苏州市八年级(上)期末数学试卷

合集下载

苏州市八年级上学期期末数学试卷 (解析版)

苏州市八年级上学期期末数学试卷 (解析版)

苏州市八年级上学期期末数学试卷 (解析版)一、选择题1.如图,一次函数图象经过点A ,且与正比例函数y=-x 的图象交于点B ,则该一次函数的表达式为( )A .y=-x+2B .y=x+2C .y=x-2D .y=-x-22.如图,一次函数(0)y kx b k =+>的图象过点(0,2),则不等式20kx b +->的解集是( )A .0x >B .0x <C .2x <D .2x >3.如图,已知O 为ABC ∆三边垂直平分线的交点,且50A ∠=︒,则BOC ∠的度数为( )A .80︒B .100︒C .105︒D .120︒ 4.在平面直角坐标系中,点P (﹣3,2)在( )A .第一象限B .第二象限C .第三象限D .第四象限5.3329a b a b a b a(a >0,b >0)的结果是( ) A 53ab B 23ab C 179ab D 89ab 6.如图,已知△ABC 的三条边和三个角,则甲、乙、丙三个三角形中和△ABC 全等的是( )A.甲和乙B.甲和丙C.乙和丙D.只有乙7.如图,正方形OACB的边长是2,反比例函数kyx=图像经过点C,则k的值是()A.2B.2-C.4D.4-8.已知点M(1,a)和点N(2,b)是一次函数y=-2x+1图象上的两点,则a与b的大小关系是( )A.a>b B.a=b C.a<b D.以上都不对9.下列标志中,不是轴对称图形的是()A.B.C.D.10.下列各点中,位于平面直角坐标系第四象限的点是()A.(1,2) B.(﹣1,2) C.(1,﹣2) D.(﹣1,﹣2)二、填空题11.若函数y=2x+3﹣m是正比例函数,则m的值为_____.12.已知点P(a,b)在一次函数y=x+1的图象上,则b﹣a=_____.13.3-的绝对值是.14.3x-有意义的x的取值范围是__________.15.如图,在Rt△ABC中,∠C=90°,AC=3,BC=5,分别以点A、B为圆心,大于12AB的长为半径画弧,两弧交点分别为点P、Q,过P、Q两点作直线交BC于点D,则CD的长是_____.16.点(−1,3)关于x 轴对称的点的坐标为____.17.如图,在ABC 中,∠A =60°,D 是BC 边上的中点,DE ⊥BC ,∠ABC 的平分线BF 交DE 于ABC 内一点P ,连接PC ,若∠ACP =m °,∠ABP =n °,则m 、n 之间的关系为______.18.比较大小:5-_______6-. 19.若分式2223x x -+的值为零,则x 的值等于___.20.如图,在△ABC 中,∠C =90°,∠B =22.5°,DE 垂直平分AB 交BC 于点E ,EC =1,则三角形ACE 的面积为__.三、解答题21.已知BC =5,AB =1,AB ⊥BC ,射线CM ⊥BC ,动点P 在线段BC 上(不与点B ,C 重合),过点P 作DP ⊥AP 交射线CM 于点D ,连接AD . (1)如图1,若BP =4,判断△ADP 的形状,并加以证明. (2)如图2,若BP =1,作点C 关于直线DP 的对称点C ′,连接AC ′. ①依题意补全图2;②请直接写出线段AC ′的长度.22.已知:如图,点E 在ABC ∆的边AC 上,且AEB ABC ∠=∠.(1)求证:ABE C ∠=∠;(2)若BAE ∠的平分线AF 交BE 于点F ,FD BC 交AC 于点D ,设8AB =,10AC =,求DC 的长.23.某玉米种子的价格为a 元/千克,如果一次购买2千克以上的种子,超过2千克部分的种子价格打8折,某科技人员对付款金额和购买量这两个变量的对应关系用列表法做了分析,并绘制出了函数图象,以下是该科技人员绘制的图象和表格的不完整资料,已知点A 的坐标为(2,10),请你结合表格和图象: 付款金额y a7.5 10 12 b购买量x (千克)11.522.53(1)a = ,b = ;(2)求出当2x >时,y 关于x 的函数解析式;24.某公司购买了一批A 、B 型芯片,其中A 型芯片的单价比B 型芯片的单价少9元,已知该公司用3120元购买A 型芯片的条数与用4200元购买B 型芯片的条数相等. (1)求该公司购买的A 、B 型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A 型芯片?25.某列车平均提速vkm/h,用相同的时间,列车提速前行驶150km,提速后比提速前多行驶50km,提速前列车的平均速度为多少?(用含v的式子表示)四、压轴题26.阅读并填空:如图,ABC是等腰三角形,AB AC=,D是边AC延长线上的一点,E在边AB上且联接DE交BC于O,如果OE OD,那么CD BE=,为什么?解:过点E作EF AC交BC于F所以ACB EFB∠=∠(两直线平行,同位角相等)D OEF∠=∠(________)在OCD与OFE△中()________COD FOEOD OED OEF⎧∠=∠⎪=⎨⎪∠=∠⎩所以OCD OFE△≌△,(________)所以CD FE=(________)因为AB AC=(已知)所以ACB B=∠∠(________)所以EFB B∠=∠(等量代换)所以BE FE=(________)所以CD BE=27.如图,直线112y x b=-+分别与x轴、y轴交于A,B两点,与直线26y kx=-交于点()C4,2.(1)b= ;k= ;点B坐标为;(2)在线段AB 上有一动点E ,过点E 作y 轴的平行线交直线y 2于点F ,设点E 的横坐标为m ,当m 为何值时,以O 、B 、E 、F 为顶点的四边形是平行四边形;(3)若点P 为x 轴上一点,则在平面直角坐标系中是否存在一点Q ,使得P ,Q ,A ,B 四个点能构成一个菱形.若存在,直接写出所有符合条件的Q 点坐标;若不存在,请说明理由.28.已知三角形ABC 中,∠ACB =90°,点D (0,-4),M (4,-4).(1)如图1,若点C 与点O 重合,A (-2,2)、B (4,4),求△ABC 的面积; (2)如图2,AC 经过坐标原点O ,点C 在第三象限且点C 在直线DM 与x 轴之间,AB 分别与x 轴,直线DM 交于点G ,F ,BC 交DM 于点E ,若∠AOG =55°,求∠CEF 的度数; (3)如图3,AC 经过坐标原点O ,点C 在第三象限且点C 在直线DM 与x 轴之间,N 为AC 上一点,AB 分别与x 轴,直线DM 交于点G ,F ,BC 交DM 于点E ,∠NEC+∠CEF =180°,求证∠NEF =2∠AOG .29.如图①,在ABC ∆中,12AB =cm ,20BC =cm ,过点C 作射线//CD AB .点M 从点B 出发,以3 cm/s 的速度沿BC 匀速移动;点N 从点C 出发,以a cm/s 的速度沿CD 匀速移动.点M 、N 同时出发,当点M 到达点C 时,点M 、N 同时停止移动.连接AM 、MN ,设移动时间为t (s).(1)点M 、N 从移动开始到停止,所用时间为 s ; (2)当ABM ∆与MCN ∆全等时,①若点M 、N 的移动速度相同,求t 的值; ②若点M 、N 的移动速度不同,求a 的值;(3)如图②,当点M 、N 开始移动时,点P 同时从点A 出发,以2 cm/s 的速度沿AB 向点B 匀速移动,到达点B 后立刻以原速度沿BA 返回.当点M 到达点C 时,点M 、N 、P 同时停止移动.在移动的过程中,是否存在PBM ∆与MCN ∆全等的情形?若存在,求出t 的值;若不存在,说明理由.30.阅读下面材料,完成(1)-(3)题.数学课上,老师出示了这样一道题:如图1,已知等腰△ABC中,AB=AC,AD为BC边上的中线,以AB为边向AB左侧作等边△ABE,直线CE与直线AD交于点F.请探究线段EF、AF、DF之间的数量关系,并证明.同学们经过思考后,交流了自已的想法:小明:“通过观察和度量,发现∠DFC的度数可以求出来.”小强:“通过观察和度量,发现线段DF和CF之间存在某种数量关系.”小伟:“通过做辅助线构造全等三角形,就可以将问题解决.”......老师:“若以AB为边向AB右侧作等边△ABE,其它条件均不改变,请在图2中补全图形,探究线段EF、AF、DF三者的数量关系,并证明你的结论.”(1)求∠DFC的度数;(2)在图1中探究线段EF、AF、DF之间的数量关系,并证明;(3)在图2中补全图形,探究线段EF、AF、DF之间的数量关系,并证明.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】【详解】解:设一次函数的解析式y=kx+b(k≠0),∵一次函数图象经过点A,且与正比例函数y=-x的图象交于点B,∴在直线y=-x中,令x=-1,解得:y=1,则B的坐标是(-1,1).把A(0,2),B(-1,1)的坐标代入一次函数的解析式y=kx+b得:2{1bk b=-+=,解得2{1bk==,该一次函数的表达式为y=x+2.故选B.2.A解析:A【解析】【分析】由图知:一次函数y=kx+b的图象与y轴的交点为(0,2),且y随x的增大而增大,由此得出当x>0时,y>2,进而可得解.【详解】根据图示知:一次函数y=kx+b的图象与y轴的交点为(0,2),且y随x的增大而增大;即当x>0时函数值y的范围是y>2;因而当不等式kx+b-2>0时,x的取值范围是x>0.故选:A.【点睛】本题主要考查的是一次函数与一元一次不等式,在解题时,认真体会一次函数与一元一次不等式(组)之间的内在联系.理解一次函数的增减性是解决本题的关键.3.B解析:B【解析】【分析】延长AO交BC于D,根据垂直平分线的性质可得到AO=BO=CO,再根据等边对等角的性质得到∠OAB=∠OBA,∠OAC=∠OCA,再由三角形的外角性质可求得∠BOD=∠OAB+∠OBA,∠COD=∠OAC+∠OCA,从而不难求得∠BOC的度数.【详解】延长AO交BC于D.∵点O 在AB 的垂直平分线上. ∴AO=BO . 同理:AO=CO .∴∠OAB=∠OBA ,∠OAC=∠OCA .∵∠BOD=∠OAB+∠OBA ,∠COD=∠OAC+∠OCA . ∴∠BOD=2∠OAB ,∠COD=2∠OAC .∴∠BOC=∠BOD+∠COD=2∠OAB+2∠OAC=2(∠OAB+∠OAC )=2∠BAC . ∵∠A=50°. ∴∠BOC=100°. 故选:B . 【点睛】此题主要考查:(1)线段垂直平分线的性质:垂直平分线上任意一点,到线段两端点的距离相等.(2)三角形的外角性质:三角形的一个外角等于和它不相邻的两个内角的和.4.B解析:B 【解析】 【分析】根据各象限的点的坐标的符号特征判断即可. 【详解】 ∵-3<0,2>0,∴点P (﹣3,2)在第二象限, 故选:B . 【点睛】本题考查了各象限内点的坐标的符号特征,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-),记住各象限内点的坐标的符号是解决的关键.5.A解析:A 【解析】 【分析】23a b a a b a ⨯⨯即可求解. 【详解】解:∵a >0,b >0,23a b a a b a ⨯⨯=故选:A .【点睛】本题考查二次根式的性质与化简;能够根据二次根式的性质,将所求式子进行正确的化简是解题的关键.6.B解析:B 【解析】 【分析】根据三角形全等的判定定理SSS 、SAS 、 AAS 、ASA 、HL 逐个进行分析即可. 【详解】解:甲三角形有两条边及夹角与△ABC 对应相等,根据SAS 可以判断甲三角形与△ABC 全等;乙三角形只有一条边及对角与△ABC 对应相等,不满足全等判定条件,故乙三角形与△ABC 不能判定全等;丙三角形有两个角及夹边与△ABC 对应相等,根据ASA 可以判定丙三角形与△ABC 全等; 所以与△ABC 全等的有甲和丙, 故选:B . 【点睛】本题主要考查全等三角形的判定定理,熟练掌握并充分理解三角形全等的判定定理,注意对应二字的理解很重要.7.C解析:C 【解析】 【分析】根据正方形的性质,即可求出点C 的坐标,然后代入反比例函数解析式里即可. 【详解】解:∵正方形OACB 的边长是2, ∴点C 的坐标为(2,2) 将点C 的坐标代入ky x=中,得 22k =解得:4k = 故选C . 【点睛】此题考查的是求反比例函数的比例系数,掌握用待定系数法求反比例函数的比例系数是解决此题的关键.8.A解析:A 【解析】【详解】∵k=﹣2<0,∴y随x的增大而减小,∵1<2,∴a>b.故选A.9.B解析:B【解析】【分析】根据轴对称图形的性质对各项进行判断即可.【详解】A. 是轴对称图形;B. 不是轴对称图形;C. 是轴对称图形;D. 是轴对称图形;故答案为:B.【点睛】本题考查了轴对称图形的问题,掌握轴对称图形的性质是解题的关键.10.C解析:C【解析】【分析】根据各象限内点的坐标特征对各选项分析判断利用排除法求解.【详解】A、(1,2)在第一象限,故本选项错误;B、(﹣1,2)在第二象限,故本选项错误;C、(1,﹣2)在第四象限,故本选项正确;D、(﹣1,﹣2)在第三象限,故本选项错误.故选:C.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).二、填空题11.【解析】直接利用正比例函数的定义得出答案.【详解】∵函数y=2x+3﹣m是正比例函数,∴3﹣m=0,解得:m=3.故答案为:3.【点睛】本题考查的是正比例函数的定义,一般解析:【解析】【分析】直接利用正比例函数的定义得出答案.【详解】∵函数y=2x+3﹣m是正比例函数,∴3﹣m=0,解得:m=3.故答案为:3.【点睛】(k是常数,k≠0)的函数叫做正比本题考查的是正比例函数的定义,一般地形如y kx例函数.12.1【解析】∵点P(a,b)在一次函数y=x+1的图象上,∴b=a+1,∴b-a=1,故答案为1.【点睛】本题主要考查了一次函数图象上点的坐标特征,解题的关键是把点P (a,b)代入一次函数解析:1【解析】∵点P(a,b)在一次函数y=x+1的图象上,∴b=a+1,∴b-a=1,故答案为1.【点睛】本题主要考查了一次函数图象上点的坐标特征,解题的关键是把点P(a,b)代入一次函数的解析式.【解析】根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点到原点的距离是,所以的绝对值是..【解析】根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点到原点的,所以14.【解析】【分析】根据以上信息可得到关于不等式x-3≥0,求解便能得到x的取值范围.【详解】根据题意,得x-3≥0,解得x≥3.故答案为【点睛】考查二次根式有意义的条件:二次根式的x≥解析:3【解析】【分析】根据以上信息可得到关于不等式x-3≥0,求解便能得到x的取值范围.【详解】根据题意,得x-3≥0,解得x≥3.x≥故答案为3【点睛】考查二次根式有意义的条件:二次根式的被开方数是非负数;15.【解析】分析:连接AD由PQ垂直平分线段AB,推出DA=DB,设DA=DB=x,在Rt△ACD 中,∠C=90°,根据AD2=AC2+CD2构建方程即可解决问题;详解:连接AD.∵PQ垂直平解析:8 5【解析】分析:连接AD由PQ垂直平分线段AB,推出DA=DB,设DA=DB=x,在Rt△ACD中,∠C=90°,根据AD2=AC2+CD2构建方程即可解决问题;详解:连接AD.∵PQ垂直平分线段AB,∴DA=DB,设DA=DB=x,在Rt△ACD中,∠C=90°,AD2=AC2+CD2,∴x2=32+(5﹣x)2,解得x=175,∴CD=BC﹣DB=5﹣175=85,故答案为85.点睛:本题考查基本作图,线段的垂直平分线的性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.16.(-1,-3).【解析】【分析】根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【详解】解:点(-1,3)关于x轴对称的点的坐标为(-1,-3),故答案是:(-1,解析:(-1,-3).【解析】【分析】根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【详解】解:点(-1,3)关于x轴对称的点的坐标为(-1,-3),故答案是:(-1,-3).【点睛】此题主要考查了关于x轴的对称点的坐标,关键是掌握点的坐标变化规律.17.m+3n=120【解析】【分析】根据线段垂直平分线的性质,可得∠PBC=∠PCB,结合角平分线的定义,可得∠PBC=∠PCB=∠ABP,最后根据三角形内角和定理,从而得到m、n之间的关系.【解析:m+3n=120【解析】【分析】根据线段垂直平分线的性质,可得∠PBC=∠PCB,结合角平分线的定义,可得∠PBC=∠PCB=∠ABP,最后根据三角形内角和定理,从而得到m、n之间的关系.【详解】解:∵点D是BC边的中点,DE⊥BC,∴PB=PC,∴∠PBC=∠PCB,∵BP平分∠ABC,∴∠PBC=∠ABP,∴∠PBC=∠PCB=∠ABP=n°,∵∠A=60°,∠ACP=m°,∠+∠+∠=︒A ABC ACB180,∴∠PBC+∠PCB+∠ABP=120°-m°,∴3∠ABP=120°-m°,∴3n°+m°=120°,故答案为:m+3n=120.【点睛】本题主要考查了三角形内角和定理以及线段垂直平分线的性质的运用,角平分线的定义,解题时注意:线段垂直平分线上任意一点,到线段两端点的距离相等;三角形内角和等于180°.18.>【解析】【分析】先把两个数分别平方,再根据两个负数的比较方法比较即可.【详解】解:∵,∵5<6∴.【点睛】本题考查实数的大小比较,解答本题的关键是熟练掌握两个负数的比较方法:两个解析:>【解析】【分析】先把两个数分别平方,再根据两个负数的比较方法比较即可.【详解】解:∵2(5=,2(6=∵5<6 ∴>【点睛】本题考查实数的大小比较,解答本题的关键是熟练掌握两个负数的比较方法:两个负数,绝对值大的反而小.19.【解析】【分析】当分式的值为0时,分式的分子为0,分母不为0,由此求解即可.【详解】解:∵分式的值为零,且∴x ﹣2=0,解得:x =2.故答案为:2.【点睛】本题考查了分式值为0的解析:【解析】【分析】当分式的值为0时,分式的分子为0,分母不为0,由此求解即可.【详解】 解:∵分式2223x x -+的值为零,且2230x +≥ ∴x ﹣2=0,解得:x =2.故答案为:2.【点睛】本题考查了分式值为0的条件,灵活利用分式值为0的条件是解题的关键.20..【解析】【分析】由线段垂直平分线的性质可知EA=EB,由等边对等角的性质及外角的性质可得∠AEC=45°,易知△ACE为等腰直角三角形,可得CA长,利用三角形面积公式求解即可.【详解】解解析:12.【解析】【分析】由线段垂直平分线的性质可知EA=EB,由等边对等角的性质及外角的性质可得∠AEC=45°,易知△ACE为等腰直角三角形,可得CA长,利用三角形面积公式求解即可.【详解】解:∵DE垂直平分AB交BC于点E,∴EA=EB,∴∠EAB=∠B=22.5°,∴∠AEC=∠EAB+∠B=45°,∵∠C=90°,∴△ACE为等腰直角三角形,∴CA=CE=1,∴三角形ACE的面积=12×1×1=12.故答案为:12.【点睛】本题主要考查了线段垂直平分线的性质及等腰三角形的性质,线段垂直平分线上的点到线段两端的距离相等,等腰三角形的两底角相等,灵活利用这两个性质是解题的关键.三、解答题21.(1)△ADP是等腰直角三角形.证明见解析;(2)①补图见解析;【解析】【分析】(1)先判断出PC=AB,再用同角的余角相等判断出∠APB=∠PDC,得出△ABP≌△PCD(AAS),即可得出结论;(2)①利用对称的性质画出图形;②过点C'作C'Q⊥BA交BA的延长线于Q,先求出CP=4,AB=AP,∠CPD=45°,进而得出C'P=CP=4,∠C'PD=∠CPD=45°,再判断出四边形BQC'P是矩形,进而求出AQ=BQ﹣AB=3,最后用勾股定理即可得出结论.【详解】(1)△ADP是等腰直角三角形.证明如下:∵BC=5,BP=4,∴PC=1.∵AB=1,∴PC=AB.∵AB⊥BC,CM⊥BC,DP⊥AP,∴∠B=∠C=90°,∠APB+∠DPC=90°,∠PDC+∠DPC=90°,∴∠APB=∠PDC.在△ABP和△PCD中,∵B CAPB PDCAB PC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABP≌△PCD(AAS),∴AP=PD.∵∠APD=90°,∴△ADP是等腰直角三角形.(2)①依题意补全图2;②过点C'作C'Q⊥BA交BA的延长线于Q.∵BP=1,AB=1,BC=5,∴CP=4,AB=AP.∵∠ABP=90°,∴∠APB=45°.∵∠APD=90°,∴∠CPD=45°,连接C'P.∵点C与C'关于DP对称,∴C'P=CP=4,∠C'PD=∠CPD=45°,∴∠CPC'=90°,∴∠BPC'=90°,∴∠Q=∠ABP=∠BPC'=90°,∴四边形BQC'P是矩形,∴C'Q=BP=1,BQ=C'P=4,∴AQ=BQ﹣AB=3.在Rt△AC'Q中,AC′10=.【点睛】本题考查了矩形的判定与性质以及全等三角形的判定和性质,等腰三角形的判定和性质,勾股定理,构造出直角三角形是解答本题的关键.22.(1)详见解析;(2)2.【解析】【分析】(1)在三角形ABE与三角形ABC中,由一对公共角相等,以及已知角相等,利用内角和定理即可得证;(2)由FD 与BC 平行,得到一对同位角相等,再由第一问的结论等量代换得到一对角相等,根据AF 为角平分线得到一对角相等,再由AF=AF ,利用ASA 得到三角形ABE 与三角形ADF 全等,利用全等三角形对应边相等得到AB=AD ,由AC-AD 求出DC 的长即可.【详解】(1)证明:在ABE ∆中,180ABE BAE AEB ∠=-∠-∠︒,在ABC ∆中,180C BAC ABC ∠=︒-∠-∠,∵AEB ABC ∠=∠,BAE BAC ∠=∠,∴ABE C ∠=∠;(2)解:∵FD BC ,∴ADF C =∠∠,又ABE C ∠=∠,∴ABE ADF ∠=∠,∵AF 平分BAE ∠,∴BAF DAF ∠=∠,在ABE ∆和ADF ∆中,ABE ADF AF AFBAF DAF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ABE ADF ASA ∆∆≌, ∴AB AD =,∵8AB =,10AC =,∴1082DC AC AD =-=-=.【点睛】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.23.(1)5,14a b ==;(2)42y x =+【解析】【分析】(1)根据函数图象可得:购买量是函数的自变量x ,也可看出2千克的金额为10元,从而可求1千克的价格,即a 的值,由表格可得出:当购买量大于等于2千克时,购买量每增加0.5千克,价格增加2元,进而可求b 的值;(2)先设关系式为y=px+q ,然后将(2,10),且x=3时,y=14,代入关系式即可求出p ,q 的值,从而确定关系式;【详解】解:(1)购买量是函数中的自变量x ,设射线OA 解析式为:y=mx ,把A (2,10)代入得:10=2m ,即m=5,∴射线OA 解析式为y=5x ,把x=1代入得:y=5,即a=5;根据题意得:b=2×5+(3-2)×5×80%=10+4=14;故答案为:5;14.(2)当x >2时,设y 与x 的函数关系式为:y=px+q ,∵y=px+q 经过点(2,10),又x=3时,y=14,∴210314p q p q +=⎧⎨+=⎩, 解得:42p q =⎧⎨=⎩, ∴当x >2时,y 与x 的函数关系式为:y=4x+2;【点睛】此题主要考查了一次函数的应用和待定系数法求一次函数解析式等知识,根据已知得出图表中点的坐标是解题关键.24.(1)A 型芯片的单价为26元/条,B 型芯片的单价为35元/条;(2)80.【解析】【分析】(1)设B 型芯片的单价为x 元/条,则A 型芯片的单价为(x ﹣9)元/条,根据数量=总价÷单价结合用3120元购买A 型芯片的条数与用4200元购买B 型芯片的条数相等,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设购买a 条A 型芯片,则购买(200﹣a )条B 型芯片,根据总价=单价×数量,即可得出关于a 的一元一次方程,解之即可得出结论.【详解】(1)设B 型芯片的单价为x 元/条,则A 型芯片的单价为(x ﹣9)元/条,根据题意得: 312042009x x=-, 解得:x =35,经检验,x =35是原方程的解,∴x ﹣9=26.答:A 型芯片的单价为26元/条,B 型芯片的单价为35元/条.(2)设购买a 条A 型芯片,则购买(200﹣a )条B 型芯片,根据题意得:26a +35(200﹣a )=6280,解得:a =80.答:购买了80条A 型芯片.【点睛】本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.25.3vkm/h【解析】【分析】设提速前列车的平均速度为x /km h ,则依题意可得等量关系:提速前行驶150千米所用的时间=提速后行驶(15050)+千米所用的时间,根据等量关系列出方程即可.【详解】解:设提速前列车的平均速度为x /km h ,则依题意列方程得15015050x x v+=+, 解得:3x v =,经检验,3x v =是原分式方程的解,答:提速前列车的平均速度为3/vkm h .【点睛】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程. 四、压轴题26.见解析【解析】【分析】先根据平行线的性质,得到角的关系,然后证明OCD OFE △≌△,写出证明过程和依据即可.【详解】解:过点E 作//EF AC 交BC 于F ,∴ACB EFB ∠=∠(两直线平行,同位角相等),∴D OEF ∠=∠(两直线平行,内错角相等),在OCD 与OFE △中()()()COD FOE OD OED OEF ⎧∠=∠⎪=⎨⎪∠=∠⎩对顶角相等已知已证, ∴OCD OFE △≌△,(ASA )∴CD FE =(全等三角形对应边相等)∵AB AC =(已知)∴ACB B =∠∠(等边对等角)∴EFB B ∠=∠(等量代换)∴BE FE =(等角对等边)∴CD BE =;【点睛】本题考查了全等三角形的判定和性质,平行线的性质,解题的关键是由平行线的性质正确找到证明三角形全等的条件,从而进行证明.27.(1)4;2;(0,4);(2)125m =或285m =;(3)存在.Q 点坐标为()-,()4,()0,4-或()5,4. 【解析】【分析】(1)根据待定系数法,将点C (4,2)代入解析式可求解;(2)设点E (m ,142m +),F (m ,2m -6),得()154261022EF m m m =-+--=-,由平行四边形的性质可得BO =EF =4,列出方程即可求解;(3)分两种情况讨论,由菱形的性质按照点平移的坐标规律,先确定P 点坐标,再确定O 点坐标即可求解.【详解】解:(1)(1)∵直线y 2=kx -6交于点C (4,2),∴2=4k -6,∴k =2, ∵直线212y x b =-+过点C (4,2), ∴2=-2+b ,∴b =4, ∴直线解析式为:212y x b =-+,直线解析式为y 2=2x -6, ∵直线212y x b =-+分别与x 轴、y 轴交于A ,B 两点, ∴当x =0时,y =4,当y =0时,x =8,∴点B (0,4),点A (8,0),故答案为:4;2;(0,4)(2)∵点E 在线段AB 上,点E 的横坐标为m , ∴1,42E m m ⎛⎫-+ ⎪⎝⎭,(),26F m m -, ∴()154261022EF m m m =-+--=-. ∵四边形OBEF 是平行四边形,∴EF BO =, ∴51042m -=,解得:125m =或285m =时, ∴当125m =或285m =时,四边形OBEF 是平行四边形. (3)存在.此时Q 点坐标为()45,4-,()45,4,()0,4-或()5,4.理由如下:假设存在.以P ,Q ,A ,B 为顶点的菱形分两种情况:①以AB 为边,如图1所示.因为点()8,0A ,()0,4B ,所以45AB =.因为以P ,Q ,A ,B 为顶点的四边形为菱形,所以AP AB =或BP BA =.当AP AB =时,点()845,0P -或()845,0+;当BP BA =时,点()8,0P -. 当()845,0P -时,()8458,04Q --+,即()45,4-; 当()845,0P +时,()8458,04Q +-+,即()45,4; 当()8,0P -时,()880,004Q -+-+-,即()0,4-.②以AB 为对角线,对角线的交点为M ,如图2所示.可得5AP =,点P 坐标为()3,0.因为以P ,Q ,A ,B 为顶点的四边形为菱形,所以点Q 坐标为()5,4.综上可知:若点P 为x 轴上一点,则在平面直角坐标系中存在一点Q ,使得P ,Q ,A ,B 四个点能构成一个菱形,此时Q 点坐标为()45,4-,()45,4,()0,4-或()5,4.【点睛】本题是一次函数综合题,利用待定系数法求解析式,平行四边形的性质,菱形的性质,利用分类讨论思想解决问题是本题的关键.28.(1)8;(2)145°;(3)详见解析.【解析】【分析】(1)作AD ⊥ x 轴于D,BE ⊥x 轴于E,由点A,B 的坐标可得出AD=OD=2,BE=EO=4,DE=6,由面积公式可求出答案;(2)作CH ∥x 轴,如图2,由平行线的性质可得出∠AOG=∠ACH,∠DEC=∠HCE,求出∠DEC+∠AOG=∠ACB=90°,可求出∠DEC=35°,则可得出答案;(3)证得∠NEC=∠HEC,则∠NEF=180°-∠NEH=180°-2∠HEC,可得出结论.【详解】解:(1)作AD ⊥x 轴于D,BE ⊥x 轴于E,如图1,∵A (﹣2,2)、B (4,4),∴AD =OD =2,BE =OE =4,DE =6,∴S △ABC =S 梯形ABED ﹣S △AOD ﹣S △AOE =12×(2+4)×6﹣12×2×2﹣12×4×4=8; (2)作CH // x 轴,如图2,∵D (0,﹣4),M (4,﹣4),∴DM // x轴,∴CH // OG // DM,∴∠AOG=∠ACH,∠DEC=∠HCE,∴∠DEC+∠AOG=∠ACB=90°,∴∠DEC=90°﹣55°=35°,∴∠CEF=180°﹣∠DEC=145°;(3)证明:由(2)得∠AOG+∠HEC=∠ACB=90°,而∠HEC+∠CEF=180°,∠NEC+∠CEF=180°,∴∠NEC=∠HEC,∴∠NEF=180°﹣∠NEH=180°﹣2∠HEC,∵∠HEC=90°﹣∠AOG,∴∠NEF=180°﹣2(90°﹣∠AOG)=2∠AOG.【点睛】本题是三角形综合题,考查了坐标与图形的性质,三角形的面积,平行线的性质,三角形内角和定理,熟练掌握平行的性质及三角形内角和定理是解题的关键.29.(1)203;(2)①t=83;②a=185;(3)t=6.4或t=103【解析】【分析】(1)根据时间=路程÷速度即可求得答案;(2)①由题意得:BM=CN=3t,则只可以是△CMN≌△BAM,AB=CM,由此列出方程求解即可;②由题意得:CN≠BM,则只可以是△CMN≌△BMA,AB=CN=12,CM=BM,进而可得3t=10,求解即可;(3)分情况讨论,当△CMN≌△BPM时,BP=CM,若此时P由A向B运动,则12-2t=20-3t,但t=8不符合实际,舍去,若此时P由B向A运动,则2t-12=20-3t,求得t=6.4;当△CMN≌△BMP时,则BP=CN,CM=BM,可得3t=10,t=103,再将t=103代入分别求得AP,BP的长及a的值验证即可.【详解】解:(1)20÷3=203,故答案为:203;(2)∵CD∥AB,∴∠B=∠DCB,∵△CNM与△ABM全等,∴△CMN≌△BAM或△CMN≌△BMA,①由题意得:BM=CN=3t,∴△CMN≌△BAM ∴AB=CM,∴12=20-3t,解得:t=83;②由题意得:CN≠BM,∴△CMN≌△BMA,∴AB=CN=12,CM=BM,∴CM=BM=12 BC,∴3t=10,解得:t=10 3∵CN=at,∴103a=12解得:a=185;(3)存在∵CD∥AB,∴∠B=∠DCB,∵△CNM与△PBM全等,∴△CMN≌△BPM或△CMN≌△BMP,当△CMN≌△BPM时,则BP=CM,若此时P由A向B运动,则BP=12-2t,CM=20-3t,∵BP=CM,∴12-2t=20-3t,解得:t=8 (舍去)若此时P由B向A运动,则BP=2t-12,CM=20-3t,∵BP=CM,∴2t-12=20-3t,解得:t=6.4,当△CMN≌△BMP时,则BP=CN,CM=BM,∴CM=BM=12 BC∴3t=10,解得:t=10 3当t=103时,点P的路程为AP=2t=203,此时BP=AB-AP=12-203=163,则CN=BP=16 3即at=163,∵t=103,∴a=1.6符合题意综上所述,满足条件的t的值有:t=6.4或t=10 3【点睛】本题考查了全等三角形的判定及性质的综合运用,解决本题的关键就是用方程思想及分类讨论思想解决问题,把实际问题转化为方程是常用的手段.30.(1)60°;(2)EF=AF+FC,证明见解析;(3)AF=EF+2DF,证明见解析.【解析】【分析】(1)可设∠BAD=∠CAD=α,∠AEC=∠ACE=β,在△ACE中,根据三角形内角和可得2α+60+2β=180°,从而有α+β=60°,即可得出∠DFC的度数;(2)在EC上截取EG=CF,连接AG,证明△AEG≌△ACF,然后再证明△AFG为等边三角形,从而可得出EF=EG+GF=AF+FC;(3)在AF上截取AG=EF,连接BG,BF,证明方法类似(2),先证明△ABG≌△EBF,再证明△BFG为等边三角形,最后可得出结论.【详解】解:(1)∵AB=AC,AD为BC边上的中线,∴可设∠BAD=∠CAD=α,又△ABE为等边三角形,∴AE=AB=AC,∠EAB=60°,∴可设∠AEC=∠ACE=β,在△ACE中,2α+60°+2β=180°,∴α+β=60°,∴∠DFC=α+β=60°;(2)EF=AF+FC,证明如下:∵AB=AC,AD为BC边上的中线,∴AD⊥BC,∴∠FDC=90°,∵∠CFD=60°,则∠DCF=30°,∴CF=2DF,在EC上截取EG=CF,连接AG,又AE=AC,∴∠AEG=∠ACF,∴△AEG≌△ACF(SAS),∴∠EAG=∠CAF,AG=AF,又∠CAF=∠BAD,∴∠EAG=∠BAD,∴∠GAF=∠BAD+∠BAG=∠EAG+∠BAG=∠60°,∴△AFG为等边三角形,∴EF=EG+GF=AF+FC,即EF=AF+FC;(3)补全图形如图所示,结论:AF=EF+2DF.证明如下:同(1)可设∠BAD=∠CAD=α,∠ACE=∠AEC=β,∴∠CAE=180°-2β,∴∠BAE=2α+180°-2β=60°,∴β-α=60°,∴∠AFC=β-α=60°,又△ABE为等边三角形,∴∠ABE=∠AFC=60°,∴由8字图可得:∠BAD=∠BEF,在AF上截取AG=EF,连接BG,BF,又AB=BE,∴△ABG≌△EBF(SAS),∴BG=BF,又AF垂直平分BC,∴BF=CF,∴∠BFA=∠AFC=60°,∴△BFG为等边三角形,∴BG=BF,又BC⊥FG,∴FG=BF=2DF,∴AF=AG+GF=BF+EF=2DF+EF.【点睛】本题考查了全等三角形的判定和性质、等边三角形的性质、等腰三角形的性质等知识,解决问题的关键是常用辅助线构造全等三角形,属于中考常考题型.。

江苏省苏州市2023-2024学年八年级上学期期末数学试题

江苏省苏州市2023-2024学年八年级上学期期末数学试题

江苏省苏州市2023-2024学年八年级上学期期末数学试题学校:___________姓名:___________班级:___________考号:___________A.60︒B.75︒中,点D在边7.如图,在ABC数为()A.25︒B.30︒8.以下条件不能..证明两个等腰三角形全等的是A .5二、填空题10.一次函数y =11.二次根式y =12.光在不同介质中由于折射率的不同会产生不同的传输速度,大约为82.2510⨯米/13.已知3m -和m 14.若直线2y x =-15.如图,在Rt ABC △等于直角,直线l 必然经过一个定点,这个定点应该是16.若一次函数y kx b =+的图象如图所示,则关于.A,点B 17.如图,已知点()4,0线段AC,若点C的坐标为(9,h三、解答题--+-+ 18.计算:()2019389123.仅使用无刻度的直尺作图,找出下面三图中直线l 上的点P ,使得点P 到A 、B 两点距离之和最小.(请保留作图痕迹)24.如图1,在等腰ABC 中,5AB AC ==,6BC =,点D 为BC 边上的中点,点E 为AC 边上一点,作点C 关于直线DE 的对称点C ',连接BC ';(1)求证:BC DE '∥;(2)如图2,当点C '在AB 边上时求CC '的长度.25.因疫情防控需要,一辆货车先从甲地出发运送防疫物资到乙地,稍后一辆轿车从甲地急送防疫专家到乙地,已知甲、乙两地的路程是350km ,货车行驶时的速度是60km/h ,两车之间的距离()km s 与时间()h t 的函数图象如图;(1)求出a 的值;(2)当 1.5t >时,求轿车离甲地的路程()1km s 与时间()h t 的函数表达式;(3)求轿车到达乙地时货车距离乙地还有多远?26.对于平面直角坐标系内点(),M m n ,我们定义如下变换K :将点M 的横坐标m 乘以2再减去1,纵坐标n 加上3就可以得到新的一点()21,3N m n -+(1)将点P 进行K 变换后得到点()2,1Q -,则点P 坐标为__________;(2)将点P 进行K 变换后得到点Q ,连接PQ ,且5PQ =,试求m 的值;(3)已知点()()2,0,3,0A B -,点P 在线段AB 上运动(不包含点,)A B ,将点P 进行K 变换后得到点Q ,连接PQ ,试求线段PQ 长度范围。

苏州市八年级(上)期末数学试卷

苏州市八年级(上)期末数学试卷

苏州市八年级(上)期末数学试卷 一、选择题 1.将直角三角形的三条边的长度都扩大同样的倍数后得到的三角形( )A .仍是直角三角形B .一定是锐角三角形C .可能是钝角三角形D .一定是钝角三角形 2.下列四组数,可作为直角三角形三边长的是A .456cm cm cm 、、B .123cm cm cm 、、C .234cm cm cm 、、D .123cm cm cm 、、 3.若b >0,则一次函数y =﹣x +b 的图象大致是( )A .B .C .D .4.在22、0.3•、227-、38中,无理数的个数有( ) A .1个B .2个C .3个D .4个 5.如图,给出下列四组条件:①AB =DE ,BC =EF ,AC =DF ;②AB =DE ,∠B =∠E ,BC =EF ;③∠B =∠E ,BC =EF ,∠C =∠F ;④AB =DE ,AC =DF ,∠B =∠E .其中能使△ABC ≌△DEF 的条件有( )A .1组B .2组C .3组D .4组 6.变量x 与y 之间的关系是y =2x+1,当y =5时,自变量x 的值是( )A .13B .5C .2D .3.5 7.已知:如图,点P 在线段AB 外,且PA=PB ,求证:点P 在线段AB 的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是( )A .作∠APB 的平分线PC 交AB 于点CB .过点P 作PC ⊥AB 于点C 且AC=BCC .取AB 中点C ,连接PCD .过点P 作PC ⊥AB ,垂足为C8.在平面直角坐标系中,点M (﹣3,2)关于y 轴对称的点的坐标为( )A .(﹣3,﹣2)B .(﹣2,﹣3)C .(3,2)D .(3,﹣2)9.如图,一支铅笔放在圆柱体笔筒中,笔筒的内部底面直径是9cm ,内壁高12cm ,则这只铅笔的长度可能是( )A .9cmB .12cmC .15cmD .18cm10.如图,平面直角坐标系中,长方形OABC ,点A ,C 分别在x 轴,y 轴的正半轴上,点B (6,3),现将△OAB 沿OB 翻折至△OA ′B 位置,OA ′交BC 于点P .则点P 的坐标为( )A .(94,3)B .(32,3)C .(125,3)D .(5,32) 二、填空题11.关于x 的分式方程211x a x +=+的解为负数,则a 的取值范围是_________. 12.如图,在ABC ∆中,AB AC =,点P 为边AC 上一动点,过点P 作PD BC ⊥,垂足为点D ,延长DP 交BA 的延长线于点E ,若10AC =,设CP 长为x ,BE 长为y ,则y 关于x 的函数关系式为__________.(不需写出x 的取值范围)13.某厂现在的年产值是15万元,计划今后每年增加2万元,年产值y 与年数x 之间的函数关系为________.14.如图,在平面直角坐标系中,函数y mx n =+的图像与y kx b =+的图像交于点(1,2)P -,则方程组,y mx n y kx b =+⎧⎨=+⎩的解为________.15.将一次函数34y x =-的图象向上平移3个单位长度,相应的函数表达式为_____.16.如图,等边△OAB 的边长为2,以它的顶点O 为原点,OB 所在的直线为x 轴,建立平面直角坐标系.若直线y =x +b 与△OAB 的边界总有两个公共点,则实数b 的范围是____.17.已知一次函数()12y k x =-+,若y 随x 的增大而减小,则k 的取值范围是___.18.在△ABC 中,AB=AC ,∠BAC=100°,点D 在BC 边上,连接AD ,若△ABD 为直角三角形,则∠ADC 的度数为_____.19.比较大小:5-_______6-.20.如图,一次函数y kx b =+与y mx n =+的图像交于点(2,1)P -,则由函数图像得不等式kx b mx n +≥+的解集为________.三、解答题21.如图,点D 、B 、C 在一直线上,ABC ∆和ADE ∆都是等边三角形.试找出图中的一对全等三角形,并证明.22.如图,一次函数y ax b =+与正比例函数y kx =的图像交于点M .(1)求正比例函数和一次函数的解析式;(2)根据图像,写出关于x 的不等式kx ax b >+的解集;(3)求MOP ∆的面积.23.如图,在ABC ∆中,4AB =,8BC =,AC 的垂直平分线交AC 于点D ,交BC 于点E ,3CE =,连接AE .(1)求证:ABE ∆是直角三角形;(2)求ACE ∆的面积.24.已知,如图,//AB CD ,E 是AB 的中点,CE DE =,求证:AC BD =.25.如图①,在A 、B 两地之间有汽车站C ,客车由A 地驶往C 站,货车由B 地驶往A 地,两车同时出发,匀速行驶,图②是客车、货车离 C 站的路程1y 、2y (km)与行驶时间x(h)之间的函数图像.(1)客车的速度是 km/h ;(2)求货车由 B地行驶至 A地所用的时间;(3)求点E的坐标,并解释点 E的实际意义.四、压轴题26.已知ABC是等腰直角三角形,∠C=90°,点M是AC的中点,延长BM至点D,使DM=BM,连接AD.(1)如图①,求证:DAM≌BCM;(2)已知点N是BC的中点,连接AN.①如图②,求证:ACN≌BCM;②如图③,延长NA至点E,使AE=NA,连接,求证:BD⊥DE.27.如图,直线l1:y1=﹣x+2与x轴,y轴分别交于A,B两点,点P(m,3)为直线l1上一点,另一直线l2:y2=12x+b过点P.(1)求点P坐标和b的值;(2)若点C是直线l2与x轴的交点,动点Q从点C开始以每秒1个单位的速度向x轴正方向移动.设点Q的运动时间为t秒.①请写出当点Q在运动过程中,△APQ的面积S与t的函数关系式;②求出t为多少时,△APQ的面积小于3;③是否存在t的值,使△APQ为等腰三角形?若存在,请求出t的值;若不存在,请说明理由.28.直角三角形ABC中,∠ACB=90°,直线l过点C.(1)当AC=BC时,如图①,分别过点A、B作AD⊥l于点D,BE⊥l于点E.求证:△ACD≌△CBE.(2)当AC=8,BC=6时,如图②,点B与点F关于直线l对称,连接BF,CF,动点M从点A出发,以每秒1个单位长度的速度沿AC边向终点C运动,同时动点N从点F出发,以每秒3个单位的速度沿F→C→B→C→F向终点F运动,点M、N到达相应的终点时停止运动,过点M 作MD ⊥l 于点D ,过点N 作NE ⊥l 于点E ,设运动时间为t 秒.①CM = ,当N 在F →C 路径上时,CN = .(用含t 的代数式表示) ②直接写出当△MDC 与△CEN 全等时t 的值.29.如图,在等边ABC ∆中,线段AM 为BC 边上的中线.动点D 在直线AM 上时,以CD 为一边在CD 的下方作等边CDE ∆,连结BE .(1)求CAM ∠的度数;(2)若点D 在线段AM 上时,求证:ADC BEC ∆≅∆;(3)当动点D 在直线AM 上时,设直线BE 与直线AM 的交点为O ,试判断AOB ∠是否为定值?并说明理由.30.直角三角形ABC 中,90ACB ∠=︒,直线l 过点C .(1)当AC BC =时,如图1,分别过点A 和B 作AD ⊥直线l 于点D ,BE ⊥直线l 于点E ,ACD 与CBE △是否全等,并说明理由;(2)当8AC cm =,6BC cm =时,如图2,点B 与点F 关于直线l 对称,连接BF CF 、,点M 是AC 上一点,点N 是CF 上一点,分别过点M N 、作MD ⊥直线l 于点D ,NE ⊥直线l 于点E ,点M 从A 点出发,以每秒1cm 的速度沿A C →路径运动,终点为C ,点N 从点F 出发,以每秒3cm 的速度沿F C B C F →→→→路径运动,终点为F ,点,M N 同时开始运动,各自达到相应的终点时停止运动,设运动时间为t 秒,当CMN △为等腰直角三角形时,求t 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】由于三角形是直角三角形,所以三边满足勾股定理,当各边扩大或者缩小k 倍时,再利用勾股定理的逆定理判断三角形的形状.【详解】设直角三角形的直角边分别为a 、b ,斜边为c .则满足a 2+b 2=c 2.若各边都扩大k 倍(k >0),则三边分别为ak 、bk 、ck(ak )2+(bk )2=k 2(a 2+b 2)=(ck )2∴三角形仍为直角三角形.故选:A .【点睛】本题主要考查了勾股定理和勾股定理的逆定理.勾股定理:直角三角形的两直角边的平方和等于斜边的平方;勾股定理的逆定理:若三角形两边的平方和等于第三边的平方,则该三角形是直角三角形.2.D解析:D【解析】【分析】根据勾股定理的逆定理对四个选项进行逐一判断即可.【详解】A 、∵52+42≠62,∴此组数据不能构成直角三角形,故本选项错误;B 、12+22≠32,∴此组数据不能构成直角三角形,故本选项错误;C 、∵22+32≠42,∴此组数据不能构成直角三角形,故本选项错误;D 、∵12+)2=)2,∴此组数据能构成直角三角形,故本选项正确. 故选:D .【点睛】本题考查的是勾股定理的逆定理,即如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.3.C解析:C【解析】分析:根据一次函数的k 、b 的符号确定其经过的象限即可确定答案.详解:∵一次函数y x b =+中100k b =-,,∴一次函数的图象经过一、二、四象限,故选C .点睛:主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y kx b =+的图象有四种情况:①当k >0,b >0,函数y =kx +b 的图象经过第一、二、三象限;②当k >0,b <0,函数y =kx +b 的图象经过第一、三、四象限;③当k <0,b >0时,函数y =kx +b 的图象经过第一、二、四象限;④当k <0,b <0时,函数y =kx +b 的图象经过第二、三、四象限.4.A解析:A【解析】【分析】根据无理数的三种形式,①开方开不尽的数,②无限不循环小数,③含有π的数,结合题意判断即可.【详解】、•0.3、227-中,•0.3循环小数,是有理数;22是分数,是有理数;7=2,是整数,是有理数;所以无理数共1个.故选:A.【点睛】此题考查了无理数的概念,解答本题的关键是掌握无理数的定义,属于基础题,要熟练掌握无理数的三种形式,难度一般.5.C解析:C【解析】【分析】根据全等三角形的判定方法:SSS、SAS、ASA及AAS,即可判定.【详解】①满足SSS,能判定三角形全等;②满足SAS,能判定三角形全等;③满足ASA,能判定三角形全等;④的条件是两边及其一边的对角分别对应相等,不能判定三角形全等.△≌△全等的条件有3组.∴能使ABC DEF故选:C.【点睛】本题考查全等三角形的判定,解题关键是熟练掌握各种判定方法并注意“两边及其一边的对角分别对应相等”不能判定三角形全等.6.C解析:C【解析】【分析】直接把y=5代入y=2x+1,解方程即可.【详解】解:当y=5时,5=2x+1,解得:x=2,故选:C.【点睛】此题主要考查了函数值,关键是掌握已知函数解析式,给出函数值时,求相应的自变量的值就是解方程.7.B解析:B【解析】【分析】利用判断三角形全等的方法判断即可得出结论.【详解】A 、利用SAS 判断出△PCA ≌△PCB ,∴CA=CB ,∠PCA=∠PCB=90°, ∴点P 在线段AB 的垂直平分线上,符合题意;B 、过线段外一点作已知线段的垂线,不能保证也平分此条线段,不符合题意;C 、利用SSS 判断出△PCA ≌△PCB ,∴CA=CB ,∠PCA=∠PCB=90°,∴点P 在线段AB 的垂直平分线上,符合题意;D 、利用HL 判断出△PCA ≌△PCB ,∴CA=CB ,∴点P 在线段AB 的垂直平分线上,符合题意,故选B .【点睛】本题主要考查了全等三角形的判定,线段垂直平分线的判定,熟练掌握全等三角形的判断方法是解本题的关键.8.C解析:C【解析】【分析】直接利用关于y 轴对称则纵坐标相等横坐标互为相反数进而得出答案.【详解】解:点M (﹣3,2)关于y 轴对称的点的坐标为:(3,2).故选:C .【点睛】本题考查的知识点是关于x 轴、y 轴对称的点的坐标,属于基础题目,易于掌握.9.D解析:D【解析】【分析】首先根据题意画出图形,利用勾股定理计算出AC 的长.【详解】根据题意可得图形:AB=12cm ,BC=9cm ,在Rt △ABC 中:2222=129AB BC ++(cm ),则这只铅笔的长度大于15cm .故选D .【点睛】此题主要考查了勾股定理的应用,正确得出笔筒内铅笔的最短长度是解决问题的关键.10.A解析:A【解析】【分析】由折叠的性质和矩形的性质证出OP=BP,设OP=BP=x,则PC=6﹣x,再用勾股定理建立方程9+(6﹣x)2=x2,求出x即可.【详解】∵将△OAB沿OB翻折至△OA′B位置,OA′交BC于点P,∴∠A'OB=∠AOB,∵四边形OABC是矩形,∴BC∥OA,∴∠OBC=∠AOB,∴∠OBC=∠A'OB,∴OP=BP,∵点B的坐标为(6,3),∴AB=OC=3,OA=BC=6,设OP=BP=x,则PC=6﹣x,在Rt△OCP中,根据勾股定理得,OC2+PC2=OP2,∴32+(6﹣x)2=x2,解得:x=154,∴PC=6﹣154=94,∴P(94,3),故选:A.【点睛】此题主要考查折叠和矩形的性质以及利用勾股定理构建方程,熟练掌握,即可解题.二、填空题11.【解析】【分析】分式方程去分母转化为整式方程,由分式方程的解为负数,求出a的范围即可【详解】分式方程去分母得:2x+a=x+1解得:x=1-a,由分式方程解为负数,得到1-a<0,且1解析:12a a >≠且【解析】【分析】分式方程去分母转化为整式方程,由分式方程的解为负数,求出a 的范围即可【详解】分式方程去分母得:2x+a=x+1解得:x=1-a,由分式方程解为负数,得到1-a<0,且1-a≠-1解得:a >1且a≠2,故答案为: a >1且a≠2【点睛】此题考查分式方程的解,解题关键在于求出x 的值再进行分析12.【解析】【分析】根据等腰三角形的性质和直角三角形两锐角互余得到∠E=∠CPD,再根据对顶角相等得到∠E=∠APE,根据等角对等边得到AE=AP ,即可得到结论.【详解】∵AB=AC,∴∠B解析:20y x =-【解析】【分析】根据等腰三角形的性质和直角三角形两锐角互余得到∠E =∠CPD ,再根据对顶角相等得到∠E =∠APE ,根据等角对等边得到AE =AP ,即可得到结论.【详解】∵AB =AC ,∴∠B =∠C .∵PD ⊥BC ,∴∠EDB =∠PDC =90°,∴∠B +∠E =90°,∠C +∠CPD =90°,∴∠E =∠CPD .∵∠APE =∠CPD ,∴∠E =∠APE ,∴AE =AP .∵AB =AC =10,PC =x ,∴AP =AE =10-x .∵BE =AB +AE ,∴y =10+10-x =20-x .故答案为:y=20-x.【点睛】本题考查了等腰三角形的性质和判定以及直角三角形的性质.解题的关键是得到∠E=∠CPD.13.y=15+2x【解析】【分析】根据年产值y(万元)=现在的年产值+以后每年增加的年产值求解.【详解】解:∵某厂现在的年产值是15万元,计划今后每年增加2万元,∴年产值y与年数x之间的函数解析:y=15+2x【解析】【分析】根据年产值y(万元)=现在的年产值+以后每年增加的年产值求解.【详解】解:∵某厂现在的年产值是15万元,计划今后每年增加2万元,∴年产值y与年数x之间的函数关系为:y=15+2x,故答案为:y=15+2x.【点睛】此题主要考查一次函数在实际问题的应用,找到所求量的等量关系是解决问题的关键.14.【解析】【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标进行判断.【详解】∵函数的图像与的图像交于点,则关于x,y的二元一次方程组的解是,故答案为:.【点睛】本题考查了解析:12 xy=-⎧⎨=⎩【解析】【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标进行判断.【详解】∵函数y mx n =+的图像与y kx b =+的图像交于点(1,2)P -,则关于x ,y 的二元一次方程组,y mx n y kx b =+⎧⎨=+⎩的解是12x y =-⎧⎨=⎩, 故答案为:12x y =-⎧⎨=⎩. 【点睛】本题考查了一次函数与二元一次方程(组):方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标. 15.【解析】【分析】根据函数图像平移规律:上加下减常数项,左加右减自变量,变形即可.【详解】解:一次函数的图象向上平移3个单位长度可得:.故答案为:【点睛】本题考查了函数图像平移,解决本解析:31y x =-【解析】【分析】根据函数图像平移规律:上加下减常数项,左加右减自变量,变形即可.【详解】解:一次函数34y x =-的图象向上平移3个单位长度可得:34331y x x =-+=-. 故答案为:31y x =-【点睛】本题考查了函数图像平移,解决本题的关键是熟练掌握函数图像的平移规律,要与点的坐标平移区别开.16.【解析】【分析】由题意,可知点A 坐标为(1,),点B 坐标为(2,0),由直线与△OAB 的边界总有两个公共点,有截距b 在线段CD 之间,然后分别求出点C 坐标和点D 坐标,即可得到答案.【详解】解解析:231b -<<-【解析】【分析】由题意,可知点A 坐标为(1,3),点B 坐标为(2,0),由直线y x b =+与△OAB 的边界总有两个公共点,有截距b 在线段CD 之间,然后分别求出点C 坐标和点D 坐标,即可得到答案.【详解】解:如图,过点A 作AE ⊥x 轴,.∵△ABC 是等边三角形,且边长为2,∴OB=OA=2,OE=1, ∴22213AE -=∴点A 为(13B 为(2,0);当直线y x b =+经过点A (13ABC 边界只有一个交点,则13b +=31b =,∴点D 的坐标为(31);当直线y x b =+经过点B (2,0)时,与△ABC 边界只有一个交点,则20b +=,解得:2b =-,∴点C 的坐标为(0,2-);∴直线y x b =+与△OAB 的边界总有两个公共点时,截距b 在线段CD 之间,∴实数b 的范围是:231b -<<; 故答案为:231b -<<.【点睛】本题考查了等边三角形的性质,一次函数的图形和性质,解题的关键是掌握一次函数的图像和性质,掌握直线与等边三角形有一个交点是临界点,注意分类讨论. 17.k <1.【解析】【分析】一次函数y=kx+b ,当k <0时,y 随x 的增大而减小.据此列不等式解答即可.【详解】解:∵一次函数y=(k-1)x+2中y随x的增大而减小,∴k-1<0,解得k解析:k<1.【解析】【分析】一次函数y=kx+b,当k<0时,y随x的增大而减小.据此列不等式解答即可.【详解】解:∵一次函数y=(k-1)x+2中y随x的增大而减小,∴k-1<0,解得k<1,故答案是:k<1.【点睛】本题主要考查了一次函数的增减性.一次函数y=kx+b,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.18.130°或90°.【解析】分析:根据题意可以求得∠B和∠C的度数,然后根据分类讨论的数学思想即可求得∠ADC的度数.详解:∵在△ABC中,AB=AC,∠BAC=100°,∴∠B=∠C=40°解析:130°或90°.【解析】分析:根据题意可以求得∠B和∠C的度数,然后根据分类讨论的数学思想即可求得∠ADC 的度数.详解:∵在△ABC中,AB=AC,∠BAC=100°,∴∠B=∠C=40°,∵点D在BC边上,△ABD为直角三角形,∴当∠BAD=90°时,则∠ADB=50°,∴∠ADC=130°,当∠ADB=90°时,则∠ADC=90°,故答案为130°或90°.点睛:本题考查等腰三角形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用等腰三角形的性质和分类讨论的数学思想解答.19.>【解析】【分析】先把两个数分别平方,再根据两个负数的比较方法比较即可.【详解】解:∵,∵5<6∴.【点睛】本题考查实数的大小比较,解答本题的关键是熟练掌握两个负数的比较方法:两个解析:>【解析】【分析】先把两个数分别平方,再根据两个负数的比较方法比较即可.【详解】解:∵2(5=,2(6=∵5<6 ∴>【点睛】本题考查实数的大小比较,解答本题的关键是熟练掌握两个负数的比较方法:两个负数,绝对值大的反而小.20.【解析】【分析】观察函数图象得到,当x2时,一次函数y=kx+b 的图象都在一次函数y=mx+n 的图象的上方,由此得到不等式kx+bmx+n 的解集.【详解】∵当x2时,一次函数y=kx+b 的解析:2x ≥【解析】【分析】观察函数图象得到,当x ≥2时,一次函数y=kx+b 的图象都在一次函数y=mx+n 的图象的上方,由此得到不等式kx+b ≥mx+n 的解集.【详解】∵当x ≥2时,一次函数y=kx+b 的图象都在一次函数y=mx+n 的图象的上方,∴不等式kx+b ≥mx+n 的解集为x ≥2.故答案是:x ≥2.【点睛】考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.三、解答题21.ABE ACD ∆≅∆,证明详见解析.【解析】【分析】根据等边三角形的性质证明ΔABE ≅ΔACD 即可.【详解】ΔABE ≅ΔACD .证明如下:∵ΔABC 、ΔADE 都是等边三角形,∴AB =AC ,AD =AE ,∠BAC =∠DAE =60°,∴∠BAC +∠BAD =∠DAE +∠BAD ,即∠CAD =∠BAE .在ΔABE 和ΔCAD .∵AB =AC ,∠BAE =∠CAD ,AE =AD ,∴ΔABE ≅ΔACD .【点睛】本题考查了等边三角形的性质和全等三角形的判定.掌握等边三角形的性质是解答本题的关键.22.(1)22y x =-,y x =;(2)2x <;(3)1.【解析】【分析】(1)先把P (1,0),(0,-2)代入y=ax+b,可求出a,b 的值,然后把M 点坐标代入一次函数可求出m 的值;再将点M 的坐标代入y=kx 可得出k 的值.(2)观察函数图象,写出正比例函数图象在一次函数图象上方所对应的自变量的范围即可.(3)作MN 垂直x 轴,然后根据三角形面积求得即可.【详解】解:(1)∵y ax b =+经过()1,0和()0,2-∴02k b b =+⎧⎨-=⎩解得2k =,2b =- 一次函数表达式为:22y x =-∵点M 在该一次函数上,∴2222m =⨯-=,M 点坐标为()2,2又∵M 在函数y kx =上,∴2122m k ===. ∴正比例函数为y x =.(2)由图像可知,2x <时,22x x >-(3)作MN 垂直x 轴,由M 的纵坐标知2MN =,∴故11212MOP S ∆=⨯⨯=.【点睛】本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k 值相同.23.(1)详见解析;(2)185. 【解析】【分析】(1)根据线段垂直平分线性质得AE=CE=3,利用勾股定理逆定理可得;(2)作AH ⊥BC,由1122AB AE BE AH •=•可得高AH ,再求面积. 【详解】 (1)因为AC 的垂直平分线交AC 于点D ,所以AE=CE=3因为BC=BE+CE所以BE=BC-CE=8-3=5 因为32+42=52所以AB 2+AE 2=BE 2所以ABE ∆是直角三角形;(2)作AH ⊥BC由(1)可知1122AB AE BE AH •=• 所以435AH ⨯=所以AH=125所以ACE ∆的面积=11121832255EC AH •=⨯⨯= 【点睛】 考核知识点:线段垂直平分线、勾股定理逆定理.理解线段垂直平分线性质和勾股定理逆定理是关键.24.见解析【解析】【分析】由CE=DE 易得∠ECD=∠EDC ,结合AB ∥CD 易得∠AEC=∠BED ,由此再结合AE=BE ,CE=DE 即可证得△AEC ≌△BED ,由此即可得到AC=BD.【详解】∵CE DE =,∴ECD EDC ∠=∠,∵//AB CD ,∴AEC ECD ∠=∠,BED EDC ∠=∠,∴AEC BED ∠=∠,又∵E 是AB 的中点,∴AE BE =,在AEC 和BED 中,AE BE AEC BED CE DE =⎧⎪∠=∠⎨⎪=⎩,∴AEC ≌BED .∴AC BD =.【点睛】熟悉“等腰三角形的性质、平行线的性质和全等三角形的判定方法”是解答本题的关键.25.(1)60;(2)14h ;(3)点E 代表的实际意义是在行驶143h 时,客车和货车相遇,相遇时两车离C 站的距离为80km .【解析】【分析】(1)由图象可知客车6小时行驶的路程是360km ,从而可以求得客车的速度;(2)由图象可以得到货车行驶的总的路程,前2h 行驶的路程是60km ,从而可以起求得货车由B 地行驶至A 地所用的时间;(3)根据图象利用待定系数法分别求得EF 和DP 所在直线的解析式,然后联立方程组即可求得点E 的坐标,根据题意可以得到点E 代表的实际意义.【详解】解:(1)由图象可得,客车的速度是:360÷6=60(km/h ),故答案为:60;(2)由图象可得,货车由B 地到A 地的所用的时间是:(60+360)÷(60÷2)=14(h ),即货车由B 地到A 地的所用的时间是14h ;(3)设客车由A 到C 对应的函数解析式为y=kx+b ,则36060bk b=⎧⎨+=⎩,得60360kb=-⎧⎨=⎩,即客车由A到C对应的函数解析式为y=-60x+360;根据(2)知点P的坐标为(14,360),设货车由C到A对应的函数解析式为y=mx+n,则2014360m nm n+=⎧⎨+=⎩,得3060mn=⎧⎨=-⎩,即货车由C到A对应的函数解析式为y=30x-60;∴603603060y xy x=-+⎧⎨=-⎩,得14380xy⎧=⎪⎨⎪=⎩,∴点E的坐标为(143,80),故点E代表的实际意义是在行驶143h时,客车和货车相遇,相遇时两车离C站的距离为80km.【点睛】本题考查一次函数的应用,解答此类问题的关键是明确题意,利用待定系数法求出一次函数解析式,然后利用一次函数的性质和数形结合的思想解答.四、压轴题26.(1)见解析;(2)①见解析;②见解析【解析】【分析】(1)由点M是AC中点知AM=CM,结合∠AMD=∠CMB和DM=BM即可得证;(2)①由点M,N分别是AC,BC的中点及AC=BC可得CM=CN,结合∠C=∠C和BC=AC 即可得证;②取AD中点F,连接EF,先证△EAF≌△ANC得∠NAC=∠AEF,∠C=∠AFE=90°,据此知∠AFE=∠DFE=90°,再证△AFE≌△DFE得∠EAD=∠EDA=∠ANC,从而由∠EDB=∠EDA+∠ADB=∠EAD+∠NAC=180°-∠DAM即可得证.【详解】解:(1)∵点M是AC中点,∴AM=CM,在△DAM和△BCM中,∵AM CMAMD CMBDM BM=⎧⎪∠=∠⎨⎪=⎩,∴△DAM≌△BCM(SAS);(2)①∵点M是AC中点,点N是BC中点,∴CM=12AC ,CN=12BC , ∵△ABC 是等腰直角三角形,∴AC=BC ,∴CM=CN ,在△BCM 和△ACN 中,∵CM CN C C BC AC =⎧⎪∠=∠⎨⎪=⎩,∴△BCM ≌△ACN (SAS );②证明:取AD 中点F ,连接EF ,则AD=2AF ,∵△BCM ≌△ACN ,∴AN=BM ,∠CBM=∠CAN ,∵△DAM ≌△BCM ,∴∠CBM=∠ADM ,AD=BC=2CN ,∴AF=CN ,∴∠DAC=∠C=90°,∠ADM=∠CBM=∠NAC ,由(1)知,△DAM ≌△BCM ,∴∠DBC=∠ADB ,∴AD ∥BC ,∴∠EAF=∠ANC ,在△EAF 和△ANC 中,AE AN EAF ANC AF NC =⎧⎪∠=∠⎨⎪=⎩,∴△EAF ≌△ANC (SAS ),∴∠NAC=∠AEF ,∠C=∠AFE=90°,∴∠AFE=∠DFE=90°,∵F 为AD 中点,∴AF=DF ,在△AFE 和△DFE 中,AF DF AFE DFE EF EF =⎧⎪∠=∠⎨⎪=⎩,∴△AFE ≌△DFE (SAS ),∴∠EAD=∠EDA=∠ANC ,∴∠EDB=∠EDA+∠ADB=∠EAD+∠NAC=180°-∠DAM=180°-90°=90°,∴BD ⊥DE .【点睛】本题是三角形的综合问题,解题的关键是掌握中点的性质、等腰直角三角形的性质、全等三角形的判定与性质等知识点.27.(1)b=72;(2)①△APQ 的面积S 与t 的函数关系式为S=﹣32t +272或S=32t ﹣272;②7<t <9或9<t <11,③存在,当t 的值为3或9+或9﹣或6时,△APQ 为等腰三角形.【解析】分析:(1)把P (m ,3)的坐标代入直线1l 的解析式即可求得P 的坐标,然后根据待定系数法即可求得b ;(2)根据直线2l 的解析式得出C 的坐标,①根据题意得出9AQ t =-,然后根据12P S AQ y =⋅即可求得APQ 的面积S 与t 的函数关系式;②通过解不等式273322t -<或327 3.22t -<即可求得7<t <9或9<t <11.时,APQ 的面积小于3;③分三种情况:当PQ =PA 时,则()()()2222(71)032103,t -++-=++-当AQ =PA 时,则()()222(72)2103,t --=++-当PQ =AQ 时,则()222(71)03(72)t t -++-=--,即可求得.详解:解;(1)∵点P (m ,3)为直线l 1上一点,∴3=−m +2,解得m =−1,∴点P 的坐标为(−1,3),把点P 的坐标代入212y x b =+ 得,()1312b =⨯-+, 解得72b =; (2)∵72b =; ∴直线l 2的解析式为y =12x +72,∴C 点的坐标为(−7,0),①由直线11:2l y x =-+可知A (2,0),∴当Q 在A . C 之间时,AQ =2+7−t =9−t , ∴11273(9)32222S AQ yP t t =⋅=⨯-⨯=-; 当Q 在A 的右边时,AQ =t −9, ∴11327(9)32222S AQ yP t t ;=⋅=⨯-⨯=- 即△APQ 的面积S 与t 的函数关系式为27322S t =-或327.22S t =- ②∵S <3, ∴273322t -<或327 3.22t -< 解得7<t <9或9<t <11. ③存在;设Q (t −7,0),当PQ =PA 时,则()()()2222(71)032103,t -++-=++-∴22(6)3t -=,解得t =3或t =9(舍去), 当AQ =PA 时,则()()222(72)2103,t --=++-∴2(9)18,t -=解得9t =+9t =- 当PQ =AQ 时,则()222(71)03(72)t t -++-=--,∴22(6)9(9)t t -+=-, 解得t =6.故当t 的值为3或9+9-6时,△APQ 为等腰三角形.点睛:属于一次函数综合题,考查了一次函数图象上点的坐标特征,待定系数法求函数解析式,等腰三角形的性质以及三角形的面积,分类讨论是解题的关键.28.(1)证明见解析;(2)①CM =8t -,CN =63t -;②t =3.5或5或6.5.【解析】【分析】(1)根据垂直的定义得到∠DAC=∠ECB ,利用AAS 定理证明△ACD ≌△CBE ;(2)①由折叠的性质可得出答案;②动点N 沿F→C 路径运动,点N 沿C→B 路径运动,点N 沿B→C 路径运动,点N 沿C→F 路径运动四种情况,根据全等三角形的判定定理列式计算.【详解】(1)∵AD ⊥直线l ,BE ⊥直线l ,∴∠DAC+∠ACD=90°,∵∠ACB=90°,∴∠BCE+∠ACD=90°,∴∠DAC=∠ECB ,在△ACD 和△CBE 中,ADC CEB DAC ECB CA CB ∠∠⎧⎪∠∠⎨⎪⎩===,∴△ACD ≌△CBE (AAS );(2)①由题意得,AM=t ,FN=3t ,则CM=8-t ,由折叠的性质可知,CF=CB=6,∴CN=6-3t ;故答案为:8-t ;6-3t ;②由折叠的性质可知,∠BCE=∠FCE ,∵∠MCD+∠CMD=90°,∠MCD+∠BCE=90°,∴∠NCE=∠CMD ,∴当CM=CN 时,△MDC 与△CEN 全等,当点N 沿F →C 路径运动时,8-t=6-3t ,解得,t=-1(不合题意),当点N 沿C→B 路径运动时,CN=3t-6,则8-t=3t-6,解得,t=3.5,当点N 沿B→C 路径运动时,由题意得,8-t=18-3t ,解得,t=5,当点N 沿C→F 路径运动时,由题意得,8-t=3t-18,解得,t=6.5,综上所述,当t=3.5秒或5秒或6.5秒时,△MDC 与△CEN 全等.【点睛】本题考查了折叠的性质,全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理,灵活运用分情况讨论思想是解题的关键.29.(1)30°;(2)证明见解析;(3)AOB ∠是定值,60AOB ∠=︒.【解析】【分析】(1)根据等边三角形的性质可以直接得出结论;(2)根据等边三角形的性质就可以得出AC AC =,DC EC =,,60ACB DCE ∠=∠=︒,由等式的性质就可以BCE ACD ∠=∠,根据SAS 就可以得出ADC BEC ∆≅∆;(3)分情况讨论:当点D 在线段AM 上时,如图1,由(2)可知ACD BCE ≅∆∆,就可以求出结论;当点D 在线段AM 的延长线上时,如图2,可以得出ACD BCE ≅∆∆而有30CBE CAD ∠=∠=︒而得出结论;当点D 在线段MA 的延长线上时,如图3,通过得出ACD BCE ≅∆∆同样可以得出结论.【详解】(1)ABC ∆是等边三角形,60BAC ∴∠=︒.线段AM 为BC 边上的中线,12CAM BAC ∴∠=∠, 30CAM ∴∠=︒.(2)ABC ∆与DEC ∆都是等边三角形,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒,ACD DCB DCB BCE ∴∠+∠=∠+∠,ACD BCE ∠∠∴=.在ADC ∆和BEC ∆中AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,()ACD BCE SAS ∴∆≅∆;(3)AOB ∠是定值,60AOB ∠=︒,理由如下:①当点D 在线段AM 上时,如图1,由(2)可知ACD BCE ≅∆∆,则30CBE CAD ∠=∠=︒,又60ABC ∠=︒,603090CBE ABC ∴∠+∠=︒+︒=︒,ABC ∆是等边三角形,线段AM 为BC 边上的中线AM ∴平分BAC ∠,即11603022BAM BAC ∠=∠=⨯︒=︒ 903060BOA ∴∠=︒-︒=︒.②当点D 在线段AM 的延长线上时,如图2,ABC ∆与DEC ∆都是等边三角形,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒,ACB DCB DCB DCE ∴∠+∠=∠+∠,ACD BCE ∠∠∴=,在ACD ∆和BCE ∆中AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,()ACD BCE SAS ∴∆≅∆,30CBE CAD ∴∠=∠=︒,同理可得:30BAM ∠=︒,903060BOA∴∠=︒-︒=︒.③当点D在线段MA的延长线上时,ABC∆与DEC∆都是等边三角形,AC BC∴=,CD CE=,60ACB DCE∠=∠=︒,60ACD ACE BCE ACE∴∠+∠=∠+∠=︒,ACD BCE∠∠∴=,在ACD∆和BCE∆中AC BCACD BCECD CE=⎧⎪∠=∠⎨⎪=⎩,()ACD BCE SAS∴∆≅∆,CBE CAD∴∠=∠,同理可得:30CAM∠=︒150CBE CAD∴∠=∠=︒30CBO∴∠=︒,∵30BAM∠=︒,903060BOA∴∠=︒-︒=︒.综上,当动点D在直线AM上时,AOB∠是定值,60AOB∠=︒.【点睛】此题考查等边三角形的性质,全等三角形的判定及性质,等边三角形三线合一的性质,解题中注意分类讨论的思想解题.30.(1)全等,理由见解析;(2)t=3.5秒或5秒【解析】【分析】(1)根据垂直的定义得到∠DAC=∠ECB,利用AAS定理证明△ACD≌△CBE;(2)分点F沿C→B路径运动和点F沿B→C路径运动两种情况,根据等腰三角形的定义列出算式,计算即可;【详解】。

江苏省苏州市八年级(上)期末数学试卷--

江苏省苏州市八年级(上)期末数学试卷--

ABC 为等腰直角三角形,D 为斜边 BC 上的中点,若 OD= ,则 a+b=

三、解答题(本大题共 10 小题,共 64 分.请在答题卡指定区域内作答,解答时应写出文字 说明证明过程或演算步骤.) 19.(5 分)计算:(﹣ )2﹣ +( ﹣1)0.
20.(5 分)某人平均一天饮水 1980 毫升. (1)求此人 30 天一共饮水多少毫升? (2)用四舍五入法将(1)中计算得到的数据精确到 10000,并用科学记数法表示.
坐标为( )
A.(﹣1,1)
B.(1,﹣1)
C.(2,﹣2)
D.(﹣2,2)
6.(2 分)已知三组数据:①2,3,4;②3,4,5;③ ,2, .以每组数据分别作为
三角形的三边长,其中能构成直角三角形的为( )
A.①
B.①②
C.①③
D.②③
7.(2 分)等腰三角形的底边长为 24,底边上的高为 5,它的腰长为( )
16.(2 分)如图,△ABC 为等腰直角三角形,∠ABC=90°,△ADB 为等边三角形,则∠
ADC=
°.
17.(2 分)如图,已知 E 为长方形纸片 ABCD 的边 CD 上一点,将纸片沿 AE 对折,点 D
的对应点 D′恰好在线段 BE 上.若 AD=3,DE=1,则 AB=

18.(2 分)如图,已知点 A(a,0)在 x 轴正半轴上,点 B(0,b)在 y 轴的正半轴上,△
故选:D.
9.(2 分)如图,函数 y=﹣ x+3 的图象分别与 x 轴、y 轴交于点 A、B,∠BAO 的平分线
AC 与 y 轴交于点 C,则点 C 的纵坐标为( )
A.
B.
C.2

江苏省苏州市第一学期八年级数学期末试卷(含解析)

江苏省苏州市第一学期八年级数学期末试卷(含解析)

江苏省苏州市第一学期八年级数学期末试卷(含解析)一、选择题1.在平面直角坐标系中,下列各点在第二象限的是( ) A .(3,1) B .(3,-1) C .(-3,1) D .(-3,-1)2.下列成语描述的事件为随机事件的是( ) A .守株待兔 B .水中捞月 C .瓮中捉鳖 D .水涨船高 3.已知等腰三角形的两边长分别为3和4,则它的周长为( )A .10B .11C .10或11D .74.如图,∠AOB=60°,OA=OB ,动点C 从点O 出发,沿射线OB 方向移动,以AC 为边在右侧作等边△ACD ,连接BD ,则BD 所在直线与OA 所在直线的位置关系是( )A .平行B .相交C .垂直D .平行、相交或垂直5.在3π-,3127-,7,227-,中,无理数的个数是( ) A .1个B .2个C .3个D .4个6.关于三角形中边与角之间的不等关系,提出如下命题:命题1:在一个三角形中,如果两条边不等,那么它们所对的角也不等,大边所对的角较大;命题2:在一个三角形中,如果两个角不等,那么它们所对的边也不等,大角所对的边较大;命题3:如果一个三角形中最大的边所对的角是锐角,这个三角形一定是锐角三角形; 命题4:直角三角形中斜边最长; 以上真命题的个数是( ) A .1B .2C .3D .47.如图,∠AOB=60°,点P 是∠AOB 内的定点且OP=3,若点M 、N 分别是射线OA 、OB 上异于点O 的动点,则△PMN 周长的最小值是( )A 36B 33C .6D .38.一辆货车早晨7∶00出发,从甲地驶往乙地送货.如图是货车行驶路程y (km )与行驶时间x (h )的完整的函数图像(其中点B 、C 、D 在同一条直线上),小明研究图像得到了以下结论:①甲乙两地之间的路程是100 km ; ②前半个小时,货车的平均速度是40 km/h ; ③8∶00时,货车已行驶的路程是60 km ; ④最后40 km 货车行驶的平均速度是100 km/h ; ⑤货车到达乙地的时间是8∶24, 其中,正确的结论是( )A .①②③④B .①③⑤C .①③④D .①③④⑤ 9.点(2,-3)关于原点对称的点的坐标是( )A .(-2,3)B .(2,3)C .(-3,-2)D .(2,-3)10.如图,若BD 是等边△ABC 的一条中线,延长BC 至点E ,使CE=CD=x ,连接DE ,则DE的长为( )A 3xB .23xC 3xD 3x二、填空题11.17.85精确到十分位是_____.12.若函数y =2x +3﹣m 是正比例函数,则m 的值为_____.13.已知点(,)P m n 在一次函数31y x =-的图像上,则2296m mn n -+=___________. 14.如图,已知函数y =x +b 和y =ax +3的图象交点为P ,则不等式x +b <ax +3的解集为_____.15.如果2x -有意义,那么x 可以取的最小整数为______. 16.阅读理解:对于任意正整数a ,b ,∵()20a b-≥,∴20a ab b -+≥,∴2a b ab +≥,只有当a b =时,等号成立;结论:在2a b ab +≥(a 、b 均为正实数)中,只有当a b =时,+a b 有最小值2ab .若1m ,11m m +-有最小值为__________.17.如图,△ABC 中,AD 平分∠BAC ,AB =4,AC =2,且△ABD 的面积为2,则△ABC 的面积为_________.18.一个正方形的边长增加2cm ,它的面积就增加24cm ,这个正方形的边长是______cm .19.已知点M(-1,a)和点N(-2,b)是一次函数y=-2x+1图象上的两点,则a 与b 的大小关系是__________。

苏州市八年级(上)期末数学试卷(含答案)

苏州市八年级(上)期末数学试卷(含答案)

苏州市八年级(上)期末数学试卷(含答案)一、选择题1.如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(﹣2,3),先把△ABC向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于x轴对称的△A2B2C2,则点A的对应点A2的坐标是()A.(-3,2) B.(2,-3)C.(1,-2)D.(-1,2)2.已知一次函数y=kx+3(k≠0)的图象经过点A,且函数值y随x的增大而增大,则点A 的坐标可能是()A.(﹣2,﹣4)B.(1,2)C.(﹣2,4)D.(2,﹣1)3.7的平方根是()A.±7 B.7 C.-7 D.±74.如图,将△ABC折叠,使点A与BC边中点D重合,折痕为MN,若AB=9,BC=6,则△DNB的周长为()A.12B.13C.14D.155.下列图案中,不是轴对称图形的是()A.B.C.D.6.下到图形中,不是轴对称图形的是()A.B.C.D.7.下列四组数,可作为直角三角形三边长的是 A .456cm cm cm 、、B .123cm cm cm 、、C .234cm cm cm 、、D .123cm cm cm 、、 8.对于函数y =2x ﹣1,下列说法正确的是( ) A .它的图象过点(1,0)B .y 值随着x 值增大而减小C .它的图象经过第二象限D .当x >1时,y >0 9.下列各点中,在第四象限且到x 轴的距离为3个单位的点是( )A .(﹣2,﹣3)B .(2,﹣3)C .(﹣4,3)D .(3,﹣4) 10.下列说法中,不正确的是( )A .2﹣3的绝对值是2﹣3B .2﹣3的相反数是3﹣2C .64的立方根是2D .﹣3的倒数是﹣13二、填空题11.如图所示的棋盘放置在某个平面直角坐标系内,棋子A 的坐标为(﹣2,﹣3),棋子B 的坐标为(1,﹣2),那么棋子C 的坐标是_____.12.如图,在ABC ∆中,AD 平分BAC ∠,DE AB ⊥于点E ,ABC ∆的面积为15,3DE =,6AB =,则AC 的长________.13.3.145精确到百分位的近似数是____.14.根据如图所示的计算程序,小明输入的x 的值为36,则输出的y 的值为__________.15.4的平方根是 .16.下图所示的网格是正方形网格,BAC ∠________DAE ∠.(填“>”,“=”或“<”)17.甲、乙二人做某种机械零件.已知甲每小时比乙多做4个,甲做60个所用的时间比乙做40个所用的时间相等,则乙每小时所做零件的个数为_____.18.用四舍五入法将2.0259精确到0.01的近似值为_____.19.在平面直角坐标系中,已知线段AB 的两个端点坐标分别是A (-4,-1),B (1,1),将线段AB 平移后得到线段A B ''(点A 的对应点为A '),若点A '的坐标为(-2,2)则点B '的坐标为________________20.如图,在△ABC 中,∠C =90°,∠B =22.5°,DE 垂直平分AB 交BC 于点E ,EC =1,则三角形ACE 的面积为__.三、解答题21.阅读下列材料,然后解答问题:问题:分解因式:3245x x +-.解答:把1x =带入多项式3245x x +-,发现此多项式的值为0,由此确定多项式3245x x +-中有因式()1x -,于是可设()()322451x x x x mx n +-=-++,分别求出m ,n 的值.再代入()()322451x x x x mx n +-=-++,就容易分解多项式3245x x +-,这种分解因式的方法叫做“试根法”.(1)求上述式子中m ,n 的值;(2)请你用“试根法”分解因式:3299x x x +--.22.已知坐标平面内的三个点(1,3)A ,(3,1)B ,(0,0)O ,把ABO ∆向下平移3个单位再向右平移2个单位后得DEF ∆.(1)画出DEF ∆;(2)DEF ∆的面积为 .23.先化简,再求值:2221111x x x x x ++⎛⎫-÷ ⎪--⎝⎭,其中2x =. 24.计算与求值:(1)计算:()203120195274+-+--. (2)求x 的值:24250x -=25.阅读下列材料,并回答问题.事实上,在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方,这个结论就是著名的勾股定理.请利用这个结论,完成下面活动:()1一个直角三角形的两条直角边分别为512、,那么这个直角三角形斜边长为____; ()2如图①,AD BC ⊥于,,,10,6D AD BD AC BE AC DC ====,求BD 的长度; ()3如图②,点A 在数轴上表示的数是____请用类似的方法在图2数轴上画出表示数10B 点(保留痕迹).四、压轴题26.如图(1),AB =4cm ,AC ⊥AB ,BD ⊥AB ,AC =BD =3cm .点 P 在线段 AB 上以1/cm s的速度由点 A 向点 B 运动,同时,点 Q 在线段 BD 上由点 B 向点 D 运动.它们运动的时间为t(s).(1)若点 Q 的运动速度与点 P 的运动速度相等,当t=1 时,△ACP 与△BPQ 是否全等,请说明理由,并判断此时线段 PC 和线段 PQ 的位置关系;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”,其他cm s,是否存在实数x,使得△ACP 与△BPQ 全等?若条件不变.设点 Q 的运动速度为x/存在,求出相应的x、t的值;若不存在,请说明理由.27.如图,已知等腰△ABC 中,AB=AC,∠A<90°,CD 是△ABC 的高,BE 是△ABC 的角平分线,CD 与BE 交于点P.当∠A 的大小变化时,△EPC 的形状也随之改变.(1)当∠A=44°时,求∠BPD 的度数;(2)设∠A=x°,∠EPC=y°,求变量y 与x 的关系式;(3)当△EPC 是等腰三角形时,请直接写出∠A 的度数.28.在平面直角坐标系中点A(m−3,3m+3),点 B(m,m+4)和 D(0,−5),且点 B 在第二象限.(1)点 B 向 平移 单位,再向下平移 (用含 m 的式子表达)单位可以与点 A 重合; (2)若点 B 向下移动 3 个单位,则移动后的点 B 和点 A 的纵坐标相等,且有点 C (m −2,0).①则此时点 A 、B 、C 坐标分别为 、 、 .②将线段 AB 沿 y 轴负方向平移 n 个单位,若平移后的线段 AB 与线段 CD 有公共点,求 n 的取值范围.③当 m <−1 式,连接 AD ,若线段 AD 沿直线 AB 方向平移得到线段 BE ,连接 DE 与直线y=−2 交于点 F ,则点 F 坐标为 .(用含 m 的式子表达)29.如图1中的三种情况所示,对于平面内的点M ,点N ,点P ,如果将线段PM 绕点P 顺时针旋转90°能得到线段PN ,就称点N 是点M 关于点P 的“正矩点”.(1)在如图2所示的平面直角坐标系xOy 中,已知(3,1),(1,3),(1,3)S P Q ---,(2,4)M -.①在点P ,点Q 中,___________是点S 关于原点O 的“正矩点”;②在S ,P ,Q ,M 这四点中选择合适的三点,使得这三点满足:点_________是点___________关于点___________的“正矩点”,写出一种情况即可; (2)在平面直角坐标系xOy 中,直线3(0)y kx k =+<与x 轴交于点A ,与y 轴交于点B ,点A 关于点B 的“正矩点”记为点C ,坐标为(,)C C C x y .①当点A 在x 轴的正半轴上且OA 小于3时,求点C 的横坐标C x 的值;②若点C 的纵坐标C y 满足12C y -<≤,直接写出相应的k 的取值范围.30.一次函数y=kx+b的图象经过点A(0,9),并与直线y=53x相交于点B,与x轴相交于点C,其中点B的横坐标为3.(1)求B点的坐标和k,b的值;(2)点Q为直线y=kx+b上一动点,当点Q运动到何位置时△OBQ的面积等于272?请求出点Q的坐标;(3)在y轴上是否存在点P使△PAB是等腰三角形?若存在,请直接写出点P坐标;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】首先利用平移的性质得到△A1B1C1,进而利用关于x轴对称点的性质得到△A2B2C2,即可得出答案.【详解】如图所示:点A的对应点A2的坐标是:(2,﹣3).故选B.2.A解析:A【解析】【分析】先根据一次函数的增减性判断出k的符号,再对各选项进行逐一分析即可.【详解】∵一次函数y=kx+2(k≠0)的函数值y随x的增大而增大,∴k>0.A. ∵当x=-2,y=-4时,-2k+3=-4,解得k=3.5>0,∴此点符合题意,故本选项正确;B. ∵当x=1,y=2时, k+3=2,解得k=-1<0,∴此点不符合题意,故本选项错误;C. ∵当x=-2,y=4时,-2k+3=4,解得k=−0.5<0,∴此点不符合题意,故本选项错误;D. ∵当x=2,y=−1时,2k+3=−1,解得k=-2<0,∴此点不符合题意,故本选项错误.故答案选A..【点睛】本题考查的知识点是一次函数图像上点的坐标特征,解题的关键是熟练的掌握一次函数图像上点的坐标特征.3.D解析:D【解析】【分析】根据乘方运算,可得一个正数的平方根.【详解】7)2=7,∴77.故选:D.【点睛】本题考查了平方根,利用了乘方运算求一个正数的平方根,注意一个正数有两个平方根.4.A【解析】【分析】根据中点的定义可得BD=3,由折叠的性质可知DN=AN,即DN+BN=AB=9,可得△DNB的周长.【详解】解:∵D是BC的中点,BC=6,∴BD=3,由折叠的性质可知DN=AN,∴△DNB的周长=DN+BN+BD=AN+BN+BD=AB+BD=9+3=12.故选A.【点睛】本题主要考查翻折变换,解题的关键是掌握翻折变换的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等5.D解析:D【解析】【分析】根据轴对称图形的概念求解.【详解】解:A、是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项不合题意;C、是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项符合题意.故选:D.【点睛】此题主要考查了轴对称的概念,轴对称的关键是寻找对称轴,折叠后两边会重合.6.C解析:C【解析】【分析】根据轴对称图形的定义,依次对各选项进行判断即可. 轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.【详解】解:A、是轴对称图形,故此选项错误;B、是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项正确;D、是轴对称图形,故此选项错误;【点睛】此题主要考查了轴对称图形,熟记轴对称图形的定义,并能依据定义判断一个图形是不是轴对称图形是解决此题的关键.7.D解析:D【解析】【分析】根据勾股定理的逆定理对四个选项进行逐一判断即可.【详解】A、∵52+42≠62,∴此组数据不能构成直角三角形,故本选项错误;B、12+22≠32,∴此组数据不能构成直角三角形,故本选项错误;C、∵22+32≠42,∴此组数据不能构成直角三角形,故本选项错误;D、∵12+(2)2=(3)2,∴此组数据能构成直角三角形,故本选项正确.故选:D.【点睛】本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.8.D解析:D【解析】,错误.画函数的图象,选项A,点(1,0)代入函数,01由图可知,B,C错误,D,正确. 选D.9.B解析:B【解析】【分析】首先确定各点所在象限,再根据到x轴的距离为3个单位可得此点的纵坐标的绝对值为3,进而可得答案.【详解】A、(﹣2,﹣3)在第三象限,故此选项不合题意;B、(2,﹣3)在第四象限,到x轴的距离为3个单位,故此选项符合题意;C、(﹣4,3)在第二象限,故此选项不合题意;D、(3,﹣4)在第四象限,到x轴的距离为4个单位,故此选项不符合题意;故选:B.【点睛】此题主要考查根据象限判定坐标,熟练掌握,即可解题.10.A解析:A【解析】【分析】分别根据实数绝对值的意义、相反数的定义、立方根的定义和倒数的定义逐项解答即可.【详解】解:A,故A选项不正确,所以本选项符合题意;B,正确,所以本选项不符合题意;C82,正确,所以本选项不符合题意;D、﹣3的倒数是﹣13,正确,所以本选项不符合题意.故选:A.【点睛】本题考查了实数的绝对值、相反数、立方根和倒数的定义,属于基础知识题型,熟练掌握实数的基本知识是解题关键.二、填空题11.(2,1)【解析】【分析】先由点A、B坐标建立平面直角坐标系,进而可得点C坐标.【详解】解:由点A、B坐标可建立如图所示的平面直角坐标系,则棋子C的坐标为(2,1).故答案为:(2,解析:(2,1)【解析】【分析】先由点A、B坐标建立平面直角坐标系,进而可得点C坐标.【详解】解:由点A、B坐标可建立如图所示的平面直角坐标系,则棋子C的坐标为(2,1).故答案为:(2,1).【点睛】本题考查了坐标确定位置,根据点A、B的坐标确定平面直角坐标系是解题关键.12.4【解析】【分析】过点D作DF⊥AC于F,然后利用△ABC的面积公式列式计算即可得解.【详解】过点D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=3,∴S△解析:4【解析】【分析】过点D作DF⊥AC于F,然后利用△ABC的面积公式列式计算即可得解.【详解】过点D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=3,∴S△ABC=12×6×3+12AC×3=15,解得AC=4.故答案为:4.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质并利用三角形的面积列出方程是解题的关键.13.15.【解析】【分析】根据近似数的精确度求解.3.145精确到百分位就是精确到数字4这一位,后一位数字5四舍五入即可.【详解】解:3.145≈3.15(精确到百分位).故答案为3.15.解析:15.【解析】【分析】根据近似数的精确度求解.3.145精确到百分位就是精确到数字4这一位,后一位数字5四舍五入即可.【详解】解:3.145≈3.15(精确到百分位).故答案为3.15.【点睛】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.14.0【解析】【分析】根据题意,由时,代入,求出答案即可.【详解】解:∵小明输入的的值为36,∴;故答案为:0.【点睛】本题考查了代数式求值:把满足条件的字母的值代入代数式进行计算得到解析:0【解析】【分析】根据题意,由36x =时,代入32y =-,求出答案即可. 【详解】解:∵小明输入的x 的值为36,∴3330y =-=-=; 故答案为:0.【点睛】本题考查了代数式求值:把满足条件的字母的值代入代数式进行计算得到对应的代数式的值.15.±2.【解析】试题分析:∵,∴4的平方根是±2.故答案为±2.考点:平方根.解析:±2.【解析】试题分析:∵2(2)4±=,∴4的平方根是±2.故答案为±2.考点:平方根.16.>【解析】【分析】构造等腰直角三角形,根据等腰直角三角形的性质即可进行比较大小.【详解】解:如下图所示,是等腰直角三角形,∴,∴.故答案为另:此题也可直接测量得到结果.【点解析:>【解析】【分析】构造等腰直角三角形,根据等腰直角三角形的性质即可进行比较大小.【详解】解:如下图所示,AFG 是等腰直角三角形,∴45FAG BAC ∠=∠=︒,∴BAC DAE ∠>∠.故答案为.>另:此题也可直接测量得到结果.【点睛】本题考查等腰直角三角形的性质,构造等腰直角三角形是解题的关键.17.8【解析】【分析】【详解】解:设乙每小时做x 个,则甲每小时做(x+4)个,甲做60个所用的时间为,乙做40个所用的时间为,列方程为:=,解得:x=8,经检验:x=8是原分式方程的解,解析:8【解析】【分析】【详解】解:设乙每小时做x 个,则甲每小时做(x+4)个,甲做60个所用的时间为604x +,乙做40个所用的时间为40x , 列方程为:604x +=40x, 解得:x=8,经检验:x=8是原分式方程的解,且符合题意,所以乙每小时做8个,故答案为8.【点睛】本题考查了列分式方程解实际问题的运用,解答时甲做60个零件所用的时间与乙做90个零件所用的时间相等建立方程是关键.18.03【解析】【分析】把千分位上的数字5进行四舍五入即可.【详解】解:2.0259精确到0.01的近似值为2.03.故答案为:2.03.【点睛】本题考查的知识点是近似数与有效数字,近似解析:03【解析】【分析】把千分位上的数字5进行四舍五入即可.【详解】解:2.0259精确到0.01的近似值为2.03.故答案为:2.03.【点睛】本题考查的知识点是近似数与有效数字,近似数精确到哪一位,就看它的后面一位,进行四舍五入计算即可.19.(3,4)【解析】分析:首先根据点A和点A′的坐标得出平移的方向和平移的数量,然后根据平移法则得出点B′的坐标.详解:∵A的坐标为(-4,-1),A′的坐标为(-2,2),∴平移法则为:先向解析:(3,4)【解析】分析:首先根据点A和点A′的坐标得出平移的方向和平移的数量,然后根据平移法则得出点B′的坐标.详解:∵A的坐标为(-4,-1),A′的坐标为(-2,2),∴平移法则为:先向右平移2个单位,再向上平移3个单位,∴点B′的坐标为(3,4).点睛:本题主要考查的是线段的平移法则,属于基础题型.线段的平移法则就是点的平移法则,属于基础题型.20..【解析】【分析】由线段垂直平分线的性质可知EA =EB ,由等边对等角的性质及外角的性质可得∠AEC=45°,易知△ACE 为等腰直角三角形,可得CA 长,利用三角形面积公式求解即可.【详解】解 解析:12. 【解析】【分析】 由线段垂直平分线的性质可知EA =EB ,由等边对等角的性质及外角的性质可得∠AEC =45°,易知△ACE 为等腰直角三角形,可得CA 长,利用三角形面积公式求解即可.【详解】解:∵DE 垂直平分AB 交BC 于点E ,∴EA =EB ,∴∠EAB =∠B =22.5°,∴∠AEC =∠EAB +∠B =45°,∵∠C =90°,∴△ACE 为等腰直角三角形,∴CA =CE =1,∴三角形ACE 的面积=12×1×1=12. 故答案为:12. 【点睛】本题主要考查了线段垂直平分线的性质及等腰三角形的性质,线段垂直平分线上的点到线段两端的距离相等,等腰三角形的两底角相等,灵活利用这两个性质是解题的关键. 三、解答题21.(1)5m =,5n =;(2)()()()133x x x ++-【解析】【分析】(1)先找出一个x 的值,进而找出一个因式,再将多项式设成分解因式的形式,即可得出结论;(2)先找出x=-1时,得出多项式的值,进而找出一个因式,再将多项式设成分解因式的形式,即可得出结论.【详解】解:(1)把1x =带入多项式3245x x +-,发现此多项式的值为0,∴多项式3245x x +-中有因式()1x -,于是可设322451x x x x mx n , 得出:3232451x x x m x n m x n ,∴14m ,0n m,∴5m =,5n =, (2)把1x =-代入3299x x x +--,多项式的值为0,∴多项式3299x x x +--中有因式()1x +,于是可设322329911x x x x x mx n x m x n m x n ,∴11m +=,9n m,9n =- ∴0m =,9n =-,∴3229133991x x x x x x x x【点睛】此题是分解因式,主要考查了试根法分解因式的理解和掌握,解本题的关键是理解试根法分解因式.22.(1)见详解;(2)4.【解析】【分析】(1)根据点的平移规律:横坐标,右移加,左移减;纵坐标,上移加,下移减可以直接算出A 、B 、O 三个对应点D 、E 、F 的坐标,然后画出图形即可;(2)把△DEF 放在一个矩形中,利用矩形的面积减去周围多余三角形的面积即可.【详解】解:(1)∵点A (1,3),B (3,1),O (0,0),∴把△ABO 向下平移3个单位再向右平移2个单位后A 、B 、O 三个对应点D (1+2,3-3)、E (3+2,1-3)、F (0+2,0-3),即D (3,0)、E (5,-2)、F (2,-3);如图:(2)△DEF 的面积:11133131322=9 1.5 1.52=4222⨯-⨯⨯-⨯⨯-⨯⨯---. 【点睛】此题主要考查了坐标与图形的变化,解题的关键是掌握平移后点的变化规律.23.11x +,13. 【解析】【分析】括号内先通分进行分式的加减法运算,然后再进行分式的乘除法运算,最后把数值代入化简后的结果进行计算即可. 【详解】2221111x x x x x ++⎛⎫-÷ ⎪--⎝⎭, ()()()211111x x x x x x +--+=⋅-+, 11x =+, 当2x =时,原式13=. 【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的法则是解题的关键.24.(1)52;(2)52x =±. 【解析】【分析】(1)分别计算零指数幂,利用平方根的性质化简,计算立方根和算术平方根,然后把所得的结果相加减;(2)依次移项,系数化为1,两边同时开平方即可.【详解】解:(1)原式=115(3)2++--=52; (2)移项得:2425x =,系数化为1得:2254x =, 两边同时开平方得:52x =±. 【点睛】本题考查实数的混合运算和利用平方根解方程.(1||a =,2(0)a a =≥;(2)中需注意的是方程右边的常数项(正数)有正负两个平方根,不要漏解.25.()113;()28BD =;()3.数轴上画出表示数的B 点.见解析.【解析】【分析】 (1)根据勾股定理计算;(2) 根据勾股定理求出AD ,根据题意求出BD;(3) 根据勾股定理计算即可.【详解】()1∵这一个直角三角形的两条直角边分别为512、∴这个直角三角形斜边长为225+12=13故答案为:13()2∵AD BC ⊥∴90ADC BDE ∠=∠=︒在ADC 中,90,10,6ADC AC DC ∠=︒==,则由勾股定理得8BD =,在t R ADC 和t R BDE △中AD BD AC BE=⎧⎨=⎩ ∴t t R ADC R BDE ≌∴8BD AD ==(3)点A 在数轴上表示的数是:22-215+=- ,由勾股定理得,221+3=10OC =以O 为圆心、OC 为半径作弧交x 轴于B ,则点B 即为所求,故答案为:5点为所求.【点睛】本题考查的是勾股定理与数轴上的点的应用,掌握任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方是解题的关键.四、压轴题26.(1)全等,垂直,理由详见解析;(2)存在,11t x =⎧⎨=⎩或232t x =⎧⎪⎨=⎪⎩【解析】【分析】(1)在t =1的条件下,找出条件判定△ACP 和△BPQ 全等,再根据全等三角形的性质和直角三角形的两个锐角互余的性质,可证∠CPQ= 90°,即可判断线段 PC 和线段 PQ 的位置关系;(2)本题主要在动点的条件下,分情况讨论,利用三角形全等时对应边相等的性质进行解答即可.【详解】(1)当t=1时,AP= BQ=1, BP= AC=3,又∠A=∠B= 90°,在△ACP 和△BPQ 中,{AP BQA B AC BP=∠=∠=∴△ACP ≌△BPQ(SAS).∴∠ACP=∠BPQ ,∴∠APC+∠BPQ=∠APC+∠ACP = 90*.∴∠CPQ= 90°,即线段PC 与线段PQ 垂直;(2)①若△ACP ≌△BPQ ,则AC= BP ,AP= BQ ,34t t xt =-⎧⎨=⎩解得11t x =⎧⎨=⎩; ②若△ACP ≌△BQP ,则AC= BQ ,AP= BP ,34xt t t =⎧⎨=-⎩解得:232t x =⎧⎪⎨=⎪⎩ 综上所述,存在11t x =⎧⎨=⎩或232t x =⎧⎪⎨=⎪⎩使得△ACP 与△BPQ 全等. 【点睛】本题主要考查三角形全等与动点问题,熟练掌握三角形全等的性质与判定定理,是解决本题的关键.27.(1)56°;(2)y=454x +;(3)36°或1807°. 【解析】【分析】 (1)根据等边对等角求出等腰△ABC 的底角度数,再根据角平分线的定义得到∠ABE 的度数,再根据高的定义得到∠BDC=90°,从而可得∠BPD ;(2)按照(1)中计算过程,即可得到∠A 与∠EPC 的关系,即可得到结果;(3)分①若EP=EC ,②若PC=PE ,③若CP=CE ,三种情况,利用∠ABC+∠BCD=90°,以及y=454x +解出x 即可. 【详解】 解:(1)∵AB=AC ,∠A=44°,∴∠ABC=∠ACB=(180-44)÷2=68°,∵CD ⊥AB ,∴∠BDC=90°,∵BE 平分∠ABC ,∴∠ABE=∠CBE=34°,∴∠BPD =90-34=56°;(2)∵∠A =x °,∴∠ABC=(180°-x°)÷2=(902x -)°, 由(1)可得:∠ABP=12∠ABC=(454x -)°,∠BDC=90°, ∴∠EPC =y °=∠BPD=90°-(454x -)°=(454x +)°, 即y 与 x 的关系式为y=454x +; (3)①若EP=EC ,则∠ECP=∠EPC=y ,而∠ABC=∠ACB=902x -,∠ABC+∠BCD=90°, 则有:902x -+(902x --y )=90°,又y=454x +, ∴902x -+902x --(454x +)=90°, 解得:x=36°;②若PC=PE ,则∠PCE=∠PEC=(180-y )÷2=902y -,由①得:∠ABC+∠BCD=90°, ∴902x -+[902x --(902y -)]=90,又y=454x +, 解得:x=1807°; ③若CP=CE , 则∠EPC=∠PEC=y ,∠PCE=180-2y ,由①得:∠ABC+∠BCD=90°, ∴902x -+902x --(180-2y )=90,又y=454x +, 解得:x=0,不符合, 综上:当△EPC 是等腰三角形时,∠A 的度数为36°或1807°. 【点睛】本题考查了等腰三角形的性质,二元一次方程组的应用,高与角平分线的定义,有一定难度,关键是找到角之间的等量关系.28.(1)左;3;(1-2m );(2)①(-4,0);(-1,0)(-3,0); ②当平移后的线段 AB 与线段 CD 有公共点时,1913n ≤≤;③ F 9(,2)12m--. 【解析】【分析】(1)根据平面直角坐标系中点的平移计算方法即可得解(2)①根据B 点向下平移后,点B 和点A 的纵坐标相等得到等量关系,可求出m 的值,从而求出A 、B 、C 三点坐标;②过 C 作 CK 垂直 x 轴交 AB 于 K 点过 B 做 BM 垂直 x 轴于 M 点,设出K 点坐标,作 KH ⊥BM 与 H 点,表示出H 点坐标,然后利用面积关系ABM AKM BKM S S S ∆∆∆=+求出距离;当 B '在线段 CD 上时,BB '交 x 轴于 M 点,过 B '做 B 'E ⊥OD ,利用S △COD = S △OB'C + S △OB'D ,求出n 的值,从而求出n 的取值范围;③通过坐标平移法用m 表示出E 点的坐标,利用D 、E 两点坐标表示出直线DE 的函数关系式,令y=﹣2,求出x 的值即可求出F 点坐标.【详解】解:(1)根据平移规律可得:B 向左平移;m -(m -1)=3,所以平移3个单位;m+4-(3m+3)=1-2m ,所以再向下平移(1-2m )个单位;故答案为:左;3;(1-2m )(2)①点 B 向下移动 3 个单位得:B (m ,m+1)∵移动后的点 B 和点 A 的纵坐标相等∴m+1=3m+3∴m=﹣1∴A (-4,0);B (-1,0);C (-3,0);②如图 1,过 C 作 CK 垂直 x 轴交 AB 于 K 点过 B 做 BM 垂直 x 轴于 M 点,设 K 点坐标为(-3,a )M 点坐标为(-1,0)作 KH ⊥BM 与 H 点,H 点坐标为(-1,a )AM=3,BM=3,KC=a,KH=2∵ABM AKM BKM S S S ∆∆∆=+ ∴222AM BM KC AM KH BM ⨯⨯⨯=+ ∴33323222a ⨯⨯⨯=+ 解得:1a =,∴当线段 AB 向下平移 1 个单位时,线段 AB 和 CD 开始有交点,∴ n ≥ 1,当 B'在线段 CD 上时,如图 2BB'交 x 轴于 M 点,过 B'做 B'E ⊥OD,B'M=n-3,B'E=1,OD=5,OC=3∵ S △COD = S △OB'C + S △OB'D∴''222CO OD CO B M OD B E ⨯⨯⨯=+ ∴353(3)51222n ⨯⨯-⨯=+ 解得:193n =,综上所述,当平移后的线段 AB 与线段 CD 有公共点时,1913n≤≤.③∵A(m−3,3m+3), B(m,m+4) D(0,−5)且AD 沿直线 AB 方向平移得到线段BE,∴E点横坐标为:3E点纵坐标为:﹣5+m+4-(3m+3)=﹣4-2m∴E(3,﹣4-2m),设DE:y=kx+b,把D(0,﹣5),E(3,﹣4-2m)代入y=kx+b∴3k+b=42mb=5⎧⎨⎩﹣-﹣∴1-2mk=3b=-5⎧⎪⎨⎪⎩,∴y=12mx53--,把y=﹣2代入解析式得:﹣2=12mx53--,x=912m-,∴F9(,2)12m--.【点睛】本题考查平面直角坐标系中点的平移计算及一次函数解析式求法,解题关键在于理解掌握平面直角坐标系中点平移计算方法以及用待定系数法求函数解析式方法的应用.29.(1)①点P ;②见解析;(2)①点C 的横坐标C x 的值为-3;②334k -≤<-【解析】【分析】(1)①在点P ,点Q 中,点OS 绕点O 顺时针旋转90°能得到线段OP ,故S 关于点O 的“正矩点”为点P ;②利用新定义得点S 是点P 关于点M 的“正矩点”(答案不唯一);(2)①利用新定义结合题意画出符合题意的图形,利用新定义的性质证明△BCF ≌△AOB ,则FC=OB 求得点C 的横坐标;②用含k 的代数式表示点C 纵坐标,代入不等式求解即可.【详解】解:(1)①在点P ,点Q 中,点OS 绕点O 顺时针旋转90°能得到线段OP ,故S 关于点O 的“正矩点”为点P ,故答案为点P ;②因为MP 绕M 点顺时针旋转90︒得MS ,所以点S 是点P 关于点M 的“正矩点”,同理还可以得点Q 是点P 关于点S 的“正矩点”.(任写一种情况就可以)(2)①符合题意的图形如图1所示,作CE ⊥x 轴于点E ,CF ⊥y 轴于点F ,可得 ∠BFC=∠AOB=90°.∵直线3(0)y kx k =+<与x 轴交于点A ,与y 轴交于点B ,∴点B 的坐标为3(0,3),(,0)B A k-在x 轴的正半轴上,∵点A 关于点B 的“正矩点”为点(,)C C C x y ,∴∠ABC=90°,BC=BA ,∴∠1+∠2=90°,∵∠AOB=90°,∴∠2+∠3=90°,∴∠1=∠3.∴△BFC ≌△AOB ,∴3FC OB ==,可得OE =3.∵点A 在x 轴的正半轴上且3OA <,0C x ∴<,∴点C 的横坐标C x 的值为-3.②因为△BFC ≌△AOB ,3(,0)A k-,A 在x 轴正半轴上, 所以BF =OA ,所以OF =OB-OF =33k +点3(3,3)C k -+,如图2, -1<C y ≤2,即:-1<33k+ ≤2, 则334k -≤<-. 【点睛】本题考查的是一次函数综合运用,涉及到三角形全等、解不等式,新定义等,此类新定义题目,通常按照题设的顺序,逐次求解.30.(1)点B (3,5),k =﹣43,b =9;(2)点Q (0,9)或(6,1);(3)存在,点P 的坐标为:(0,4)或(0,14)或(0,﹣1)或(0,478) 【解析】【分析】(1)53y x =相交于点B ,则点(3,5)B ,将点A 、B 的坐标代入一次函数表达式,即可求解;(2)OBQ ∆的面积1127||9|3|222OA xQ xB m =⨯⨯-=⨯⨯-=,即可求解; (3)分AB AP =、AB BP =、AP BP =三种情况,分别求解即可.【详解】解:(1)53y x =相交于点B ,则点(3,5)B , 将点A 、B 的坐标代入一次函数表达式并解得:43k =-,9b =; (2)设点4(,9)3Q m m -+, 则OBQ ∆的面积1127||9|3|222OA xQ xB m =⨯⨯-=⨯⨯-=, 解得:0m =或6,故点Q (0,9)或(6,1);(3)设点(0,)P m ,而点A 、B 的坐标分别为:(0,9)、(3,5),则225AB =,22(9)AP m =-,229(5)BP m =+-,当AB AP =时,225(9)m =-,解得:14m或4; 当AB BP =时,同理可得:9m =(舍去)或1-; 当AP BP =时,同理可得:478m =; 综上点P 的坐标为:(0,4)或(0,14)或(0,﹣1)或(0,478). 【点睛】 本题考查的是一次函数综合运用,涉及到一次函数的性质、勾股定理的运用、面积的计算等,其中(3),要注意分类求解,避免遗漏.。

2020-2021学年江苏省苏州市八年级(上)期末数学试卷及参考答案

2020-2021学年江苏省苏州市八年级(上)期末数学试卷及参考答案

2020-2021学年江苏省苏州市八年级(上)期末数学试卷一、选择题:本大题共10个小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2分)下列四个图标中,轴对称图案为()A.B.C.D.2.(2分)64的立方根是()A.4B.8C.±4D.±83.(2分)已知点P(x,y)在第四象限,且点P到x轴,y轴的距离分别为2,5.则点P 的坐标为()A.(5,﹣2)B.(﹣2,5)C.(2,﹣5)D.(﹣5,2)4.(2分)已知点P(2,m)在一次函数y=mx﹣3m+2的图象上,则m的值为()A.﹣2B.﹣1C.1D.25.(2分)定义:等腰三角形的一个底角与其顶角的度数的比值k(k>1)称为这个等腰三角形的“优美比”.若在等腰三角形ABC中,∠A=36°,则它的优美比k为()A.B.2C.D.36.(2分)下列整数中,与最接近的是()A.﹣1B.0C.1D.27.(2分)2020年12月11日“双12苏州购物节”火爆启动,截止12月12日20:00苏州地区线上消费支付实时金额达到了8460211211元人民币,用科学记数法表示8460211211(精确到100000000)为()A.85×108B.8.46×1010C.8.46×109D.8.5×1098.(2分)如图,一次函数y=x﹣4的图象与x轴,y轴分别交于点A,点B,过点A作直线l将△ABO分成周长相等的两部分,则直线l的函数表达式为()A.y=2x﹣6B.y=2x﹣3C.D.y=x﹣39.(2分)如图,有一长方体容器,AB=3,BC=2,AA'=4,一只蚂蚁沿长方体的表面,从点C爬到点A'的最短爬行距离是()A.B.C.7D.10.(2分)在数轴上,点A表示﹣2,点B表示4.P,Q为数轴上两点,点P从点A出发以每秒1个单位长度的速度向左运动,同时点Q从点B出发以每秒2个单位长度的速度向左运动,点Q到达原点O后,立即以原来的速度返回,当点Q回到点B时,点P与点Q同时停止运动.设点P运动的时间为x秒,点P与点Q之间的距离为y个单位长度,则下列图象中表示y与x的函数关系的是()A.B.C.D.二、填空题(每题2分,满分16分,将答案填在答题纸上)11.(2分)下列4个数:0.,,π﹣3.14,,其中无理数有个.12.(2分)比较大小:2﹣1(填“>”、“=”或“<”).13.(2分)将一个含45°的三角尺和一把直尺按如图所示摆放,若∠2=20°,则∠1=°.14.(2分)“东方之门”座落于美丽的金鸡湖畔,高度约为301.8米,是苏州的地标建筑,被评为“中国最高的空中苏式园林”.现以现代大道所在的直线为x轴,星海街所在的直线为y轴,建立如图所示的平面直角坐标系(1个单位长度表示的实际距离为100米),东方之门的坐标为A(6,﹣4),小明所在位置的坐标为B(﹣2,2),则小明与东方之门的实际距离为米.15.(2分)一次函数y=﹣2x+4与y=x﹣2的图象与y轴所围成的三角形面积为.16.(2分)如图,点C在DE上,∠B=∠E,AB=AE,∠CAD=∠BAE=45°,则∠ACB=°.17.(2分)如图,在△ABC中,∠BAC=90°,点D在BC上,AB=AC,BD=BA,点E 在BC的延长线上,CA=CE,连接AE,则∠DAE的度数为°.18.(2分)如图,已知点A,点B分别为y轴和x轴正半轴上两点,以AB为斜边作等腰直角三角形ABC,点A,点B,点C按顺时针方向排列,若AB=4,△AOB的面积为3,则点C的坐标为.三、解答题(本大题共10小题,共64分.解答应写出文字说明、证明过程或演算步骤.)19.(5分)计算:(﹣3)0﹣+.20.(5分)如图,在△ABC中,AB=AC,过点A作AD∥BC交∠ABC的平分线BD于点D,求证:AC=AD.21.(5分)如图,在正方形网格纸中,每个小正方形的边长为1,△ABC三个顶都在格点上.(1)画出△ABC关于x轴对称的△A'B'C';(2)连接B'C,CC',则△B'CC'的周长为.22.(5分)三国时代东吴数学家赵爽(字君卿,约公元3世纪)在《勾股圆方图注》一书中用割补的方法构造了“弦图”(如图1),并给出了勾股定理的证明.已知,图2中涂色部分是直角边长为a,b,斜边长为c的4个直角三角形,请根据图2利用割补的方法验证勾股定理.23.(6分)如图,AD,BF相交于点O,AB∥DF,AB=DF,点E与点C在BF上,且BE =CF.(1)求证:△ABC≌△DFE;(2)求证:点O为BF的中点.24.(6分)如图,一次函数y=2x+b的图象经过点M(1,3),且与x轴,y轴分别交于A,B两点.(1)填空:b=;(2)将该直线绕点A顺时针旋转45°至直线l,过点B作BC⊥AB交直线l于点C,求点C的坐标及直线l的函数表达式.25.(8分)某技工培训中心有钳工20名、车工30名.现将这50名技工派往A,B两地工作,设派往A地x名钳工,余下的技工全部派往B地,两地技工的月工资情况如下表:钳工/(元/月)车工/(元/月)A地36003200B地32002800(1)试写出这50名技工的月工资总额y(元)与x(名)之间的函数表达式,并写出x 的取值范围;(2)根据预算,这50名技工的月工资总额不得超过155000元.当派往A地多少名钳工时,这些技工的月工资总额最大?月工资总额最大为多少元?26.(8分)如图1,在四边形ABCD中,若∠A,∠C均为直角,则称这样的四边形为“美妙四边形”.(1)概念理解:长方形美妙四边形(填“是”或“不是”);(2)性质探究:如图1,试证明:CD2﹣AB2=AD2﹣BC2;(3)概念运用:如图2,在等腰直角三角形ABC中,AB=AC,∠A=90°,点D为BC的中点,点E,点F分别在AB,AC上,连接DE,DF,如果四边形AEDF是美妙四边形,试证明:AE+AF=AB.27.(8分)如图,用x表示A中的实数,y表示B中与x对应的实数,且y与x满足一次函数y=kx+b(k,b为常数,k≠0).(1)π是A中的实数,则B中与之对应的实数是;(2)点(a2+1,2﹣a2)在该函数的图象上吗?请说明理由;(3)若点P(a,2a﹣3)到直线y=kx+b的距离是,求a的值.28.(8分)在△ABC中,AB=AC,点P为△ABC边上的动点,速度为1cm/s.(1)如图1,点D为AB边上一点,AD=1cm,动点P从点D出发,在△ABC的边上沿D→B→C的路径匀速运动,当到达点C时停止运动.设△APC的面积为S1(cm2),△BPC的面积为S2(cm2),点P运动的时间为t(s).S1,S2与t之间的函数关系如图2所示,根据题意解答下列问题:①在图1中,AB=cm,BC=cm;②在图2中,求EF和MN的交点H的坐标;(2)在(1)的条件下,如图3,若点P,点Q同时从点A出发,在△ABC的边上沿A →B→C的路径匀速运动,点Q运动的速度为0.5cm/s,当点P到达点C时,点P与点Q 同时停止运动.求t为何值时,|BP﹣BQ|最大?最大值为多少?2020-2021学年江苏省苏州市八年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共10个小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形进行分析即可.【解答】解:A、不是轴对称图形,不合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不合题意;D、不是轴对称图形,不合题意.故选:B.【点评】此题主要考查了轴对称图形,正确掌握轴对称图形的性质是解题关键.2.【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.【解答】解:∵4的立方是64,∴64的立方根是4.故选:A.【点评】此题主要考查了求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.3.【分析】根据第四象限点的坐标符号和点P到x轴、y轴的距离可得答案.【解答】解:点P(x,y)点在第四象限,且点P到x轴、y轴的距离分别为2、5,则点P的坐标为(5,﹣2),故选:A.【点评】此题主要考查了点的坐标,关键是掌握到x轴的距离=纵坐标的绝对值,到y 轴的距离=横坐标的绝对值.4.【分析】把点P(2,m)代入y=mx﹣3m+2得2m﹣3m+2=m,即可得出答案.【解答】解:∵点P(2,m)在一次函数y=mx﹣3m+2的图象上,∴2m﹣3m+2=m,∴m=1,故选:C.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.5.【分析】分两种情况:∠A为顶角或∠A为底角,再根据三角形内角和定理可求得底角或顶角的度数,即可得到它的优美比k.【解答】解:当∠A为顶角时,则底角∠B=72°;此时,优美比k==2;当∠A为底角时,则顶角为108°;此时,优美比k==(k<1,不合题意,舍去);故选:B.【点评】本题主要考查竺腰三角形的性质,掌握等腰三角形的两底角相等是解题的关键,注意分类讨论.6.【分析】先估算出的取值范围,再根据不等式的基本性质估算出﹣1的取值范围即可.【解答】解:∵4<5<9,∴2<<3,∵2.22=4.84,2.32=5.29,∴2.2<<2.3,∴1.2﹣1<1.3,∴与最接近的是1.故选:C.【点评】此题主要考查了估算无理数的大小,正确得出无理数的取值范围是解题关键.7.【分析】先利用科学记数法表示,然后根据近似数的精确度进行四舍五入.【解答】解:8460211211=8.460211211×109≈8.5×109.故选:D.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.8.【分析】如图,直线AC把△ABO分成周长相等的两部分,则AO+OC=AB+BC,利用直线AB的解析式求出B(0,﹣4),A(3,0),则AB=5,则利用AO+OC=AB+BC可求出OC=3,所以C(0,﹣3),然后利用待定系数法求直线AC的解析式即可.【解答】解:如图,直线AC把△ABO分成周长相等的两部分,则AO+OC=AB+BC,当x=0时,y=x﹣4=﹣4,则B(0,﹣4),∴OB=4,当y=0时,x﹣4=0,解得x=3,则A(3,0),∴OA=3,∴AB==5,∵AO+OC=AB+BC,∴3+OC=5+4﹣OC,解得OC=3,∴C(0,﹣3),设直线AC的解析式为y=kx+b,把A(3,0),C(0,﹣3)代入得,解得,∴直线AC的解析式为y=x﹣3.故选:D.【点评】本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;再将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;然后解方程或方程组,求出待定系数的值,进而写出函数解析式.也考查了一次函数图象上点的坐标特征.9.【分析】分三种情况,根据勾股定理即可得到结论.【解答】解:如图1,A′C===,如图2,A′C===,如图3,A′C===3,∵<3<,∴从点C爬到点A'的最短爬行距离是.故选:B.【点评】本题考查了平面展开﹣最短路线问题,我们将此类复杂题目转化为用勾股定理解答的题目就很好理解了.10.【分析】根据左移减,右移加可得点P和Q表示的数,根据两点间的距离公式可得PQ 的长,即得y与x的关系式.【解答】解:由题意得:点P表示的数为:﹣2﹣x,当0≤x≤2时,点Q从B到O,点Q表示的数为:4﹣2x,∴y=PQ=(4﹣2x)﹣(﹣2﹣x)=4﹣2x+2+x=6﹣x,当2<x≤4时,点Q从O到B,点Q表示的数为:0+2(x﹣2)=2x﹣4,∴y=PQ=(2x﹣4)﹣(﹣2﹣x)=3x﹣2.故选:B.【点评】本题考查了动点问题的函数图象,结合动点考查了两点间的距离,理解题意,找到相等关系进行正确分类是解题的关键.二、填空题(每题2分,满分16分,将答案填在答题纸上)11.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:0.,,π﹣3.14,,其中无理数有π﹣3.14,,一共2个.故答案为:2.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.12.【分析】直接利用估算无理数的大小方法分析得出答案.【解答】解:∵1<<2,∴0<2﹣<1,故答案为:<.【点评】此题主要考查了实数比较大小,正确估算无理数的大小是解题关键.13.【分析】根据平行线的性质可得,∠2=∠3=20°,再根据等腰直角三角形的性质可得∵∠1+∠3=45°,即可得出答案.【解答】解:如图1,根据题意可得,∠2=∠3=20°,∵∠1+∠3=45°,∴∠1=25°.故答案为:25.【点评】本题主要考查了等腰三角形的性质及平行线的性质,合理应用平行线的性质及等腰直角三角形性质是解决本题的关键.14.【分析】根据两点之间的距离和勾股定理解答即可.【解答】解:小明与东方之门的实际距离=,10×100=1000(米),故答案为:1000.【点评】此题考查勾股定理的应用,关键是根据两点之间的距离和勾股定理解答.15.【分析】分别求出两图象与y轴的交点坐标以及两图象的的交点,即可求解.【解答】解:∵一次函数y=﹣2x+4的图象与y轴相交,∴交点坐标为(0,4),∵y=x﹣2的图象与y轴相交,∴交点坐标为(0,﹣2),联立方程组可得,解得:,∴交点坐标为(2,0),∴三角形面积=×2×(4+2)=6,故答案为:6.【点评】本题考查了一次函数图象上点的坐标特征,求出交点坐标是本题的关键.16.【分析】由“ASA”可证△ABC≌△EAD,可得AD=AC,∠ACB=∠D,由等腰三角形的性质可求解.【解答】解:∵∠CAD=∠BAE=45°,∴∠BAC=∠DAE,在△ABC和△AED中,,∴△ABC≌△EAD(ASA),∴AD=AC,∠ACB=∠D,∴∠D=∠ACD=67.5°,∴∠ACB=67.5°,故答案为67.5.【点评】本题考查了全等三角形的判定和性质,等腰三角形的性质,掌握全等三角形的判定定理是本题的关键.17.【分析】在△ABC中,∠BAC=90°,AB=AC,是等腰直角三角形,所以∠B=∠ACB =45°,根据其他边相等可求出解.【解答】解:∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∵BD=BA,∴∠BAD=∠BDA=(180°﹣∠B)=67.5°,∵CE=CA,∴∠CAE=∠E=∠ACB=22.5°,在△ABE中,∠BAE=180°﹣∠B﹣∠E=112.5°,∴∠DAE=∠BAE﹣∠BAD=112.5°﹣67.5°=45°,故答案为:45.【点评】本题考查了等腰直角三角形的性质和三角形的外角性质,熟练掌握性质是解题的关键.18.【分析】先求出OA,OB的长,由“AAS”可证△AGC≌△BHC,可得AG=BH,CH=GC,即可求解.【解答】解:如图,设AC与OB交于点E,过点C作CH⊥OB于H,CG⊥x轴于G,∴四边形OGCH是矩形,∴OG=CH,OH=GC,∵AB=4,△AOB的面积为3,∴OA2+OB2=16,×OA×OB=3,∴OA+OB=2,OB﹣OA=2,(负值舍去),∴OB=+1,OA=﹣1,∵∠AEO=∠BEC,∠AOB=∠ACB=90°,∴∠OAE=∠EBC,在△AGC和△BHC中,,∴△AGC≌△BHC(AAS),∴AG=BH,CH=GC,∴﹣1+OG=+1﹣OH,CH=CG=OH=OG,∴OG=OH=1=CH=CG,∴点C(1,﹣1),故答案为:(1,﹣1).【点评】本题考查了全等三角形的判定和性质,矩形的判定和性质,勾股定理等知识,求出OA,OB的长是本题的关键.三、解答题(本大题共10小题,共64分.解答应写出文字说明、证明过程或演算步骤.)19.【分析】直接利用零指数幂的性质以及立方根的定义、算术平方根的定义分别化简得出答案.【解答】解:原式=1﹣3﹣2=﹣4.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.【分析】根据平行线的性质和角平分线的定义以及等腰三角形的判定和性质定理即可得到结论.【解答】证明:∵AD∥BC,∴∠D=∠DBC,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABD=∠D,∴AB=AD,∵AB=AC,∴AC=AD.【点评】本题考查了等腰三角形的判定和性质,平行线的性质,角平分线的定义,正确的识别图形是解题的关键.21.【分析】(1)利用关于x轴对称的点的坐标特征写出A′、B′、C′的坐标,然后描点即可;(2)利用勾股定理分别计算出B′C、B′C′,从而得到△B'CC'的周长.【解答】解:(1)如图,△A'B'C'为所作;(2)B′C==5,B′C′==,CC′=8,△B'CC'的周长=5++8.故答案为5++8.【点评】本题考查了作图﹣轴对称变换:几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的,22.【分析】由面积的和差关系可求解.【解答】证明:∵,∴c2+ab=ab+b2+a2+ab,∴c2=a2+b2.【点评】本题考查了勾股定理的证明,利用面积和差关系可求解.23.【分析】(1)由“SAS”可证△ABC≌△DFE;(2)由“AAS”可证△ACO≌△DEO,可得EO=CO,可得结论.【解答】证明:(1)∵AB∥DF,∴∠B=∠F,∵BE=CF,∴BC=EF,在△ABC和△DFE中,,∴△ABC≌△DFE(SAS);∴AC=DE,∠ACB=∠DEF,在△ACO和△DEO中,,∴△ACO≌△DEO(AAS),∴EO=CO,∴点O为BF的中点.【点评】本题考查了全等三角形的判定和性质,掌握全等三角形的判定定理是本题的关键.24.【分析】(1)根据待定系数法即可求得;(2)作CD⊥y轴于D,通过证得△AOB≌△BDC,即可求得C的坐标,然后根据待定系数法即可求得直线l的解析式.【解答】解:(1)∵一次函数y=2x+b的图象经过点M(1,3),∴3=2+b,解得b=1,故答案为1;(2)∵一次函数y=2x+1的图象与x轴,y轴分别交于A,B两点.∴A(﹣,0),B(0,1),∴OA=,OB=1,作CD⊥y轴于D,∵∠BAC=45°,BC⊥AB,∴∠ACB=45°,∴AB=BC,∵∠ABO+∠BAO=90°=∠ABO+∠CBD,∴∠BAO=∠CBD,在△AOB和△BDC中,,∴BD=OA=,CD=OB=1,∴OD=OB﹣BD=,∴C(1,),设直线l的解析式为y=mx+n,把A(﹣,0),C(1,)代入得,解得,∴直线l的解析式为y=x+.【点评】本题考查了一次函数图象与几何变换,待定系数法求一次函数的解析式,解题的关键:(1)把M的坐标代入y=2x+b;(2)是通过证得三角形全等求得C的坐标.25.【分析】(1)根据题意和表格中的数据,可以写出这50名技工的月工资总额y(元)与x(名)之间的函数表达式,并写出x的取值范围;(2)根据这50名技工的月工资总额不得超过155000元,可以求得x的取值范围,然后利用一次函数的性质,即可得到当派往A地多少名钳工时,这些技工的月工资总额最大,月工资总额最大为多少元.【解答】解:(1)由题意可得,y=3600x+3200(20﹣x)+2800×30=400x+148000,即这50名技工的月工资总额y(元)与x(名)之间的函数表达式是y=400x+148000(0≤x≤20);(2)∵这50名技工的月工资总额不得超过155000元.∴400x+148000≤155000,解得x≤17,∵x为整数,∴0≤x≤17且x为整数,∵y=400x+148000,∴y随x的增大而增大,∴当x=17时,y取得最大值,此时y=154800,即当派往A地17名钳工时,这些技工的月工资总额最大,月工资总额最大是154800元.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.26.【分析】(1)根据“美妙四边形”的概念填空;(2)连接BD,根据勾股定理得到:CD2+CB2=AD2+AB2,即CD2﹣AB2=AD2﹣BC2;(3)连接AD,证明△BED≌△AFD(ASA),则BE=AF,故AE+AF=AB.【解答】解:(1)如答图1,矩形ABCD中,∠A,∠C均为直角,则长方形ABCD是美妙四边形.故答案是:是;(2)如答图2,连接BD,.∵∠C=90°,∠A=90°,由勾股定理知,BD2=CD2+CB2,BD2=AD2+AB2,∴CD2+CB2=AD2+AB2,∴CD2﹣AB2=AD2﹣BC2;(3)如答图3,连接AD,∵四边形AEDF是美妙四边形,∠A=90°,∴∠EDF=90°.∵∠A=90°,AB=AC,点D位为斜边BC上的中点,∴∠B=∠C=45°,AD⊥BD,BD=CD=AD=BC.∴∠BDE+∠ADE=∠ADF+∠ADE=90°,∴∠BDE=∠ADF.在△BDE和△ADF中,,∴△BDE≌△ADF(ASA).∴BE=AF.∴AE+AF=AE+BE=AB.即AE+AF=AB.【点评】本题主要考查了四边形综合题,解题过程中涉及到的知识点有:全等三角形的判定与性质,等腰直角三角形的性质,直角三角形斜边上的中线,勾股定理等,难度不大,关键在于正确理解“美妙四边形”的概念.27.【分析】(1)将(﹣3,6),(0,3)代入一次函数y=kx+b中,可得一次函数y=﹣x+3,进而可得结果;(2)将x=a2+1代入y=﹣x+3,即可说明理由;(3)可以作两条与该直线平行且距离为的直线,将y=0代入y=﹣x+3,即x=3,即该直线与x、y轴围成的三角形为等腰直角三角形,过点C作CD⊥直线y于点D,过点A作AE⊥直线y1于点E,根据勾股定理可得直线y1、y2与直线y的b值相差2,即可得y1=﹣x+5,y2=﹣x+1,将P(a,2a﹣3)分别代入直线y1、y2,即可得a的值.【解答】解:(1)由题意可知:将(﹣3,6),(0,3)代入一次函数y=kx+b中,得k=﹣1,b=3,∴一次函数y=﹣x+3,当x=π时,y=﹣π+3,故答案为:﹣π+3;(2)点(a2+1,2﹣a2)在该函数的图象上,理由如下:将x=a2+1代入y=﹣x+3,得y=﹣(a2+1)+3=2﹣a2,故点(a2+1,2﹣a2)在该函数的图象上;(3)由题意可知:可以作两条与该直线平行且距离为的直线,将y=0代入y=﹣x+3,即x=3,即该直线与x、y轴围成的三角形为等腰直角三角形,如图所示:即OA=OB=3,∴△AOB是等腰直角三角形,过点C作CD⊥直线y于点D,过点A作AE⊥直线y1于点E,∵CD=AE=,y2∥y,y1∥y,∴∠CAD=∠AFE=∠ACD=∠FAE=45°,∴CD=AD=,根据勾股定理,得AC==2,同理,AF=2,∴直线y1、y2与直线y的b值相差2,即OC=AO﹣AC=3﹣2=1,OF=OA+AF=3+2=5,∴y1=﹣x+5,y2=﹣x+1,将P(a,2a﹣3)分别代入直线y1、y2,得a1=,a2=.故a的值为或.【点评】本题考查了一次函数图象上点的坐标特征,一次函数的性质,解决本题的关键是掌握一次函数的性质.28.【分析】(1)由图象可求解;,即可求点H坐标;(2)由勾股定理可求AT的长,由三角形的面积公式可求S△ABC(3)分三种情况讨论,由线段的和差关系可求解.【解答】解:(1)①由图2可知,BD=4cm,BC=6cm,∴AB=5(cm),故答案为:5,6;②如图1,过点A作AT⊥BC于T,∵AB=AC,AT⊥BC,∴BT=CT=3(cm),∴AT===4(cm),=BC×AT=12(cm2),∴S△ABC∴当S1=S2时,S1=S2=6,此时点P是AB的中点,∴AP=BP=,∴PD=,∴点H(,6);(2)①当0≤t≤5时,P,Q均在AB上,∴当t=5时,|BP﹣BQ|最大=2.5cm,②当5<t≤10时,P在AB上,Q在BC上,∴|BP﹣BQ|=|t﹣5﹣(5﹣0.5t)|=|1.5t﹣10|,∴当t=10时,最大=5cm,③当10<t≤11时,P,Q均在BC上,∴|BP﹣BQ|=|t﹣5﹣(0.5t﹣5)|=0.5t,∴当t=11时,最大=5.5cm,∴综上,t=11时,|BP﹣BQ|最大值为5.5cm.【点评】本题是三角形综合题,考查了函数图象的性质,勾股定理,利用分类讨论思想解决问题是本题的关键.。

2024-2025学年江苏省苏州市八年级上期末考试数学试卷及答案

2024-2025学年江苏省苏州市八年级上期末考试数学试卷及答案

苏州市2024-2024学年第一学期期末考试八年级数学试卷2024.1本试卷由选择题、填空题和解答题三部分组成,共28题,满分100分,考试时间120分钟.留意事项:1.答题前,考生务必将学校、班级、姓名、考试号等信息填写在答题卡相应的位置上;2.考生答题必需答在答题卡相应的位置上,答在试卷和草稿纸上一律无效.一、选择题(本大题共10小题,每小题2分,共20分,在每小题给出的四个选项中,只有一项是符合题目要求的,把正确答案填在答题卡相应的位置上)1.34的倒数是A.34B.-34C.43D.-432.计算()23-1的结果是A.-2 B.2 C.23D.23-13.一次函数y=x+2的图像与x轴的交点坐标是A.(-2,0) B.(2,0) C.(0,-2) D.(0,2)4.下列四个图形中,全等的图形是A.①②③B.①③④C.②③④D.①②④5.已知地球上海洋面积约为361 000 000 km2,则361 000 000用科学记数法可以表示为A.36.1×107B.3.61×107C.3.61×108D.3.61×1096.在平面直角坐标系xOy中,点(1,-3)关于x轴对称的点的坐标为A.(-3,1) B.(-1,3) C.(-1,-3) D.(1,3)7.已知从山脚起每上升100米,气温就下降0.6摄氏度,现测得山脚处的气温为14.1摄氏度,山上点P处的气温为11.1摄氏度,则点P距离山脚处的高度为A.50米B.200米C.500米D.600米8.如图,在平面直角坐标系中,直线l1对应的函数表达式为y=2x,直线l2与x、y轴分别交于点A、B,且l1∥l2,OA=2,则线段OB的长为A.3 B.4 C.22D.239.如图为等边△ABC与正方形DEFG的重叠情形,其中D、E两点分别在AB、BC上,且BD=BE.若AB=3,DE=1,则△EFC的面积为A.14B.1 C.32D.1210.如图,己知线段AB=12厘米,动点P以2厘米/秒的速度从点A动身向点B运动,动点Q以4厘米/秒的速度从点B动身向点A运动.两点同时动身,到达各自的终点后停止运动.设两点之间的距离为s(厘米),动点P的运动时间为t秒,则下图中能正确反映s与t之间的函数关系的是二、填空题(本大题共8小题,每小题2分,共16分,请将答案填在答题卡相应的位置上)11.计算:332=▲.12.小亮的体重为43.95kg ,若将体重精确到1kg ,则小亮的体重约为 ▲ kg. 13.已知a ,b 为两个连续的整数,且a<8<b ,则a +b = ▲ .14.如图,已知△ABC ∽△DBC ,,∠A =45°,∠ACD =76°,则∠DBC 的度数为 ▲ °.15.如图,已知点A 、B 、C 的坐标分别A(1,6)、B(1,o)、C(5,0).若点P 在∠ABC 的平分线上,且PA =PC ,则点P 的坐标为 ▲ . 16.若实数x 满意等式(x -1)3=27,则x = ▲ .17.如图,在△ABC 中,AB =AC ,点D 在BC 上,且AD =BD ,∠ADB =100,则∠BAC 的度数为 ▲ °.18.如图,已知△ABC 和△ADE 均为等腰直角三角形,∠BAC =∠DAE =90°,且D 、E 、C 三点在始终线上.若AD =AE =1,DE =2EC ,则BC = ▲ .三、解答题(本大题共64分.解答时应写出必要的计算或说明过程,并把解答过程填写在答题卡相应的位置上)19.(本题满分5分)计算:(222322754---20.(本题满分5分)在平面直角坐标系中,已知A(0,0)、B(3,0),点C 在y 轴上,且△ABC的面积是6.求点C的坐标.21.(本题满分5分)如图,点D在AE上,BD=CD,∠BDE=∠CDE.求证:AB=AC.22.(本题满分6分)已知一次函数y=2x+b,它的图像经过另外两个函数y=-2x+1、y =x+4图像的交点,求实数b的值.23.(本题满分6分)如图,已知∠EAC是△ABC的外角,AD平分∠EAC,AB=AC.求证:AD∥BC.24.(本题满分6分)某水池的容积为90m3,水池中已有水10m3,现按8m3/h的流量向水池注水.(1)写出水池中水的体积y(m3)与进水时间t(h)之间的函数表达式,并写出自变量t的取值范围;(2)当t=1时,求y的值;当V=50时,求t的值.25.(本题满分7分)如图,在Rt△ABC中,∠C=90°,AB的垂直平分线分别交AB、AC 于点D、E.(1)若AC=12,BC=9,求AE的长;(2)过点D作DF⊥BC,垂足为F,则△ADE与△DFB是否全等?请说明理由.26.(本题满分8分)已知点P(m,n)在第一象限,并且在一次函数y=2x-1的图像上,求实数m的取值范围.27.(本题满分8分)如图,在正方形ABCD中,点P是AD边上的一个动点,连接PB.过点B作一条射线与边DC的延长线交于点Q,使得∠QBE=∠PBC,其中E是边AB延长线上的点,连接PQ.(1)求证:△PBQ是等腰直角三角形;(2)若PQ2=PB2+PD2+1,求△PAB的面积.28.(本题满分8分)如图,已知一次函数y=x-1的图像与x轴、y轴分别交于点A、B,点P是y轴上的随意一点,点C是一次函数y=x-1图像上的随意一点,且点C位于第一象限.(1)求A、B两点的坐标;(2)过点C作CD⊥x轴,垂足为D.连接PA、PC,若PA=PC,求证:(PO-CD)是一个定值;(3)若以点P、A、C为顶点的三角形是等腰直角三角形,求点P的坐标.(提示:作答时可利用备用图画示意图)。

2023-2024学年江苏省苏州市昆山市、太仓市、常熟市、张家港市八年级(上)期末数学试卷+答案解析

2023-2024学年江苏省苏州市昆山市、太仓市、常熟市、张家港市八年级(上)期末数学试卷+答案解析

2023-2024学年江苏省苏州市昆山市、太仓市、常熟市、张家港市八年级(上)期末数学试卷一、选择题:本题共8小题,每小题3分,共24分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.地铁是一种现代化的大众交通工具,它为我们提供便捷、快速和安全的出行方式,在如图所示城市地铁图标中,是轴对称图形的是( )A. B. C. D.2.一次函数的图象不经过的象限为( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.比大且比小的整数是( )A. 4B. 3C. 2D. 14.如图,两个三角形全等,则的度数是( )A. B. C. D.5.已知关于x的分式方程的解为正数,则m的取值范围是( )A. B. 且C. D. 且6.如图,折线为y关于x的函数图象,下列关于该函数说法正确的是( )A. 点在该函数图象上B. 当时,y随x的增大而增大C. 该函数有最大值3D. 当时,函数值总大于07.为了改善生态环境,防止水土流失,某村计划在荒坡上种树960棵.由于青年志愿者支援,实际每天种树的棵数是原计划的倍,结果提前4天完成任务.原计划每天种树多少棵?设原计划每天种树x 棵,根据题意可列出的方程是( )A.B.C.D.8.在平面直角坐标系中,点A 坐标为,点B 坐标为,则A ,B 之间距离的最小值为( )A.B.C. D.二、填空题:本题共8小题,每小题3分,共24分。

9.若,则______.10.在平面直角坐标系中,关于y 轴对称点的坐标是______.11.若关于x 的函数是正比例函数,则m 的值是______.12.已知的平方根是,的立方根为2,则代数式的值为______.13.在平面直角坐标系中,把点向下平移5个单位得到点,则代数式的值为______.14.如图,在中,,,于点D ,且,则AC 的长为______.15.如图,将一块含角的直角三角板放在平面直角坐标系中,顶点A ,B分别在x 轴、y 轴上,斜边BC 与x 轴交于点已知,点A坐标为,点B 的坐标为,则点D 的坐标为______.16.如图,,,BC的垂直平分线交CA的延长线于点E,交AB于点F,交BC于点若,,的平分线交DE于点M,则AM的长度为______.三、解答题:本题共11小题,共82分。

苏州市八年级上学期期末数学试卷 (解析版)

苏州市八年级上学期期末数学试卷 (解析版)

苏州市八年级上学期期末数学试卷 (解析版)一、选择题1.在平面直角坐标系中,下列各点位于第四象限的点是( ) A .(2,3)- B .()4,5-C .(1,0)D .(8,1)--2.若分式12xx -+的值为0,则x 的值为( ) A .1 B .2- C .1- D .2 3.下列运算正确的是( )A .=2B .|﹣3|=﹣3C .=±2D .=34.计算3329a b a b a b a-(a >0,b >0)的结果是( ) A .53ab B .23ab C .179ab D .89ab 5.若等腰三角形的一个内角为92°,则它的顶角的度数为( ) A .92° B .88° C .44° D .88°或44° 6.已知点P (1+m ,3)在第二象限,则m 的取值范围是( )A .1m <-B .1m >-C .1m ≤-D .1m ≥-7.如图所示,三角形纸片被正方形纸板遮住了一部分,小明根据所学知识画出了一个与该三角形完全重合的三角形,那么这两个三角形完全重合的依据是( )A .SSSB .SASC .AASD .ASA8.到ABC ∆的三顶点距离相等的点是ABC ∆的是( )A .三条中线的交点B .三条角平分线的交点C .三条高线的交点D .三条边的垂直平分线的交点9.如图,在△ABC 中,AC 的垂直平分线交AC 于点E ,交BC 于点D ,△ABD 的周长为16cm ,AC 为5cm ,则△ABC 的周长为( )A .24cmB .21cmC .20cmD .无法确定10.正比例函数y =kx (k ≠0)的函数值y 随着x 增大而减小,则一次函数y =x +k 的图象大致是( )A .B .C .D .二、填空题11.如图,△ABC 中,D 是BC 上一点,AC =AD =DB ,∠C =70°,则∠B =_____°.12.下表给出的是关于某个一次函数的自变量x 及其对应的函数值y 的部分对应值, x … ﹣2 ﹣1 0 … y…m2n…则m +n 的值为_____.13.已知点(,)P a b 在一次函数21y x =+的图象上,则21a b --=_____.14.如图,一艘轮船由海平面上的A 地出发向南偏西45º的方向行驶50海里到达B 地,再由B 地向北偏西15º的方向行驶50海里到达C 地,则A 、C 两地相距____海里.15.1x -在实数范围内有意义的条件是__________.16.已知22139273m ⨯⨯=,求m =__________.17.等腰三角形中有一个角的度数为40°,则底角为_____________.18.Rt ABC ∆中,90ACB ∠=︒,30A ∠=︒,点D 在边AB 上,连接CD .有以下4种说法:①当DC DB =时,BCD ∆一定为等边三角形 ②当AD CD =时,BCD ∆一定为等边三角形③当ACD ∆是等腰三角形时,BCD ∆一定为等边三角形 ④当BCD ∆是等腰三角形时,ACD ∆一定为等腰三角形 其中错误的是__________.(填写序号即可) 19.在实数:311-50.2-803.010010001 (72)π、、、、、、中,无理数有______个. 20.在△ABC 中,AB =AC =5,BC =6,若点P 在边AB 上移动,则CP 的最小值是_____.三、解答题21.计算:(1)()03420121+---; (2)1383322+-+. 22.甲、乙两地间的直线公路长为400千米.一辆轿车和一辆货车分别沿该公路从甲、乙两地以各自的速度匀速相向而行,货车比轿车早出发1小时,途中轿车出现了故障,停下维修,货车仍继续行驶.1小时后轿车故障被排除,此时接到通知,轿车立刻掉头按原路原速返回甲地(接到通知及掉头时间不计).最后两车同时到达甲地,已知两车距各自出发地的距离y (千米)与轿车所用的时间x (小时)的关系如图所示,请结合图象解答下列问题:(1)货车的速度是_______千米/小时;轿车的速度是_______千米/小时;t 值为_______. (2)求轿车距其出发地的距离y (千米)与所用时间x (小时)之间的函数关系式并写出自变量x 的取值范围;(3)请直接写出货车出发多长时间两车相距90千米.23.阅读下列材料,然后解答问题: 问题:分解因式:3245x x +-.解答:把1x =带入多项式3245x x +-,发现此多项式的值为0,由此确定多项式3245x x +-中有因式()1x -,于是可设()()322451x x x x mx n +-=-++,分别求出m ,n 的值.再代入()()322451x x x x mx n +-=-++,就容易分解多项式3245x x +-,这种分解因式的方法叫做“试根法”. (1)求上述式子中m ,n 的值;(2)请你用“试根法”分解因式:3299x x x +--.24.如图,一辆货车和一辆轿车先后从甲地开往乙地,线段OA 表示货车离开甲地的距离y (km )与时间x (h )之间的函数关系;折线BCD 表示轿车离开甲地的距离y (km )与时间x (h )之间的函数关系.请根据图象解答下列问题: (1)甲、乙两地相距 km ,轿车比货车晚出发 h ; (2)求线段CD 所在直线的函数表达式;(3)货车出发多长时间两车相遇?此时两车距离甲地多远?25.如图,在等腰直角三角形ABC 中,∠ACB =90°,AC=BC ,AD 平分∠BAC ,BD ⊥AD 于点D ,E 是AB 的中点,连接CE 交AD 于点F ,BD =3,求BF 的长.四、压轴题26.如图,直线l 1:y 1=﹣x +2与x 轴,y 轴分别交于A ,B 两点,点P (m ,3)为直线l 1上一点,另一直线l 2:y 2=12x +b 过点P . (1)求点P 坐标和b 的值;(2)若点C 是直线l 2与x 轴的交点,动点Q 从点C 开始以每秒1个单位的速度向x 轴正方向移动.设点Q 的运动时间为t 秒.①请写出当点Q 在运动过程中,△APQ 的面积S 与t 的函数关系式; ②求出t 为多少时,△APQ 的面积小于3;③是否存在t 的值,使△APQ 为等腰三角形?若存在,请求出t 的值;若不存在,请说明理由.27.在ABC 中,AB AC =,D 是直线BC 上一点(不与点B 、C 重合),以AD 为一边在AD 的右侧作ADE ,AD AE =,DAE BAC ∠=∠,连接CE .(1)如图,当 D 在线段BC 上时,求证:BD CE =.(2)如图,若点D 在线段CB 的延长线上,BCE α∠=,BAC β∠=.则α、β之间有怎样的数量关系?写出你的理由.(3)如图,当点D 在线段BC 上,90BAC ∠=︒,4BC =,求DCES最大值.28.在平面直角坐标系xOy 中,对于点(,)P a b 和点(,)Q a b ',给出如下定义:若1,(2),(2)b a b b a -≥⎧=<⎩'⎨当时当时,则称点Q 为点P 的限变点.例如:点(2,3)的限变点的坐标是(2,2),点(2,5)--的限变点的坐标是(2,5)-,点(1,3)的限变点的坐标是(1,3).(1)①点3,1)-的限变点的坐标是________;②如图1,在点(2,1)A -、(2,1)B 中有一个点是直线2y =上某一个点的限变点,这个点是________;(填“A ”或“B ”)(2)如图2,已知点(2,2)C --,点(2,2)D -,若点P 在射线OC 和OD 上,其限变点Q 的纵坐标b '的取值范围是b m '≥或b n '≤,其中m n >.令s m n =-,直接写出s 的值. (3)如图3,若点P 在线段EF 上,点(2,5)E --,点(,3)F k k -,其限变点Q 的纵坐标b '的取值范围是25b '-≤≤,直接写出k 的取值范围.29.如图1中的三种情况所示,对于平面内的点M ,点N ,点P ,如果将线段PM 绕点P 顺时针旋转90°能得到线段PN ,就称点N 是点M 关于点P 的“正矩点”.(1)在如图2所示的平面直角坐标系xOy 中,已知(3,1),(1,3),(1,3)S P Q ---,(2,4)M -.①在点P ,点Q 中,___________是点S 关于原点O 的“正矩点”; ②在S ,P ,Q ,M 这四点中选择合适的三点,使得这三点满足:点_________是点___________关于点___________的“正矩点”,写出一种情况即可; (2)在平面直角坐标系xOy 中,直线3(0)y kx k =+<与x 轴交于点A ,与y 轴交于点B ,点A 关于点B 的“正矩点”记为点C ,坐标为(,)C C C x y .①当点A 在x 轴的正半轴上且OA 小于3时,求点C 的横坐标C x 的值; ②若点C 的纵坐标C y 满足12C y -<≤,直接写出相应的k 的取值范围.30.已知在△ABC 中,AB =AC ,射线BM 、BN 在∠ABC 内部,分别交线段AC 于点G 、H . (1)如图1,若∠ABC =60°,∠MBN =30°,作AE ⊥BN 于点D ,分别交BC 、BM 于点E 、F .①求证:∠1=∠2;②如图2,若BF =2AF ,连接CF ,求证:BF ⊥CF ;(2)如图3,点E 为BC 上一点,AE 交BM 于点F ,连接CF ,若∠BFE =∠BAC =2∠CFE ,求ABFACFSS的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】根据平面直角坐标系中各象限内点的坐标特征对各选项分析判断即可得解.【详解】解:A.(2,-3)在第四象限,故本选项正确;B.(-4,5)在第二象限,故本选项错误;C.(1,0)在x轴正半轴上,故本选项错误;D.(-8,-1)在第三象限,故本选项错误.故选A.【点睛】本题考查了平面直角坐标系中象限内点的坐标特征,解决本题的关键是熟练掌握每个象限的坐标特征.2.A解析:A【解析】【分析】根据分式的值为0,分子等于0,分母不等于0列式计算即可得解.【详解】根据题意得,1-x=0且x+2≠0,解得x=1且x≠-2,所以x=1.故选:A.【点睛】本题考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.3.A解析:A 【解析】 【分析】根据算术平方根和立方根的定义、绝对值的性质逐一计算可得结论. 【详解】 A .=2,此选项计算正确; B .|﹣3|=3,此选项计算错误;C .=2,此选项计算错误;D .不能进一步计算,此选项错误. 故选A . 【点睛】本题考查了算术平方根,解题的关键是掌握算术平方根和立方根的定义、绝对值性质.4.A解析:A 【解析】 【分析】3329a b a b a b a 23a b a ab ab ab a ⨯⨯即可求解. 【详解】解:∵a >0,b >0,3329a b a b a b a 23a b a ab ab ab a ⨯⨯15233ab ab ab =故选:A . 【点睛】本题考查二次根式的性质与化简;能够根据二次根式的性质,将所求式子进行正确的化简是解题的关键.5.A解析:A 【解析】 【分析】已知给出了等腰三角形的一个内角的度数,但没有明确这个内角是顶角还是底角,因此要分类讨论. 【详解】解:(1)若等腰三角形一个底角为92°,因为92°+92°=184°>180°,所以这种情况不可能出现,舍去;(2)等腰三角形的顶角为92°.因此这个等腰三角形的顶角的度数为92°.故选A.【点睛】本题考查了等腰三角形的性质.如果已知等腰三角形的一个内角要求它的顶角,需要分该内角是顶角和这个内角是底角两种情况讨论.本题能根据92°角是钝角判断出92°只能是顶角是解题关键.6.A解析:A【解析】【分析】令点P的横坐标小于0,列不等式求解即可.【详解】解:∵点P P(1+m,3)在第二象限,∴1+m<0,解得: m<-1.故选:A.【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).7.D解析:D【解析】【分析】图中三角形没被污染的部分有两角及夹边,根据全等三角形的判定方法解答即可.【详解】解:由图可知,三角形两角及夹边还存在,∴根据可以根据三角形两角及夹边作出图形,所以,依据是ASA.故选:D.【点睛】本题考查了全等三角形的应用,熟练掌握三角形全等的判定方法是解题的关键.8.D解析:D【解析】【分析】根据垂直平分线的性质进行判断即可;【详解】∵到△ABC的三个顶点的距离相等,∴这个点在这个三角形三条边的垂直平分线上,即这点是三条垂直平分线的交点.故答案选D.【点睛】本题主要考查了垂直平分线的性质,准确理解性质是解题的关键.9.B解析:B【解析】【分析】由垂直平分线可得AD=DC,进而将求△ABC的周长转换成△ABD的周长再加上AC的长度即可.【详解】∵DE是AC的垂直平分线,∴AD=DC,∵△ABD的周长=AB+BD+AD=16,∴△ABC的周长为AB+BC+AC=AB+BD+AD+AC=16+5=21.故选:B.【点睛】考查线段的垂直平分线的性质,解题关键是由垂直平分线得AD=DC,进而将求△ABC的周长转换成△ABD的周长再加上AC的长度.10.A解析:A【解析】【分析】根据自正比例函数的性质得到k<0,然后根据一次函数的性质得到一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.【详解】解:∵正比例函数y=kx(k≠0)的函数值y随x的增大而减小,∴k<0,∵一次函数y=x+k的一次项系数大于0,常数项小于0,∴一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.故选A.【点睛】本题考查了一次函数图象:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).二、填空题11.【解析】【分析】根据等腰三角形的性质得到∠ADC=70,再根据三角形外角的性质和等腰三角形可求∠B的度数.【详解】∵AC=AD,∠C=70,∴∠ADC=∠C=70,∵AD=DB,∴∠解析:【解析】【分析】根据等腰三角形的性质得到∠ADC=70︒,再根据三角形外角的性质和等腰三角形可求∠B 的度数.【详解】∵AC=AD,∠C=70︒,∴∠ADC=∠C=70︒,∵AD=DB,∴∠B=∠BAD,∴∠B=12∠ADC=35︒.故答案为:35.【点睛】本题考查了等腰三角形的性质:①等腰三角形的两腰相等;②等腰三角形的两个底角相等,熟练掌握等腰三角形的性质是解题的关键.12.【解析】【分析】设y=kx+b,将(﹣2,m)、(﹣1,2)、(0,n)代入即可得出答案.【详解】设一次函数解析式为:y=kx+b,将(﹣2,m)、(﹣1,2)、(0,n)代入y=kx+解析:【解析】【分析】设y=kx+b,将(﹣2,m)、(﹣1,2)、(0,n)代入即可得出答案.【详解】设一次函数解析式为:y=kx+b,将(﹣2,m)、(﹣1,2)、(0,n)代入y=kx+b,得:﹣2k+b=m;﹣k+b=2;b=n ;∴m +n =﹣2k +b +b =﹣2k +2b =2(﹣k +b )=2×2=4.故答案为:4.【点睛】本题主要考查一次函数的待定系数法,把m +n 看作一个整体,进行计算,是解题的关键.13.【解析】【分析】根据点在函数图像上,即将点代入函数解析式,能够使解析式成立,将本题中P 点的坐标代入解析式,变形即可解决.【详解】解:将代入函数解析式得:b=2a+1,将此式变形即可得到:解析:2-【解析】【分析】根据点在函数图像上,即将点代入函数解析式,能够使解析式成立,将本题中P 点的坐标代入解析式,变形即可解决.【详解】解:将(,)P a b 代入函数解析式得:b=2a+1,将此式变形即可得到:210a b -+=,两边同时减去2,得:21a b --=-2,故答案为:2-.【点睛】本题考查了通过函数上点的坐标,求相关代数式的值,解决本题的关键要熟练掌握一次函数的性质,明白函数上的点都能使函数解析式成立.14.50【解析】【分析】由已知可得△ABC 是等边三角形,从而不难求得AC 的距离.【详解】解:∵点B 在点A 的南偏西45°方向上,点C 在点B 的北偏西15°方向上, ∴∠ABC=45°+15°=60解析:50【解析】【分析】由已知可得△ABC 是等边三角形,从而不难求得AC 的距离.【详解】解:∵点B在点A的南偏西45°方向上,点C在点B的北偏西15°方向上,∴∠ABC=45°+15°=60°∵AB=BC=50,∴△ABC是等边三角形,∴AC=50;故答案为:50.【点睛】本题主要考查了解直角三角形中的方向角问题,能够证明△ABC是等边三角形是解题的关键.15.【解析】【分析】直接利用二次根式和分式有意义的条件分析得出答案.【详解】解:式子在实数范围内有意义的条件是:x-1>0,解得:x>1.故答案为:.【点睛】此题主要考查了二次根式有意x>解析:1【解析】【分析】直接利用二次根式和分式有意义的条件分析得出答案.【详解】在实数范围内有意义的条件是:x-1>0,解得:x>1.x>.故答案为:1【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.16.8【解析】【分析】根据幂的乘方可得,,再根据同底数幂的乘法法则解答即可.【详解】∵,即,∴,解得,故答案为:8.【点睛】本题主要考查了幂的乘方与积的乘方以及同底数幂的乘法,熟练解析:8【解析】【分析】根据幂的乘方可得293m m ,3273=,再根据同底数幂的乘法法则解答即可. 【详解】∵22139273m ⨯⨯=,即22321333m ,∴22321m ,解得8m =, 故答案为:8.【点睛】本题主要考查了幂的乘方与积的乘方以及同底数幂的乘法,熟练掌握幂的运算法则是解答本题的关键.17.40°或70°【解析】解:当40°的角为等腰三角形的顶角时,底角的度数=(180°-40°)÷2=70°;当40°的角为等腰三角形的底角时,其底角为40°,故它的底角的度数是70°或40°.故解析:40°或70°【解析】解:当40°的角为等腰三角形的顶角时,底角的度数=(180°-40°)÷2=70°; 当40°的角为等腰三角形的底角时,其底角为40°,故它的底角的度数是70°或40°. 故答案为:40°或70°.点睛:此题主要考查学生对等腰三角形的性质这一知识点的理解和掌握,由于不明确40°的角是等腰三角形的底角还是顶角,所以要采用分类讨论的思想.18.③【解析】【分析】根据题意,将不同情况下的示意图作出,逐一分析即可得解.【详解】如下图:①∵,,∴,∵,∴为等边三角形∴①正确;②∵,,∴,∵,∴,,∴,∴为等边三角形∴②正确;解析:③【解析】【分析】根据题意,将不同情况下的示意图作出,逐一分析即可得解.【详解】如下图:①∵90ACB ∠=︒,30A ∠=︒,∴60B ∠=︒,∵DC DB =,∴BCD ∆为等边三角形 ∴①正确;②∵90ACB ∠=︒,30A ∠=︒,∴60B ∠=︒,∵AD CD =,∴30ACD ∠=︒,903060DCB ∠=︒-︒=︒,∴60CDB ∠=︒,∴BCD ∆为等边三角形∴②正确;③当DA DC =时∵90ACB ∠=︒,30A ∠=︒,ACD ∆是等腰三角形,∴30ACD ∠=︒,903060DCB ∠=︒-︒=︒,∴60CDB ∠=︒,∴BCD ∆为等边三角形;当AC AD =时,易得BCD ∆不为等边三角形∴③错误;④∵90ACB ∠=︒,30A ∠=︒,∴60B ∠=︒,∵BCD ∆是等腰三角形,∴BCD ∆是等边三角形,60DCB ∠=︒∴30ACD ∠=︒,∴ACD ∆为等腰三角形;∴④正确;故答案为:③.【点睛】本题主要考查了等边三角形,等腰三角形的判定及性质,熟练掌握等边三角形、等腰三角形的判定及性质的证明方法是解决本题的关键.19.3【解析】【分析】根据无理数的三种形式求解即可.【详解】解:=-2,无理数有:,共3个.故答案为:3.【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开解析:3【解析】【分析】根据无理数的三种形式求解即可.【详解】, 3.010010001 (2)π、、,共3个. 故答案为:3.【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数. 20.8【解析】【分析】作BC 边上的高AF ,利用等腰三角形的三线合一的性质求BF =3,利用勾股定理求得AF 的长,利用面积相等即可求得AB 边上的高CP 的长.【详解】解:如图,作AF⊥BC 于点F ,作解析:8【解析】【分析】作BC 边上的高AF ,利用等腰三角形的三线合一的性质求BF =3,利用勾股定理求得AF 的长,利用面积相等即可求得AB 边上的高CP 的长.【详解】解:如图,作AF ⊥BC 于点F ,作CP ⊥AB 于点P ,根据题意得此时CP 的值最小;解:作BC 边上的高AF ,∵AB =AC =5,BC =6,∴BF =CF =3,∴由勾股定理得:AF=4,∴S △ABC =12AB •PC =12BC •AF =12×5CP =12×6×4 得:CP =4.8故答案为4.8.【点睛】此题主要考查直角三角形的性质,解题的关键是熟知勾股定理及三角形的面积公式的运用.三、解答题21.(1)4;(2)32332. 【解析】【分析】(1)先进行开平方,0次幂以及开立方运算,再进行加减运算即可;(2)先化简各个含根号的式子,再合并即可得出结果【详解】 解:(1)原式=2+1+1=4; (2)原式23223=32332. 【点睛】本题考查实数的相关运算,掌握基本运算法则是解题的关键. 22.(1)50;80;3(2)()()()8003240348056047x x y x x x ⎧≤≤⎪=≤≤⎨⎪-+≤≤⎩(3)货车出发3小时或5小时后两车相距90千米【解析】【分析】(1)观察图象即可解决问题;(2)分别求出得A 、B 、C 的坐标,运用待定系数法解得即可;(3)根据题意列方程解答即可.【详解】解:(1)车的速度是50千米/小时;轿车的速度是:()4007280÷-=千米/小时;240803t =÷=.故答案为:50;80;3;(2)由题意可知:()3,240A ,()4,240B ,()7,0C ,设直线OA 的解析式为()110y k x k =≠,∴()8003y x x =≤≤,当34x ≤≤时,240y =,设直线BC 的解析式为()20y k x b k =+≠,把()4,240B ,()7,0C 代入得:22424070k b k b +=⎧⎨+=⎩,解得280560k b =-⎧⎨=⎩, ∴80560y =-+,∴()()()8003240348056047x x y x x x ⎧≤≤⎪=≤≤⎨⎪-+≤≤⎩; (3)设货车出发x 小时后两车相距90千米,根据题意得:()5080140090x x +-=-或()5080240090x x +-=+,解得3x =或5.答:货车出发3小时或5小时后两车相距90千米.【点睛】本题主要考查根据图象的信息来解答问题,关键在于函数的解析式的解答,这是这类题的一个难度,必须分段研究.23.(1)5m =,5n =;(2)()()()133x x x ++-【解析】【分析】(1)先找出一个x 的值,进而找出一个因式,再将多项式设成分解因式的形式,即可得出结论;(2)先找出x=-1时,得出多项式的值,进而找出一个因式,再将多项式设成分解因式的形式,即可得出结论.【详解】解:(1)把1x =带入多项式3245x x +-,发现此多项式的值为0,∴多项式3245x x +-中有因式()1x -,于是可设322451xx x x mx n , 得出:3232451x x x m x n m x n ,∴14m ,0n m,∴5m =,5n =,(2)把1x =-代入3299x x x +--,多项式的值为0,∴多项式3299x x x +--中有因式()1x +,于是可设322329911x x x x x mx n x m x n m x n ,∴11m +=,9n m,9n =- ∴0m =,9n =-,∴3229133991x x x x x x x x【点睛】此题是分解因式,主要考查了试根法分解因式的理解和掌握,解本题的关键是理解试根法分解因式.24.(1)300;1.2 (2)y =110x ﹣195 (3)3.9;234千米【解析】【分析】(1)由图象可求解;(2)利用待定系数法求解析式;(3)求出OA 解析式,联立方程组,可求解.【详解】解:(1)由图象可得:甲、乙两地相距300km ,轿车比货车晚出发1.2小时; 故答案为:300;1.2;(2)设线段CD 所在直线的函数表达式为:y =kx +b ,由题意可得:300=4.580 2.5k b k b +⎧⎨=+⎩解得:110195k b =⎧⎨=-⎩∴线段CD 所在直线的函数表达式为:y =110x ﹣195;(3)设OA 解析式为:y =mx ,由题意可得:300=5m ,∴m =60,∴OA 解析式为:y =60x ,∴60110195y x y x =⎧⎨=-⎩∴ 3.9234x y =⎧⎨=⎩答:货车出发3.9小时两车相遇,此时两车距离甲地234千米.【点睛】本题考查了一次函数的应用,理解图象,是本题的关键.25.BF 的长为【解析】【分析】先连接BF,由E为中点及AC=BC,利用三线合一可得CE⊥AB,进而可证△AFE≌△BFE,再利用AD为角平分线以及三角形外角定理,即可得到∠BFD为45°,△BFD为等腰直角三角形,利用勾股定理即可解得BF.【详解】解:连接BF.∵CA=CB,E为AB中点∴AE=BE,CE⊥AB,∠FEB=∠FEA=90°在Rt△FEB与Rt△FEA中,BE AEBEF AEFFE FE=⎧⎪∠=∠⎨⎪=⎩∴Rt△FEB≌Rt△FEA又∵AD平分∠BAC,在等腰直角三角形ABC中∠CAB=45°∴∠FBE=∠FAE=12∠CAB=22.5°在△BFD中,∠BFD=∠FBE+∠FAE=45°又∵BD⊥AD,∠D=90°∴△BFD为等腰直角三角形,BD=FD=3∴222232BF BD FD BD=+==【点睛】本题主要考查等腰直角三角形的性质及判定、三角形全等的性质及判定、三角形外角、角平分线,解题关键在于熟练掌握等腰直角三角形的性质.四、压轴题26.(1)b=72;(2)①△APQ的面积S与t的函数关系式为S=﹣32t+272或S=32t﹣272;②7<t <9或9<t <11,③存在,当t 的值为3或9+或9﹣或6时,△APQ 为等腰三角形.【解析】分析:(1)把P (m ,3)的坐标代入直线1l 的解析式即可求得P 的坐标,然后根据待定系数法即可求得b ;(2)根据直线2l 的解析式得出C 的坐标,①根据题意得出9AQ t =-,然后根据12P S AQ y =⋅即可求得APQ 的面积S 与t 的函数关系式;②通过解不等式273322t -<或327 3.22t -<即可求得7<t <9或9<t <11.时,APQ 的面积小于3;③分三种情况:当PQ =PA 时,则()()()2222(71)032103,t -++-=++-当AQ =PA 时,则()()222(72)2103,t --=++-当PQ =AQ 时,则()222(71)03(72)t t -++-=--,即可求得.详解:解;(1)∵点P (m ,3)为直线l 1上一点,∴3=−m +2,解得m =−1,∴点P 的坐标为(−1,3),把点P 的坐标代入212y x b =+ 得,()1312b =⨯-+, 解得72b =; (2)∵72b =; ∴直线l 2的解析式为y =12x +72,∴C 点的坐标为(−7,0),①由直线11:2l y x =-+可知A (2,0),∴当Q 在A . C 之间时,AQ =2+7−t =9−t , ∴11273(9)32222S AQ yP t t =⋅=⨯-⨯=-; 当Q 在A 的右边时,AQ =t −9, ∴11327(9)32222S AQ yP t t ;=⋅=⨯-⨯=- 即△APQ 的面积S 与t 的函数关系式为27322S t =-或327.22S t =- ②∵S <3, ∴273322t -<或327 3.22t -< 解得7<t <9或9<t <11.③存在;设Q (t −7,0),当PQ =PA 时,则()()()2222(71)032103,t -++-=++-∴22(6)3t -=,解得t =3或t =9(舍去), 当AQ =PA 时,则()()222(72)2103,t --=++-∴2(9)18,t -=解得9t =+9t =- 当PQ =AQ 时,则()222(71)03(72)t t -++-=--,∴22(6)9(9)t t -+=-,解得t =6. 故当t 的值为3或9+9-6时,△APQ 为等腰三角形.点睛:属于一次函数综合题,考查了一次函数图象上点的坐标特征,待定系数法求函数解析式,等腰三角形的性质以及三角形的面积,分类讨论是解题的关键.27.(1)见解析;(2)αβ=,理由见解析;(3)2【解析】【分析】(1)证明()ABD ACE SAS ≅△△,根据全等三角形的性质得到BD CE =;(2)同(1)先证明()ABD ACE SAS ≅△△,得到∠ACE=∠ABD ,结合等腰三角形的性质和外角和定理用不同的方法表示∠ACE ,得到α和β关系式;(3) 同(1)先证明()ABD ACE SAS ≅△△,得到ABC ADCE S S ∆=四边形,那么DCE ADE ADCE S S S ∆∆=-四边形,当AD BC ⊥时,ADE S ∆最小,即DCE S ∆最大.【详解】解:(1)∵BAC DAE ∠=∠,∴BAC DAC DAE DAC ∠-∠=∠-∠,∴BAD CAE ∠=∠,在ABD △和ACE △中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴()ABD ACE SAS ≅△△,∴BD CE =;(2)同(1)的方法得()ABD ACE SAS ≅△△,∴∠ACE=∠ABD ,∠BCE=α,∴∠ACE=∠ ACB+∠BCE=∠ACB+α,在ABC 中,∵AB= AC ,∠BAC=β,∴∠ACB=∠ABC =12(180°-β)= 90°-12β, ∴∠ABD= 180°-∠ABC= 90°+12β, ∴∠ACE=∠ACB +α= 90°-12β+α, ∵∠ACE=∠ABD = 90°+12β, ∴90°-12β+α= 90°+12β, ∴α = β;(3)如图,过A 做AH BC ⊥于点H ,∵AB AC =,90BAC ∠=︒,∴45ABC ∠=︒,122BH AH BC ===, 同(1)的方法得,()ABD ACE SAS ≅△△,AEC ABD S S ∆∆∴=,AEC ADC ABD ADC S S S S ∆∆∆∆+=+,即142ABC ADCE S S BC AH ∆==⋅=四边形, ∴DCE ADE ADCE S S S ∆∆=-四边形,当ADE S ∆最小时,DCE S ∆最大,∴当AD BC ⊥2AD =,时最小,2122ADE S AD ∆==, 422DCE S ∆∴=-=最大.【点睛】本题考查全等三角形的性质和判定,等腰三角形的性质,三角形的外角和定理,解题的关键是抓住第一问中的那组全等三角形,后面的问题都是在这个基础上进行证明的.28.(1)①)3,1;②B ;(2)3s =;(3)59k ≤≤. 【解析】【分析】(1)利用限变点的定义直接解答即可;(2)先利用逆推原理求出限变点(2,1)A -、(2,1)B 对应的原来点坐标,然后把原来点坐标代入到2y =,满足解析式的就是答案;(3)先OC OD ,的关系式,再求出点P 的限变点Q 满足的关系式,然后根据图象求出m n ,的值,从而求出s 即可;(4)先求出线段EF 的关系式,再求出点P 的限变点Q 所满足的关系式,根据图像求解即可.【详解】解:(1)①∵2a =, ∴11b b ==-=',∴坐标为:),故答案为:); ②∵对于限变点来说,横坐标保持不变,∴限变点(2,1)A -对应的原来点的坐标为:()2,1-或()21--,, 限变点(2,1)B 对应的原来点的坐标为:()2,2,∵()2,2满足2y =,∴这个点是B ,故答案为:B ;(2)∵点C 的坐标为(2,2)--,∴OC 的关系式为:()0y x x =≤,∵点D 的坐标为(2,2)-,∴OD 的关系式为:()0y x x =-≥,∴点P 满足的关系式为:()()00x x y x x ≤⎧⎪=⎨->⎪⎩, ∴点P 的限变点Q 的纵坐标满足的关系式为:当2x ≥时:1b x '=--,当02x <<时:b x x '=-=,当0x ≤时,b x x '==-,图像如下:通过图象可以得出:当2x ≥时,3b '≤-,∴3n =-,当2x <时,0b '≥,∴0m =,∴()033s m n =-=--=;(3)设线段EF 的关系式为:()022y ax c a x k k =+≠-≤≤>-,,, 把(2,5)E --,(,3)F k k -代入得:253a c ka c k -+=-⎧⎨+=-⎩,解得:13a c =⎧⎨=-⎩, ∴线段EF 的关系式为()322y x x k k =--≤≤>-,, ∴线段EF 上的点P 的限变点Q 的纵坐标满足的关系式4(2)|3|3(22)x xb x x x -⎧'=⎨-=--<⎩, 图象如下:当x =2时,b ′取最小值,b '=2﹣4=﹣2,当b '=5时,x ﹣4=5或﹣x +3=5,解得:x =9或x =﹣2,当b ′=1时,x ﹣4=1,解得:x =5,∵ 25b '-≤≤,∴由图象可知,k 的取值范围时:59k ≤≤.【点睛】本题主要考查了一次函数的综合题,解答本题的关键是熟练掌握新定义“限变点”,解答此题还需要掌握一次函数的图象与性质以及最值的求解,此题有一定的难度.29.(1)①点P ;②见解析;(2)①点C 的横坐标C x 的值为-3;②334k -≤<-【解析】【分析】(1)①在点P ,点Q 中,点OS 绕点O 顺时针旋转90°能得到线段OP ,故S 关于点O 的“正矩点”为点P ;②利用新定义得点S 是点P 关于点M 的“正矩点”(答案不唯一);(2)①利用新定义结合题意画出符合题意的图形,利用新定义的性质证明△BCF ≌△AOB ,则FC=OB 求得点C 的横坐标;②用含k 的代数式表示点C 纵坐标,代入不等式求解即可.【详解】解:(1)①在点P ,点Q 中,点OS 绕点O 顺时针旋转90°能得到线段OP ,故S 关于点O 的“正矩点”为点P ,故答案为点P ;②因为MP 绕M 点顺时针旋转90︒得MS ,所以点S 是点P 关于点M 的“正矩点”,同理还可以得点Q 是点P 关于点S 的“正矩点”.(任写一种情况就可以)(2)①符合题意的图形如图1所示,作CE ⊥x 轴于点E ,CF ⊥y 轴于点F ,可得∠BFC=∠AOB=90°.∵直线3(0)y kx k =+<与x 轴交于点A ,与y 轴交于点B ,∴点B 的坐标为3(0,3),(,0)B A k-在x 轴的正半轴上, ∵点A 关于点B 的“正矩点”为点(,)C C C x y ,∴∠ABC=90°,BC=BA ,∴∠1+∠2=90°,∵∠AOB=90°,∴∠2+∠3=90°,∴∠1=∠3.∴△BFC ≌△AOB ,∴3FC OB ==,可得OE =3.∵点A 在x 轴的正半轴上且3OA <,0C x ∴<,∴点C 的横坐标C x 的值为-3.②因为△BFC≌△AOB,3(,0)Ak-,A在x轴正半轴上,所以BF=OA,所以OF=OB-OF=3 3k +点3(3,3)Ck-+,如图2, -1<Cy≤2,即:-1<33k+≤2,则334k-≤<-.【点睛】本题考查的是一次函数综合运用,涉及到三角形全等、解不等式,新定义等,此类新定义题目,通常按照题设的顺序,逐次求解.30.(1)①见解析;②见解析;(2)2【解析】【分析】(1)①只要证明∠2+∠BAF=∠1+∠BAF=60°即可解决问题;②只要证明△BFC≌△ADB,即可推出∠BFC=∠ADB=90°;(2)在BF上截取BK=AF,连接AK.只要证明△ABK≌CAF,可得S△ABK=S△AFC,再证明AF=FK=BK,可得S△ABK=S△AFK,即可解决问题;【详解】(1)①证明:如图1中,∵AB=AC,∠ABC=60°∴△ABC是等边三角形,∵AD⊥BN,∴∠ADB=90°,∵∠MBN=30°,∠BFD=60°=∠1+∠BAF=∠2+∠BAF,∴∠1=∠2②证明:如图2中,在Rt△BFD中,∵∠FBD=30°,∴BF=2DF,∵BF=2AF,∴BF=AD,∵∠BAE=∠FBC,AB=BC,∴△BFC≌△ADB,∴∠BFC=∠ADB=90°,∴BF⊥CF(2)在BF上截取BK=AF,连接AK.∵∠BFE=∠2+∠BAF,∠CFE=∠4+∠1,∴∠CFB=∠2+∠4+∠BAC,∵∠BFE=∠BAC=2∠EFC,∴∠1+∠4=∠2+∠4∴∠1=∠2,∵AB=AC,∴△ABK≌CAF,∴∠3=∠4,S△ABK=S△AFC,∵∠1+∠3=∠2+∠3=∠CFE=∠AKB,∠BAC=2∠CEF,∴∠KAF=∠1+∠3=∠AKF,∴AF=FK=BK,∴ABF AFCS 2S ∆∆=. 【点睛】本题考查全等三角形的判定和性质、等边三角形的性质、等腰三角形的判定和性质、直角三角形30度角性质等知识,解题的关键是能够正确添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。

2018-2019学年江苏省苏州市八年级(上)期末数学试卷(解析版)

2018-2019学年江苏省苏州市八年级(上)期末数学试卷(解析版)

2018-2019学年江苏省苏州市八年级(上)期末数学试卷一、选择题(本大题共10小题,每小题2分,共20分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)下列四个图标中,轴对称图案为()A.B.C.D.2.(2分)下面四个实数中,是无理数的为()A.0B.C.﹣2D.3.(2分)最“接近”(﹣1)的整数是()A.0B.1C.2D.34.(2分)如图,在△ABC中,AD=BD=AC,∠B=25°,则∠DAC为()A.70°B.75°C.80°D.85°5.(2分)在同一平面直角坐标系中,函数y=﹣x与y=3x﹣4的图象交于点P,则点P 的坐标为()A.(﹣1,1)B.(1,﹣1)C.(2,﹣2)D.(﹣2,2)6.(2分)已知三组数据:①2,3,4;②3,4,5;③,2,.以每组数据分别作为三角形的三边长,其中能构成直角三角形的为()A.①B.①②C.①③D.②③7.(2分)等腰三角形的底边长为24,底边上的高为5,它的腰长为()A.10B.11C.12D.138.(2分)已知m为任意实数,则点A(m,m2+1)不在()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限9.(2分)如图,函数y=﹣x+3的图象分别与x轴、y轴交于点A、B,∠BAO的平分线AC与y轴交于点C,则点C的纵坐标为()A.B.C.2D.10.(2分)如图,已知P(3,2),B(﹣2,0),点Q从P点出发,先移动到y轴上的点M处,再沿垂直于y轴的方向向左移动1个单位至点N处,最后移动到点B处停止,当点Q移动的路径最短时(即三条线段PM、MN、NB长度之和最小),点M的坐标为()A.(0,)B.(0,)C.(0,)D.(0,)二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,请把答案直接填写在答题卡相应位置上,)11.(2分)π﹣30.14.(填“>”、“<”或“=”)12.(2分)27的立方根为.13.(2分)已知一次函数y=kx+1的图象经过点P(﹣1,0),则k=.14.(2分)如图,已知CB⊥AD,AE⊥CD,垂足分别为B、E,AE、BC相交于点F,AB =BC.若AB=8,CF=2,则CD=.15.(2分)如图,直线l1:y=kx+b与直线l2:y=mx+n相交于点P(1,2),则不等式kx+b>mx+n的解集为.16.(2分)如图,△ABC为等腰直角三角形,∠ABC=90°,△ADB为等边三角形,则∠ADC=°.17.(2分)如图,已知E为长方形纸片ABCD的边CD上一点,将纸片沿AE对折,点D 的对应点D′恰好在线段BE上.若AD=3,DE=1,则AB=.18.(2分)如图,已知点A(a,0)在x轴正半轴上,点B(0,b)在y轴的正半轴上,△ABC为等腰直角三角形,D为斜边BC上的中点,若OD=,则a+b=.三、解答题(本大题共10小题,共64分.请在答题卡指定区域内作答,解答时应写出文字说明证明过程或演算步骤.)19.(5分)计算:(﹣)2﹣+(﹣1)0.20.(5分)某人平均一天饮水1980毫升.(1)求此人30天一共饮水多少毫升?(2)用四舍五入法将(1)中计算得到的数据精确到10000,并用科学记数法表示.21.(5分)如图,已知AB⊥BC,AE⊥BE,CD⊥BE,垂足分别为B、E、D,AB=BC.求证:BE=CD.22.(5分)如图,在△ABC中,∠C=90°,DE为AB的垂直平分线,DE交AC于点D,连接BD.若∠ABD=2∠CBD,求∠A的度数.23.(6分)如图,在正方形网格纸中,每个小正方形的边长为1,△ABC三个顶点都在格点上.(1)写出点A、B、C的坐标;(2)直线l经过点A且与y轴平行,画出△ABC关于直线l成轴对称的△A1B1C1,连接BC1,求线段BC1的长.24.(6分)如图,在△ABD和△ABC中,∠ADB=∠ACB=90°,点E为AB中点,AB =8,CD=4,点E、F关于CD成轴对称,连接FD、FC.(1)求证:△FDC为等边三角形;(2)连接EF,求EF的长.25.(8分)如图,已知直线l1:y=kx+2与x轴的负半轴交于点A,与y轴交于点B,OA =1.直线l2:y=﹣2x+4与x轴交于点D,与l1交于点C.(1)求直线l1的函数表达式;(2)求四边形OBCD的面积.26.(8分)如图,在四边形ABCD中,已知AB∥CD,AD⊥AB,AD=2,AB+CD=4,点E为BC的中点.(1)求四边形ABCD的面积;(2)若AE⊥BC,求CD的长.27.(8分)如图,在边长为12cm的正方形ABCD中,M是AD边的中点,点P从点A出发,在正方形边上沿A→B→C→D的方向以大于1cm/s的速度匀速移动,点Q从点D出发,在CD边上沿D→C方向以1cm/s的速度匀速移动,P、Q两点同时出发,当点P、Q相遇时即停止移动.设点P移动的时间为t(s),正方形ABCD与∠PMQ的内部重叠部分面积为y(cm2).已知点P移动到点B处,y的值为96(即此时正方形ABCD与∠PMQ的内部重叠部分面积为96cm2).(1)求点P的速度;(2)求y与t的函数关系式,并直接写出t的取值范围.28.(8分)如图①,A、B两个圆柱形容器放置在同一水平桌面上,开始时容器A中盛满水,容器B中盛有高度为1dm的水,容器B下方装有一只水龙头,容器A向容器B匀速注水.设时间为t(s),容器A、B中的水位高度h A(dm)、h B(dm)与时间t(s)之间的部分函数图象如图②所示.根据图中数据解答下列问题:(1)容器A向容器B注水的速度为dm3/s(结果保留π),容器B的底面直径m =dm;(2)当容器B注满水后,容器A停止向容器B注水,同时开启容器B的水龙头进行放水,放水速度为dm3/s.请在图②中画出容器B中水位高度h B与时间t(t≥4)的函数图象,说明理由;(3)当容器B注满水后,容器A继续向容器B注水,同时开启容器B的水龙头进行放水,放水速度为2πdm3/s,直至容器A、B水位高度相同时,立即停止放水和注水,求容器A向容器B全程注水时间t.(提示:圆柱体积=圆柱的底面积×圆柱的高)2018-2019学年江苏省苏州市八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)下列四个图标中,轴对称图案为()A.B.C.D.【分析】根据轴对称图形的概念解答.【解答】解:A、是轴对称图形,符合题意;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误.故选:A.【点评】本题考查的是轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(2分)下面四个实数中,是无理数的为()A.0B.C.﹣2D.【分析】根据无理数的定义:无限不循环小数是无理数即可求解.【解答】解:A、0是有理数,故选项错误;B、是无理数,故选项正确;C、﹣2是有理数,故选项错误;D、是有理数,故选项错误.故选:B.【点评】此题主要考查了无理数的定义.初中常见的无理数有三类:①π类;②开方开不尽的数,如;③有规律但无限不循环的数,如0.8080080008…(每两个8之间依次多1个0).3.(2分)最“接近”(﹣1)的整数是()A.0B.1C.2D.3【分析】先估计的大小,进而解答即可.【解答】解:∵,∴,∴最“接近”(﹣1)的整数是0,故选:A.【点评】此题考查无理数的大小估计,关键是根据无理数对进行估计解答.4.(2分)如图,在△ABC中,AD=BD=AC,∠B=25°,则∠DAC为()A.70°B.75°C.80°D.85°【分析】先根据等腰三角形的性质及三角形外角与内角的关系求出∠ADC的度数,再根据等腰三角形的性质及三角形内角和定理求出∠DAC的度数即可.【解答】解:∵△ABD中,AD=BD,∠B=25°,∴∠BAD=25°,∴∠ADC=25°×2=50°,∵AD=AC,∴∠C=50°,∴∠DAC=180°﹣50°×2=80°.故选:C.【点评】本题考查了等腰三角形的性质,三角形的内角和,熟练掌握等腰三角形的性质是解题的关键.5.(2分)在同一平面直角坐标系中,函数y=﹣x与y=3x﹣4的图象交于点P,则点P 的坐标为()A.(﹣1,1)B.(1,﹣1)C.(2,﹣2)D.(﹣2,2)【分析】联立两一次函数的解析式求出x、y的值即可得出P点坐标.【解答】解:解得,,∴点P的坐标为(1,﹣1),故选:B.【点评】本题考查的是两条直线相交或平行问题.正确的得出方程组的解是解答此题的关键.6.(2分)已知三组数据:①2,3,4;②3,4,5;③,2,.以每组数据分别作为三角形的三边长,其中能构成直角三角形的为()A.①B.①②C.①③D.②③【分析】如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.依据勾股定理的逆定理进行判断即可.【解答】解:①22+32≠42,故不能构成直角三角形;②42+32=52,故能构成直角三角形;③()2+22=()2,故能构成直角三角形;故选:D.【点评】本题主要考查了勾股定理的逆定理,要判断一个角是不是直角,先要构造出三角形,然后知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.7.(2分)等腰三角形的底边长为24,底边上的高为5,它的腰长为()A.10B.11C.12D.13【分析】根据题意画出图形,根据等腰三角形的性质得出BD的长,由勾股定理求出AB 的长即可.【解答】解:如图所示,∵△ABC是等腰三角形,且AB=AC,AD是底边BC的高,∴BD=BC=×24=12,∴AB===13.故选:D.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.8.(2分)已知m为任意实数,则点A(m,m2+1)不在()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限【分析】根据非负数的性质判断出点A的纵坐标是正数,再根据各象限内点的坐标特征解答.【解答】解:∵m2≥0,∴m2+1>0,∴点A(m,m2+1)不在第三、四象限.故选:D.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).9.(2分)如图,函数y=﹣x+3的图象分别与x轴、y轴交于点A、B,∠BAO的平分线AC与y轴交于点C,则点C的纵坐标为()A.B.C.2D.【分析】过点C作CF⊥BA,由题意可得AO=4,BO=3,根据“AAS”可证△ACF≌△ACO,可得CO=CF,AO=AF=4,再根据勾股定理可求OC的长,即可得点C的纵坐标.【解答】解:如图,过点C作CF⊥BA,∵y=﹣x+3的图象分别与x轴、y轴交于点A、B,∴点A坐标为(4,0),点B坐标为(0,3),∴AO=4,BO=3,在Rt△ABO中,AB==5,∵AC平分∠BAO,∴∠FAC=∠OAC,且AC=AC,∠CFA=∠COA=90°,∴△ACF≌△ACO(AAS)∴CO=CF,AO=AF=4∴BF=1,在Rt△BCF中,BC2=BF2+CF2,∴(3﹣CO)2=1+CO2,∴CO=故选:B.【点评】本题考查了一次函数图象上点的坐标特征,勾股定理,全等三角形的判定和性质等知识,灵活运用相关的性质定理进行推理是本题的关键.10.(2分)如图,已知P(3,2),B(﹣2,0),点Q从P点出发,先移动到y轴上的点M处,再沿垂直于y轴的方向向左移动1个单位至点N处,最后移动到点B处停止,当点Q移动的路径最短时(即三条线段PM、MN、NB长度之和最小),点M的坐标为()A.(0,)B.(0,)C.(0,)D.(0,)【分析】将BN沿NM方向平移MN长的距离得到AM,连接AB,可得四边形ABNM是平行四边形,根据当A,M,P在同一直线上时,AM+PM有最小值,最小值等于线段AP 的长,即BN+PM的最小值等于AP长,可得PM、MN、NB长度之和最小,再根据待定系数法求得AP的解析式,即可得到点M的坐标.【解答】解:如图,将BN沿NM方向平移MN长的距离得到AM,连接AB,则BN=AM,∴四边形ABNM是平行四边形,∴MN=AB=1,∴当A,M,P在同一直线上时,AM+PM有最小值,最小值等于线段AP的长,即BN+PM 的最小值等于AP长,此时PM、MN、NB长度之和最小,∵P(3,2),B(﹣2,0),AB=1,∴A(﹣1,0),设AP的解析式为y=kx+b,则,解得,∴y=x+,令x=0,则y=,即M(0,),故选:A.【点评】本题主要考查了最短路线问题以及待定系数法的运用,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,请把答案直接填写在答题卡相应位置上,)11.(2分)π﹣3>0.14.(填“>”、“<”或“=”)【分析】直接得出π的近似值,进而得出答案.【解答】解:∵π≈3.14159,∴π﹣3≈0.14159,∴π﹣3>0.14.故答案为:>.【点评】此题主要考查了实数比较大小,正确得出π的近似值是解题关键.12.(2分)27的立方根为3.【分析】找到立方等于27的数即可.【解答】解:∵33=27,∴27的立方根是3,故答案为:3.【点评】考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算.13.(2分)已知一次函数y=kx+1的图象经过点P(﹣1,0),则k=1.【分析】将点P坐标代入解析式可求k的值.【解答】解:∵一次函数y=kx+1的图象经过点P(﹣1,0),∴0=﹣k+1∴k=1故答案为:1【点评】本题考查了一次函数图象上点的坐标特征,熟练掌握函数图象上的点的坐标满足函数解析式.14.(2分)如图,已知CB⊥AD,AE⊥CD,垂足分别为B、E,AE、BC相交于点F,AB =BC.若AB=8,CF=2,则CD=10.【分析】先利用垂直得到∠ABF=∠CEF=90°,再证明∠A=∠C,然后根据“ASA”可以判断△ABF≌△CBD,从而得到BF=BD,求出BC,BD,利用勾股定理即可解决问题.【解答】证明:∵CB⊥AD,AE⊥DC,∴∠ABF=∠CEF=90°,∵∠AFB=∠CFE,∴∠A=∠C,在△ABF和△CBD中,∴△ABF≌△CBD(ASA),∴BF=BD,∵AB=BC=8,CF=2,∴BF=BD=8﹣2=6,在Rt△BCD中,CD===10,故答案为10.【点评】本题考查了全等三角形的判定与性质,勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.15.(2分)如图,直线l1:y=kx+b与直线l2:y=mx+n相交于点P(1,2),则不等式kx+b>mx+n的解集为x>1.【分析】观察函数图象得到,当x>1时,一次函数y=kx+b的图象都在一次函数y=mx+n 的图象的上方,由此得到不等式kx+b>mx+n的解集.【解答】解:不等式kx+b>mx+n的解集为x>1.故答案为:x>1.【点评】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.16.(2分)如图,△ABC为等腰直角三角形,∠ABC=90°,△ADB为等边三角形,则∠ADC=135°.【分析】利用等腰三角形的性质分别求出∠ADB,∠BDC即可解决问题.【解答】解:∵△ABD是等边三角形,∴∠ABD=∠ADB=60°,BA=BD,∵BA=BC,∠ABC=90°,∴BD=BC,∠CBD=30°,∴∠BDC=∠BCD=(180°﹣30°)=75°,∴∠ADC=∠ADB+∠BDC=135°,故答案为135.【点评】本题考查了等腰直角三角形的性质,等边三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.(2分)如图,已知E为长方形纸片ABCD的边CD上一点,将纸片沿AE对折,点D 的对应点D′恰好在线段BE上.若AD=3,DE=1,则AB=5.【分析】由折叠的性质可得AD=AD'=3,DE=D'E=1,∠DEA=∠D'EA,根据矩形的性质可证∠EAB=∠AEB,即AB=BE,根据勾股定理可求AB的长.【解答】解:∵折叠,∴△ADE≌△AD'E,∴AD=AD'=3,DE=D'E=1,∠DEA=∠D'EA,∵四边形ABCD是矩形,∴AB∥CD,∴∠DEA=∠EAB,∴∠EAB=∠AEB,∴AB=BE,∴D'B=BE﹣D'E=AB﹣1,在Rt△ABD'中,AB2=D'A2+D'B2,∴AB2=9+(AB﹣1)2,∴AB=5故答案为:5【点评】本题考查了折叠的性质,矩形的性质,勾股定理,熟练运用折叠的性质是本题的关键.18.(2分)如图,已知点A(a,0)在x轴正半轴上,点B(0,b)在y轴的正半轴上,△ABC为等腰直角三角形,D为斜边BC上的中点,若OD=,则a+b=2.【分析】作CP⊥x轴于点P,由余角的性质得到∠OBA=∠PAC,根据全等三角形的性质得到AP=OB=b,PC=OA=a.于是得到C点坐标是(a+b,a),求得D(,),根据勾股定理即可得到结论.【解答】解:如图:作CP⊥x轴于点P,∴∠APC=90°,∵△ABC为等腰直角三角形,∴∠BAC=90°,∴∠ABO+∠BAO=∠BAO+∠CAP=90°,∴∠OBA=∠PAC,在△OBA和△PAC中,,∴△OBA≌△PAC(AAS),∴AP=OB=b,PC=OA=a.由线段的和差,得OP=OA+AP=a+b,即C点坐标是(a+b,a),∵B(0,b),C(a+b,a),∵D是BC的中点,得D(,),∵OD=,∴()2+()2=2,∴a+b=2,故答案为:2.【点评】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.三、解答题(本大题共10小题,共64分.请在答题卡指定区域内作答,解答时应写出文字说明证明过程或演算步骤.)19.(5分)计算:(﹣)2﹣+(﹣1)0.【分析】直接利用立方根以及零指数幂的性质分别化简得出答案.【解答】解:原式=3﹣2+1=2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.(5分)某人平均一天饮水1980毫升.(1)求此人30天一共饮水多少毫升?(2)用四舍五入法将(1)中计算得到的数据精确到10000,并用科学记数法表示.【分析】(1)用天数乘以日饮水量即可求得总饮水量;’(2)先用科学记数法表示,然后根据近似数的精确度求解.【解答】解:(1)∵平均一天饮水1980毫升,∴30天一共饮水30×1980=59400毫升;(2)59400≈6×104(精确到10000).【点评】本题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起到这个数完为止,所有数字都叫这个数的有效数字.21.(5分)如图,已知AB⊥BC,AE⊥BE,CD⊥BE,垂足分别为B、E、D,AB=BC.求证:BE=CD.【分析】欲证明BE=CD,只要证明△ABE≌△BCD(AAS)即可解决问题;【解答】证明:∵AB⊥BC,AE⊥BE,CD⊥BE,∴∠AEC=∠CDB=∠ABC=90°,∴∠A+∠ABE=90°,∠ABE+∠CBD=90°,∴∠A=∠CBD,在△ABE和△BCD中,,∴△ABE≌△BCD(AAS),∴BE=CD.【点评】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.22.(5分)如图,在△ABC中,∠C=90°,DE为AB的垂直平分线,DE交AC于点D,连接BD.若∠ABD=2∠CBD,求∠A的度数.【分析】依据线段垂直平分线的性质,可得∠A=∠ABD=2∠CBD,设∠A=α,则∠ABD=α,∠CBD=α,依据三角形内角和定理,即可得到∠A的度数.【解答】解:∵DE为AB的垂直平分线,∴∠A=∠ABD,又∵∠ABD=2∠CBD,∴∠A=∠ABD=2∠CBD,设∠A=α,则∠ABD=α,∠CBD=α,又∵∠C=90°,∴∠A+∠ABC=90°,即α+α+α=90°,解得α=36°,∴∠A=36°.【点评】此题考查了线段垂直平分线的性质,等腰三角形性质,三角形内角和定理的应用,解题的关键是注意线段垂直平分线上任意一点,到线段两端点的距离相等.23.(6分)如图,在正方形网格纸中,每个小正方形的边长为1,△ABC三个顶点都在格点上.(1)写出点A、B、C的坐标;(2)直线l经过点A且与y轴平行,画出△ABC关于直线l成轴对称的△A1B1C1,连接BC1,求线段BC1的长.【分析】(1)依据△ABC三个顶点的位置,即可得到点A、B、C的坐标;(2)依据轴对称的性质,即可得到△ABC关于直线l成轴对称的△A1B1C1,依据勾股定理进行计算,即可得出线段BC1的长.【解答】解:(1)A(1,1),B(3,4),C(4,2);(2)如图所示,△A1B1C1即为所求;由勾股定理可得,BC1==.【点评】本题主要考查了勾股定理以及轴对称性质的运用,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.24.(6分)如图,在△ABD和△ABC中,∠ADB=∠ACB=90°,点E为AB中点,AB =8,CD=4,点E、F关于CD成轴对称,连接FD、FC.(1)求证:△FDC为等边三角形;(2)连接EF,求EF的长.【分析】(1)首先证明CD=DE=EC,再证明FD=FC=DC即可.(2)连接EF,设EF交CD于点O.分别求出OE,OF即可解决问题.【解答】(1)证明:连接DE,EC.∵∠ADB=∠ACB=90°,AE=EB,∴DE=EC=AB=4,∵CD=4,∴DE=EC=CD=4,∴△DEC是等边三角形,∵E,F关于CD对称,∴DF=DE,FC=CE,∴DF=FC=CD,∴△DFC是等边三角形,(2)解:连接EF,设EF交CD于点O.∵△DCE,△DFC都是等边三角形,边长为4,∴FD=FC=ED=EC,∴EF⊥CD,∴OE=×4=2,OF=×4=2,∴EF=4.【点评】本题考查轴对称的性质,等边三角形的判定和性质,直角三角形斜边中线的性质等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.25.(8分)如图,已知直线l1:y=kx+2与x轴的负半轴交于点A,与y轴交于点B,OA =1.直线l2:y=﹣2x+4与x轴交于点D,与l1交于点C.(1)求直线l1的函数表达式;(2)求四边形OBCD的面积.【分析】(1)由已知得到A(﹣1,0),把(﹣1,0)代入y=kx+2即可得到结论;(2)解方程组得到C (,3),根据三角形的面积公式即可得到结论.【解答】解:(1)∵OA =1,∴A (﹣1,0),把(﹣1,0)代入y =kx +2得,k =2,∴直线l 1的函数表达式为:y =2x +2;(2)解得,∴C (,3),∵B (0,2),∴OB =2,当y =0时,﹣2x +4=0,∴x =2,∴D (2,0),∴AD =3,∴四边形OBCD 的面积=S △ACD ﹣S △AOB =×3×3﹣×1×2=.【点评】本题考查了两条直线相交与平行问题,待定系数法求函数的解析式,三角形的面积,正确的理解题意是解题的关键.26.(8分)如图,在四边形ABCD 中,已知AB ∥CD ,AD ⊥AB ,AD =2,AB +CD =4,点E 为BC 的中点.(1)求四边形ABCD 的面积;(2)若AE ⊥BC ,求CD 的长.【分析】(1)作辅助线,构建三角形全等,将四边形ABCD 的面积转化为三角形DAF 的面积来解答;(2)连接AC ,设CD =x ,根据勾股定理列方程可解答.【解答】解:(1)如图1,连接DE 并延长,交AB 的延长线于F ,∵DC ∥AB ,∴∠C =∠EBF ,∵CE =BE ,∠DEC =∠FEB ,∴△DCE ≌△FBE (ASA ),∴BF =DC ,∵AB +CD =4,∴AB +BF =4=AF ,∴S 四边形ABCD =S 四边形ABED +S △DCE =S 四边形ABED +S △EBF =S △DAF ===4;(2)如图2,连接AC ,∵CE =BE ,AE ⊥BC ,∴AC =AB ,设CD =x ,则AB =AC =4﹣x ,Rt △ACD 中,由勾股定理得:CD 2+AD 2=AC 2,x 2+22=(4﹣x )2,x =,∴CD =.【点评】本题考查了直角梯形的性质,还考查了线段垂直平分线的性质,全等三角形的性质和判定,勾股定理的应用,能正确作辅助线是解此题的关键.27.(8分)如图,在边长为12cm的正方形ABCD中,M是AD边的中点,点P从点A出发,在正方形边上沿A→B→C→D的方向以大于1cm/s的速度匀速移动,点Q从点D出发,在CD边上沿D→C方向以1cm/s的速度匀速移动,P、Q两点同时出发,当点P、Q相遇时即停止移动.设点P移动的时间为t(s),正方形ABCD与∠PMQ的内部重叠部分面积为y(cm2).已知点P移动到点B处,y的值为96(即此时正方形ABCD与∠PMQ的内部重叠部分面积为96cm2).(1)求点P的速度;(2)求y与t的函数关系式,并直接写出t的取值范围.【分析】(1)根据正方形的性质得到∠A=∠D=90°,AB=AD=CD=BC=12,AM=AD=6,根据三角形的面积公式列方程即可得到结论;(2)分三种情况:当点P在边AB上时,当点P在边BC上时,当点P在边CD上时,列函数关系式即可.【解答】解:(1)∵在边长为12cm的正方形ABCD中,M是AD边的中点,∠A=∠D=90°,AB=AD=CD=BC=12,AM=AD=6,∴根据题意得,12×12﹣×12×6﹣×6t=96,解得:t=4,∴点P的速度为=3cm/s;(2)当点P在边AB上时,y=12×12﹣×6×3t﹣×6t=144﹣12t(0≤t≤4);当点P在边BC上时,y=×(24﹣3t)×12+×6×(12﹣t)=180﹣21t(4<t≤8);当点P在边CD上时,y=×(36﹣4t)×6=﹣12t+108(8<t≤9);综上所述,y与t的函数关系式为:y=.【点评】本题考查了正方形的性质,根据实际问题列函数关系式,三角形的面积,正确的理解题意是解题的关键.28.(8分)如图①,A、B两个圆柱形容器放置在同一水平桌面上,开始时容器A中盛满水,容器B中盛有高度为1dm的水,容器B下方装有一只水龙头,容器A向容器B匀速注水.设时间为t(s),容器A、B中的水位高度h A(dm)、h B(dm)与时间t(s)之间的部分函数图象如图②所示.根据图中数据解答下列问题:(1)容器A向容器B注水的速度为dm3/s(结果保留π),容器B的底面直径m=2dm;(2)当容器B注满水后,容器A停止向容器B注水,同时开启容器B的水龙头进行放水,放水速度为dm3/s.请在图②中画出容器B中水位高度h B与时间t(t≥4)的函数图象,说明理由;(3)当容器B注满水后,容器A继续向容器B注水,同时开启容器B的水龙头进行放水,放水速度为2πdm3/s,直至容器A、B水位高度相同时,立即停止放水和注水,求容器A向容器B全程注水时间t.(提示:圆柱体积=圆柱的底面积×圆柱的高)【分析】(1)注水速度=注水体积÷注水时间,圆柱体积=圆柱的底面积×圆柱的高,代入公式求解即可.(2)放水时间=放水体积÷放水速度,求出时间补全图象.(3)圆柱的高=圆柱体积÷圆柱的底面积,代入公式求解.【解答】解:(1)由图象可知,4秒,A容器内水的高度下降了1dm,V=sh=π()2•1=3π,则注水速度u==,由图象可知,4秒,B容器内水的高度上升了3dm,B容器增加的水的体积等于A容器减少的水的体积,V1=sh=π()2•3=,∴=3π,∴d=2.故答案为;2.(2)注满后B容器中水的总体积为:4π,∵放水速度为dm3/s,∴放空所需要的时间为:4π÷()=16.(3)A容器内水的高度:B容器内水的高度:∴=解得,t=6,∴容器A向容器B全程注水时间t为6s.【点评】此题考查了一次函数与注水的相关问题,注水速度=注水体积÷注水时间,圆柱体积=圆柱的底面积×圆柱的高,这两个公式为解题关键.。

苏州市八年级上学期期末数学试卷 (解析版)

苏州市八年级上学期期末数学试卷 (解析版)

苏州市八年级上学期期末数学试卷 (解析版) 一、选择题 1.下列各组数中互为相反数的是( )A .2-与2B .2-与38-C .2-与12-D .2-与()22- 2.变量x 、y 有如下的关系,其中y 是x 的函数的是( ) A .28y x = B .||y x = C .1y x = D .412x y = 3.人的眼睛可以看见的红光的波长约为5810cm -⨯,近似数5810-⨯精确到( ) A .0.001cm B .0.0001cm C .0.00001cm D .0.000001cm4.在直角坐标系中,函数y kx =与12y x k =-的图像大数是( ) A . B .C .D .5.如图,在ABC ∆中,AB AC =,AB 的垂直平分线交AB 于点D ,交AC 于点E ,若76BEC ∠=,则ABC ∠=( )A .70B .71C .74D .766.在下列分解因式的过程中,分解因式正确的是()A.-xz+yz=-z(x+y) B.3a2b-2ab2+ab=ab(3a-2b)C.6xy2-8y3=2y2(3x-4y) D.x2+3x-4=(x+2)(x-2)+3x7.如图,折叠Rt ABC∆,使直角边AC落在斜边AB上,点C落到点E处,已知6cmAC=,8cmBC=,则CD的长为()cm.A.6 B.5 C.4 D.38.如图,在平面直角坐标系中,A(0,3),B(5,3),C(5,0),点D在线段OA 上,将△ABD沿着直线BD折叠,点A的对应点为E,当点E在线段OC上时,则AD的长是()A.1 B.43C.53D.29.下列四组线段中,可以构成直角三角形的是()A.4,5,6 B.1.5,2,2.5 C.2,3,4 D.1,2, 3 10.已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是()A.作∠APB的平分线PC交AB于点CB.过点P作PC⊥AB于点C且AC=BCC.取AB中点C,连接PCD.过点P作PC⊥AB,垂足为C二、填空题11.如图,在直角坐标系中,点A、B的坐标分别为(2,4)和(3、0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,在运动的过程中,当△ABC是以AB为底的等腰三角形时,OC=__.12.若△ABC 的三边长分别为a ,b ,c .下列条件:①∠A =∠B ﹣∠C ;②a 2=(b +c )(b ﹣c );③∠A :∠B :∠C =3:4:5;④a :b :c =5:12:13.其中能判断△ABC 是直角三角形的是_____(填序号).13.若等腰三角形的两边长为10cm ,5cm ,则周长为__________cm .14.已知一次函数3y kx =+与2y x b =+的图像交点坐标为(−1,2),则方程组32y kx y x b=+⎧⎨=+⎩的解为____. 15.若正实数,m n 满足等式222(1)(1)(1)m n m n +-=-+-,则m n ⋅=__________.16.在实数:311-50.2-803.010010001 (72)π、、、、、、中,无理数有______个. 17.如图,正比例函数y=kx 与反比例函数y=6x的图象有一个交点A(2,m),AB ⊥x 轴于点B ,平移直线y=kx 使其经过点B ,得到直线l ,则直线l 对应的函数表达式是_________ .18.如图,在平面直角坐标系中,已知点A(1,0)、B(0,2),如果将线段AB 绕点B 顺时针旋转90°至CB ,那么点C 的坐标是 .19.已知一次函数1y kx b =+与2y mx n =+的函数图像如图所示,则关于,x y 的二元一次方程组0,0kx y b mx y n -+=⎧⎨-+=⎩的解是______.20.将一次函数y =2x +2的图象向下平移2个单位长度,得到相应的函数表达式为____.三、解答题21.如图,一次函数y ax b =+与正比例函数y kx =的图像交于点M .(1)求正比例函数和一次函数的解析式;(2)根据图像,写出关于x 的不等式kx ax b >+的解集;(3)求MOP ∆的面积.22.已知:如图,点A 是线段CB 上一点,△ABD 、△ACE 都是等边三角形,AD 与BE 相交于点G ,AE 与CD 相交于点F .求证:△AGF 是等边三角形.23.在平面直角坐标系中,直线l 1:y =﹣2x +6与坐标轴交于A ,B 两点,直线l 2:y =kx +2(k >0)与坐标轴交于点C ,D ,直线l 1,l 2与相交于点E .(1)当k =2时,求两条直线与x 轴围成的△BDE 的面积;(2)点P (a ,b )在直线l 2:y =kx +2(k >0)上,且点P 在第二象限.当四边形OBEC 的面积为233时. ①求k 的值;②若m =a +b ,求m 的取值范围.24.已知:如图,ABC △和ADE △均为等腰直角三角形,90BAC DAE ∠=∠=︒,连结AC ,BD ,且D 、E 、C 三点在一直线上,2AD =,2DE EC =.(1)求证:ADB AEC △≌△;(2)求线段BC 的长.25.如图,正比例函数y =34x 与一次函数y =ax +7的图象相交于点P (4,n ),过点A (2,0)作x 轴的垂线,交一次函数的图象于点B ,连接OB .(1)求a 值;(2)求△OBP 的面积;(3)在坐标轴的正半轴上存在点Q ,使△POQ 是以OP 为腰的等腰三角形,请直接写出Q 点的坐标.四、压轴题26.如图,已知等腰△ABC 中,AB =AC ,∠A <90°,CD 是△ABC 的高,BE 是△ABC 的角平分线,CD 与 BE 交于点 P .当∠A 的大小变化时,△EPC 的形状也随之改变.(1)当∠A =44°时,求∠BPD 的度数;(2)设∠A =x °,∠EPC =y °,求变量 y 与 x 的关系式;(3)当△EPC 是等腰三角形时,请直接写出∠A 的度数.27.如图,已知四边形ABCO 是矩形,点A ,C 分别在y 轴,x 轴上,4AB =,3BC =.(1)求直线AC 的解析式;(2)作直线AC 关于x 轴的对称直线,交y 轴于点D ,求直线CD 的解析式.并结合(1)的结论猜想并直接写出直线y kx b =+关于x 轴的对称直线的解析式;(3)若点P 是直线CD 上的一个动点,试探究点P 在运动过程中,||PA PB -是否存在最大值?若不存在,请说明理由;若存在,请求出||PA PB -的最大值及此时点P 的坐标.28.如图1.在△ABC 中,∠ACB =90°,AC =BC =10,直线DE 经过点C ,过点A ,B 分别作AD ⊥DE ,BE ⊥DE ,垂足分别为点D 和E ,AD =8,BE =6.(1)①求证:△ADC ≌△CEB ;②求DE 的长;(2)如图2,点M 以3个单位长度/秒的速度从点C 出发沿着边CA 运动,到终点A ,点N 以8个单位长度/秒的速度从点B 出发沿着线BC —CA 运动,到终点A .M ,N 两点同时出发,运动时间为t 秒(t >0),当点N 到达终点时,两点同时停止运动,过点M 作PM ⊥DE 于点P ,过点N 作QN ⊥DE 于点Q ;①当点N 在线段CA 上时,用含有t 的代数式表示线段CN 的长度;②当t 为何值时,点M 与点N 重合;③当△PCM 与△QCN 全等时,则t = .29.定义:在平面直角坐标系中,对于任意两点A (a ,b ),B (c ,d ),若点T (x ,y )满足x =3+a c ,y =3+b d ,那么称点T 是点A 和B 的融合点.例如:M (﹣1,8),N (4,﹣2),则点T (1,2)是点M 和N 的融合点.如图,已知点D (3,0),点E 是直线y =x +2上任意一点,点T (x ,y )是点D 和E 的融合点.(1)若点E 的纵坐标是6,则点T 的坐标为 ;(2)求点T (x ,y )的纵坐标y 与横坐标x 的函数关系式:(3)若直线ET 交x 轴于点H ,当△DTH 为直角三角形时,求点E 的坐标.30.已知在△ABC 中,AB =AC ,射线BM 、BN 在∠ABC 内部,分别交线段AC 于点G 、H . (1)如图1,若∠ABC =60°,∠MBN =30°,作AE ⊥BN 于点D ,分别交BC 、BM 于点E 、F .①求证:∠1=∠2;②如图2,若BF =2AF ,连接CF ,求证:BF ⊥CF ;(2)如图3,点E 为BC 上一点,AE 交BM 于点F ,连接CF ,若∠BFE =∠BAC =2∠CFE ,求ABFACF S S 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据相反数的性质判断即可;【详解】 A 中-2=2,不是互为相反数;B 382-=-,不是相反数;C 中两数互为倒数;D 中两数互为相反数;故选:D .【点睛】本题主要考查了相反数的性质应用,准确分析是解题的关键.2.C解析:C【解析】【分析】根据函数的定义:对于x 的每一个取值,y 都有唯一确定的值与之对应即可确定有几个函数.【详解】A. 28y x =,y 不是x 的函数,故错误;B. ||y x =,y 不是x 的函数,故错误;C. 1y x= ,y 是x 的函数,故正确;D. 412x y =,y 不是x 的函数,故错误; 故选C.【点睛】 主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x ,y ,对于x 的每一个取值,y 都有唯一确定的值与之对应,则y 是x 的函数,x 叫自变量.3.C解析:C【解析】【分析】把数还原后,再看首数8的最后一位数字8所在的位数是十万分位,即精确到十万分位.【详解】∵5810-⨯=0.00008,∴近似数5810-⨯是精确到十万分位,即0.00001.故选:C .【点睛】此题主要考查了科学记数法与有效数字,正确还原数据是解题关键.4.B解析:B【解析】【分析】根据四个选项图像可以判断y kx = 过原点且k <0,12y x k =- ,-k >0 即可判断. 【详解】解:A .y kx = 与12y x k =-图像增减相反,得到k <0,所以12y x k =- 与y 轴交点大于0 故错误;B .y kx = 与12y x k =-图像增减相反,得到k <0,所以12y x k =- 与y 轴交点大于0 故正确;C .y kx = 与12y x k =-图像增减相反,12y x k =-为递增一次函数且不过原点,故错误;D .y kx =过原点,而图中两条直线都不过原点,故错误.故选 B【点睛】此题主要考查了一次函数图像的性质,熟记k >0,y 随x 的增大而增大;k <0,y 随x 的增大而减小;常数项为0,函数过原点.5.B解析:B【解析】【分析】由垂直平分线的性质可得AE=BE ,进而可得∠EAB=∠ABE ,根据三角形外角性质可求出∠A 的度数,利用等腰三角形性质求出∠ABC 的度数.【详解】∵DE 是AC 的垂直平分线,∴AE=BE ,∴∠A=∠ABE ,∵76BEC ∠=,∠BEC=∠EAB+∠ABE ,∴∠A=76°÷2=38°,∵AB=AC ,∴∠C=∠ABC=(180°-38°)÷2=71°,故选B.【点睛】本题考查线段垂直平分线的性质、等腰三角形的性质及外角性质.线段垂直平分线上的点到线段两端的距离相等;等腰三角形的两个底角相等;三角形的外角定义和它不相邻的两个内角的和,熟练掌握相关性质是解题关键.6.C解析:C【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】-xz +yz =-z(x-y),故此选项错误;3a 2b -2ab 2+ab =ab(3a -2b+1),故此选项错误;6xy 2-8y 3=2y 2(3x -4y)故此选项正确;x 2+3x -4=(x +2)(x -2)+3x ,此选项没把一个多项式转化成几个整式积的形式,此选项错误.故选:C .【点睛】因式分解的意义.7.D解析:D【解析】【分析】在Rt ABC ∆中,根据勾股定理可求得AB 的长度,依据折叠的性质AE=AC ,DE=CD ,因此可得BE 的长度,在Rt △BDE 中根据勾股定理即可求得CD 的长度.【详解】解:∵在Rt ABC ∆中,6cm AC =,8cm BC =,∴由勾股定理得,10AB cm===.由折叠的性质知,AE=AC=6cm,DE=CD,∠AED=∠C=90°.∴BE=AB-AE=10-6=4cm,在Rt△BDE中,由勾股定理得,DE2+BE2=BD2即CD2+42=(8-CD)2,解得:CD=3cm.故选:D.【点睛】本题考查折叠的性质,勾股定理.理解折叠的前后对应边相等,对应角相等,并能依此判断△BDE是直角三角形,并计算(或用CD表示)它的三边是解决此题的关键.8.C解析:C【解析】【分析】先根据勾股定理求出EC的长,进而可得出OE的长,在Rt△DOE中,由DE=AD及勾股定理可求出AD的长.【详解】解:根据各点坐标可得AB=OC=BE=5,AO=BC=3,设AD=x,则DE=x,DO=3-x∴=4,∴OE=1,在Rt△DOE中,DO2+OE2=DE2,解得x=53,∴AD=53,故选C.【点睛】本题考查了勾股定理的应用,找准直角三角形,设出未知数列出方程即可解答. 9.B解析:B【解析】试题分析:由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可:A、42+52=41≠62,不可以构成直角三角形,故本选项错误;B、1.52+22=6.25=2.52,可以构成直角三角形,故本选项正确;C、22+32=13≠42,不可以构成直角三角形,故本选项错误;D、222133+=≠,不可以构成直角三角形,故本选项错误.故选B.考点:勾股定理的逆定理.10.B解析:B【解析】【分析】利用判断三角形全等的方法判断即可得出结论.【详解】A、利用SAS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;B、过线段外一点作已知线段的垂线,不能保证也平分此条线段,不符合题意;C、利用SSS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;D、利用HL判断出△PCA≌△PCB,∴CA=CB,∴点P在线段AB的垂直平分线上,符合题意,故选B.【点睛】本题主要考查了全等三角形的判定,线段垂直平分线的判定,熟练掌握全等三角形的判断方法是解本题的关键.二、填空题11..【解析】【分析】设C点坐标为(0,a),由勾股定理可表示出BC2和AC2,由△ABC是以AB为底的等腰三角形可知BC=AC,据此可列出关于的方程,求解即可.【详解】解:设C点坐标为(0,解析:11 8.【解析】【分析】设C点坐标为(0,a),由勾股定理可表示出BC2和AC2,由△ABC是以AB为底的等腰三角形可知BC=AC,据此可列出关于a的方程,求解即可.【详解】解:设C点坐标为(0,a),当△ABC是以AB为底的等腰三角形时,BC=AC,平方得BC2=AC2,即32+a2=22+(4﹣a)2,化简得8a=11,解得a=11 8.故OC=11 8,故答案为:11 8.【点睛】本题考查了平面直角坐标系中两点间的距离及等腰三角形的判定,灵活利用两点的坐标确定两点间距离是解题的关键.12.①②④【解析】【分析】根据三角形的内角和定理和勾股定理的逆定理逐个判断即可.【详解】解:∵∠A=∠B﹣∠C,∴∠A+∠C=∠B,∵∠A+∠C+∠B=180°,∴∠B=90°,∴△A解析:①②④【解析】【分析】根据三角形的内角和定理和勾股定理的逆定理逐个判断即可.【详解】解:∵∠A=∠B﹣∠C,∴∠A+∠C=∠B,∵∠A+∠C+∠B=180°,∴∠B=90°,∴△ABC是直角三角形,故①符合题意;∵a2=(b+c)(b﹣c)∴a2+c2=b2,∴△ABC是直角三角形,故②符合题意;∵∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴∠A=45°,∠B=60°,∠C=75°,∴△ABC不是直角三角形,故③不符合题意;∵a:b:c=5:12:13,∴a2+b2=c2,∴△ABC是直角三角形,故④符合题意;故答案为:①②④.【点睛】此题主要考查直角三角形的判定,解题的关键是熟知勾股定理逆定理与三角形的内角和定理的运用.13.【解析】【分析】此题有两种可能:10厘米的边长做腰或5厘米的边长做腰进行分类讨论,结合三角形三边关系,从而求解.【详解】解:①以10cm 为腰时,三角形周长为10+10+5=25cm ;②以5解析:25cm【解析】【分析】此题有两种可能:10厘米的边长做腰或5厘米的边长做腰进行分类讨论,结合三角形三边关系,从而求解.【详解】解:①以10cm 为腰时,三角形周长为10+10+5=25cm ;②以5cm 为腰,因为5+5=10,不符合三角形两边之和大于第三边,此情况不成立;故答案为:25cm .【点睛】此题主要考查三角形三边关系及等腰三角形的性质,注意分类讨论思想的应用是本题的解题关键.14..【解析】【分析】直接根据一次函数和二元一次方程组的关系求解.【详解】解:∵一次函数与的图象的交点的坐标为(−1,2),∴方程组的解是.【点睛】本题考查了一次函数和二元一次方程(组)解析:12x y =-⎧⎨=⎩. 【解析】【分析】直接根据一次函数和二元一次方程组的关系求解.【详解】解:∵一次函数3y kx =+与2y x b =+的图象的交点的坐标为(−1,2),∴方程组32y kx y x b =+⎧⎨=+⎩的解是12x y =-⎧⎨=⎩. 【点睛】本题考查了一次函数和二元一次方程(组)的关系:要准确的将一次函数问题的条件转化为二元一次方程(组),注意自变量取值范围要符合实际意义.15.【解析】【分析】根据整式的完全平方公式将等式两边的式子进行化简,从而求得的值.【详解】∵∴∴∴,故答案为:.【点睛】本题主要考查了整式的乘法公式,熟练掌握完全平方公式及整式的 解析:12【解析】【分析】根据整式的完全平方公式将等式两边的式子进行化简,从而求得m n ⋅的值.【详解】∵2222(1)()2()12221m n m n m n m mn n m n +-=+-++=++--+ 2222(1)(1)2121m n m m n n -+-=-++-+∴222222212121m mn n m n m m n n ++--+=-++-+∴21mn = ∴12mn =, 故答案为:12. 【点睛】本题主要考查了整式的乘法公式,熟练掌握完全平方公式及整式的化简是解决本题的关键. 16.3【解析】【分析】根据无理数的三种形式求解即可.【详解】解:=-2,无理数有:,共3个.故答案为:3.【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开解析:3【解析】【分析】根据无理数的三种形式求解即可.【详解】, 3.010010001 (2)π、、,共3个. 故答案为:3.【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数. 17.y=x-3【解析】【分析】由已知先求出点A 、点B 的坐标,继而求出y=kx 的解析式,再根据直线y=kx 平移后经过点B ,可设平移后的解析式为y=kx+b ,将B 点坐标代入求解即可得.【详解】当x=2解析:y=32x-3 【解析】【分析】由已知先求出点A 、点B 的坐标,继而求出y=kx 的解析式,再根据直线y=kx 平移后经过点B ,可设平移后的解析式为y=kx+b ,将B 点坐标代入求解即可得.【详解】当x=2时,y=6x =3,∴A(2,3),B (2,0), ∵y=kx 过点 A(2,3),∴3=2k ,∴k=32,∴y=32 x,∵直线y=32x平移后经过点B,∴设平移后的解析式为y=32x+b,则有0=3+b,解得:b=-3,∴平移后的解析式为:y=32x-3,故答案为:y=32x-3.【点睛】本题考查了一次函数与反比例函数的综合应用,涉及到待定系数法,一次函数图象的平移等,求出k的值是解题的关键.18..【解析】【分析】【详解】如图,过点C作CD⊥y轴于点D,∵∠CBD+∠ABO=90°,∠ABO+∠BAO=90°,∴∠CBD=∠BAO,在△ABO与△BCD中,∠CBD=∠BAO,解析:(21),.【解析】【分析】【详解】如图,过点C作CD⊥y轴于点D,∵∠CBD+∠ABO=90°,∠ABO+∠BAO=90°,∴∠CBD=∠BAO,在△ABO与△BCD中,∠CBD=∠BAO,∠BDC=∠AOB, BC=AB,∴△ABO≌△BCD(AAS),∴CD=OB,BD=AO,∵点A(1,0),B(0,2),∴CD=2,BD=1,∴OD=OB-BD=1,又∵点C在第二象限,∴点C的坐标是(-2,1).19.【解析】【分析】根据函数图象交点坐标为两函数解析式组成的方程组的解,从而可得答案.【详解】解:∵一次函数和一次函数的图象交点的坐标为∴方程组的解是: .故答案为: .【点睛】本题解析:12x y =-⎧⎨=⎩【解析】【分析】根据函数图象交点坐标为两函数解析式组成的方程组的解,从而可得答案.【详解】解:∵一次函数1y kx b =+和一次函数2y mx n =+的图象交点的坐标为()1,2,-∴方程组00kx y b mx y n -+=⎧⎨-+=⎩的解是:12x y =-⎧⎨=⎩ . 故答案为: 12x y =-⎧⎨=⎩. 【点睛】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.掌握以上知识是解题的关键.20.y =2x【解析】【分析】直接利用一次函数平移规律:左右平移,x 左加右减;上下平移,b 上加下减,得出答案.【详解】解:将函数y =2x+2的图象向下平移2个单位长度后,所得图象的函数关系式为y解析:y =2x【解析】【分析】直接利用一次函数平移规律:左右平移,x 左加右减;上下平移,b 上加下减,得出答案.【详解】解:将函数y =2x +2的图象向下平移2个单位长度后,所得图象的函数关系式为y =2x +2﹣2=2x .故答案为:y =2x .【点睛】本题考查的知识点是一次函数图象与几何变换,掌握一次函数图象平移的规律“左右平移,x 左加右减;上下平移,b 上加下减”是解此题的关键.三、解答题21.(1)22y x =-,y x =;(2)2x <;(3)1.【解析】【分析】(1)先把P (1,0),(0,-2)代入y=ax+b,可求出a,b 的值,然后把M 点坐标代入一次函数可求出m 的值;再将点M 的坐标代入y=kx 可得出k 的值.(2)观察函数图象,写出正比例函数图象在一次函数图象上方所对应的自变量的范围即可.(3)作MN 垂直x 轴,然后根据三角形面积求得即可.【详解】解:(1)∵y ax b =+经过()1,0和()0,2-∴02k b b =+⎧⎨-=⎩解得2k =,2b =- 一次函数表达式为:22y x =-∵点M 在该一次函数上,∴2222m =⨯-=,M 点坐标为()2,2又∵M 在函数y kx =上,∴2122m k ===. ∴正比例函数为y x =.(2)由图像可知,2x <时,22x x >-(3)作MN 垂直x 轴,由M 的纵坐标知2MN =, ∴故11212MOP S ∆=⨯⨯=.【点睛】本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.22.见解析【解析】【分析】由等边三角形可得AD=AB,AE=AC,∠BAE=∠DAC=120°,再由两边夹一角即可判定△BAE≌△DAC,可得∠1=∠2,进而可得出△BAG≌△DAF,AG=AF,则可得△AGF是等边三角形.【详解】证明:∵△ABD,△ACE都是等边三角形,∴AD=AB,AE=AC,∴∠DAE=∠BAD=∠CAE=60°∴∠BAE=∠DAC=120°,在△BAE和△DAC中AD=AB,∠BAE=∠DAC,AE=AC,∴△BAE≌△DAC.∴∠1=∠2在△BAG和△DAF中∠1=∠2,AB=AD,∠BAD=∠DAE,∴△BAG≌△DAF,∴AG=AF,又∠DAE=60°,∴△AGF是等边三角形.【点睛】本题主要考查了全等三角形的判定及性质,以及等边三角形的性质和判定,解答本题的关键是明确题意,利用数形结合的思想解答.23.(1)△BDE 的面积=8;(2)①k =4;②﹣12<m <2. 【解析】【分析】(1)由直线l 1的解析式可得点A 、点B 的坐标,当k =2时,由直线l 2的解析式可得点C 、点D 坐标,联立直线l 1与直线l 2的解析式可得点E 坐标,根据三角形面积公式求解即可;(2)①连接OE .设E (n ,﹣2n +6),由S 四边形OBEC =S △EOC +S △EOB 可求得n 的值,求出点E 坐标,把点E 代入y =kx +2中求出k 值即可;②由直线y =4x +2的表达式可确定点D 坐标,根据点P (a ,b )在直线y =4x +2上,且点P 在第二象限可得42b a =+及a 的取值范围,由m =a +b 可确定m 的取值范围.【详解】解:(1)∵直线l 1:y =﹣2x +6与坐标轴交于A ,B 两点,∴当y =0时,得x =3,当x =0时,y =6;∴A (0,6)B (3,0);当k =2时,直线l 2:y =2x +2(k ≠0),∴C (0,2),D (﹣1,0)解2622y x y x =-+⎧⎨=+⎩得14x y =⎧⎨=⎩, ∴E (1,4),4BD ∴=,点E 到x 轴的距离为4,∴△BDE 的面积=12×4×4=8. (2)①连接OE .设E (n ,﹣2n +6),∵S 四边形OBEC =S △EOC +S △EOB , ∴12×2×n +12×3×(﹣2n +6)=233, 解得n =23, ∴E (23,143), 把点E 代入y =kx +2中,143=23k +2, 解得k =4.②∵直线y =4x +2交x 轴于D ,∴D (﹣12,0), ∵P (a ,b )在第二象限,即在线段CD 上,∴﹣12<a <0, ∵点P (a ,b )在直线y =kx +2上∴b =4a +2,∴m =a +b =5a +2,15222a -<+< ∴﹣12<m <2.【点睛】本题考查了一次函数与几何图形的综合,涉及了一次函数与坐标轴的交点、解析式,两条直线的交点及围成的三角形的面积,灵活的将函数图像与解析式相结合是解题的关键.24.(1)详见解析;(2)10BC =【解析】【分析】(1)根据等式的基本性质可得∠DAB =∠EAC ,然后根据等腰直角三角形的性质可得DA =EA ,BA =CA ,再利用SAS 即可证出结论;(2)根据等腰直角三角形的性质和勾股定理即可求出DE ,从而求出EC 和DC ,再根据全等三角形的性质即可求出DB ,∠ADB=∠AEC ,从而求出∠BDC=90°,最后根据勾股定理即可求出结论.【详解】证明:(1)∵90BAC DAE ∠=∠=︒∴∠DAE -∠BAE =∠BAC -∠BAE∴∠DAB =∠EAC∵ABC ∆和ADE ∆均为等腰直角三角形∴DA =EA ,BA =CA在△ADB 和△AEC 中DA EA DAB EAC BA CA =⎧⎪∠=∠⎨⎪=⎩∴△ADB ≌△AEC(2)∵ADE △是等腰直角三角形,2AD AE ==∴2=,∵2DE EC =∴EC=112DE =, ∴DC=DE +EC=3∵△ADB ≌△AEC ∴DB=EC=3,∠ADB=∠AEC∵∠ADB=∠ADE +∠BDC ,∠AEC=∠ADE +∠DAE=∠ADE +90°∴∠BDC=90°在Rt △BDC 中,BC ==【点睛】此题考查的是等腰直角三角形的性质、全等三角形的判定及性质和勾股定理,掌握等腰直角三角形的性质、全等三角形的判定及性质和利用勾股定理解直角三角形是解决此题的关键.25.(1)a=-1;(2)7;(3)点Q 的坐标为(5,0)或(8,0)或(0,5)或(0,6)【解析】【分析】(1)先由点P 在正比例函数图象上求得n 的值,再把点P 坐标代入一次函数的解析式即可求出结果;(2)易求点B 坐标,设直线AB 与OP 交于点C ,如图,则点C 坐标可得,然后利用△OBP 的面积=S △BCO +S △BCP 代入相关数据计算即可求出结果;(3)先根据勾股定理求出OP 的长,再分两种情况:当OP=OQ 时,以O 为圆心,OP 为半径作圆分别交y 轴和x 轴的正半轴于点Q 1、Q 2,如图2,则点Q 1、Q 2即为所求,然后利用等腰三角形的定义即可求出结果;当PO=PQ 时,以P 为圆心,OP 为半径作圆分别交y 轴和x 轴的正半轴于点Q 4、Q 3,如图3,则点Q 4、Q 3也为所求,然后利用等腰三角形的性质即可求得结果.【详解】 解:(1)把点P (4,n )代入y =34x ,得:n =34×4=3,∴P (4,3), 把P (4,3)代入y =ax +7得,3=4a +7,∴a =﹣1;(2)∵A (2,0),AB ⊥x 轴,∴B 点的横坐标为2,∵点B 在y =﹣x +7上,∴B (2,5),设直线AB 与OP 交于点C ,如图1,当x =2时,33242y =⨯=,∴C (2,32), ∴△OBP 的面积=S △BCO +S △BCP =12⨯2×(5﹣32)+12⨯(4﹣2)×(5﹣32)=7;(3)过点P作PD⊥x轴于点D,∵P(4,3),∴OD=4,PD=3,∴22OP=+=,345当OP=OQ时,以O为圆心,OP为半径作圆分别交y轴和x轴的正半轴于点Q1、Q2,如图2,则点Q1、Q2即为所求,且Q2(5,0)、Q1(0,5);当PO=PQ时,以P为圆心,OP为半径作圆分别交y轴和x轴的正半轴于点Q4、Q3,如图3,则点Q4、Q3也为所求,由于PO=PQ3,∴DQ3=DO=4,∴Q3(8,0),过点P作PF⊥y轴于点F,同理可得:FQ4=FO=3,∴Q4(0,6).综上所述,在坐标轴的正半轴上存在点Q,使△POQ是以OP为腰的等腰三角形,点Q的坐标为(5,0)或(8,0)或(0,5)或(0,6).【点睛】本题考查了一次函数图象上点的坐标特征、勾股定理、三角形的面积和等腰三角形的性质等知识,属于常考题型,熟练掌握一次函数的相关知识和等腰三角形的性质是解题的关键.四、压轴题26.(1)56°;(2)y=454x +;(3)36°或1807°. 【解析】【分析】 (1)根据等边对等角求出等腰△ABC 的底角度数,再根据角平分线的定义得到∠ABE 的度数,再根据高的定义得到∠BDC=90°,从而可得∠BPD ;(2)按照(1)中计算过程,即可得到∠A 与∠EPC 的关系,即可得到结果;(3)分①若EP=EC ,②若PC=PE ,③若CP=CE ,三种情况,利用∠ABC+∠BCD=90°,以及y=454x +解出x 即可. 【详解】 解:(1)∵AB=AC ,∠A=44°,∴∠ABC=∠ACB=(180-44)÷2=68°,∵CD ⊥AB ,∴∠BDC=90°,∵BE 平分∠ABC ,∴∠ABE=∠CBE=34°,∴∠BPD =90-34=56°;(2)∵∠A =x °,∴∠ABC=(180°-x°)÷2=(902x -)°, 由(1)可得:∠ABP=12∠ABC=(454x -)°,∠BDC=90°, ∴∠EPC =y °=∠BPD=90°-(454x -)°=(454x +)°, 即y 与 x 的关系式为y=454x +; (3)①若EP=EC ,则∠ECP=∠EPC=y ,而∠ABC=∠ACB=902x -,∠ABC+∠BCD=90°, 则有:902x -+(902x --y )=90°,又y=454x +, ∴902x -+902x --(454x +)=90°, 解得:x=36°;②若PC=PE ,则∠PCE=∠PEC=(180-y )÷2=902y -,由①得:∠ABC+∠BCD=90°, ∴902x -+[902x --(902y -)]=90,又y=454x +, 解得:x=1807°; ③若CP=CE , 则∠EPC=∠PEC=y ,∠PCE=180-2y ,由①得:∠ABC+∠BCD=90°, ∴902x -+902x --(180-2y )=90,又y=454x +, 解得:x=0,不符合, 综上:当△EPC 是等腰三角形时,∠A 的度数为36°或1807°. 【点睛】本题考查了等腰三角形的性质,二元一次方程组的应用,高与角平分线的定义,有一定难度,关键是找到角之间的等量关系.27.(1)y =34-x +3;(2)y =34x -3,y =-kx -b ;(3)存在,4,(8,3) 【解析】【分析】(1)利用4AB =,3BC =,找出A 、C 两点的坐标,设直线解析式,利用待定系数法求出AC 的解析式;(2)由直线AC 关于x 轴的对称直线为CD 可知点D 的坐标,设直线解析式,利用待定系数法求出CD 的解析式,对比AC 的解析式进而写出直线y kx b =+关于x 轴的对称直线的解析式;(3)先判断||PA PB -存在最大值,在P 、A 、B 三点不共线时,P 点在运动过程中,与A 、B 两点组成三角形,两边之差小于第三边,得出结论在P 、A 、B 三点共线时,此时||PA PB -最大,y p = y A =3,求出P 点的纵坐标,最后根据点P 在直线CD 上,将P 点的纵坐标代入直线方程可得横坐标,从而求出P 点坐标.【详解】解:(1)在矩形ABCD 中,OC =AB =4,OA =BC =3,故A (0,3),C (4,0),设直线AC 的解析式为:y =kx +b (k ≠0,k 、b 为常数),点A 、C 在直线AC 上,把A 、C 两点的坐标代入解析式可得:340b k b =⎧⎨+=⎩解得:343k b ⎧=-⎪⎨⎪=⎩,所以直线AC 的解析式为:y =34-x +3. (2)由直线AC 关于x 轴的对称直线为CD 可知:点D 的坐标为:(0,-3),设直线CD 的解析式为:y =mx +n (m ≠0,m 、n 为常数),点C 、D 在直线CD 上,把C 、D 两点的坐标带入解析式可得:-340n m n =⎧⎨+=⎩解得:343m n ⎧=⎪⎨⎪=-⎩, 所以直线CD 的解析式为:y =34x -3, 故猜想直线y kx b =+关于x 轴的对称直线的解析式为:y =-kx -b .(3)点P 在运动过程中,||PA PB -存在最大值,由题意可知:如图,延长AB 与直线CD 交点即为点P ,此时||PA PB -最大,其他位置均有||PA PB -<AB (P 点在运动过程中,与A 、B 两点组成任意三角形,两边之差小于第三边),此时,||PA PB -= AB =4,y p = y A =3,点P 在直线CD 上,将P 点的纵坐标代入直线方程可得:34x -3=3, x =8,故P 点坐标为(8,3),||PA PB -的最大值为x p -x B =8-4=4.【点睛】本题主要考查利用待定系数法求解一次函数解析式及类比推理能力,掌握任意三角形两边之差小于第三边是解题的关键.28.(1)①证明见解析;②DE =14;(2)①8t -10;②t =2;③t =10,211 【解析】【分析】(1)①先证明∠DAC =∠ECB ,由AAS 即可得出△ADC ≌△CEB ;②由全等三角形的性质得出AD =CE =8,CD =BE =6,即可得出DE =CD +CE =14;(2)①当点N在线段CA上时,根据CN=CN−BC即可得出答案;②点M与点N重合时,CM=CN,即3t=8t−10,解得t=2即可;③分两种情况:当点N在线段BC上时,△PCM≌△QNC,则CM=CN,得3t=10−8t,解得t=1011;当点N在线段CA上时,△PCM≌△QCN,则3t=8t−10,解得t=2;即可得出答案.【详解】(1)①证明:∵AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∵∠ACB=90°,∴∠DAC+∠DCA=∠DCA+∠BCE=90°,∴∠DAC=∠ECB,在△ADC和△CEB中ADC CEBDAC ECBAC CB∠∠∠∠⎧⎪⎨⎪⎩===,∴△ADC≌△CEB(AAS);②由①得:△ADC≌△CEB,∴AD=CE=8,CD=BE=6,∴DE=CD+CE=6+8=14;(2)解:①当点N在线段CA上时,如图3所示:CN=CN−BC=8t−10;②点M与点N重合时,CM=CN,即3t=8t−10,解得:t=2,∴当t为2秒时,点M与点N重合;③分两种情况:当点N在线段BC上时,△PCM≌△QNC,∴CM=CN,∴3t=10−8t,解得:t=1011;当点N在线段CA上时,△PCM≌△QCN,点M与N重合,CM=CN,则3t =8t−10,解得:t =2;综上所述,当△PCM 与△QCN 全等时,则t 等于1011s 或2s , 故答案为:1011s 或2s . 【点睛】本题是三角形综合题目,考查了全等三角形的判定与性质、等腰直角三角形的性质、直角三角形的性质、分类讨论等知识;本题综合性强,熟练掌握全等三角形的判定与性质是解题的关键.29.(1)(73,2);(2)y =x ﹣13;(3)E 的坐标为(32,72)或(6,8) 【解析】【分析】(1)把点E 的纵坐标代入直线解析式,求出横坐标,得到点E 的坐标,根据融合点的定义求求解即可;(2)设点E 的坐标为(a ,a+2),根据融合点的定义用a 表示出x 、y ,整理得到答案;(3)分∠THD=90°、∠TDH=90°、∠DTH=90°三种情况,根据融合点的定义解答.【详解】解:(1)∵点E 是直线y =x +2上一点,点E 的纵坐标是6,∴x +2=6,解得,x =4,∴点E 的坐标是(4,6),∵点T (x ,y )是点D 和E 的融合点,∴x =343+=73,y =063+=2, ∴点T 的坐标为(73,2), 故答案为:(73,2); (2)设点E 的坐标为(a ,a +2),∵点T (x ,y )是点D 和E 的融合点,∴x =33a +,y =023a ++, 解得,a =3x ﹣3,a =3y ﹣2,∴3x ﹣3=3y ﹣2,整理得,y =x ﹣13; (3)设点E 的坐标为(a ,a +2),。

江苏省苏州市八年级上学期数学期末考试试卷

江苏省苏州市八年级上学期数学期末考试试卷

江苏省苏州市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列计算不正确的是()A . 3x2﹣2x2=x2B . x+x=2xC . 4x8÷2x2=2x4D . x•x=x2【考点】2. (2分) 4的平方根是()A . 2B . -2C . ±2D . 4【考点】3. (2分) (2020八上·江北期末) 如图,中,垂直平分,垂足为,,的周长为13,那么的周长为()A . 10B . 13C . 16D . 19【考点】4. (2分) (2019八上·昭通期中) 如图,在中,平分,则的度数是()【考点】5. (2分)(2020·江都模拟) 如图,AB为⊙O的直径,C,D为⊙O上两点,若∠BCD=38°,则∠ABD的大小为()A . 76°B . 52°C . 50°D . 38°【考点】6. (2分)(2019·云霄模拟) 如图,已知直线y= x﹣3与x轴、y轴分别交于A、B两点,P是以C(0,1)为圆心,1为半径的圆上一动点,连结PA、PB .则△PAB面积的最大值是()A . 8B . 12C .D .【考点】7. (2分)“若x是实数,则=x”,能证明它是假命题的反例是()A . x=﹣2B . x=0C . x≥0D . x=2【考点】8. (2分) (2018七上·南山期末) 下图是小刚一天中的作息时间分配的扇形统计图,如果小刚希望把自己每天的阅读时间调整为2小时,那么他的阅读时间需增加()A . 105分钟B . 60分钟C . 48分钟D . 15分钟【考点】9. (2分) (2019七下·固阳期末) 将50个数据分成5组列出频数分布表,其中第一组的频数为6,第二组与第五组的频数之和为20,第三组的频率为0.2,则第四组的频率为()A . 0.28B . 0.3C . 0.4D . 0.2【考点】10. (2分)(2017·博山模拟) 如图,矩形ABCD的顶点A、C分别在直线a、b上,且a//b,∠1=60°,则∠2的度数为()A . 30°B . 45°C . 60°D . 75°【考点】二、填空题 (共5题;共7分)11. (1分)(2018·哈尔滨模拟) 计算 =________.【考点】12. (2分) (2017八上·揭阳月考) 如图,以OB为对角线的正方形,边长为 1,OA 在数轴上,以原点 O 为圆心,对角线 OB的长为半径画弧,交数轴正半轴于一点A,则这个点A表示的实数是________【考点】13. (1分) (2020八上·大洼期末) 如图,△ABC的三边AB、BC、CA长分别为30、40、50.其三条角平分线交于点O,则S△ABO :S△BCO :S△CAO =________。

苏科版苏州市八年级上学期期末数学试卷 (解析版)

苏科版苏州市八年级上学期期末数学试卷 (解析版)

苏科版苏州市八年级上学期期末数学试卷 (解析版)一、选择题1.如图,一只蚂蚁从点A 沿数轴向右直爬行2个单位到达点B ,点A 表示-2,设点B 所表示的数为m ,则1m -+(m+6)的值为 ( )A .3B .5C .7D .92.下列四组线段a 、b 、c ,不能组成直角三角形的是( )A .4,5,3a b c ===B . 1.5,2, 2.5a b c ===C .5,12,13a b c ===D .1,2,3a b c ===3.如图,在ABC ∆中,AB AC =,AD 是边BC 上的中线,若5AB =,6BC =,则AD 的长为( )A .3B 7C .4D 114.在平面直角坐标系中,点()23P -,关于x 轴的对称点的坐标是( ) A .()23-,B .()23,C .()23--,D .()23-,5.分式221x x -+的值为0,则x 的值为( )A .0B .2C .﹣2D .126.已知直线y 1=kx+1(k <0)与直线y 2=mx (m >0)的交点坐标为(12,12m ),则不等式组mx ﹣2<kx+1<mx 的解集为( ) A .x>12B .12<x<32C .x<32D .0<x<327.+1x x 的取值范围是( ). A .x >﹣1 B .x ≥0C .x ≥﹣1D .任意实数8.在22、0.3•、227-38( )A .1个B .2个C .3个D .4个9.能表示一次函数y =mx +n 与正比例函数y =mnx (m ,n 是常数且m ≠0)的图象的是( )A .B .C .D .10.在平面直角坐标系中,点P(-2,2x +1)所在的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限11.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x 米,所列方程正确的是( ) A .1000100030x x -+=2 B .1000100030x x-+=2 C .1000100030x x --=2 D .1000100030x x--=2 12.如图,折叠Rt ABC ∆,使直角边AC 落在斜边AB 上,点C 落到点E 处,已知6cm AC =,8cm BC =,则CD 的长为( )cm.A .6B .5C .4D .313.下列四个图形中轴对称图形的个数是( )A .1B .2C .3D .4 14.下列一次函数中,y 随x 增大而增大的是( ) A .y=﹣3x B .y=x ﹣2 C .y=﹣2x+3 D .y=3﹣x 15.直线y=ax+b(a <0,b >0)不经过( )A .第一象限B .第二象限C .第三象限D .第四象限二、填空题16.如图,ABC ADC ∆≅∆,40BCA ∠=︒,80B ∠=︒,则BAD ∠的度数为________________.17.如图,在直角坐标系中,点A 、B 的坐标分别为(2,4)和(3、0),点C 是y 轴上的一个动点,且A 、B 、C 三点不在同一条直线上,在运动的过程中,当△ABC 是以AB 为底的等腰三角形时,OC =__.18.已知点(,5)A m -和点(2,)B n 关于x 轴对称,则m n +的值为______. 19.若等腰三角形的顶角为80°,则这个等腰三角形的底角为____度;20.如图,点P 为∠AOB 内任一点,E ,F 分别为点P 关于OA ,OB 的对称点.若∠AOB =30°,则∠E +∠F =_____°.21. 如图,在正三角形ABC 中,AD ⊥BC 于点D ,则∠BAD= °.22.根据如图所示的计算程序,小明输入的x 的值为36,则输出的y 的值为__________.23.如图,在△ABC 中,∠B=40°,BC 边的垂直平分线交BC 于D ,交AB 于E ,若CE 平分∠ACB,则∠A=______°.24.下图所示的网格是正方形网格,BAC ∠________DAE ∠.(填“>”,“=”或“<”)25.如图,在△ABC 中,AB = AC ,∠BAC = 120º,AD ⊥BC ,则∠BAD = _____°.三、解答题26.如图,一次函数23y mx m =++的图像与12y x =-的图像交于点C ,与x 轴和y 轴分别交于点A 和点B ,且点C 的横坐标为3-. (1)求m 的值与AB 的长;(2)若点Q 为线段OB 上一点,且14OCQ BAO S S ∆∆=,求点Q 的坐标.27.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400 m ,先到终点的人在终点休息等候对方.已知甲先出发4 min ,在整个步行过程中,甲、乙两人的距离y m 与甲出发的时间t min 之间的函数关系如图所示.(1)甲步行的速度为 m/min ; (2)解释点P (16,0)的实际意义; (3)乙走完全程用了多少分钟?(4)乙到达终点时,甲离终点还有多少米?28.已知a 、b 为实数,且满足23440a b b -+-+=. (1)求a ,b 的值;(2)若a ,b 为ABC 的两边,第三边c 为5,求ABC 的面积.29.人教版教材指出:等边三角形是三边都相等的特殊的等腰三角形.请证明:有一个角是60︒的等腰三角形是等边三角形.30.如图,四边形ABCD 中,AB =20,BC =15,CD =7,AD =24,∠B =90°.(1)判断∠D 是否是直角,并说明理由. (2)求四边形ABCD 的面积.31.已知直线AB :y=kx+b 经过点B (1,4)、A (5,0)两点,且与直线y=2x-4交于点C .(1)求直线AB 的解析式并求出点C 的坐标;(2)求出直线y=kx+b 、直线y=2x-4及与y 轴所围成的三角形面积;(3)现有一点P 在直线AB 上,过点P 作PQ ∥y 轴交直线y=2x-4于点Q ,若线段PQ 的长为3,求点P 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】 【详解】解:意,得+2 ∴0<m <1, ∴|m-1|+(m+6) =1-m+m+6 =7, 故选C . 【点睛】本题了实数与数轴的关系,绝对值的意义.关键是根据题意求出m 的值,确定m 的范围.2.D解析:D 【解析】 【分析】根据勾股定理逆定理,即若三角形中两边到的平方和等于第三边的平方,那么这个三角形是直角三角形,对每项进行计算判断即可. 【详解】解:A.2222223491625,525,a b c +=+==+=,B.222221.52 2.254 6.25,2.5 6.25,a b c +=+==+=,C.22222251225144169,13169,a b c +=+==+=,222222123,39,.1D a b c +=+==+≠.【点睛】本题考查了勾股定理的逆定理,解决本题的关键是熟练掌握勾股定理逆定理,正确计算出每项的结果.3.C解析:C 【解析】 【分析】首先根据等腰三角形的性质:等腰三角形的三线合一,求出DB =DC 12=CB ,AD ⊥BC ,再利用勾股定理求出AD的长.【详解】∵AB=AC,AD是边BC上的中线,∴DB=DC12=CB=3,AD⊥BC,在Rt△ABD中,∵AD2+BD2=AB2,∴AD==4.故选:C.【点睛】本题考查了等腰三角形的性质与勾股定理的应用,做题的关键是根据等腰三角形的性质证出△ADB是直角三角形.4.B解析:B【解析】【分析】根据关于x轴对称的点的坐标与原坐标横坐标相等,纵坐标互为相反数的性质解答即可.【详解】∵P(2,-3)关于x轴对称,∴对称点与点P横坐标相同,纵坐标互为相反数,∴对称点的坐标为(-2,-3).故答案为(-2,-3).【点睛】本题考查的是坐标与图形的变换,关于y轴对称的点的坐标与原坐标纵坐标相等,横坐标互为相反数;关于x轴对称的点的坐标与原坐标横坐标相等,纵坐标互为相反数;掌握轴对称的性质是解题的关键,5.B解析:B【解析】【分析】直接利用分式的值为零,则分子为零进而得出答案.【详解】解:∵分式22 1x x -+的值为0,∴x﹣2=0,解得:x=2.故选:B.【点睛】此题主要考查了分式为零的条件,正确把握分式为零的条件是解题关键.6.B解析:B 【解析】【分析】由mx﹣2<(m﹣2)x+1,即可得到x<32;由(m﹣2)x+1<mx,即可得到x>12,进而得出不等式组mx﹣2<kx+1<mx的解集为12<x<32.【详解】把(12,12m)代入y1=kx+1,可得1 2m=12k+1,解得k=m﹣2,∴y1=(m﹣2)x+1,令y3=mx﹣2,则当y3<y1时,mx﹣2<(m﹣2)x+1,解得x<32;当kx+1<mx时,(m﹣2)x+1<mx,解得x>12,∴不等式组mx﹣2<kx+1<mx的解集为12<x<32,故选B.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.7.C解析:C【解析】【分析】根据二次根式的意义可得出x+1≥0,即可得到结果.【详解】解:由题意得:x+1≥0,解得:x≥﹣1,故选:C.【点睛】本题主要是考查了二次根式有意义的条件应用,计算得出的不等式是关键.8.A解析:A 【解析】 【分析】根据无理数的三种形式,①开方开不尽的数,②无限不循环小数,③含有π的数,结合题意判断即可. 【详解】解:在实数2、•0.3、227-中,2是无理数; •0.3循环小数,是有理数; 227-是分数,是有理数;=2,是整数,是有理数;所以无理数共1个. 故选:A . 【点睛】此题考查了无理数的概念,解答本题的关键是掌握无理数的定义,属于基础题,要熟练掌握无理数的三种形式,难度一般.9.C解析:C 【解析】 【分析】对于各选项:先通过一次函数的性质确定m 、n 的符合,从而得到mn 的符合,然后根据正比例函数的性质对正比例函数图象进行判断,从而可确定该选项是否正确. 【详解】A 、由一次函数图象得m >0,n >0,所以mn >0,则正比例函数图象过第一、三象限,所以A 选项错误;B 、由一次函数图象得m >0,n <0,所以mn <0,则正比例函数图象过第二、四象限,所以B 选项错误;C 、由一次函数图象得m <0,n >0,所以mn <0,则正比例函数图象过第二、四象限,所以C 选项正确;D 、由一次函数图象得m <0,n >0,所以mn <0,则正比例函数图象过第二、四象限,所以D 选项错误. 故选:C . 【点睛】本题考查了正比例函数图象:正比例函数y =kx 经过原点,当k >0,图象经过第一、三象限;当k <0,图象经过第二、四象限.也考查了一次函数的性质.10.B解析:B 【解析】 【分析】 【详解】∵-20,2x +10,∴点P (-2,2x +1)在第二象限, 故选B .11.A解析:A 【解析】分析:设原计划每天施工x 米,则实际每天施工(x+30)米,根据:原计划所用时间﹣实际所用时间=2,列出方程即可.详解:设原计划每天施工x 米,则实际每天施工(x+30)米, 根据题意,可列方程:1000100030x x -+=2, 故选A .点睛:本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程.12.D解析:D 【解析】 【分析】在Rt ABC ∆中,根据勾股定理可求得AB 的长度,依据折叠的性质AE=AC ,DE=CD ,因此可得BE 的长度,在Rt △BDE 中根据勾股定理即可求得CD 的长度. 【详解】解:∵在Rt ABC ∆中,6cm AC =,8cm BC =, ∴由勾股定理得,22226810AB AC BC cm =+=+=.由折叠的性质知,AE=AC=6cm ,DE=CD ,∠AED=∠C=90°.∴BE=AB-AE=10-6=4cm , 在Rt △BDE 中,由勾股定理得, DE 2+BE 2=BD 2 即CD 2+42=(8-CD)2, 解得:CD=3cm . 故选:D . 【点睛】本题考查折叠的性质,勾股定理.理解折叠的前后对应边相等,对应角相等,并能依此判断△BDE是直角三角形,并计算(或用CD表示)它的三边是解决此题的关键.13.C解析:C【解析】【分析】根据轴对称图形的概念求解.【详解】解:根据轴对称图形的定义可知:第1,2,3个图形为轴对称图形,第4个图形不是轴对称图形,轴对称图共3个,故选:C.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.14.B解析:B【解析】【分析】根据一次函数的性质对各选项进行逐一分析即可.【详解】解:A、∵一次函数y=﹣3x中,k=﹣3<0,∴此函数中y随x增大而减小,故本选项错误;B、∵正比例函数y=x﹣2中,k=1>0,∴此函数中y随x增大而增大,故本选项正确;C、∵正比例函数y=﹣2x+3中,k=﹣2<0,∴此函数中y随x增大而减小,故本选项错误;D、正比例函数y=3﹣x中,k=﹣1<0,∴此函数中y随x增大而减小,故本选项错误.故选B.【点睛】本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k>0时,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.15.C解析:C【解析】【分析】先根据一次函数的图象与系数的关系得出直线y=ax+b(a<0,b>0)所经过的象限,故可得出结论.【详解】∵直线y=ax+b中,a<0,b>0,∴直线y=ax+b经过一、二、四象限,∴不经过第三象限.故选:C.【点睛】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k<0,b>0时函数的图象经过一、二、四象限.二、填空题16.【解析】【分析】根据全等三角形的性质可得∠BAC=∠CAD,再根据三角形的内角和等于180°求出∠BAC的度数,即可得出结论.【详解】∵△ABC≌△ADC,∴∠BAC=∠CAD.∵∠B解析:120【解析】【分析】根据全等三角形的性质可得∠BAC=∠CAD,再根据三角形的内角和等于180°求出∠BAC的度数,即可得出结论.【详解】∵△ABC≌△ADC,∴∠BAC=∠CAD.∵∠BCA=40°,∠B=80°,∴∠BAC=180°﹣∠BCA﹣∠B=180°﹣40°﹣80°=60°,∴∠BAD=∠BAC+∠CAD=2∠BAC=2×60°=120°.故答案为:120°.【点睛】本题考查了全等三角形的性质以及三角形内角和定理.掌握全等三角形的性质以及三角形内角和定理是解答本题的关键.17..【解析】【分析】设C点坐标为(0,a),由勾股定理可表示出BC2和AC2,由△ABC是以AB为底的等腰三角形可知BC=AC,据此可列出关于的方程,求解即可.【详解】解:设C点坐标为(0,解析:118. 【解析】【分析】 设C 点坐标为(0,a ),由勾股定理可表示出BC 2和AC 2,由△ABC 是以AB 为底的等腰三角形可知BC =AC ,据此可列出关于a 的方程,求解即可.【详解】解:设C 点坐标为(0,a ),当△ABC 是以AB 为底的等腰三角形时,BC =AC ,平方得BC 2=AC 2,即32+a 2=22+(4﹣a )2,化简得8a =11,解得a =118. 故OC =118, 故答案为:118. 【点睛】本题考查了平面直角坐标系中两点间的距离及等腰三角形的判定,灵活利用两点的坐标确定两点间距离是解题的关键.18.7【解析】【分析】根据关于x 轴对称的点的坐标特征,即横坐标相同,纵坐标相反,列式分别求出m ,n 即可解决.【详解】解:∵和点关于轴对称,∴m=2,-5+n=0,∴m=2,n=5,∴m+解析:7【解析】【分析】根据关于x 轴对称的点的坐标特征,即横坐标相同,纵坐标相反,列式分别求出m ,n 即可解决.【详解】解:∵(,5)A m 和点(2,)B n 关于x 轴对称,∴m=2,-5+n=0,∴m=2,n=5,∴m+n=7.故答案为7.【点睛】本题考查了点的坐标特征,解决本题的关键是熟练掌握关于x轴对称的点的坐标特征,要与关于y轴对称的点的坐标特征相区别.19.50【解析】【分析】因为三角形的内角和是180度,又因为等腰三角形的两个底角相等,用“180-80=100”求出两个底角的度数,再用“100÷2”求出一个底角的度数;【详解】底角:(180解析:50【解析】【分析】因为三角形的内角和是180度,又因为等腰三角形的两个底角相等,用“180-80=100”求出两个底角的度数,再用“100÷2”求出一个底角的度数;【详解】底角:(180°−80°)÷2=100°÷2=50°它的底角为50度故答案为:50.【点睛】此题考查三角形的内角和,等腰三角形的性质,解题关键在于利用内角和定理进行解答. 20.150【解析】【分析】连接OP,根据轴对称的性质得到,再利用四边形的内角和是计算可得答案. 【详解】解:如图,连接OP,E,F分别为点P关于OA,OB的对称点故答案为:1解析:150【解析】【分析】连接OP ,根据轴对称的性质得到60EOF ∠=︒,,,E EPO F FPO ∠=∠∠=∠再利用四边形的内角和是360︒计算可得答案.【详解】解:如图,连接OP ,E ,F 分别为点P 关于OA ,OB 的对称点,,EOA POA POB FOB ∴∠=∠∠=∠30EOA FOB POA POB ∴∠+∠=∠+∠=︒60EOF ∴∠=︒,,E EPO F FPO ∴∠=∠∠=∠360E EPO F FPO EOF ∴∠+∠+∠+∠+∠=︒2()300E F ∴∠+∠=︒150E F ∴∠+∠=︒故答案为:150.【点睛】本题考查了轴对称的性质,四边形的内角和性质,证得60EOF ∠=︒,,,E EPO F FPO ∠=∠∠=∠解本题的关键.21.30【解析】【分析】根据正三角形ABC 得到∠BAC=60°,因为AD ⊥BC ,根据等腰三角形的三线合一得到∠BAD 的度数.【详解】∵△ABC 是等边三角形,∴∠BAC=60°,∵AB=AC解析:30【解析】【分析】根据正三角形ABC 得到∠BAC=60°,因为AD ⊥BC ,根据等腰三角形的三线合一得到∠BAD 的度数.【详解】∵△ABC 是等边三角形,∴∠BAC=60°,∵AB=AC ,AD ⊥BC ,∴∠BAD=12∠BAC=30°, 故答案为30°.22.0【解析】【分析】根据题意,由时,代入,求出答案即可.【详解】解:∵小明输入的的值为36,∴;故答案为:0.【点睛】本题考查了代数式求值:把满足条件的字母的值代入代数式进行计算得到 解析:0【解析】【分析】根据题意,由36x =时,代入3y =-,求出答案即可. 【详解】解:∵小明输入的x 的值为36,∴3330y =-=-=; 故答案为:0.【点睛】本题考查了代数式求值:把满足条件的字母的值代入代数式进行计算得到对应的代数式的值.23.60【解析】∵E在线段BC的垂直平分线上,∴BE=CE,∴∠ECB=∠B=40°,∵CE平分∠ACB,∴∠ACD=2∠ECB=80°,又∵∠A+∠B+∠ACB=180°,∴∠A=18解析:60【解析】∵E在线段BC的垂直平分线上,∴BE=CE,∴∠ECB=∠B=40°,∵CE平分∠ACB,∴∠ACD=2∠ECB=80°,又∵∠A+∠B+∠ACB=180°,∴∠A=180°−∠B−∠ACB=60°,故答案为:60.24.>【解析】【分析】构造等腰直角三角形,根据等腰直角三角形的性质即可进行比较大小. 【详解】解:如下图所示,是等腰直角三角形,∴,∴.故答案为另:此题也可直接测量得到结果.【点解析:>【解析】【分析】构造等腰直角三角形,根据等腰直角三角形的性质即可进行比较大小.【详解】解:如下图所示,AFG 是等腰直角三角形,∴45FAG BAC ∠=∠=︒,∴BAC DAE ∠>∠.故答案为.>另:此题也可直接测量得到结果.【点睛】本题考查等腰直角三角形的性质,构造等腰直角三角形是解题的关键.25.60°【解析】【分析】根据等腰三角形三线合一的性质得:AD 平分∠BAC ,由此根据角平分线的定义得出结论.【详解】如图,∵AB=AC ,AD ⊥BC ,∴AD 平分∠BAC ,∴∠BAD=∠BA解析:60°【解析】【分析】根据等腰三角形三线合一的性质得:AD 平分∠BAC ,由此根据角平分线的定义得出结论.【详解】如图,∵AB=AC ,AD ⊥BC ,∴AD 平分∠BAC , ∴∠BAD=12∠BAC , ∵∠BAC=120°, ∴∠BAD=12×120°=60°, 故答案为:60°.【点睛】本题考查的知识点是等腰三角形的性质,解题关键是熟记等腰三角形三线合一的性质. 三、解答题 26.(1) 32m =,213AB =;(2) (0,2)Q . 【解析】【分析】(1)把点C 的横坐标代入正比例函数解析式,求得点C 的纵坐标,然后把点C 的坐标代入一次函数解析式即可求得m 的值,从而得到一次函数的解析式,则易求点A 、B 的坐标,然后根据勾股定理即可求得AB ;(2)由14OCQ BAO S S ∆∆=得到OQ 的长,即可求得Q 点的坐标. 【详解】(1)∵点C 在直线12y x =-上,点C 的横坐标为−3, ∴点C 坐标为3(3,)2-,又∵点C 在直线y =mx +2m +3上,∴33232m m -++=, ∴32m =, ∴直线AB 的函数表达式为362y x =+, 令x =0,则y =6,令y =0,则3602x +=,解得x =−4, ∴A (−4,0)、B (0,6),∴2246213AB =+=;(2)∵14OCQ BAO S S ∆∆=,∴111346242OQ ⨯⋅=⨯⨯⨯,∴OQ =2,∴点Q 坐标为(0,2).【点睛】考查两条直线相交问题,一次函数图象上点的坐标特征,勾股定理,三角形的面积公式等,比较基础,难度不大.27.(1)甲步行的速度为60 m/min ;(2)当甲出发16 min 时,甲乙两人距离0 m (或乙出发12 min 时,乙追上了甲);(3)乙步行的速度为80 m/min ;乙走完全程用的时间为30min ;(4)乙到达终点时,甲离终点距离是360米.【解析】【分析】(1)根据甲先出发4 min ,结合图象可知4 min 他们的距离为240,即可求甲的速度; (2)结合函数图象可知,当t=16分钟时,y 为0,据此可答;(3)根据t=16分钟时,甲乙所走的路程相等求得乙步行的速度,再用总路程÷乙步行的速度即可得解;(4)甲的速度×(乙走完全程的时间+4)=乙到达终点时甲的路程.再用总路程-甲的路程即可.【详解】(1)甲步行的速度为:240÷4=60 m/min ;(2)当甲出发16 min 时,甲乙两人距离0 m (或乙出发12 min 时,乙追上了甲); (3)乙步行的速度为:16×60÷12=80 m/min ;乙走完全程用的时间为:2400÷80=30min ;(4)乙到达终点时,甲离终点距离是:2400﹣(4+30)×60=360米 【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.28.(1)3a =,2b =;(2【解析】【分析】(1)利用完全平方公式整理,再根据非负数的性质列方程求解即可;(2)利用勾股定理逆定理判断出△ABC 是直角三角形,再根据直角三角形的面积等于两直角边的乘积的一半列式计算即可得解.【详解】解:(12440b b -+=整理得:()220b -=∴3a =,2b =;(2)∵2222529c b ,2239a ==∴222c b a +=,∴△ABC 是直角三角形,90A ∠=︒,∴△ABC 的面积1122255bc .【点睛】本题考查了二次根式的应用和非负数的性质:几个非负数的和为0时,这几个非负数都为0,还考查了勾股定理逆定理.29.详见解析【解析】【分析】根据题意,给出已知和求证,加以证明即可得解.【详解】已知:如下图,ABC ∆是等腰三角形,∠A =60°,证明:ABC ∆是等边三角形.证明:∵ABC ∆是等腰三角形∴AB=AC∴∠B=∠C∵∠A =60°∴∠B=∠C=18060602︒-︒=︒ ∴ABC ∆是等边三角形.【点睛】本题主要考查了等边三角形的判定,熟练掌握等边三角形的判定证明是解决本题的关键.30.(1)∠D 是直角.理由见解析;(2)234.【解析】【分析】(1)连接AC ,先根据勾股定理求得AC 的长,再根据勾股定理的逆定理,求得∠D=90°即可;(2)根据△ACD 和△ACB 的面积之和等于四边形ABCD 的面积,进行计算即可.【详解】(1)∠D 是直角.理由如下:连接AC .∵AB =20,BC =15,∠B =90°,∴由勾股定理得AC 2=202+152=625.又∵CD =7,AD =24,∴CD 2+AD 2=625,∴AC 2=CD 2+AD 2,∴∠D =90°.(2)四边形ABCD 的面积=12AD •DC +12AB •BC =12×24×7+12×20×15=234.【点睛】考查了勾股定理以及勾股定理的逆定理的综合运用,解决问题时需要区别勾股定理及其逆定理.通过作辅助线,将四边形问题转化为三角形问题是关键.31.(1)y=-x+5;点C (3,2);(2)S=272;(3)P 点坐标为(2,3)或(4,1). 【解析】【分析】(1)根据待定系数法求出直线AB 解析式,再联立两函数解出C 点坐标;(2)依次求出y=-x+5和y=2x-4与y 轴交点坐标,根据三角形的面积公式即可求解;(3)设P 点(m ,-m+5) Q 点坐标为(m,2m-4),根据线段PQ 的长为3,分情况即可求解.【详解】(1)∵直线y=kx+b 经过点A (5,0),B (1,4),∴ 504k b k b +⎧⎨+⎩== 解得 15k b =-⎧⎨=⎩∴直线AB 的解析式为:y=-x+5;∵若直线y=2x-4与直线AB 相交于点C ,∴ 524y x y x =-+⎧⎨-⎩= 解得 32x y =⎧⎨=⎩ ∴点C (3,2);(2)∵y=-x+5与y 轴交点坐标为(0,5),y=2x-4与y 轴交点坐标为(0,-4) ,C 点坐标为(3,2)∴S=932722⨯= (3)设P 点(m ,-m+5) Q 点坐标为(m,2m-4)则-m+5-(2m-4)=3 或者2m-4-(-m+5)=3解得m= 2 或m=4∴P点坐标为(2,3)或(4,1).【点睛】此题主要考查一次函数图像与几何综合,解题的关键是熟知一次函数的图像与性质、待定系数法的应用.。

苏科版江苏省苏州市八年级(上)期末数学试卷(含答案)

苏科版江苏省苏州市八年级(上)期末数学试卷(含答案)

苏科版江苏省苏州市八年级(上)期末数学试卷(含答案)一、选择题 1.若a 满足3a a =,则a 的值为( ) A .1B .0C .0或1D .0或1或1- 2.人的眼睛可以看见的红光的波长约为5810cm -⨯,近似数5810-⨯精确到( )A .0.001cmB .0.0001cmC .0.00001cmD .0.000001cm 3.下列四个图形中,不是轴对称图案的是( )A .B .C .D .4.在一次800米的长跑比赛中,甲、乙两人所跑的路程s (米)与各自所用时间t (秒)之间的函数图像分别为线段OA 和折线OBCD ,则下列说法不正确的是( )A .甲的速度保持不变B .乙的平均速度比甲的平均速度大C .在起跑后第180秒时,两人不相遇D .在起跑后第50秒时,乙在甲的前面 5.分式221x x -+的值为0,则x 的值为( ) A .0 B .2 C .﹣2 D .126.在下列分解因式的过程中,分解因式正确的是( )A .-xz +yz =-z(x +y)B .3a 2b -2ab 2+ab =ab(3a -2b)C .6xy 2-8y 3=2y 2(3x -4y)D .x 2+3x -4=(x +2)(x -2)+3x7.在平面直角坐标系中,点P(-2,2x +1)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 8.在直角坐标系中,将点(-2, -3)向左平移2个单位长度得到的点的坐标是( )A .(-2,-5)B .(-4,-3)C .(0,-3)D .(-2,1)9.在平面直角坐标系中,把直线23y x =-沿y 轴向上平移2个单位后,所得直线的函数表达式为( )A .22y x =+B .25y x =-C .21y x =+D .21y x =-10.下列实数中,无理数是( )A .227B .3πC .4-D .32711.如果m 是任意实数,则点()P m 4m 1-+,一定不在A .第一象限B .第二象限C .第三象限D .第四象限12.下列各点中,位于平面直角坐标系第四象限的点是( )A .(1,2)B .(﹣1,2)C .(1,﹣2)D .(﹣1,﹣2)13.以下问题,不适合用普查的是( )A .旅客上飞机前的安检B .为保证“神州9号”的成功发射,对其零部件进行检查C .了解某班级学生的课外读书时间D .了解一批灯泡的使用寿命 14.下列各点中,在第四象限且到x 轴的距离为3个单位的点是( ) A .(﹣2,﹣3) B .(2,﹣3) C .(﹣4,3) D .(3,﹣4) 15.如图,在R △ABC 中,∠ACB =90°,AC =6,BC =8,E 为AC 上一点,且AE =85,AD 平分∠BAC 交BC 于D .若P 是AD 上的动点,则PC +PE 的最小值等于( )A .185B .245C .4D .265二、填空题16.如图所示的棋盘放置在某个平面直角坐标系内,棋子A 的坐标为(﹣2,﹣3),棋子B 的坐标为(1,﹣2),那么棋子C 的坐标是_____.17.如图,在ABC 中,AB AC =,AB 的垂直平分线交AB 于点D ,交AC 于点E ,且50A ∠=︒,则EBC ∠的度数是__________.18.如图,点C 坐标为(0,1)-,直线334y x =+交x 轴,y 轴于点A 、点B ,点D 为直线上一动点,则CD 的最小值为_________.19.函数y 1=x+1与y 2=ax+b 的图象如图所示,那么,使y 1、y 2的值都大于0的x 的取值范围是______.20.如图,在平面直角坐标系中,点B 在x 轴的正半轴上,AO =AB ,∠OAB =90°,OB =12,点C 、D 均在边OB 上,且∠CAD =45°,若△ACO 的面积等于△ABO 面积的13,则点D 的坐标为 _______ 。

2021-2022学年江苏省苏州市八年级(上)期末数学试题及答案解析

2021-2022学年江苏省苏州市八年级(上)期末数学试题及答案解析

2021-2022学年江苏省苏州市八年级(上)期末数学试卷一、选择题(本大题共10小题,共20.0分。

在每小题列出的选项中,选出符合题目的一项)1. 下列四个图标中,轴对称图案是( )A. B. C. D.2. 下列四个数中,无理数是( )C. √5D. 0A. 0.3⋅B. −2273. 若点P(a+2,a)在y轴上,则点P的坐标为( )A. (−2,0)B. (0,−2)C. (2,0)D. (0,2)4. 若最简二次根式√1+2a与√3是同类二次根式,则a的值为( )A. 2B. 4C. −1D. 15. 若一次函数y=(m−1)x−1的图象经过第一、三、四象限,则m的值可能为( )A. −2B. −1C. 0D. 26. 如图,数轴上点A表示的数是−1,点B表示的数是1,BC=1,∠ABC=90°,以点A为圆心,AC长为半径画弧,与数轴交于原点右侧的点P,则点P表示的数是( )A. √5−1B. √5−2C. √3−1D. 2−√37. 在△ABC中,CD为AB边上的中线,AB=6,CD=BC=3.下列结论:①△ABC是直角三角形;②△BCD是等边三角形;③∠A=30°;④AC=2BC,其中正确结论的个数为( )A. 1B. 2C. 3D. 48. 苏州素有“园林之城”美誉,以拙政园、留园为代表的苏州园林“咫尺之内再造乾坤”,是中华园林文化的翘楚和骄傲.如图,某园林中一亭子的顶端可看作等腰△ABC,其中AB=AC,若D是BC边上的一点,则下列条件不能说明AD是△ABC角平分线的是( )A. 点D到AB,AC的距离相等B. ∠ADB=∠ADCC. BD=CDD. AD=12BC9. 定义一种“⊗”运算:a⊗b=ba−b (a≠b),例如:1⊗3=31−3=−32,则方程2⊗x=1x−2+1的解是( )A. x=−1B. x=12C. x=32D. x=210. 为落实“五育并举”,某校利用课后延时服务时间进行趣味运动,甲同学从跑道A处匀速跑往B处,乙同学从B处匀速跑往A处,两人同时出发,到达各自终点后立即停止运动.设甲同学跑步的时间为x(秒),甲、乙两人之间的距离为y(米),y与x之间的函数关系如图所示,则图中t的值是( )A. 503B. 18 C. 553D. 20二、填空题(本大题共8小题,共16.0分)11. 16的平方根是______.12. 北京2022年冬奥会志愿者招募活动于2019年12月5日启动,截至到2021年12月5日,共有来自全球168个国家和地区的超过961000人报名.将961000用四舍五入法精确到10000,并用科学记数法表示,则961000可表示为______.13. 化简:(1x−1+1)÷xx−1=______.14. 已知点A(−3,y1),B(−5,y2)是一次函数y=x−3图象上的两点,则y1______y2.(填“>”、“=”或“<”)15. 如图,已知△ABC中,CD⊥AB,垂足为D,CB是△DCE的角平分线,F是AC的中点,若DF=6.5,AD=5,S△ABC=48,则点B到CE的距离为______.16. 如图,三角形纸片ABC中,∠ACB=90°,BC=3,AB=5.D是BC边上一点,连接AD,把ABD沿AD翻折,点B恰好落在AC延长线上的点B′处,则CD的长为______.17. 已知P(a,b)是一次函数y=−2x+4图象上一点,则a2+b2的最小值是______.18. “GGB”是一款数学应用软件,用“GGB”绘制的函数y=−x2(x−4)和y=−x+4的图象如图所示.若x=a,x=b分别为方程−x2(x−4)=−1和−x+4=−1的一个解,则根据图象可知a______b.(填“>”、“=”或“<”).三、解答题(本大题共10小题,共64.0分。

苏科版江苏省苏州市八年级上学期期末数学试卷 (解析版)

苏科版江苏省苏州市八年级上学期期末数学试卷 (解析版)

苏科版江苏省苏州市八年级上学期期末数学试卷 (解析版)一、选择题 1.低碳环保理念深入人心,共享单车已经成为出行新方式下列共享单车图标中,是轴对称图形的是( )A .B .C .D . 2.下列志愿者标识中是中心对称图形的是( ).A .B .C .D .3.下列无理数中,在﹣1与2之间的是( )A .﹣3B .﹣2C .2D .54.在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是( ) A . B . C . D .5.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是( )A .B .C .D .6.如图,AD 是ABC 的角平分线,DE AB ⊥于E ,已知ABC 的面积为28.6AC =,4DE =,则AB 的长为( )A .4B .6C .8D .107.如图,在锐角三角形ABC 中2AB =,45BAC ∠=︒,BAC ∠的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM MN +的最小值是( )A .1B .2C .2D .68.下列图案属于轴对称图形的是( )A .B .C .D .9.如图,正方形OACB 的边长是2,反比例函数k y x=图像经过点C ,则k 的值是( )A .2B .2-C .4D .4-10.已知:如图,∠1=∠2,则不一定能使△ABD ≌△ACD 的条件是 ( )A .AB =ACB .BD =CDC .∠B =∠CD .∠BDA =∠CDA 11.人的眼睛可以看见的红光的波长约为5810cm -⨯,近似数5810-⨯精确到( ) A .0.001cmB .0.0001cmC .0.00001cmD .0.000001cm 12.点P (3,﹣4)关于y 轴的对称点P′的坐标是( )A .(﹣3,﹣4)B .(3,4)C .(﹣3,4)D .(﹣4,3) 13.如图, Rt ABC 中,90,B ED ∠=︒垂直平分,AC ED 交AC 于点D ,交BC 于点E .已知ABC 的周长为24,ABE 的周长为14,则AC 的长( )A .10B .14C .24D .15 14.已知一次函数y=kx+b ,函数值y 随自变置x 的增大而减小,且kb <0,则函数y=kx+b的图象大致是( ) A . B . C . D .15.如图,直线(0)y kx b k =+≠经过点(1,3)-,则不等式3kx b +≥的解集为( )A .1x >-B .1x <-C .3x ≥D .1x ≥-二、填空题16.若函数y =2x +3﹣m 是正比例函数,则m 的值为_____.17.已知22139273m ⨯⨯=,求m =__________.18.如图,已知直线y =ax ﹣b ,则关于x 的方程ax ﹣1=b 的解x =_____.19.如图,在ABC ∆和EDB ∆中,90C EBD ∠=∠=︒,点E 在AB 上.若ABC EDB ∆∆≌,4AC =,3BC =,则DE =______.20.若关于x 的分式方程122x x a x x--=--有增根,则a 的值_____________. 21.下图所示的网格是正方形网格,BAC ∠________DAE ∠.(填“>”,“=”或“<”)22.比较大小:-2______-3.23.若点P (3m ﹣1,2+m )关于原点的对称点P ′在第四象限的取值范围是_____.24.在平面直角坐标系中,点()2,0A ,()0,4B ,作BOC ,使BOC 与ABO 全等,则点C 坐标为____.(点C 不与点A 重合)25.如图,Rt △ABC 中,∠C =90°,AD 是∠BAC 的平分线,CD =4,AB =16,则△ABD 的面积等于_____.三、解答题26.解方程:12242x x x -=--. 27.如图,△ABC 中,B C ∠=∠,点D 、E 在边BC 上,且AD AE =,求证:BE CD =28.甲、乙两车从A 城出发沿一条笔直公路匀速行驶至B 城.在整个行驶过程中,甲、乙两车离开A 城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.()1A ,B 两城相距______千米,乙车比甲车早到______小时;()2甲车出发多长时间与乙车相遇?()3若两车相距不超过20千米时可以通过无线电相互通话,则两车都在行驶过程中可以通过无线电通话的时间有多长?29.(模型建立)(1)如图1,等腰直角三角形ABC 中,90ACB ∠=,CB CA =,直线ED 经过点C ,过A 作AD ED ⊥于点D ,过B 作BE ED ⊥于点E .求证:BEC CDA ∆≅∆; (模型应用)(2)已知直线1l :443y x =+与坐标轴交于点A 、B ,将直线1l 绕点A 逆时针旋转45至直线2l ,如图2,求直线2l 的函数表达式;(3)如图3,长方形ABCO ,O 为坐标原点,点B 的坐标为()8,6-,点A 、C 分别在坐标轴上,点P 是线段BC 上的动点,点D 是直线26y x =-+上的动点且在第四象限.若APD ∆是以点D 为直角顶点的等腰直角三角形,请直接..写出点D 的坐标.30.(1)求式中x 的值:2(1)16x -=;(2)计算:2020312527--+-31.已知:如图,,12AB DC =∠=∠,求证 :EBC ECB ∠=∠.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】根据轴对称图形的概念求解.【详解】A、是轴对称图形.故选项正确;B、不是轴对称图形.故选项错误;C、不是轴对称图形.故选项错误;D、不是轴对称图形.故选项错误.故选:A.【点睛】此题主要考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,两边图象折叠后可重合.2.C解析:C【解析】【分析】根据中心对称图形的概念求解.【详解】解:A、不是中心对称图形,故选项错误;B、不是中心对称图形,故选项错误;C、是中心对称图形,故选项正确;D、不是中心对称图形,故选项错误.故选:C.【点睛】本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.C解析:C【解析】试题分析:A1,故错误;B<﹣1,故错误;C.﹣1<2,故正确;D.5>2,故错误;故选C.【考点】估算无理数的大小.4.B解析:B【解析】【分析】根据轴对称图形的概念,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴因此.【详解】A、不是轴对称图形,不符合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意.故选B.【点睛】考核知识点:轴对称图形识别.5.D解析:D【解析】试题分析:A.是轴对称图形,故本选项错误;B.是轴对称图形,故本选项错误;C.是轴对称图形,故本选项错误;D.不是轴对称图形,故本选项正确.故选D.考点:轴对称图形.6.C解析:C【解析】【分析】作DF⊥AC于F,根据角平分线的性质求出DF,根据三角形的面积公式计算即可.【详解】解:作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,∴DF=DE=4,∴112228AB DE AC DF 即112246428AB 解得,AB=8, 故选:C . 【点睛】 本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键. 7. B解析:B【解析】【分析】通过构造全等三角形,利用三角形的三边的关系确定线段和的最小值.【详解】解:如图,在AC 上截取AE=AN ,连接BE ,∵∠BAC 的平分线交BC 于点D ,∴∠EAM=∠NAM ,在△AME 与△AMN 中,===AE ANEAM NAM AM AM∴△AME ≌△AMN (SAS ),∴ME=MN .∴BM+MN=BM+ME ≥BE ,当BE 是点B 到直线AC 的距离时,BE ⊥AC ,此时BM+MN 有最小值,∵2AB ,∠BAC=45°,此时△ABE 为等腰直角三角形,∴2,即BE 2,∴BM+MN 2.故选:B .【点睛】本题考察了最值问题,能够通过构造全等三角形,把BM+MN 进行转化,是解题的关键.8.D【解析】分析:根据轴对称图形的定义,寻找四个选项中图形的对称轴,发现只有D 有一条对称轴,由此即可得出结论.详解:A 、不能找出对称轴,故A 不是轴对称图形;B 、不能找出对称轴,故B 不是轴对称图形;C 、不能找出对称轴,故C 不是轴对称图形;D 、能找出一条对称轴,故D 是轴对称图形.故选D .点睛:本题考查了轴对称图形,解题的关键是分别寻找四个选项中图形的对称轴.本题属于基础题,难度不大,解决该题型题目时,通过寻找给定图象有无对称轴来确定该图形是否是轴对称图形是关键.9.C解析:C【解析】【分析】根据正方形的性质,即可求出点C 的坐标,然后代入反比例函数解析式里即可.【详解】解:∵正方形OACB 的边长是2,∴点C 的坐标为(2,2)将点C 的坐标代入k y x=中,得 22k = 解得:4k =故选C .【点睛】此题考查的是求反比例函数的比例系数,掌握用待定系数法求反比例函数的比例系数是解决此题的关键.10.B解析:B【解析】试题分析:利用全等三角形判定定理ASA ,SAS ,AAS 对各个选项逐一分析即可得出答案. 解:A 、∵∠1=∠2,AD 为公共边,若AB=AC ,则△ABD ≌△ACD (SAS );故A 不符合题意;B 、∵∠1=∠2,AD 为公共边,若BD=CD ,不符合全等三角形判定定理,不能判定△ABD ≌△ACD ;故B 符合题意;C 、∵∠1=∠2,AD 为公共边,若∠B=∠C ,则△ABD ≌△ACD (AAS );故C 不符合题意; D 、∵∠1=∠2,AD 为公共边,若∠BDA=∠CDA ,则△ABD ≌△ACD (ASA );故D 不符合故选B.考点:全等三角形的判定.11.C解析:C【解析】【分析】把数还原后,再看首数8的最后一位数字8所在的位数是十万分位,即精确到十万分位.【详解】∵5⨯=0.00008,810-∴近似数5⨯是精确到十万分位,即0.00001.810-故选:C.【点睛】此题主要考查了科学记数法与有效数字,正确还原数据是解题关键.12.A解析:A【解析】试题解析:∵点P(3,-4)关于y轴对称点P′,∴P′的坐标是:(-3,-4).故选A.13.A解析:A【解析】【分析】首先依据线段垂直平分线的性质得到AE=CE;接下来,依据AE=CE可将△ABE的周长为:14转化为AB+BC=14,求解即可.【详解】∵DE是AC的垂直平分线,∴AE=CE,∴△ABE的周长为:AB+BE+AE=AB+BE+CE=AB+BC∵ABC的周长为24,ABE的周长为14∴AB+BC=14∴AC=24-14=10故选:A【点睛】本题主要考查的是线段垂直平分线的性质,掌握线段垂直平分线的性质是解题的关键. 14.A解析:A【解析】试题分析:根据一次函数的性质得到k <0,而kb <0,则b >0,所以一次函数y=kx+b 的图象经过第二、四象限,与y 轴的交点在x 轴是方.解:∵一次函数y=kx+b ,y 随着x 的增大而减小,∴k <0,∴一次函数y=kx+b 的图象经过第二、四象限;∵kb <0,∴b >0,∴图象与y 轴的交点在x 轴上方,∴一次函数y=kx+b 的图象经过第一、二、四象限.故选A .考点:一次函数的图象.15.D解析:D【解析】【分析】结合函数的图象利用数形结合的方法确定不等式的解集即可.【详解】解:观察图象知:当1x ≥-时,3kx b +≥,故选:D .【点睛】本题考查了一次函数与一元一次不等式的知识,解题的关键是根据函数的图象解答,难度不大.二、填空题16.【解析】【分析】直接利用正比例函数的定义得出答案.【详解】∵函数y=2x+3﹣m 是正比例函数,∴3﹣m=0,解得:m=3.故答案为:3.【点睛】本题考查的是正比例函数的定义,一般解析:【解析】【分析】直接利用正比例函数的定义得出答案.∵函数y =2x +3﹣m 是正比例函数,∴3﹣m =0,解得:m =3.故答案为:3.【点睛】本题考查的是正比例函数的定义,一般地形如y kx =(k 是常数,k ≠0)的函数叫做正比例函数.17.8【解析】【分析】根据幂的乘方可得,,再根据同底数幂的乘法法则解答即可.【详解】∵,即,∴,解得,故答案为:8.【点睛】本题主要考查了幂的乘方与积的乘方以及同底数幂的乘法,熟练解析:8【解析】【分析】根据幂的乘方可得293m m ,3273=,再根据同底数幂的乘法法则解答即可. 【详解】∵22139273m ⨯⨯=,即22321333m ,∴22321m ,解得8m =, 故答案为:8.【点睛】本题主要考查了幂的乘方与积的乘方以及同底数幂的乘法,熟练掌握幂的运算法则是解答本题的关键.18.4【解析】【分析】观察图形可直接得出答案.解:根据图形知,当y=1时,x=4,即ax﹣b=1时,x=4.故方程ax﹣1=b的解是x=4.故答案为4.【点睛】此题考查一次函解析:4【解析】【分析】观察图形可直接得出答案.【详解】解:根据图形知,当y=1时,x=4,即ax﹣b=1时,x=4.故方程ax﹣1=b的解是x=4.故答案为4.【点睛】此题考查一次函数与一元一次方程的联系,渗透数形结合的解题思想.19.5【解析】【分析】先根据勾股定理求得AB的长度,再由全等三角形的性质可得DE的长度. 【详解】解:在Rt△ACB中,∠C=90°,AC=4,BC=3,由勾股定理得:AB=5,∵△ABC≌解析:5【解析】【分析】先根据勾股定理求得AB的长度,再由全等三角形的性质可得DE的长度.【详解】解:在Rt△ACB中,∠C=90°,AC=4,BC=3,由勾股定理得:AB=5,∵△ABC≌△EDB,∴DE=AB=5.【点睛】本题考查勾股定理,全等三角形的性质.熟记全等三角形对应边相等是解决此题的关键.【解析】【分析】方程第二个分母提取-1变形后,去分母转化为整式方程,表示出方程的解,令方程的解为2,即可求出a 的值.【详解】方程变形得:,去分母得:x+x-a=x-2,解得:x=a-解析:4【解析】【分析】方程第二个分母提取-1变形后,去分母转化为整式方程,表示出方程的解,令方程的解为2,即可求出a 的值.【详解】 方程变形得:+122x x a x x -=--, 去分母得:x+x-a=x-2,解得:x=a-2, ∵方程122x x a x x --=--有增根, ∴x=2,即a-2=2,解得:a=4,故答案为:4.【点睛】此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.21.>【解析】【分析】构造等腰直角三角形,根据等腰直角三角形的性质即可进行比较大小.【详解】解:如下图所示,是等腰直角三角形,∴,故答案为另:此题也可直接测量得到结果.【点解析:>【解析】【分析】构造等腰直角三角形,根据等腰直角三角形的性质即可进行比较大小.【详解】解:如下图所示,AFG 是等腰直角三角形,∴45FAG BAC ∠=∠=︒,∴BAC DAE ∠>∠.故答案为.> 另:此题也可直接测量得到结果.【点睛】本题考查等腰直角三角形的性质,构造等腰直角三角形是解题的关键.22.> 【解析】, .解析:> 【解析】23< ,23∴->23.﹣2<m <【解析】【分析】直接利用关于原点对称点的性质得出P′(﹣3m+1,﹣2﹣m ),进而得出不等式组答案.【详解】∵点P (3m ﹣1,2+m )关于原点的对称点P′(﹣3m+1,﹣2﹣m )解析:﹣2<m <13【解析】【分析】 直接利用关于原点对称点的性质得出P ′(﹣3m +1,﹣2﹣m ),进而得出不等式组答案.【详解】∵点P (3m ﹣1,2+m )关于原点的对称点P ′(﹣3m +1,﹣2﹣m )在第四象限, ∴31020m m -+>⎧⎨--<⎩, 解得:﹣2<m <13, 故答案为:﹣2<m <13. 【点睛】此题主要考查根据对称性和象限的性质求点坐标参数的取值范围,熟练掌握,即可解题. 24.或或【解析】【分析】根据全等三角形的判定和性质,结合已知的点画出图形,即可得出答案【详解】解:如图所示∵,∴OB=4,OA=2∵△BOC ≌△ABO∴OB=OB=4,OA=OC=2解析:()2,4或()2,0-或()2,4-【解析】【分析】根据全等三角形的判定和性质,结合已知的点画出图形,即可得出答案【详解】解:如图所示∵()2,0A ,()0,4B∴OB=4,OA=2∵△BOC≌△ABO∴OB=OB=4,OA=OC=2∴123C (2,0),C (2,4),C (2,4)-- 故答案为:()2,4或()2,0-或()2,4-【点睛】本题考查坐标与全等三角形的性质和判定,注意要分多种情况讨论是解题的关键 25.【解析】【分析】作DH⊥AB 于H ,如图,根据角平分线的性质得到DH=DC=4,然后利用三角形面积公式计算.【详解】作DH⊥AB 于H ,如图,∵AD 是∠BAC 的平分线,∴DH=DC=4,解析:【解析】【分析】作DH ⊥AB 于H ,如图,根据角平分线的性质得到DH =DC =4,然后利用三角形面积公式计算.【详解】作DH ⊥AB 于H ,如图,∵AD 是∠BAC 的平分线,∴DH =DC =4,∴△ABD 的面积=12×16×4=32. 故答案为:32.【点睛】本题考查了角平分线的性质及三角形面积公式,熟练掌握“角的平分线上的点到角的两边的距离相等”是解题的关键. 三、解答题26.无解【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】去分母得:x -2=4(x -2)解得:x =2.检验:当x =2时,2(x -2)=0,∴x =2是增根.∴方程无解.【点睛】本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.27.见解析.【解析】【分析】根据等边对等角的性质可得∠ADC=∠AEB ,然后利用“角角边”证明△ABE 和△ACD 全等,然后根据全等三角形对应边相等即可证明.【详解】证明:∵AD=AE ,∴∠ADC=∠AEB (等边对等角),∵在△ABE 和△ACD 中,ABC ACB AEB ADC AE AD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABE ≌△ACD (AAS ),∴BE=CD (全等三角形的对应边相等).【点睛】本题考查了全等三角形的判定与性质及等腰三角形的性质,根据等边对等角的性质得到三角形全等的条件是解题的关键.28.(1)300千米,1小时(2)2.5小时(3)1小时【解析】【分析】(1)根据函数图象可以直接得到A ,B 两城的距离,乙车将比甲车早到几小时;(2)由图象所给数据可求得甲、乙两车离开A 城的距离y 与时间t 的关系式,求得两函数图象的交点即可(3)再令两函数解析式的差小于或等于20,可求得t 可得出答案.【详解】(1)由图象可知A 、B 两城市之间的距离为300km , 甲比乙早到1小时,(2)设甲车离开A 城的距离y 与t 的关系式为y 甲=kt ,把(5,300)代入可求得k=60,∴y 甲=60t ,设乙车离开A 城的距离y 与t 的关系式为y 乙=mt+n ,把(1,0)和(4,300)代入可得04300m n m n +=⎧⎨+=⎩, 解得:100100m n =⎧⎨=-⎩, ∴y 乙=100t-100,令y 甲=y 乙,可得:60t=100t-100,解得:t=2.5,即甲、乙两直线的交点横坐标为t=2.5,∴甲车出发2.5小时与乙车相遇(3)当y 甲- y 乙=20时60t-100t+100=20,t=2当y 乙- y 甲=20时100t-100-60t=20,t=3∴3-2=1(小时)∴两车都在行驶过程中可以通过无线电通话的时间有1小时【点睛】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,学会构建一次函数,利用方程组求两个函数的交点坐标,特别注意t 是甲车所用的时间.29.(1)见解析;(2)y =−7x−21;(3)D (4,−2)或(203,223-). 【解析】【分析】(1)根据△ABC 为等腰直角三角形,AD ⊥ED ,BE ⊥ED ,可判定BEC CDA ∆≅∆; (2)①过点B 作BC ⊥AB ,交l 2于C ,过C 作CD ⊥y 轴于D ,根据△CBD ≌△BAO ,得出BD =AO =3,CD =OB =4,求得C (−4,7),最后运用待定系数法求直线l 2的函数表达式;(3)根据△APD是以点D为直角顶点的等腰直角三角形,当点D是直线y=−2x+6上的动点且在第四象限时,分两种情况:当点D在矩形AOCB的内部时,当点D在矩形AOCB的外部时,设D(x,−2x+6),分别根据△ADE≌△DPF,得出AE=DF,据此列出方程进行求解即可.【详解】解:(1)证明:∵△ABC为等腰直角三角形,∴CB=CA,∠ACD+∠BCE=90°,又∵AD⊥ED,BE⊥ED,∴∠D=∠E=90°,∠EBC+∠BCE=90°,∴∠ACD=∠EBC,在△ACD与△CBE中,D EACD EBCCA CB∠∠⎧⎪∠∠⎨⎪⎩===,∴BEC CDA∆≅∆(AAS);(2)①如图2,过点B作BC⊥AB,交l2于C,过C作CD⊥y轴于D,∵∠BAC=45°,∴△ABC为等腰直角三角形,由(1)可知:△CBD≌△BAO,∴BD=AO,CD=OB,∵直线l1:y=43x+4中,若y=0,则x=−3;若x=0,则y=4,∴A(−3,0),B(0,4),∴BD=AO=3,CD=OB=4,∴OD=4+3=7,∴C(−4,7),设l2的解析式为y=kx+b,则7403k bk b=-+⎧⎨=-+⎩,解得:721kb=-⎧⎨=-⎩,∴l2的解析式为:y=−7x−21;(3)D(4,−2)或(203,223-).理由:当点D是直线y=−2x+6上的动点且在第四象限时,分两种情况:当点D在矩形AOCB的内部时,如图,过D作x轴的平行线EF,交直线OA于E,交BC于F,设D(x,−2x+6),则OE=2x−6,AE=6−(2x−6)=12−2x,DF=EF−DE=8−x,由(1)可得,△ADE≌△DPF,则DF=AE,即:12−2x=8−x,解得x=4,∴−2x+6=−2,∴D(4,−2),此时,PF=ED=4,CP=6=CB,符合题意;当点D在矩形AOCB的外部时,如图,过D作x轴的平行线EF,交直线OA于E,交直线BC于F,设D(x,−2x+6),则OE=2x−6,AE=OE−OA=2x−6−6=2x−12,DF=EF−DE=8−x,同理可得:△ADE≌△DPF,则AE=DF,即:2x−12=8−x,解得x=203,∴−2x+6=223 -,∴D(203,223-),此时,ED=PF=203,AE=BF=43,BP=PF−BF=163<6,符合题意,综上所述,D点坐标为:(4,−2)或(203,223-)【点睛】本题属于一次函数综合题,主要考查了点的坐标、矩形的性质、待定系数法、等腰直角三角形的性质以及全等三角形等相关知识的综合应用,解决问题的关键是作辅助线构造全等三角形,运用全等三角形的性质进行计算,解题时注意分类思想的运用.30.(1)x =5或﹣3;(2)﹣9.【解析】【分析】(1)直接利用平方根的定义化简得出答案;(2)直接利用立方根以及算术平方根的定义化简得出答案.【详解】(1)(x ﹣1)2=16,x ﹣1=±4,解得:x =5或﹣3;(2)20201-=﹣1﹣5﹣3=﹣9.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.31.见解析【解析】【分析】利用“角角边”证明△ABE 和△DCE 全等,根据全等三角形对应边相等可得BE=CE ,然后利用等边对等角证明即可.【详解】证明:在△ABE 和△DCE 中,12AEB DEC AB DC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△DCE (AAS ),∴BE=CE ,∴∠EBC=∠ECB .【点睛】本题考查了全等三角形的判定与性质,等边对等角的性质,熟练掌握三角形全等的判定方法是解题的关键.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏州市八年级(上)期末数学试卷一、选择题1.人的眼睛可以看见的红光的波长约为5810cm-⨯,近似数5810-⨯精确到()A.0.001cm B.0.0001cm C.0.00001cm D.0.000001cm 2.如图,两个一次函数图象的交点坐标为(2,4),则关于x,y的方程组111222,y k x by k x b=+⎧⎨=+⎩的解为()A.2,4xy=⎧⎨=⎩B.4,2xy=⎧⎨=⎩C.4,xy=-⎧⎨=⎩D.3,xy=⎧⎨=⎩3.如图,一艘轮船停在平静的湖面上,则这艘轮船在湖中的倒影是()A.B.C.D.4.已知等腰三角形的两边长分别为3和4,则它的周长为()A.10 B.11 C.10或11 D.75.若分式242xx-+的值为0,则x的值为()A.-2 B.0 C.2 D.±26.用科学记数法表示0.000031,结果是()A.53.110-⨯B.63.110-⨯C.60.3110-⨯D.73110-⨯7.下列图案属于轴对称图形的是()A. B.C.D.8.在平面直角坐标系中,把直线23y x=-沿y轴向上平移2个单位后,所得直线的函数表达式为()A .22y x =+B .25y x =-C .21y x =+D .21y x =-9.在下列各数中,无理数有( )33224,3,,8,9,07π A .1个B .2个C .3个D .4个10.下列说法中正确的是( ) A .带根号的数都是无理数 B .不带根号的数一定是有理数 C .无限小数都是无理数D .无理数一定是无限不循环小数二、填空题11.如图①的长方形ABCD 中, E 在AD 上,沿BE 将A 点往右折成如图②所示,再作AF ⊥CD 于点F ,如图③所示,若AB =2,BC =3,∠BEA =60°,则图③中AF 的长度为_______.12.若点P (2−a ,2a+5)到两坐标轴的距离相等,则a 的值为____. 13. 如图,在正三角形ABC 中,AD ⊥BC 于点D ,则∠BAD= °.14.如图,点C 坐标为(0,1)-,直线334y x =+交x 轴,y 轴于点A 、点B ,点D 为直线上一动点,则CD 的最小值为_________.15.已知一次函数y =mx -3的图像与x 轴的交点坐标为(x 0,0),且2≤x 0≤3,则m 的取值范围是________.16.23(3)2716-=_____.17.用四舍五入法将2.0259精确到0.01的近似值为_____. 18.一次函数y =2x -4的图像与x 轴的交点坐标为_______.19.如图,在平面直角坐标系中,点A 、B 的坐标分别为()1,4、()3,4,若直线y kx =与线段AB 有公共点,则k 的取值范围为__________.20.点P (3,-4)到 x 轴的距离是_____________.三、解答题21.已知函数y 1=2x -4与y 2=-2x +8的图象,观察图象并回答问题:(1)x 取何值时,2x -4>0? (2)x 取何值时,-2x +8>0?(3)x 取何值时,2x -4>0与-2x +8>0同时成立?(4)求函数y 1=2x -4与y 2=-2x +8的图象与x 轴所围成的三角形的面积? 22.(阅读·领会)(0)a a ≥的式子叫做二次根式,其中a 叫做被开方数.其中,被开方数相同的二次根式叫做同类二次根式.像同类项一样,同类二次根式也可以合并,合并方法类似合并同类项,是把几个同类二次根式前的系数相加,作为结果的系数,即((0).x x m n x x =+≥利用这个式子可以化简一些含根式的代数式..(0,0)a b ab a b =≥≥我们可以利用以下方法证明这个公式:一般地,当0,0a b ≥≥时, 根据积的乘方运算法则,可得222()(()a b a b ab =⨯=,∵2)(0)a a a =≥,∴2()ab ab =a b ab ab 的算术平方根,∴.(0,0)a b ab a b ⨯=≥≥利用这个式子,可以进行一些二次根式的乘法运算.将其反过来,得.(0,0)ab a b a b =⨯≥≥它可以用来化简一些二次根式.材料三:一般地,化简二次根式就是使二次根式: (I )被开方数中不含能开得尽方的因数或因式; (II )被开方数中不含分母;(III )分母中不含有根号.这样化简完后的二次根式叫做最简二次根式. (积累·运用)(1)仿照材料二中证明二次根式乘法公式那样,试推导二次根式的除法公式. (2)化简:2325(2)(0,0,0)a b c a b c -≥≥≥=______.(3)当0a b <<时,化简2232232,a b b ab a a b a b a b +-+-+并求当7,9a b =⎧⎨=⎩时它的值. 23.如图,将一张边长为8的正方形纸片OABC 放在直角坐标系中,使得OA 与y 轴重合,OC 与x 轴重合,点P 为正方形AB 边上的一点(不与点A 、点B 重合).将正方形纸片折叠,使点O 落在P 处,点C 落在G 处,PG 交BC 于H ,折痕为EF .连接OP 、OH . 初步探究 (1)当AP =4时①直接写出点E 的坐标 ; ②求直线EF 的函数表达式. 深入探究(2)当点P 在边AB 上移动时,∠APO 与∠OPH 的度数总是相等,请说明理由. 拓展应用(3)当点P 在边AB 上移动时,△PBH 的周长是否发生变化?并证明你的结论.24.已知21a =,求代数式223a a -+的值.25.(新知理解)如图①,若点A 、B 在直线l 同侧,在直线l 上找一点P ,使AP BP +的值最小. 作法:作点A 关于直线l 的对称点A ',连接A B '交直线l 于点P ,则点P 即为所求. (解决问题)如图②,AD 是边长为6cm 的等边三角形ABC 的中线,点P 、E 分别在AD 、AC 上,则PC PE +的最小值为 cm; (拓展研究)如图③,在四边形ABCD 的对角线AC 上找一点P ,使APB APD ∠=∠.(保留作图痕迹,并对作图方法进行说明)四、压轴题26.对于实数x ,若231a x ≤+,则符合条件的a 中最大的正数为X 的內数,例如:8的内数是5;7的内数是4.(1)1的内数是______,20的內数是______,6的內数是______; (2)若3是x 的內数,求x 的取值范围;(3)一动点从原点出发,以3个单位/秒的速度按如图1所示的方向前进,经过t 秒后,动点经过的格点(横,纵坐标均为整数的点)中能围成的最大实心正方形的格点数(包括正方形边界与内部的格点)为n ,例如当1t =时,4n =,如图2①……;当4t =时,9n =,如图2②,③;…… ①用n 表示t 的內数;②当t 的內数为9时,符合条件的最大实心正方形有多少个,在这些实心正方形的格点中,直接写出离原点最远的格点的坐标.(若有多点并列最远,全部写出)27.(1)探索发现:如图1,已知Rt △ABC 中,∠ACB =90°,AC =BC ,直线l 过点C ,过点A 作AD ⊥l ,过点B 作BE ⊥l ,垂足分别为D 、E .求证:AD =CE ,CD =BE . (2)迁移应用:如图2,将一块等腰直角的三角板MON 放在平面直角坐标系内,三角板的一个锐角的顶点与坐标原点O 重合,另两个顶点均落在第一象限内,已知点M 的坐标为(1,3),求点N 的坐标.(3)拓展应用:如图3,在平面直角坐标系内,已知直线y =﹣3x+3与y 轴交于点P ,与x 轴交于点Q ,将直线PQ 绕P 点沿逆时针方向旋转45°后,所得的直线交x 轴于点R .求点R 的坐标.28.如图,在ABC ∆中,90,,8ACB AC BC AB cm ∠=︒==,过点C 做射线CD ,且//CD AB ,点P 从点C 出发,沿射线CD 方向均匀运动,速度为3/cm s ;同时,点Q 从点A 出发,沿AB 向点B 匀速运动,速度为1/cm s ,当点Q 停止运动时,点P 也停止运动.连接,PQ CQ ,设运动时间为()()08t s t <<.解答下列问题:(1)用含有t 的代数式表示CP 和BQ 的长度; (2)当2t =时,请说明//PQ BC ; (3)设BCQ ∆的面积为()2S cm,求S 与t 之间的关系式.29.如图,A 点的坐标为(0,3),B 点的坐标为(﹣3,0),D 为x 轴上的一个动点且不与B ,O 重合,将线段AD 绕点A 逆时针旋转90°得线段AE ,使得AE ⊥AD ,且AE =AD ,连接BE 交y 轴于点M .(1)如图,当点D 在线段OB 的延长线上时, ①若D 点的坐标为(﹣5,0),求点E 的坐标. ②求证:M 为BE 的中点. ③探究:若在点D 运动的过程中,OMBD的值是否是定值?如果是,请求出这个定值;如果不是,请说明理由.(2)请直接写出三条线段AO ,DO ,AM 之间的数量关系(不需要说明理由).30.在Rt ABC 中,90ACB ∠=︒,30A ∠=︒,BD 是ABC 的角平分线,DE AB ⊥于点E .(1)如图1,连接EC ,求证:EBC 是等边三角形;(2)如图2,点M 是线段CD 上的一点(不与点,C D 重合),以BM 为一边,在BM 下方作60BMG ∠=︒,MG 交DE 延长线于点G .求证:AD DG MD =+;(3)如图3,点N 是线段AD 上的点,以BN 为一边,在BN 的下方作60BNG ∠=︒,NG 交DE 延长线于点G .直接写出ND ,DG 与AD 数量之间的关系.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】把数还原后,再看首数8的最后一位数字8所在的位数是十万分位,即精确到十万分位. 【详解】∵5810-⨯=0.00008,∴近似数5810-⨯是精确到十万分位,即0.00001. 故选:C . 【点睛】此题主要考查了科学记数法与有效数字,正确还原数据是解题关键.2.A解析:A 【解析】 【分析】根据任何一个一次函数都可以化为一个二元一次方程,再根据两个函数交点坐标就是二元一次方程组的解可直接得到答案. 【详解】解:∵直线y 1=k 1x+b 1与y 2=k 2x+b 2的交点坐标为(2,4),∴二元一次方程组111222,y k x by k x b=+⎧⎨=+⎩的解为2,4.xy=⎧⎨=⎩故选A.【点睛】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.3.D解析:D【解析】【分析】易得所求的图形与看到的图形关于水平的一条直线成轴对称,找到相应图形即可.【详解】解:如下图,∴正确的图像是D;故选择:D.【点睛】解决本题的关键是找到相应的对称轴;难点是作出相应的对称图形,也可根据所给图形的特征得到相应图形.4.C解析:C【解析】【分析】可分3是腰长与底边,两种情况讨论求解即可.【详解】解:①3是腰长时,三角形的三边分别为:3、3、4,能组成三角形,周长=3+3+4=10,②3是底边时,三角形的三边分别为3、4、4,能组成三角形,周长=3+4+4=11,∴三角形的周长为10或11.故选择:C.【点睛】本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键,难点在于要分情况讨论.5.C解析:C 【解析】由题意可知:24020x x =⎧-⎨+≠⎩, 解得:x=2, 故选C. 6.A解析:A 【解析】 【分析】根据科学记数法的表示形式10(1||10)na a ⨯≤<(n 为整数)即可求解 【详解】0.000031-5=3.110⨯, 故选:A . 【点睛】本题主要考查了绝对值小于1的数的科学记数法,熟练掌握科学记数法的表示方法是解决本题的关键.7.D解析:D 【解析】分析:根据轴对称图形的定义,寻找四个选项中图形的对称轴,发现只有D 有一条对称轴,由此即可得出结论.详解:A 、不能找出对称轴,故A 不是轴对称图形; B 、不能找出对称轴,故B 不是轴对称图形; C 、不能找出对称轴,故C 不是轴对称图形; D 、能找出一条对称轴,故D 是轴对称图形. 故选D .点睛:本题考查了轴对称图形,解题的关键是分别寻找四个选项中图形的对称轴.本题属于基础题,难度不大,解决该题型题目时,通过寻找给定图象有无对称轴来确定该图形是否是轴对称图形是关键.8.D解析:D 【解析】 【分析】根据平移法则“上加下减”可得出平移后的解析式.【详解】解:直线23y x =-沿y 轴向上平移2个单位后的解析式为:y=2x-3+2,即y=2x-1. 故选:D . 【点睛】本题考查一次函数图象平移问题,掌握平移法则“左加右减,上加下减”是解决此题的关键.9.B解析:B 【解析】 【分析】先将能化简的进行化简,再根据无理数的定义进行解答即可. 【详解】,∴这一组数中的无理数有:32个. 故选:B . 【点睛】本题考查的是无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.10.D解析:D 【解析】 【分析】根据无理数的定义判断各选项即可. 【详解】A 2=,是有理数,错误;B 中,例如π,是无理数,错误;C 中,无限循环小数是有理数,错误;D 正确,无限不循环的小数是无理数 故选:D 【点睛】本题考查无理数的定义,注意含有π和根号开不尽的数通常为无理数.二、填空题 11.3- 【解析】 【分析】作AH⊥BC 于H .证明四边形AFCH 是矩形,得出AF=CH ,在Rt△ABH 中,求得∠ABH=30°,则根据勾股定理可求出BH=,可求出HC 的长度即为AF 的长度.【详解】解析:3-3【解析】【分析】作AH ⊥BC 于H .证明四边形AFCH 是矩形,得出AF=CH ,在Rt △ABH 中,求得∠ABH=30°,则根据勾股定理可求出BH=3,可求出HC 的长度即为AF 的长度.【详解】解:如下图,作AH ⊥BC 于H .则∠AHC=90°,∵四边形形ABCD 为长方形,∴∠B=∠C=∠EAB=90°,∵AF ⊥CD ,∴∠AFC=90°,∴四边形AFCH 是矩形,,AF CH =∵∠BEA =60°,∴∠EAB=30°,∴根据折叠的性质可知∠AEH=90°-2∠EAB=30°,∵在Rt△ABH 中, AB=2, ∴112AH AB ==, 根据勾股定理2222213BH AB AH -=-=∵BC=3, ∴33AF HC BC BH ==-=-故填:33【点睛】本题考查矩形的性质和判定,折叠变化,勾股定理,含30°角的直角三角形.能作辅助线构造直角三角形是解决此题的关键.12.a=-1或a=-7.【解析】【分析】由点P 到两坐标轴的距离相等可得出|2-a|=|2a+5|,求出a 的值即可.【详解】解:∵点P到两坐标轴的距离相等,∴|2-a|=|2a+5|,∴2-解析:a=-1或a=-7.【解析】【分析】由点P到两坐标轴的距离相等可得出|2-a|=|2a+5|,求出a的值即可.【详解】解:∵点P到两坐标轴的距离相等,∴|2-a|=|2a+5|,∴2-a=2a+5,2-a=-(2a+5)∴a=-1或a=-7.故答案是:a=-1或a=-7.【点睛】本题考查了点到坐标轴的距离与坐标的关系,解答本题的关键在于得出|2-a|=|2a+5|,注意不要漏解.13.30【解析】【分析】根据正三角形ABC得到∠BAC=60°,因为AD⊥BC,根据等腰三角形的三线合一得到∠BAD的度数.【详解】∵△ABC是等边三角形,∴∠BAC=60°,∵AB=AC解析:30【解析】【分析】根据正三角形ABC得到∠BAC=60°,因为AD⊥BC,根据等腰三角形的三线合一得到∠BAD 的度数.【详解】∵△ABC是等边三角形,∴∠BAC=60°,∵AB=AC,AD⊥BC,∴∠BAD=12∠BAC=30°,故答案为30°.14.【解析】过点C 作直线AB 的垂线段CD ,利用三角形的面积即可求出CD 的长.【详解】 连接AC ,过点C 作CD⊥AB,则CD 的长最短,如图,对于直线令y=0,则,解得x=-4,令x=0解析:165【解析】【分析】过点C 作直线AB 的垂线段CD ,利用三角形的面积即可求出CD 的长.【详解】连接AC ,过点C 作CD ⊥AB ,则CD 的长最短,如图,对于直线334y x =+令y=0,则3304x +=,解得x=-4,令x=0,则y=3,∴A(-4,0),B(0,3),∴OA=4,OB=3, 在Rt △OAB 中,222AB OA OB =+∴22435 ∵C (0,-1),∴OC=1,∴BC=3+1=4,∴1122ABC S BC AO AB CD ==,即1144=522CD ⨯⨯⨯⨯, 解得,165CD =. 故答案为:165. 【点睛】 此题主要考查了一次函数的应用以及三角形面积公式的运用,解答此题的关键是利用三角形面积相等求出CD 的长.【解析】【分析】根据题意求得x0,结合已知2≤x0≤3,即可求得m 的取值范围.【详解】当时,,∴,当时,,,当时,,,m 的取值范围为:1≤m≤故答案为:1≤m≤【点睛】解析:1≤m ≤32 【解析】【分析】根据题意求得x 0,结合已知2≤x 0≤3,即可求得m 的取值范围.【详解】当0y =时,3x m =, ∴03x m=, 当03x =时,33m=,1m =, 当02x =时,32m =,32m =, m 的取值范围为:1≤m ≤32 故答案为:1≤m ≤32【点睛】 本题考查了一次函数与坐标轴的交点以及不等式的求法,根据与x 轴的交点横坐标的范围求得m 的取值范围是解题的关键.16.4【解析】【分析】根据算数平方根和立方根的运算法则计算即可.【详解】解:故答案为4.【点睛】本题主要考查了算数平方根和立方根的计算,熟记运算法则是解题的关键.解析:4【解析】【分析】根据算数平方根和立方根的运算法则计算即可.【详解】=-+=3344故答案为4.【点睛】本题主要考查了算数平方根和立方根的计算,熟记运算法则是解题的关键.17.03【解析】【分析】把千分位上的数字5进行四舍五入即可.【详解】解:2.0259精确到0.01的近似值为2.03.故答案为:2.03.【点睛】本题考查的知识点是近似数与有效数字,近似解析:03【解析】【分析】把千分位上的数字5进行四舍五入即可.【详解】解:2.0259精确到0.01的近似值为2.03.故答案为:2.03.【点睛】本题考查的知识点是近似数与有效数字,近似数精确到哪一位,就看它的后面一位,进行四舍五入计算即可.18.(2,0)【解析】【分析】把y=0代入y=2x+4求出x的值,即可得出答案.【详解】把y=0代入y=2x -4得:0=2x -4,x=2,即一次函数y=2x -4与x 轴的交点坐标是(2,0)解析:(2,0)【解析】【分析】把y=0代入y=2x+4求出x 的值,即可得出答案.【详解】把y=0代入y=2x -4得:0=2x -4,x=2,即一次函数y=2x -4与x 轴的交点坐标是(2,0).故答案是:(2,0).【点睛】考查了一次函数图象上点的坐标特征,注意:一次函数与x 轴的交点的纵坐标是0.19.【解析】【分析】由直线与线段AB 有公共点,可得出点B 在直线上或在直线右下方,利用一次函数图象上点的坐标特征,即可得出关于k 的一元一次不等式,解之即可得出k 的取值范围.【详解】解:∵点A 、B 解析:443k ≤≤ 【解析】【分析】由直线y kx =与线段AB 有公共点,可得出点B 在直线上或在直线右下方,利用一次函数图象上点的坐标特征,即可得出关于k 的一元一次不等式,解之即可得出k 的取值范围.【详解】解:∵点A 、B 的坐标分别为()1,4、()3,4,∴令y=4时, 解得:4x k= , ∵直线y=kx 与线段AB 有公共点,∴1≤4k≤3,解得:443k≤≤.故答案为:443k≤≤.【点睛】本题考查了一次函数图象上点的坐标特征,用一次函数图象上点的坐标特征,找出关于k 的一元一次不等式是解题的关键.20.4【解析】试题解析:根据点与坐标系的关系知,点到x轴的距离为点的纵坐标的绝对值,故点P(3,﹣4)到x轴的距离是4.解析:4【解析】试题解析:根据点与坐标系的关系知,点到x轴的距离为点的纵坐标的绝对值,故点P(3,﹣4)到x轴的距离是4.三、解答题21.(1)x>2;(2)x<4 ;(3)2<x<4;(4)2(平方单位)【解析】【分析】利用图象可解决(1)、(2)、(3);利用图象写出两函数图象的交点坐标,然后根据三角形面积公式计算函数y1=2x-4与y2=-2x+8的图象与x轴所围成的三角形的面积.【详解】由图可知:(1)当x>2时,2x−4>0;(2)当x<4时,-2x+8>0;(3)由(1)(2)可知当2<x<4时,2x−4>0与−2x+8>0同时成立;(4)联立y1=2x-4与y2=-2x+8,解得x=3,y=2,∴函数y1=2x-4与y2=-2x+8的图象的交点坐标为(3,2),所以函数y1=2x-4与y2=-2x+8的图象与x轴所围成的三角形的面积=12×(4−2)×2=2(平方单位).【点睛】本题考查了一次函数与一元一次不等式:一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.解决本题的关键是准确画出两函数图象.22.(1)见解析;(2)2abc ;(3)ab-,463- 【解析】【分析】 (1)仿照材料二中证明二次根式乘法公式的方法,推导二次根式的除法公式(2)根据二次根式乘法公式进行计算即可(3)先根据二次根式除法公式进行化简,再把a 和b 的值代入即可【详解】解:(10,0)a b =≥> 证明如下:一般地,当0,0a b ≥>时,根据商的乘方运算法则,可得22a b ==∵2(0)a a =≥,∴2a b =a b 的算术平方根,∴0,0)a b=≥>利用这个式子,可以进行一些二次根式的除法运算.0,0)a b=≥>它可以用来化简一些二次根式.(20,0,0)2a b c abc ≥≥≥==故答案为:2abc (3)当0a b <<时,1a b b a a b ab a ab+-===--+当79a b =⎧⎨=⎩时,原式=463=- 【点睛】本题考查二次根式的乘法和除法法则,,解题的关键是熟练运用公式以及二次根式的性质,本题属于中等题型.23.(1)①(0,5);②152y x =-+;(2)理由见解析;(3)周长=16,不会发生变化,证明见解析.【解析】【分析】(1)①设:OE =PE =a ,则AE =8﹣a ,AP =4,在Rt △AEP 中,由勾股定理得:PE 2=AE 2+AP 2,即可求解;②证明△AOP≌△FRE(AAS),则ER=AP=4,故点F(8,1),即可求解;(2)∠EOP=∠EPO,而∠EPH=∠EOC=90°,故∠EPH﹣∠EPO=∠EOC﹣∠EOP,即∠POC=∠OPH,又因为AB∥OC,故∠APO=∠POC,即可求解;(3)证明△AOP≌△QOP(AAS)、△OCH≌△OQH(SAS),则CH=QH,即可求解.【详解】(1)①设:OE=PE=a,则AE=8﹣a,AP=4,在Rt△AEP中,由勾股定理得:PE2=AE2+AP2,即a2=(8﹣a)2+16,解得:a=5,故点E(0,5).故答案为:(0,5);②过点F作FR⊥y轴于点R,折叠后点O落在P处,则点O、P关于直线EF对称,则OP⊥EF,∴∠EFR+∠FER=90°,而∠FER+∠AOP=90°,∴∠AOP=∠EFR,而∠OAP=∠FRE,RF=AO,∴△AOP≌△FRE(AAS),∴ER=AP=4,OR=EO﹣OR=5﹣4=1,故点F(8,1),将点E、F的坐标代入一次函数表达式:y=kx+b得:185k bb=+⎧⎨=⎩,解得:125kb⎧=-⎪⎨⎪=⎩,故直线EF的表达式为:y=﹣12x+5;(2)∵PE=OE,∴∠EOP=∠EPO.又∵∠EPH=∠EOC=90°,∴∠EPH﹣∠EPO=∠EOC﹣∠EOP.即∠POC=∠OPH.又∵AB∥OC,∴∠APO=∠POC,∴∠APO=∠OPH;(3)如图,过O 作OQ ⊥PH ,垂足为Q .由(1)知∠APO =∠OPH ,在△AOP 和△QOP 中,APO OPH A OQPOP OP ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AOP ≌△QOP (AAS),∴AP =QP ,AO =OQ .又∵AO =OC ,∴OC =OQ .又∵∠C =∠OQH =90°,OH =OH ,∴△OCH ≌△OQH (SAS),∴CH =QH ,∴△PHB 的周长=PB +BH +PH =AP +PB +BH +HC =AB +CB =16.故答案为:16.【点睛】此题主要考查了翻折变换的性质、正方形的性质以及全等三角形的判定与性质和勾股定理等知识,熟练利用全等三角形的判定得出对应相等关系是解题关键.24.4【解析】试题分析:先将223a a -+变形为(a-1)2+2,再将21a =代入求值即可. 试题解析:223a a -+=221a a -++2=(a-1)2+2当2+1时,原式=2+1-1)2+2=2)2+2=2+2=4.25.(1)332)作图见解析.【解析】试题分析:(1)作点E 关于AD 的对称点F ,连接PF ,则PE=PF ,根据两点之间线段最短以及垂线段最短,得出当CF ⊥AB 时,PC+PE=PC+PF=CF (最短),最后根据勾股定理,求得CF 的长即可得出PC+PE 的最小值;(2)根据轴对称的性质进行作图.方法1:作B 关于AC 的对称点E ,连接DE 并延长,交AC 于P ,连接BP ,则∠APB=∠APD.方法2:作点D关于AC的对称点D',连接D'B并延长与AC的交于点P,连接DP,则∠APB=∠APD.试题解析:(1)【解决问题】如图②,作点E关于AD的对称点F,连接PF,则PE=PF,当点F,P,C在一条直线上时,PC+PE=PC+PF=CF(最短),当CF⊥AB时,CF最短,此时BF=12AB=3(cm),∴Rt△BCF中,CF=2222=63=33BC BF--(cm),∴PC+PE的最小值为33cm;(2)【拓展研究】方法1:如图③,作B关于AC的对称点E,连接DE并延长,交AC于P,点P即为所求,连接BP,则∠APB=∠APD.方法2:如图④,作点D关于AC的对称点D',连接D'B并延长与AC的交于点P,点P 即为所求,连接DP,则∠APB=∠APD.四、压轴题26.(1)2,7,4;(2)83x ≥;(3)①t 的内数=有2个,离原点最远的格点的坐标有两个,为()8,4-±.【解析】【分析】(1)根据内数的定义即可求解;(2)根据内数的定义可列不等式2331x ≤+,求解即可;(3)①分析可得当1t =时,即t 的内数为2时,4n =;当4t =时,即t 的内数为3时,9n =,当5t =时,即t 的内数为4时,16n =……归纳可得结论;②分析可得当t 的内数为奇数时,最大实心正方形有2个;当t 的内数为偶数时,最大实心正方形有1个;且最大实心正方形的边长为:t 的內数-1,即可求解.【详解】解:(1)22311=⨯+,所以1的内数是2;232017⨯+>,所以20的内数是7;23614⨯+>,所以6的内数是4;(2)∵3是x 的內数,∴2331x ≤+, 解得83x ≥; (3)①当1t =时,即t 的内数为2时,4n =;当4t =时,即t 的内数为3时,9n =,当5t =时,即t 的内数为4时,16n =,……∴t 的内数=②当t 的内数为2时,最大实心正方形有1个;当t 的内数为3时,最大实心正方形有2个,当t 的内数为4时,最大实心正方形有1个,……即当t 的内数为奇数时,最大实心正方形有2个;当t 的内数为偶数时,最大实心正方形有1个;∴当t 的內数为9时,符合条件的最大实心正方形有2个,由前几个例子推理可得最大实心正方形的边长为:t 的內数-1,∴此时最大实心正方形的边长为8,离原点最远的格点的坐标有两个,为()8,4-±.【点睛】本题考查图形类规律探究,明确题干中内数的定义是解题的关键.27.(1)见解析(2)(4,2)(3)(6,0)【解析】(1)先判断出∠ACB=∠ADC,再判断出∠CAD=∠BCE,进而判断出△ACD≌△CBE,即可得出结论;(2)先判断出MF=NG,OF=MG,进而得出MF=1,OF=3,即可求出FG=MF+MG=1+3=4,即可得出结论;(3)先求出OP=3,由y=0得x=1,进而得出Q(1,0),OQ=1,再判断出PQ=SQ,即可判断出OH=4,SH=0Q=1,进而求出直线PR的解析式,即可得出结论.【详解】证明:∵∠ACB=90°,AD⊥l∴∠ACB=∠ADC∵∠ACE=∠ADC+∠CAD,∠ACE=∠ACB+∠BCE∴∠CAD=∠BCE,∵∠ADC=∠CEB=90°,AC=BC∴△ACD≌△CBE,∴AD=CE,CD=BE,(2)解:如图2,过点M作MF⊥y轴,垂足为F,过点N作NG⊥MF,交FM的延长线于G,由已知得OM=ON,且∠OMN=90°∴由(1)得MF=NG,OF=MG,∵M(1,3)∴MF=1,OF=3∴MG=3,NG=1∴FG=MF+MG=1+3=4,∴OF﹣NG=3﹣1=2,∴点N的坐标为(4,2),(3)如图3,过点Q作QS⊥PQ,交PR于S,过点S作SH⊥x轴于H,对于直线y=﹣3x+3,由x=0得y=3∴P(0,3),由y=0得x=1,∴Q(1,0),OQ=1,∵∠QPR=45°∴∠PSQ=45°=∠QPS∴PQ=SQ∴由(1)得SH=OQ,QH=OP∴OH=OQ+QH=OQ+OP=3+1=4,SH=OQ=1∴S(4,1),设直线PR为y=kx+b,则341bk b=⎧⎨+=⎩,解得1k2b3⎧=-⎪⎨⎪=⎩∴直线PR为y=﹣12x+3由y=0得,x=6∴R(6,0).【点睛】本题是一次函数综合题,主要考查了待定系数法,全等三角形的判定和性质,构造出全等三角形是解本题的关键.28.(1)CP=3t,BQ=8-t;(2)见解析;(3)S=16-2t.【解析】【分析】(1)直接根据距离=速度⨯时间即可;(2)通过证明PCQ BQC≅,得到∠PQC=∠BCQ,即可求证;(3)过点C作CM⊥AB,垂足为M,根据等腰直角三角形的性质得到CM=AM=4,即可求解.【详解】解:(1)CP=3t,BQ=8-t;(2)当t=2时,CP=3t=6,BQ=8-t=6∴CP=BQ∵CD∥AB∴∠PCQ=∠BQC又∵CQ=QC∴PCQ BQC≅∴∠PQC=∠BCQ∴PQ∥BC(3)过点C作CM⊥AB,垂足为M∵AC=BC,CM⊥AB∴AM=118422AB=⨯=(cm)∵AC=BC,∠ACB=90︒∴∠A=∠B=45︒∵CM⊥AB∴∠AMC=90︒∴∠ACM=45︒∴∠A=∠ACM∴CM=AM=4(cm)∴118t4162 22BCQS BQ CM t ==⨯-⨯=-因此,S与t之间的关系式为S=16-2t.【点睛】此题主要考查列代数式、全等三角形的判定与性质、平行线的判定、等腰三角形的性质,熟练掌握逻辑推理是解题关键.29.(1)①E(3,﹣2)②见解析;③12OMBD=,理由见解析;(2)OD+OA=2AM或OA﹣OD=2AM【解析】【分析】(1)①过点E作EH⊥y轴于H.证明△DOA≌△AHE(AAS)可得结论.②证明△BOM≌△EHM(AAS)可得结论.③是定值,证明△BOM≌△EHM可得结论.(2)根据点D在点B左侧和右侧分类讨论,分别画出对应的图形,根据全等三角形的判定及性质即可分别求出结论.【详解】解:(1)①过点E作EH⊥y轴于H.∵A(0,3),B(﹣3,0),D(﹣5,0),∴OA=OB=3,OD=5,∵∠AOD=∠AHE=∠DAE=90°,∴∠DAO+∠EAH=90°,∠EAH+∠AEH=90°,∴∠DAO=∠AEH,∴△DOA≌△AHE(AAS),∴AH=OD=5,EH=OA=3,∴OH=AH﹣OA=2,∴E(3,﹣2).②∵EH⊥y轴,∴∠EHO=∠BOH=90°,∵∠BMO=∠EMH,OB=EH=3,∴△BOM≌△EHM(AAS),∴BM=EM.③结论:OMBD=12.理由:∵△DOA≌△AHE,∴OD=AH,∵OA=OB,∴BD=OH,∵△BOM≌△EHM,∴OM=MH,∴OM=12OH=12BD.(2)结论:OA+OD=2AM或OA﹣OD=2AM.理由:当点D在点B左侧时,∵△BOM≌△EHM,△DOA≌△AHE∴OM=MH,OD=AH∴OH=2OM,OD-OB=AH-OA∴BD=OH∴BD=2OM,∴OD ﹣OA =2(AM ﹣AO ),∴OD+OA =2AM .当点D 在点B 右侧时,过点E 作EH ⊥y 轴于点H∵∠AOD =∠AHE =∠DAE =90°,∴∠DAO+∠EAH =90°,∠EAH+∠AEH =90°,∴∠DAO =∠AEH ,∵AD=AE∴△DOA ≌△AHE (AAS ),∴EH=AO=3=OB ,OD=AH∴∠EHO =∠BOH =90°,∵∠BMO =∠EMH ,OB =EH =3,∴△BOM ≌△EHM (AAS ),∴OM =MH∴OA +OD= OA +AH=OH=OM +MH=2MH=2(AM +AH )=2(AM +OD )整理可得OA ﹣OD =2AM .综上:OA+OD =2AM 或OA ﹣OD =2AM .【点睛】此题考查的是全等三角形的判定及性质、旋转的性质和平面直角坐标系,掌握全等三角形的判定及性质、旋转的性质和点的坐标与线段长度的关系是解决此题的关键.30.(1)证明见解析;(2)证明见解析;(3)结论:AD DG ND =-,证明见解析.【解析】【分析】(1)先根据直角三角形的性质得出60ABC ∠=︒,再根据角平分线的性质可得CD ED =,然后根据三角形的判定定理与性质可得BC BE =,最后根据等边三角形的判定即可得证;(2)如图(见解析),延长ED 使得DF MD =,连接MF ,先根据直角三角形的性质、等边三角形的判定得出MDF ∆是等边三角形,再根据等边三角形的性质、角的和差得出,,F MDB MF MD FMG DMB ∠=∠=∠=∠,然后根据三角形全等的判定与性质、等量代换即可得证;(3)如图(见解析),参照题(2),先证HDN ∆是等边三角形,再根据等边三角形的性质、角的和差得出,,H NDG NH ND HNB DNG ∠=∠=∠=∠,然后根据三角形全等的判定与性质、等量代换即可得证.【详解】(1)3,090A ACB ∠=︒∠=︒9060ABC A ∴∠=︒-∠=︒BD 是ABC ∠的角平分线,DE AB ⊥CD ED ∴=在BCD ∆和BED ∆中,CD ED BD BD =⎧⎨=⎩()BCD BED HL ∴∆≅∆BC BE ∴=EBC ∴∆是等边三角形;(2)如图,延长ED 使得DF MD =,连接MF3,090A ACB ∠=︒∠=︒,BD 是ABC ∠的角平分线,DE AB ⊥60,ADE BDE AD BD ∴∠=∠=︒=60,18060MDF ADE MDB ADE BDE ∴∠=∠=︒∠=︒-∠-∠=︒MDF ∴∆是等边三角形,60MF DM F DMF ∴=∠=∠=︒60BMG ∠=︒DMF DM B M G G D M G ∴∠+∠=+∠∠,即FMG DMB ∠=∠在FMG ∆和DMB ∆中,60F MDB MF MD FMG DMB ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩()FMG DMB ASA ∴∆≅∆GF BD ∴=,即DF DG BD +=AD DF DG MD DG ∴=+=+即AD DG MD =+;(3)结论:AD DG ND =-,证明过程如下:如图,延长BD 使得DH ND =,连接NH由(2)可知,60,18060,ADE HDN ADE BDE AD BD ∠=︒∠=︒-∠-∠=︒=HDN ∴∆是等边三角形,60NH ND H HND ∴=∠=∠=︒60BNG ∠=︒HND BND BND BNG ∠+∠=+∠∴∠,即N HNB D G ∠=∠在HNB ∆和DNG ∆中,60H NDG NH ND HNB DNG ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩()HNB DNG ASA ∴∆≅∆HB DG ∴=,即DH BD DG +=ND AD DG ∴+=即AD DG ND =-.【点睛】本题考查了直角三角形的性质、等边三角形的判定与性质、三角形全等的判定定理与性质等知识点,较难的是题(2)和(3),通过作辅助线,构造一个等边三角形是解题关键.。

相关文档
最新文档