命题逻辑.ppt

合集下载

离散数学第一章命题逻辑PPT课件

离散数学第一章命题逻辑PPT课件

P
Q
0
0
0
1
1
0
1
1
P→Q 1 1 0 1
如: P:雪是黑的。
Q:太阳从东方升起 。
P → Q:如果雪是黑的,则太阳从东方升起 。
命题P→Q是假, 当且仅当P是真而Q是假。
11/20/2020
chapter1
14
1.2 联结词
条件与汉语中“如果…,就…”相类似,但有所区别: (1)自然语言中,“如果P则Q”,往往P和Q有一定的因果 关系,而条件复合命题P→Q中 P和Q 可以完全不相关。 (2)自然语言中,“如果P则Q”,当P为0、Q为1时,整个 句子真值难以确定;而条件复合命题P→Q中,当P为0时, 复合命题的真值为1。 P则Q的逻辑含义:P是Q的充分条件,的表示 命题变元——常用P、Q、R、S等大写字母或加下标的大 写字母P1, Q2, R10, ……表示来表示一个命题,称为命题 变元。 如: P:巴黎在法国。
Q:煤是白色的。
11/20/2020
chapter1
4
1.1 命题及其表示法
3、命题相关概念 简单命题(原子命题)——不能再分解的命题。 复合命题——由若干个简单命题复合而成的命题。 真值表——把组成复合命题的各命题变元的真值的所有 组合及其相对应的复合命题的真值列成表,称为真值表。
11/20/2020
chapter1
6
1.1 命题及其表示法
【例3 】求公式 (P→R)∨(Q→R)的真值表。 解:∵公式含有3个命题变元P、Q、R,
∴真值表有23=8行。其真值表如下表 所示:
11/20/2020
chapter1
7
1.2 联结词
命题和原子命题常可通过一些联结词构成新命题, 这

《逻辑学》PPT全套课件

《逻辑学》PPT全套课件

第一章 引 论
第一节 传统逻辑与现代逻辑

释 “ 逻 辑 ”
()

λóyos(逻各斯) → Logic →逻辑
亚里士多德 彼得《逻辑大全》
逻 名学 辩学 论理学 理则学
辑 严复 穆勒名学 (Mill 逻辑

学体系)
词 章士钊 逻辑指要
的 由 来
()
希腊文中的λóyos是个多义词,指
第四节 假言命题及其推理
一、假言命题
定义:假言命题是反映某一事物情况是 另一事物情况存在条件的命题。
种类:(一)充分条件假言命题 (二)必要条件假言命题 (三)充分必要条件假言命题
(一)充分条件假言命题
1、什么是充分条件:如果有p就一定有q, 没有p不一定没有q,这样p就是q的充分 条件。(有之必然,无之未必不然)
2、什么是充分条件假言命题:反映前件 是后件的充分条件的假言命题。
例:如果天下雨,那么地上湿。
倘若一个整数的末尾数是0,则这个 数就能被5整除。
(一)充分条件假言命题
3、充分条件假言命题的公式: 如果p,那么q p → q (“→”是蕴涵符号,表示现代
汉语中的“如果……那么……”) 4、充分条件假言命题的语言表达形式:
相容选言命题就是选言肢可以同真的选言命题。
公式 p或者q p∨q (“P”和“q”表示肢命 题,“或者”表示联结词。也可以用“∨”析 取符号表示“或者” )
在现代汉语中相容选言命题的联结词还可表达 为:“可能……也可能……”,“也许……也 许……”
相容选言命题的逻辑值
1、相容选言命题的真值表
p
q

不相容选言命题的逻辑值
1、不相容选言命题的真值表

逻辑学:命题逻辑

逻辑学:命题逻辑
2018年8月17日星期五 7
第二章 命题逻辑
第二节 复合命题及其推理
负命题
负命题由否定联结词(如“并非”)联结支命题而形成的复合命 题。例如: (1)并非选修逻辑的学生都是文科生。 (2)这个班的学生不都学英语。 (3)如果它是三角形,则内角和等于180°,这个观点不对。 注:负命题的支命题可以是简单命题,也可以是复合命题。
20语句
任何命题都是通过语句来表达的,但语句和命题并非一一对应:
首先,有的语句不能直接表达命题,如: •(1)西南大学在重庆吗? •(2)请把门关上! 一般来讲:陈述句与反诘句可以直接表达命题。 其次,同一命题可以用不同的语句来表达,如: “所有的鸟都会飞”与“没有鸟不会飞”表达了相同的命题。 此外,同一命题可用不同的民族语言的语句来表达。 再次,同一语句,可以表达不同的命题,如: 小张将书还给小王,因为他要回家了。
真值表的作用
•p •T •F •¬p F T
根据这个真值表,也可以给f(p)=p这个一元真值函数作如下定义: p为真当且仅当p为假; p为假当且仅当p为真。
2018年8月17日星期五
10
负命题
根据负命题的逻辑性质,可对¬p再否定得到¬¬p,其真值与 p相同,真值表如下:
•p •T •F •¬p •F •T •¬¬p •T •F
2018年8月17日星期五 4
命题的分类
简单命题
非模态命题 命 题
模态命题 复合命题
2018年8月17日星期五
5
命题分析的层次
将联结词所联结的命题作为一个完整的单位来看待


——研究关于联结词的推理(命题逻辑)
——研究关于量项和联项的推理(传统词项逻辑)

命题逻辑ppt课件

命题逻辑ppt课件
结合词的优先顺序为: , , , , ; 1:假设出现的结合词同级,又无括号时,那么
按从左到右的顺序运算; 2:假设遇有括号时,应该先进展括号中的运算.
留意: 本书中运用的 括号全为圆括号〔〕.
2.2 命题公式
命题变项与合式公式 公式的赋值 真值表 命题的分类
重言式 矛盾式 可满足式
命题变项与合式公式
随堂练习
1:写出命题、简单命题的定义。 2:用符号定义五个结合词及其各自取值情况。 3:写出蕴涵式的定义,分析前件与后件的关系,
列出对应的言语表达方式。 4:写出遇到析取结合词二义性时的判别方式及对应
符号表示。 5:列出下面公式的真值表,阐明各公式的层次
(p q) ((p q) (q p)) (p q) (p q) 6:写出命题公式的定义
pq r
pq
000
0
001
0
010
1
011
1
100
1
101
1
110
1
111
1
r (pq)r
1
1
0
1
1
1
0
0
1
1
0
0
1
1
0
0
公式的类型
定义2.9 设A为一个命题公式 (1) 假设A在它的各种赋值下取值均为真,那么称A为重言 式(也称永真式) (2) 假设A在它的各种赋值下取值均为假,那么称A为矛盾 式(也称永假式) (3) 假设A至少存在一组赋值是成真赋值,那么称A为可满 足式
3.析取式与析取结合词“∨〞
定义2.3 设 p,q为二命题,复合命题“p或q 〞称作p与q的析取式,记作p∨q,∨称作 析取结合词,并规定
p∨q为假当且仅当p与q同时为假. 例即将:p以∨下命q题为符真号化当且仅当p与q至少有一个为真。 此处(1)定2或义4是的素析数.取式p∨q表示的是一种相容性

ch01命题逻辑(第一讲)

ch01命题逻辑(第一讲)
它的否定命题怎么表示? 例如:命题1:今天是星期五
命题2:今天下雨 “今天是星期五且今天下雨”怎么表示? “今天是星期五或者今天下雨”怎么表示? 例如:“如果今天下雨,我们就不去踢球”怎么表示?
03:06:43
9
➢ 否定词“¬”(或“”)
否定词(Negation) 是一元联结词。相当于自 然语言中的“非”、“不”等, 真值表如右图。
命题的真值是具有客观性质的,而不是由人的主观
决定的。
03:06:43
3
命题与真值
1.1 命题与联结词
命题的真值:作为命题的陈述句所表示的判断结果称为命题的 真值。
真值的取值:真值只取两个值:真或假。通常用1(或字母T) 表示真,用0(或字母F)表示假。
真命题与假命题:凡是与事实相符的陈述句是真命题,而与事 实不符合的陈述句是假命题。
数理逻辑概述
➢ 数理逻辑是用数学的方法研究思维规律的一门学 科。由于它使用了一套符号,简洁的表达出各种 推理的逻辑关系,因此数理逻辑一般又称为符号 逻辑。
➢ 数理逻辑和计算机的发展有着密切的联系,它为 机器证明、自动程序设计、计算机辅助设计等计 算机应用和理论研究提供必要的理论基础。
03:06:43
1
(2) 2 + 2 = 4 当且仅当 3 是偶数.
0
(3) 2 + 2 = 4 当且仅当 太阳从东方升起.
1
(4) 2 + 2 = 4 当且仅当 美国位于非洲.
0
(5) 函数 f (x) 在 x0 可导的充要条件是 它在 x0 连续.
0
03:06:43
24
1.2 合式公式及分类
1.命题变元
在命题逻辑中,又有命题常元和命题变元之分。如果 P代表一个确定的具体的命题,称P为命题常元;若 P代表一个不确定的泛指的任意命题,称P为命题变 元。显然,命题变元P不是命题,只有用一个特定的 命题或一个真值取代P才能成为命题。这时也说对P 指派或解释,记为I(P)。

命题逻辑(联言、选言、负命题)

命题逻辑(联言、选言、负命题)
任何命题都是通过语句来表达的,但语句和命 题并非一一对应: 首先,有的语句不能直接表达命题。 其次,同一命题可以用不同的语句来表达,如: ‚所有的鸟。 此外,同一命题可用不同的民族语言的语句来 表达。
再次,同一语句,可以表达不同的命题。
命题和判断
• 判断:就是被断定者断定了的命题。 • 判断的主要特征:有所断定。
想想看
• 两个女学生走进一餐厅,翻开桌上的菜单,突 然眼前一亮,‚看,熊掌!每盘20元,来两盘 怎么样?‛‚人们都说熊掌名贵,价钱也不贵, ok!‛一会儿,她们吃完了,叫来招待员结帐, 招待员开出帐单:‚一共4025元‛‚什么?你 没搞错吧?‛学生几乎吓晕了。‚熊掌每盘 2000元,你看菜单。‛学生仔细一看,果然是 2000元,中间没有小数点。这下她们急得要哭 了。这时老板出来了,看了几眼付不起钱的学 生,‚没钱,就将证件留下。‛她们乖乖的将 证件交出。学生会出面交涉,老板斩钉截铁说: ‚一分也不能少,如果三天之内不把钱付清, 便立即向法院起诉。……学生只好自认倒霉, 一律师知道了,帮他们追回了所被敲诈的钱。 如何讨?
• 规则: 肯定前件就要肯定后件,否定后件就要否定前件 否定前件就要否定后件,肯定后件就要肯定前件 • 推理蕴涵式为: • (p↔q)∧p →q • (p↔q)∧q →p • (p↔q)∧ p → q • (p↔q)∧ q →p • 某甲犯了罪当且仅当某甲应受刑罚处罚; • 某甲是案犯当且仅当某乙是案犯;
• 负判断由支命题和联结词‚并非‛构成。负 命题的逻辑联结词‚并非‛可以用否定词 ‚‛来表示。 • 日常用语中,负命题的联结词还可以表达为 ‚没有‛、‚不‛、‚这是假的‛、‚这是 错误的‛等。被否定的命题称为支命题,它 可以是简单命题,也可以复合命题。 • 负命题的形式:并非p,也可表示为: p • 负命题的真假表:当支命题为真时,负命题 为假;当支命题为假时,负命题为真。

命题逻辑-

命题逻辑-

4.2有效推理得形式证明
• 自然演绎系统形式证明就是建立在 推理规则基础之上得。这些规则大 约可分为四部分:一就是基本推导 规则,二就是等值替换规则,三就是 条件证明规则,四就是间接证明规 则。
一、基本推导规则:
根据合取式得逻辑特征:
组合式 简记为∧+
根据析取式得逻辑特征:
选言三段论
简记∨-
根据蕴涵式得逻辑特征:
• 例2.判定命题公式“(p∧q) →r”与“p∨(q →r)”就是否逻辑等值。
2.1命题公式之间得逻辑等值
• 如果两个公式就是等值得,那么以这两个公 式为子公式构造一个等值式:
• (﹁p∨ ﹁ q )(﹁ (p∧q))。 • 这个等值式就是恒真得,由此可推知,一个等
值式就是重言式,那么她得两个子公式逻辑 等值。
• 证:① (A∨B)→C
P \A→C
• ② (A∨B) ∨ C
①Impl
• ③ ( A ∧ B) ∨ C
②DeM
• ④ ( A ∨C) ∧( B ∨ C ) ③Dist
• ⑤ A ∨C
④∧-
• ⑥A →C
⑤Impl
作业
• 一、运用真值表方法,判定下列命题就是不 就是等值命题。
• l、如果这匹马儿不吃饱草,那么这匹马儿不 能跑。
• 3.德摩根律 ¬(p∧q) ¬p∨¬q;

¬(p∨q) ¬p∧¬q。
• 4、分配律 p∧(q∨r) (p∧q)∨(p∧r)

p∨(q∧r) (p∨q) →(p∨r)
• 5、实质蕴涵(p→q) ( p ∨ q)
• 6.假言易位 (p→q) ( q → p )
• 7、移出律 (p∧q) →r p→(q →r)

离散数学PPT课件

离散数学PPT课件
定义2.1设A,B是两个命题公式,若A,B构成的等价 式AB为重言式,则称A与B等值,记为AB。
20
例2.1判断下面两个公式是否等值: (pq), pq 例2.2判断下面各组公式是否等值: (1)p(qr) 与 (pq)r (2) ( pq)r与 (pq)r
21
置换规则 : 设(A)是含公式A的命题公式, (B) 是用公式B置换了(A)中所有的A以后得到的命题公式, 若BA,则(B) (A)。
定义1.2 设p,q为两命题,复合命题“p并且q”称为p与 q的合取式,记作“pq”。 pq为真当且仅当 p, q同 时为真。
定义1.3 设p,q为两命题,复合命题“p或q”称为p与q的 析取式,记作“pq”。 p q为假当且仅当 p, q同时为 假。
7
例1.3将下列命题符号化 (1)吴影既用功又聪明。 (2)吴影不仅用功而且聪明。 (3)吴影虽然聪明,但不用功。 (4)张辉与王丽都是三好学生。 (5)张辉与王丽是同学
16
例1.8求下列公式的真值表,并求成真赋值。 (1) (pq)r (2) (pp)(qq) (3) (p q) q r
定义1.10设A为一命题公式 (1)若A在它的各种赋值下取值均为真,则称A是重 言式或永真式。 (2)若A在它的各种赋值下取值均为假,则称A是矛 盾式或永假式。 (3)若A不是矛盾式,则称A是可满足式。
离散数学
1
离散数学课件
离散数学是计算机科学的核心理论课程, 是计算机专业的专业基础课。
第一部分 数理逻辑 第二部分 集合与关系代数 第三部分 图论
2
第一部分数理逻辑
第一章 命题逻辑基本概念 第二章 命题逻辑等值演算 第三章 命题逻辑推理理论 第四章 一阶逻辑基本概念 第五章 一阶逻辑等值演算与推理

逻辑学(完整)ppt课件

逻辑学(完整)ppt课件

《新工具》 针对亚氏 的演绎逻 辑而提出 归纳和诉 诸自然和 经验。三 表法。
和推理
是计算
的思想
批判了形式
而成为 现代逻 辑的先 驱。
揭示了思维的辩
逻辑,研究 了辩证思维, 构造了辩证 逻辑的体系。
证矛盾。
现代归纳逻辑的发展有两个方向 : “经典”数理统计方向和 由J.M.凯因斯和F.P.拉姆齐开创,流行于50~80年代初期的 贝叶斯运动。20世纪中叶以来,美国的P.J.科恩用模态逻辑 作为处理归纳推理的工具。 科恩指出,支持度可列为不同 的等级,不同等级的支持度, 就是证据给予假设不同等级 的必然性, 一个被证明了的理论就是由较低级的必然性达 到较高级的必然性。
逻辑的研究对象
当 研究思维? 前 主 研究思维的逻辑形式? 流 研究语言? 观 点 研究推理?
思维的逻辑形式
结论:逻辑学 是研究思维的 形式结构及其 规律的科学, 中心任务是研 究推理及其有 效性标准。或 者最简单的: 逻辑学是研究 推理的科学。
逻辑形式:具有不同内容的思维(命题和推理)所共同具有的形式或结构
所有团员都不是青年 所有商品都不是劳动产品
但它们有共同的逻辑形式
所有S不是P
与这些逻辑形式属于同类的还有
有的S是P
有的S不是P
如:有的人是团员
还有另外一类命题
p
有的人不是大学生 q
如果一个物体摩擦, 那么这个物体生热 如果你能办成这件事,那么我从4楼跳下去
按照操作定义,得出它们的逻辑形式是 其中替换内容的字母用了小写的p、q等
要么p要么q要么p要么q要么p要么q要么p要么q这商品品质好而且价格低小张学习好而且品德高尚qq或者p或者q或者p或者q或者p或者q或者p或者q或者老张是导演或者老张是演员他或者吃米饭或者吃面条并非p并非p并非p并非p并非人是由石头变来的并非人人有自知之明推理的逻辑形式推理由命题组成如果用相同的字母替换相同的具体内容就可得到推理的逻辑形式所有团员是青年所以有的青年是团员所有m是p所有s是m所以所有s是p所有s是p所以有的p是s不同类型的命题可组成不同类型的推理如果一个人患肺炎p那么他发烧q小张不发烧非q所以他未患肺炎非p如果p那么q所以非p要么你交钱p要么你交命q你交了钱p所以你不用交命非q要么p要么q所以非q以上均为演绎推理的逻辑形式还有归纳推理形式可参阅教科书p9任何一个逻辑形式都包括

离散数学课件03命题逻辑的推理理论

离散数学课件03命题逻辑的推理理论

③ p
④ q ⑤ q→r
Hale Waihona Puke ②化简②化简 ①③假言推理
⑥ r
⑦ r∨s ⑧ ┐r→s
④⑤假言推理
⑥附加 ⑦置换
例题
例3.4 在自然推理系统P中构造下面推理的证明: 若数a是实数,则它不是有理数就是无理数;若a不能表 示成分数,则它不是有理数;a是实数且它不能表示成分数。 所以a是无理数。 构造证明: (1)将简单命题符号化: 设 p:a是实数。 r:a是无理数。 (2)形式结构: 前提:p→(q∨r), ┐s→┐q, p∧┐s 结论:r q:a是有理数。 s:a能表示成分数。
若一个推理的形式结构与某条推理定律对应的蕴涵 式一致,则不用证明就可断定这个推理是正确的。
2.1节给出的24个等值式中的每一个都派生出两条推 理定律。例如双重否定律A A产生两条推理定 律A A和 AA。 由九条推理定律可以产生九条推理规则,它们构成了 推理系统中的推理规则。
–推理的形式结构 –自然推理系统P
本章与后续各章的关系
–本章是第五章的特殊情况和先行准备
3.1 推理的形式结构 3.2 自然推理系统P


本章小结
习题

作业
3.1 推理的形式结构
数理逻辑的主要任务是用数学的方法来研究数学中的 推理。 推理是指从前提出发推出结论的思维过程。
前提是已知命题公式集合。
(┐q∨p) ∨ q 1
推理定律--重言蕴含式
(1) A (A∨B) (2) (A∧B) A (3) (A→B)∧A B (4) (A→B)∧┐B ┐A 附加律 化简律 假言推理 拒取式
(5) (A∨B)∧┐B A
(6) (A→B) ∧ (B→C) (A→C) (7) (AB) ∧ (BC) (A C)

《离散数学》命题逻辑

《离散数学》命题逻辑
由原子命题组合而成的命题称为复合 命题(compound proposition)。
例如:
和 e 都是无理数。 6和8至少有一个是合数。 说刘老师讲课不好是不正确的。 不下雨我就去买书。
7
命题与命题联结词
将命题连接起来的方式叫做命题联结词
( proposition connective ) 或 命 题 运 算 符
3
命题与命题联结词
逻辑
如何表示? 如何“操作”?
非真即假的陈述句称为命题(proposition)。 一个命题如果是对的或正确的,则称为真命
题,其真值为“真”(true),常用T或1表示; 一个命题如果是错的或不正确的,则称为假
命题,其真值为“假”(false),常用F或0表示。
4
命题与命题联结词
32
命题公式及其分类
为简化公式的形式,作如下规定:
(1) 优先级 , (∧, ∨), (, ) (2) 公式 (~p) 的括号可以省略,写成 ~p (3) 整个公式最外层的括号可以省略
例1
(((p)∧q)(q∨p)) p∧q q∨p
例2
p∧q∨r 不是 命题公式 应写作 (p∧q)∨r 或 p∧(q∨r)
例 判断下列句子哪些是命题,哪些不是
这门课程题为“离散数学”。 这门“离散数学”讲得好吗? X 这门“离散数学”讲得真好! X 请学习“离散数学” 。 X 5是素数。 太阳从西方升起。 如果明天晴,而且我有空,我就去踢球。 天王星上没有生命。 x + 3 > 5。 X 5 本命题是假的。X
俞伯牙和钟子期是好朋友。 俞伯牙是好朋友 ∧ 钟子期是好朋友 俞伯牙 ∧ 钟子期是好朋友 Friend (俞伯牙,钟子期)
23

逻辑学课件第三讲 命题的判定与命题逻辑的形式证明

逻辑学课件第三讲 命题的判定与命题逻辑的形式证明
f(3)是 p , p → p, p ∨ p 等公式表达的真值函 项,表示这一函项的值与变项本身表达的值相反。
f(4)是 p ∧ p, ( p ∨ p), (p→ p)等公式表 达的真值函项,表示不论变项有真值还是假值,公式总有假的
值。
设n=2,用“f()”表示真值函项,那么有2个变项的公 式表达的真值函项可用下表表示:
f(9)是和f(8)矛盾的函项。 f(10)是和f(7)矛盾的函项,对不相容选言命题的抽象可以
得到这种真值形式,表达 f(10) 的公式 (p↔q)也称作反等 值。 f(11)是和f(6)矛盾的函项,它的真值与p无关,而与非q的 真值相同。 f(12)是和f(5)矛盾的函项,表达 它 的公式 (p →q )有 时也称作反蕴涵。 f(13)是和f(4)矛盾的函项,它的真值与q无关,而与非p的 真值相同。 f(14)是和f(3)矛盾的函项。 f(15)是和f(2)矛盾的函项。 f(16)是和f(1)矛盾的函项,表示不论p和q取何真值,公式 总有假的真值。
p→q∧q (p→q∧q)→p
3)根据五个基本真值表,依次确定出所列公式的真值。如果这 个公式在各种情况下都是真的,就判定它是重言式,否则就判 定它不是重言式。
p q p q q∧q p→q∧q (p→q∧q)→p
TT F F F
F
T
TF F T F
F
T
FT T F F
T
T
FF T T F
T
T
从上面这个真值表可以看出,这个公式为重言式。 注意:每一栏的真值情况要写在该栏的主联结词下面。
F
F
T
T
F
F
FFT F T F T F T F T F
T
F

离散数学讲义 第二章命题逻辑PPT课件

离散数学讲义 第二章命题逻辑PPT课件

解 令P:我得到这本小说;Q:我今夜就读完它。
于是上述命题可表示为P→Q。
7
5.等值“”
定义2.2.5 设P和Q是两个命题,则它们的等值命
题是一个复合命题,称为等值式复合命题,记作“P Q” (读作“P当且仅当Q”)。
当P和Q的真值相同时,PQ取真,否则取假。
例10
P
Q
P Q
0
0
1
0
1
0
1
0
0
德.摩根定律
E11
PQP∨Q
E12
P Q (P∧Q)∨(P∧Q)
E13
P (QR) (P∧Q) R
E14
P Q (PQ)∧(QP)
E15
PQQP
23
三、等价式的判别
有两种方法:真值表方法,命题演算方法
1、真值表方法
例1 用真值表方法证明 E10: (PQ) PQ
解 令:A= (PQ),B= PQ,构造A,B
一个复合命题,记作“P→Q”(读作“如果P,则Q”)。
当P为真,Q为假时,P→Q为假,否则 P→Q为真。
P
Q
P→Q
0
0
1
0
1
1
1
0
0
1
1
1
例8 若P:雪是黑色的;Q:太阳从西边升起;
R:太阳从东边升起。则P→Q和P→R所表示的命题都是真的.
例9 将命题“如果我得到这本小说,那么我今夜
就读完它。”符号化。
对于上述五种联结词,应注意到: 复合命题的真值只取决于构成它的各原子命题的真 值,而与这些原子命题的内容含义无关。
9
命题符号化
利用联结词可以把许多日常语句符号化。基本步骤如下:

离散数学之1—命题逻辑

离散数学之1—命题逻辑
pq 的逻辑关系:p为 q 的充分条件, 或者:q为 p 的必要条件。 注意:当 p 为假时,pq恒为真。 实例: 如果天气好,我就去游玩。 p → q 如果我得到这本小说,我将读完它。 p → q 如果雪是黑的,那么太阳从西方升起。 p → q
28
蕴涵联结词的实例
我将去旅游,仅当我有时间。 p: 我去旅游 q: 我有时间 p→q p: 不下雨 q: 我骑自行车上班 只要不下雨,我就骑自行车上班 p→q 只有不下雨,我才骑自行车上班。 q→p
说谎者悖论 亚里士多德,古希腊人,是世界
古典形式逻辑
如果这个人说的是假话,既 在中世纪,形式逻辑作为一门独 “我没有说谎”,既他说的是 立的科学得到了发展。 真话,矛盾。
第一篇 数理逻辑
6
数理逻辑创始人
德国哲学家和数学家莱布 尼茨是德国最重要的自然 科学家、数学家、物理学 家和哲学家,一个举世罕 见的科学天才,和牛顿同 为微积分的创建人。 莱布尼茨是现在公认的数 理逻辑创始人,他的目的 是建立一种“表意的符号 语言”,其中把一切思维 推理都化归为计算。实际 上这正是数理逻辑的总纲 领。
29
蕴涵联结词的实例
除非你努力,否则你不能成功。 表示p q的常用词: 除非你努力,你才能成功。 p是q的充分条件 p: 你努力 q: 你成功 q是p的必要条件 p → q 或 q → p 如果(若)p,则q p 0 0 1 1 q 0 1 0 1 p 1 1 0 0
只要p,就q q qp pq 只有q 才p 1因为p所以 1 q 1 0p仅当q0 0 才p 1除非q, 1 1 p 0除非q,否则非 1 1
数理逻辑
“事实上,它们(程 序设计)或者就是 数理逻辑,或者是 用计算机语言书写 的数理逻辑,或者 是数理逻辑在计算 机上的应用。”

离散数学第3章 命题逻辑

离散数学第3章 命题逻辑

0
0
0
1 1 0 0
1 0 1 0
0
13

一般来说, 只要不是非常明显的不可兼就使用.


例 p: 今天晚上我在寝室上自习, q :今天晚上我去电影 院看电影. 今天晚上我在寝室上自习或去电影院看电影。 p q.
14
5. 蕴涵(条件)联结词 : p q p: 我有时间, q : 我去看望我的父母. p q : 如果我有时间, 那么我去看望我的父母 . “”相当于“如果…那么…”, “若…则…”,等. p q 可读作“(若)p则q”. p称为前件, q称为后件.
p 1 1 0 0 q 1 0 1 0 pq 1 1 1 0
12
4. 异或联结词 : p q “不可兼或”, 它表示两者不能同时为真


例 p: 明天去深圳的飞机是上午八点起飞, q :明天去深圳 的飞机是上午八点半起飞. p q: 明天去深圳的飞机是上午八点或上午八点半起飞 . p 1 1 0 q 1 0 1 pq 0 1 1 p q pq 1 1 1


2









判断下列语句是否是命题. 2 + 3 = 5. √ 大熊猫产在我国东北. √ x > 3. 立正! 这朵花真漂亮! 你喜欢网络游戏吗? 1+1=10. √ 火星上有生物. √ 我说的都是假话. 小王和小李是同学. √ 你只有刻苦学习,才能取得好成绩. √
3
2. 命题的真值 命题的真值就是命题的逻辑取值. 经典逻辑值只有两个: 1和0 在数理逻辑中, 更多时候逻辑真是用 T(True) 或 t, 逻辑假用 F(False) 或 f 表示的.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 命题逻辑
第七讲
内容回顾
定义 对于给定的命题公式,如果有一个等价公式 仅由小项的析取所组成,则该等价式称为原式的主析 取范式。
小项
定义 n个命题变元的合取式,称为布尔合 取或小项,其中每个变元与它的否定不能同时 存在,但两者必须出现且仅出现一次。
每个小项可用n位二进制编码表示。以变元自身出现 的用1 表示,以其否定出现的用0表示:
(i j)
极小项与极大项
由p, q两个命题变项形成的极小项与极大项
极小项 公式 成真赋值 名称
极大项 公式 成假赋值 名称
p q 0 0 m0 p q
0 0 M0
p q
0 1 m1 p q 0 1 M1
p q 1 0 m2 p q
1 0 M2
pq
1 1 m3 p q 1 1 M3
由p, q, r三个命题变项形成的极小项与极大项
只有B才能昨天要火腿,今天要猪排。
设P、Q、R分别表示A、B、C要的是火腿。
(1)(P Q)、 (2)((P R) (P R))、 (3)(Q R)
1.5.4 主合取范式
定义1- n个命题变元的析取式,称为布尔析取或 极大项,其中每个变元与它的否定不能同时存 在,但两者必须出现且仅出现一次。
由真值表方法可知:一个公式的真值为0的真值指派所 对应的大项的合取,即为此公式的主合取范式。
例1- 用真值表方法求 ( p q) r 的主合取范式 解: 公式的真值表如下
P Q R P→Q ¬R (p→Q)→¬R
00 0
1
1
1
00 1
1
0
0
01 0
1
1
1
01 1
1
0
0
10 0
0
1
1
10 1
0
0
1
大项的性质如下:
(1)每一个大项当其真值指派与编码相同时,其真值为0,其 余的2n-1种赋值均为1;
(2)任意两个不同大项的析取式永真: Mi M j 1
(3)全体大项的合取式必为假,记为:
2n -1
Mi M0 M1 L M 2n -1 0
i0
mi与Mi的关系: mi Mi, Mi mi
例如,2个命题变元p和q的大项为:p q,p q,p q,p q
3个命题变元P、Q、R的大项为:
p q r, p q r, p q r, p q r, p q r,p q r,p q r,p q r
n个命题变元共有2n个大项,每个大项可表示为n 位二进制编码,以变元自身出现的用0表示,以变元的否 定出现的用1表示;且对应十进制编码。这一点与极小项 的表示刚好相反。

• ②, ③代入① 并排序,得
• (pq)r M0M2M4
(主合取范式)
例2 用等值演算方法求( p q) r 的主合取范式。 解:
( p q) r (p q) r
(p q) r
( p q) r ( p r) (q r)
合取范式
( p (q q) r) (( p p) q 标由小到大的顺序排列。
例1 求公式 A=(pq)r的主合取范式

(pq)r
• (pr)(qr) (合取范式) ①

pr
• p(qq)r
• (pqr)(pqr)

M0M2


qr
• (pp)qr
• (pqr)(pqr)

M0M4
成假 赋值
000 001 010 011 100 101 110 111
名称
M0 M1 M2 M3 M4 M5 M6 M7
定义1- 对于给定的命题公式,如果有一个等价公式仅由极大 项的合取所组成,则该等价式称为原式的主合取范式。
定理1- (主合取范式存在惟一定理) 任何命题公式的主合 取范式一定存在,并且惟一。
( p q r) ( p q r) ( p q r) (p q r)
若n= 2,则有
M00 p q M0 M10 p q M2
M01 p q M1 M11 p q M3
若n= 3,则有:
M 000 p q r M 0 M 001 p q r M1 M 010 p q r M 2 M 011 p q r M3
M100 p q r M 4 M101 p q r M 5 M110 p q r M 6 M111 p q r M 7
极小项
公式
成真
赋值
p q r 0 0 0
p q r 0 0 1
p q r 0 1 0
p q r 0 1 1
p q r 1 0 0
p q r 1 0 1
p q r 1 1 0
p q r 1 1 1
名称
m0 m1 m2 m3 m4 m5 m6 m7
极大项
公式
pqr p q r p q r p q r p q r p q r p q r p q r
11 0
1
1
1
11 1
1
0
0
所以公式 ( p q) r 的主合取范式为:
( p q) r M 001 M 011 M 111 ( p q r) ( p q r) (p q r)
用等值演算方法构成主合取范式的主要步骤如下: (1)将原命题公式化归为合取范式; (2)除去合取范式中所有永真的合取项; (3)合并相同的析取项和相同的变元; (4)对合取项补入没有出现的命题变元,即添加
m000 p q r , m100 p q r,
m001 p q r , m101 p q r ,
m010 p q r , m110 p q r ,
m011 p q r , m111 p q r .
小项的性质如下:
(1)每一个小项当其真值指派与编码相同时,其真值为1, 其余的2n-1种均为0;
(2)任意两个不同小项的合取式永假:mi m j 0 (3)全体小项的析取式永为真,记为:
(i j)
2n -1
mi m0 m1 m2n -1 1
i0
主析取范式的求法
• 真值表法 • 等值演算法
趣味推理题
• A、B、C三人去餐馆吃饭,他们每人要的不是火腿
就是猪排。 (1)如果A要的是火腿,那么B要的就是猪排。 (2)A或C要的是火腿,但是不会两人都要火腿。 (3)B和C不会两人都要猪排。 谁昨天要的是火腿,今天要的是猪排?
相关文档
最新文档