集合高考试题汇编.doc
2023届全国高考数学真题分类专项(集合与常用逻辑用语)汇编解析(附答案)
2023届全国高考数学真题分类专项(集合与常用逻辑用语)汇编解析第一节 集合1.(2023全国甲卷理科1)设集合 31,A x x k k Z ,32,B x x k k Z ,U 为整数集,则 U A B ð( )A. 3,x x k k ZB. 31,x x k k ZC. 32,x x k k ZD.【要点分析】根据整数集的分类,以及补集的运算即可解出.【过程解析】因为整数集 3,3+1,3+2,x x k k x x k k x x k k Z Z Z Z ,=U Z ,所以 3,U A B x x k k Z ð. 故选A .2.(2023全国甲卷文科1)设全集 1,2,3,4,5U ,集合 1,4M , 2,5N ,则U N M ð( )A. 2,3,5B. 1,3,4C. 1,2,4,5D. 2,3,4,5 【要点分析】利用集合的交并补运算即可得解.【过程解析】因为全集{1,2,3,4,5}U ,集合{1,4}M ,所以 2,3,5U M ð, 又{2,5}N ,所以{2,3,5}U N M ð.故选A.3.(2023全国乙卷理科2)设集合U R ,集合 1M x x , 12N x x ,则 2x x …( )A. U M N ðB.U N M ðC. U M N ðD.U M N ð 【要点分析】由题意逐一考查所给的选项运算结果是否为 2x x …即可.【过程解析】由题意可得 2M N x x ,则 2U M N x x ð…,选项A 正确; 1U M x x ð…,则 1U N M x x ð ,选项B 错误;11M N x x ,则 11U M N x x x 或ð剠,选项C 错误;12U N x x x 或ð剠,则 12U M N x x x 或ð…,选项D 错误;故选A.4.(2023全国乙卷文科2)设全集 0,1,2,4,6,8U ,集合 0,4,6M , 0,1,6N ,则U M N ð( )A. 0,2,4,6,8B. 0,1,4,6,8C. 1,2,4,6,8D.U 【要点分析】由题意可得U N ð的值,然后计算U M N ð即可. 【过程解析】由题意可得 2,4,8U N ð,则 0,2,4,6,8U M N ð. 故选A.5.(2023新高考I 卷1)已知集合 2,1,0,1,2M ,260N x x x ,则M N( ) A. 2,1,0,1B. 0,1,2C. 2D. 2【过程解析】260,23,N x x x ,所以 2M N ,故选C.6.(2023新高考II 卷2)2.设集合 0,,1,2,22A a B a a ,若A B ,则a ( ) A. 2 B. 1 C.23D.1 【过程解析】因为A B ,所以必有20a 或220a ,解得2a 或1a . 当2a 时, 0,2,1,0,2A B ,不满足A B ; 当1a 时, 0,1,1,1,0A B ,符合题意.所以1a . 故选B.7.(2023北京卷1)已知集合 20M x x …, 10N x x ,则M N ( ) A. 21x x … B. 21x x … C. 2x x … D. 1x x【要点分析】先化简集合,M N ,然后根据交集的定义计算.【过程解析】由题意,{20}{|2}M xx x x ∣,{10}{|1}N x x x x ∣, 根据交集的运算可知,{|21}M N x x .故选A.8.(2023天津卷1)已知集合 1,2,3,4,5,1,3,1,2,4U A B ,则U B A ð( ) A . 1,3,5B . 1,3C . 1,2,4D . 1,2,4,5【要点分析】对集合B 求补集,应用集合的并运算求结果;【过程解析】由{3,5}U B ð,而{1,3}A ,所以{1,3,5}U B A ð. 故选A.第二节 充分条件与必要条件、全称量词与存在量词1.(2023全国甲卷理科7)“22sin sin 1 ”是“sin cos 0 ”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件【要点分析】根据充分条件、必要条件概念及同角三角函数的基本关系得解. 【过程解析】当2,0 时,有22sin sin 1 ,但sin cos 0 , 即22sin sin 1 推不出sin cos 0 ;当sin cos 0 时, 2222sin sin cos sin 1 ,即sin cos 0 能推出22sin sin 1 .综上可知,22sin sin 1 是sin cos 0 成立的必要不充分条件. 故选B.2.(2023新高考I 卷7)已记n S 为数列 n a 的前n 项和,设甲: n a 为等差数列;乙:n S n为等差数列,则( )A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件【过程解析】 n a 为等差数列,设首项为1a 公差为d ,则112n n n S na d,111222n S n d d a d n a n ,所以n S n为等差数列,所以甲是乙的充分条件. n S n为等差数列,即 1111111n n n n n n nS n S S S na S n n n n n n 为常数, 设为t ,即11n nna S t n n ,故 11n n S na tn n , 1112n n S n a t n n n ,两式相减得 1112n n n n n a S S na n a tn ,12n n a a t 为常数,对1n 也成立,所以 n a 为等差数列,所以甲是乙的必要条件. 所以,甲是乙的充要条件,故选C.3.(2023北京卷8)若0xy ,则“0x y ”是“2x yy x”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件【要点分析】解法一:证明充分性可由0x y 得到x y ,代入x yy x化简即可,证明必要性可由2x y y x 去分母,再用完全平方公式即可;解法二:由x y y x通分后用配凑法得到完全平方公式,证明充分性可把0x y 代入即可;证明必要性把2x yy x代入,解方程即可.【过程解析】解法一:充分性:因为0xy ,且0x y ,所以x y , 所以112x y y y y x y y,所以充分性成立; 必要性:因为0xy ,且2x yy x, 所以222x y xy ,即2220x y xy ,即 20x y ,所以0x y .所以必要性成立.所以“0x y ”是“2x yy x”的充要条件.故选C. 解法二:充分性:因为0xy ,且0x y ,所以 2222222222x y xy x y x y x y xy xy xy y x xy xy xy xy,所以充分性成立; 必要性:因为0xy ,且2x yy x, 所以 22222222222x y xy x y x y x y x y xy xy y x xy xy xy xy, 所以20x y xy,所以 20x y ,所以0x y ,所以必要性成立.所以“0x y ”是“2x yy x”的充要条件. 故选C.4.(2023天津卷2)“22a b ”是“222a b ab ”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分又不必要条件【要点分析】根据充分、必要性定义判断条件的推出关系,即可得答案.【过程解析】由22a b ,则a b ,当0a b 时222a b ab 不成立,充分性不成立; 由222a b ab ,则2()0a b ,即a b ,显然22a b 成立,必要性成立; 所以22a b 是222a b ab 的必要不充分条件. 故选B.。
(完整版)集合历年高考题.docx
圆学子梦想铸金字品牌1.( 2013 ·重庆高考文科·T 1)已知全集U1,2,3,4 ,集合 A1,2 ,B2,3 ,则 C U A B()A .1,3,4 B.3,4 C.3 D.42、( 2013 ·四川高考文科·T 1)设集合A{1,2,3} ,集合 B {2,2} ,则A I B()A. B. {2} C. {2,2} D. {2,1,2,3}3.(2013 ·福建高考文科·T3) 若集合A=1,2,3 ,B= 1,3,4 ,,则A∩B的子集个数为()A.2B.3C.4D.164.( 2013 ·湖北高考文科·T 1)已知全集U{1,2,3,4,5} ,集合A{1,2} , B{2,3,4},则 B C u A ()A. {2} B . {3,4}C. {1,4,5} D . {2,3,4,5}5.( 2013 ·新课标Ⅰ高考文科·T 1)已知集合A{1,2,3,4} , B{ x | x n2 , n A} ,则A∩B=A. {1,4}B. { 2,3}C.{ 9,16}D. {1,2}6.( 2013 ·大纲版全国卷高考文科·T 1)设集合U1,2,3,4,5,集合A1,2 ,e u A()则C U AA.1,2B.3,4,5C.1,2,3,4,5D.7.( 2013 ·湖南高考文科)已知集合 U{2,3,6,8},A{2,3}, B{2,6,8},则(C U A)B________8.设集合A1,2,3 , B4,5, M x | x a b, a A, b B, 则 M 中元素的个数为()A.3B.4C.5D.69. (2013 江·苏高考数学科·T4) 集合 {-1,0,1} 共有个子集 .10.( 2013 ·四川高考理科·T 1)设集合A{ x | x20} ,集合 B { x | x240} ,则AI B()A. {2}B. {2}C. { 2,2}D.11.(2013 浙·江高考文科·T1) 设集合 S={x|x>-2},T={x|- 4≤ x≤ 1},则 S∩ T= ()A.[- 4,+ ∞)B.(- 2,+ ∞ )C.[ -4,1]D.(-2,1]12.( 2013 ·安徽高考文科·T2)已知A= { x|x+1>0 }, B= { -2, -1, 0, 1},则( C 错误!未找到引用源。
三年高考中的“集合”试题汇编大全
三年高考中的“集合”试题汇编大全一、选择题:2.(2007安徽文)若}}{{032,122=--===x x x B x x A ,则B A ⋂=( ) (A ){}3 (B ){}1 (C )Φ (D) {}1-4.(2007福建文) 已知全集U =|1,2,3,4,5|,且A ={2,3,4},B ={1,2},则⋂A (C U )等于( )A.{2}B.{5}C.{3,4}D.{2,3,4,5}7.(2007广东文)已知集合{|10}M x x =+>,1{|0}1N x x=>-,则M N =( ) A .{x|-1≤x <1} B .{x |x>1} C .{x|-1<x <1} D .{x |x ≥-1}8.(2007海南、宁夏文)设集合{}{}|1|22A x x B x x =>-=-<<,,则A B = ( ) A.{}|2x x >- B.{}1x x >-| C.{}|21x x -<<- D.{}|12x x -<<9.(2007湖北理)设P 和Q 是两个集合,定义集合P-Q={}Q x P x x ∉∈且,|,如果P={x|log 2x<1},Q={x||x-2|<1},那么P-Q 等于( )A .{x|0<x<1} B.{x|0<x ≤1} C.{x|1≤x<2} D.{x|2≤x<3}10.(2007湖北文)如果U ={x|x 是小于0的正整数},A={1,2,3,4},B={3,4,5,6},那么C U A ∩C U B =(D )A.{1,2}B.{3,4}C.{5,6}D.{7,8}11.(2007湖南理)不等式201x x -+≤的解集是( ) A .(1)(12]-∞-- ,, B .[12]-, C .(1)[2)-∞-+∞ ,,D .(12]-, 13.(2007湖南文)不等式2x x >的解集是( )A .(),0-∞B . ()0,1 C. ()1,+∞ D . ()(),01,-∞⋃+∞14.(2007江苏)已知全集U Z =,2{1,0,1,2},{|}A B x x x =-==,则U A C B 为( )A .{1,2}-B .{1,0}-C .{0,1}D .{1,2}15.(2007江西理)若集合M ={0,l ,2},N ={(x ,y)|x -2y +1≥0且x -2y -1≤0,x ,y ∈M},则N 中元素的个数为( )A .9B .6C .4D .216.(2007江西文)若集合M ={0,1},I ={0,1,2,3,4,5},则C 1M 为( )A .{0,1}B .{2,3,4,5}C .{0,2,3,4,5}D .{1,2,3,4,5}17.(2007辽宁)设集合{12345}U =,,,,,{13}A =,,{234}B =,,,则=⋂)B C ()A (C U U ( )A .{1}B .{2}C .{24},D .{1234},,, 18.(2007辽宁文)若集合{13}A =,,{234}B =,,,则A B = ( ) A .{1} B .{2}C .{3}D .{1234},,, 20.(2007全国Ⅰ文)设S ={}012>+x x ,T ={}053<-x x ,则S ∩T =( ) (A)Ø (B)⎭⎬⎫⎩⎨⎧-<21x x (C)⎭⎬⎫⎩⎨⎧>35x x (D)⎭⎬⎫⎩⎨⎧<<-3521x x 22. (2007全国Ⅱ文)设集合U={1,2,3,4},A={1,2},B={2,4},则C U (A ∪B)= ( )(A) {2} (B){3} (C) {1,2,4} (D) {1,4}23.(2007山东)已知集合{}1,1M =-,1124,2x N x x Z +⎧⎫=<<∈⎨⎬⎩⎭,则M N ⋂=( )(A ){}1,1- (B ) {}1- (C ){}0 (D ) {}1,0-24.(2007陕西理)已知全集U =(1,2,3, 4,5),集合A ={}23Z <-∈x x ,则集合C u A 等于( )(A ){}4,3,2,1 (B ){}4,3,2 (C) {}5,1 (D) {}5 27. (2007四川文)设集合M =|4,5,6,8|,集合N =|3,5,7,8|,那么M ∪N =( )(A)|3,4,5,6,7,8| (B)|5,8| (C)|3,5,7,8| (D)|4,5,6,8| 28.(2007天津文)已知集合{}12S x x =∈+R ≥,{}21012T =--,,,,,则S T = ( )A .{}2B .{}12,C .{}012,,D .{}1012-,,,29.(2007浙江文)设全集U ={1,3,5,6,8},A ={1,6},B ={5,6,8},则(C U A)∩B =( )(A){6} (B){5,8} (c){6,8} (D){3,5,6,8}30. (2007重庆文)设全集U =|a 、b 、c 、d |,A =|a 、c |,B =|b |,则A ∩(CuB )=( )(A )∅ (B ){a } (C ){c } (D ){a ,c }1.(2007北京理) 已知集合{}|1A x x a =-≤,{}2540B x x x =-+≥.若A B =∅ ,则实数a 的取值范围是 .1.(2007北京文)(本小题共12分)记关于x 的不等式01x a x -<+的解集为P ,不等式11x -≤的解集为Q .(I )若3a =,求P ;(II )若Q P ⊆,求正数a 的取值范围. 1.设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-=Z 则,≤≤( )A .{}01,B .{}101-,,C .{}012,,D .{}1012-,,,2.(安徽)集合{}{}|lg ,1,2,1,1,2A y R y x x B =∈=>=--,则下列结论中正确的是( )(A){}2,1A B =-- (B)()(),0R A B =-∞ ð(C)()0,A B =+∞ (D)(){}2,1R A B =-- ð3.(安徽.文).若A 位全体实数的集合,{}2,1,1,2B =--则下列结论正确的是( )A .}{2,1AB =--B . ()(,0)RC A B =-∞ C .(0,)A B =+∞D . }{()2,1R C A B =-- 4.(北京卷.理).已知全集U =R ,集合{}|23A x x =-≤≤,{}|14B x x x =<->或,那么集合()U A B ð等于( )A .{}|24x x -<≤B .{}|34x x x 或≤≥C .{}|21x x -<-≤D .{}|13x x -≤≤ 5.(北京.).若集合{|23}A x x =-≤≤,{|14}B x x x =<->或,集合A B 等于( )A .{}|34x x x >或≤B .{}|13x x -<≤C .{}|34x x <≤D .{}|21x x --<≤ 7.(福建.文)若集合A ={x |x 2-x <0},B={x |0<x <3},则A ∩B 等于A.{x |0<x <1}B.{x |0<x <3}C.{x |1<x <3}D.¢11.(湖南.文).已知{}7,6,5,4,3,2=U ,{}7,5,4,3=M ,{}6,5,4,2=N ,则( )A .{}6,4=⋂N M .B M N U =C .U M N C u = )( D. N N M C u = )(12.(江苏).设集合A={x|(x-1)2<3x+7,x ∈R },则集合A ∩Z 中有_ 个元素.13.(江西.理).定义集合运算:{},,.A B z z xy x A y B *==∈∈设{}1,2A =,{}0,2B =,则集合A B *的所有元素之和为A .0B .2C .3D .615.(辽宁.理)已知集合3{|0}1x M x x +=<-,{|3}N x x =≤-,则集合{|1}x x ≥= (A )M N (B )M N (C )()R C M N (D )()R C M N17.(宁夏文).已知集合{}(2)(1)0M x x x =+-<,{}10N x x =+<,则M N = ( ) A .(11)-, B .(21)-, C .(21)--, D .(12), 18.(山东.理.文)满足M ⊆{a 1, a 2, a 3, a 4},且M ∩{a 1 ,a 2, a 3}={ a 1·a 2}的集合M 的个数是(A )1 (B)2 (C)3 (D)419.(陕西.理).已知全集U =(1,2,3, 4,5),集合A ={}23Z <-∈x x ,则集合C u A 等于(A ){}4,3,2,1 (B ){}4,3,2 (C) {}5,1 (D) {}5ZXXK. 21.(上海.理.文 ).若集合A ={x |x ≤2}、B ={x |x ≥a }满足A ∩B ={2},则实数a =22.(上海.春 ).已知集合{1A x x =<-或}23x ≤<,{}24B x x =-≤<,则A B = .23.(四川.文)、设集合U={1,2,3,4,5},A={1,2,3},B={2,3,4} ,则C U (A ∩B )=(A ){2,3} (B ) {1,4,5} (C ){4,5} (D ){1,5}24.(天津.文).设集合{}08U x x =∈<N ≤,{}1245S =,,,,{}357T =,,,则()U S T = ðA .{}124,,B .{}123457,,,,,C .{}12,D .{}124568,,,,, 26.(浙江.文)已知集合{|0}A x x =>,{|12}B x x =-≤≤,则A B =(A ){|1}x x ≥- (B ){|2}x x ≤ (C ){|02}x x <≤ (D )29.(重庆)已知集合{}{}{}45A B ⋃===1,2,3,4,5,2,3,4,,,则A ⋂U (C B)= . 1.(2009年广东卷文)已知全集U R =,则正确表示集合{1,0,1}M =-和{}2|0N x x x =+=关系的韦恩(Venn )图是3.(2009浙江理)设U =R ,{|0}A x x =>,{|1}B x x =>,则U A B = ð( )A .{|01}x x ≤<B .{|01}x x <≤C .{|0}x x <D .{|1}x x > 9.(2009北京文)设集合21{|2},{1}2A x xB x x =-<<=≤,则A B = ( ) A .{12}x x -≤< B .1{|1}2x x -<≤ C .{|2}x x < D .{|12}x x ≤< 10.(2009山东卷理)集合{}0,2,A a =,{}21,B a =,若{}0,1,2,4,16A B = ,则a 的值为( ) A.0 B.1 C.2 D.412.(2009全国卷Ⅱ文)已知全集U ={1,2,3,4,5,6,7,8},M ={1,3,5,7},N ={5,6,7},则C u ( M N )=(A) {5,7} (B ) {2,4} (C ){2.4.8} (D ){1,3,5,6,7}14.(2009安徽卷理)若集合{}21|21|3,0,3x A x x B x x ⎧+⎫=-<=<⎨⎬-⎩⎭则A ∩B 是(A ) 11232x x x ⎧⎫-<<-<<⎨⎬⎩⎭或 (B) {}23x x <<(C ) 122x x ⎧⎫-<<⎨⎬⎩⎭ (D) 112x x ⎧⎫-<<-⎨⎬⎩⎭15.(2009安徽卷文)若集合,则是A .{1,2,3} B. {1,2} C. {4,5} D. {1,2,3,4,5} 21.(2009四川卷文)设集合S ={x |5<x },T ={x |0)3)(7(<-+x x }.则T S ⋂=A. {x |-7<x <-5 }B. {x | 3<x <5 }C. {x | -5 <x <3}D. {x | -7<x <5 }21世纪教育网23. (2009全国卷Ⅱ理)设集合{}1|3,|04x A x x B x x -⎧⎫=>=<⎨⎬-⎩⎭,则A B = A. ∅ B. ()3,4 C.()2,1-D. ()4.+∞ 24.(2009湖南卷文)某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为 12 .25.(2009福建卷理)已知全集U=R ,集合2{|20}A x x x =->,则U A ð等于A . { x ∣0≤x ≤2}B { x ∣0<x<2}C . { x ∣x<0或x>2}D { x ∣x ≤0或x ≤2}26.(2009辽宁卷文)已知集合M =﹛x|-3<x ≤5﹜,N =﹛x|x <-5或x >5﹜,则M N =(A) ﹛x|x <-5或x >-3﹜ (B) ﹛x|-5<x <5﹜(C) ﹛x|-3<x <5﹜ (D) ﹛x|x <-3或x >5﹜28.(2009辽宁卷理)已知集合M={x|-3<x ≤5},N={x|-5<x<5},则M ∩N=(A) {x|-5<x <5} (B) {x|-3<x <5}(C) {x|-5<x ≤5} (D) {x|-3<x ≤5}(2009宁夏海南卷理)已知集合}{{}1,3,5,7,9,0,3,6,9,12A B ==,则N A C B =I(A) }{1,5,7 (B) }{3,5,7(C) }{1,3,9 (D) }{1,2,329.(2009陕西卷文)设不等式20x x -≤的解集为M ,函数()ln(1||)f x x =-的定义域为N ,则M N ⋂为(A )[0,1) (B )(0,1) (C )[0,1] (D )(-1,0]30.(2009四川卷文)设集合S ={x |5<x },T ={x |0)3)(7(<-+x x }.则T S ⋂=A. {x |-7<x <-5 }B. {x | 3<x <5 }C. {x | -5 <x <3}D. {x | -7<x <5 }31.(2009全国卷Ⅰ文)设集合A={4,5,6,7,9},B={3,4,7,8,9},全集 =A B ,则集合[u (A B )中的元素共有(A) 3个 (B ) 4个 (C )5个 (D )6个32.(2009宁夏海南卷文)已知集合}{{}1,3,5,7,9,0,3,6,9,12A B ==,则A B =(A) }{3,5 (B) }{3,6 (C) }{3,7 (D) }{3,935.(2009四川卷理)设集合{}{}2|5,|4210,S x x T x x x =<=+-<则S T = A.{}|75x x -<<- B.{}|35x x << C.{}|53x x -<< D.{}|75x x -<<36.(2009福建卷文)若集合{}{}|0.|3A x x B x x =>=<,则A B 等于A .{|0}x x <B {|03}x x <<C {|4}x x >D R1.(上海)已知集合{}|1A x x =≤,{}|B x x a =≥,且A B R ⋃=,则实数a 的取值范围是3.(2009重庆卷理)若{}3A x R x =∈<,{}21x B x R =∈>,则A B = . 6.(2009天津卷)设全集{}1lg |*<∈=⋃=x N x B A U ,若{}4,3,2,1,0,12|=+==⋂n n m m B C A U ,则集合B=__________.7.(2009陕西卷文)某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组,已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有 人。
历年(2019-2023)高考数学真题分类(集合、常用逻辑用语与不等式)练习(附答案)
[答案解析]因为
1 ,所以
|
2
C. |3
16
|0
16 ;因为
4 ,所以
}.所以 ∩
|
A.
1 ,2
|0
B. 1 ,2
1|
1 ,得 1
2 ,所以 ∩
9. [2022 北京,4 分]已知全集
1 ,则∁
A.
2,1
16
|3
| |
1|
(B)
[答案解析]由|
历年(2019-2023)高考数学真题分类(集合、常用逻辑用语与不等式)练习
考点: 集合
一、选择题
2 , 1 ,0,1,2 ,
1. [2023 新高考卷Ⅰ,5 分]已知集合
6
A.
0 ,则 ∩
(C)
2 , 1 ,0,1
B. 0 ,1,2
2
C.
|
[答案解析]解法一因为
∩
|
6
0
1 ,3 ,
1 ,2,4 ,则
C. 1 ,2,4
D. 1 ,2,4,5
1 ,2,4 ,所以∁
3 ,5 ,又
1 ,3 ,
1 ,3,5 .故选A .
4. [2023 全国卷甲,5 分]设全集
∪
0 .当
(A)
A. 1 ,3,5
|
2
1 ,0,1 ,满足 ⊆ .所以
3. [2023 天津,5 分]已知集合
2 ,故选A .
2 ,4,6 ,则 ∪
B. 1 ,2
C. 2 ,4,6
[答案解析]由集合并集的定义,得 ∪
7. [2022 新高考卷Ⅰ,5 分]若集合
集合高考试题汇编.doc
《集合高考试题汇编》1.已知{(,)|20},{(,)|0}A x y ax y B x y x y b =++>=-+<,M 点的坐标为(1,1),若 ,M A M B ∈∉且,,a b 则应满足A.30a b >->且B.30a b >-<且C.30a b >-≤且D.30a b >-≥且 【参考答案】D.2.已知集合,{|21},{|x U R M x N y y ==>==则A.MN N = B.M N N = C.()U M N R =ð D.(){0}U M N =ð【参考答案】D.3.设全集U 是实数集R ,={|20},M x x -≥{|3},N x x =<则()U M N =ðA.{|23}x x ≤<B.{|2}x x <C.{|2}x x ≤D.{|3}x x ≥ 【参考答案】B.4.设集合{|11},{|02}A x x B x x =-<<=<<,则A B =A.(0,1)B.(1,2)-C.(1,2)D.(1,0)- 【参考答案】B.5.已知集合{1,2,3},{2,3,4},M N ==则A.M N ⊆B.N M ⊆C.{2,3}M N =D.{1,4}M N = 【参考答案】C.6.设集合2{1,0,1},{|},M N x x x =-=≤则M N =A.{0}B.{0,1}C.{1,1}-D.{1,0,1}- 【参考答案】B.7.已知集合{|123},{|24},A x x x B x x =<-≤<=-≤<或则_________.A B = 【参考答案】(,4)-∞8.若集合{|2},{|}A x x B x x a =≤=≥满足{2},A B =则实数_____.a = 【参考答案】29.已知集合{|1},{|},A x x B x x a =≤=≥且,A B R =则实数a 的取值范围是_________. 【参考答案】(,2]-∞ 10.若集合{|1},{|02},A x x B x x =>=<<则_______.A B = 【参考答案】(1,2)11.已知集合1{|2},{|0},1A x xB x x =<=>+则_______.A B =【参考答案】(1,2)-12.若全集,U R =集合{|1}{|0},A x x x x =≥≤则_____.U A =ð 【参考答案】(0,1)13.若集合2{|1},{|4},A x x B x x =≥=≤则_______.A B = 【参考答案】[1,2]14.若集合{|210},{|12},A x x B x x =+>=-<则_______.A B =【参考答案】1(,3)2- 15.若集合{1,2,},{2,5}.A k B ==若{1,2,3,5}A B =,则____.k = 【参考答案】316.已知集合3{|0},{|3},1x M x N x x x +=<=≤--则集合{|1}x x ≥= A.M N B.M N C.()R C M N D.()R C M N 【参考答案】D.17.已知集合{|35},{|55},M x x N x x =-<≤=-<<则M N = A.{|55}x x -<< B.{|35}x x -<< C.{|55}x x -<≤ D.{|35}x x -<≤ 【参考答案】B.18.已知,A B 均为集合{1,3,5,7,9}U =的子集,且{3},(){9},U A B B A ==ð则A = A.{1,3} B.{3,7,9} C.{3,5,9} D.{3,9} 【参考答案】D.19.已知,M N 为集合I 的非空真子集,且,M N 不相等,若,I N M =∅ð则M N = A.M B.N C.I D.∅ 【参考答案】A.20.已知全集{0,1,2,3,4,5,6,7,8,9}U =,集合{0,1,3,5,8}A =,集合{2,4,5,6,8}B =,则 ()()U U A B =痧 A.{5,8} B.{7,9} C.{0,1,3} D.{2,4,6} 【参考答案】B.21.已知集合4{|0log 1},{|2},A x x B x x =<<=≤则A B =A.(0,1)B.(0,2]C.(1,2)D.(1,2] 【参考答案】D.22.已知全集,U R ={|0},{|1},A x x B x x =≤=≥则()U AB =ð A.{|0}x x ≥ B.{|1}x x ≤ C.{|01}x x ≤≤ D.{|01}x x << 【参考答案】D.23.设集合{|23},{|8},,S x x T x a x a S T R =->=<<+=则a 的取值范围是A.(3,1)--B.[3,1]--C.(,3][1,)-∞--+∞D.(,3)(1,-∞--+∞ 【参考答案】A.24.设集合{|1},{|2},A x R x a T x R x b =∈-<=∈->若,A B ⊆则实数,a b 必满足A.3a b +≤B.3a b +≥C.3a b -≤D.3a b -≥ 【参考答案】D.25.已知集合1{|349},{|46,(0,)},A x R x x B x R x t t t=∈++-≤=∈=+-∈+∞则集合_______.A B = 【参考答案】[2,5]-26.已知集合{|23},{|()(2)0},A x R x B x R x m x =∈+<=∈--<且(1,),A B n =- 则____,_____.m n == 【参考答案】1,1m n =-=27..已知集合{|2},{|1},A x R x B x R x =∈≤=∈≤则AB =A.(,2]-∞B.[1,2]C.[2,2]-D.[2,1]- 【参考答案】D.28.已知全集,U R =集合2{|20},A x x x =->则U A =ðA.[0,2]B.(0,2)C.(,0)(2,)-∞+∞D.(,0][2,)-∞+∞ 【参考答案】A.29.若集合{,,,}{1,2,3,4},a b c d =且下列四个关系:①1;a =②1;b ≠③2;c =④4d ≠有且仅有一个是正确的,则符合条件的有序数组(,,,)a b c d 的个数是_____________. 【参考答案】630.满足1234{,,,},M a a a a ⊆且12312{,,}{,}Ma a a a a =的集合M 的个数是A.1B.2C.3D.4 【参考答案】B.31.集合2{0,2,},{1,},A a B a ==若{0,1,2,4,16},A B =则a 的值为 A.0 B.1 C.2 D.4 【参考答案】D.32.已知全集,U R =集合{|12},M x x =-<则U M =ðA.{|13}x x -<<B.{|13}x x -≤≤C.{|13}x x x <->或D.{|13}x x x ≤-≥或 【参考答案】D.33.设集合2{|60},M x x x =+-<{|13},N x x =≤≤则M N =A.[1,2)B.[1,2]C.(2,3]D.[2,3] 【参考答案】A.34.已知全集{0,1,2,3,4}U =,集合{1,2,3}A =,集合{2,4}B =,则()U A B =ð A.{1,2,4} B.{2,3,4} C.{0,2,4} D.{0,2,3,4 35.已知集合{0,1,2}A =,集合{|,}B x y x A y A =-∈∈中元素的个数是 A.1 B.3 C.5 D.9 【参考答案】C.36.设集合{|12},A x x =-<集合{|2,[0,2]}xB y y x ==∈,则A B = A.[0,2] B.(1,3) C.[1,3) D.(1,4) 【参考答案】C.37.设集合2{|(1)37,},A x x x x R =-<+∈则集合A Z 中有______个元素. 【参考答案】638.已知集合2{|log 2},A x x =≤(,)B a =-∞,若,A B ⊆则实数a 的取值范围是(,)c +∞,其中_____.c = 【参考答案】439.设集合{1,1,3},A =-2{2,4},{3},B a a A B =++=则实数a 的值为________. 【参考答案】140.已知集合{1,1,2,4},A =-{1,0,2},B =-则_____.A B = 【参考答案】{1,2}-41.设集合222{(,)|(2),,},2m A x y x y m x y R =≤-+≤∈{(,)|2B x y m x y =≤+≤21,m +,}x y R ∈.若,A B ≠∅则实数m 的取值范围是__________.【参考答案】1[,2242.已知集合{1,2,4},A ={2,4,6},B =则_____.A B = 【参考答案】{1,2,4,6}43.已知集合{2,1,3,4},A =--{1,2,3},B =-则_____.A B = 【参考答案】{1,3}-44.定义集合运算:{|,,}.A B z z xy x A y B *==∈∈设{1,2},{0,2},A B ==则集合A B *的所有元素之和为A.0B.2C.3D.6 【参考答案】C.45.已知全集U A B =中有m 个元素,()()U U A B 痧中有n 个元素.若A B 非空,则A B 的元素个数为A.mnB.m n +C.n m -D.m n - 【参考答案】D.46.若集合{|1,},A x x x R =≤∈2{|,},B y y x x R ==∈则A B =A.{|11}x x -≤≤B.{|0}x x ≥C.{|01}x x ≤≤D.∅ 【参考答案】C.47.若集合{|1213},A x x =-≤+≤2{|0},x B x x-=≤则A B =A.{|10}x x -≤<B.{|01}x x <≤C.{|02}x x ≤≤D.{|01}x x ≤≤ 【参考答案】B.48.若集合{1,1},A =-{0,2},B =则集合{|,,}z z x y x A y B =+∈∈中的元素个数为 A.5 B.4 C.3 D.2 【参考答案】C.49.已知全集{1,2,3,4,5}U =,集合2{|320},A x x x =-+={|2,},B x x a a A ==∈则集合 ()U A B ð中元素的个数为A.1B.2C.3D.4 【参考答案】B.50.若不等式20x x -≤的解集为M ,函数()ln(1)f x x =-的定义域为N ,则M N = A.[0,1) B.(0,1) C.[0,1] D.(1,0]- 【参考答案】A.51.集合{|12},A x x =-≤≤{|1},B x x =<则()R A B =ðA.{|1}x x >B.{|1}x x ≥C.{|12}x x <≤D.{|12}x x ≤≤ 【参考答案】D.52.设集合22{|cos sin ,},M y y x x x R ==-∈1{|N x x i=-<,i x 为虚数单位},R ∈则M N =A.(0,1)B.(0,1]C.[0,1)D.[0,1] 【参考答案】C.53.集合{|lg 0},M x x =>集合2{|4},N x x =≤则M N =A.(1,2)B.[1,2)C.(1,2]D.[1,2] 【参考答案】C.54.设全集为,R 函数()f x =M ,则R M =ðA.[1,1]-B.(1,1)-C.(,1][1,-∞-+∞D.(,1)(1,)-∞-+∞【参考答案】D.55.设集合{|0,},M x x x R =≥∈2{|1,},N x x x R =<∈则M N =A.[0,1]B.[0,1)C.(0,1]D.(0,1) 【参考答案】B.56.已知集合{|23},A x x =-≤≤{|14},B x x x =<->或那么集合()R A B =ðA.{|24}x x -≤<B.{|34}x x x ≤≥或 C.{|21}x x -≤<- D.{|13}x x -≤≤ 【参考答案】D.57.集合2{|03},{|9}P x Z x M x R x =∈≤<=∈≤,则PM =A.{1,2}B.{0,1,2}C.{|03}x x ≤<D.{|03}x x ≤≤ 【参考答案】B.58.已知集合2{|1},{}.P x x M a =≤=若,P M P =则a 的取值范围是A.(,1]-∞-B.[1,)+∞C.[1,1]-D.(,1][1,)-∞-+∞ 【参考答案】C.59.已知集合{|320},{|(1)(3)0}.A x R x B x R x x =∈+>=∈+->则A B =A.(,1)-∞-B.2(1,)3--C.2(,2)3- D.(3,)+∞【参考答案】D.60.已知集合{1,0,1},{|11},A B x x =-=-≤<则A B =A.{0}B.{1,0}-C.{0,1}D.{1,0,1}- 【参考答案】B.61.已知集合2{|20},{0,1,2},A x x x B =-==则A B =A.{0}B.{0,1}C.{0,2}D.{0,1,2} 【参考答案】C.62.已知{|(1,0)(0,1),},{|(1,1)(1,1),P m m R Q n n R ==+∈==+-∈a a b b 是两个向量集合,则P Q =A.{(1,1)}B.{(1,1)}-C.{(1,0)}D.{(0,1)} 【参考答案】A.63.集合22{(,)|1},{(,)|3},416x x y A x y B x y y =+===则A B 的子集的个数是 A.4 B.3 C.2 D.1 【参考答案】A.64.已知21{|log ,1},{|,2},U y y x x P y y x x==>==>则U P =ðA.1[,)2+∞B.1(0,)2C.(0,)+∞D.1(,0][,)2-∞+∞ 【参考答案】A.65.已知集合21{|()1},{|680},2x A x B x x x =≤=-+≤则()R A B =ðA.{|0}x x ≤B.{|24}x x ≤≤C.{|024}x x x ≤<>或D.{|024}x x x <≤≥或 【参考答案】C.66.设U 为全集,,A B 是集合,则“存在集合C 使得,U A C B C ⊆⊆ð”是“A B =∅”的 A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 【参考答案】C.67.已知集合{|212}M x x =-≤-≤和{|21,1,2,}N x x k k ==-=⋅⋅⋅的关系的韦恩图如图所示,则阴影部分所示的集合的元素共有A.3个B.2个C.1个D.无穷多个 【参考答案】A.68.若集合{|21},A x x =-<<{|02},B x x =<<则集合AB =A.{|11}x x -<<B.{|21}x x -<<C.{|22}x x -<< D.{|01}x x << 【参考答案】D.69.集合22{(,)|,1},{(,)|,},A x y x y x y B x y x y y x =+===为实数且为实数且则A B的元素个数是A.4B.3C.2D.1 【参考答案】C. 70.设集合={12,3,4,5,6},{1,2,4},U M =,则U M =ðA.UB.{1,3,5}C.{3,5,6}D.{2,4,6} 【参考答案】C. 71.设集合={12,3},{4,5},{|,,}A B M x x a b a A b B ===+∈∈,,则M 中元素的个数为 A.3 B.4 C.5 D.6 【参考答案】B.72.设集合22={|20,},{|20,},M x x x x R N x x x x R +=∈=-=∈则M N = A.{0} B.{0,2} C.{2,0}- D.{2,0,2}- 【参考答案】D.73.已知集合={1,0,1},{0,1,2},M N -=则M N =A.{0,1}B.{1,0,2}-C.{1,0,1,2}-D.{1,0,1}- 【参考答案】C.74.已知集合={|lg ,1},{2,1,1,2},A y R y x x B ∈=>=--则下列结论中正确的是A.{2,1}A B =--B.()(,0)R A B =-∞ð C.(0,)A B =+∞ D.(){2,1}R A B =--ð 【参考答案】D.75.若集合21={|213},{|0},3x A x x B x x+-<=<-则A B =A.1{|123}2x x x -<<-<<或 B. {|23}x x <<C. 1{|2}2x x -<<D.1{|1}2x x -<<-【参考答案】D.76.若集合121={|log },2A x x ≥则R A =ðA.2(,0](,)2-∞+∞ B.,)2+∞ C.2(,0][,)2-∞+∞ D.,)2+∞ 【参考答案】A.77.已知集合={1,2,3,4,5,6},{4,5,6,7,8},A B =则满足S A S B ⊆≠∅且的集合S 的个数是A.57B.56C.49D.8 【参考答案】B.78.设集合={|32},{|13},M m Z m N n Z n ∈-<<=∈-≤≤则M N =A.{0,1}B.{1,0,1}-C.{0,1,2}D.{1,0,1,2}- 【参考答案】B.79.已知集合={1,3,5,7,9},{0,3,6,9,12},A B =则N A B =ðA.{1,5,7}B.{3,5,7}C.{1,3,9}D.{1,2,3}【参考答案】A.80.集合={4,5,7,9},{3,4,7,8,9},A B =全集U AB =,则集合()U A B ð中的元素共有A.3个B.4个C.5个D.6个 【参考答案】A.81.设集合{|3},A x x =>1{|0},4x B x x -=<-则A B =A.∅B.(3,4)C.(2,1)-D.(4,)+∞ 【参考答案】B.82.已知集合{|2,},A x x x R =≤∈{4,},B x x Z =∈则A B = A.(0,2) B.[0,2] C.{0,2} D.{0,1,2} 【参考答案】D.83.若集合{1,2,3,4,5},A ={(,)|,,},B x y x A y A x y A =∈∈-∈则集合B 中所含元素的个数为A.3B.6C.8D.10 【参考答案】D.84.已知集合{A ={1,},,B m A B A ==则m =A.0B.03或C.1D.13或 【参考答案】B.85.已知集合2{|20},{|A x x x B x x =->=<<则A.A B =∅B.A B R =C.B A ⊆D.A B ⊆ 【参考答案】B.86.已知集合2{|(1)4,}M x x x R =-<∈,{1,0,1,2,3}N =-,则M N =A.{0,1,2}B.{1,0,1,2- C.{1,0,2,3}- D.{0,1,2,3} 【参考答案】A.87.已知集合2{|230},{|22},A x x x B x x =--≥=-≤<则A B =A.[2,1]--B.[1,2)-C.[1,1]-D.[1,2) 【参考答案】A.88.设集合{0,1,2}M =,2{|320},N x x x =-+≤则M N =A.{1}B.{2}C.{0,1}D.{1,2} 【参考答案】D.89.设集合2{|340},M x x x =--<{|05},N x x =≤≤则M N =A.(0,4]B.[0,4)C.[1,0)-D.(1,0]- 【参考答案】B.90.设集合{1,2,3,4,5},{2,4},{3,4,5},{3,4},U A B C ====则()()___.U A B C =ð 【参考答案】{2,5}91.若{|3},{|21},xA x R xB x R =∈<=∈>则A B =_______. 【参考答案】(0,3)92.设2{0,1,2,3},{|0},U A x U x mx ==∈+=若{1,2},U A =ð则实数_____.m = 【参考答案】3-93.已知全集{1,2,3,4},U =集合{1,2},{2,3},A B ==则()U AB =ð A.{1,3,4} B.{3,4}C.{3}D.{4} 【参考答案】D.94.设全集{|110},{1,2,3,5,8},{1,3,5,7,9}U n N n A B =∈≤≤==,则()__.U A B =ð【参考答案】{7,9}95.已知,{|0},{|1},U R A x x B x x ==>=≤-则()()U UAB B A =痧A.∅B.{|0}x x ≤C.{|1}x x >-D.{|01}x x x >≤-或 【参考答案】D.96.设,{|0},{|1},U R A x x B x x ==>=>则U A B =ðA.{|01}x x ≤<B.{|01}x x <≤C.{|0}x x <D.{|1}x x > 【参考答案】B.97.设2{|4},{|4},P x x Q x x =<=<则A.P Q ⊆B.Q P ⊆C.R P Q ⊆ðD.R Q P ⊆ð 【参考答案】B.98.设集合2{|14},{|230},A x x B x x x =<<=--≤则R A B =ðA.(1,4)B.(3,4)C.(1,3)D.(1,2)(3,4) 【参考答案】B.99.设集合2{|2},{|340},S x x T x x x =>-=+-≤则()R S T = ?A.(2,1]-B.(,4]-∞-C.(,1]-∞D.[1,)+∞ 【参考答案】C.100.设全集{|2},U x N x =∈≥集合2{|5},A x N x =∈≥则U A =ð A.∅ B.{2} C.{5} D.{2,5} 【参考答案】B.101.设整数4,n ≥集合{1,2,3,,}.X n =⋅⋅⋅令集合{(,,)|,,,S x y z x y z X =∈且三条件xy <,z <,y z x <<}z x y <<恰好一个成立.若()x,y,z 和(,,)z w x 都在S 中,则下列选项中正确的是A.(),(,,)y,z,w S x y w S ∈∉B.(),(,,)y,z,w S x y w S ∈∈C.(),(,,)y,z,w S x y w S ∉∈D.(),(,,)y,z,w S x y w S ∉∉ 【参考答案】B.102.设S 是整数集Z 的非空子集,如果,,a b S ∀∈有,ab S ∈则称S 关于数的乘法是封闭的.若,T V 是Z 的两个不相交的非空子集,,T V Z =且,,,a b c T ∀∈有;abc T ∈,,,x y z V ∀∈ ,xyz T ∈则下列结论恒成立的是A.,T V 中至少有一个关于乘法是封闭的B.,T V 中至多有一个关于乘法是封闭的C.,T V 中有且只有一个关于乘法是封闭的D.,T V 中每一个关于乘法都是封闭的 【参考答案】A.103.已知{2,3,4,5,6,7},{3,4,5,7},{2,4,5,6}U M N ===,则 A.{4,6}M N = B.M N U = C.()U N M U =ð D.()U M N N =ð 【参考答案】B.104.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为__________. 【参考答案】12.105.已知集合{1,2,3},{2,,4},{2,3},A B m A B ===则____.m = 【参考答案】3106.设全集{1,2,3,4,5},{2,4},U U MN M N ===ð则N =A.{1,2,3}B.{1,3,5}C.{1,4,5}D.{2,3,4} 【参考答案】B.107.设集合2{1,0,1},{}},M N x x x =-==则M N =A.{1,0,1}-B.{0,1}C.{1}D.{0} 【参考答案】B.108.已知集合{2,3,6,8},{2,3},{2,6,8},U A B ===则()U A B =ð____________. 【参考答案】{6,8}109.已知集合{|2},{|13},A x x B x x A B =>=<<=则A.{|2}x x >B.{|1}x x > C.{|23}x x << D.{|13}x x << 【参考答案】C.110.已知集合{|(2)(1)0},{|10},M x x x N x x M N =+-<=+<=则A.(1,1)-B.(2,1)-C.(2,1)--D.(1,2) 【参考答案】C.111.已知全集{1,2,3,4,5,6,7,8},{1,3,5,7},{5,6,7},U M N ===则()U MN =ð A.{5,7} B.{2,4}C.{2,4,8}D.{1,3,5,6,7} 【参考答案】C.。
2024全国高考真题数学汇编:集合
2024全国高考真题数学汇编集合一、单选题1.(2024全国高考真题)已知集合{}355,{3,1,0,2,3}A x x B =-<<=--∣,则A B = ()A .{1,0}-B .{2,3}C .{3,1,0}--D .{1,0,2}-2.(2024天津高考真题)集合{}1,2,3,4A =,{}2,3,4,5B =,则A B = ()A .{}1,2,3,4B .{}2,3,4C .{}2,4D .{}13.(2024全国高考真题)若集合{}1,2,3,4,5,9A =,{}1B x x A =+∈,则A B = ()A .{}1,3,4B .{}2,3,4C .{}1,2,3,4D .{}0,1,2,3,4,94.(2024北京高考真题)已知集合{|31}M x x =-<<,{|14}N x x =-≤<,则M N ⋃=()A .{}11x x -≤<B .{}3x x >-C .{}|34x x -<<D .{}4x x <5.(2024全国高考真题)已知集合{}{}1,2,3,4,5,9,A B A ==,则()A A B ⋂=ð()A .{}1,4,9B .{}3,4,9C .{}1,2,3D .{}2,3,5参考答案1.A【分析】化简集合A ,由交集的概念即可得解.【详解】因为{{}|,3,1,0,2,3A x x B =<=--,且注意到12<<,从而A B = {}1,0-.故选:A.2.B【分析】根据集合交集的概念直接求解即可.【详解】因为集合{}1,2,3,4A =,{}2,3,4,5B =,所以{}2,3,4A B = ,故选:B3.C【分析】根据集合B 的定义先算出具体含有的元素,然后根据交集的定义计算.【详解】依题意得,对于集合B 中的元素x ,满足11,2,3,4,5,9x +=,则x 可能的取值为0,1,2,3,4,8,即{0,1,2,3,4,8}B =,于是{1,2,3,4}A B ⋂=.故选:C4.C【分析】直接根据并集含义即可得到答案.【详解】由题意得{}|34M x x N ⋃=-<<.故选:C.5.D【分析】由集合B 的定义求出B ,结合交集与补集运算即可求解.【详解】因为{}{}1,2,3,4,5,9,A B A ==,所以{}1,4,9,16,25,81B =,则{}1,4,9A B = ,(){}2,3,5A A B = ð故选:D。
高中数学 高考复习 集合 专题练习(选择题+解答题)100题合集 含答案详解
高中数学 高考复习 集合 专题练习 (选择题+解答题)100题合集一、单选题 1.已知集合(){},2,,A x y x y x Z y Z =+≤∈∈,则A 中元素的个数为( )A .9B .10C .12D .132.下列各式中关系符号运用正确的是( ) A .{}10,1,2⊆ B .{}0,1,2∅⊄ C .{}2,0,1∅⊆D .{}{}10,1,2∈3.已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B =( ) A .{4,1}- B .{1,5} C .{3,5}D .{1,3}4.已知集合{}1235711A =,,,,,,{}315|B x x =<<,则A ∩B 中元素的个数为( ) A .2 B .3 C .4 D .55.设集合{}{}1,3,5,7,9,27M N x x ==>,则M N ⋂=( ) A .{}7,9B .{}5,7,9C .{}3,5,7,9D .{}1,3,5,7,96.已知集合A ={﹣1,0,1,2},B ={x |0<x <3},则A ∩B =( ) A .{﹣1,0,1}B .{0,1}C .{﹣1,1,2}D .{1,2}7.已知集合{}2|210,A x ax x a =++=∈R 只有一个元素,则a 的取值集合为( )A .{1}B .{0}C .{0,1,1}-D .{0,1} 8.已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z ,则S T ( )A .∅B .SC .TD .Z9.下列说法正确的是( )A .由1,2,3组成的集合可表示为{}1,2,3或{}3,2,1B .∅与{}0是同一个集合C .集合{}21x y x =-与集合{}21y y x =-是同一个集合D .集合{}2560x x x ++=与集合{}2560x x ++=是同一个集合10.已知非空集合A 、B 、C 满足:A B C ⊆,A C B ⋂⊆.则( ). A .B C = B .()A B C ⊆⋃C .()B C A ⋂⊆D .A B A C ⋂=⋂11.已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B ⋂中元素的个数为( )A .2B .3C .4D .612.集合{1A x x =<-或3}x ≥,{}10B x ax =+≤若B A ⊆,则实数a 的取值范围是( )A .1,13⎡⎫-⎪⎢⎣⎭B .1,13⎡⎤-⎢⎥⎣⎦C .()[),10,-∞-⋃+∞D .()1,00,13⎡⎫-⋃⎪⎢⎣⎭13.已知集合11A x x ⎧⎫=>⎨⎬⎩⎭,则RA =( )A .{}1x x <B .{0x x ≤或}1x ≥C .{|0}{|1}x x x x <>D .{}1x x ≤14.若集合{}{}0,1,2,3,4,5,0,2,4U A ==,{}3,4B =,则()U A B =( ).A .{}3B .{}5C .{}3,4,5D .{}1,3,4,515.集合{}{}2,4,6,8,10,16M N x x ==-<<,则M N ⋂=( ) A .{2,4}B .{2,4,6}C .{2,4,6,8}D .{2,4,6,8,10}16.已知集合{}1,0,1A =-,{},B a b a A b A =+∈∈,则集合B =( ) A .{}1,1-B .{}1,0,1-C .{}2,1,1,2--D .{}2,1,0,1,2--17.集合{1,0,1,2,3}A =-,{0,2,4}B =,则图中阴影部分所表示的集合为( )A .{0,2}B .{1,1,3,4}-C .{1,0,2,4}-D .{1,0,1,2,3,4}-18.设集合{}22,2,1A a a a =-+-,若4A ∈,则a 的值为( ).A .1-,2B .3-C .1-,3-,2D .3-,219.集合{|14}A x N x =∈≤<的真子集的个数是( ) A .16B .8C .7D .420.设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()UA B =( )A .{3}B .{1,6}C .{5,6}D .{1,3}21.若集合{},,M a b c =中的元素是△ABC 的三边长,则△ABC 一定不是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形22.已知集合204x A xx ⎧⎫+=<⎨⎬-⎩⎭,{}0,1,2,3,4,5B =,则()R A B ⋂=( ) A .{}5B .{}4,5C .{}2,3,4D .{}0,1,2,323.设集合{}24A x x =-<<,{}2,3,4,5B =,则A B =( ) A .{}2B .{}2,3C .{}3,4D .{}2,3,424.设集合A 、B 均为U 的子集,如图,()U A B ∩表示区域( )A .△B .IIC .IIID .IV25.若集合{}21,A m =,集合{}2,4B =,若{}1,2,4A B ⋃=,则实数m 的取值集合为( )A .{B .{C .{}2,2-D .{2,2,-26.集合{0,1,2}A =的非空真子集的个数为( ) A .5B .6C .7D .827.设集合{}{}|2,|13A x x B x x =≥=-<<,则A B =( ) A .{}|2x x ≥B .{}|2x x <C .{}|2x x ≤<3D .{}|12x x -≤<28.设集合{}104,53M x x N x x ⎧⎫=<<=≤≤⎨⎬⎩⎭,则M N ⋂=( )A .103x x ⎧⎫<≤⎨⎬⎩⎭B .143x x ⎧⎫≤<⎨⎬⎩⎭C .{}45x x ≤<D .{}05x x <≤29.下列元素与集合的关系中,正确的是( )A .1-∈NB .*0∉NC QD .25∉R30.已知{}1,,A x y =,{}21,,2B x y =,若A B =,则x y -=( )A .2B .1C .14D .2331.设集合{}{}{}1,0,11,3,5,0,2,4A B C =-==,,则()A B C ⋂⋃=( ) A .{}0B .{0,1,3,5}C .{0,1,2,4}D .{0,2,3,4}32.集合{}{}240,1,,2,.A a B a =-=-若{}2,1,0,4,16A B ⋃=--,则=a ( )A .1±B .2±C .3±D .4±33.设集合5{2,1,0,1,2},02A B x x ⎧⎫=--=≤<⎨⎬⎩⎭∣,则A B =( ) A .{}0,1,2B .{2,1,0}--C .{0,1}D .{1,2}34.已知集合满足{1,2}{1,2,3}A ⊆⊆,则集合A 可以是( ) A .{3}B .{1,3}C .{2,3}D .{1,2}35.已知集合{}12M x a x a =-<<,(1,4)N =,且M N ⊆,则实数a 的取值范围是( ) A .(,2]-∞B .(,0]-∞C .1(,]3-∞D .1,23⎡⎤⎢⎥⎣⎦36.已知集合{}21,P x x k k N *==-∈和集合{|}M x x a b a P b P ==⊕∈∈,,,若M P ⊆,则M 中的运算“△”是( ) A .加法B .除法C .乘法D .减法37.集合{1A x x =<-或}1x ≥,{}20B x ax =+≤,若B A ⊆,则实数a 的取值范围是( ) A .[]22-,B .[)2,2-C .()[),22,-∞-+∞D .[)()2,00,2-38.已知集合A ={x |-1<x <1},B ={x |0≤x ≤2},则A △B =( ) A .{x |0≤x <1} B .{x |-1<x ≤2} C .{x |1<x ≤2}D .{x |0<x <1}39.已知全集{33}U x x =-<<,集合{21}A x x =-<≤,则UA =( )A .(2,1]-B .(3,2)[1,3)--C .[2,1)-D .(3,2](1,3)--40.设集合{1,2},{2,4,6}A B ==,则A B ⋃=( ) A .{2}B .{1,2}C .{2,4,6}D .{1,2,4,6}41.已知集合{}21,M x x k k Z ==+∈,集合{}43,N y y k k Z ==+∈,则M N ⋃=( ) A .{}62,x x k k Z =+∈ B .{}42,x x k k Z =+∈ C .{}21,x x k k Z =+∈ D .∅42.已知集合{1,0,1,2,3,4},{1,3,5},M N P M N =-==,则P 的真子集共有( )A .2个B .3个C .4个D .8个43.设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =( ) A .–4B .–2C .2D .444.已知集合5==,Z 6M x x m m ⎧⎫-∈⎨⎬⎩⎭,1==,Z 23n N x x n ⎧⎫-∈⎨⎬⎩⎭,1==+,Z 26p P x x p ⎧⎫∈⎨⎬⎩⎭,则集合M ,N ,P 的关系为( ) A .M N P == B .=M N P ⊆C .M NP ⊆D .M N ⊆,=N P ⋂∅45.已知集合{|S x N x =∈≤,{}22|T x R x a =∈=,且{}1S T ⋂=,则S T ⋃=( )A .{1,2}B .{0,1,2}C .{-1,0,1,2}D .{-1,0,1,2,3}46.定义集合,A B 的一种运算:2{|,,}A B x x a b a A b B ⊗==-∈∈,若{}1,0A =-,{}1,2B =,则A B ⊗中的元素个数为( )A .1B .2C .3D .447.已知集合{}=1A x x ≤,{}=Z 04B x x ∈≤≤,则A B =( ) A .{}0<<1x xB .{}01x x ≤≤C .{}0<4x x ≤D .{}0,1 48.已知U =R ,{}2M x x =≤,{}11N x x =-≤≤,则UM N =( )A .{1x x <-或}12x <≤B .{}12x x <≤C .{1x x ≤-或}12x ≤≤D .{}12x x ≤≤49.已知集合{}0,1,2A =,{},B ab a A b A =∈∈,则集合B 中元素个数为( ) A .2B .3C .4D .550.设全集{3,2,1,0,1,2,3}U =---,集合{1,0,1,2},{3,0,2,3}A B =-=-,则()UA B =( ) A .{3,3}-B .{0,2}C .{1,1}-D .{3,2,1,1,3}---二、解答题51.设全集为R ,{|37}A x x =≤≤,{}2|14400B x x x =-+<.(△)求()R A B ⋃及()R A B ⋂;(△)若集合{|214}C x m x m =+≤≤+,且A C A ⋃=,求实数m 的取值范围. 52.已知集合{}37A x x =≤<,{}210B x x =<<,求:A B ⋂,()RA B ⋃,53.已知集合{}24A x x =<<,{}3B x a x a =<<. (1)若{}34A B x x ⋂=<<,求实数a 的值; (2)若A B ⋂=∅,求实数a 的取值范围.54.设集合{|}R A x x x ∈+=240=,R R {|()}B x x a x a a ∈=∈222110=+++-, . (1)若0a =,试求A B ⋃;(2)若B A ⊆,求实数a 的取值范围. 55.用列举法表示下列集合 (1)11以内非负偶数的集合;(2)方程()()2140x x +-=的所有实数根组成的集合;(3)一次函数2y x =与1y x =+的图象的交点组成的集合. 56.用描述法表示下列集合: (1)所有被3整除的整数组成的集合; (2)不等式235x ->的解集;(3)方程210x x ++=的所有实数解组成的集合; (4)抛物线236y x x =-+-上所有点组成的集合; (5)集合{}1,3,5,7,9.57.已知集合A 为非空数集,定义:{},,S x x a b a b A ==+∈,{},,T x x a b a b A ==-∈ (1)若集合{}1,3A =,直接写出集合S ,T .(2)若集合{}1234,,A x x x x =,1234x x x x <<<,且T A =,求证:1423x x x x +=+ (3)若集合{}02020,A x x x N ⊆≤≤∈,S ,S T ⋂=∅,记A 为集合A 中元素的个数,求A 的最大值.58.已知集合{}23A x x =-<<,{}3B x x a =≤. (1)求集合RA ;(2)当1a =时,求A B ⋂;(3)若()R B A ⋃=R ,求a 的取值范围. 59.已知集合A ={a ﹣2,2a 2+5a },且﹣3△A . (1)求a ;(2)写出集合A 的所有真子集.60.已知集合{|25},{|121}A x x B x m x m =-<<=+≤≤- (1)当3m =时,求()R A B ;(2)若A B A ⋃=,求实数m 的取值范围.61.已知集合{}2210,A x ax x a R =++=∈,若A 中至少有一个元素,求实数a 的取值集合.62.已知集合{3A x x =≤-或}1x ≥-,{}21|B x m x m =<<-,且A B A ⋃=,求m 的取值范围.63.已知集合A ={y |y =x 2-2x },B ={y |y =-x 2+2x +6}. (1)求A ∩B .(2)若集合A ,B 中的元素都为整数,求A ∩B .(3)若集合A 变为A ={x |y =x 2-2x },其他条件不变,求A ∩B .(4)若集合A ,B 分别变为A ={(x ,y )|y =x 2-2x },B ={(x ,y )|y =-x 2+2x +6},求A ∩B .64.已知集合{}20,R,R A x x ax b a b =-+=∈∈.(1)若{}1A =,求a ,b 的值;(2)若{}Z 30B x x =∈-<<,且A B =,求a ,b 的值. 65.设{},56,{|6U R A x x B x x ==-<≤=≤-或2}x >,求: (1)A B ⋂; (2)()()U UA B66.已知集合2{|121},{|3100}A x a x a B x x x =+≤≤-=--≤. (1)当3a =时,求()R A B ;(2)若A B B ⋃=,求实数a 的取值范围.67.已知﹣3是由x ﹣2,2x 2+5x ,12三个元素构成的集合中的元素,求x 的值. 68.已知集合A ={x |2a <x <a +1},B ={|1x -<x <5},求满足A ⊆B 的实数a 的取值范围.69.已知集合{}45A x x =<<,{}121B x m x m =+≤≤+,{0C x x =≤或}2x ≥. (1)若A B B ⋃=,求实数m 的取值范围; (2)若B C B =,求实数m 的取值范围.70.已知集合{}2210,A x ax x a R =++=∈.(1)若A 中只有一个元素,求a 的值; (2)若A 中至少有一个元素,求a 的取值范围; (3)若A 中至多有一个元素,求a 的取值范围.71.已知{}321A x x =-≤-≤,{}12B x a x a =-≤≤+,R a ∈. (1)当a =1时,求A ∩B ;(2)若A △B =A ,求实数a 的取值范围.72.已知集合{}2|80,,{|10,}A x x x m m R B x ax a R =-+=∈=-=∈,且A B A ⋃=.(1)若{}3A B =,求m ,a 的值. (2)若12m =,求实数a 组成的集合.73.已知集合11{|}A x a x a =-≤≤+,5|03x B x x -⎧⎫=≤⎨⎬+⎩⎭. (1)若3a =-,求A B ⋃;(2)在△A B ⋂=∅,△()R B A R ⋃=,△A B B ⋃=,这三个条件中任选一个作为已知条件,求实数a 的取值范围.74.已知集合 {|05}A x x a =<-,{|6}2aB x x =-<. (1)若 A B ⊆,求 a 的取值范围; (2)若 B A ⊆,求 a 的取值范围;(3)集合 A 与 B 能够相等?若能,求出 a 的值,若不能,请说明理由. 75.定义:若任意,m n A ∈(m ,n 可以相等),都有10mn +≠,则集合,,1m n B x x m n A mn ⎧⎫+==∈⎨⎬+⎩⎭称为集合A 的生成集;(1)求集合{3,4}A =的生成集B ;(2)若集合{,2}A a =,A 的生成集为B ,B 的子集个数为4个,求实数a 的值; (3)若集合(1,1)A =-,A 的生成集为B ,求证A B =.76.已知集合{|25}A x x =-,{|121}B x m x m =+-,U =R .(1)若UAB U =,求实数m 的取值范围;(2)若A B ≠∅,求实数m 的取值范围.77.设A 是实数集的非空子集,称集合{|,B uv u v A =∈且}u v ≠为集合A 的生成集. (1)当{}2,3,5A =时,写出集合A 的生成集B ;(2)若A 是由5个正实数构成的集合,求其生成集B 中元素个数的最小值;(3)判断是否存在4个正实数构成的集合A ,使其生成集{}2,3,5,6,10,16B =,并说明理由.78.设数集A 由实数构成,且满足:若x A ∈(1x ≠且0x ≠),则11A x∈-. (1)若2A ∈,试证明A 中还有另外两个元素; (2)集合A 是否为双元素集合,并说明理由; (3)若A 中元素个数不超过8个,所有元素的和为143,且A 中有一个元素的平方等于所有元素的积,求集合A .79.设集合{}{}{}22,2,,,A x x a P y y x x A Q y y x x A =-≤≤==+∈==∈.(1)对a 分类讨论求集合Q ; (2)若QP Q =,求实数a 的取值范围.80.已知集合{}32A x x =-≤≤,{}213B x m x m =-≤≤+. (1)当0m =时,求()RA B ⋂;(2)若A B A ⋃=,求实数m 的取值范围.81.已知集合{}02A x x =≤≤,{}B 32x a x a =≤≤-. (1)若()R A B ⋃=R ,求实数a 的取值范围; (2)若A B B ≠,求实数a 的取值范围.82.已知集合2{|280}A x x x =--=,集合22120{|}B x x ax a -+==+.若B A A ≠,求实数a 的取值范围.83.已知集合{}22A x a x a =-≤≤+,{|1B x x =≤或4}x ≥,U =R . (1)当3a =时,求A B ⋂,()U A B ⋃; (2)若A B ⋂=∅,求实数a 的取值范围.84.已知集合{}|23A a a x a =≤≤+,{1B x x =<-或}5x >,若()R A B B =,求实数a的取值范围.85.集合1|22A x x ⎧⎫=<<⎨⎬⎩⎭,{}22B x a x a =-<<+.(1)若{}23,4,23C a a =+-,0B C ∈⋂,求实数a 的值;(2)从△A B A =,△A B =∅R,△B A R ⋃=R 这三个条件中选择一个作为已知条件,求实数a 的取值范围.86.在“△A B ⋂=∅,△A B ⋂≠∅”这两个条件中任选一个,补充在下列横线中,求解下列问题:已知集合{|231}A x a x a =-<<+,{|01}B x x =<≤. (△)若0a =,求A B ⋃;(△)若________(在△,△这两个条件中任选一个),求实数a 的取值范围. 注:如果选择多个条件分别解答,按第一个解答记分.87.已知集合{}37A x x =≤<,{}210B x x =<<,{}C x x a =<. (1)求A B ⋃,()A B R ;(2)若A C ⋂≠∅,求a 的取值范围.88.设全集{}1,2,3,4,5,6U =,集合{}1,3,4A =,{}1,4,5,6B =. (1)求A B ⋂及A B ⋃; (2)求()U A B .89.试分别用描述法和列举法表示下列集合: (1)方程220x -=的所有实数根组成的集合A ; (2)由大于10且小于20的所有整数组成的集合B .90.已知集合{|32}A x x =-≤≤,集合{|131}B x m x m =-≤≤-. (1)当3m =时,求A B ⋂; (2)若A B ⊆,求实数m 的取值范围91.已知集合{|,A x x m ==其中,}m n Q ∈.(1)试分别判断1x =2x =A 的关系; (2)若1x ,2x A ∈,则12x x 是否一定为集合A 的元素?请说明你的理由.92.已知集合{}22190A x x ax a =-+-=,集合{}2560B x x x =-+=,集合{}2280C x x x =+-=.(1)若{}2A B ⋂=,求实数a 的值;(2)若A B ⋂≠∅,A C ⋂=∅,求实数a 的值.93.已知集合{}2230A x x x =-->,{}20B x x px q =++≤.(1)若A B ⋃=R ,且[)2,1A B ⋂=--,求实数p 及q 的值;(2)在(1)的条件下,若关于x 的不等式组200x px q x a ⎧++≤⎨->⎩没有实数解,求实数a 的取值范围;(3)若[]3,1B =--,且关于x 的不等式;21012kx kx pq ++≤的解集为∅,求实数k 的取值范围.94.已知集合A 中的元素全为实数,且满足:若a A ∈,则11aA a+∈-. (1)若3a =-,求出A 中其他所有元素.(2)0是不是集合A 中的元素?请你取一个实数()3a A a ∈≠-,再求出A 中的元素. (3)根据(1)(2),你能得出什么结论?95.已知{}(){}22240,2110A xx x B x x a x a =+==+++-=∣∣. (1)若A 是B 的子集,求实数a 的值; (2)若B 是A 的子集,求实数a 的取值范围.96.已知全集U ={x |x ≤4},集合A ={x |-2<x <3},B ={x |-3≤x ≤2},求A ∩B ,()U A B ⋃,()U A B ⋂.97.已知集合2{|210}A x R mx x =∈-+=,在下列条件下分别求实数m 的取值范围: (1)A =∅; (2)A 恰有一个元素.98.已知集合{}220A x x x a =+-=.(1)若∅是A 的真子集,求a 的范围;(2)若{}20B x x x =+=,且A 是B 的子集,求实数a 的取值范围.99.已知由实数组成的集合A ,1A ∉,又满足:若x A ∈,则11A x∈-. (1)设A 中含有3个元素,且2,A ∈求A ;(2)A 能否是仅含一个元素的单元素集,试说明理由;(3) A 中含元素个数一定是*3()n n N ∈个吗?若是,给出证明,若不是,说明理由. 100.设A ={x |x 2+ax +12=0},B ={x |x 2+3x +2b =0},A ∩B ={2},C ={2,-3}.(1)求a,b的值及A,B;(2)求(A△B)∩C.参考答案:1.D【分析】利用列举法列举出集合A 中所有的元素,即可得解.【详解】由题意可知,集合A 中的元素有:()2,0-、()1,1--、()1,0-、()1,1-、()0,2-、()0,1-、()0,0、()0,1、()0,2、1,1、()1,0、()1,1、()2,0,共13个.故选:D. 2.C【分析】根据元素和集合的关系,集合与集合的关系,空集的性质判断即可. 【详解】根据元素和集合的关系是属于和不属于,所以选项A 错误; 根据集合与集合的关系是包含或不包含,所以选项D 错误; 根据空集是任何集合的子集,所以选项B 错误,故选项C 正确. 故选:C. 3.D【分析】首先解一元二次不等式求得集合A ,之后利用交集中元素的特征求得A B ⋂,得到结果.【详解】由2340x x --<解得14x -<<, 所以{}|14A x x =-<<,又因为{}4,1,3,5B =-,所以{}1,3A B =, 故选:D.【点睛】本题考查的是有关集合的问题,涉及到的知识点有利用一元二次不等式的解法求集合,集合的交运算,属于基础题目. 4.B【分析】采用列举法列举出A B ⋂中元素的即可.【详解】由题意,{5,7,11}A B ⋂=,故A B ⋂中元素的个数为3. 故选:B【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题. 5.B【分析】求出集合N 后可求M N ⋂.【详解】7,2N ⎛⎫=+∞ ⎪⎝⎭,故{}5,7,9M N ⋂=,故选:B. 6.D【分析】根据交集的定义写出A ∩B 即可.【详解】集合A ={﹣1,0,1,2},B ={x |0<x <3}, 则A ∩B ={1,2}, 故选:D 7.D【分析】对参数分类讨论,结合判别式法得到结果. 【详解】解:△当0a =时,1{}2A =-,此时满足条件;△当0a ≠时,A 中只有一个元素的话,440a =-=,解得1a =, 综上,a 的取值集合为{0,1}. 故选:D . 8.C【分析】分析可得T S ⊆,由此可得出结论.【详解】任取t T ∈,则()41221t n n =+=⋅+,其中Z n ∈,所以,t S ∈,故T S ⊆, 因此,S T T =. 故选:C. 9.A【分析】根据集合的定义和性质逐项判断可得答案 【详解】集合中的元素具有无序性,故A 正确;∅是不含任何元素的集合,{}0是含有一个元素0的集合,故B 错误;集合{}21x y x R =-=,集合{}{}211y y x y y =-=≥-,故C 错误;集合{}()(){}2025630++==+=+x x x x x x 中有两个元素2,3--,集合{}2560x x ++=中只有一个元素,为方程2560x x ++=,故D 错误. 故选:A. 10.C【分析】作出符合题意的三个集合之间关系的venn 图即可判断.【详解】解:因为非空集合A 、B 、C 满足:A B C ⊆,A C B ⋂⊆, 作出符合题意的三个集合之间关系的venn 图,如图所示,所以A B A C ⋂=⋂. 故选:D . 11.C【分析】采用列举法列举出A B ⋂中元素的即可.【详解】由题意,A B ⋂中的元素满足8y xx y ≥⎧⎨+=⎩,且*,x y N ∈,由82x y x +=≥,得4x ≤,所以满足8x y +=的有(1,7),(2,6),(3,5),(4,4), 故A B ⋂中元素的个数为4. 故选:C.【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题. 12.A【分析】根据B A ⊆,分B =∅和B ≠∅两种情况讨论,建立不等关系即可求实数a 的取值范围.【详解】解:B A ⊆,∴△当B =∅时,即10ax +无解,此时0a =,满足题意.△当B ≠∅时,即10ax +有解,当0a >时,可得1x a-, 要使B A ⊆,则需要011a a>⎧⎪⎨-<-⎪⎩,解得01a <<.当a<0时,可得1x a-,要使B A ⊆,则需要013a a<⎧⎪⎨-⎪⎩,解得103a -<,综上,实数a 的取值范围是1,13⎡⎫-⎪⎢⎣⎭.故选:A .【点睛】易错点点睛:研究集合间的关系,不要忽略讨论集合是否为∅. 13.B【分析】先解不等式,求出集合A ,再求出集合A 的补集 【详解】由11x>,得10x x ->,(1)0x x ->,解得01x <<,所以{}01A x x =<<, 所以RA ={0x x ≤或}1x ≥故选:B 14.A【分析】根据补集的定义和运算求出UA ,结合交集的概念和运算即可得出结果.【详解】由题意知,{1,3,5}UA =,又{3,4}B =,所以(){3}U A B =. 故选:A 15.A【分析】根据集合的交集运算即可解出.【详解】因为{}2,4,6,8,10M =,{}|16N x x =-<<,所以{}2,4M N =.故选:A. 16.D【分析】根据{}1,0,1A =-求解{},B a b a A b A =+∈∈即可【详解】由题,当a A b A ∈∈,时a b +最小为()()112-+-=-,最大为112+=,且可得()101,000,011-+=-+=+=,故集合B ={}2,1,0,1,2--故选:D 17.B【分析】求()()A B A B 得解.【详解】解:图中阴影部分所表示的集合为()(){1,1,3,4}A B AB =-.故选:B 18.D【分析】由集合中元素确定性得到:1a =-,2a =或3a =-,通过检验,排除掉1a =-. 【详解】由集合中元素的确定性知224a a -+=或14a -=. 当224a a -+=时,1a =-或2a =;当14a -=时,3a =-.当1a =-时,{}2,4,2A =不满足集合中元素的互异性,故1a =-舍去; 当2a =时,{}2,4,1A =-满足集合中元素的互异性,故2a =满足要求; 当3a =-时,{}2,14,4A =满足集合中元素的互异性,故3a =-满足要求. 综上,2a =或3a =-. 故选:D . 19.C【解析】先用列举法写出集合A ,再写出其真子集即可. 【详解】解:△141,2,3{|}{}A x N x =∈≤<=,{|1}4A x N x ∴=∈≤<的真子集为:{}{}{},,,,{}1231,21,{},,3{}2,3∅共7个.故选:C . 20.B【分析】根据交集、补集的定义可求()U A B ⋂. 【详解】由题设可得{}U1,5,6B =,故(){}U 1,6A B ⋂=,故选:B. 21.D【分析】根据集合元素的互异性即可判断.【详解】由题可知,集合{},,M a b c =中的元素是ABC 的三边长, 则a b c ≠≠,所以ABC 一定不是等腰三角形. 故选:D . 22.B【分析】首先化简集合A ,再根据补集的运算得到RA ,再根据交集的运算即可得出答案.【详解】因为20(2,4)4x A xx ⎧⎫+=<=-⎨⎬-⎩⎭, 所以{R|2A x x =≤-或}4x ≥.所以(){}R 4,5A B = 故选:B. 23.B【分析】利用交集的定义可求A B ⋂. 【详解】由题设有{}2,3A B ⋂=, 故选:B . 24.B【分析】根据交集与补集的定义可得结果. 【详解】由题意可知,()U A B ∩表示区域II. 故选:B. 25.D【分析】由题中条件可得22m =或24m =,解方程即可.【详解】因为{}21,A m =,{}2,4B =,{}1,2,4A B ⋃=,所以22m =或24m =,解得m =2m =±,所以实数m 的取值集合为{2,2,-. 故选:D. 26.B【分析】根据真子集的定义即可求解.【详解】由题意可知,集合A 的非空真子集为{0},{1},{2},{0,1},{0,2},{1,2},共6个. 故选:B. 27.C【分析】根据交集的定义求解即可【详解】由题,{}|23A B x x =≤< 故选:C 28.B【分析】根据交集定义运算即可【详解】因为1{|04},{|5}3M x x N x x =<<=≤≤,所以1|43M N x x ⎧⎫⋂=≤<⎨⎬⎩⎭,故选:B.【点睛】本题考查集合的运算,属基础题,在高考中要求不高,掌握集合的交并补的基本概念即可求解. 29.B【分析】由*,,,N N Q R 分别表示的数集,对选项逐一判断即可. 【详解】1-不属于自然数,故A 错误;0不属于正整数,故B 正确;C 错误;25属于实数,故D 错误. 故选:B. 30.C【分析】由两集合相等,其元素完全一样,则可求出=0,=0x y 或1,0x y ==或1124x y ==,,再利用集合中元素的互异性可知1124x y ==,,则可求出答案.【详解】若A B =,则22x x y y ⎧=⎨=⎩或22x y y x =⎧⎨=⎩,解得00x y =⎧⎨=⎩或10x y =⎧⎨=⎩或1214x y ⎧=⎪⎪⎨⎪=⎪⎩, 由集合中元素的互异性,得1214x y ⎧=⎪⎪⎨⎪=⎪⎩,则111244x y -=-=, 故选:C . 31.C【分析】根据交集并集的定义即可求出.【详解】{}{}{}1,0,11,3,5,0,2,4A B C =-==,,{}1A B ∴⋂=,{}()0,1,2,4A B C ⋂⋃=∴. 故选:C. 32.B【分析】根据并集运算,结合集合的元素种类数,求得a 的值. 【详解】由{}2,1,0,4,16A B ⋃=--知,24416a a ⎧=⎨=⎩,解得2a =± 故选:B 33.A【分析】根据集合的交集运算即可解出.【详解】因为{}2,1,0,1,2A =--,502B xx ⎧⎫=≤<⎨⎬⎩⎭∣,所以{}0,1,2A B =. 故选:A. 34.D【分析】由题可得集合A 可以是{}1,2,{}1,2,3. 【详解】{1,2}{1,2,3}A ⊆⊆, ∴集合A 可以是{}1,2,{}1,2,3.故选:D. 35.C【分析】按集合M 是是空集和不是空集求出a 的范围,再求其并集而得解. 【详解】因M N ⊆,而N φ⊆,所以M φ=时,即21a a ≤-,则13a ≤,此时M φ≠时,M N ⊆,则1123110242a a a a a a a ⎧>⎪-<⎧⎪⎪-≥⇒≤⎨⎨⎪⎪≤≤⎩⎪⎩,无解,综上得13a ≤,即实数a 的取值范围是1(,]3-∞.36.C【分析】用特殊值,根据四则运算检验.【详解】若3,1a b ==,则4a b +=P ∉,2a b P -=∉,13b P a =∉,因此排除ABD . 故选:C .37.B【分析】分B =∅与B ≠∅两种情况讨论,分别求出参数的取值范围,最后取并集即可;【详解】解:△B A ⊆,△△当B =∅时,即20ax +≤无解,此时0a =,满足题意.△当B ≠∅时,即20ax +≤有解,当0a >时,可得2x a ≤-, 要使B A ⊆,则需要021a a>⎧⎪⎨-<-⎪⎩,解得02a <<. 当a<0时,可得2x a ≥-,要使B A ⊆,则需要021a a<⎧⎪⎨-≥⎪⎩,解得20a -≤<, 综上,实数a 的取值范围是[)2,2-.故选:B .38.B【分析】由集合并集的定义可得选项.【详解】解:由集合并集的定义可得A △B ={x |-1<x ≤2},故选:B.39.D【分析】利用补集的定义可得正确的选项.【详解】由补集定义可知:{|32U A x x =-<≤-或13}x <<,即(3,2](1,3)U A =--,故选:D .40.D【分析】利用并集的定义可得正确的选项.【详解】{}1,2,4,6A B =,41.C【分析】通过对集合N 的化简即可判定出集合关系,得到结果. 【详解】因为集合{}21,M x x k k ==+∈Z , 集合{}(){}43,2211,N y y k k y y k k ==+∈==++∈Z Z ,因为x ∈N 时,x M ∈成立, 所以{}21,M N x x k k ⋃==+∈Z .故选:C.42.B【分析】根据交集运算得集合P ,再根据集合P 中的元素个数,确定其真子集个数即可.【详解】解:{1,0,1,2,3,4},{1,3,5}M N =-= {}13P ∴=,,P 的真子集是{}1,{3},∅共3个.故选:B.43.B【分析】由题意首先求得集合A ,B ,然后结合交集的结果得到关于a 的方程,求解方程即可确定实数a 的值.【详解】求解二次不等式240x -≤可得:{}2|2A x x -=≤≤,求解一次不等式20x a +≤可得:|2a B x x ⎧⎫=≤-⎨⎬⎩⎭. 由于{}|21A B x x ⋂=-≤≤,故:12a -=,解得:2a =-. 故选:B. 【点睛】本题主要考查交集的运算,不等式的解法等知识,意在考查学生的转化能力和计算求解能力.44.B【分析】对集合,,M N P 中的元素通项进行通分,注意32n -与31p +都是表示同一类数,65m -表示的数的集合是前者表示的数的集合的子集,即可得到结果.【详解】对于集合5==,Z 6M x x m m -∈⎧⎫⎨⎬⎩⎭,()611565666m m x m -+-=-==, 对于集合1==,Z 23n N x x n -∈⎧⎫⎨⎬⎩⎭,()3111322366n n n x -+-=-==, 对于集合1==+,Z 26p P x x p ∈⎧⎫⎨⎬⎩⎭,131266p p x +=+=, 由于集合,,M N P 中元素的分母一样,只需要比较其分子即可,且,,m n p ∈Z ,注意到()311n -+与31p +表示的数都是3的倍数加1,()611m -+表示的数是6的倍数加1, 所以()611m -+表示的数的集合是前者表示的数的集合的子集,所以M N P ⊆=.故选:B.45.C【分析】先 根据题意求出集合T ,然后根据并集的概念即可求出结果.【详解】{{}|0,1,2S x N x =∈≤=,而{}1S T ⋂=,所以1T ∈,则21a =,所以{}{}22|1,1T x R x a =∈==-,则{}1,0,1,2S T ⋃=- 故选:C.46.C【分析】根据集合的新定义确定集合中的元素.【详解】因为2{|,,}A B x x a b a A b B ⊗==-∈∈,{}1,0A =-,{}1,2B =,所以{0,1,2}A B ⊗=--,故集合A B ⊗中的元素个数为3,故选:C.47.D【分析】根据集合的交运算即可求解. 【详解】由{}=Z 04B x x ∈≤≤得{}0,1,=2,3,4B ,所以{}0,1A B =,故选:D48.A【分析】先求U N ,再求U M N 的值. 【详解】因为{1U N x x =<-或1}x >,所以{1U M C N x x ⋂=<-或12}x <≤.故选:A.49.C 【分析】由列举法列出集合B 的所有元素,即可判断;【详解】解:因为{}0,1,2A =,a A b A ∈∈,,所以0ab =或1ab =或2ab =或4ab =, 故{}{},0,1,2,4B ab a A b A =∈∈=,即集合B 中含有4个元素;故选:C50.C【分析】首先进行补集运算,然后进行交集运算即可求得集合的运算结果.【详解】由题意结合补集的定义可知:{}U 2,1,1B =--,则(){}U 1,1AB =-.故选:C.【点睛】本题主要考查补集运算,交集运算,属于基础题.51.(1)(){}|710R A B x x ⋂=<<;{()3R A B x x ⋃=<或}10x ≥;(2){}|1m m ≥;【分析】(1)求解一元二次不等式,得集合B ,然后根据集合的交并补集的定义计算即可;(2)由A C A ⋃=,可得C A ⊆,然后分别讨论集合C φ=与C φ≠两种情况.【详解】(1)求解得集合{}{}2|14400|410B x x x x x =-+<=<<,所以{3R A x x =<或}7x >, 所以(){}|710R A B x x ⋂=<<,{()3R A B x x ⋃=<或}10x ≥;(2)因为A C A ⋃=,所以C A ⊆.当集合C =∅时,214m m +>+,得3m >;当集合C ≠∅时,21421347m m m m +≤+⎧⎪+≥⎨⎪+≤⎩,得13m ≤≤, 综上,m 的取值范围为{}|1m m ≥.52.{}37x x ≤<;{2x x ≤或10}x ≥.【分析】由结合的交并补运算求解即可.【详解】因为集合{}37A x x =≤<,{}210B x x =<<,所以A B ⋂{}37x x =≤<.因为A B ⋃={}210x x <<,所以(){2R A B x x ⋃=≤或10}x ≥.53.(1)3 (2){23a a ≤或}4a ≥【分析】(1)根据交集结果直接判断即可.(2)按B =∅,B ≠∅讨论,简单计算即可得到结果.(1) 因为{}34A B x x ⋂=<<,所以3a =.(2)因为A B ⋂=∅,所以可分两种情况讨论:B =∅,B ≠∅.当B =∅时,有3a a ≥,解得0a ≤;当B ≠∅时,有0432a a a >⎧⎨≥≤⎩或,解得4a ≥或203a <≤. 综上,实数a 的取值范围是{23a a ≤或}4a ≥.54.(1){0411---,, (2)}{a a a ≤-=11或.【分析】(1)利用一元二次方程的公式及集合的并集的定义即可求解.(2)利用子集的定义及一二次方程的根的情况即可求解.(1)由240x x +=,解得0x =或4x =-, }{,A =-40 .当0a =时,得x x -+2210=,解得1x =-x =1-{11B =--;△{0411A B =---,,. (2)由(1)知,}{,A =-40,B A ⊆,于是可分为以下几种情况.当A B =时,}{,B =-40,此时方程()x a x a =222110+++-有两根为0,4-,则()()()a a a a ⎧∆=+⎪=⎨⎪-+=-⎩-->2224141010214-,解得1a =. 当B A ≠时,又可分为两种情况.当B ≠∅时,即{}0B =或{}B -4=, 当{}0B =时,此时方程()x a x a =222110+++-有且只有一个根为0,则22241410(0)()1a a a --⎧∆=+⎨-==⎩,解得1a =-, 当{}B -4=时,此时方程()x a x a =222110+++-有且只有一个根为4-,则 ()2222414104()()()8110a a a a ⎧∆=+⎪⎨-=--=-⎪⎩++-,此时方程组无解, 当B =∅时,此时方程()x a x a =222110+++-无实数根,则2241410()()a a --∆+<=,解得1a <-.综上所述,实数a 的取值为}{a a a ≤-=11或. 55.(1){}0,246810,,,,; (2){}212--,, (3)(){}12,【分析】(1)根据偶数的定义即可列举所有的偶数,(2)求出方程的根,即可写出集合,(3)联立方程求交点,进而可求集合.(1)11以内的非负偶数有0,2,4,6,8,10 ,所以构成的集合为{}0,2,4,6,8,10 ,(2)()()2140x x +-=的根为1231,2,2x x x =-==- ,所以所有实数根组成的集合为{}2,1,2-- ,(3)联立1y x =+和2y x =,解得12x y =⎧⎨=⎩ ,所以两个函数图象的交点为(1,2) ,构成的集合为(){}1,2 56.(1){|3,Z}x x k k =∈ (2){}4,R x x x ∈(3)2{|10,R}x x x x ++=∈(4)()2{,|36}x y y x x =-+-(5){|21,15x x n n =-≤≤且*N }n ∈【分析】根据题设中的集合和集合的表示方法,逐项表示,即可求解.(1)解:所有被3整除的整数组成的集合,用描述法可表示为:{|3,Z}x x k k =∈(2)解:不等式235x ->的解集,用描述法可表示为:{}4,R x x x ∈.(3)解:方程210x x ++=的所有实数解组成的集合,用描述法可表示为:2{|10,R}x x x x ++=∈.(4)解:抛物线236y x x =-+-上所有点组成的集合,用描述法可表示为:()2{,|36}x y y x x =-+-.(5)解:集合{}1,3,5,7,9,用描述法可表示为:{|21,15x x n n =-≤≤且*N }n ∈.57.(1){}2,4,6S =,{}0,2T =;(2)证明见解析;(3)1347.【解析】(1)根据题目定义,直接计算集合S 及T ;(2)根据两集合相等即可找到1x ,2x ,3x ,4x 的关系;(3)通过假设A 集合{m ,1m +,2m +,⋯,2020},2020m ,m N ∈,求出相应的S 及T ,通过S T ⋂=∅建立不等关系求出相应的值.【详解】(1)根据题意,由{}1,3A =,则{}2,4,6S =,{}0,2T =;(2)由于集合{}1234,,,A x x x x =,1234x x x x <<<,且T A =,所以T 中也只包含四个元素,即{}2131410,,,T x x x x x x =---,剩下的324321x x x x x x -=-=-,所以1423x x x x +=+;(3)设{}12,,k A a a a =⋅⋅⋅满足题意,其中12k a a a <<⋅⋅⋅<,则11213223122k k k k k k a a a a a a a a a a a a a a -<+<+<⋅⋅⋅<+<+<+<⋅⋅⋅<+<,21S k ∴≥-,1121311k a a a a a a a a -<-<-<⋅⋅⋅<-,T k ∴≥,S T ⋂=∅,31S T S T k ⋃=+≥-,S T 中最小的元素为0,最大的元素为2k a ,21k S T a ∴⋃≤+,()*31214041k k a k N ∴-≤+≤∈,1347k ≤,实际上当{}674,675,676,,2020A =⋅⋅⋅时满足题意,证明如下:设{},1,2,,2020A m m m =++⋅⋅⋅,m N ∈,则{}2,21,22,,4040S m m m =++⋅⋅⋅,{}0,1,2,,2020T m =⋅⋅⋅-,依题意有20202m m -<,即16733m >, 故m 的最小值为674,于是当674m =时,A 中元素最多,即{}674,675,676,,2020A =⋅⋅⋅时满足题意,综上所述,集合A 中元素的个数的最大值是1347.【点睛】新定义题型的特点是:通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的.遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.58.(1){|3R A x x =≥或2}x (2)123A B x x ⎧⎫⋂=-<≤⎨⎬⎩⎭ (3)9a ≥【分析】(1)根据题干条件以及补集的定义可得解;(2)根据题干条件以及交集的定义可得解;(3)根据(1)可得{|3R A x x =≥或2}x ,结合()R B A ⋃=R ,分析即得解 (1) 由题意,{}23A x x =-<<故{|3R A x x =≥或2}x(2)当1a =时,{}131{|}3B x x x x =≤=≤ 故123A B x x ⎧⎫⋂=-<≤⎨⎬⎩⎭ (3)由(1){|3R A x x =≥或2}x{}3{|}3a B x x a x x =≤=≤ 若()R B A ⋃=R ,则33a ≥ 解得9a ≥59.(1)a 32=- ; (2)△,72⎧⎫-⎨⎬⎩⎭,{﹣3} .【分析】(1)由题意知a ﹣2=﹣3或2a 2+5a =﹣3,分类讨论并检验即可求得a 32=-;(2)由真子集的定义直接写出即可.(1)△A ={a ﹣2,2a 2+5a },且﹣3△A ,△a ﹣2=﹣3或2a 2+5a =﹣3,△若a ﹣2=﹣3,a =﹣1,2a 2+5a =﹣3,故不成立,△若2a 2+5a =﹣3,a =﹣1或a 32=-, 由△知a =﹣1不成立,若a 32=-,a ﹣272=-,2a 2+5a =﹣3,成立, 故a 32=-; (2) △732A ⎧⎫=--⎨⎬⎩⎭,, △A 的真子集有∅,72⎧⎫-⎨⎬⎩⎭,{﹣3}. 60.(1)(){}5R A B =;(2)3m <.【分析】(1)根据集合的运算法则计算;(2)由A B A ⋃=得B A ⊆,然后分类B =∅和B ≠∅求解.【详解】(1)当3m =时,B 中不等式为45x ≤≤,即{}|45B x x =≤≤,△{|2R A x x =≤-或5}x ,则(){}5R A B =(2)△A B A ⋃=,△B A ⊆,△当B =∅时,121m m +>-,即2m <,此时B A ⊆;△当B ≠∅时,12112215m m m m +≤+⎧⎪+>-⎨⎪-<⎩,即23m ≤<,此时B A ⊆.综上m 的取值范围为3m <.61.}{1a a ≤.【分析】分类讨论集合中恰有一个元素和恰有两个元素的情况,即可得解.【详解】集合A 中至少有一个元素,即A 中只有一个元素,或A 中有两个元素. 当A 中有一个元素时,0a =,或0,440,a a ≠⎧⎨∆=-=⎩即1a =; 当A 中有两个元素时,由0,440,a a ≠⎧⎨∆=->⎩解得1a <,且0a ≠. 综上,得1a ≤.即实数a 的取值集合为}{1a a ≤.62.2m ≤-或1m ≥-【分析】因为A B A ⋃=,所以B A ⊆,分别讨论B φ=和B φ≠两种情况然后求并集.【详解】解:因为A B A ⋃=,所以B A ⊆,当B φ=时,21m m ≥-,解得:1m ≥-; 当B φ≠时,2113m m m <-⎧⎨-≤-⎩或2121m m m <-⎧⎨≥-⎩解得:2m ≤-或m φ∈ 所以2m ≤-或1m ≥-.63.(1)A ∩B ={y |-1≤y ≤7};(2)A ∩B ={y |-1≤y ≤7};(3)A ∩B ={y |y ≤7};(4)A ∩B ={(3,3),(-1,3)}.【分析】首先根据集合A 与B 的定义,确定集合里面的元素,再根据题目要求去求解.【详解】(1)因为y =x 2-2x =(x -1)2-1≥-1,所以A ={y |y ≥-1},因为y =-x 2+2x +6=-(x -1)2+7≤7,所以B ={y |y ≤7},所以A ∩B ={y |-1≤y ≤7}.(2)由已知得A ={y △Z |y ≥-1},B ={y △Z |y ≤7},所以A ∩B ={-1,0,1,2,3,4,5,6,7}.(3)由已知得A ={x |y =x 2-2x }=R ,B ={y |y ≤7},所以A ∩B ={y |y ≤7}.(4)由22-2-26y x x y x x ⎧=⎨=++⎩,,得x 2-2x -3=0, 解得x =3,或x =-1,所以33x y =⎧⎨=⎩,,或-13x y =⎧⎨=⎩,, 所以A ∩B ={(3,3),(-1,3)}.【点睛】本题主要考查集合的交并补运算,在求解过程中注意是数集还是点集.64.(1)21a b =⎧⎨=⎩(2)32a b =-⎧⎨=⎩【分析】(1)根据题意可得10Δ0a b -+=⎧⎨=⎩,解方程组即可得出答案; (2)易得{}2,1B =--,再根据A B =,列出方程组,解之即可得解.(1)解:若{}1A =,则有210Δ40a b a b -+=⎧⎨=-=⎩,解得21a b =⎧⎨=⎩; (2) 解:{}{}Z 302,1B x x =∈-<<=--,因为A B =,所以42010a b a b ++=⎧⎨++=⎩,解得32a b =-⎧⎨=⎩. 65.(1){}26x x <≤; (2){|2x x ≤或6}x >.【分析】(1)根据集合交集的概念及运算,即可求解;(2)根据补集的运算,求得,U U A B ,再结合集合并集的运算,即可求解.【详解】(1)由题意,集合{}56,{|6A x x B x x =-<≤=≤-或2}x >,根据集合交集的概念及运算,可得{}26A B x x ⋂=<≤.(2)由{},56,{|6U R A x x B x x ==-<≤=≤-或2}x >,可得{|5U A x =≤或6}x >,{|62}U B x x =-<≤,所以()()U U A B {|2x x =≤或6}x >.66.(1)4{|}2x x -≤<;(2)(,3]-∞.【分析】(1)分别求解集合,A B ,再求解()R A B 的值;(2)由条件可知A B ⊆,利用子集关系,分A =∅和A ≠∅列式求解实数a 的取值范围.【详解】解:(1)当3a =时,2{|45},{|3100}{|25}A x x B x x x x x =≤≤=--≤=-≤≤ {|4R A x x ∴=<或5}x >(){|24}R A B x x ∴=-≤<(2)A B B =,A B ∴⊆,△当A =∅时,121,2a a a +>-<即,此时满足A B ⊆;△当A ≠∅时,要使A B ⊆成立,则需满足12112215a a a a +≤-⎧⎪+≥-⎨⎪-≤⎩,23a ∴≤≤综上,实数a 的取值范围是(,3]-∞67.x 的值为32-. 【分析】由已知可得x ﹣2=﹣3或2x 2+5x =﹣3,分别求出x 的值,验证可得结论.【详解】解:当x ﹣2=﹣3时,x =﹣1,此时这三个元素构成的集合为{﹣3,﹣3,12},不满足集合元素的互异性;当2x 2+5x =﹣3时.x 32=-或x =﹣1(舍),此时这三个元素构成的集合为{72-,﹣3,12},满足集合元素的互异性,综上,x 的值为32-. 68.1,2⎡⎫-+∞⎪⎢⎣⎭【分析】根据集合之间的关系,列出相应的不等式组,解不等式组即可求解.【详解】由题意,集合{|21}{|15}A x a x a B x x =<<+=-<<,,因为A B ⊆,若=A ∅,则21a a ≥+,解得1a ≥,符合题意;若A ≠∅,则212115a a a a <+⎧⎪≥-⎨⎪+≤⎩,解得112a -≤<, 所求实数a 的取值范围为1,2⎡⎫-+∞⎪⎢⎣⎭. 69.(1)[]2,3(2)()[),01,-∞⋃+∞【分析】将集合的运算结果转化为集合间的关系,根据集合间的关系画出数轴,然后根据数轴列出关于参数的不等式(组)并求解,特别要注意端点值能否取到求解即可.(1)△A B B ⋃=,△A B ⊆.在数轴上标出集合A ,B ,如图1所示,则由图1可知21514m m +≥⎧⎨+≤⎩,解得23m ≤≤. △实数m 的取值范围为[]2,3.(2)△B C B =,△B C ⊆.当B =∅,即121m m +>+,即0m <时,满足B C ⊆.当B ≠∅,即0m ≥时,在数轴上标出集合B ,C ,若B C ⊆,则有两种情况,如图2、图3所示.由图2可知210m +≤,解得12m ≤-,又0m ≥, △无解;由图3可知12m +≥,解得m 1≥.综上,实数m 的取值范围是()[),01,-∞⋃+∞.70.(1)0a =或1a =;(2)1a ≤;(3)0a =或1a ≥.【分析】根据集合中元素的个数以及方程的解即可确定a 的取值范围.【详解】解:(1)若A 中只有一个元素,则当0a =时,原方程变为210x +=,此时12x =-符合题意, 当0a ≠时,方程2210ax x ++=为一元二次方程,440a ∆=-=,即1a =,故当0a =或1a =时,原方程只有一个解;(2)A 中至少有一个元素,即A 中有一个或两个元素,由0∆>得1a <综合(1)当1a ≤时A 中至少有一个元素;(3)A 中至多有一个元素,即A 中有一个或没有元素当44a 0∆=-<,即1a >时原方程无实数解,结合(1)知当0a =或1a ≥时A 中至多有一个元素.【点睛】关键点点睛:本题解题的关键是理解集合中的元素与方程的根之间的关系. 71.(1){}03A B x x ⋂=≤≤ (2){}01a a ≤≤【分析】(1)解不等式,求出,A B ,进而求出交集;(2)根据条件得到B A ⊆,比较端点,列出不等式组,求出实数a 的取值范围.【详解】(1)321x -≤-≤,解得13x -≤≤,故{}13A x x =-≤≤,当1a =时,{}03B x x =≤≤,所以{}03A B x x ⋂=≤≤;(2)因为A B A ⋃=,所以B A ⊆,因为12a a -<+,所以B ≠∅,所以1123a a -≥-⎧⎨+≤⎩, 解得:01a ≤≤,所以实数a 的取值范围为{}01a a ≤≤72.(1)15m =,15a =;)(2)110,,26⎧⎫⎨⎬⎩⎭【分析】(1)依题意可得3A ∈,3B ∉,即可求出m ,从而求出集合A ,则5∈B ,即可求出a ;(2)首先求出集合A ,依题意可得B A ⊆,对集合B 分类讨论,即可求出参数的取值;【详解】解:(1)因为{}2|80,,{|10,}A x x x m m R B x ax a R =-+=∈=-=∈,且A B A ⋃=.{}3A B =,所以3A ∈,3B ∉,所以23830m -⨯+=解得15m =,所以{}3,5A =,所以5∈B ,所以510a ,解得15a = (2)若12m =,所以{}2,6A =,因为A B A ⋃=,所以B A ⊆当B =∅,则0a =;当{}2B =,则12a =; 当{}6B =,则16a =; 综上可得110,,26a ⎧⎫∈⎨⎬⎩⎭73.(1){|45}A B x x ⋃=-≤≤(2)答案见解析【分析】(1)分别求出集合A 和集合B ,求并集即可;(2)选△,根据集合A 和集合B 的位置在数轴上确定端点的关系,列出不等式组即可求解, 选△,先求出R A ,再根据条件在数轴确定端点位置关系列出不等式组即可求解, 选△,得到A B ⊆,根据数轴端点位置关系列出不等式组即可求解.。
高考试卷分类汇编01----集合与简易逻辑
高考试卷分类汇编集合与简易逻辑一、选择题•(安徽理)集合A -R|y=lgx,x 1, B =「-2, -1,1,2?则下列结论正确的是()•AnB-「-2,—1? •G R A)U B=(」:,0)•A[JB =(0, =)•(e R A)n B・._2,-1解:A m y R y0 ?, 6 A) = { y | y 岂0},又B—-2,-1,1,2}••• (e R A)PlB J—2,-1 ?,选。
.(安徽理文)a :0是方程ax2 2x ^0至少有一个负数根的()•必要不充分条件•充分不必要条件•充分必要条件•既不充分也不必要条件2 1解:当,=2…4a_0,得a_1时方程有根。
<时,X1X2 0,方程有负根,又时,方程根为ax = -1,所以选•(安徽文)若A为位全体正实数的集合,B_-2,-1,1,2?则下列结论正确的是()APl B = :-2,-1 f •G R A) U B =(-〜0)•AUB =(0,二)•(e R A)n^f.-2^1 /解:e R A是全体非正数的集合即负数和,所以(€R A)p]B =「-2,-1•(北京理)已知全集U = R,集合A,x| -2 < x< 3 , B=「x|x :::-1或x - 4,那么集合A「| $B 等于()•'x| -2 < x 4• x | x < 3或x > 4』•「x| -2 < x :-1 • 1x|—1W x < 3?解: U [, ], AR e u B = 'x| -1 < x < 3?•(北京理)“函数f(x)(x・R)存在反函数”是“函数f(x)在R上为增函数”的()•充分而不必要条件•必要而不充分条件•充分必要条件•既不充分也不必要条件解:函数f(x)(x・R)存在反函数,至少还有可能函数f(x)在R上为减函数,充分条件不成立;而必有条件显然成立。
高考集合试题及答案
高考集合试题及答案一、选择题1. 集合A={x|x<10},集合B={x|x>5},求A∩B。
A. {x|x<5}B. {x|x>10}C. {x|5<x<10}D. {x|x>=10}答案:C2. 已知集合C={y|y=x^2, x∈R},求C中所有元素的和。
A. 0B. 无法计算C. 正无穷D. 1答案:B二、填空题1. 集合D={1,2,3},集合E={2,3,4},求D∪E。
答案:{1,2,3,4}2. 若集合F={x|0≤x≤1},求F的补集。
答案:{x|x<0或x>1}三、解答题1. 已知集合G={x|x^2-5x+6=0},求G的所有元素。
解:首先解方程x^2-5x+6=0,分解因式得(x-2)(x-3)=0,所以x=2或x=3。
因此,集合G={2,3}。
2. 集合H={x|-3≤x≤3},求H的子集个数。
解:集合H有7个元素,根据子集个数公式2^n(其中n为集合元素个数),H的子集个数为2^7=128。
四、证明题1. 证明:若A⊆B,则A∪B=B。
证明:根据集合并集的定义,A∪B包含所有属于A或B的元素。
由于A⊆B,A中的所有元素也属于B,所以A∪B中的元素与B中的元素完全相同,即A∪B=B。
2. 证明:若A∩B=∅,则A∪B=A+B。
证明:由于A∩B=∅,说明A和B没有共同元素。
因此,A∪B中的元素要么是A的元素,要么是B的元素,这正是A+B的定义,所以A∪B=A+B。
集合—(2018-2022)高考真题汇编
集合—(2018-2022)高考真题汇编一、单选题(共41题;共205分)1.(5分)(2022·浙江)设集合A={1,2},B={2,4,6},则A∪B=()A.{2}B.{1,2}C.{2,4,6}D.{1,2,4,6}【答案】D【解析】【解答】由并集运算,得A∪B={1,2,4,6}.故答案为:D【分析】利用并集运算求解即可.2.(5分)(2022·新高考Ⅱ卷)已知集合A={−1,1,2,4},B={x||x−1|≤1},则A∩B=()A.{−1,2}B.{1,2}C.{1,4}D.{−1,4}【答案】B【解析】【解答】B={x|0≤x≤2},故A∩B={1,2}.故答案为:B【分析】先求出集合B,再根据交集的概念求A∩B即可.3.(5分)(2022·全国乙卷)集合M={2,4,6,8,10},N={x|−1<x<6},则M∩N=()A.{2,4}B.{2,4,6}C.{2,4,6,8}D.{2,4,6,8,10}【答案】A【解析】【解答】因为M={2,4,6,8,10},N={x|−1<x<6},所以M∩N={2,4}. 故选:A【分析】根据集合的交集运算即可求解.4.(5分)(2022·全国甲卷)设全集U={−2,−1,0,1,2,3},集合A={−1,2},B={x∣A.{1,3}B.{0,3}C.{−2,1}D.{−2,0}【答案】D【解析】【解答】解:由题意得,B={x∣x2−4x+3=0}={1,3},所以A∪B={-1,1,2,3} ,所以∁U(A∪B)={−2,0}.故选:D【分析】先求解方程求出集合B,再由集合的并集、补集运算即可得解.5.(5分)(2022·全国甲卷)设集合A={−2,−1,0,1,2},B={x∣0⩽x<52},则A∩B=()A.{0,1,2}B.{−2,−1,0}C.{0,1}D.{1,2}【答案】A【解析】【解答】解:∵A={−2,−1,0,1,2},B={x∣0⩽x<52},∴A∩B={0,1,2}.故选:A【分析】根据集合的交集运算即可解出.6.(5分)(2022·全国乙卷)设全集U={1,2,3,4,5},集合M满足∁U M={1,3},则()A.2∈M B.3∈M C.4∉M D.5∉M【答案】A【解析】【解答】易知M={2,4,5},对比选项即可判断,A正确.故选:A【分析】先写出集合M,即可判断.7.(5分)(2022·北京)已知全集U={x|−3<x<3},集合A={x|−2<x≤1},则C U A=()A.(−2,1]B.(−3,−2)∪[1,3)C.[−2,1)D.(−3,−2]∪(1,3)【解析】【解答】根据题意可得:C U A=(−3,−2]∪(1,3)故答案为:D【分析】直接根据补集的概念计算即可.8.(5分)(2022·新高考Ⅱ卷)若集合M={x∣√x<4},N={x∣3x⩾1},则M∩N=()A.{x∣0≤x<2}B.{x∣13≤x<2}C.{x∣3≤x<16}D.{x∣13≤x<16}【答案】D【解析】【解答】解:由题意得,M={x|0≤x<16},N={x|x≥13},则M∩N= {x∣13≤x<16},故选:D【分析】先由不等式的解法求得集合M,N,再根据交集的运算求得答案.9.(5分)(2021·北京)已知集合A={x|−1<x<1},B={x|0≤x≤2},则A∪B=()A.(−1,2)B.(−1,2]C.[0,1)D.[0,1]【答案】B【解析】【解答】解:根据并集的定义易得A∪B={x|−1<x≤2},故答案为:B【分析】根据并集的定义直接求解即可.10.(5分)(2021·浙江)设集合A={x|x≥1},B={x|−1<x<2},则A∩B=()A.{x|x>−1}B.{x|x≥1}C.{x|−1<x<1}D.{x|1≤x<2}【答案】D【解析】【解答】因为A={x|x≥1},B={x|−1<x<2},所以A∩B={x|1≤x<2}.故答案为:D.【分析】利用数轴,求不等式表示的集合的交集。
专题01 集合-2013-2022十年全国高考数学真题分类汇编(文科,全国通用版)(解析版)
2013-2022十年全国高考数学真题分类汇编专题01 集合一、选择题1.(2022年全国高考甲卷(文)·第1题)设集合5{2,1,0,1,2},02A B xx ⎧⎫=--=≤<⎨⎬⎩⎭∣,则A B =( )A .{}0,1,2B .{2,1,0}--C .{0,1}D .{1,2}【答案】A【解析】因为{}2,1,0,1,2A =--,502B xx ⎧⎫=≤<⎨⎬⎩⎭∣,所以{}0,1,2A B =.故选:A .【题目栏目】集合\集合的基本运算【题目来源】2022年全国高考甲卷(文)·第1题2.(2022年高考全国乙卷(文)·第1题)集合{}{}2,4,6,8,10,16M N x x ==-<<,则M N =( )A .{2,4}B .{2,4,6}C .{2,4,6,8}D .{2,4,6,8,10}【答案】A解析:因为{}2,4,6,8,10M =,{}|16N x x =-<<,所以{}2,4M N =.故选:A .【题目栏目】集合\集合的基本运算【题目来源】2022年高考全国乙卷(文)·第1题3.(2022新高考全国II 卷·第1题)已知集合{}{}1,1,2,4,11A B x x =-=-≤,则AB =( )A .{1,2}-B .{1,2}C .{1,4}D .{1,4}-【答案】B解析: {}|02B x x =≤≤,故{}1,2AB =. 故选 B .【题目栏目】集合\集合的基本运算【题目来源】2022新高考全国II 卷·第1题4.(2022新高考全国I 卷·第1题)若集合{4},{31}M x x N x x =<=≥∣∣,则M N =( )A .{}02x x ≤<B .123xx ⎧⎫≤<⎨⎬⎩⎭C .{}316x x ≤<D .1163xx ⎧⎫≤<⎨⎬⎩⎭【答案】D解析:1{16},{}3M x x N x x =≤<=≥∣0∣,故1163MN x x ⎧⎫=≤<⎨⎬⎩⎭, 故选:D【题目栏目】集合\集合的基本运算【题目来源】2022新高考全国I 卷·第1题5.(2021年新高考全国Ⅱ卷·第2题)设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()UAB =( )A .{3}B .{1,6}C .{5,6}D .{1,3}【答案】B解析:由题设可得{}U1,5,6B =,故(){}U 1,6A B⋂=,故选B .【题目栏目】集合\集合的基本运算【题目来源】2021年新高考全国Ⅱ卷·第2题6.(2021年新高考Ⅱ卷·第1题)设集合{}24A x x =-<<,{}2,3,4,5B =,则AB =( )A .{}2B .{}2,3C .{}3,4D .{}2,3,4【答案】B解析:由题设有{}2,3A B ⋂=,故选B .【题目栏目】集合\集合的基本运算【题目来源】2021年新高考Ⅱ卷·第1题7.(2020年新高考I 卷(山东卷)·第1题)设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =( )A .{x |2<x ≤3}B .{x |2≤x ≤3}C .{x |1≤x <4}D .{x |1<x <4}【答案】C解析:[1,3](2,4)[1,4)A B ==故选:C【题目栏目】集合\集合的基本运算【题目来源】2020年新高考I 卷(山东卷)·第1题 8.(2020新高考II 卷(海南卷)·第1题)设集合A={2,3,5,7},B ={1,2,3,5,8},则AB=( )A .{1,3,5,7}B .{2,3}C .{2,3,5}D .{1,2,3,5,7,8} 【答案】C解析:因为{2,3,5,7},{1,2,3,5,8}A B == ,所以{2,3,5}A B = ,故选:C【题目栏目】集合\集合的基本运算【题目来源】2020新高考II 卷(海南卷)·第1题9.(2021年高考全国甲卷文科·第1题)设集合{}{}1,3,5,7,9,27M N x x ==>,则M N =( )A .{}7,9B .{}5,7,9C .{}3,5,7,9D .{}1,3,5,7,9【答案】B解析:7,2N ⎛⎫=+∞ ⎪⎝⎭,故{}5,7,9M N ⋂=, 故选:B .【题目栏目】集合\集合的基本运算【题目来源】2021年高考全国甲卷文科·第1题10.(2021年全国高考乙卷文科·第1题)已知全集{}1,2,3,4,5U =,集合{}{}1,2,3,4M N ==,则()U M N ⋃=( )A .{}5B .{}1,2C .{}3,4D .{}1,2,3,4【答案】A解析:由题意可得:{}1,2,3,4M N =,则(){}5UM N =.故选:A .【题目栏目】集合\集合的基本运算【题目来源】2021年全国高考乙卷文科·第1题 11.(2020年高考数学课标Ⅱ卷文科·第1题)已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B =( )A .{4,1}-B .{1,5}C .{3,5}D .{1,3}【答案】D【解析】由2340x x --<解得14x -<<, 所以{}|14A x x =-<<, 又因为{}4,1,3,5B =-,所以{}1,3A B =,故选:D .【点睛】本题考查的是有关集合的问题,涉及到的知识点有利用一元二次不等式的解法求集合,集合的交运算,属于基础题目.【题目栏目】集合\集合的基本运算【题目来源】2020年高考数学课标Ⅱ卷文科·第1题 12.(2020年高考数学课标Ⅱ卷文科·第1题)已知集合A ={x ||x |<3,x ∈Z },B ={x ||x |>1,x ∈Z },则A ∩B =( ) A .∅ B .{–3,–2,2,3)C .{–2,0,2}D .{–2,2}【答案】D【解析】因为{}{}3,2,1,0,1,2A x x x Z =<∈=--,{}{1,1B x x x Z x x =>∈=>或}1,x x Z <-∈,所以{}2,2AB =-.故选:D .【点睛】本题考查绝对值不等式的解法,考查集合交集的定义,属于基础题. 【题目栏目】集合\集合的基本运算【题目来源】2020年高考数学课标Ⅱ卷文科·第1题13.(2020年高考数学课标Ⅱ卷文科·第1题)已知集合{}1235711A =,,,,,,{}315|B x x =<<,则A ∩B 中元素的个数为( ) A .2 B .3 C .4 D .5【答案】B【解析】由题意,{5,7,11}A B ⋂=,故A B 中元素的个数为3.故选:B【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题. 【题目栏目】集合\集合的基本运算【题目来源】2020年高考数学课标Ⅱ卷文科·第1题14.(2019年高考数学课标Ⅱ卷文科·第1题)已知集合{|1012}A x =-,,,,2{|1}B x x =≤,则A ∩B =( )A .{1,0,1}-B .{0,1}C .{1,1}-D .{0,1,2}【答案】A【解析】因为{1A =-,0,1,2},2{|1}{|11}B x x x x ==-,所以{1,0,1}A B =-,故选:A .【题目栏目】集合\集合的基本运算【题目来源】2019年高考数学课标Ⅱ卷文科·第1题15.(2019年高考数学课标Ⅱ卷文科·第1题)已知集合={|1}A x x >-,{|2}B x x =<,则A B =( )A .()1,-+∞B .(),2-∞C .()1,2-D .φ【答案】C【解析】由题知,{}{}|1|2(1,2)AB x x x x =>-<=-,故选C .【点评】本题主要考查交集运算,容易题,注重了基础知识、基本计算能力的考查.易错点是理解集合的概念及交集概念有误,不能借助数轴解题. 【题目栏目】集合\集合的基本运算【题目来源】2019年高考数学课标Ⅱ卷文科·第1题16.(2019年高考数学课标Ⅱ卷文科·第2题)已知集合{}1,2,3,4,5,6,7U =,{}2,3,4,5A =,{}2,3,6,7B =,则UBA =()( )A .{}1,6B .{}1,7C .{}6,7D .{}1,6,7【答案】C【解析】 }7,6,5,4,3,2,1{=U ,5}43{2,,,=A ,则7}6{1,,=A C U 又 7}63{2,,,=B ,则7}{6,=A C B U . 【题目栏目】集合\集合的基本运算【题目来源】2019年高考数学课标Ⅱ卷文科·第2题17.(2018年高考数学课标Ⅱ卷文科·第1题)已知集合{}|10A x x =-≥,{}012,,B =,则A B =( )A .{}0B .{}1C .{}12,D .{}012,, 【答案】C解析:{}{}|10|1A x x x x =-=≥≥,{}0,1,2B =,故{}1,2A B =.故选C .【题目栏目】集合\集合的基本运算【题目来源】2018年高考数学课标Ⅱ卷文科·第1题 18.(2018年高考数学课标Ⅱ卷文科·第2题)已知集合{}1,3,5,7A =,{}2,3,4,5B =,则A B =( ) A .{}3 B .{}5C .{}3,5D .{}1,2,3,4,5,7【答案】C解析:∵集合{}{}1,3,5,7,2,3,4,5A B ==,∴{}3,5AB =.故选C .【题目栏目】集合\集合的基本运算【题目来源】2018年高考数学课标Ⅱ卷文科·第2题19.(2018年高考数学课标Ⅱ卷文科·第1题)已知集合{0,2}A =,{2,1,0,1,2}B =--,则A B =( )A .{0,2}B .{1,2}C .{0}D .{2,1,0,1,2}--【答案】A解析:因为{0,2}A =,{2,1,0,1,2}B =--,则{0,2}A B =. 【题目栏目】集合\集合的基本运算【题目来源】2018年高考数学课标Ⅱ卷文科·第1题 20.(2017年高考数学课标Ⅱ卷文科·第1题)已知集合,则中元素的个数为( )A .1B .2C .3D .4【答案】 【解析】由题意可得: ,中元素的个数为2,所以选.【考点】集合运算【点评】集合的基本运算的关注点(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn 图. 【题目栏目】集合\集合的基本运算【题目来源】2017年高考数学课标Ⅱ卷文科·第1题21.(2017年高考数学课标Ⅱ卷文科·第1题)设集合A=,B=,则=( )1,2,3,42,4,6,8AB ,A B B {}2,4AB =A B B {}123,,{}234,,A BA .B .C .D . 【答案】 A【解析】由题意得.故选A .【考点】集合并集的运算.【点评】掌握集合的基本运算即可. 【题目栏目】集合\集合的基本运算【题目来源】2017年高考数学课标Ⅱ卷文科·第1题22.(2017年高考数学课标Ⅱ卷文科·第1题)已知集合,,则( ) A .B .C .D .【答案】 A【解析】由得,所以,故选A【考点】集合运算【点评】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理【题目栏目】集合\集合的基本运算【题目来源】2017年高考数学课标Ⅱ卷文科·第1题23.(2016年高考数学课标Ⅱ卷文科·第1题)设集合{0,2,4,6,8,10},{4,8}A B ==,则AB =( )A .{48},B .{026},,C .{02610},,,D .{0246810},,,,, 【答案】C 【解析】根据补集的定义,从集合{0,2,4,6,8,10}A =中去掉集合B 中的元素4,8,剩下的四个元素为0,2,6,10,故{0,2,6,10}AC B =,故选C .【题目栏目】集合\集合的基本运算【题目来源】2016年高考数学课标Ⅱ卷文科·第1题24.(2016年高考数学课标Ⅱ卷文科·第1题)已知集合{123}A =,,,2{|9}B x x =<,则A B =( ).A .{210123}--,,,,,B .{21012}--,,,,C .{123},,D .{12},【答案】D 【解析】由29x <得,33x -<<,所以{|33}B x x =-<<,所以{1,2}A B =.【题目栏目】集合\集合的基本运算【题目来源】2016年高考数学课标Ⅱ卷文科·第1题25.(2016年高考数学课标Ⅱ卷文科·第1题)设集合{1,3,5,7}A =,{|25}B x x =≤≤,则A B =( ) A .{}1,3 B .{}3,5C .{}5,7D .{}1,7【答案】B 【解析】集合A 与集合B 公共元素有3,5,故{3,5}A B =,选B .【题目栏目】集合\集合的基本运算【题目来源】2016年高考数学课标Ⅱ卷文科·第1题26.(2015年高考数学课标Ⅱ卷文科·第1题)已知集合{}|12A x x =-<<,{}123,4,,{}123,,{}23,4,{}13,4,{}1,2,3,4AB ={}2A x x =<{}320B x x =->3=2AB x x ⎧⎫<⎨⎬⎩⎭A B =∅3=2A B x x ⎧⎫<⎨⎬⎩⎭=A B R 320x ->32x <33{|2}||22A B x x x x x x ⎧⎫⎧⎫=<<=<⎨⎬⎨⎬⎩⎭⎩⎭{}|03B x x =<<,则A B =( )A .()1,3-B .()1,0-C .()0,2D .()2,3【答案】A 解析:因为{}|12A x x =-<<,{}|03B x x =<<,所以{}|13.A B x x =-<<故选A .考点:本题主要考查不等式基础知识及集合的交集运算. 【题目栏目】集合\集合的基本运算【题目来源】2015年高考数学课标Ⅱ卷文科·第1题27.(2015年高考数学课标Ⅱ卷文科·第1题)已知集合{32,},{6,8,10,12,14}A x x n n B ==+∈=N ,则集合A B 中的元素个数为( )A .5B .4C .3D .2 【答案】D分析:由条件知,当n=2时,3n+2=8,当n=4时,3n+2=14,故A∩B={8,14},故选D . 考点:集合运算【题目栏目】集合\集合的基本运算【题目来源】2015年高考数学课标Ⅱ卷文科·第1题28.(2014年高考数学课标Ⅱ卷文科·第1题)已知集合A={-2,0,2},B={x |220x x --=},则A B =( )A.∅B.{2}C.{0}D.{-2} 【答案】B解析:∵B={x |220x x --=}={-1,2},∴A B ={2}.∴选B . 考点:集合的运算 难度:A备注:常考题.【题目栏目】集合\集合的基本运算【题目来源】2014年高考数学课标Ⅱ卷文科·第1题 29.(2014年高考数学课标Ⅱ卷文科·第1题)已知集合M ={|13}x x -<<,N ={|21}x x -<<,则M ∩N =( ) A .(-2,1)B .(-1,1)C .(1,3)D .(-2,3)【答案】B解析: 在数轴上表示出对应的集合,可得()1,1MN =- ,选B考点:1.集合的基本运算。
高考数学《集合》专项练习(选择题含答案)(汇编)
《集合》专项练习参考答案1.(2016全国Ⅰ卷,文1,5分)设集合,,则A ∩B =( ) (A ){1,3} (B ){3,5} (C ){5,7} (D ){1,7}【解析】集合A 与集合B 的公共元素有3,5,故}5,3{=B A ,故选B .2.(2016全国Ⅱ卷,文1,5分)已知集合,则A ∩B =( ) (A ) (B ) (C ) (D ) 【解析】由29x <得33x -<<,所以{|33}B x x =-<<,因为{1,2,3}A =,所以{1,2}A B =,故选D .3.(2016全国Ⅲ卷,文1,5分)设集合{0,2,4,6,8,10},{4,8}A B ==,则A B =( )(A ){48}, (B ){026},, (C ){02610},,, (D ){0246810},,,,, 【解析】由补集的概念,得{0,2,6,10}AB =,故选C .4.(2016全国Ⅰ卷,理1,5分)设集合,, 则A ∩B =( ) (A ) (B ) (C ) (D )【解析】对于集合A :解方程x 2-4x +3=0得,x 1=1,x 2=3,所以A ={x |1<x <3}(大于取两边,小于取中间).对于集合B :2x -3>0,解得x >23.3{|3}2A B x x ∴=<<.选D .5.2016全国Ⅱ卷,理1,5分)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是( )(A )(31)-, (B )(13)-,(C )(1,)∞+(D )(3)∞--, 【解析】要使复数z 对应的点在第四象限,应满足3010m m +>⎧⎨-<⎩,解得31m -<<,故选A .6.(2016全国Ⅲ卷,理1,5分)设集合{}{}(x 2)(x 3)0,T 0S x x x =--≥=>,则S ∩T =( )(A) [2,3] (B)(-∞ ,2] [3,+∞)(C) [3,+∞) (D)(0,2] [3,+∞)7.(2016北京,文1,5分)已知集合{|24},{|3>5}A x x B x x x =<<=<或,则A B =( ) (A ){|2<<5}x x (B ){|<45}x x x >或 (C ){|2<<3}x x (D ){|<25}x x x >或【解析】画数轴得,,所以,故选C .8.(2016北京,理1,5分)已知集合,,则( ) (A )(B )(C )(D )【解析一】对于集合A :(解绝对值不等的常用方法是两边同时平方)|x |<2,两边同时平方{1,3,5,7}A ={|25}B x x =≤≤{123}A =,,,2{|9}B x x =<{210123}--,,,,,{21012}--,,,,{123},,{12},2{|430}A x x x =-+<{|230}B x x =->3(3,)2--3(3,)2-3(1,)23(,3)2(2,3)AB ={|||2}A x x =<{1,0,1,2,3}B =-A B ={0,1}{0,1,2}{1,0,1}-{1,0,1,2}-得x 2<4,解方程x 2=4得,x 1=-2,x 2=2,所以A ={x |-2<x <2}(大于取两边,小于取中间).所以A ∩B ={-1,0,1}.故选C .【解析二】对于集合A :(绝对值不等式解法二:|x |<2⇔-2<x <2).A ={x |-2<x <2}.所以A ∩B ={-1,0,1}.故选C . 9.(2016上海,文理1,5分)设x ∈R ,则不等式31x -<的解集为_______. 【答案】(24),【解析】试题分析:421311|3|<<⇔<-<-⇔<-x x x ,故不等式1|3|<-x 的解集为)4,2(.【解析一】对不等式31x -<:(解绝对值不等的常用方法是两边同时平方)|x -3|<1,两边同时平方得(x -3)2<1,解方程(x -3)2=1得,x 1=2,x 2=4,所以A ={x |2<x <4}. 【解析二】对于集合A :(绝对值不等式解法二:|x -3|<1⇔-1<x -3<1,解得2<x <4).A ={x |2<x <4}. 10.(2016山东,文1,5分)设集合{1,2,3,4,5,6},{1,3,5},{3,4,5}U A B ===,则()U A B =(A ){2,6} (B ){3,6} (C ){1,3,4,5} (D ){1,2,4,6} 【答案】A11.(2016山东,理2,5分)设集合2{|2,},{|10},x A y y x B x x ==∈=-<R 则A ∪B =( )(A )(1,1)- (B )(0,1) (C )(1,)-+∞ (D )(0,)+∞ 【答案】C【解析】对于集合A :∵y =2x >0,∴A ={y |y >0}.对于集合B :∵x 2-1=0,解得x =±1,∴B ={x |-1<x <1}(大于取两边,小于取中间).∴A ∪B =(1,)-+∞12.(2016四川,文2,5分)设集合A ={x |1≤x ≤5},Z 为整数集,则集合A∩Z 中元素的个数是(A)6 (B)5 (C)4 (D)3 【答案】B【解析】{1,2,3,4,5}A =Z ,由Z 为整数集得Z ={…-3,-2,-1,0,1,2,3…}.故A Z 中元素的个数为5,选B .13.(2016四川,理1,5分)设集合{|22}A x x =-≤≤,Z 为整数集,则A Z 中元素的个数是( )(A )3(B )4(C )5(D )6 【答案】C【解析】由题意,知{2,1,0,1,2}A =--Z ,由Z 为整数集得Z ={…-3,-2,-1,0,1,2,3…}.故AZ 中元素的个数为5,选C .14.(2016天津,文1,5分)已知集合}3,2,1{=A ,},12|{A x x y y B ∈-==,则AB =(A )}3,1{ (B )}2,1{ (C )}3,2{ (D )}3,2,1{【答案】A【解析】∵},12|{A x x y y B ∈-==,∴当x =1时,y =2×1-1=1;当x =2时,y =2×2-1=3;当x =3时,y =2×3-1=5.∴{1,3,5},{1,3}B A B ==.选A .15.(2016天津,理1,5分)已知集合}{4,3,2,1=A ,}{A x x y y B ∈-==,23,则=B A (A )}{1 (B )}{4 (C )}{3,1 (D )}{4,1 【答案】D【解析】∵}{A x x y y B ∈-==,23,∴当x =1时,y =3×1-2=1;当x =2时,y =3×2-2=4;当x =3时,y =3×3-2=7;当x =4时,y =4×3-2=10.∴{14710}{14}B =A B =,,,,,.选D .16.(2016浙江,文1,5分)已知全集U ={1,2,3,4,5,6},集合P ={1,3,5},Q ={1,2,4},则U P Q ()=( ) A .{1} B .{3,5} C .{1,2,4,6} D .{1,2,3,4,5} 【答案】C17.(2016浙江,理1,5分)已知集合P ={x ∈R |1≤x ≤3},Q ={x ∈R |x 2≥4},则P ∪(C R Q )=( )A .[2,3]B .(-2,3]C .[1,2)D .(−∞,−2]∪[1,+∞)【答案】B【解析】对于集合Q :∵x 2=4,解得x =±2,∴B ={x |x ≤-2或x ≥2}(大于取两边,小于取中间). 18.(2016江苏,文理1,5分)已知集合{1,2,3,6},{|23},A B x x =-=-<<则=A B _______. 【答案】{}1,2- 【解析】{}{}{}1,2,3,6231,2AB x x =--<<=-.故答案应填:{}1,2-19.(2015全国Ⅰ卷,文1,5分)已知集合A ={x |x =3n +2,n ∈N},B ={6,8,10,12,14},则集合A∩B 中元素的个数为( ) A .5 B .4 C .3 D .2 【答案】D【解析】由已知得A ={2,5,8,11,14,17,…},又B ={6,8,10,12,14},所以A∩B ={8,14}. 20.(2015全国Ⅱ卷,文1,5分)已知集合A ={x |-1<x <2},B ={x |0<x <3},则A ∪B =( )A .(-1,3)B .(-1,0)C .(0,2)D .(2,3) 【答案】A【解析】因为A =(-1,2),B =(0,3),所以A ∪B =(-1,3),故选A . 21.(2014全国Ⅰ卷,文1,5分)已知集合M ={x |-1<x <3},N ={x |-2<x <1},则M∩N =( )A .(-2,1)B .(-1,1)C .(1,3)D .(-2,3) 【答案】B【解析】M∩N ={x |-1<x <3}∩{x |-2<x <1}={x |-1<x <1}. 22.(2014全国Ⅱ卷,文1,5分)已知集合A ={-2,0,2},B ={x |x 2-x -2=0},则A∩B =( )A .∅B .{2}C .{0}D .{-2}【答案】B【解析】∵集合A ={-2,0,2},B ={x |x 2-x -2=0}={2,-1},∴A∩B ={2},故选B . 23.(2013全国Ⅰ卷,文1,5分)已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A},则A∩B=( )A .{1,4}B .{2,3}C .{9,16}D .{1,2} 【答案】A【解析】∵B ={x |x =n 2,n ∈A}={1,4,9,16},∴A∩B ={1,4},故选A . 24.(2013全国Ⅱ卷,文1,5分)已知集合M ={x |-3<x <1},N ={-3,-2,-1,0,1},则M∩N =( )A .{-2,-1,0,1}B .{-3,-2,-1,0}C .{-2,-1,0}D .{-3,-2,-1} 【答案】C【解析】由题意得M∩N ={-2,-1,0}.选C . 25.(2012全国卷,文1,5分)已知集合A ={x |x 2-x -2<0},B ={x |-1<x <1},则( )(A )A ⊂≠B (B )B ⊂≠A (C )A =B (D )A∩B =∅【答案】B【解析】A ={x |-1<x <2},B ={x |-1<x <1},则B ⊂≠A ,故选B . 26.(2011全国卷,文1,5分)已知集合M ={0,1,2,3,4},N ={1,3,5},P =M∩N ,则P 的子集共有( )A .2个B .4个C .6个D .8个【答案】B【解析】由题意得P =M∩N ={1,3},∴P 的子集为⌀,{1},{3},{1,3},共4个.27.(2010全国卷,文1,5分)已知集合,则 (A )(0,2)(B )[0,2](C )|0,2|(D )|0,1,2|【解析】,,选D28.(2009全国卷,文2,5分)设集合A ={4,5,7,9},B ={3,4,7,8,9},全集,则集合中的元素共有( )(A)3个 (B )4个 (C )5个 (D )6个【解析】,.故选A .29.(2008全国卷,文1,5分)已知集合M ={x |(x +2)(x -1)<0},N ={x |x +1<0},则M∩N =( )A.(-1,1)B.(-2,1)C.(-2,-1)D.(1,2) 【答案】C【解析】易求得{}{}|21,|1=-<<=<-M x x N x x ∴{}|21=-<<-M N x x 30.(2007全国卷,文1,5分)设{|210}S x x =+>,{|350}T x x =-<,则S T ⋂=2,,4,|A x x x R B x x Z =≤∈=∈A B ={}|22,{0,1,2}A x x B =-≤≤={}0,1,2AB =U A B =()UA B {3,4,5,7,8,9}A B ={4,7,9}(){3,5,8}UA B A B =∴=A.∅B.1{|}2x x<C.5{|}3x x>D.15{|}23x x-<<【答案】D.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《集合高考试题汇编》1.已知{(,)|20},{(,)|0}A x y ax y B x y x y b =++>=-+<,M 点的坐标为(1,1),若 ,M A M B ∈∉且,,a b 则应满足A.30a b >->且B.30a b >-<且C.30a b >-≤且D.30a b >-≥且【参考答案】D.2.已知集合,{|21},{|x U R M x N y y ==>==则A.M N N =B.MN N = C.()U M N R = D.(){0}U M N =【参考答案】D. 3.设全集U 是实数集R ,={|20},M x x -≥{|3},N x x =<则()U M N = A.{|23}x x ≤< B.{|2}x x < C.{|2}x x ≤ D.{|3}x x ≥【参考答案】B.4.设集合{|11},{|02}A x x B x x =-<<=<<,则A B =A.(0,1)B.(1,2)-C.(1,2)D.(1,0)-【参考答案】B.5.已知集合{1,2,3},{2,3,4},M N ==则A.M N ⊆B.N M ⊆C.{2,3}M N =D.{1,4}M N =【参考答案】C.6.设集合2{1,0,1},{|},M N x x x =-=≤则M N =A.{0}B.{0,1}C.{1,1}-D.{1,0,1}-【参考答案】B.7.已知集合{|123},{|24},A x x x B x x =<-≤<=-≤<或则_________.A B =【参考答案】(,4)-∞8.若集合{|2},{|}A x x B x x a =≤=≥满足{2},A B =则实数_____.a =【参考答案】29.已知集合{|1},{|},A x x B x x a =≤=≥且,A B R =则实数a 的取值范围是_________.【参考答案】(,2]-∞10.若集合{|1},{|02},A x x B x x =>=<<则_______.A B =【参考答案】(1,2)11.已知集合1{|2},{|0},1A x xB x x =<=>+则_______.A B = 【参考答案】(1,2)-12.若全集,U R =集合{|1}{|0},A x x x x =≥≤则_____.U A =【参考答案】(0,1)13.若集合2{|1},{|4},A x x B x x =≥=≤则_______.A B =【参考答案】[1,2]14.若集合{|210},{|12},A x x B x x =+>=-<则_______.A B = 【参考答案】1(,3)2-15.若集合{1,2,},{2,5}.A k B ==若{1,2,3,5}A B =,则____.k =【参考答案】316.已知集合3{|0},{|3},1x M x N x x x +=<=≤--则集合{|1}x x ≥= A.M N B.M N C.()R C M N D.()R C M N【参考答案】D.17.已知集合{|35},{|55},M x x N x x =-<≤=-<<则M N =A.{|55}x x -<<B.{|35}x x -<<C.{|55}x x -<≤D.{|35}x x -<≤【参考答案】B.18.已知,A B 均为集合{1,3,5,7,9}U =的子集,且{3},(){9},U A B B A ==则A =A.{1,3}B.{3,7,9}C.{3,5,9}D.{3,9}【参考答案】D.19.已知,M N 为集合I 的非空真子集,且,M N 不相等,若,I N M =∅则MN = A.M B.N C.I D.∅【参考答案】A.20.已知全集{0,1,2,3,4,5,6,7,8,9}U =,集合{0,1,3,5,8}A =,集合{2,4,5,6,8}B =,则 ()()U U A B =A.{5,8}B.{7,9}C.{0,1,3}D.{2,4,6}【参考答案】B.21.已知集合4{|0log 1},{|2},A x x B x x =<<=≤则A B =A.(0,1)B.(0,2]C.(1,2)D.(1,2]【参考答案】D.22.已知全集,U R ={|0},{|1},A x x B x x =≤=≥则()U A B =A.{|0}x x ≥B.{|1}x x ≤C.{|01}x x ≤≤D.{|01}x x <<【参考答案】D.23.设集合{|23},{|8},,S x x T x a x a S T R =->=<<+=则a 的取值范围是A.(3,1)--B.[3,1]--C.(,3][1,)-∞--+∞D.(,3)(1,)-∞--+∞【参考答案】A.24.设集合{|1},{|2},A x R x a T x R x b =∈-<=∈->若,A B ⊆则实数,a b 必满足 A.3a b +≤ B.3a b +≥ C.3a b -≤ D.3a b -≥【参考答案】D.25.已知集合1{|349},{|46,(0,)},A x R x x B x R x t t t=∈++-≤=∈=+-∈+∞则 集合_______.A B =【参考答案】[2,5]-26.已知集合{|23},{|()(2)0},A x R x B x R x m x =∈+<=∈--<且(1,),A B n =- 则____,_____.m n ==【参考答案】1,1m n =-=27..已知集合{|2},{|1},A x R x B x R x =∈≤=∈≤则A B =A.(,2]-∞B.[1,2]C.[2,2]-D.[2,1]-【参考答案】D.28.已知全集,U R =集合2{|20},A x x x =->则U A =A.[0,2]B.(0,2)C.(,0)(2,)-∞+∞D.(,0][2,)-∞+∞【参考答案】A.29.若集合{,,,}{1,2,3,4},a b c d =且下列四个关系:①1;a =②1;b ≠③2;c =④4d ≠有且仅有一个是正确的,则符合条件的有序数组(,,,)a b c d 的个数是_____________.【参考答案】630.满足1234{,,,},M a a a a ⊆且12312{,,}{,}M a a a a a =的集合M 的个数是A.1B.2C.3D.4【参考答案】B.31.集合2{0,2,},{1,},A a B a ==若{0,1,2,4,16},A B =则a 的值为A.0B.1C.2D.4【参考答案】D.32.已知全集,U R =集合{|12},M x x =-<则U M =A.{|13}x x -<<B.{|13}x x -≤≤C.{|13}x x x <->或D.{|13}x x x ≤-≥或【参考答案】D.33.设集合2{|60},M x x x =+-<{|13},N x x =≤≤则M N =A.[1,2)B.[1,2]C.(2,3]D.[2,3]【参考答案】A.34.已知全集{0,1,2,3,4}U =,集合{1,2,3}A =,集合{2,4}B =,则()U A B =A.{1,2,4}B.{2,3,4}C.{0,2,4}D.{0,2,3,4}35.已知集合{0,1,2}A =,集合{|,}B x y x A y A =-∈∈中元素的个数是A.1B.3C.5D.9【参考答案】C.36.设集合{|12},A x x =-<集合{|2,[0,2]}x B y y x ==∈,则A B =A.[0,2]B.(1,3)C.[1,3)D.(1,4)【参考答案】C.37.设集合2{|(1)37,},A x x x x R =-<+∈则集合A Z 中有______个元素.【参考答案】638.已知集合2{|log 2},A x x =≤(,)B a =-∞,若,A B ⊆则实数a 的取值范围是(,)c +∞,其中_____.c =【参考答案】439.设集合{1,1,3},A =-2{2,4},{3},B a a A B =++=则实数a 的值为________.【参考答案】140.已知集合{1,1,2,4},A =-{1,0,2},B =-则_____.A B =【参考答案】{1,2}-41.设集合222{(,)|(2),,},2m A x y x y m x y R =≤-+≤∈{(,)|2B x y m x y =≤+≤ 21,m +,}x y R ∈.若,A B ≠∅则实数m 的取值范围是__________.【参考答案】1[,2242.已知集合{1,2,4},A ={2,4,6},B =则_____.A B =【参考答案】{1,2,4,6}43.已知集合{2,1,3,4},A =--{1,2,3},B =-则_____.A B =【参考答案】{1,3}-44.定义集合运算:{|,,}.A B z z xy x A y B *==∈∈设{1,2},{0,2},A B ==则集合A B * 的所有元素之和为A.0B.2C.3D.6【参考答案】C.45.已知全集U A B =中有m 个元素,()()U U A B 中有n 个元素.若A B 非空,则A B 的元素个数为A.mnB.m n +C.n m -D.m n -【参考答案】D.46.若集合{|1,},A x x x R =≤∈2{|,},B y y x x R ==∈则A B =A.{|11}x x -≤≤B.{|0}x x ≥C.{|01}x x ≤≤D.∅【参考答案】C.47.若集合{|1213},A x x =-≤+≤2{|0},x B x x-=≤则A B = A.{|10}x x -≤< B.{|01}x x <≤ C.{|02}x x ≤≤ D.{|01}x x ≤≤【参考答案】B.48.若集合{1,1},A =-{0,2},B =则集合{|,,}z z x y x A y B =+∈∈中的元素个数为A.5B.4C.3D.2【参考答案】C.49.已知全集{1,2,3,4,5}U =,集合2{|320},A x x x =-+={|2,},B x x a a A ==∈则集合()U A B 中元素的个数为 A.1 B.2 C.3 D.4【参考答案】B.50.若不等式20x x -≤的解集为M ,函数()ln(1)f x x =-的定义域为N ,则M N =A.[0,1)B.(0,1)C.[0,1]D.(1,0]-【参考答案】A.51.集合{|12},A x x =-≤≤{|1},B x x =<则()R A B =A.{|1}x x >B.{|1}x x ≥C.{|12}x x <≤D.{|12}x x ≤≤【参考答案】D.52.设集合22{|cos sin ,},M y y x x x R ==-∈1{|N x x i=-<,i x 为虚数单位 },R ∈则M N =A.(0,1)B.(0,1]C.[0,1)D.[0,1]【参考答案】C.53.集合{|lg 0},M x x =>集合2{|4},N x x =≤则M N =A.(1,2)B.[1,2)C.(1,2]D.[1,2]【参考答案】C.54.设全集为,R 函数()f x =M ,则RM =A.[1,1]-B.(1,1)-C.(,1][1,)-∞-+∞D.(,1)(1,)-∞-+∞【参考答案】D.55.设集合{|0,},M x x x R =≥∈2{|1,},N x x x R =<∈则M N =A.[0,1]B.[0,1)C.(0,1]D.(0,1)【参考答案】B.56.已知集合{|23},A x x =-≤≤{|14},B x x x =<->或那么集合()R A B = A.{|24}x x -≤< B.{|34}x x x ≤≥或 C.{|21}x x -≤<- D.{|13}x x -≤≤【参考答案】D.57.集合2{|03},{|9}P x Z x M x R x =∈≤<=∈≤,则P M =A.{1,2}B.{0,1,2}C.{|03}x x ≤<D.{|03}x x ≤≤【参考答案】B.58.已知集合2{|1},{}.P x x M a =≤=若,P M P =则a 的取值范围是A.(,1]-∞-B.[1,)+∞C.[1,1]-D.(,1][1,)-∞-+∞【参考答案】C.59.已知集合{|320},{|(1)(3)0}.A x R x B x R x x =∈+>=∈+->则A B =A.(,1)-∞-B.2(1,)3--C.2(,2)3- D.(3,)+∞ 【参考答案】D.60.已知集合{1,0,1},{|11},A B x x =-=-≤<则A B =A.{0}B.{1,0}-C.{0,1}D.{1,0,1}-【参考答案】B.61.已知集合2{|20},{0,1,2},A x x x B =-==则A B =A.{0}B.{0,1}C.{0,2}D.{0,1,2}【参考答案】C.62.已知{|(1,0)(0,1),},{|(1,1)(1,1),}P m m R Q n n R ==+∈==+-∈a a b b 是两个向量集合,则P Q =A.{(1,1)}B.{(1,1)}-C.{(1,0)}D.{(0,1)}【参考答案】A.63.集合22{(,)|1},{(,)|3},416x x y A x y B x y y =+===则A B 的子集的个数是 A.4 B.3 C.2 D.1【参考答案】A.64.已知21{|log ,1},{|,2},U y y x x P y y x x==>==>则U P = A.1[,)2+∞ B.1(0,)2 C.(0,)+∞ D.1(,0][,)2-∞+∞ 【参考答案】A.65.已知集合21{|()1},{|680},2x A x B x x x =≤=-+≤则()R A B = A.{|0}x x ≤ B.{|24}x x ≤≤C.{|024}x x x ≤<>或D.{|024}x x x <≤≥或【参考答案】C.66.设U 为全集,,A B 是集合,则“存在集合C 使得,U A C B C ⊆⊆”是“A B =∅”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【参考答案】C.67.已知集合{|212}M x x =-≤-≤和{|21,1,2,}N x x k k ==-=⋅⋅⋅的关系的韦恩图如图所示,则阴影部分所示的集合的元素共有A.3个B.2个C.1个D.无穷多个【参考答案】A.68.若集合{|21},A x x =-<<{|02},B x x =<<则集合A B =A.{|11}x x -<<B.{|21}x x -<<C.{|22}x x -<<D.{|01}x x <<【参考答案】D.69.集合22{(,)|,1},{(,)|,},A x y x y x y B x y x y y x =+===为实数且为实数且则A B的元素个数是A.4B.3C.2D.1【参考答案】C.70.设集合={12,3,4,5,6},{1,2,4},U M =,则U M =A.UB.{1,3,5}C.{3,5,6}D.{2,4,6}【参考答案】C.71.设集合={12,3},{4,5},{|,,}A B M x x a b a A b B ===+∈∈,,则M 中元素的个数为A.3B.4C.5D.6【参考答案】B.72.设集合22={|20,},{|20,},M x x x x R N x x x x R +=∈=-=∈则M N =A.{0}B.{0,2}C.{2,0}-D.{2,0,2}-【参考答案】D.73.已知集合={1,0,1},{0,1,2},M N -=则M N =A.{0,1}B.{1,0,2}-C.{1,0,1,2}-D.{1,0,1}-【参考答案】C.74.已知集合={|lg ,1},{2,1,1,2},A y R y x x B ∈=>=--则下列结论中正确的是A.{2,1}A B =--B.()(,0)R A B =-∞C.(0,)A B =+∞D.(){2,1}R A B =--【参考答案】D.75.若集合21={|213},{|0},3x A x x B x x+-<=<-则A B = A.1{|123}2x x x -<<-<<或 B. {|23}x x << C. 1{|2}2x x -<< D.1{|1}2x x -<<- 【参考答案】D.76.若集合121={|log },2A x x ≥则R A = A.2(,0](,)2-∞+∞ B.,)2+∞ C.2(,0][,)2-∞+∞ D.)2+∞ 【参考答案】A.77.已知集合={1,2,3,4,5,6},{4,5,6,7,8},A B =则满足S A S B ⊆≠∅且的集合S 的个数是A.57B.56C.49D.8【参考答案】B.78.设集合={|32},{|13},M m Z m N n Z n ∈-<<=∈-≤≤则M N =A.{0,1}B.{1,0,1}-C.{0,1,2}D.{1,0,1,2}-【参考答案】B.79.已知集合={1,3,5,7,9},{0,3,6,9,12},A B =则N A B =A.{1,5,7}B.{3,5,7}C.{1,3,9}D.{1,2,3}【参考答案】A.80.集合={4,5,7,9},{3,4,7,8,9},A B =全集U A B =,则集合()U A B 中的元素共有A.3个B.4个C.5个D.6个【参考答案】A.81.设集合{|3},A x x =>1{|0},4x B x x -=<-则A B = A.∅ B.(3,4) C.(2,1)- D.(4,)+∞【参考答案】B.82.已知集合{|2,},A x x x R =≤∈{4,},B x x Z =∈则A B = A.(0,2) B.[0,2] C.{0,2} D.{0,1,2}【参考答案】D.83.若集合{1,2,3,4,5},A ={(,)|,,},B x y x A y A x y A =∈∈-∈则集合B 中所含元素的个数为A.3B.6C.8D.10【参考答案】D.84.已知集合{A ={1,},,B m A B A ==则m =A.0B.03或C.1D.13或【参考答案】B.85.已知集合2{|20},{|A x x x B x x =->=<<则A.A B =∅B.A B R =C.B A ⊆D.A B ⊆【参考答案】B.86.已知集合2{|(1)4,}M x x x R =-<∈,{1,0,1,2,3}N =-,则M N =A.{0,1,2}B.{1,0,1,2}-C.{1,0,2,3}-D.{0,1,2,3}【参考答案】A.87.已知集合2{|230},{|22},A x x x B x x =--≥=-≤<则A B =A.[2,1]--B.[1,2)-C.[1,1]-D.[1,2)【参考答案】A.88.设集合{0,1,2}M =,2{|320},N x x x =-+≤则M N =A.{1}B.{2}C.{0,1}D.{1,2}【参考答案】D.89.设集合2{|340},M x x x =--<{|05},N x x =≤≤则M N =A.(0,4]B.[0,4)C.[1,0)-D.(1,0]-【参考答案】B.90.设集合{1,2,3,4,5},{2,4},{3,4,5},{3,4},U A B C ====则()()___.U A B C =【参考答案】{2,5}91.若{|3},{|21},x A x R x B x R =∈<=∈>则A B =_______.【参考答案】(0,3)92.设2{0,1,2,3},{|0},U A x U x mx ==∈+=若{1,2},U A =则实数_____.m =【参考答案】3-93.已知全集{1,2,3,4},U =集合{1,2},{2,3},A B ==则()U A B =A.{1,3,4}B.{3,4}C.{3}D.{4}【参考答案】D.94.设全集{|110},{1,2,3,5,8},{1,3,5,7,9}U n N n A B =∈≤≤==,则()__.U A B = 【参考答案】{7,9}95.已知,{|0},{|1},U R A x x B x x ==>=≤-则()()U U A B B A =A.∅B.{|0}x x ≤C.{|1}x x >-D.{|01}x x x >≤-或【参考答案】D.96.设,{|0},{|1},U R A x x B x x ==>=>则U A B =A.{|01}x x ≤<B.{|01}x x <≤C.{|0}x x <D.{|1}x x >【参考答案】B.97.设2{|4},{|4},P x x Q x x =<=<则A.P Q ⊆B.Q P ⊆C.R P Q ⊆D.R Q P ⊆【参考答案】B.98.设集合2{|14},{|230},A x x B x x x =<<=--≤则R A B =A.(1,4)B.(3,4)C.(1,3)D.(1,2)(3,4)【参考答案】B.99.设集合2{|2},{|340},S x x T x x x =>-=+-≤则()R S T =A.(2,1]-B.(,4]-∞-C.(,1]-∞D.[1,)+∞【参考答案】C.100.设全集{|2},U x N x =∈≥集合2{|5},A x N x =∈≥则U A =A.∅B.{2}C.{5}D.{2,5}【参考答案】B.101.设整数4,n ≥集合{1,2,3,,}.X n =⋅⋅⋅令集合{(,,)|,,,S x y z x y z X =∈且三条件xy <,z <,y z x <<}z x y <<恰好一个成立.若()x,y,z 和(,,)z w x 都在S 中,则下列选项中正确的是A.(),(,,)y,z,w S x y w S ∈∉B.(),(,,)y,z,w S x y w S ∈∈C.(),(,,)y,z,w S x y w S ∉∈D.(),(,,)y,z,w S x y w S ∉∉【参考答案】B.102.设S 是整数集Z 的非空子集,如果,,a b S ∀∈有,ab S ∈则称S 关于数的乘法是封闭的.若,T V 是Z 的两个不相交的非空子集,,T V Z =且,,,a b c T ∀∈有;abc T ∈,,,x y z V ∀∈ ,xyz T ∈则下列结论恒成立的是A.,T V 中至少有一个关于乘法是封闭的B.,T V 中至多有一个关于乘法是封闭的C.,T V 中有且只有一个关于乘法是封闭的D.,T V 中每一个关于乘法都是封闭的【参考答案】A.103.已知{2,3,4,5,6,7},{3,4,5,7},{2,4,5,6}U M N ===,则A.{4,6}M N =B.M N U =C.()U N M U =D.()U M N N =【参考答案】B.104.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为__________.【参考答案】12.105.已知集合{1,2,3},{2,,4},{2,3},A B m A B ===则____.m =【参考答案】3106.设全集{1,2,3,4,5},{2,4},U U M N M N ===则N =A.{1,2,3}B.{1,3,5}C.{1,4,5}D.{2,3,4}【参考答案】B.107.设集合2{1,0,1},{}},M N x x x =-==则M N =A.{1,0,1}-B.{0,1}C.{1}D.{0}【参考答案】B.108.已知集合{2,3,6,8},{2,3},{2,6,8},U A B ===则()U A B =____________.【参考答案】{6,8}109.已知集合{|2},{|13},A x x B x x A B =>=<<=则A.{|2}x x >B.{|1}x x >C.{|23}x x <<D.{|13}x x << 【参考答案】C.110.已知集合{|(2)(1)0},{|10},M x x x N x x M N =+-<=+<=则A.(1,1)-B.(2,1)-C.(2,1)--D.(1,2)【参考答案】C.111.已知全集{1,2,3,4,5,6,7,8},{1,3,5,7},{5,6,7},U M N ===则()U M N =A.{5,7}B.{2,4}C.{2,4,8}D.{1,3,5,6,7}【参考答案】C.。