程得到的估计数据与所选取的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问(Ⅲ)中所得到的线性回归方程是否是理想的?参考公式:.高三数学中难度小题参考答案与试题解析一.选择题(共16小题)1.已知(1+x)(a﹣x)6=a0+a1x+a2x2+…+a7x7,a∈R,若a0+a1+a2+…+a6+a7=0,则a3的值为()A.35 B.20 C.5 D.﹣5【解答】解:(1+x)(a﹣x)6=a0+a1x+a2x2+…+a7x7中,令x=1得,a0+a1+…+a7=2•(a﹣1)6=0,解得a=1,而a3表示x3的系数,所以a3=•(﹣1)3+•(﹣1)2=﹣5.故选:D.2.已知函数f(x)=x+e x﹣a,g(x)=ln(2x+1)﹣4e a﹣x,其中e为自然对数的底数,若存在实数x0,使f(x0)﹣g(x0)=4成立,则实数a的值为()A.ln 1﹣1 B.1﹣ln 2 C.ln 2 D.﹣ln 2【解答】解:f(x)﹣g(x)=x﹣ln(2x+1)+e x﹣a+4e a﹣x,令h(x)=x﹣ln(2x+1),则h′(x)=1﹣,∴h(x)在(﹣,0)上是减函数,在(0,+∞)上是增函数,所以h(x)min=h(0)=0,又e x﹣a+4e a﹣x≥2=4,∴f(x)﹣g(x)≥4,当且仅当时,取等号.解得x=0,a=﹣ln 2,故选:D.3.已知F为抛物线C:y2=4x的焦点,过F的直线l与C相交于A、B两点,线段AB的垂直平分线交x轴于点M,垂足为E,若|AB|=6,则|EM|的长为()A.2 B.C.2 D.【解答】解:由已知得F(1,0),设直线l的方程为x=my+1,并与y2=4x联立得y2﹣4my﹣4=0,设A(x1,y1),B(x2,y2),E(x0,y0),y1+y2=4m,则y0==2m,x0=2m2+1,所以E(2m2+1,2m),又|AB|=x1+x2+2=m(y1+y2)+4=4m2+4=6,解得m2=,线段AB的垂直平分线为y﹣2m=﹣m(x﹣2m2﹣1),令y=0,得M(2m2+3,0),从而|ME|==.故选:B.4.已知函数f(x)=x3﹣2x+e x﹣,其中e为自然对数的底数,若不等式f(3a2)+f(﹣2a﹣1)≤f (0)恒成立,则实数a的取值范围为()A.[﹣]B.[﹣]C.[﹣1,]D.[]【解答】解:易知y=x3﹣2x,与y=e x﹣,都是奇函数,所以函数f(x)为奇函数,又因为f′(x)=3x2﹣2+e x+e﹣x≥3x2≥0,所以函数f(x)为增函数,原不等式转化为:f(3a2)≤f(2a+1)⇒3a2﹣2a﹣1≤0,解得:﹣≤a≤1,故选:B.5.设等比数列{a n}的公比为q,其前n项的积为T n,并且满足条件a1>1,a9a10﹣1>0,<0,则使T n>1成立的最大自然数n的值为()A.9 B.10 C.18 D.19【解答】解:根据题意,a9a10﹣1>0,即a9a10>1,则有a92×q>1,即q>0,等比数列{a n}的各项均为正数,若<0,则有(a9﹣1)(a10﹣1)<0,又由a1>1,q>0,分析可得a9>1,a10<1,则T18=a1•a2•a3•a4•…•a15•a16•a17•a18=(a9a10)9>1;T19=a1•a2•a3•a4•…•a16•a17•a18•a19=(a10)19<1;则使T n>1成立的最大自然数n的值为18;故选:C.6.如图,在正方形ABCD中,E为AB的中点,P为以A为圆心、AB为半径的圆弧上的任意一点,设向量=λ+μ,则λ+μ的取值范围为()A.[﹣1,5]B.[] C.[] D.[﹣1,]【解答】解:以A为原点,以AB所在的为x轴,建立坐标系,设正方形ABCD的边长为1,则E(,0),C(1,1),D(0,1),A(0,0),B(1,0).设P(cosθ,sinθ),∴AC=(1,1).再由向量=λ(,﹣1)+μ(cosθ,sinθ)=(+μcosθ,﹣λ+μsinθ )=(1,1),∴,∴,∴λ+μ===﹣1+.由题意得0≤θ≤,∴0≤cosθ≤1,0≤sinθ≤1.求得(λ+μ)′=>0,故λ+μ在[0,]上是增函数,故当θ=0时,即cosθ=1,这时λ+μ取最小值为=,故当θ=时,即cosθ=0,这时λ+μ取最大值为=5,故λ+μ的取值范围为[,5]故选:C.7.已知,为单位向量,且,向量满足|﹣﹣|=2,则||的范围为()A.[1,1+]B.[2﹣,2+] C.[]D.[3﹣2,3+2]【解答】解:由,是单位向量,•=0,可设=(1,0),=(0,1),=(x,y),由向量满足|﹣﹣|=2,∴|(x﹣1,y﹣1)|=2,∴=2,即(x﹣1)2+(y﹣1)2=4,其圆心C(1,1),半径r=2,∴|OC|=∴2﹣≤||=≤2+.故选:B.8.已知椭圆C:+=1,若直线l经过M(0,1),与椭圆交于A、B两点,且=﹣,则直线l的方程为()A.y=±x+1 B.y=±x+1 C.y=±x+1 D.y=±x+1【解答】解:设直线l的方程为m(y﹣1)=x.A(x1,y1),B(x2,y2).联立,化为:(9+5m2)y2﹣10m2y+5m2﹣45=0,∴y1+y2=,y1y2=,∵=﹣,∴y1﹣1=﹣.联立解得m=±3.则直线l的方程为:y=x+1.故选:B.9.已知函数f(x)=x2﹣xlnx﹣k(x+2)+2在区间[,+∞)上有两个零点,则实数k的取值范围为()A.B.C.D.【解答】解:令f(x)=0可得:,令,则,令t(x)=x2+3x﹣4﹣2lnx,则,据此可得函数t(x)在区间上单调递增,且t(1)=0,故当x∈(0,1)时,t(x)<0,h’(x)<0,当x∈(1,+∞)时,t(x)>0,h’(x)>0,则函数h(x)在区间上单调递减,在区间(1,+∞)上单调递增,而:,据此可得:实数k的取值范围为.故选:A.10.函数f(x)是定义在R上的奇函数,且f(x﹣1)为偶函数,当x∈[0,1]时,,若函数g(x)=f(x)﹣x﹣b恰有一个零点,则实数b的取值集合是()A.B.C.D.【解答】解:∵f(x)是定义在R上的奇函数,且f(x﹣1)为偶函数,∴f(﹣x﹣1)=f(x﹣1)=﹣f(x+1),即f(x)=﹣f(x+2),则f(x+4)=﹣f(x+2)=f(x),即函数f(x)的周期是4,∵f(x﹣1)为偶函数,∴f(x﹣1)关于x=0对称,则f(x)关于x=﹣1对称,同时也关于x=1对称,若x∈[﹣1,0],则﹣x∈[0,1],此时f(﹣x)==﹣f(x),则f(x)=﹣,x∈[﹣1,0],若x∈[﹣2,﹣1],x+2∈[0,1],则f(x)=﹣f(x+2)=﹣,x∈[﹣2,﹣1],若x∈[1,2],x﹣2∈[﹣1,0],则f(x)=﹣f(x﹣2)==,x∈[1,2],作出函数f(x)的图象如图:由数g(x)=f(x)﹣x﹣b=0得f(x)=x+b,由图象知当x∈[﹣1,0]时,由﹣=x+b,平方得x2+(2b+1)x+b2=0,由判别式△=(2b+1)2﹣4b2=0得4b+1=0,得b=﹣,此时f(x)=x+b有两个交点,当x∈[4,5],x﹣4∈[0,1],则f(x)=f(x﹣4)=,由=x+b,平方得x2+(2b﹣1)x+4+b2=0,由判别式△=(2b﹣1)2﹣16﹣4b2=0得4b=﹣15,得b=﹣,此时f(x)=x+b有两个交点,则要使此时f(x)=x+b有一个交点,则在[0,4]内,b满足﹣<b<﹣,即实数b的取值集合是4n﹣<b<4n﹣,即4(n﹣1)+<b<4(n﹣1)+,令k=n﹣1,则4k+<b<4k+,故选:D.11.如图,F1,F2为双曲线C的左右焦点,且|F1F2|=2.若双曲线C的右支上存在点P,使得PF1⊥PF2.设直线PF2与y轴交于点A,且△APF1的内切圆半径为,则双曲线C的离心率为()A.2 B.4 C.D.2【解答】解:由PF1⊥PF2,△APF1的内切圆半径为,由圆的切线和勾股定理可得:圆外一点引圆的切线所得切线长相等,可得|PF1|+|PA|﹣|AF1|=2r=1,由双曲线的定义可得|PF2|+2a+|PA|﹣|AF1|=1,可得|AF2|﹣|AF1|=1﹣2a,由图形的对称性知:|AF2|=|AF1|,即有a=.又|F1F2|=2,可得c=1,则e==2.故选:A.12.已知f(x)=x+xlnx,若k(x﹣2)<f(x)对任意x>2恒成立,则整数k的最大值是()A.3 B.4 C.5 D.6【解答】解:∵x>2,∴k(x﹣2)<f(x)可化为k<=;令F(x)=,则F′(x)=;令g(x)=x﹣2lnx﹣4,则g′(x)=1﹣>0,故g(x)在(2,+∞)上是增函数,且g(8)=8﹣2ln8﹣4=2(2﹣ln8)<0,g(9)=9﹣2ln9﹣4=5﹣2ln9>0;故存在x0∈(8,9),使g(x0)=0,即2lnx0=x0﹣4;故F(x)在(2,x0)上是减函数,在(x0,+∞)上是增函数;故F min(x)=F(x0)==;故k<;故k的最大值是4;故选:B.13.若函数y=2sinωx(ω>0)在区间(﹣,)上只有一个极值点,则ω的取值范围是()A.1≤ω≤B.<ω≤3 C.3≤ω<4 D.≤ω<【解答】解:函数y=2sinωx(ω>0)则y′=2ωcosωx.∵x∈(﹣,)上,∴ωx∈(﹣ω,ω).∵在区间(﹣,)上只有一个极值点,则﹣ω,且,解得:,即<ω≤3.故选:B.14.下列说法正确的是()A.若a∈R,则“<1”是“a>1”的必要不充分条件B.“p∧q为真命题”是“p∨q为真命题”的必要不充分条件C.若命题p:“∀x∈R,sinx+cosx≤”,则¬p是真命题D.命题“∃x0∈R,使得x02+2x0+3<0”的否定是“∀x∈R,x2+2x+3>0”【解答】解:若“<1”成立,则“a>1”或“a<0”,故“<1”是“a>1”的不充分条件,若“a>1”成立,则“<1”成立,故“<1”是“a>1”的必要条件,综上所述,“<1”是“a>1”的必要不充分条件,故A正确;若“p∧q为真命题”,则“p,q均为真命题”,则“p∨q为真命题”成立,若“p∨q为真命题”则“p,q存在至少一个真命题”,则“p∧q为真命题”不一定成立,综上所述,“p∧q为真命题”是“p∨q为真命题”的充分不必要条件,故B错误;命题p:“∀x∈R,sinx+cosx=sin(x+)≤”为真命题,则¬p是假命题,故C错误;命题“∃x0∈R,使得x02+2x0+3<0”的否定是“∀x∈R,x2+2x+3≥0”,故D错误;故选:A.15.已知△ABC的外接圆半径为1,圆心为O,且3,则△ABC的面积为()A.B.C.D.【解答】解:如图,;∴由得:①,②,③;①两边平方得:;∴;∴;∴OA⊥OB;同理②③两边分别平方得:,;∴;∴S△ABC =S△AOB+S△BOC+S△AOC==.故选:C.16.已知λ∈R,函数g(x)=x2﹣4x+1+4λ,若关于x的方程f(g(x))=λ有6个解,则λ的取值范围为()A. B.C.D.【解答】解:令g(x)=t,则方程f(t)=λ的解有3个,由图象可得,0<λ<1.且三个解分别为t1=﹣1﹣λ,t2=﹣1+λ,t3=10λ,则x2﹣4x+1+4λ=﹣1﹣λ,x2﹣4x+1+4λ=﹣1+λ,x2﹣4x+1+4λ=10λ,均有两个不相等的实根,则△1>0,且△2>0,且△3>0,即16﹣4(2+5λ)>0且16﹣4(2+3λ)>0,解得0<λ<,当0<λ<时,△3=16﹣4(1+4λ﹣10λ)>0即3﹣4λ+10λ>0恒成立,故λ的取值范围为(0,).故选:D.二.填空题(共12小题)17.如图,圆锥的高PO=,底面⊙O的直径AB=2,C是圆上一点,且∠CAB=30°,D为AC的中点,则直线OC和平面PAC所成角的余弦值为.【解答】解:设点O到平面PAC的距离为d,设直线OC和平面PAC所成角为α,则由等体积法有:V O﹣PAC=V P﹣OAC,即S△PAC •d=•PO•S△OAC,在△AOC中,求得AC=,在△POD中,求得PD=,∴d==,∴sin α==,于是cos α==,故答案为.18.设函数f(x)=,数列{a n}是公比大于0的等比数列,且a5a6a7=1,若f(a1)+f (a2)+…+f(a10)=a1,则a1=e.【解答】解:若x>1,则0<<1;则f(x)=xln x,=﹣xln x,故f(x)+f()=0对任意x>0成立.又∵{a n}是公比大于0的等比数列,且a5a6a7=1,所以a6=1.故a2a10=a3a9=a4a8=a5a7=a6=1;故f(a2)+f(a3)+…+f(a10)=f(a2)+f(a10)+f(a3)+f(a9)+…+f(a5)+f(a7)+f(a6)=0,所以f(a1)+f(a2)+…+f(a10)=f(a1)=a1,若a1>1,则a1ln a1=a1,则a1=e;若0<a1<1,则<0,无解;故答案为:e.19.已知四面体ABCD的每个顶点都在球O的表面上,AB=AC=5,BC=8,AD⊥底面ABC,G为△ABC 的重心,且直线DG与底面ABC所成角的正切值为,则球O的表面积为.【解答】解:由题意,AG=2,AD=1,cos∠BAC==﹣,∴sin∠BAC=,∴△ABC外接圆的直径为2r==,设球O的半径为R,∴R==∴球O的表面积为,故答案为.20.如图,一块均匀的正三角形面的钢板的质量为10kg,在它的顶点处分别受力F1,F2,F3,每个力同它相邻的三角形的两边之间的角都是60°,且|F1|=|F2|=|F3|.要提起这块钢板,|F1|,|F2|,|F3|均要大于xkg,则x的最小值为.【解答】解:由题意可得:3xsin60°≥10,解得x≥(kg),故答案为:.21.在数列{a n}中,首项不为零,且a n=a n﹣1(n∈N*,n≥2),S n为{a n}的前n项和,令T n=,n∈N*,则T n的最大值为2+2.【解答】解:数列{a n}中,首项不为零,且a n=a n﹣1(n∈N*,n≥2),∴数列{a n}为等比数列,首项为a1,公比为.∴,.S n=,S2n=,T n====≤=2(),当且仅当n=2时取等号.∴T n的最大值为2+2.故答案为:2+2.22.已知球的直径SC=2,A,B是该球球面上的两点,若AB=2,∠ASC=∠BSC=45°,则棱锥S﹣ABC 的表面积为16.【解答】解:∵∠BSC=∠ASC=45°,且SC为直径,∴△ASC与△BSC均为等腰直角三角形,∴BO⊥SC,AO⊥SC;又AO∩BO=O,∴SC⊥面ABO;△SAB中,SA=AB=,AB=2,∴S△SAB=×2×=3,同理S△ABC=3,∵S△BSC =S△ASC=×2×=5,∴棱锥S﹣ABC的表面积为16.故答案为:16.23.已知数列{a n}的通项为a n=,若{a n}的最小值为,则实数a的取值范围是[,+∞).【解答】解:由题可知当n≤5时结合函数y=x+(x>0),可知a n≥a4=4+=,又因为{a n}的最小值为,所以当n>5时y=alnn﹣≥,即alnn≥8,又因为lnn>ln5>0,所以当n>5时a≥恒成立,所以,故答案为:[,+∞).24.如图所示,已知点O为△ABC的重心,OA⊥OB,AB=6,则•的值为72.【解答】解:连接CO延长交AB于M,则由O为重心,则M为中点,且=﹣2=﹣2×(+)=﹣(+),由OA⊥OB,AB=6,则=0,+==36.则•=(﹣)•(﹣)=(2+)(2+)=5+2(+)=0+2×36=72.故答案为:72.25.已知函数f(x)=,g(x)=kx+1,若方程f(x)﹣g(x)=0有两个不同实根,则实数k的取值范围为(,1)∪(1,e﹣1];.【解答】解:∵g(x)=kx+1,∴方程f(x)﹣g(x)=0有两个不同实根等价为方程f(x)=g(x)有两个不同实根,即f(x)=kx+1,则等价为函数f(x)与函数y=kx+1有两个不同的交点,当1<x≤2,则0<x﹣1≤1,则f(x)=f(x﹣1)=e x﹣1,当2<x≤3,则1<x﹣1≤2,则f(x)=f(x﹣1)=e x﹣2,当3<x≤4,则2<x﹣1≤3,则f(x)=f(x﹣1)=e x﹣3,…当x>1时,f(x)=f(x﹣1),周期性变化;函数y=kx+1的图象恒过点(0,1);作函数f(x)与函数y=kx+1的图象如下,C(0,1),B(2,e),A(1,e);故k AC=e﹣1,k BC=;在点C处的切线的斜率k=e0=1;结合图象可得,当k∈(1,e一1]时,k取中间值,交点在f(x)=e x上两点,定点(0,1),另一点在第一象限A点下方.当k∈(,1)时,任取k为中间值,则交点过C,另一点在笫二象限,点c的左下方.当k∈(0,],交点有3点以上,与f(x)、f(x一1)都有交点.当k∈(一∞,e一1)时,与f(x)只交于点C.综上要使两个函数有两个交点,则实数k的取值范围为(,1)∪(1,e﹣1];故答案为:(,1)∪(1,e﹣1];26.如图,网格纸上小正方形的边长为1,粗线画出的是某四面体的三视图,则该四面体的外接球体积.【解答】解:由三视图知几何体是三棱锥A﹣BCD,是棱长为4的正方体一部分,直观图如图所示:由正方体的性质可得,AB=AD=BD=4,AC=BC==2,CD==6,设三棱锥C﹣ABD的外接球球心是O,设半径是R,取AB的中点E,连接CE、DE,如图所示:设OA=OB=OC=OD=R,△ABD是等边三角形,∴O在底面△ABD的射影是△ABD中心F,∵DE⊥BE,BE=2,∴DE==2,同理可得,CE=2,则满足CE2+DE2=CD2,即CE⊥DE;在Rt△CED中,设OF=x,∵F是等边△ABD的中心,∴DF=DE=,EF=DE=,则,∴,解得x=,代入其中一个方程得,R==,∴该四面体的外接球体积是=.故答案为:.27.定义max{a,b}表示实数a,b中的较大的数.已知数列{a n}满足a1=a(a>0),a2=1,a n+2=(n∈N),若a2015=4a,记数列{a n}的前n项和为S n,则S2015的值为7254.【解答】解:当0<a<2时,∵a1=a(a>0),a2=1,a n+2=(n∈N),∴a3=•2max{1,2}=>2,a4=2max{,2}=,a5=•2max{,2}=4,a6=•2max{4,2}=a,a7=•2max{a,2}=1,a8=•2max{1,2}=,…∴数列{a n}是以5为周期的周期数列,∵2015=403×5,∴a2015=a5=4=4a,解得a=1,∴S2015=403(a+1+)=403(1+1+4+8+4)=7254;当a≥2时,∵a1=a(a>0),a2=1,a n+2=(n∈N),∴a3=•2max{1,2}=<2,a4=2max{,2}=4,a5=•2max{4,2}=2a≥4,a6=•2max{2a,2}=a>2,a7=•2max{a,2}=1,a8=•2max{1,2}=,…∴数列{a n}是以5为周期的周期数列,∵2015=403×5,∴a2015=a5=2a=4a,解得a=0,不合题意.故答案为:7254.28.已知AD、BE分别是△ABC的中线,若AD=BE=1,且•=,则与的夹角为.【解答】解:∵AD、BE分别是△ABC的中线,∴,又,∴,∴=,=.∴且•=()•()=﹣﹣=,∵,∴.∴cos<>==﹣.∴与的夹角为.故答案为:.三.解答题(共2小题)29.一只袋中放入了大小一样的红色球3个,白色球3个,黑色球2个.(Ⅰ)从袋中随机取出(一次性)2个球,求这2个球为异色球的概率;(Ⅱ)若从袋中随机取出(一次性)3个球,其中红色球、白色球、黑色球的个数分别为a、b、c,令随机变量ξ表示a、b、c的最大值,求ξ的分布列和数学期望.【解答】解:(Ⅰ)设事件A表示“从袋中随机取出(一次性)2个球,这2个球为异色球”,则P(A)=1﹣=;(5分)注:也可直接求概率P(A)==;(Ⅱ)根据题意,ξ的可能取值为1,2,3;计算P(ξ=3)==,P(ξ=2)==,P(ξ=1)==,则随机变量ξ的分布列为ξ123P于是数学期望为Eξ=1×+2×+3×=.(12分)30.某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下数据资料:日期1月10日2月10日3月10日4月10日5月10日6月10日昼夜温差x(℃)1011131286就诊人数y(个)222529261612该兴趣小组确定的研究方案是:先从这6组(每个有序数对(x,y)叫作一组)数据中随机选取2组作为检验数据,用剩下的4组数据求线性回归方程.(Ⅰ)求选取的2组数据恰好来自相邻两个月的概率;(Ⅱ)若选取的是1月和6月的两组数据,请根据2至5月份的数据,求出y关于x的线性回归方程;(3)若由线性回归方程得到的估计数据与所选取的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问(Ⅲ)中所得到的线性回归方程是否是理想的?参考公式:.【解答】解:(1)设选取的2组数据恰好是相邻两个月为事件A,因为从6组数据中选取2组数据共有15种情况,每种情况都是等可能出现的.其中选取的2组数据恰好是相邻两个月的情况有5种.所以P(A)==.(2)由数据求得=11,=24.由公式求得=,再由=﹣求得:=﹣,所以y关于x的线性回归方程为:=x﹣.(3)当x=10时,y=,|﹣22|=<2;当x=6时,y=,|﹣12|=<2;所以,该小组所得线性回归方程是理想的.。
高三数学选择题、填空题专项训练
高三数学选择题、填空题专项训练(总19页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2高三数学选择题、填空题专项训练(1)1.sin600 = ( ) (A) –23 (B)–21. (C)23. (D) 21. 2.设 A = { x| x 2}, B = { x | |x – 1|< 3}, 则A ∩B= ( )(A)[2,4] (B)(–∞,–2] (C)[–2,4] (D)[–2,+∞)3.若|a |=2sin150,|b |=4cos150,a 与b 的夹角为300,则a ·b 的值为 ( )(A)23. (B)3. (C)32. (D)21.4.△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,则a cos C+c cos A 的值为 ( )(A)b. (B)2cb +. (C)2cosB. (D)2sinB. 5.当x R 时,令f (x )为sinx 与cosx 中的较大或相等者,设a f ( x ) b, 则a + b 等于 ( )(A)0 (B) 1 + 22. (C)1–22. (D)22–1. 6、函数1232)(3+-=x x x f 在区间[0,1]上是( ) (A )单调递增的函数. (B )单调递减的函数. (C )先减后增的函数 . (D )先增后减的函数.7.对于x ∈[0,1]的一切值,a +2b > 0是使ax + b > 0恒成立的( )(A)充要条件 (B)充分不必要条件 (C)必要不充分条件 (D)既不充分也不必要条件8.设{a n }是等差数列,从{a 1,a 2,a 3,··· ,a 20}中任取3个不同的数,使这三个数仍成等差数列,则这样不同的等差数列最多有( )(A)90个 . (B)120个. (C)180个. (D)200个.9.已知函数y = f ( x )(x ∈R )满足f (x +1) = f ( x – 1),且x ∈[–1,1]时,f (x) = x 2,则y = f ( x ) 与y = log 5x 的图象的交点个数为 ( )3(A)1. (B)2 . (C)3 . (D)4. 10.给出下列命题:(1) 若0< x <2π, 则sinx < x < tanx . (2) 若–2π< x< 0, 则sin x < x < tanx.(3) 设A ,B ,C 是△ABC 的三个内角,若A > B > C, 则sinA > sinB > sinC. (4) 设A ,B 是钝角△ABC 的两个锐角,若sinA > sinB > sinC 则A > B > C.. 其中,正确命题的个数是( ) (A) 4. (B )3. (C )2. (D )1.11. 某客运公司定客票的方法是:如果行程不超过100km ,票价是元/km , 如果超过100km , 超过100km 部分按元/km 定价,则客运票价y 元与行程公里数x km 之间的函数关系式是 .12. 设P 是曲线y = x 2 – 1上的动点,O 为坐标原点,当|→--OP |2取得最小值时,点P 的坐标为 .高三数学选择题、填空题专项训练(2)1.函数12x y -=(x >1)的反函数是( ) (A )y =1+log 2x (x >1) (B )y =1+log 2x (x >0) (C )y =-1+log 2x (x >1) (D )y =log 2(x -1) (x >1) 2.设集合A ={(x , y )| y =2si n 2x },集合B ={(x , y )| y =x },则( ) (A )A ∪B 中有3个元素 (B )A ∪B 中有1个元素 (C )A ∪B 中有2个元素 (D )A ∪B =R3.焦点在直线3x -4y -12=0上的抛物线的标准方程为( ) (A )x 2=-12y (B )y 2=8x 或x 2=-6y (C )y 2=16x (D )x 2=-12y 或y 2=16y 4.在△ABC 中“A >B ”是“cos A <cos B ”的( ) (A )充分非必要条件 (B )必要非充分条件4(C )充要条件 (D )既不充分也不必要条件5.已知mn ≠0,则方程mx 2+ny 2=1与mx +ny 2=0在同一坐标系下的图象可能是( )6.在数列{a n }中,已知1n n ca n +=+(c ∈R ),则对于任意正整数n 有( ) (A )a n <a n +1 (B )a n 与a n +1的大小关系和c 有关 (C )a n >a n +1 (D )a n 与a n +1的大小关系和n 有关 二.填空题:7.函数f (x)=12log (1)x -的定义域为 。
广东省2025届高三数学一调模拟卷(答案)
2025届广东省普通高中毕业班调研考试(一)数 学参考答案与解析一、选择题 1. 【答案】B【解析】集合A x Z x x x Z x x =∈−+≤=∈−−≤=2{|8150}{|(3)(5)0}{3,4,5}. 而B x x =<{|5},故A B ⋂={3,4}. 考察集合交集的定义. 2.【答案】A【解析】z 1,z 2均为纯虚数可以推出z z 21为实数,z z21为实数不可以推出z 1,z 2均为纯虚数,故为充分不必要条件. 3. 【答案】C 【解析】223221502232()cos ()ab ba b b a b b2233()4. 【答案】B【解析】由题干得=+−=+−23sin(3)sin 12sin 32cos sin απαααα =−=+αααπ32cos 12sin cos(6). 所以+=+−=⨯−=−ααππ3639cos(2)2cos ()12()12122. 考察三角函数中两角和差公式以及倍角公式.5.【答案】C 【解析】由=⇒=⇒=q a a a a q a 1121311,+=⇒++=qS T q 122312433,则−+=−−=⇒==q q q q q q 22942140,41122)()(. 由于a n }{为递增数列,则==q a 44,11, 所以a n }{的通项公式为=−a n n 42.所以−==−−S n n n 14124141141)()(.【考察】(1)等比数列a q a S n n ,,,1; (2)转化、消元的数学思想6.【答案】A 【解析】=⇒=V R O .记侧棱长为l ,球心到四棱锥顶点的距离为h .−=⇒=⇒−=l l h h 124124112222)(;++=−h l 1212222)((.所以+=⇒−−=⇒=h h h h 31243150222(.所以⎝ =⋅⋅+=⎛V 333481. 【考察】(1)锥体、球体的体积公式;(2)内切球与正四棱锥的几何关系. 7. 【答案】A【解析】由题知n 是xxx +−−<+2log [(15)(15)]4的正整数解. 化简nnn +−−<+2log [(15)(15)]4有n n n +−−<+(15)(15)24.可以得到4251])251()251[(51⨯<−−+n n 即4251⨯<n a . 根据}{n a 是递增数列可以知道}{2n a 也是递增数列.于是原不等式转化为5225182<⨯<n a . 而55=a ,86=a 可以得到,满足要求的n 的最大值为5. 考察对数运算以及利用数列单调性求最值.8. 【答案】D【解析】由21ln (0)2mx x x +=>得21ln 2x m x −=,则问题转化为ym 和21ln 2()x h x x −=的图像有两个交点,而'32(1ln )()x h x x−=令0'()h x ,解得0x e ,令0'()h x ,解得x e ,故()h x 在0(,)e 递增,在(,)e 递减,则212max ()()h x h e e.大致图像如下所示:故m 的取值范围是2102(,)e二、多选题 9.【答案】AB 【解析】 由于()()()1210,0,,0,,,0x x x ,它们分别与()1,10,y ()2,10,,y ()10,10y 关于点()3,5对称,则有()6Z,110i i x y i i +=∈≤≤,即有()6Z,110i i y x i i =−∈≤≤.则由平均数的性质可得1210,,,y y y 这组数的平均数为6a −,中位数为6b −,方差为c ,极差为d −.10.【答案】CD 【解析】A. 设1i z a b =+,则1-i z a b =,所以22221(i)2i z a b a b ab =+=−+,22221(i)2i z a b a b ab =−=−−,故2211z z ≠,A 选项错误.B. 由复数的几何意义可知,1212,,z z z z +在复平面表示向量,,OA OB OA OB +的模长.当,OA OB 共线时,OA OB OA OB +=+,即1212z z z z +=+;当,OA OB 不共线时,,,OA OB OA OB +分别表示OAB ∆三边长,根据三角形中两边之和大于第三边,可得OA OB OA OB +<+,即1212z z z z +<+.因此,1212z z z z +≤+,B 选项错误.C. 由复数的几何意义可知,122i 2z −−=表示复数1z 对应的点A 到定点(2,2)的距离为2,即动点A 的轨迹是以(2,2)为圆心,2为半径的圆,116i z +−表示点A 到定点()1,6−的距离,由圆的性质可知,1max 2316i z =−+=,C 项正确.D. 由复数的几何意义可知,22i i 4z z ++−=表示复数2z 对应的点B 到两定点(0,1)−、(0,1)的距离之和为4,所以点B 的轨迹为椭圆:22143y x +=,2z 表示点B 到原点的距离,由椭圆的几何性质可得,当点B 在椭圆与x 轴的交点上时,取得最小值,即2minz =,D 选项正确.综上,故选:CD. 11.【答案】ACD 【解析】A. 令0x =,则有(e)e (e)(1e)(e)0f f f −=−=,所以(e)0f =,故A 正确.B. 对(e )e (e )0f x f x +−−=两边求导,得(e )e (e )0f x f x ''++−=,所以(e )e (e )f x f x ''+=−−,代入(e )'(e )0f x f x '++−>,得当0x >时,(1e)(e )0f x '−−>,所以(e )0f x '−<.又因为(e )'(e )0f x f x '++−>,所以,(e )0f x '+>.因此,当e x <时,()0f x '<,()f x 在(,e)−∞上单调递减;当e x >时,()0f x '>,()f x 在(e +)∞,上单调递增.故B 错误.C. 对12,,e x x 的大小关系进行分类讨论: ①当12e x x <≤时,()f x 在(,e)−∞上单调递减,所以12()()f x f x >,显然有122e x x +<; ②当12e x x ≤<时,()f x 在(e +)∞,上单调递增,不符合题意;③当12e x x <<时,当0x ≥时,(e )e (e )f x f x +=−.令e (e,+)t x =+∈∞,()e (2e )f t f t =−,122()()e (2e )f x f x f x >=−,又因为()(e)0f x f ≥=,所以2(2e )0f x −>,因此1222()()e (2e )(2e )f x f x f x f x >=−>−.因为1e x <,22e e x −<,由()f x 的单调性得,122e x x +<.故C 正确.D. 因为2(0)(0)e 20g f =+−>,2(2e)(2e)e 20g f =+−>,(e)(e)220g f =−=−<,所以120e 2e x x <<<<.先证12+2e x x <.即证122e x x −>,即1(2e )0g x −>,只需证221111(2e )(2e e)20e ()(e )20f x x f x x −+−−−>⇔+−−>.事实上,2211111e ()(e )2()(e )2()0f x x f x x g x +−−>+−−==,因此12+2e x x <得证. 此时有1210e 2e 2e x x x <<<<−<.因为22211122()(e)2(2e e)2(e)2()f x x x x f x =−−+=−−−+<−−+=,又1()0f x ≠,所以21()1()f x f x <. 因为211()(2e )e ()f x f x f x <−=,又1()0f x ≠,所以21()e ()f x f x <. 综上,21()1e ()f x f x <<,D 正确.三、填空题 12.【答案】29 13.【答案】令x =1得(1+2)5=243=a 5+a 4+a 3+a 2+a 1+a 0, 令x =−1得(−1+2)5=1=−a 5+a 4−a 3+a 2−a 1+a 0, 则a 5+a 3+a 1=(a 5+a 4+a 3+a 2+a 1+a 0)−(−a 5+a 4−a 3+a 2−a 1+a 0)2=243−12=121, 且a 4+a 2+a 0=(a 5+a 4+a 3+a 2+a 1+a 0)+(−a 5+a 4−a 3+a 2−a 1+a 0)2=243+12=122,故a 5+a 3+a 1a 4+a 2+a 0=121122.14. 【答案】y 29−x 216=1,(y ≠−3)【解析】以HF 所在直线为x 轴,GE 所在直线为y 轴建立平面直角坐标系。
2019年宁晋县第二中学高考数学选择题专项训练(一模)
2019年宁晋县第二中学高考数学选择题专项训练(一模)抽选各地名校试卷,经典试题,有针对性的应对高考数学考点中的难点、重点和常规考点进行强化训练。
第 1 题:来源:广西陆川县2017_2018学年高一数学9月月考试题理下列选项中,表示的是同一函数的是( )A.f(x)=,g(x)=()2 B.f(x)=x2,g(x)=(x-2)2C.f(x)=,g(t)=|t| D.f(x)=,g(x)=x+3【答案】、C第 2 题:来源: 2019高考数学一轮复习第10章概率统计和统计案例第3讲随机抽样分层演练文2018091015采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9,抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷B的人数为( ) A.7 B.9 C.10 D.15 【答案】C.由题意知应将960人分成32组,每组30人.设每组选出的人的号码为30k+9(k=0,1,…,31).由451≤30k+9≤750,解得≤k≤,又k∈N,故k=15,16,…,24,共10人.第 3 题:来源:四川省棠湖中学2018_2019学年高一数学上学期期中试题若函数=在区间上的最大值比最小值大,则实数A. B.或C.或D.【答案】D第 4 题:来源:宁夏银川市勤行2016_2017学年高一数学下学期第一次(3月)月考试题试卷及答案用秦九韶算法计算当x=0.4时,多项式f(x)=3x6+4x5+6x3+7x2+1的值时,需要做乘法运算的次数是( ) A.6 B.5 C.4 D.3【答案】A第 5 题:来源:山东省2018届高三数学第一次诊断性考试试题理试卷及答案设偶函数上单调递增,则使得成立的x的取值范围是A. B. C. D.【答案】A第 6 题:来源:湖北省当阳市第一高级中学2019届高三数学9月月考试题理.已知函数是R上的奇函数,当时为减函数,且,则()A. B.C. D.【答案】D第 7 题:来源:云南省昆明市2017_2018学年高一数学12月月考试题 (1)试卷及答案已知角x的终边上一点的坐标为则角x的最小正值为A. B. C. D.【答案】 B第 8 题:来源: 2017年高中数学高考真题演练2(含解析)新人教A版选修2_3 (1))以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为( )A.2,5 B.5,5 C.5,8 D.8,8【答案】C解析:由甲组数据中位数为15,可得x=5;而乙组数据的平均数16.8=,可解得y=8.故选C项.第 9 题:来源:黑龙江省哈尔滨市2016_2017学年高一数学6月月考试题试卷及答案已知实数满足,则直线必过定点,这个定点的坐标为()【答案】D第 10 题:来源: 2017年普通高等学校招生全国统一考试数学试题文(山东卷,参考解析)设,若f(a)=f(a+1),则A 2B 4C 6D 8【答案】C【解析】由得,解得,则,故选C.第 11 题:来源: 2017年高考仿真卷•数学试卷含答案(二)理科.已知i是虚数单位,则复数=( )A.-2+i B.iC.2-iD.-i【答案】B 解析 (方法一)=i.(方法二)=i.第 12 题:来源:四川省绵阳南山中学2019届高三数学上学期一诊模拟考试试题理.已知向量满足,且,则与)A. B. C. D.【答案】第 13 题:来源:广西钦州市钦州港区2016-2017学年高一数学12月月考试题试卷及答案设双曲线的右焦点为F,过点F作与x轴垂直的直线 l 交两渐近线于A、B两点,且与双曲线在第一象限的交点为P,设O为坐标原点,若,,则该双曲线的离心率为()A. B.2 C. D.【答案】 D第 14 题:来源: 2017-2018学年吉林省吉林市吉化高一(上)期末数学试卷(含答案解析)函数f(x)=ex+x﹣2的零点所在的一个区间是()A.(﹣2,﹣1) B.(﹣1,0) C.(0,1) D.(1,2)【答案】C解:因为f(0)=﹣1<0,f(1)=e﹣1>0,所以零点在区间(0,1)上,第 15 题:来源:山西省应县第一中学2019届高三数学9月月考试题理中,若,则()A. B.C.是直角三角形 D.或【答案】D第 16 题:来源:甘肃省会宁县第一中学2019届高三数学上学期第三次月考试题理已知函数,若方程f(x)﹣mx+1=0恰有四个不同的实数根,则实数m的取值范围是()A.B.C.D.【答案】B第 17 题:来源:江西省南康中学2018_2019学年高二数学二下学期期中(第二次大考)试题理设,则在复平面对应的点位于第 ( )象限A.一 B.二 C.三 D.四【答案】D第 18 题:来源:山东省济南市2018届高三数学上学期开学考试试题试卷及答案理若集合中只有一个元素,则( )A. B. C. D.0或【答案】D第 19 题:来源:辽宁省大连市2017_2018学年高一数学上学期期中试题试卷及答案若函数是上的单调减函数,则实数的取值范围是()A. B. C. D.【答案】B第 20 题:来源:贵州省遵义市2018_2019学年高一数学下学期期中试题已知,则下列不等式一定成立的是()【答案】D第 21 题:来源: 2019高中数学第二章推理与证明测评(含解析)新人教A版选修1_2.计算机中常用的十六进制是逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数的对应关系如下表:16进制0 1 2 3 4 5 6 7 8 9 A B C D E F10进制0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15例如,用十六进制表示E+D=1B,则A×B等于( )A.6EB.72C.5FD.B0【答案】A第 22 题:来源:重点班2017届高三数学一轮复习阶段检测试题一理试卷及答案由曲线y=,直线y=x-2及y轴所围成的图形的面积为( )(A) (B)4 (C) (D)6【答案】C解析:y=与y=x-2以及y轴所围成的图形面积为如图所示的阴影部分,联立得交点坐标为(4,2),故所求面积为S=[-(x-2)]dx=[-(-2x)]=.第 23 题:来源: 2016_2017学年湖北省蕲春县高一数学下学期期中试题试卷及答案已知数列{bn}是等比数列,b1009是1和3的等差中项,则b1b2017=()A.16 B.8 C.2D.4【答案】D第 24 题:来源:内蒙古包头市第四中学2018_2019学年高一数学上学期期中模拟测试试题(一)函数的图像大致是()【答案】C第 25 题:来源:安徽省滁州市定远县育才学校2018_2019学年高二数学上学期期中试题(普通班)理过原点且倾斜角为60°的直线被圆x2+(y-2)2=4所截得的弦长为( )A. 2 B. 2C. D.【答案】A第 26 题:来源:重庆市铜梁县2018届高三数学11月月考试题理试卷及答案下列说法中,正确的是( )A.命题“若,则”的否命题为“若,则”B.命题“存在,使得”的否定是:“任意,都有”C.若命题“非”与命题“或”都是真命题,那么命题一定是真命题D.""是""的充分不必要条件【答案】C第 27 题:来源:广西钦州市钦州港区2016-2017学年高二数学12月月考试题试卷及答案理如图,空间四边形的各边和对角线长均相等, E 是 BC 的中点,那么()A.B.C.D.与不能比较大小【答案】C第 28 题:来源:安徽省六安市新安中学2016-2017学年高二数学上学期期末考试试题试卷及答案理设原命题为:“若空间两个向量与()共线,则存在实数,使得”则其逆命题、否命题、逆否命题为真的个数( )A.1 B.2 C.3D.4【答案】C第 29 题:来源:河北省石家庄市2016-2017学年高二数学上学期期末考试试题理试卷及答案如图,为双曲线的左右焦点,且,若双曲线右支上存在点,使得,设直线与轴交于点,且的内切圆半径为,则双曲线的离心率为.4 ...【答案】第 30 题:来源:广东省深圳市普通高中2017_2018学年高二数学下学期4月月考试题8201805241400复平面内点A、B、C对应的复数分别为i、1、4+2i,由A→B→C→D按逆时针顺序作平行四边形ABCD,则||等于( )A.5 B.C. D.【答案】B【解析】第 31 题:来源:吉林省梅河口市2016_2017学年高一数学下学期期中试题试卷及答案理已知,的夹角是120°,且,,则在上的投影等于()A.B.C.D.【答案】B第 32 题:来源:贵州省仁怀市2016-2017学年高一数学下学期开学考试试题试卷及答案如图所示是某一容器,现向容器中匀速注水,容器中水面的高度h随时间t变化的可能图象是()A. B. C.D.【答案】B第 33 题:来源:河北省大名县2017_2018学年高二数学上学期第二次月考试题 (1)已知△中,,,则等于()A. B.1 C. D. 2【答案】A第 34 题:来源:黑龙江省友谊县红兴隆管理局2016_2017学年高二数学下学期期中试题试卷及答案理已知函数y=f(x)的图象在点(1,f(1))处的切线方程是x﹣2y+1=0,则f(1)+2f′(1)的值是()A. B.1 C. D.2【答案】D、第 35 题:来源:甘肃省民勤县第一中学2017_2018学年高一数学上学期期末考试试题已知点,则线段的垂直平分线的方程是()A. B. C. D.【答案】B第 36 题:来源:青海省西宁市2016_2017学年高二数学下学期期中试题理如图,正方形的四个顶点为,曲线经过点,现将一质点随机投入正方形中,则质点落在图中阴影区域的概率是()A. B. C. D.【答案】B第 37 题:来源:高中数学阶段通关训练(二)(含解析)新人教A版选修1_1设P,Q分别为圆x2+=2和椭圆+y2=1上的点,则P,Q两点间的最大距离是( )A.5B.+C.7+D.6【答案】D.圆心M(0,6),设椭圆上的点为Q(x,y),则===,当y=-∈[-1,1]时,=5.所以=5+=6.第 38 题:来源:贵州省铜仁市第一中学2019届高三数学上学期第二次月考试题理已知实数x,y满足,则的取值范围为()A.[2,5] B. C. D.【答案】A第 39 题:来源:山东省济南市2017_2018学年高二数学上学期开学考试试题试卷及答案在等差数列{an}中,a2=2,a3=4,则a10=( ).A.12 B.14 C.16 D.18【答案】D第 40 题:来源:重庆市璧山中学2017届高三数学上学期期中试题试卷及答案理执行程序框图,若输出的结果是,则输入的a为()A.3 B.6 C.5 D.4【答案】D第 41 题:来源:陕西省西安市2017_2018学年高一数学上学期期末考试试题如图,矩形O′A′B′C′是水平放置的一个平面图形的直观图,其中O′A′=6 cm,C′D′=2 cm,则原图形是( ).A.正方形 B.矩形 C.菱形 D.梯形【答案】C第 42 题:来源:广东省深圳市普通高中2017_2018学年高二数学下学期4月月考试题6201805241398函数的定义域为,其导函数在内的图象如图所示,则函数在区间内极大值点的个数是()A.1 B.2 C.3 D.4【答案】B第 43 题:来源:安徽省六安市舒城县2017_2018学年高二数学上学期第一次统考试卷理已知函数,若的解集为,则下列说法正确的是:()A. B. C. D. 必与异号【答案】D第 44 题:来源:广东省佛山市高明区第一中学2017_2018学年高一数学上学期静校训练(第5周)试题(含解析)已知集合,若,则集合用列举法表示为().A. B. C. D.【答案】A【解析】由题意可得m=1,n=1,所以或,,选A.第 45 题:来源:河北省衡水中学2018届高三数学上学期五调考试试题理已知向量,则A. B. C. D.【答案】C第 46 题:来源:西藏日喀则市南木林高级中学2019届高三数学上学期期中试题已知集合,则集合=()A. B. C. D.【答案】C第 47 题:来源:重点班2017届高三数学一轮复习阶段检测试题一理试卷及答案二在△ABC中,·=7,|-|=6,则△ABC面积的最大值为( )(A)24 (B)16 (C)12 (D)8【答案】C解析:设A,B,C所对边分别为a,b,c,由·=7,|-|=6,得bccos A=7,a=6,S△ABC=bcsin A=bc=bc=,由余弦定理可得b2+c2-2bccos A=36,得b2+c2=50,所以b2+c2≥2bc,所以bc≤25,当且仅当b=c=5时取等号,所以S△ABC=≤12,故△ABC的面积的最大值为12.第 48 题:来源:宁夏银川市2017_2018学年高二数学上学期第二次月考试题理过抛物线的焦点,且斜率为的直线交于点(在的x轴上方),为的准线,点在上且,则到直线的距离为( )A. B. C.D.【答案】B第 49 题:来源:黑龙江省大庆市2018届高三数学上学期期初考试试题试卷及答案理《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等,问各得几何?”其意思为“已知甲、乙、丙、丁、戊五人分五钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列,问五人各得多少钱?”(“钱”是古代一种重量单位),这个问题中,甲所得为A. 钱B. 钱C.钱 D. 钱【答案】C第 50 题:来源:江西省奉新县2018届高三数学上学期第二次月考试题理试卷及答案在△ABC中,若,则△ABC是()A.直角三角形 B.等腰三角形,但不是正三角形C.直角三角形或等腰三角形 D.正三角形【答案】D。
2013届高三数学选择题、填空题专项卷(1)
选择题、填空题专项卷一一、选择题1.已知全集U=R ,{|23}A x x =-<≤,{|1B x x =<-或4}x >,那么集合B C A U A .{|24x x -≤<} B .{|3x x ≤或4x ≥}C .{|21}x x -≤<-D .{|13}x x -≤≤ 2.函数cos(4)3y x π=+的图象的两条相邻对称轴间的距离为 ( )A .8π B .4π C .2π D .π3.等差数列{}n a 的前n 项和为n S ,若110()m m n a a a m n +++++=<…,则m n S +等于A .2m n + B .m n + C .0 D .14.若是实数x 满足xx og -=2012l 2012,则下列不等关系正确的是 ( )A .21xx >> B .21xx >>C .21x x >>D .21x x >>5.如果以原点为圆心的圆必过双曲线22221(0)x y a b a b -=>>的焦点,而且被双曲线的右准线分成2:1的两段圆弧。
那么该双曲线的离心率为 ( )ABCD6.北京2008年第29届奥运会开幕式上举行升旗仪式,在坡度15°的看台上,同一列上的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,第一排和最后一排的距离为,旗杆底部与第一排在一个水平面上,已知国歌长度约为50秒,升旗手匀速升旗的速度为( )A .35(米/秒) B.5(米/秒) C.5(米/秒) D .15(米/秒)7.设)(),()(,x f x f e a e x f R a x x ''⋅+=∈-且的导函数是函数是奇函数,若曲线)(x f y =的一条切线的斜率是23,则切点的横坐标为 ( )A .22ln - B .2ln - C .22ln D .2ln8.函数xx y ||lg =的图象大致是( )9.已知yx y x y x 311,2lg 8lg 2lg ,0,0+=+>>则的最小值是 ( )A .2B .22C .4D .3210.已知)(x f 是定义在R 上的奇函数,且)1,0[),()1(∈-=+x x f x f 当时,)61(log ,12)(2f x f x 则-=的值为 ( )A .—6B .—5C .25-D .21-二、填空题11.设函数⎩⎨⎧<+≥+-=0,60,64)(2x x x x x x f 则方程)1()(f x f =的解集是 ;12.设曲线()a ax x f -=32在点(1,)a 处的切线与直线210x y -+=平行,则实数a 的值为 .13. 已知1tan 2α=,()2tan 5αβ-=-,那么()tan 2αβ-的值是 ;14.若函数)sin()(ϕω+=x x f (ϕ < 2π)的图象(部分)如图所示,则)(x f 的解析式是 .15.设函数()y f x =在(-∞,+∞)内有定义,对于给定的正数K ,定义函数(),()(),()k f x f x K f x K f x K ≤⎧=⎨>⎩,取函数()2x f x x e -=--,若对任意的(,)x ∈+∞-∞, 恒有()f x =()f x ,则K 的最小值为___________11 12 13 14 15 得分练习一答案一.选择题答案DBCABADDCD二.填空题答案 11.{}3,1,3- 12.31 13.112 14.)(x f = )621sin(π+x 15. 1。
备战2022年高考数学寒假选择题+填空题精准限时训练 1(新高考版)(原卷版)
D. 13 或 9 44
二、多选题(本题共 4 小题,每小题 5 分,共 20 分.在每小题给出的选项中,有多项符合题目
要求.全部选对的得 5 分,部分选对的得 2 分,有选错的得 0 分.)
9.(2021·海南华侨中学高二阶段练习)关于方程 x2 y2 1(m 3 且 m 11) 所对应的图形,下列说 m 3 11 m
,则 A B (
)
A.x 2 x 2
B.x 2 x 2
C.x 1 x 2
D.x 1 x 2
2.(2021·广东汕头·高三期末)已知 i 为虚数单位,复数 z 满足: x(1 i) 4 3i ,则 z =( )
A. 7 i 2
B. 7 i 2
C. 1 i 2
D. 1 i 2
a1 42 ,则下列结论中正确的是( A. a0 6
n
C. ai 1092 i0
) B. an1 192
n
D. 1iiai 6 i 1
三、填空题:(本题共 4 小题,每小题 5 分,共 20 分,其中第 16 题第一空 2 分,第二空 3 分。)
13.(2021·河北沧州·高三阶段练习)已知点 A(1, 2) , B(x, y)(6 y 2) 都在抛物线 C : y2 2 px( p 0)
A. 4
B. 8
C. 32 3
D.16
5.(2021·内蒙古·赤峰二中高三阶段练习(理))随着网络技术的发达,电子支付变得愈发流行,若电
子支付只包含微信支付和支付宝支付两种.若某群体中的成员只用现金支付的概率为 0.45,既用现金支付也
用非现金支付的概率为 0.15,则不用现金支付的概率为
A.0.3
B
,点
P
(完整版)高三数学选择、填空题专项训练(共40套)[附答案]
三基小题训练一一、选择题(本大题共12小题,每小题5分,共60分.)1.函数y =2x +1的图象是 ( )2.△ABC 中,cos A =135,sin B =53,则cos C 的值为 ( ) A.6556 B.-6556 C.-6516 D. 6516 3.过点(1,3)作直线l ,若l 经过点(a ,0)和(0,b ),且a ,b ∈N *,则可作出的l 的条数为( )A.1B.2C.3D.多于34. 函数f (x )=log a x (a >0且a ≠1)对任意正实数x ,y 都有 ( )A.f (x ·y )=f (x )·f (y )B.f (x ·y )=f (x )+f (y )C.f (x +y )=f (x )·f (y )D.f (x +y )=f (x )+f (y )5.已知二面角α—l —β的大小为60°,b 和c 是两条异面直线,则在下列四个条件中,能使b 和c 所成的角为60°的是( )A.b ∥α,c ∥βB.b ∥α,c ⊥βC.b ⊥α,c ⊥βD.b ⊥α,c ∥β6.一个等差数列共n 项,其和为90,这个数列的前10项的和为25,后10项的和为75,则项数n 为 ( )A.14B.16C.18D.207.某城市的街道如图,某人要从A 地前往B 地,则路程最短的走法有 ( )A.8种B.10种C.12种D.32种8.若a ,b 是异面直线,a ⊂α,b ⊂β,α∩β=l ,则下列命题中是真命题的为( )A.l 与a 、b 分别相交B.l 与a 、b 都不相交C.l 至多与a 、b 中的一条相交D.l 至少与a 、b 中的一条相交9.设F 1,F 2是双曲线42x -y 2=1的两个焦点,点P 在双曲线上,且1PF ·2PF =0,则|1PF |·|2PF |的值等于( ) A.2 B.22 C.4 D.810.f (x )=(1+2x )m +(1+3x )n (m ,n ∈N *)的展开式中x 的系数为13,则x 2的系数为( )A.31B.40C.31或40D.71或8011.从装有4粒大小、形状相同,颜色不同的玻璃球的瓶中,随意一次倒出若干粒玻璃球(至少一粒),则倒出奇数粒玻璃球的概率比倒出偶数粒玻璃球的概率( )A.小B.大C.相等D.大小不能确定12.如右图,A 、B 、C 、D 是某煤矿的四个采煤点,l 是公路,图中所标线段为道路,ABQP 、BCRQ 、CDSR 近似于正方形.已知A 、B 、C 、D 四个采煤点每天的采煤量之比约为5∶1∶2∶3,运煤的费用与运煤的路程、所运煤的重量都成正比.现要从P 、Q 、R 、S 中选出一处设立一个运煤中转站,使四个采煤点的煤运到中转站的费用最少,则地点应选在( )A.P 点B.Q 点C.R 点D.S 点13.抛物线y 2=2x 上到直线x -y +3=0距离最短的点的坐标为_________.14.一个长方体共一顶点的三个面的面积分别是2,3,6,这个长方体对角线的长是_________.15.设定义在R 上的偶函数f (x )满足f (x +1)+f (x )=1,且当x ∈[1,2]时,f (x )=2-x ,则f (8.5)=_________.16.某校要从甲、乙两名优秀短跑选手中选一名选手参加全市中学生田径百米比赛,该校预先对这两名选手测试了8次,测试成绩如下:第1次 第2次 第3次 第4次 第5次 第6次 第7次 第8次 甲成绩(秒)12.1 12.2 13 12.5 13.1 12.5 12.4 12.2 乙成绩(秒) 12 12.4 12.8 13 12.2 12.8 12.3 12.5三基小题训练二1.如图,点O 是正六边形ABCDEF 的中心,则以图中点A 、B 、C 、D 、E 、F 、O 中的任意一点为始点,与始点不同的另一点为终点的所有向量中,除向量OA 外,与向量 OA 共线的向量共有( )A .2个B . 3个C .6个D . 7个2.已知曲线C :y 2=2px 上一点P 的横坐标为4,P 到焦点的距离为5,则曲线C 的焦点到准线的距离为 ( ) A . 21B . 1C . 2D . 43.若(3a 2 -312a ) n 展开式中含有常数项,则正整数n 的最小值是 ( )A .4B .5C . 6D . 84. 从5名演员中选3人参加表演,其中甲在乙前表演的概率为 ( )A . 203B . 103C . 201D . 1015.抛物线y 2=a(x+1)的准线方程是x=-3,则这条抛物线的焦点坐标是( )A.(3,0)B.(2,0)C.(1,0)D.(-1,0)6.已知向量m=(a ,b ),向量n⊥m,且|n|=|m|,则n的坐标可以为( )A.(a ,-b )B.(-a ,b )C.(b ,-a )D.(-b ,-a )7. 如果S ={x |x =2n +1,n ∈Z },T ={x |x =4n ±1,n ∈Z },那么A.S TB.T SC.S=TD.S ≠TEF DO C B A8.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有 ( )A .36种B .48种C .72种D .96种9.已知直线l 、m ,平面α、β,且l ⊥α,m ⊂β.给出四个命题:(1)若α∥β,则l ⊥m ;(2)若l ⊥m ,则α∥β;(3)若α⊥β,则l ∥m ;(4)若l ∥m ,则α⊥β,其中正确的命题个数是( )A.4B.1C.3D.210.已知函数f(x)=log 2(x 2-ax +3a)在区间[2,+∞)上递增,则实数a 的取值范围是( )A.(-∞,4)B.(-4,4]C.(-∞,-4)∪[2,+∞)D.[-4,2)11.4只笔与5本书的价格之和小于22元,而6只笔与3本书的价格之和大于24元,则2只笔与3本书的价格比较( )A .2只笔贵B .3本书贵C .二者相同D .无法确定12.若α是锐角,sin(α-6π)=31,则cos α的值等于 A.6162- B. 6162+ C. 4132+ D. 3132- 13.在等差数列{a n }中,a 1=251,第10项开始比1大,则公差d 的取值范围是___________. 14.已知正三棱柱ABC —A 1B 1C 1,底面边长与侧棱长的比为2∶1,则直线AB 1与CA 1所成的角为 。
高三数学等差数列选择题专项训练知识点及练习题及解析(1)
一、等差数列选择题1.等差数列{}n a 中,若26a =,43a =,则5a =( ) A .32B .92C .2D .9解析:A 【分析】由2a 和4a 求出公差d ,再根据54a a d =+可求得结果. 【详解】 设公差为d ,则423634222a a d --===--, 所以5433322a a d =+=-=. 故选:A2.在等差数列{}n a 中,25812a a a ++=,则{}n a 的前9项和9S =( ) A .36 B .48C .56D .72解析:A 【分析】根据等差数列的性质,由题中条件,得出54a =,再由等差数列前n 项和公式,即可得出结果. 【详解】因为{}n a 为等差数列,25812a a a ++=, 所以5312a =,即54a =, 所以()1999983622a a S +⨯===. 故选:A . 【点睛】熟练运用等差数列性质的应用及等差数列前n 项和的基本量运算是解题关键. 3.若等差数列{a n }满足a 2=20,a 5=8,则a 1=( ) A .24 B .23C .17D .16解析:A 【分析】 由题意可得5282045252a a d --===---,再由220a =可求出1a 的值 【详解】 解:根据题意,5282045252a a d --===---,则1220(4)24a a d =-=--=,故选:A.4.在等差数列{}n a 的中,若131,5a a ==,则5a 等于( ) A .25 B .11C .10D .9解析:D 【分析】利用等差数列的性质直接求解. 【详解】 因为131,5a a ==,315529a a a a =+∴=,故选:D .5.若两个等差数列{}n a ,{}n b 的前n 项和分别为n S 和n T ,且3221n n S n T n +=+,则1215a b =( ) A .32B .7059C .7159D .85解析:C 【分析】可设(32)n S kn n =+,(21)n T kn n =+,进而求得n a 与n b 的关系式,即可求得结果. 【详解】因为{}n a ,{}n b 是等差数列,且3221n n S n T n +=+, 所以可设(32)n S kn n =+,(21)n T kn n =+,又当2n 时,有1(61)n n n a S S k n -=-=-,1(41)n n n b T T k n -=-=-, ∴1215(6121)71(4151)59a k b k ⨯-==⨯-,故选:C .6.已知数列{}n a 的前n 项和n S 满足()12n n n S +=,则数列11n n a a +⎧⎫⎨⎬⎩⎭的前10项的和为( ) A .89B .910C .1011D .1112解析:C 【分析】首先根据()12n n n S +=得到n a n =,设11111n n n b a a n n +==-+,再利用裂项求和即可得到答案. 【详解】当1n =时,111a S ==,当2n ≥时,()()11122n n n n n n n a S S n -+-=-=-=. 检验111a S ==,所以n a n =. 设()1111111n n n b a a n n n n +===-++,前n 项和为n T , 则10111111101122310111111T ⎛⎫⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭…. 故选:C7.已知等差数列{}n a 的前n 项和为n S ,且110a =,56S S ≥,下列四个命题:①公差d 的最大值为2-;②70S <;③记n S 的最大值为M ,则M 的最大值为30;④20192020a a >.其真命题的个数是( ) A .4个 B .3个C .2个D .1个解析:B 【分析】设公差为d ,利用等差数列的前n 项和公式,56S S ≥,得2d ≤-,由前n 项和公式,得728S ≤,同时可得n S 的最大值,2d =-,5n =或6n =时取得,结合递减数列判断D . 【详解】设公差为d ,由已知110a =,56S S ≥,得5101061015d d ⨯+≥⨯+,所以2d ≤-,A 正确;所以7710217022128S d =⨯+≤-⨯=,B 错误;1(1)10(1)0n a a n d n d =+-=+-≥,解得101n d≤-+,11100n a a nd nd +=+=+≤,解得10n d≥-, 所以10101n d d-≤≤-+,当2d =-时,56n ≤≤, 当5n =时,有最大值,此时51010(2)30M =⨯+⨯-=, 当6n =时,有最大值,此时61015(2)30M =⨯+⨯-=,C 正确. 又该数列为递减数列,所以20192020a a >,D 正确. 故选:B . 【点睛】关键点点睛:本题考查等差数列的前n 项和,掌握等差数列的前n 和公式与性质是解题关键.等差数列前n 项和n S 的最大值除可利用二次函数性质求解外还可由10n n a a +≥⎧⎨≤⎩求得.8.等差数列{}n a 中,12318192024,78a a a a a a ++=-++=,则此数列的前20项和等于( ) A .160 B .180C .200D .220解析:B 【分析】把已知的两式相加得到12018a a +=,再求20S 得解. 【详解】由题得120219318()()()247854a a a a a a +++++=-+=, 所以1201203()54,18a a a a +=∴+=. 所以2012020()10181802S a a =+=⨯=. 故选:B9.等差数列{},{}n n a b 的前n 项和分别为,n n S T ,若231n n a n b n =+,则2121S T 的值为( )A .1315B .2335C .1117D .49解析:C 【分析】利用等差数列的求和公式,化简求解即可 【详解】2121S T =12112121()21()22a ab b ++÷=121121a a b b ++=1111a b =2113111⨯⨯+=1117.故选C10.已知n S 为等差数列{}n a 的前n 项和,3518a S +=,633a a =+,则n a =( ) A .1n - B .nC .21n -D .2n解析:B 【分析】根据条件列出关于首项和公差的方程组,求解出首项和公差,则等差数列{}n a 的通项公式可求. 【详解】因为3518a S +=,633a a =+,所以11161218523a d a d a d +=⎧⎨+=++⎩, 所以111a d =⎧⎨=⎩,所以()111n a n n =+-⨯=,故选:B.11.设等差数列{}n a 的前n 项和为n S ,且3944a a a +=+,则15S =( )A .45B .50C .60D .80解析:C 【分析】利用等差数列性质当m n p q +=+ 时m n p q a a a a +=+及前n 项和公式得解 【详解】{}n a 是等差数列,3944a a a +=+,4844a a a ∴+=+,84a =1158158()15215156022a a a S a +⨯⨯====故选:C 【点睛】本题考查等差数列性质及前n 项和公式,属于基础题12.在巴比伦晚期的《泥板文书》中,有按级递减分物的等差数列问题,其中有一个问题大意是:10个兄弟分100两银子,长兄最多,依次减少相同数目,现知第8兄弟分得6两,则长兄可分得银子的数目为( )A .825两 B .845两 C .865两 D .885两 解析:C 【分析】设10个兄弟由大到小依次分得()1,2,,10n a n =⋅⋅⋅两银子,数列{}n a 是等差数列,8106100a S =⎧⎨=⎩利用等差数列的通项公式和前n 项和公式转化为关于1a 和d 的方程,即可求得长兄可分得银子的数目1a . 【详解】设10个兄弟由大到小依次分得()1,2,,10n a n =⋅⋅⋅两银子,由题意可得 设数列{}n a 的公差为d ,其前n 项和为n S ,则由题意得8106100a S =⎧⎨=⎩,即1176109101002a d a d +=⎧⎪⎨⨯+=⎪⎩,解得186585a d ⎧=⎪⎪⎨⎪=-⎪⎩. 所以长兄分得865两银子. 故选:C. 【点睛】关键点点睛:本题的关键点是能够读懂题意10个兄弟由大到小依次分得()1,2,,10n a n =⋅⋅⋅两银子构成公差0d <的等差数列,要熟练掌握等差数列的通项公式和前n 项和公式.13.在等差数列{}n a 中,3914a a +=,23a =,则10a =( ) A .11 B .10C .6D .3解析:A 【分析】利用等差数列的通项公式求解1,a d ,代入即可得出结论. 【详解】由3914a a +=,23a =, 又{}n a 为等差数列, 得39121014a a a d +=+=,213a a d =+=,解得12,1a d ==, 则101+92911a a d ==+=; 故选:A.14.设n S 是等差数列{}n a 的前n 项和.若1476a a a ++=,则7S =( ) A .10- B .8C .12D .14解析:D 【分析】利用等差数列下标性质求得4a ,再利用求和公式求解即可 【详解】147446=32a a a a a ++=∴=,则()177477142a a S a +=== 故选:D15.等差数列{}n a 中,已知14739a a a ++=,则4a =( ) A .13 B .14C .15D .16解析:A 【分析】利用等差数列的性质可得1742a a a +=,代入已知式子即可求解. 【详解】由等差数列的性质可得1742a a a +=, 所以1474339a a a a ++==,解得:413a =, 故选:A二、等差数列多选题16.已知等差数列{}n a 的公差0d ≠,前n 项和为n S ,若612S S =,则下列结论中正确的有( )A .1:17:2a d =-B .180S =C .当0d >时,6140a a +>D .当0d <时,614a a >解析:ABC 【分析】因为{}n a 是等差数列,由612S S =可得9100a a +=,利用通项转化为1a 和d 即可判断选项A ;利用前n 项和公式以及等差数列的性质即可判断选项B ;利用等差数列的性质961014a d a a d a =++=+即可判断选项C ;由0d <可得6140a a d +=<且60a >,140a <即可判断选项D ,进而得出正确选项.【详解】因为{}n a 是等差数列,前n 项和为n S ,由612S S =得:1267891011120S S a a a a a a -=+++++=,即()91030a a +=,即9100a a +=,对于选项A :由9100a a +=得12170a d +=,可得1:17:2a d =-,故选项A 正确; 对于选项B :()()118910181818022a a a a S ++===,故选项B 正确;对于选项C :911691014a a a a a a d d =+=++=+,若0d >,则6140a a d +=>,故选项C 正确;对于选项D :当0d <时,6140a a d +=<,则614a a <-,因为0d <,所以60a >,140a <,所以614a a <,故选项D 不正确, 故选:ABC 【点睛】关键点点睛:本题的关键点是由612S S =得出9100a a +=,熟记等差数列的前n 项和公式和通项公式,灵活运用等差数列的性质即可.17.题目文件丢失!18.设数列{}n a 满足1102a <<,()1ln 2n n n a a a +=+-对任意的*n N ∈恒成立,则下列说法正确的是( ) A .2112a << B .{}n a 是递增数列 C .2020312a << D .2020314a << 解析:ABD 【分析】构造函数()()ln 2f x x x =+-,再利用导数判断出函数的单调性,利用单调性即可求解. 【详解】由()1ln 2n n n a a a +=+-,1102a << 设()()ln 2f x x x =+-, 则()11122xf x x x-'=-=--, 所以当01x <<时,0f x ,即()f x 在0,1上为单调递增函数, 所以函数在10,2⎛⎫⎪⎝⎭为单调递增函数, 即()()102f f x f ⎛⎫<< ⎪⎝⎭,即()131ln 2ln 1222f x <<<+<+, 所以()112f x << , 即11(2)2n a n <<≥, 所以2112a <<,2020112a <<,故A 正确;C 不正确; 由()f x 在0,1上为单调递增函数,112n a <<,所以{}n a 是递增数列,故B 正确; 2112a <<,所以 23132131113ln(2)ln ln 222234a a a e =+->+>+=+> 因此20202020333144a a a ∴<><>,故D 正确 故选:ABD 【点睛】本题考查了数列性质的综合应用,属于难题. 19.已知数列{}n a 满足()*111n na n N a +=-∈,且12a =,则( ) A .31a =-B .201912a =C .332S = D . 2 01920192S =解析:ACD 【分析】先计算出数列的前几项,判断AC ,然后再寻找规律判断BD .【详解】由题意211122a =-=,311112a =-=-,A 正确,3132122S =+-=,C 正确; 41121a =-=-,∴数列{}n a 是周期数列,周期为3.2019367331a a a ⨯===-,B 错; 20193201967322S =⨯=,D 正确. 故选:ACD . 【点睛】 本题考查由数列的递推式求数列的项与和,解题关键是求出数列的前几项后归纳出数列的性质:周期性,然后利用周期函数的定义求解. 20.已知等差数列{}n a 的前n 项和为,n S 且15110,20,a a a 则( )A .80a <B .当且仅当n = 7时,n S 取得最大值C .49S S =D .满足0n S >的n 的最大值为12解析:ACD 【分析】由题可得16a d =-,0d <,21322n d d S n n =-,求出80a d =<可判断A ;利用二次函数的性质可判断B ;求出49,S S 可判断C ;令213022n d dS n n =->,解出即可判断D. 【详解】设等差数列{}n a 的公差为d ,则()5111122+4++100a a a d a d +==,解得16a d =-,10a >,0d ∴<,且()21113+222n n n d d S na d n n -==-, 对于A ,81+7670a a d d d d ==-+=<,故A 正确;对于B ,21322n d d S n n =-的对称轴为132n =,开口向下,故6n =或7时,n S 取得最大值,故B 错误; 对于C ,4131648261822d d S d d d =⨯-⨯=-=-,9138191822d d S d =⨯-⨯=-,故49S S =,故C 正确;对于D ,令213022n d dS n n =->,解得013n <<,故n 的最大值为12,故D 正确. 故选:ACD. 【点睛】方法点睛:由于等差数列()2111+222n n n d d S na d n a n -⎛⎫==+- ⎪⎝⎭是关于n 的二次函数,当1a 与d 异号时,n S 在对称轴或离对称轴最近的正整数时取最值;当1a 与d 同号时,n S 在1n =取最值.21.已知数列{}n a :1,1,2,3,5,…其中从第三项起,每个数等于它前面两个数的和,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68S a = B .733S =C .135********a a a a a ++++=D .2222123202*********a a a a a a ++++=解析:BCD 【分析】根据题意写出8a ,6S ,7S ,从而判断A ,B 的正误;写出递推关系,对递推关系进行适当的变形,利用累加法即可判断C ,D 的正误. 【详解】对A ,821a =,620S =,故A 不正确; 对B ,761333S S =+=,故B 正确;对C ,由12a a =,342a a a =-,564a a a =-,…,202120222020a a a =-,可得135********a a a a a +++⋅⋅⋅+=,故C 正确;对D ,该数列总有21n n n a a a ++=+,2121a a a =,则()222312321a a a a a a a a =-=-,()233423423a a a a a a a a =-=-,…,()220182018201920172018201920172018a a a a a a a a =-=-, 22019a =2019202020192018a a a a -,220202020202120202019a a a a a =-,故2222123202*********a a a a a a +++⋅⋅⋅+=,故D 正确. 故选:BCD 【点睛】关键点睛:解答本题的关键是对CD 的判断,即要善于利用21n n n a a a ++=+对所给式子进行变形.22.设{}n a 是等差数列,n S 是其前n 项和,且56678,S S S S S <=>,则下列结论正确的是( ) A .0d < B .70a =C .95S S >D .67n S S S 与均为的最大值解析:ABD 【分析】由1n n n S S a --=()2n ≥,判断6780,0,0a a a >=<,再依次判断选项. 【详解】因为5665600S S S S a <⇒->⇒>,677670S S S S a =⇒-==,788780S S S S a >⇒-=<,所以数列{}n a 是递减数列,故0d <,AB 正确; ()9567897820S S a a a a a a -=+++=+<,所以95S S <,故C 不正确;由以上可知数列{}n a 是单调递减数列,因为6780,0,0a a a >=<可知,67n S S S 与均为的最大值,故D 正确.故选:ABD【点睛】本题考查等差数列的前n 项和的最值,重点考查等差数列的性质,属于基础题型.23.首项为正数,公差不为0的等差数列{}n a ,其前n 项和为n S ,现有下列4个命题中正确的有( )A .若100S =,则280S S +=;B .若412S S =,则使0n S >的最大的n 为15C .若150S >,160S <,则{}n S 中8S 最大D .若78S S <,则89S S <解析:BC【分析】根据等差数列的性质,以及等差数列的求和公式,逐项判断,即可得答案.【详解】A 选项,若1011091002S a d ⨯=+=,则1290a d +=, 那么()()2811128281029160S S a d a d a d d +=+++=+=-≠.故A 不正确; B 选项,若412S S =,则()5611128940a a a a a a ++++=+=,又因为10a >,所以前8项为正,从第9项开始为负,因为()()116168916802a a S a a +==+=, 所以使0n S >的最大的n 为15.故B 正确;C 选项,若()115158151502a a S a +==>,()()116168916802a a S a a +==+<, 则80a >,90a <,则{}n S 中8S 最大.故C 正确;D 选项,若78S S <,则80a >,而989S S a -=,不能判断9a 正负情况.故D 不正确. 故选:BC .【点睛】本题考查等差数列性质的应用,涉及等差数列的求和公式,属于常考题型.24.无穷数列{}n a 的前n 项和2n S an bn c =++,其中a ,b ,c 为实数,则( )A .{}n a 可能为等差数列B .{}n a 可能为等比数列C .{}n a 中一定存在连续三项构成等差数列D .{}n a 中一定存在连续三项构成等比数列解析:ABC【分析】由2n S an bn c =++可求得n a 的表达式,利用定义判定得出答案.【详解】当1n =时,11a S a b c ==++.当2n ≥时,()()221112n n n a S S an bn c a n b n c an a b -=-=++-----=-+. 当1n =时,上式=+a b .所以若{}n a 是等差数列,则0.a b a b c c +=++∴=所以当0c 时,{}n a 是等差数列, 00a c b ==⎧⎨≠⎩时是等比数列;当0c ≠时,{}n a 从第二项开始是等差数列.故选:A B C【点睛】本题只要考查等差数列前n 项和n S 与通项公式n a 的关系,利用n S 求通项公式,属于基础题.25.已知数列{}n a 是递增的等差数列,5105a a +=,6914a a ⋅=-.12n n n n b a a a ++=⋅⋅,数列{}n b 的前n 项和为n T ,下列结论正确的是( ) A .320n a n =-B .325n a n =-+C .当4n =时,n T 取最小值D .当6n =时,n T 取最小值解析:AC【分析】由已知求出数列{}n a 的首项与公差,得到通项公式判断A 与B ;再求出n T ,由{}n b 的项分析n T 的最小值.【详解】解:在递增的等差数列{}n a 中,由5105a a +=,得695a a +=,又6914a a =-,联立解得62a =-,97a =, 则967(2)3963a a d ---===-,16525317a a d =-=--⨯=-.173(1)320n a n n ∴=-+-=-.故A 正确,B 错误;12(320)(317)(314)n n n n b a a a n n n ++==---可得数列{}n b 的前4项为负,第5项为正,第六项为负,第六项以后均为正. 而5610820b b +=-=>.∴当4n =时,n T 取最小值,故C 正确,D 错误.故选:AC .【点睛】本题考查等差数列的通项公式,考查数列的求和,考查分析问题与解决问题的能力,属于中档题.。
高三数学综合测试题(含答案)
高三数学试题(理科)一、选择题(本大题共12小题,每小题5.0分,共60分)1.已知复平面内的平行四边形ABCD中,定点A对应的复数为i(i是虚数单位),向量BC 对应的复数为2+i,则点D对应的复数为()A. 2 B. 2+2i C.-2 D.-2-2i2.在判断两个变量y与x是否相关时,选择了4个不同的模型,它们的相关指数分别为:模型1的相关指数为0.98,模型2的相关指数为0.80,模型3的相关指数为0.50,模型4的相关指数为0.25.其中拟合效果最好的模型是().A.模型1 B.模型2 C.模型3 D.模型43.设随机变量X的分布列如下表,且E(X)=1.6,则a-b=()A.0.2B.0.1C.-0.2D.-0.44.若方程x3-3x+m=0在[0,2]上有解,则实数m的取值范围是()A. [-2,2] B. [0,2]C. [-2,0]D. (-∞,-2)∪(2,+∞)5.已知圆上9个点,每两点连一线段,所有线段在圆内的交点有()A.36个 B.72个 C.63个 D.126个6.函数f(x)=ax3+x+1有极值的一个充分而不必要条件是()A.a<0 B.a>0 C.a<-1 D.a<17.若(n∈N*),且,则() A.81 B.16 C.8 D.18.一个篮球运动员投篮一次得3分的概率为a,得2分的概率为b,不得分的概率为c(a,b,c∈(0,1)),已知他投篮一次得分的均值为2(不计其他得分情况),则ab的最大值为()A. B. C. D.9.高三毕业时,甲、乙、丙等五位同学站成一排合影留念,已知甲、乙二人相邻,则甲、丙相邻的概率是()A. B. C. D.10.已知x与y之间的几组数据如表:假设根据如表数据所得线性回归直线方程为,若某同学根据表中的前两组数据(1,0)和(2,2)求得的直线方程为,则以下结论正确的是()A., B., C., D.,11.某人射击一发子弹的命中率为0.8,现在他射击19发子弹,理论和实践都表明,在这19发子弹中命中目标的子弹数X的概率满足P(X=k)=(k=0,1,2,…,19),则他射完19发子弹后,击中目标的子弹最可能是 ()A.14发 B.15发 C.16发 D.15发或16发12.函数f(x)=ax3+bx2+cx+d(a≠0),若a+b+c=0,导函数f′(x)满足f′(0)f′(1)>0,设f′(x)=0的两根为x1,x2,则|x1-x2|的取值范围是()A.323⎡⎫⎪⎢⎪⎣⎭,B.14,39⎡⎤⎢⎥⎣⎦C.133⎡⎫⎪⎢⎪⎣⎭, D.1193⎡⎫⎪⎢⎣⎭,第II 卷非选择题二、填空题(本大题共4小题,每小题5.0分,共20分)13.某人从某城市的A地乘公交车到火车站,由于交通拥挤,所需时间(单位:分钟)X~N(50,),则他在时间段(30,70]内赶到火车站的概率为________.14.如图(1),在三角形ABC中,AB⊥AC,若AD⊥BC,则AB2=BD·BC;若类比该命题,如图(2),三棱锥A-BCD中,AD⊥面ABC,若A点在三角形BCD所在平面内的射影为M,则有________.15.设M=,则M与1的大小关系是__________.16.若对任意的x∈A,则x∈,就称A是“具有伙伴关系”的集合.集合M={-1,0,,,1,2,3,4}的所有非空子集中,具有伙伴关系的集合的个数为________.三、解答题(本大题共6小题,共70分)17.(本小题共12分)已知一元二次方程x2-ax+1=0(a∈R).(1)若x=37+i44是方程的根,求a的值;(2)若x1,x2是方程两个虚根,且|x1-1|>|x2|,求a的取值范围.18. (本小题共12分)随着生活水平的提高,人们的休闲方式也发生了变化.某机构随机调查了n 个人,其中男性占调查人数的.已知男性中有一半的人的休闲方式是运动,而女性只有的人的休闲方式是运动.(1)完成如图2×2列联表:(2)若在犯错误的概率不超过0.05的前提下,可认为“休闲方式有关与性别”,那么本次被调查的人数至少有多少?(3)根据(2)的结论,本次被调查的人中,至少有多少人的休闲方式是运动?参考公式:=,其中n=a+b+c+d.参考数据:19.若n为正整数,试比较3·2n-1与n2+3的大小,分别取n=1,2,3,4,5加以试验,根据试验结果猜测一个一般性结论,并用数学归纳法证明.20.为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物.某人一次种植了n株沙柳.各株沙柳的成活与否是相互独立的,成活率为p,设ξ为成活沙柳的株数,数学期望E(ξ)为3,标准差为.(1)求n和p的值,并写出ξ的分布列;(2)若有3株或3株以上的沙柳未成活,则需要补种.求需要补种沙柳的概率.21.已知函数f(x)=(ax-x2)e x.(1)当a=2时,求f(x)的单调递减区间;(2)若函数f(x)在(-1,1]上单调递增,求a的取值范围;(3)函数f(x)是否可为R上的单调函数?若是,求出a的取值范围,若不是,说明理由.22.设函数f(x)=|x-a|+x.(1)当a=2时,求函数f(x)的值域;(2)若g(x)=|x+1|,求不等式g(x)-2>x-f(x)恒成立时a的取值范围.答案解析1.B2.A3.C4.A5.D【解析】此题可化归为:圆上9个点可组成多少个四边形,每个四边形的对角线的交点即为所求,所以,交点有=126(个)6.C7.A8.D9.C10. C11. D【解析】由≥且≥,解得15≤k≤16,即P(X=15)=P(X=16)最大12.A【解析】由题意得f′(x)=3ax2+2bx+c,∵x1,x2是方程f′(x)=0的两个根,∴x 1+x2=-,x1·x2=,∴|x1-x2|2=(x+x2)2-4x1·x2=.∵a+b+c=0,∴c=-a-b,∴|x 1-x2|2==()2+·+.∵f′(0)·f′(1)>0,f′(0)=c=-(a+b),且f′(1)=3a+2b+c=2a+b,∴(a+b)(2a+b)<0,即2a2+3ab+b2<0,∵a≠0,两边同除以a2,得()2+3+2<0,解得-2<<-1.由二次函数的性质可得,当=-时,|x 1-x2|2有最小值为,当趋于-1时,|x1-x2|2趋于,故|x 1-x2|2∈[,),故|x1-x2|∈[,).13. 0.9544 14.=S △BCM·S△BCD15.【答案】M<1【解析】∴M==1.16.【答案】15【解析】具有伙伴关系的元素组有-1;1;,2;,3;共4组,所以集合M的所有非空子集中,具有伙伴关系的非空集合中的元素,可以是具有伙伴关系的元素组中的任一组、二组、三组、四组,又集合中的元素是无序的,因此,所求集合的个数为+++=15.17.解(1)已知一元二次方程x2-ax+1=0(a∈R),若x=+i是方程的根,则x=-i也是方程的根.(+i)+(-i)=a,解得a=.(2)x 1,x2是方程x2-ax+1=0的两个虚根,不妨设x1=,x2=,a∈(-2,2),|x 1-1|>|x2|,∴(-1)2+(-)2>()2+()2,∴a<1.综上,-2<a<1.18.【解】(1)依题意,被调查的男性人数为,其中有人的休闲方式是运动;被调查的女性人数为,其中有人的休闲方式是运动,则2×2列联表如图。
高三数学专项训练:函数值的大小比较
高三数学专项训练(Lian):函数值的大小比较一、选择(Ze)题 1.设(She),则(Ze)的大小关(Guan)系是( ).A. B.C.D.2.设则 ( ) A .B .C .D .3.设分别是方程 的实数根 , 则有( )A.B.C.D.4.若,则( ) A .<< B .c <a <bC .b <a <cD .b <c <a5.设a=,b= ()2,c=,则( ) A. a<c<bB. b<c<aC. a<b<cD. b<a<c6.设,则这四个数的大小关系是 ( ) A.B.C.D.7.下列大小关系正确的是( ) A. B. C. D.8.设,则( )A 、a b c >>B 、c a b >>C 、D 、9.若,则下列结论正确的是( ) A . B . C .D .10.若(Ruo),则下列结论正确(Que)的是( )A .B .C .D .11.满(Man)足,下列不等式中正确(Que)的是( ) A .B .C .D .12.三(San)个数,,之间的大小关系为( ) A .B .C .D .13.已知实数,,则,,a b c 的大小关系为( )A .b c a <<B .b a c <<C .D .14.实数的大小关系正确的是A.a c b <<B.a b c <<C.b a c <<D.b c a << 15.设,则c b a ,,的大小关系为( )A .B .C .D .16.三个数,,的大小顺序是( )A. B. C .D .17.已知,则,,a b c 的大小为 ( )A.c a b <<B. c b a <<C. a b c <<D. a c b <<18.设,则 ( ) A 、 B 、C 、D 、19.已(Yi)知,则(Ze)的(De)大小关系是( )A .B .C .D .20.已(Yi)知,,,则(Ze)a ,b ,c 的大小关系为A .a b c <<B .c a b <<C .b a c <<D .c b a << 21.当0<a<b<1时,下列不等式中正确的是 ( ) A . B . C . D .22.设则下列关系正确的是:( ) A. B.C.D.23.设,那么 ( )A .B .C .D .24.已知,,,则( )A. a>b>cB. a>c>bC. b>c>aD. c>b>a 25.设,,,则 ( )A.c b a <<B.c a b << C .a b c << D.b c a <<26.已知函数f (x )(x ∈R )满足>f (x ),则 ( )A .f (2)<f (0) B .f (2)≤2e f (0)C .f (2)=2e f (0) D .f (2)>2e f (0) 27.设函数定义在实数集上,它的图像关于直线对称,且当时,,则有A .B.C.D.28.若(Ruo)函数分别(Bie)是上的奇函数、偶函数,且(Qie)满足,则(Ze)有( )A .B .C .D .二、填空(Kong)题 29.设,则c b a ,,的大小关系是 .30.设,则c b a ,,的大小关系为高三数学专项训练:函数值的大小比较1.D 【解析】 试题分析:,故选D.考点:指数函数和对数函数的性质. 2.B 【解析】 试题分析:由可知,即a c b >>.考点:本小题主要考查对数的基本运算. 3.A 【解析】试题分析:由指数函数,与对数函数,的图象可得a b c <<,故选A .考点:指数函数、对数函数的图像和方程4.C【解析】试题分析:因(Yin)为所(Suo)以,而(Er),故(Gu),又(You),而,故,综<<,选C.上,b a c考点:对数函数.5.D【解析】试题分析:由对数函数的性质可知,当底数时,函数是单调增函数,<<.∴且,∴,即b a c考点:对数函数的单调性及应用.6.D.【解析】试题分析:是上的减函数,,又.考点:指数函数、对数函数及幂函数单调性的应用.7.C.【解析】试题分析:因为,,,所以,选C.考点:对数式与指数式比较大小.8.C【解析】>>.试题分析:,所以b a c考点:比较数的大小.9.D【解析】 试题分析:当时:,所以x x xlg 221>>.考点:指数(Shu)函数、对数函数、幂函数图象及其性质(单调性). 10.D 【解(Jie)析】试题分析:指数函(Han)数、对数函数的底数大于0 时,函数为(Wei)增函数,反之,为减函数,而0m n <<,所(Suo)以1122log log m n>,选D.考点:本题主要考查指数函数、对数函数、幂函数的性质。
高三数学等差数列选择题专项训练知识点及练习题附解析(1)
一、等差数列选择题1.已知{}n a 为等差数列,n S 是其前n 项和,且100S =,下列式子正确的是( ) A .450a a += B .560a a +=C .670a a +=D .890a a +=解析:B 【分析】由100S =可计算出1100a a +=,再利用等差数列下标和的性质可得出合适的选项. 【详解】由等差数列的求和公式可得()110101002a a S +==,1100a a ∴+=, 由等差数列的基本性质可得561100a a a a +=+=. 故选:B.2.已知数列{x n }满足x 1=1,x 2=23,且11112n n n x x x -++=(n ≥2),则x n 等于( ) A .(23)n -1B .(23)n C .21n + D .12n + 解析:C 【分析】由已知可得数列1n x ⎧⎫⎨⎬⎩⎭是等差数列,求出数列1n x ⎧⎫⎨⎬⎩⎭的通项公式,进而得出答案.【详解】 由已知可得数列1n x ⎧⎫⎨⎬⎩⎭是等差数列,且121131,2x x ==,故公差12d = 则()1111122n n n x +=+-⨯=,故21n x n =+ 故选:C3.“中国剩余定理”又称“孙子定理”,1852年英国来华传教伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将正整数中能被3除余2且被7除余2的数按由小到大的顺序排成一列,构成数列{} n a ,则5a =( ) A .103 B .107C .109D .105解析:B 【分析】根据题意可知正整数能被21整除余2,即可写出通项,求出答案. 【详解】根据题意可知正整数能被21整除余2,21+2n a n ∴=, 5215+2107a ∴=⨯=.故选:B.4.已知{}n a 是公差为2的等差数列,前5项和525S =,若215m a =,则m =( ) A .4 B .6C .7D .8解析:A 【分析】由525S =求出1a ,从而可求出数列的通项公式,进而可求出m 的值 【详解】 解:由题意得15452252a ⨯+⨯=,解得11a =, 所以1(1)12(1)21n a a n d n n =+-=+-=-, 因为215m a =,所以22115m ⋅-=,解得4m =, 故选:A5.《张丘建算经》是我国北魏时期大数学家张丘建所著,约成书于公元466-485年间.其中记载着这么一道“女子织布”问题:某女子善于织布,一天比一天织得快,且每日增加的数量相同.已知第一日织布4尺,20日共织布232尺,则该女子织布每日增加( )尺 A .47B .1629C .815D .45解析:D 【分析】设该妇子织布每天增加d 尺,由等差数列的前n 项和公式即可求出结果 【详解】设该妇子织布每天增加d 尺, 由题意知2020192042322S d ⨯=⨯+=, 解得45d =. 故该女子织布每天增加45尺. 故选:D6.已知等差数列{}n a 的前n 项和n S 满足:21<<m m m S S S ++,若0n S >,则n 的最大值为( ) A .2m B .21m +C .22m +D .23m +解析:C 【分析】首先根据数列的通项n a 与n S 的关系,得到10m a +>,2<0m a +,12+>0m m a a ++,再根据选项,代入前n 项和公式,计算结果. 【详解】由21<<m m m S S S ++得,10m a +>,2<0m a +,12+>0m m a a ++. 又()()()1212112121>02m m m m a a S m a +++++==+,()()()1232322323<02m m m m a a S m a +++++==+, ()()()()1222212211>02m m m m m a a S m a a ++++++==++.故选:C. 【点睛】关键点睛:本题的第一个关键是根据公式11,2,1n n n S S n a S n --≥⎧=⎨=⎩,判断数列的项的正负,第二个关键能利用等差数列的性质和公式,将判断和的正负转化为项的正负. 7.设n S 是等差数列{}n a (*n N ∈)的前n 项和,且141,16a S ==,则7a =( ) A .7 B .10C .13D .16解析:C 【分析】由题建立关系求出公差,即可求解. 【详解】设等差数列{}n a 的公差为d ,141,16a S ==,41464616S a d d ∴=+=+=,2d ∴=, 71613a a d ∴=+=.故选:C8.已知等差数列{}n a 中,前n 项和215n S n n =-,则使n S 有最小值的n 是( )A .7B .8C .7或8D .9解析:C 【分析】215n S n n =-看作关于n 的二次函数,结合二次函数的图象与性质可以求解.【详解】22152251524n S n n n ⎛⎫=-=--⎪⎝⎭,∴数列{}n S 的图象是分布在抛物线21522524y x ⎛⎫=--⎪⎝⎭上的横坐标为正整数的离散的点.又抛物线开口向上,以152x =为对称轴,且1515|7822-=-|, 所以当7,8n =时,n S 有最小值. 故选:C9.已知等差数列{}n a 中,5470,0a a a >+<,则{}n a 的前n 项和n S 的最大值为( ) A .4S B .5SC . 6SD . 7S解析:B 【分析】根据已知条件判断0n a >时对应的n 的范围,由此求得n S 的最大值. 【详解】依题意556475600000a a a a a a a d >⎧>⎧⎪⇒<⎨⎨+=+<⎩⎪<⎩,所以015n a n >⇒≤≤, 所以{}n a 的前n 项和n S 的最大值为5S .10.已知数列{}n a 的前n 项和221n S n n =+-,则13525a a a a ++++=( )A .350B .351C .674D .675解析:A 【分析】先利用公式11,1,2n n n S n a S S n -=⎧=⎨-≥⎩求出数列{}n a 的通项公式,再利用通项公式求出13525a a a a ++++的值.【详解】当1n =时,21112112a S ==+⨯-=;当2n ≥时,()()()22121121121n n n a S S n n n n n -⎡⎤=-=+---+--=+⎣⎦.12a =不适合上式, 2,121,2n n a n n =⎧∴=⎨+≥⎩.因此,()()3251352512127512235022a a a a a a ⨯+⨯+++++=+=+=;故选:A. 【点睛】易错点睛:利用前n 项和n S 求通项n a ,一般利用公式11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,但需要验证1a 是否满足()2n a n ≥.11.在等差数列{a n }中,a 3+a 7=4,则必有( ) A .a 5=4 B .a 6=4C .a 5=2D .a 6=2解析:C 【分析】利用等差数列的性质直接计算求解 【详解】因为a 3+a 7=2a 5=4,所以a 5=2. 故选:C12.等差数列{}n a 中,已知14739a a a ++=,则4a =( ) A .13 B .14C .15D .16解析:A 【分析】利用等差数列的性质可得1742a a a +=,代入已知式子即可求解. 【详解】由等差数列的性质可得1742a a a +=, 所以1474339a a a a ++==,解得:413a =, 故选:A13.等差数列{}n a 中,22a =,公差2d =,则10S =( ) A .200 B .100C .90D .80解析:C 【分析】先求得1a ,然后求得10S . 【详解】依题意120a a d =-=,所以101104545290S a d =+=⨯=. 故选:C14.南宋数学家杨辉《详解九张算法》和《算法通变本末》中,提出垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差不相等,但是逐项差数之差或者高次成等差数列.在杨辉之后一般称为“块积术”.现有高阶等差数列,其前7项分别1,7,15,27,45,71,107,则该数列的第8项为( ) A .161 B .155C .141D .139解析:B 【分析】画出图形分析即可列出式子求解.【详解】所给数列为高阶等差数列,设该数列的第8项为x ,根据所给定义:用数列的后一项减去前一项得到一个新数列,得到的新数列也用后一项减去前一项得到一个新数列,即得到了一个等差数列,如图:由图可得:3612107y x y -=⎧⎨-=⎩ ,解得15548x y =⎧⎨=⎩.故选:B.15.已知各项不为0的等差数列{}n a 满足26780a a a -+=,数列{}n b 是等比数列,且77b a =,则3810b b b =( )A .1B .8C .4D .2解析:B 【分析】根据等差数列的性质,由题中条件,求出72a =,再由等比数列的性质,即可求出结果. 【详解】因为各项不为0的等差数列{}n a 满足26780a a a -+=,所以27720a a -=,解得72a =或70a =(舍);又数列{}n b 是等比数列,且772b a ==, 所以33810371178b b b b b b b ===. 故选:B.二、等差数列多选题16.已知数列{}n a 的前n 项和为()0n n S S ≠,且满足140(2)n n n a S S n -+=≥,114a =,则下列说法错误的是( ) A .数列{}n a 的前n 项和为4n S n = B .数列{}n a 的通项公式为14(1)n a n n =+C .数列{}n a 为递增数列D .数列1n S ⎧⎫⎨⎬⎩⎭为递增数列解析:ABC 【分析】数列{}n a 的前n 项和为0n n S S ≠(),且满足1402n n n a S S n -+=≥(),114a =,可得:1140n n n n S S S S ---+=,化为:1114n n S S --=,利用等差数列的通项公式可得1nS ,n S ,2n ≥时,()()111144141n n n a S S n n n n -=-=-=---,进而求出n a . 【详解】数列{}n a 的前n 项和为0n n S S ≠(),且满足1402n n n a S S n -+=≥(),114a =, ∴1140n n n n S S S S ---+=,化为:1114n n S S --=, ∴数列1n S ⎧⎫⎨⎬⎩⎭是等差数列,公差为4,∴()14414n n n S =+-=,可得14n S n=, ∴2n ≥时,()()111144141n n n a S S n n n n -=-=-=---, ∴()1(1)41(2)41n n a n n n ⎧=⎪⎪=⎨⎪-≥-⎪⎩,对选项逐一进行分析可得,A ,B ,C 三个选项错误,D 选项正确. 故选:ABC. 【点睛】本题考查数列递推式,解题关键是将已知递推式变形为1114n n S S --=,进而求得其它性质,考查逻辑思维能力和运算能力,属于常考题17.已知等差数列{}n a 的公差0d ≠,前n 项和为n S ,若612S S =,则下列结论中正确的有( ) A .1:17:2a d =-B .180S =C .当0d >时,6140a a +>D .当0d <时,614a a >解析:ABC 【分析】因为{}n a 是等差数列,由612S S =可得9100a a +=,利用通项转化为1a 和d 即可判断选项A ;利用前n 项和公式以及等差数列的性质即可判断选项B ;利用等差数列的性质961014a d a a d a =++=+即可判断选项C ;由0d <可得6140a a d +=<且60a >,140a <即可判断选项D ,进而得出正确选项.【详解】因为{}n a 是等差数列,前n 项和为n S ,由612S S =得:1267891011120S S a a a a a a -=+++++=,即()91030a a +=,即9100a a +=,对于选项A :由9100a a +=得12170a d +=,可得1:17:2a d =-,故选项A 正确; 对于选项B :()()118910181818022a a a a S ++===,故选项B 正确;对于选项C :911691014a a a a a a d d =+=++=+,若0d >,则6140a a d +=>,故选项C 正确;对于选项D :当0d <时,6140a a d +=<,则614a a <-,因为0d <,所以60a >,140a <,所以614a a <,故选项D 不正确, 故选:ABC 【点睛】关键点点睛:本题的关键点是由612S S =得出9100a a +=,熟记等差数列的前n 项和公式和通项公式,灵活运用等差数列的性质即可.18.设数列{}n a 的前n 项和为*()n S n N ∈,关于数列{}n a ,下列四个命题中正确的是( )A .若1*()n n a a n N +∈=,则{}n a 既是等差数列又是等比数列B .若2n S An Bn =+(A ,B 为常数,*n N ∈),则{}n a 是等差数列 C .若()11nn S =--,则{}n a 是等比数列D .若{}n a 是等差数列,则n S ,2n n S S -,*32()n n S S n N -∈也成等差数列 解析:BCD 【分析】利用等差等比数列的定义及性质对选项判断得解. 【详解】选项A: 1*()n n a a n N +∈=,10n n a a +∴-=得{}n a 是等差数列,当0n a =时不是等比数列,故错; 选项B:2n S An Bn =+,12n n a a A -∴-=,得{}n a 是等差数列,故对;选项C: ()11nn S =--,112(1)(2)n n n n S S a n --∴-==⨯-≥,当1n =时也成立,12(1)n n a -∴=⨯-是等比数列,故对;选项D: {}n a 是等差数列,由等差数列性质得n S ,2n n S S -,*32()n n S S n N -∈是等差数列,故对; 故选:BCD 【点睛】熟练运用等差数列的定义、性质、前n 项和公式是解题关键.19.已知数列{}n a 满足0n a >,121n n n a na a n +=+-(N n *∈),数列{}n a 的前n 项和为n S ,则( )A .11a =B .121a a =C .201920202019S a =D .201920202019S a >解析:BC 【分析】根据递推公式,得到11n n nn n a a a +-=-,令1n =,得到121a a =,可判断A 错,B 正确;根据求和公式,得到1n n nS a +=,求出201920202019S a =,可得C 正确,D 错. 【详解】由121n n n a n a a n +=+-可知2111n n n n na n n n a a a a ++--==+,即11n n n n n a a a +-=-, 当1n =时,则121a a =,即得到121a a =,故选项B 正确;1a 无法计算,故A 错; 1221321111102110n n n n n n n n n n S a a a a a a a a a a a a +++⎛⎫⎛⎫⎛⎫-=+++=-+-++-=-= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,所以1n n S a n +=,则201920202019S a =,故选项C 正确,选项D 错误. 故选:BC. 【点睛】 方法点睛:由递推公式求通项公式的常用方法:(1)累加法,形如()1n n a a f n +=+的数列,求通项时,常用累加法求解; (2)累乘法,形如()1n na f n a +=的数列,求通项时,常用累乘法求解; (3)构造法,形如1n n a pa q +=+(0p ≠且1p ≠,0q ≠,n ∈+N )的数列,求通项时,常需要构造成等比数列求解;(4)已知n a 与n S 的关系求通项时,一般可根据11,2,1n n n S S n a a n --≥⎧=⎨=⎩求解.20.黄金螺旋线又名等角螺线,是自然界最美的鬼斧神工.在一个黄金矩形(宽长比约等于0.618)里先以宽为边长做正方形,然后在剩下小的矩形里以其宽为边长做正方形,如此循环下去,再在每个正方形里画出一段四分之一圆弧,最后顺次连接,就可得到一条“黄金螺旋线”.达·芬奇的《蒙娜丽莎》,希腊雅典卫城的帕特农神庙等都符合这个曲线.现将每一段黄金螺旋线与其所在的正方形所围成的扇形半径设为a n (n ∈N *),数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3).再将扇形面积设为b n (n ∈N *),则( )A .4(b 2020-b 2019)=πa 2018·a 2021B .a 1+a 2+a 3+…+a 2019=a 2021-1C .a 12+a 22+a 32…+(a 2020)2=2a 2019·a 2021D .a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2=0解析:ABD 【分析】对于A ,由题意得b n =4πa n 2,然后化简4(b 2020-b 2019)可得结果;对于B ,利用累加法求解即可;对于C ,数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),即a n -1=a n -2-a n ,两边同乘a n -1 ,可得a n -12=a n -1 a n -2-a n -1 a n ,然后累加求解;对于D ,由题意a n -1=a n -a n -2,则a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2,化简可得结果 【详解】 由题意得b n =4πa n 2,则4(b 2020-b 2019)=4(4πa 20202-4πa 20192)=π(a 2020+a 2019)(a 2020-a 2019)=πa 2018·a 2021,则选项A 正确; 又数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),所以a n -2=a n -a n -1(n ≥3),a 1+a 2+a 3+…+a 2019=(a 3-a 2)+(a 4-a 3)+(a 5-a 4)+…+(a 2021-a 2020)=a 2021-a 2=a 2021-1,则选项B 正确;数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),即a n -1=a n -2-a n ,两边同乘a n -1 ,可得a n-12=a n -1 a n -2-a n -1 a n ,则a 12+a 22+a 32…+(a 2020)2=a 12+(a 2a 1-a 2a 3)+(a 3a 2-a 3a 4)+…+(a 2020a 2019-a 2020a 2021)=a 12-a 2020a 2021=1-a 2020a 2021,则选项C 错误;由题意a n -1=a n -a n -2,则a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2=a 2019·(a 2021-a 2019)+a 2020·(a 2018-a 2020)=a 2019·a 2020+a 2020·(-a 2019)=0,则选项D 正确; 故选:ABD. 【点睛】此题考查数列的递推式的应用,考查累加法的应用,考查计算能力,属于中档题 21.首项为正数,公差不为0的等差数列{}n a ,其前n 项和为n S ,则下列4个命题中正确的有( )A .若100S =,则50a >,60a <;B .若412S S =,则使0n S >的最大的n 为15;C .若150S >,160S <,则{}n S 中7S 最大;D .若89S S <,则78S S <.解析:ABD【分析】利用等差数列的求和公式及等差数列的性质,逐一检验选项,即可得答案.【详解】对于A :因为正数,公差不为0,且100S =,所以公差0d <, 所以1101010()02a a S +==,即1100a a +=, 根据等差数列的性质可得561100a a a a +=+=,又0d <,所以50a >,60a <,故A 正确;对于B :因为412S S =,则1240S S -=,所以561112894()0a a a a a a ++⋅⋅⋅++=+=,又10a >,所以890,0a a ><, 所以115815815()15215022a a a S a +⨯===>,116891616()16()022a a a a S ++===, 所以使0n S >的最大的n 为15,故B 正确; 对于C :因为115815815()15215022a a a S a +⨯===>,则80a >, 116891616()16()022a a a a S ++===,则890a a +=,即90a <, 所以则{}n S 中8S 最大,故C 错误;对于D :因为89S S <,则9980S a S =->,又10a >,所以8870a S S =->,即87S S >,故D 正确,故选:ABD【点睛】解题的关键是先判断d 的正负,再根据等差数列的性质,对求和公式进行变形,求得项的正负,再分析和判断,考查等差数列性质的灵活应用,属中档题.22.意大利人斐波那契于1202年从兔子繁殖问题中发现了这样的一列数:1,1,2,3,5,8,13,….即从第三项开始,每一项都是它前两项的和.后人为了纪念他,就把这列数称为斐波那契数列.下面关于斐波那契数列{}n a 说法正确的是( )A .1055a =B .2020a 是偶数C .2020201820223a a a =+D .123a a a +++…20202022a a +=解析:AC【分析】由该数列的性质,逐项判断即可得解.【详解】对于A ,821a =,9211334a =+=,10213455a =+=,故A 正确;对于B ,由该数列的性质可得只有3的倍数项是偶数,故B 错误;对于C ,20182022201820212020201820192020202020203a a a a a a a a a a +=++=+++=,故C 正确; 对于D ,202220212020a a a =+,202120202019a a a =+,202020192018a a a =+,32121,a a a a a ⋅⋅⋅=+=,各式相加得()2022202120202021202020192012182a a a a a a a a a ++⋅⋅⋅+=+++⋅⋅⋅++, 所以202220202019201811a a a a a a =++⋅⋅⋅+++,故D 错误.故选:AC.【点睛】关键点点睛:解决本题的关键是合理利用该数列的性质去证明选项.23.公差不为零的等差数列{}n a 满足38a a =,n S 为{}n a 前n 项和,则下列结论正确的是( )A .110S =B .10n n S S -=(110n ≤≤)C .当110S >时,5n S S ≥D .当110S <时,5n S S ≥ 解析:BC【分析】设公差d 不为零,由38a a =,解得192a d =-,然后逐项判断. 【详解】设公差d 不为零, 因为38a a =, 所以1127a d a d +=+,即1127a d a d +=--, 解得192a d =-, 11191111551155022S a d d d d ⎛⎫=+=⨯-+=≠ ⎪⎝⎭,故A 错误; ()()()()()()221101110910,10102222n n n n n n d d na d n n n a n n S S d ----=+=-=-+=-,故B 正确; 若11191111551155022S a d d d d ⎛⎫=+=⨯-+=> ⎪⎝⎭,解得0d >,()()22510525222n d d d n n S n S =-=--≥,故C 正确;D 错误;故选:BC24.已知数列{}n a 的前n 项和为n S ,前n 项积为n T ,且3201911111a a e e +≤++,则( ) A .当数列{}n a 为等差数列时,20210S ≥B .当数列{}n a 为等差数列时,20210S ≤C .当数列{}n a 为等比数列时,20210T >D .当数列{}n a 为等比数列时,20210T <解析:AC【分析】 将3201911111a a e e +≤++变形为32019111101212a a e e -+-≤++,构造函数()1112x f x e =-+,利用函数单调性可得320190a a +≥,再结合等差数列与等比数列性质即可判断正确选项【详解】 由3201911111a a e e +≤++,可得32019111101212a a e e -+-≤++,令()1112x f x e =-+, ()()1111101111xx x x x e f x f x e e e e --+=+-=+-=++++, 所以()1112x f x e =-+是奇函数,且在R 上单调递减,所以320190a a +≥, 所以当数列{}n a 为等差数列时,()320192*********a a S +=≥; 当数列{}n a 为等比数列时,且3a ,1011a ,2019a 同号,所以3a ,1011a ,2019a 均大于零, 故()2021202110110T a =>.故选:AC【点睛】本题考查等差数列与等比数列,考查逻辑推理能力,转化与化归的数学思想,属于中档题25.已知无穷等差数列{}n a 的前n 项和为n S ,67S S <,且78S S >,则( ) A .在数列{}n a 中,1a 最大B .在数列{}n a 中,3a 或4a 最大C .310S S =D .当8n ≥时,0n a <解析:AD【分析】利用等差数列的通项公式可以求70a >,80a <,即可求公差0d <,然后根据等差数列的性质判断四个选项是否正确.【详解】因为67S S <,所以7670S S a -=> , 因为78S S >,所以8780S S a -=<, 所以等差数列{}n a 公差870d a a =-<, 所以{}n a 是递减数列,故1a 最大,选项A 正确;选项B 不正确; 10345678910770S S a a a a a a a a -=++++++=>, 所以310S S ≠,故选项C 不正确; 当8n ≥时,80n a a ≤<,即0n a <,故选项D 正确; 故选:AD【点睛】本题主要考查了等差数列的性质和前n 项和n S ,属于基础题.。
高三数学等差数列选择题专项训练单元 期末复习测试基础卷(1)
一、等差数列选择题1.在等差数列{}n a 中,520164a a +=,S ,是数列{}n a 的前n 项和,则S 2020=( ) A .2019 B .4040C .2020D .4038解析:B 【分析】由等差数列的性质可得52012016024a a a a +==+,则()15202020202016202010102a a a a S +=⨯=⨯+可得答案. 【详解】 等差数列{}n a 中, 52012016024a a a a +==+()12020202052016202010104101040402a a a a S +===⨯=+⨯⨯ 故选:B2.等差数列{}n a 中,若26a =,43a =,则5a =( ) A .32B .92C .2D .9解析:A 【分析】由2a 和4a 求出公差d ,再根据54a a d =+可求得结果. 【详解】设公差为d ,则423634222a a d --===--, 所以5433322a a d =+=-=. 故选:A3.已知数列{x n }满足x 1=1,x 2=23,且11112n n n x x x -++=(n ≥2),则x n 等于( ) A .(23)n -1B .(23)n C .21n + D .12n + 解析:C 【分析】由已知可得数列1n x ⎧⎫⎨⎬⎩⎭是等差数列,求出数列1n x ⎧⎫⎨⎬⎩⎭的通项公式,进而得出答案.【详解】由已知可得数列1n x ⎧⎫⎨⎬⎩⎭是等差数列,且121131,2x x ==,故公差12d = 则()1111122n n n x +=+-⨯=,故21n x n =+故选:C4.已知数列{}n a 的前n 项和()2*n S n n N =∈,则{}na 的通项公式为( )A .2n a n =B .21n a n =-C .32n a n =-D .1,12,2n n a n n =⎧=⎨≥⎩解析:B 【分析】利用1n n n a S S -=-求出2n ≥时n a 的表达式,然后验证1a 的值是否适合,最后写出n a 的式子即可. 【详解】2n S n =,∴当2n ≥时,221(1)21n n n a S S n n n -=-=--=-,当1n =时,111a S ==,上式也成立,()*21n a n n N ∴=-∈,故选:B. 【点睛】易错点睛:本题考查数列通项公式的求解,涉及到的知识点有数列的项与和的关系,即11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,算出之后一定要判断1n =时对应的式子是否成立,最后求得结果,考查学生的分类思想与运算求解能力,属于基础题.5.在等差数列{}n a 中,25812a a a ++=,则{}n a 的前9项和9S =( ) A .36 B .48C .56D .72解析:A 【分析】根据等差数列的性质,由题中条件,得出54a =,再由等差数列前n 项和公式,即可得出结果. 【详解】因为{}n a 为等差数列,25812a a a ++=, 所以5312a =,即54a =, 所以()1999983622a a S +⨯===. 故选:A . 【点睛】熟练运用等差数列性质的应用及等差数列前n 项和的基本量运算是解题关键.6.已知递减的等差数列{}n a 满足2219a a =,则数列{}n a 的前n 项和取最大值时n =( )A .4或5B .5或6C .4D .5解析:A 【分析】由2219a a =,可得14a d =-,从而得2922n d d S n n =-,然后利用二次函数的性质求其最值即可 【详解】解:设递减的等差数列{}n a 的公差为d (0d <),因为2219a a =,所以2211(8)a a d =+,化简得14a d =-,所以221(1)9422222n n n d d d dS na d dn n n n n -=+=-+-=-, 对称轴为92n =, 因为n ∈+N ,02d<, 所以当4n =或5n =时,n S 取最大值, 故选:A7.设等差数列{}n a 的前n 和为n S ,若()*111,m m a a a m m N +-<<->∈,则必有( )A .0m S <且10m S +>B .0m S >且10m S +>C .0m S <且10m S +<D .0m S >且10m S +<解析:D 【分析】由等差数列前n 项和公式即可得解. 【详解】由题意,1110,0m m a a a a ++>+<, 所以1()02m m m a a S +=>,111(1)()02m m m a a S ++++=<. 故选:D.8.在等差数列{}n a 中,若n S 为其前n 项和,65a =,则11S 的值是( ) A .60 B .11C .50D .55解析:D 【分析】根据题中条件,由等差数列的性质,以及等差数列的求和公式,即可求出结果. 【详解】因为在等差数列{}n a 中,若n S 为其前n 项和,65a =, 所以()1111161111552a a S a +===.故选:D.9.已知等差数列{}n a 的前n 项和为n S ,31567a a a +=+,则23S =( ) A .121 B .161C .141D .151解析:B 【分析】由条件可得127a =,然后231223S a =,算出即可. 【详解】因为31567a a a +=+,所以15637a a a =-+,所以1537a d =+,所以1537a d -=,即127a =所以231223161S a == 故选:B10.已知等差数列{}n a 的前n 项和为n S ,若936S S =,则612SS =( ) A .177B .83 C .143D .103解析:D 【分析】由等差数列前n 项和性质得3S ,63S S -,96S S -,129S S -构成等差数列,结合已知条件得633S S =和31210S S =计算得结果. 【详解】已知等差数列{}n a 的前项和为n S ,∴3S ,63S S -,96S S -,129S S -构成等差数列,所以()()633962S S S S S ⋅-=+-,且936S S =,化简解得633S S =.又()()()96631292S S S S S S ⋅-=-+-,∴31210S S =,从而126103S S =. 故选:D 【点睛】 思路点睛:(1)利用等差数列前n 项和性质得3S ,63S S -,96S S -,129S S -构成等差数列, (2)()()633962S S S S S ⋅-=+-,且936S S =,化简解得633S S =, (3)()()()96631292S S S S S S ⋅-=-+-,化简解得31210S S =.11.已知等差数列{}n a ,其前n 项的和为n S ,3456720a a a a a ++++=,则9S =( ) A .24 B .36C .48D .64解析:B 【分析】利用等差数列的性质进行化简,由此求得9S 的值. 【详解】由等差数列的性质,可得345675520a a a a a a ++++==,则54a =19592993622a a aS +=⨯=⨯= 故选:B12.定义12nnp p p +++为n 个正数12,,,n p p p 的“均倒数”,若已知数列{}n a 的前n 项的“均倒数”为12n,又2n n a b =,则1223910111b b b b b b +++=( ) A .817 B .1021C .1123 D .919解析:D 【分析】由题意结合新定义的概念求得数列的前n 项和,然后利用前n 项和求解通项公式,最后裂项求和即可求得最终结果. 【详解】设数列{}n a 的前n 项和为n S ,由题意可得:12n n S n=,则:22n S n =, 当1n =时,112a S ==,当2n ≥时,142n n n a S S n -=-=-, 且14122a =⨯-=,据此可得 42n a n =-,故212nn a b n ==-,()()111111212122121n n b b n n n n +⎛⎫==- ⎪-+-+⎝⎭, 据此有:12239101111111111233517191.21891919b b b b b b +++⎡⎤⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦=⨯= 故选:D13.已知数列{}n a 的前n 项和为n S ,15a =,且满足122527n na a n n +-=--,若p ,*q ∈N ,p q >,则p q S S -的最小值为( )A .6-B .2-C .1-D .0解析:A 【分析】 转化条件为122527n n a an n +-=--,由等差数列的定义及通项公式可得()()2327n a n n =--,求得满足0n a ≤的项后即可得解.【详解】 因为122527n n a a n n +-=--,所以122527n na a n n +-=--, 又1127a =--,所以数列27n a n ⎧⎫⎨⎬-⎩⎭是以1-为首项,公差为2的等差数列, 所以()1212327na n n n =-+-=--,所以()()2327n a n n =--, 令()()23270n a n n =--≤,解得3722n ≤≤, 所以230,0a a <<,其余各项均大于0, 所以()()()3123min13316p q S S a a S S =-=+=⨯-+--⨯=-.故选:A. 【点睛】解决本题的关键是构造新数列求数列通项,再将问题转化为求数列中满足0n a ≤的项,即可得解.14.等差数列{}n a 中,22a =,公差2d =,则10S =( ) A .200 B .100 C .90 D .80解析:C 【分析】先求得1a ,然后求得10S . 【详解】依题意120a a d =-=,所以101104545290S a d =+=⨯=. 故选:C15.已知各项不为0的等差数列{}n a 满足26780a a a -+=,数列{}n b 是等比数列,且77b a =,则3810b b b =( )A .1B .8C .4D .2解析:B【分析】根据等差数列的性质,由题中条件,求出72a =,再由等比数列的性质,即可求出结果. 【详解】因为各项不为0的等差数列{}n a 满足26780a a a -+=,所以27720a a -=,解得72a =或70a =(舍);又数列{}n b 是等比数列,且772b a ==,所以33810371178b b b b b b b ===.故选:B.二、等差数列多选题16.已知数列{}n a 是等差数列,前n 项和为,n S 且13522,a a S +=下列结论中正确的是( ) A .7S 最小 B .130S =C .49S S =D .70a =解析:BCD 【分析】由{}n a 是等差数列及13522,a a S +=,求出1a 与d 的关系,结合等差数列的通项公式及求和公式即可进行判断. 【详解】设等差数列数列{}n a 的公差为d .由13522,a a S +=有()1112542252a a a d d ⨯+=++,即160a d += 所以70a =,则选项D 正确. 选项A. ()71176773212S a d a d d ⨯=+=+=-,无法判断其是否有最小值,故A 错误. 选项B. 113137131302a S a a +=⨯==,故B 正确. 选项C. 9876579450a a a a S a a S -=++++==,所以49S S =,故C 正确. 故选:BCD 【点睛】关键点睛:本题考查等差数列的通项公式及求和公式的应用,解答本题的关键是由条件13522,a a S +=得到160a d +=,即70a =,然后由等差数列的性质和前n 项和公式判断,属于中档题.17.题目文件丢失!18.黄金螺旋线又名等角螺线,是自然界最美的鬼斧神工.在一个黄金矩形(宽长比约等于0.618)里先以宽为边长做正方形,然后在剩下小的矩形里以其宽为边长做正方形,如此循环下去,再在每个正方形里画出一段四分之一圆弧,最后顺次连接,就可得到一条“黄金螺旋线”.达·芬奇的《蒙娜丽莎》,希腊雅典卫城的帕特农神庙等都符合这个曲线.现将每一段黄金螺旋线与其所在的正方形所围成的扇形半径设为a n (n ∈N *),数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3).再将扇形面积设为b n (n ∈N *),则( )A .4(b 2020-b 2019)=πa 2018·a 2021B .a 1+a 2+a 3+…+a 2019=a 2021-1C .a 12+a 22+a 32…+(a 2020)2=2a 2019·a 2021D .a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2=0解析:ABD 【分析】对于A ,由题意得b n =4πa n 2,然后化简4(b 2020-b 2019)可得结果;对于B ,利用累加法求解即可;对于C ,数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),即a n -1=a n -2-a n ,两边同乘a n -1 ,可得a n -12=a n -1 a n -2-a n -1 a n ,然后累加求解;对于D ,由题意a n -1=a n -a n -2,则a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2,化简可得结果 【详解】由题意得b n =4πa n 2,则4(b 2020-b 2019)=4(4πa 20202-4πa 20192)=π(a 2020+a 2019)(a 2020-a 2019)=πa 2018·a 2021,则选项A 正确; 又数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),所以a n -2=a n -a n -1(n ≥3),a 1+a 2+a 3+…+a 2019=(a 3-a 2)+(a 4-a 3)+(a 5-a 4)+…+(a 2021-a 2020)=a 2021-a 2=a 2021-1,则选项B 正确;数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),即a n -1=a n -2-a n ,两边同乘a n -1 ,可得a n-12=a n -1 a n -2-a n -1 a n ,则a 12+a 22+a 32…+(a 2020)2=a 12+(a 2a 1-a 2a 3)+(a 3a 2-a 3a 4)+…+(a 2020a 2019-a 2020a 2021)=a 12-a 2020a 2021=1-a 2020a 2021,则选项C 错误;由题意a n -1=a n -a n -2,则a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2=a 2019·(a 2021-a 2019)+a 2020·(a 2018-a 2020)=a 2019·a 2020+a 2020·(-a 2019)=0,则选项D 正确; 故选:ABD. 【点睛】此题考查数列的递推式的应用,考查累加法的应用,考查计算能力,属于中档题 19.已知数列{}n a 的前4项为2,0,2,0,则该数列的通项公式可能为( ) A .0,2,n n a n ⎧=⎨⎩为奇数为偶数B .1(1)1n n a -=-+C .2sin 2n n a π= D .cos(1)1n a n π=-+解析:BD 【分析】根据选项求出数列的前4项,逐一判断即可. 【详解】解:因为数列{}n a 的前4项为2,0,2,0, 选项A :不符合题设;选项B :01(1)12,a =-+=12(1)10,a =-+=23(1)12,a =-+=34(1)10a =-+=,符合题设;选项C :,12sin2,2a π==22sin 0,a π==332sin22a π==-不符合题设; 选项D :1cos 012,a =+=2cos 10,a π=+=3cos 212,a π=+=4cos310a π=+=,符合题设.故选:BD. 【点睛】本题考查数列的通项公式的问题,考查了基本运算求解能力,属于基础题. 20.已知等差数列{}n a 的前n 项和为,n S 且15110,20,a a a 则( )A .80a <B .当且仅当n = 7时,n S 取得最大值C .49S S =D .满足0n S >的n 的最大值为12解析:ACD 【分析】由题可得16a d =-,0d <,21322n d d S n n =-,求出80a d =<可判断A ;利用二次函数的性质可判断B ;求出49,S S 可判断C ;令213022n d dS n n =->,解出即可判断D. 【详解】设等差数列{}n a 的公差为d ,则()5111122+4++100a a a d a d +==,解得16a d =-,10a >,0d ∴<,且()21113+222n n n d d S na d n n -==-, 对于A ,81+7670a a d d d d ==-+=<,故A 正确;对于B ,21322n d d S n n =-的对称轴为132n =,开口向下,故6n =或7时,n S 取得最大值,故B 错误;对于C ,4131648261822d d S d d d =⨯-⨯=-=-,9138191822d d S d =⨯-⨯=-,故49S S =,故C 正确;对于D ,令213022n d dS n n =->,解得013n <<,故n 的最大值为12,故D 正确. 故选:ACD. 【点睛】方法点睛:由于等差数列()2111+222n n n d d S na d n a n -⎛⎫==+- ⎪⎝⎭是关于n 的二次函数,当1a 与d 异号时,n S 在对称轴或离对称轴最近的正整数时取最值;当1a 与d 同号时,n S 在1n =取最值.21.设{}n a 是等差数列,n S 是其前n 项的和,且56S S <,678S S S =>,则下列结论正确的是( ) A .0d > B .70a =C .95S S >D .6S 与7S 均为n S 的最大值解析:BD 【分析】设等差数列{}n a 的公差为d ,依次分析选项即可求解. 【详解】根据题意,设等差数列{}n a 的公差为d ,依次分析选项:{}n a 是等差数列,若67S S =,则7670S S a -==,故B 正确;又由56S S <得6560S S a -=>,则有760d a a =-<,故A 错误; 而C 选项,95S S >,即67890a a a a +++>,可得()7820a a +>, 又由70a =且0d <,则80a <,必有780a a +<,显然C 选项是错误的. ∵56S S <,678S S S =>,∴6S 与7S 均为n S 的最大值,故D 正确; 故选:BD. 【点睛】本题考查了等差数列以及前n 项和的性质,需熟记公式,属于基础题.22.(多选题)在数列{}n a 中,若221n n a a p --=,(2n ≥,*n N ∈,p 为常数),则称{}n a 为“等方差数列”.下列对“等方差数列”的判断正确的是( )A .若{}n a 是等差数列,则{}2n a 是等方差数列B .(){}1n-是等方差数列C .若{}n a 是等方差数列,则{}kn a (*k N ∈,k 为常数)也是等方差数列D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列解析:BCD【分析】根据定义以及举特殊数列来判断各选项中结论的正误.【详解】对于A 选项,取n a n =,则()()()422444221111n n a a n n n n n n +⎡⎤⎡⎤-=+-=+-⋅++⎣⎦⎣⎦()()221221n n n =+++不是常数,则{}2n a 不是等方差数列,A 选项中的结论错误;对于B 选项,()()22111110n n +⎡⎤⎡⎤---=-=⎣⎦⎣⎦为常数,则(){}1n -是等方差数列,B 选项中的结论正确;对于C 选项,若{}n a 是等方差数列,则存在常数p R ∈,使得221n n a a p +-=,则数列{}2n a 为等差数列,所以()221kn k n a a kp +-=,则数列{}kn a (*k N ∈,k 为常数)也是等方差数列,C 选项中的结论正确;对于D 选项,若数列{}n a 为等差数列,设其公差为d ,则存在m R ∈,使得n a dn m =+,则()()()()2221112222n n n n n n a a a a a a d dn m d d n m d d +++-=-+=++=++, 由于数列{}n a 也为等方差数列,所以,存在实数p ,使得221n n a a p +-=,则()222d n m d d p ++=对任意的n *∈N 恒成立,则()2202d m d d p ⎧=⎪⎨+=⎪⎩,得0p d ==, 此时,数列{}n a 为常数列,D 选项正确.故选BCD.【点睛】本题考查数列中的新定义,解题时要充分利用题中的定义进行判断,也可以结合特殊数列来判断命题不成立,考查逻辑推理能力,属于中等题.23.设等差数列{}n a 的前n 项和为n S ,若39S =,47a =,则( )A .2n S n =B .223n S n n =-C .21n a n =-D .35n a n =-解析:AC【分析】利用等差数列{}n a 的前n 项和公式、通项公式列出方程组,求出11a =,2d =,由此能求出n a 与n S .【详解】等差数列{}n a 的前n 项和为n S .39S =,47a =,∴31413239237S a d a a d ⨯⎧=+=⎪⎨⎪=+=⎩, 解得11a =,2d =,1(1)221n a n n ∴+-⨯=-=.()21212n n n S n +-== 故选:AC .【点睛】本题考查等差数列的通项公式求和公式的应用,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.24.在下列四个式子确定数列{}n a 是等差数列的条件是( )A .n a kn b =+(k ,b 为常数,*n N ∈);B .2n n a a d +-=(d 为常数,*n N ∈);C .()*2120n n n a a a n ++-+=∈N ;D .{}n a 的前n 项和21n S n n =++(*n N ∈).解析:AC【分析】直接利用等差数列的定义性质判断数列是否为等差数列.【详解】A 选项中n a kn b =+(k ,b 为常数,*n N ∈),数列{}n a 的关系式符合一次函数的形式,所以是等差数列,故正确,B 选项中2n n a a d +-=(d 为常数,*n N ∈),不符合从第二项起,相邻项的差为同一个常数,故错误;C 选项中()*2120n n n a a a n ++-+=∈N ,对于数列{}n a 符合等差中项的形式,所以是等差数列,故正确;D 选项{}n a 的前n 项和21n S n n =++(*n N ∈),不符合2n S An Bn =+,所以{}n a 不为等差数列.故错误.故选:AC【点睛】本题主要考查了等差数列的定义的应用,如何去判断数列为等差数列,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.25.公差为d 的等差数列{}n a ,其前n 项和为n S ,110S >,120S <,下列说法正确的有( )A .0d <B .70a >C .{}n S 中5S 最大D .49a a <解析:AD【分析】先根据题意得1110a a +>,1120a a +<,再结合等差数列的性质得60a >,70a <,0d <,{}n S 中6S 最大,49a a <-,即:49a a <.进而得答案.【详解】解:根据等差数列前n 项和公式得:()111111102a a S +=>,()112121202a a S +=< 所以1110a a +>,1120a a +<,由于11162a a a +=,11267a a a a +=+,所以60a >,760a a <-<,所以0d <,{}n S 中6S 最大,由于11267490a a a a a a +=+=+<,所以49a a <-,即:49a a <.故AD 正确,BC 错误.故选:AD.【点睛】本题考查等差数列的前n 项和公式与等差数列的性质,是中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学填空、选择专项训练(一)
班级_____________姓名________________成绩_____________
1、已知集合{}{}Z n n x x B x x x A ∈+==<--=),13(2,012112, 则=B A ___________.
2、已知函数]3,1[,42∈-=x ax x y 是单调递增函数,则实数a 的取值 范围是_________________
3、已知函数1)(-=x a x f 的反函数的图象经过点(4,2)则)2(1-f
的值为__________.
4、在复数集上,方程0222=++x x 的根是___________________.
5、已知5
3)4cos(=+x π
, 则x 2sin 的值为 。
6、命题“若B A x ∈,则A x ∈或B x ∈”的逆否命题是
_______________________________________________________
7、在ABC ∆中,已知sinA:sinB:sinC=3:5:7,则ABC ∆中最大角的值是_________
8、已知b a bx ax x f +++=3)(2是偶函数,定义域为]2,1[a a -,则b a +=
9、方程P 412+n =140P 3n 的解为
10、在n b a )(+的二项展开式中,第二项与倒数第二项系数之和为14, 则自然数n= .
11、设函数()()()x
a x x x f ++=1为奇函数,则实数=a 。
12、已知sin α=,则44sin cos αα-的值为 13、设函数y=f(x)的图象关于直线x=1对称,若当1≤x 时12+=x y ,
则当x>1时y=______________
14、设P 和Q 是两个集合,定义集合P-Q={}Q x P x x ∉∈且,|,如果P={x|log 2x<1},Q={x||x-2|<1},那么P-Q 等于
15、若函数()1222-=--a ax x
x f 的定义域为R ,则实数a 的取值范
围 .
16.设二次函数a x x x f +-=2)(,若f(-m)<0,则f(m+1)的值是-------( )
(A)正数 (B)负数 (C)非负数 (D) 与m 有关
17、已知0tan cos <θθ,那么角θ是( )
A.第一或第二象限角
B.第二或第三象限角 C.第三或第四象限角 D.第一或第四象限角 18、函数()⎩
⎨⎧>+-≤-=1,341,442x x x x x x f 的图象和函数()x x g 2log =的图象的交点个数是( )A.4 B.3 C.2 D.1
19、已知集合{1,1}M =-,11{|
24,}2x N x x Z +=<<∈则M N = ( ) (A) {1,1}- (B) {1}- (C) {0} (D) {1,0}-
20、已知函数()x f 为R 上的减函数,则满足()11f x f <⎪⎪⎭
⎫ ⎝⎛的实数x 的取值范围是( )
A.()1,1-
B.()1,0
C.()()1,00,1 -
D.()()+∞-∞-,11,。