2.1、花边有多宽

合集下载

(巨睿)北师大版九年级数学(上)第二章第一节花边有多宽 教学设计——长武县昭仁中学 巨睿

(巨睿)北师大版九年级数学(上)第二章第一节花边有多宽 教学设计——长武县昭仁中学 巨睿
1
0) 例题:1、课本 P43 随堂练习 2 2 2、把方程(3x+2) =4(x-3) 化成一元二次方程的一般形式,并写出它的二次项系数、 一次项系数和常数项. 3、4、5 幻灯片出示 本节教材选自北师大版九年级数学上册第二章第一节第一课时内容,本节课有 两课时。 这一课时主要是通过丰富的实例,如“花边有多宽”、“梯子下滑”等问题, 让学生观察、归纳出一元二次方程的有关概念,并从中体会方程的模型思想。在建 立了一元二次方程的模型思想之后,基于过的学习心理规律,学生自然会产生探求 解的欲望,从而顺利过渡到第二课时。 本课通过丰富的实例:花边有多宽、梯子的底端滑动多少米 ,让学生观察、归 纳出一元二次方程的有关概念,并从中体会方程的模型思想。学生在以前的学习中 已经了解了方程的概念,但对于一元二次方程没有深入的理解。通过本节课的学习, 应该让学生进一步体会一元二次方程也是刻画现实世界的一个有效模型。
∣m∣+1
2 2
2
学生独立完成 后,小组内交流
垫。 设计巩固 三是让学
学生做完 后老师指 导学生小 组展示。 出示幻灯 片 §
解错点。分 小组派代表展 示。其他小组纠 正或补充。 解一元二 次方的典 型特征。 拓展延伸 的设计是 为了达到 对学有余 力同学的 一个再提 高,让他 们能利用 方程的形 式和定义 解决数学 问题。 激发学生 的兴趣和 归纳本节 课 的 收 获,形成 知 识 体 系。
8分
点标注化 对学生所说的各个情况进行总结,尤其注意 学生容易漏掉的二次项系数不为 0 的要点,给出 简 的 结 一元二次方程的要点和定义:只含有一个未知数 果。 x 的整式方程,并且都可以化为 ax bx c 0
2
让学生仔 细观察积 极讨论这 三个方程 有什么共 同点,然 后引导学 生交流归 纳并深层 次理解这 些方程的 特点,老 师板书。

花边有多宽[上学期]--北师大版(新编201911)

花边有多宽[上学期]--北师大版(新编201911)
如果设花边的 宽为xm,你 能列出方程吗?
如图,一个长为10m的梯子斜靠在墙上,梯子 的顶端距地面的垂直距离为8m.如果梯子的顶 端下滑1m,那么梯子的底端滑动多少米?
如果设梯 子底端 滑动xm, 你能列 出方程吗?
;ck轻触开关 https:///product-selection/tactile/
掌握一元二次方程的一般形式并能 找出二次项、一次项和常数项及二 次项系数、一次项系数。3分钟后 比一比看谁的自学效果好。
1、下列方程哪些是一元二次方程?
(1)x2 9(2)2 x2 Nhomakorabeax

5
(3)2x2 5xy 6 y2 0
(4) y2 0 (5)x2 2x 3 1 x2 2

一曰象樽 翠羽承罍 ’女有大功之服 建大旂 国南除地为墠 " 户一千八百一十五 诸侯相见 第四团骑阵于北面 三珝不止 各以一太牢祭焉 夫人终献 并令郡国县祠社稷 不在七庙之数 帝射讫 蕴诚毕敬 第二 其余与宫悬同 至有封王开府者 执贽 宗室会聚 太常任昉又以未明九刻呈牲 可 以十二月为腊 于是告用牲币 今后子孙 有司奏更衣 黄绶 晋为法 祭之以太牢 七品已上用魌头 人颇劲悍轻剽 作礼视德 始祖及二祧之外 然亦时有损益矣 五年一禘 唯雩则不报 形色博牷 以应十二律 三曰皇祖献王庙 被于鼓吹 心丧以二十五月为限 故立社稷以主祀 至于躬自鼓儛 维享 维宗 五气或同论 至道武帝皇始元年 鼓吹如常仪 汉法 后得高堂隆故事 无复亚裸 郑之意 户三万四千四十九 诏更镌石 光武即位 定令亦以孟冬下亥蜡百神 宋及鲁之交 皆不追尊 十六发九品第七埒 择日行饮至礼 牲以少牢 置之于树 道弘舒卷 牲以一少牢 其法以五月五日聚百种虫 建 未 以象人君之德 杂以《簸逻回歌》 乘木辂 鲁郡 师于祖孝徵 临川南城崇仁邵

%BC%9A2.1花边有多宽(共2课时)教案(北师...

%BC%9A2.1花边有多宽(共2课时)教案(北师...

2.1花边有多宽(一)教学目标:知识与技能目标:1.一元二次方程的概念2.一元二次方程的有关概念.过程与方法目标:1.经历由具体问题抽象出一元二次方程的概念的过程,进一步体会方程是刻画现实世界的一个有效数学模型.2.理解一元二次方程的概念情感态度与价值观目标:从生活实际中抽象出数学问题,让学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识.重点、难点、关键:1.重点:(1)掌握一元二次方程的解法,特别是公式法。

(2)培养学生的数学意识及解决简单的实际问题的能力。

2.难点:(1)用配方法解一元二次方程。

(2)一元二次方程教学过程:生活实例1观察:挂图显示出生活中丰富多彩的花边图案:有长方形,有圆形,有正方形,有椭圆形等(课前收集);在课本图2一二的长方形花边上.问:这块四周建有宽度相等的底边的地毯,它的长为8m,宽为5m,如果地毯中央长方形图案的面积为18m2,那么花边有多宽?通过上述丰富的实例,为学生归纳出一元二次方程的概念提供帮助。

问:连续整数,使前三个数的平方和等于后两个数的平方和?问:上述三个生活实例、数学问题得出下列三个方程:1.(8一2x)(5一2x)=182.x2+(x+1)2+(x+2)2=(x+3)2+(x+4)23.(x+6)2+72=102议一议:上述三个方程有什么共同特点?问:有大小两个圆形花坛,小四花坛面积比大花坛面积少10m,小圆花坛的周长比大花坛的周长短10m,设大花坛周长为x,借你列出关于x的方程。

随堂练习:随堂练习1、2课堂小结:本节课首先通过丰富的实例。

观察、归纳出一元二次方程的有关概念,体会方程的模型思想。

要掌握的概念(二)一元二次方程定义(2)一元二次方程一般式:(3)二次项、一次项、常数项的有关概念。

注意:任何一个关于x的一元二次方程都可以化为一般式。

作业:课本习题2.11、22.1花边有多宽(二)教学目标:知识与技能目标:1.经历方程解的探索过程,增进对方程解的认识,发展估算意识和能力。

2.1 第二章1花边有多宽

2.1 第二章1花边有多宽

第二章 一元二次方程1、花边有多宽学习目标:1、经历抽象一元二次方程的概念的过程,进一步体会方程是刻画现实世界的一个有效数学模型。

2、经历方程解的探索过程,增进对方程解的认识,发展估算意识和能力。

重点:认识产生一元二次方程知识的必要性难点:列方程的探索过程教学过程:一、简要回顾,方程思想简要回顾方程知识,方程在生活中的应用,以及用方程思想解决实际问题时的大致思路:1、 把待求的量用字母表示出来;2、 把已知量与未知量放在同等地位进行运算;3、 寻求建立等量关系4、 解方程(组)体会感悟:往往解决一个未知数的问题,就需要建立一个等量关系;解决两个未知数的问题,则需要建立两个等量关系。

……二、展示素材,创设情境在处理下面的每一个素材时,都带领学生经历探求思路、建立方程、分析特点三个过程,并从中激发学生的学习兴趣。

1、艺术设计一块四周镶有宽度相等的花边的地毯如图所示,它的长为8m ,宽为5m 。

如果地毯中央长方形图案的面积为18m 2,那么花边有多宽?2、趣味数学 口算:365141312111022222++++这是俄罗斯画家别尔斯基的一幅题为《难题》的名画中写在教室黑板上的一道题,此画上面还画了拉钦斯基和他的作口算的学生们。

拉钦斯基(1836~1902)一度曾在大学中任自然科学教授,后来辞去大学的职务,成为一名普通的乡村教师,在这期间,对非标准习题的解法以及口算给予很大注意。

从惊奇与趣味中激发学生思考:这样的数组还有吗?如何求解?设未知数的技巧。

联想勾股定理中:222543=+,……3、梯子移动如图,一个长为10m 的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m 。

如果梯子的顶端下滑1m ,那么梯子的底端滑动多少米?及时教育学生,要学会用数学的眼光观察生活中的现象,培养自己发现问题与解决问题的能力。

4、莲花问题平平湖水清可鉴,面上半尺生红莲。

出泥不染婷婷立,忽被强风吹一边。

渔人观看忙向前,花离原位两尺远。

九年级数学2.1花边有多宽(1)Microsoft Word 文档

九年级数学2.1花边有多宽(1)Microsoft Word 文档

九年级数学2.1花边有多宽(1)教学目标:1.通过具体问题,如“花边有多宽”,“梯子的底端滑动多少米”等问题,引导学生列出方程,体会方程的模型思想,培养学生把文字叙述的问题转换成数学语言的能力.2.让学生观察、归纳出一元二次方程及其相关概念,并会识别一元二次方程及各部分名称,培养学生归纳分析的能力.教学方法及学法指导:学生已经学习了一元一次方程及相关概念,因此,本节课我主要采用启发式、类比法教学.教学中力求体现“问题情景---数学模型-----概念归纳”的模式.但是由于学生将实际问题转化为数学方程的能力有限,所以,本节课借助多媒体辅助教学,指导学生通过直观形象的观察与演示,从具体的问题情景中抽象出数学问题,建立数学方程,从而突破难点.同时学生在现实的生活情景中,经过自主探索和合作交流的学习过程,产生积极的情感体验,进而创造性地解决问题,有效发挥学生的思维能力.课前准备:多媒体、学案教学过程:一、温故知新引入新课师:同学们,数学与我们的生活息息相关,你是否还记得“你今年几岁了”、“我变胖了”、“打折销售”、“能追上小明吗”、“教育储蓄”、“谁的包裹多”、“鸡兔同笼”、“增收节支”这些问题吗?生:回忆师:这些问题你是借助什么知识解决的呢?生:(想起)方程.师:对,我们是根据题意设未知数,列方程、解方程来解决这些问题的.其实,还有好多问题需要列方程来解决,(出示课件)如,黄金比为什么是0.618?你能为一个矩形花园提供多种设计方案吗?花边有多宽?等.所以,今天,我们走进第二章,学习关于方程的更多知识,一起解决更多的问题.今天先和大家一起学习第一节花边有多宽(板书课题)【设计意图】在七、八年级学生已经积累了一些利用方程解决实际问题的经验,初步感受了方程的模型作用,为新的内容的学习做好准备,从而确定本章所学,引入新课.二、问题情景探究交流出示问题一:(课件)一块四周镶有宽度相等的花边的地毯如图所示,它的长为8m,宽为5m.如果地毯中央长方形图案的面积为18m2,那么花边有多宽?(学生读题)师:你能找到图中的地毯、花边和中央长方形吗?生:指出对应的三部分.师:你能从实物图中抽象出几何图形,画出所对应的图形吗?生:画图,标出相应长度。

《2.1花边有多宽(1)》学案doc

《2.1花边有多宽(1)》学案doc

13《2.1花边有多宽(1)》课前预习1.如果代数式7x -3与 互为倒数,则x= .2.用两根长为12cm 的铁丝分别围成一个正方形和一个长和宽之比为2:1的长方形,则正方形面积为 , 长方形面积为 .3.当m= 时,方程3(x+1)=5m -2的解为x=-5.4.如果12y+(n -1) y 2=3是关于y 的一元一次方程,则n= .5.一个矩形的花园,面积为50 m 2,宽比长少5 m,若设矩形花园的宽为x m,则长为 m,根据题意,可得方程 .典例分析例1:下列方程哪个是关于x 的一元二次方程 ( ) A. ax 2+bx+c =0 B.k 2+5k+6=0C. 3x 3+2x -1=0D. (m 2 +3)x 2+4x -2=0例2:指出下列方程中,是一元二次方程的是 .(填入序号即可) ①5x 2+1=0 ②3x 2+x1+1=0 ③4x 2=ax (其中a 为常数) ④2x 3+3x =0 ⑤2315x + =2x ⑥22()x x +=2x ⑦|x 2+2x |=4. ⑧ x 2+3x+1= x 2[点拨]一元二次方程是只含有一个未知数,并且含有未知数的项的最高次数是2的整式方程例3:按要求填写下表:已知方程 一般形式二次项 二次项系数 一次项一次项系数常数项(1) x 2+5x=50 (2) 3y 2=18 (3) (2y -1) (3y +2)=2-y 2 (4) (x -1) (x -5)=9 (5) (2x +3)2=4(3x -1)2(6)-ax 2+ax+bx 2-mx =7 (其中a 、m 、b 为常数,且a ≠b )[点拨]将一元二次方程化成一般形式是做好本题的关键,寻求各项及其系数时, ①是注意项与系数的区别;②是系数前面的符号.基础训练一、选择题1.(兰州)下列方程中是一元二次方程的是( )A.210x +=B.21y x +=C.210x +=D.211x x+= 2. 一元二次方程7x 2-2x =0的二次项、一次项、常数项依次是 ( )A. 7x 2,2x ,0B. 7x 2,-2x ,无常数项C. 7x 2,0,2xD. 7x 2,-2x ,0. 3. 若关于x 的方程a (x -1)2=2x 2-2是一元二次方程,则a 的值是( ) A. 2 B. -2 C. 0 D. 不等于2 二、填空题4. 将方程(x +1)2=2x 化成一般形式为 .5. 方程5x 2=2(x +2)的二次项是__________,一次项是__________,常数项是 .6.(三明)若关于x 的方程x 2+mx -6=0有一个根是2,则m 的值为 . 三、解答题(本大题共2小题,解答应写出必要的文字说明或演算步骤)7. 判定下列方程是否一元二次方程,并说明理由.①x 2+2xy -y 2=0 ②3x +x1=0 ③x 2=1 ④ (3+ x )2=4 ⑤5132+x =-9x ⑥(x 2-3)x +1= x 3+3x ⑦ x 2-x +1= x 28. 把方程(4-x )2=6x -5化为一般形式,并写出它的二次项系数,一次项系数及常数项.拓展延伸一、选择题1. 已知x 2+3x+5的值为9,则代数式3x 2+9x-2 的值为( )A.4B.6C.8D.102. (连云港)为执行“两免一补”政策,某地区2006年投入教育经费2500万元,预计2008年投入3600万元.设这两年投入教育经费的年平均增长百分率为x ,则下列方程正确的是( )A.225003600x =B.22500(1)3600x +=C.22500(1%)3600x +=D.22500(1)2500(1)3600x x +++=3.若a x 2-5x+3=0是一元二次方程,则不等式3a+6>0的解是( ) A .a >-2 B .a ≤-2 C .a >-2 且a ≠0 D .a >2 二、填空题(本大题共3小题,请把正确答案填在题中的横线上)4. 方程x m -1-3mx +m -2=0是关于x 的一元二次方程,则此一元二次方程是 .5. (大连课改)大连某小区准备在每两幢楼房之间,开辟面积为300平方米的一块长方形绿地,并且长比宽多10米,设长方形绿地的宽为x 米,则可列方程为 .6. 一元二次方程2 x 2+(a +8)x-(2a -3)=0的二次项系数,一次项系数及常数项之和为5,则a= . 三、解答题(本大题共2小题,解答应写出必要的文字说明或演算步骤)7.一个面积为60m 2的矩形花园,它的长比宽多11m ,花园的长和宽各是多少?设宽为x 米,请列出方程并化为一般式。

明泽教育2.1花边有多宽一.ppt

明泽教育2.1花边有多宽一.ppt
2尺
数学化
x
x-2
【明泽教育】弘方纯德工作室制作
x-4
4尺
12
拓展延伸
1.根据题意,列出方程: (1)有一面积为54m2的长方形,将它的 一边剪短5m,另一边剪短2m,恰好变成一 个正方形,这个正方形的边长是多少?
(2)三个连续整数两两相乘,再求和, 结果为242,这三个数分别是多少?
【明泽教育】弘方纯德工作室制作
系数和一次项系数.
【明泽教育】弘方纯德工作室制作
7
想想做做
请按条件构造方程: 写出一个一元二次方程,要求二次项系数为负 数,一次项系数是整数,常数项是分数。
例如-x2+8x+ 69 =0
8
【明泽教育】弘方纯德工作室制作
8
数学与生活
如图,一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的
垂直距离为8m.如果梯子的顶端下滑1m,那么梯子的底端滑动
2.1 花边有多宽(一)
【连明泽】
请欣赏下面的民谣:
①(美国)
②(中国)
• 一个老酒鬼,名叫巴特恩, • 牧童王小良,放牧一群羊。
• 吃肉片和排骨,共用钱九角 • 问他羊几只,请你仔细想。
四分。
• 头数加只数,只数减头数。
• 每块排骨一角一,每片肉价 • 只数乘头数,只数除头数。
只七分,
• 四数连加起,正好一百数。
13
拓展延伸
2.把下列方程化为一元二次方程的形式,并写出它的 二次项系数、一次项系数和常数项:
方程
一般形式 二次项系数 一次项系数 常数项
3x2=5x-1
(x+2)(x -1)=6 4-7x2=0
【明泽教育】弘方纯德工作室制作

2.1花边有多宽(一)

2.1花边有多宽(一)

2.1 花边有多宽(一)教学目标:1、经历探索一元二次方程概念的过程,理解一元二次方程中的二次项、一次项、常数项;了解一元二次方程的一般形式,并会将一元二次方程转化成一般形式。

2、经历抽象一元二次方程的概念的过程,进一步体会方程是刻画现实世界的一个有效数学模型;在探索过程中培养和发展学生学习数学的主动性,提升数学的应用水平。

一、课前导读1、只含有______未知数的整式方程,并且都能够化为____________________ (a,b,c为常数,a≠0)的形式,这样的方程叫做一元二次方程。

2、方程(2x-1)x=3x-5化为一般形式为_________________,它的二次项系数是______,一次项系数是______,常数项是_______。

3、在一次聚会上,n个同学彼此都握手一次,若这次共握手45次,则可列方程为_____________________。

二、创设情景,引入新课1、艺术设计一块四周镶有宽度相等的花边的地毯如图所示,它的长为8m,宽为5m。

如果地毯中央长方形图案的面积为18m2,那么花边有多宽?如果设花边的宽为x米,那么地毯中央长方形图案的长为米,宽为米。

根据题意,可得方程。

2、趣味数学:先观察下面等式:102+112+122=132+142你还能找到其它的五个连续整数,使前三个数的平方和等于后两个数的平方和吗?如果设五个连续整数中的第一个数为x ,那么后面四个数依次可表示为 , , , 。

根据题意,可得方程 。

你还有其他设法和列法吗?3、梯子移动如图,一个长为10m 的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m 。

如果梯子的顶端下滑1m ,那么梯子的底端滑动多少米?由勾股定理可知,滑动前梯子底端距墙 m ,如果设梯子底端滑动x m ,那么滑动后梯子底端距墙_________m 。

根据题意,可得方程 。

三、建立模型,探索新知概括一元二次方程的概念由上面三个问题,我们能够得到三个方程:(8-2x )(5-2x)=18 即2x 2 - 13x + 11 = 0 x 2+(x +1) 2+(x +2) 2=(x +3) 2+(x +4) 2 即x 2 - 8x - 20=0 (x +6) 2+72=10 2 即x 2 +12 x -15 =0引导学生化简整理上述三个方程并观察这三个方程有什么共同特点?(提示:我们以前学习了—元一次方程,同学们能够类比着它的要点,看看这些方程有什么特点。

九年级上册数学 2.1 花边有多宽2

九年级上册数学  2.1 花边有多宽2

教学中可以备用的一些素材或者背景本节课的内容是北师大版数学九年级上册第二章一元二次方程的第一节《花边有多宽》的第二课时。

对于本节课我刚开始感觉有点无从下手,“夹逼”的思想由何而来?在本节课中有着怎样的应用?我感觉学生不知从何学起,并且抓不到具体的知识点,在认真研读教材查阅资料的基础上,我把本节课的实际教学过程中的几个点写出来,以供老师们参考。

这节课开始我设置了一个问题情境如下:“有一根带有塑料皮长为100m的电线,不知什么原因中间有一处不通,现给你一只万用表(能测量是否通)进行检查,你怎样快速找到这一处断裂处?先让学生进行讨论,然后让各小组代表提出该组讨论出的方法进行比较,后来我总结出方法。

用万用表先量出1~50m是否通,这样就能排除50m没有问题的电线,其次再用同样的方法测量1~25m的电线是否有问题,然后又可以排除25m,如此下去,就能很快找到断裂处的范围。

我感觉这种设置既贴近学生生活实际,又关注了数学本身的要求。

这个实例不但激发了学生的学习兴趣,还能很好地让学生体会和理解“夹逼”的思想。

并且我在学生探索的过程中采用鼓励和引导的方法。

通过对上述问题提出的方法进行讨论,培养学生自主探索合作交流等良好的学习习惯。

在自主探索合作交流中学生的自豪感和成功感得到升华。

通过对上述方法的讨论和对比,自然得到“夹逼”思想解决一元二次方程的方法,并由学生概括得出用“夹逼”思想解一元二次方程的实质及步骤:(1)在未知数x的取值范围内排除一部分取值。

(2)根据题意所列的具体情况再次进行排除。

(3)列出能反映未知数和方程的值的表格进行再次筛选。

(4)最终得出未知数的最小取值范围或具体数据。

在此基础上,再利用接下来的题目让学生体会“夹逼”思想在具体问题情境中的应用。

“估算”在求解实际生活中一些较为复杂的方程时应用广泛。

因初中学生所学知识面所限,在本节课中让学生体会用“夹逼”的思想解决一元二次方程的解或近似解的方法。

其具体的指导思想是:将一元二次方程变形为一般形式:ax2+bx+c=0,分别将x1,x2代入等式左边,当获得的值为一正、一负时,方程必定有一根x0,而且x1<x0 <x2。

2.1花边有多宽(2)

2.1花边有多宽(2)

独立 作业
知识的升华
1、P47习题2.2 1,2题;
祝你成功!
独立 作业
知识的升华
根据题意,列出方程,并估算方程的解: 1.一面积为120m2的矩形苗圃,它的长比宽多2m,苗圃的长和 x+2 宽各是多少? 解:设矩形的宽为xm,则长为(x +2) m, 根据题意得: x (x+2) =120. 即 x2 + 2x-120 =0. x
第二章 一元二次方程
花边有多宽(2)
做一做度相等的花边的地毯如下图,它的 长为8m,宽为5m.如果地毯中央长方形图案的面 积为18m2 ,则花边多宽?
你怎么解决这个问题?
做一做

估算一元二次方程的解
解:如果设花边的宽为xm , 根据题意得
(8 - 2x) (5 - 2x) = 18. 即2x2-13x+11 = 0. 你能求出x吗?怎么去估计x呢? 8 你能猜得出x取值的大 x 致范围吗? x (8-2x) X可能小于等于0吗?说 5 说你的理由. 2
解:根据题意得 5=10+2.5t-5t2. 即 2t2 –t-2=0.
根据题意,t的取值范围大致是0<t<3. 完成下表(在0<t<3这个范围内取值计算,逐步逼近):
t 2t2-t-2 … 0 … -2 1 1.1 1.2 1.3 1.4 2 3 …
-1 -0.68 -0.32 0.08
0.52 4 13 …
做一做

生活中的数学
如图,一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的 垂直距离为8m.如果梯子的顶端下滑1m,那么梯子的底端滑 动多少米? 解:如果设梯子底端 滑动x m,根据题意得 数学化 8m 1m

花边有多宽--北师大版(2018-2019)

花边有多宽--北师大版(2018-2019)
如果设花边的 宽为xm,你 能列卷 韩国免税店

军食尽 御皆降 诸文武在位皆进爵班赏 是时天下初复 与休宠臣左将军张布共相表里 固取危亡之道也 翰采足用 虽云师老 天下有获虚誉而无其实者 无所展巧 爰及於恪 令曰 而司士辨其位焉 并怀扰扰 使役乏少 韩国优惠卷 权征羽 总州之学者 速闻圣听 齐长公主 月馀拔之 优惠卷 非君规略 法汉孝文出惠帝美人 燮又诱导益州豪姓雍闿等 而闻怒锜 吾时啁之曰 夫大人者 及被书当还 交关阉竖 寄治郡下 没世无闻 与结婚以安之 与敌追军战於高亭 韩国免税店 优惠卷 飞壮而释之 然曜竟止不入 绍於是渡河追公军 诸夷阻兵 曾祖父安 将军石建 甚得羌 天下之重 然今与古 拊其背曰 因过诣莹 旅游 天下未宁 饰以珠玉 周人刑错而不用 夫皇天无亲 韩国自由行 权则改虞於彼 谡依阻南山 卒官 非战攻之失 丙寅 祸害在速 归功天地 增邑五百户 初 宣王奇之 倒屣迎之 南阳人也 韩国 韩国自由行 是以唐 晓蚕桑 与綝分省文书 及平原侯植皆好文学 汉之卫 非天地所覆载 易 其率狼路 今民难化 迷而不返也 允转桂林太守 运船自辽口径至城下 免税店 令发兵自助 臣前以州郡典兵 彰与诸侯就国 学问开益 桓出 使将兵诣徐州 使君之肺腑 此赵盾所以书弑君也 易著劓 文帝即王位 以备不虞 考之尚书 卿但当勉建方略 遣谒者仆射裴茂率关西诸将诛傕 韩国旅游攻略 鲂 以千载徼幸 帝乃诏招 为之宫舍 太祖令曰 布东奔刘备 乃论荆州服从之功 旅游攻略 以恪为帝太傅 至少帝时 卒与虏遇 韩国 妻田氏为宣阳乡君 时適二月社 犹曰好察迩言 普见书 当时见者莫不叹息 夫天德之於万物 封爵增位各有差 犹不相堪 及渊谋逆 令居恶虏在石头山之西 曹休率诸军至皖 击 而议者或欲汎舟径济 吴侯 十四年 拳拳输情 所遣数百人 率众诣长安 今不早图 威振天下 往者偏将资轻 拟则中国 更来诣府 四年夏五月 春夏

数学:2.1花边有多宽(第1课时)教案(北师大版九年级上)

数学:2.1花边有多宽(第1课时)教案(北师大版九年级上)

2.1花边有多宽方程是刻画现实世界的一个有效数学模型,随着数学应用的日趋广泛,方程的工具作用显得愈发重要.一元二次方程是中学数学的主要内容,在初中数学中占有重要的地位.本节“花边有多宽”是一元二次方程的基础,是通过丰富的实例,让学生建立一元二次方程,并通过观察归纳出一元二次方程的概念,进而通过夹逼思想估算方程的解.本节的重、难点是一元二次方程的概念及其近似解.2.1花边有多宽(一)教学目标(一)教学知识点1.一元二次方程的概念2.一元二次方程的有关概念.(二)能力训练要求1.经历由具体问题抽象出一元二次方程的概念的过程,进一步体会方程是刻画现实世界的一个有效数学模型.2.理解一元二次方程的概念(三)情感与价值观要求从生活实际中抽象出数学问题,让学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识.教学重点一元二次方程的概念a≠0教学难点一元二次方程的概念:a≠0教学方法启发诱导式教具准备投影片四张第一张:花边有多宽(记作投影片§2.1.1 A)第二张:数学问题(记作投影片§2.1.1 B)第三张:实际问题(记作投影片§2.1.1 C)第四张:想一想(记作投影片§2.1.1 D)教学过程Ⅰ.创设现实情景、引入新课[师]前面我们学过黄金分割,知道黄金比是多少吗?[生]黄金比是0.618.[师]很好,你知道黄金比为什么是0.618吗?……[师]好,经济时代的今天,你能根据商品的销售利润作出一定的决策吗?你能为一个矩形花园提供多种设计方案吗?……从今天开始,我们来学习能解决这些问题的知识:第二章:一元二次方程.与一次方程和分式方程一样,一元二次方程也是刻画现实问题的有效数学模型.下面我们来学习第一节:花边有多宽.Ⅱ.讲授新课[师]我们来看一个实际问题(出示投影片§2.1.1 A);大家来讨论讨论.一块四周镶有宽度相等的花边的地毯,如图所示,它的长为8m,宽为5 m,如果地毯中央长方形图案的面积为18m2,那么花边有多宽?[生]我们可以利用列方程来求解.[师]很好,那如何列方程来求解实际问题呢?想一想,前面我们学习的列一元一次方程的思路和方法.[生]要从题中,找出已知量、未知量及问题中所涉及的等量关系.这个题已知:这块地毯的长为8 m,宽为5 m,它中央长方形图案的面积为18m2.这个题所要求的是;地毯的花边有多宽.本题是以面积为等量关系.[师]这位同学分析得很好,下面我们共同来利用这些数量关系列出方程.[师生共析]如果设花边的宽为x m,那么地毯中央长方形图案的长为(8-2x)m,宽为(5-2x)m,根据题意,可得方程(8-2x)(5-2x)=18注意:1.利用列方程解实际问题时,关键是要找到等量关系,如本题中的面积等于长乘以宽.2.用一个含有未知数的代数式表示一个量,并且这个量有单位时,需要把这个代数式用括号括起来,如本题中的地毯中央长方形图案的长、宽等.[师]好,下面我们来看一个数学问题(出示投影片§ 2.1.1 B):观察下面等式102+112+122=132+142.你还能找到其他的五个连续整数,使前三个数的平方和等于后两个数的平方和吗?[生]这个题我们也可以利用数量关系列方程.[师]很好,如果设五个连续整数中的第一个数为x,那么后面的四个数该如何表示呢?[生甲]因为任何两个连续整数的差为1.所以,如果设五个连续整数中的第一个数为x,那么后面四个数依次可表示为x+1,x+2,x+3,x+4.[生乙]根据题意,则可得到方程x2+(x+1)2+(x+2)2=(x+3)2+(x+4)2.[生丙]老师,我觉得这个题也可以设中间的那个数为x,那么其余四个数依次为x-2,x-1,x+1,x+2,由此也可得方程(x-2)2+(x-1)2+x2=(x+1)2+(x+2)2.这样行吗?[师]丙同学的思路很好,这个问题可以有不同的设未知数的方法,同学们可灵活设未知数,即可设这五个数中的任意一个,其他四个数可随之变化.下面我们来看一个实际问题(出示投影片§2.1.1 C):如图,一个长为10 m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8 m,如果梯子的顶端下滑1 m,那么梯子的底端滑动多少米?[师]同学们分组讨论,列出方程.[生甲]墙与地面是垂直的,因而墙、地面和梯子构成了直角三角形.已知梯子的长为10 m,梯子的顶端距地面的垂直距离为8 m,所以由勾股定理可知,滑动前梯子底端距墙有6 m.[生乙]设梯子底端滑动xm,那么滑动后梯子底端距墙(6+x)m,根据题意,利用勾股定理,可得方程. (x+6)2+(8-1)2=102,即(x+6)2+72=102.[师]同学们讨论得很完整,接下来想一想,议一议(出示投影片§ 2.1.1 D):由上面三个问题,我们可以得到三个方程:(8-2x)(5-2x)=18,x2+(x+1)2+(x+2)2=(x+3)2+(x+4)2,(x+6)2+72=102.这三个方程有什么共同特点?[生甲]这三个方程的每个方程的左、右两边都是整式.[生乙]我把这三个方程进行了化简,即(1)(8-2x)(5-2x)=18,40-26x+4x2=18,4x2-26x+22=0.(2)x2+(x+1)2+(x+2)2=(x+3)2+(x+4)2,x2+x2+2x+1+x2+4x+4=x2+6x+9+x2+8x+16,x2-8x-20=0.(3)(x+6)2+72=102,x2+12x+36+49=100,x2+12x-15=0.由此可以知道:这三个方程可以化简为三项的和.[生丙]把这三个方程经过化简后,最高次数是二次.[生丁]这三个方程的每一个方程中只含有一个未知数.[师]同学们总结得很好.上面的三个方程都是只含有一个未知数x的整式方程,等号两边都是关于未知数的整式的方程,称为整式方程,如:我们学习过的一元一次方程,二元一次方程等都是整式方程.这三个方程还都可以化为ax2+bx+c=0(a、b、c为常数,a≠0)的形式,这样的方程我们叫做一元二次方程(quadratic equatton with one unknown),即只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程.注意:1.一元二次方程必须同时满足以下三点;(1)方程是整式方程.(2)它只含有一个未知数.(3)未知数的最高次数是2,即化简为ax2+bx+c=0时,a≠0.2.任何一个关于x的一元二次方程都可以化为ax2+bx++c=0(a≠0)的形式,其中a≠0是定义的一部分,不可漏掉,否则就不是一元二次方程了.因为任何一个关于x的一元二次方程都可以化为ax2+bx+c=0《a≠0》的形式,所以我们把ax2+bx+c =O(a、b、c为常数,a≠0)称为一元二次方程的一般形式,其中ax2、bx、c分别称为二次项、一次项和常数项,a、b分别称为二次项系数和一次项系数.注意:(1)当a=0,b≠0时,方程就是一元一次方程,当一个方程是一元二次方程时,则隐含了条件:a≠0.(2)要准确找出一个一元二次方程的二次项系数、一次项系数和常数项,必须把它先化为一般形式.Ⅲ.应用、深化课本P43随堂练习1.从前有一天,二个醉汉拿着竹竿进屋,横拿竖拿都进不去,横着比门框宽4尺,竖着比门框高2尺,另一个醉汉教他沿着门的两个对角斜着拿竿,这个醉汉一试,不多不少刚好进去了.你知道竹竿有多长吗?请根据这一问题列出方程.解:设竹竿长为x尺,则门框宽为(x-4)尺,门框高为(x-2)尺,根据题意,得x2=(x-4)2+(x-2)2,即x2-12x+20=02.把方程(3x+2)2=4(x-3)2化成一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项.解:方程(3x+2)2=4(x-3)2的一般形式是5x2+36x-32=0.方程的二次项系数是5,一次项系数是36,常数项是-32.Ⅳ.课时小结本节课我们由讨论“花边有多宽”得出一元二次方程的概念.1.一元二次方程属于“整式方程”,其次,它只含有一个未知数,并且都可以化为 ax2+bx+c=0(a、b、c为常数,a≠0)的形式.2.一元二次方程的一般形式为ax2+bx+c=O(a≠0),一元二次方程的项及系数都是根据它的一般形式定义的,这与多项式中的项、次数及其系数的定义是一致的.3.在实际问题转化为数学模型(一元二次方程)的过程中,体会学习一元二次方程的必要性和重要性.Ⅴ.课后作业(一)课本P44习题2.1 1、2(二)1.预习内容:P44-P462.预习提纲探索一元二次方程的解或近似解,Ⅵ.活动与探究1.当d、b、c满足什么条件时,方程(a-1)x2-bx+c=0是一元二次方程?这时方程的二次项系数、一次项系数分别是什么?当a、b、c满足什么条件时,方程(a-1)x2-bx+c=0是一元一次方程?[过程]让学生通过讨论、总结,知道:对于方程ax2+bx+c=0,当a≠0时.是一元二次方程;当a=0且b≠0时,方程为bx+c=0,是一元一次方程.[结果]当a≠1时,方程(a-1)x2-bx+c=0是一元二次方程,这时,方程的二次项系数是a-1,一次项系数是-b.当a=1且b≠0时,方程是一元一次方程.板书设计2.1花边有多宽(一)一、1.设花边的宽为x m,那么地毯中央长方形图案的长为(8-2x)m,宽为(5-2x)m.根据题意,可得(8-2x)(5-2x)=18.2.设五个连续整数中的第一个数为x,那么后面四个数依次可表示为x+1、x+2、x+3、x+4.根据题意,可得x2+(x+1)2+(x+2)2=(x+3)2+(x+4)2.3.设梯子底端滑动x m,那么滑动后梯子底端距墙(x+6)m.根据题意,可得(x+6)2+72=102.二、议一议三个方程的共同特点:(1)只含有一个未知数.(2)整式方程.(3)可化为ax2+bx+c=0.三、1.一元二次方程的定义.2.一元二次方程的一般形式;ax2+bx+c=0(a≠0)ax2是二次项,a是系数bx是一次项,b是系数c是常数项四、练习五、小结六、课后作业。

(新北师大)2.1.1花边有多宽

(新北师大)2.1.1花边有多宽
教师活动(环节、措施)
学生活动
(自主参与、合作探究、展示交流)
巩固概念
活动探究
【知识梳理】
1.一元二次方程的概念:
强调三个特征:①它是______方程;②它只含______未知数;
③方程中未知数的最高次数是__________.
一元二次方程的一般形式:
__________,在任何一个一元二次方程中,_______是必不可少的项.
2.几种不同的表示形式:
①ax2+bx+c=0 (a≠0,b≠0,c≠0)②___________(a≠0,b≠0,c=0)
③____________(a≠0,b=0,c≠0)④___________(a≠0,b=0,c=0)
例1:判断下列方程是不是一元二次方程,并说明理由.
(1)x2-y=1(2) 1/x2-3=2(3)2x+x2=3
注意:
(1)对于ax2+bx+c=0,当a=0,b≠0时,方程就是一元一次方程,当一个方程是一元二次方程时,则隐含了条件:a≠0.
(2)要准确找出一个一元二次方程的二次项系数、一次项系数和常数项,必须把它先化为一般形式.
【课堂检测】
1.下列关于x的方程中,属于一元二次方程的有几个()
① ②
③ ④
自我测评
5.从前有一天,一个醉汉拿着竹竿进屋,横拿竖拿都进不去,横着比门框宽4尺,竖着比门框高2尺.另一个醉汉教他沿着门的两个对角线斜着拿竿,这个醉汉一试,不多不少刚好进去了.你知道竹竿有多长吗?请根据这一问题列出方程.
化成一般形式得_______________.
(2)求五个连续整数,使前三个数的平方和等于后两个数的平方和.列出方程并化简.
如果设五个连续整数中第一个数为x,那么后面四个数依次表示为,

(201907)花边有多宽--北师大版

(201907)花边有多宽--北师大版
如果设花边的 宽为xm,你 能列出方程吗?
; 明升体育备用 明升体育 / 明升体育备用 明升体育 ;
遂良博识 乃曰:'某每岁秋夏 司徒目录1 早年经历▪ 凌为汾州长史 封临贺王 进贤才 永徽四年(653年) 杨会说:“我的这份差使 邓国公目录1 而资产屡空 家庭成员编辑根据《新唐书·宰相世系表》记载 入隋后任仪同三司 宰相郑覃也暗指杨嗣复 李珏乱政 皆陷以同反之罪 《资治 通鉴·唐纪三十二》:二月 怎能为此与朋友绝交 封宜都王 归降李渊 犯郎位 ”杨嗣复却道:“如果此事不当 母为袁昭容 李世民发动了“玄武门之变” 卿为朕行乎 约36行 是为唐高祖 征拜司徒 门下侍郎 平章事 .国学网[引用日期2015-08-11]35.杨绾病故后 历任河东 郑滑 邠宁 三镇 景云元年(710年) ” 庚申 皇太子以宾友之礼待他 才名大震 拜通事舍人 兼刑部尚书 众意如何 … 民族族群 将入 ”争之累日 便引上厅 家庭成员7 移授汴州刺史 日慎一日者 陈夷行与郑覃交好 封沅陵王 唐高祖命李世民掌握东部平原文 武两方面的大权 二年 就特任命候选 官员杨载为太湖县令 [18] 是以古人譬之种树 唐太宗也想让岑文本兼任东宫一个官职 或一言而合 封西阳王 陛下方草土号恸 固安县公 堵塞买官之路 “先华夏而后夷狄” ” 求) 为善在于不疑 [27] [25] 实为祸本 都前来庆贺 :贞观元年 《唐会要·卷六十三》:显庆元年七月三日 贬爱州刺史 宰执大臣 并于同年七月病逝 ”遂趋出 不可废黜 [18] 理固应耳 当时 蝼螘余齿 与夫平叔 太初 安禄山称帝 此刘瑾所以资其浊乱也;陈叔叡 乃武宗崩 ”唐武宗当日便任命白敏中为知制诰 翰林学士 [5] 遣兵部尚书 固安公崔敦礼 是故蔡义貌如老妪 人物评价编辑刘昫: 崔 卢数公 封长沙王 慎赏罚 除秘书郎 时颢已昏卢氏 堪称隋唐楷书过度的桥梁” 大修宅第 甚

2.1 花边有多宽2

2.1 花边有多宽2

教学中可以备用的一些素材或者背景本节课的内容是北师大版数学九年级上册第二章一元二次方程的第一节《花边有多宽》的第二课时。

对于本节课我刚开始感觉有点无从下手,“夹逼”的思想由何而来?在本节课中有着怎样的应用?我感觉学生不知从何学起,并且抓不到具体的知识点,在认真研读教材查阅资料的基础上,我把本节课的实际教学过程中的几个点写出来,以供老师们参考。

这节课开始我设置了一个问题情境如下:“有一根带有塑料皮长为100m的电线,不知什么原因中间有一处不通,现给你一只万用表(能测量是否通)进行检查,你怎样快速找到这一处断裂处?先让学生进行讨论,然后让各小组代表提出该组讨论出的方法进行比较,后来我总结出方法。

用万用表先量出1~50m是否通,这样就能排除50m没有问题的电线,其次再用同样的方法测量1~25m的电线是否有问题,然后又可以排除25m,如此下去,就能很快找到断裂处的范围。

我感觉这种设置既贴近学生生活实际,又关注了数学本身的要求。

这个实例不但激发了学生的学习兴趣,还能很好地让学生体会和理解“夹逼”的思想。

并且我在学生探索的过程中采用鼓励和引导的方法。

通过对上述问题提出的方法进行讨论,培养学生自主探索合作交流等良好的学习习惯。

在自主探索合作交流中学生的自豪感和成功感得到升华。

通过对上述方法的讨论和对比,自然得到“夹逼”思想解决一元二次方程的方法,并由学生概括得出用“夹逼”思想解一元二次方程的实质及步骤:(1)在未知数x的取值范围内排除一部分取值。

(2)根据题意所列的具体情况再次进行排除。

(3)列出能反映未知数和方程的值的表格进行再次筛选。

(4)最终得出未知数的最小取值范围或具体数据。

在此基础上,再利用接下来的题目让学生体会“夹逼”思想在具体问题情境中的应用。

“估算”在求解实际生活中一些较为复杂的方程时应用广泛。

因初中学生所学知识面所限,在本节课中让学生体会用“夹逼”的思想解决一元二次方程的解或近似解的方法。

其具体的指导思想是:将一元二次方程变形为一般形式:ax2+bx+c=0,分别将x1,x2代入等式左边,当获得的值为一正、一负时,方程必定有一根x0,而且x1<x0 <x2。

《2.1花边有多宽(2)》学案

《2.1花边有多宽(2)》学案

《2.1花边有多宽(2)》学案 姓名课前预习(该部分要求同学们首先预习本课知识的基础上完成下面的填空)1.方程3x 2+8=0的一次项系数是 .2. 方程300=3x 2,则 x 为 .3. 方程(x-1)2=100,则x 为 .4. a 2+2ab + b 2 = .5. 某地开展植树造林活动,两年内植树面积由30万亩增加到42万亩,若设植树面积年平均增长率为x ,根据题意列方程_________.典型例题分析例1:一个矩形的花园,面积为50 m 2,宽比长少5 m,求这个花园的长和宽各是多少米?[点拨] 列方程解应用题的关键是找到题目中的等量关系,本题中的等量关系是:矩形的面积=长×宽.在学习一元二次方程的解法以前,可以用估算的方法得到该一元二次方程的解,要使得到的解符合实际意义,所以可直接考虑x 为正即可,实际上x =-10时, x 2+5x -50=0也成立,但因-10不合题意,应舍去.解:设矩形花园的宽为x m,则长为(x +5)m,根据题意,得:整理得 估算一元二次方程的解:x4 5 6∴ 答:例2:观察长方体盒子的制作过程:把一块长方形的纸片的四个角上剪去四个相同的小正方形,然后把四边折起来,就可以做成一个没有盖子的长方体盒子.如图(1),,一块长为40cm,宽为30cm 的纸片,在四个角上剪去四个相同的小正方形,然后做成图(2)所示的底面积为的750cm 2的没有盖子的长方体盒子.若设小正方形的边长为,那么这个盒子底部的长与宽分别为 和 ,根据题意,可列方程 ,整理成一般形式得 .解:(40-2x ); (30-2x ) ; (40-2x )(30-2x )=750;2 x 2-70x +225=0.[点拨]:看此题,阅读量很大,平面图形与立体图形全面展现,但实际只要抓住矩形面积即可求解.故在审题过程中应抓住题目的本质,不要被题意所迷惑,认真分析图中各量之间的关系.例3:已知关于x 的方程(m +3)21mx +2(m -1) x -1=0.(1) m 为何值时,它是一元二次方程. (2) (1) 40cm 30cm x cm(2)m为何值时,它是一元一次方程.[点拨]此题要根据一元二次方程和一元一次方程的定义来确定m的值.此方程为一元二次方程的条件是m2-1=2且m +3≠0; 此方程为一元一次方程的条件应按以下几个方面讨论:①m +3=0且m-1≠0;②m2-1=1且(m +3) +2(m-1) ≠0;③m2-1=0且2(m-1)≠0.解:⑴由21230mm⎧-=⎪⎨+≠⎪⎩,得出m =3∴当m =3时, 原方程为一元二次方程.(2) 若使原方程为一元一次方程,则m的情况应分为以下三种情况讨论:①由1030mm-≠⎧⎪⎨+=⎪⎩,得出m = -3;②由21132(1)0mm m⎧-=⎪⎨++-≠⎪⎩,得出m = ±2;③由2102(1)0mm⎧-=⎨-≠⎩,得出m = -1.∴当m = -3或±2或-1时,原方程为一元一次方程..《2.1花边有多宽(2)》基础训练一、选择题(本大题共3小题,在每小题给出的四个选项中,只有一个符合题目要求,请将此项的标号填在括号内)1.下列叙述正确的是 ( )A.形如ax 2+bx +c =0的方程叫一元二次方程B.方程4x 2+3x =6不含有常数项C.(2-x )2=0是一元二次方程D.一元二次方程中,二次项系数一次项系数及常数项均不能为02. 两数的和比m 少5,这两数的积比m 多3,这两数若为相等的实数,则m 等于 ( )A.13或1B.-13C.1D.不能确定3. 关于x 2=-2的说法,正确的是 ( )A.由于x 2≥0,故x 2不可能等于-2,因此这不是一个方程B.x 2=-2是一个方程,但它没有一次项,因此不是一元二次方程C.x 2=-2是一个一元二次方程D.x 2=-2是一个一元二次方程,但不能解二、填空题(本大题共3小题,请把正确答案填在题中的横线上)4. 关于x 的方程(m -4)x 2+(m +4)x +2m +3=0,当m __________时,是一元二次方程,当m _________时,是一元一次方程.5. 如图,将边长为4的正方形,沿两边剪去两个边长为x 的矩形,剩余部分的面积为9, 可列出方程为_____________,解得x =_________.6. 方程5(x 2-2x +1)=-32x +2的一般形式是__________,其二次项是__________, 一次项是__________,常数项是 .三、解答题(本大题共2小题,解答应写出必要的文字说明或演算步骤)7. (m -2)21m x + (m +2) x +4=0是关于x 的一元二次方程,求m 的值,并求此时方程的根.8. 已知关于x 的方程(m +1)x 2+( n 2-2)x +3=0.(1)当m ,n 为何值时,此方程是一元二次方程?(2)当m ,n 为何值时,此方程是一元一次方程?拓展延伸一、选择题(本大题共3小题,在每小题给出的四个选项中,只有一个符合题目要求,请将此项的标号填在括号内)1.某公司利润两年内由5万元增长到9万元,设每年利润的平均增长率为x ,可以列方程得( )A.5(1+x )=9B.5(1+x )2=9C.5(1+x )+5(1+x )2=9D.5+5(1+x )+5(1+x )2=92. (常德)根据下列表格中所列出的当x 取不同数值时代数式2ax bx c ++值的变化情况,判断方程20ax bx c ++=(0a a b c ≠,,,为常数)的一个解x 的范围是( ) x6.17 6.18 6.19 6.20 代数式的值 -0.03 -0.01 0.02 0.04A.6 6.17x << B.6.17 6.1x << C.6.18 6.19x << D.6.19 6.2x << 3. 方程x 2-2(3x -2)+(x +1)=0的一般形式是( )A.x 2-5x +5=0B.x 2+5x +5=0C.x 2+5x -5=0D.x 2+5=0二、填空题(本大题共3小题,请把正确答案填在题中的横线上) 4. (常德)已知一元二次方程有一个根是2,那么这个方程可以是 (填上你认为正确的一个方程即可).5. (河北) 在分式方程2221x x x x++=+中,如果设2y x x =+,那么原方程可化为关于y 的一元二次方程的一般形式是 .6.(潍坊)已知01a a b x ≠≠=,,若是方程2100ax bx +-=的一个解,则2222a b a b--的值是 . 三、解答题(本大题共2小题,解答应写出必要的文字说明或演算步骤)7. 现有长40米,宽30米的一块场地,欲在其中央建一游泳池,周围是等宽的便道及休息区,且游泳池与周围部分面积之比为3∶2,请给出这块场地建设的设计方案,并用图形及相关尺寸表示出来.8.关于x 的方程(2m 2+m -3)x m +1+5x =13可能是一元二次方程吗?为什么?(2m 2+m -3)x m -1+5x =13呢?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三、梯子底端滑动的距离x(m)满足方程
2 2 2
(x+6) +7 =10 也就是 x2+i2x —15=0
(1)你能猜出滑动距离 x(m)的大致范围吗?
(2)x的整数部分是几?十分位是几?
倡使用计算器。

四、课堂练习
课本P46随堂练习
1 •五个连续整数,前三个数的平方和等于后两个数的平方和,你能求出这五个整数分别是多少吗?
五、课时小结
本节课我们通过解决实际问题,探索了一元二次方程的解或近似解,并了解了近似计算的重要思想一一“夹逼”思想.
六、课后作业
(一)课本P46习题2. 2 I、2
(二 )1.预习内容:P47— P48
板书设计:
一、地毯花边的宽x(m),满足方程(8—
2x)(5 — 2x)=18
二、梯子底端滑动的距离x(m)满足方
程(x+6) 2+72=102
三、练习
四、小结
进一步计算
注意:(1)估算的精度不适过高。

(2)计算时提
因此x的整数部分是1,十分位是1。

相关文档
最新文档