刚体转动惯量的测量2015
大学物理实验实验刚体转动惯量的测量
测量转动周期
使用测量仪器记录 刚体转动的周期。
安装刚体
将刚体安装在支架 上,确保稳定和水 平。
施加扭矩
使用砝码或其他方 式施加扭矩,使刚 体转动。
重复测量
多次施加不同大小 的扭矩,并记录相 应的转动周期。
数据记录和处理
记录数据
将实验过程中测量的数据记录在实验报告中。
数据处理
根据测量数据,计算刚体的转动惯量。
学习测量刚体转动惯量的方法
扭摆法
通过测量刚体在摆动过程中周期的变化来计算转动惯量,利用单摆的周期公式 $T = 2pisqrt{frac{I}{mgh}}$,其中 $I$ 是刚体的转动惯量,$m$ 是刚体的质量,$g$ 是重力加速度,$h$ 是单摆的悬挂高度。
复摆法
通过测量复摆在摆动过程中周期的变化来计算转动惯量,利用复摆的周期公式 $T = 2pisqrt{frac{I}{mgh}}$,其中 $I$ 是刚体的转动惯量,$m$ 是刚体的质量,$g$ 是重力加速度,$h$ 是复摆的悬挂高度。
转动惯量在工程中的应用
在机械设计中,转动惯量的大小直接影响到机械系统的稳定性和动态响应;在航 天工程中,卫星的转动惯量对于其姿态控制和轨道稳定具有重要意义;在车辆工 程中,转动惯量的大小影响到车辆的操控性能和行驶稳定性。
02
实验原理
刚体转动惯量的定义和计算公式
转动惯量定义
描述刚体绕轴转动的惯性大小的物理量。
建议与展望
提出改进实验的建议和未来研究的方向,为 后续研究提供参考和借鉴。
05
实验注意事项
安全注意事项
实验前应检查实验装置是否稳 固,确保实验过程中不会发生 意外倾倒或摔落。
实验操作时应避免快速转动刚 体,以防因离心力过大导致实 验装置损坏或人员受伤。
转动惯量实验报告-理论力学
理论力学转动惯量实验报告实验小组成员:1453352 郭佳林 1453422 贺春森 1453442 刘美岑 1450051 万丽娟 1453208 王玮实验时间:2015年5月24日13:30——15:30实验地点:同济大学四平路校区力学实验中心【实验概述】转动惯量是描述刚体转动中惯性大小的物理量,它与刚体的质量分布及转轴位置有关。
正确测定物体的转动惯量,对于了解物体转动规律,机械设计制造有着非常重要的意义。
然而在实际工作中,大多数物体的几何形状都是不规则的,难以直接用理论公式算出其转动惯量,只能借助于实验的方法来实现。
因此,在工程技术中,用实验的方法来测定物体的转动惯量就有着十分重要的意义。
IM-2 刚体转动惯量实验仪,应用霍尔开关传感器结合计数计时多功能毫秒仪自动记录刚体在一定转矩作用下,转过π角位移的时刻,测定刚体转动时的角加速度和刚体的转动惯量。
因此本实验提供了一种测量刚体转动惯量的新方法,实验思路新颖、科学,测量数据精确,仪器结构合理,维护简单方便,是开展研究型实验教学的新仪器。
【实验目的】1.了解多功能计数,计时毫秒仪实时测量(时间)的基本方法。
2.用刚体转动法测定物体的转动惯量。
3.验证转动的平行轴定理。
4.验证刚体定轴转动惯量与外力矩无关。
【实验原理】1.转动力矩、转动惯量和角加速度的关系系统在外力矩作用下的运动方程错误!未找到引用源。
(1)由牛顿第二定律,可知:砝码下落时的运动方程为:即绳子的张力砝码与系统脱离后的运动方程(2)由方程(1)和(2)可得:(3)2.角速度的测量错误!未找到引用源。
(4)若在t1、t2时刻测得角位移θ1、θ2,则(5)(6)所以,由方程(5)和(6),可得:3.转动惯量J的理论公式1)设圆形试件,质量均匀分布,总质量为M,其对中心轴的转动惯量为J,外径为D1,,内径为D2,则2)平行轴定理:设转动体系的转动惯量为J0,当有M1的部分质量原理转轴平行移动d的距离后,则体系的转动惯量为:【实验器材】1.实验仪器IM-2刚体转动惯量实验仪(含霍尔开关传感器、计数计时多功能毫秒仪、一根细绳、一个质量为100g的砝码等,塔轮直径从下至上分别为30mm、40mm、50mm、60mm,载物台上的孔中心与圆盘中心的距离分别为40mm、80mm、120mm)(如下图)2.实验样品1)一个钢质圆环(内径为175mm,外径为215mm,质量为933g)2)两个钢质圆柱(直径为38mm,质量为400g)【实验步骤】1.实验准备在桌面上放置IM-2转动惯量实验仪,并利用基座上的三颗调平螺钉,将仪器调平。
刚体转动惯量的测量
实验六 刚体转动惯量的测量转动惯量是刚体转动惯性大小的量度,是表征刚体特性的一个物理量。
转动惯量的大小除与物体质量有关外,还与转轴的位置和质量分布(即形状、大小和密度)有关。
转动惯量的定义式为:i iim rI ∑=2或dm r I ⎰=2如果刚体形状简单,且质量分布均匀,可直接计算出它绕特定轴的转动惯量。
但在工程实践中,我们常碰到大量形状复杂,且质量分布不均匀的刚体,理论计算将极为复杂,通常采用实验方法来测定,例如机械部件,电动机转子和枪炮弹丸等。
转动惯量的测量,一般都是使刚体以一定的形式运动。
通过表征这种运动特征的物理量与转动惯量之间的关系,进行转换测量。
本实验使物体做扭转摆动,由摆动周期及其它参数的测定计算出物体的转动惯量。
【预习思考题】1.实验中如何选择扭摆的周期数?2.用扭摆测量刚体转动惯量的过程中,需要注意哪些问题?【实验目的】1.扭摆法测定几种不同形状物体的转动惯量和弹簧的扭转常数,并与理论值进行比较; 2.验证转动惯量平行轴定理。
【实验仪器】扭摆、空心金属圆柱体、实心塑料圆柱体、木球、细金属杆、金属滑块、游标卡尺、米尺、物理天平、TH -2型转动惯量测量仪【实验原理】1.测定刚体的转动惯量扭摆的构造如图1,在垂直轴1上装有一根薄片状的螺旋弹簧2,用以产生恢复力矩。
在轴的上方可以装上各种待测物体,垂直轴与支座间装有轴承,以降低摩擦力矩。
3为水平仪, 用来调整仪器转轴成铅直。
使物体在水平面内转过一角度θ后,在弹簧的恢复力矩作用下,物体就开始绕垂直轴作往返扭转运动。
根据虎克定律,弹簧受扭转而产生的恢复力矩M 与所转过的角度θ成正比,即θK M -= (1)式中K 为弹簧的扭转常数。
根据转动定律βI M = (2)其中,I 为物体绕转轴的转动惯量,β为角加速度。
忽略轴承的摩擦阻力矩,由(1)、(2)式得, 022=+θθI Kdtd 令I K =2ω,则0222=+θωθdtd (3)213图1 扭摆31421-垂直轴;2-螺旋弹簧;3-细杆;4-滑块图2方程(3)表明扭摆运动具有角简谐振动的特性,角加速度与角位移成正比,且方向相反。
刚体转动惯量的测定_实验报告
实验三刚体转动惯量的测定转动惯量是刚体转动中惯性大小的量度。
它与刚体的质量、形状大小和转轴的位置有关。
形状简单的刚体,可以通过数学计算求得其绕定轴的转动惯量;而形状复杂的刚体的转动惯量,则大都采用实验方法测定。
下面介绍一种用刚体转动实验仪测定刚体的转动惯量的方法。
实验目的:1、理解并掌握根据转动定律测转动惯量的方法;2、熟悉电子毫秒计的使用。
实验仪器:刚体转动惯量实验仪、通用电脑式毫秒计。
仪器描述:刚体转动惯量实验仪如图一,转动体系由十字型承物台、绕线塔轮、遮光细棒等(含小滑轮)组成。
遮光棒随体系转动,依次通过光电门,每π弧度(半圈)遮光电门一次的光以计数、计时。
塔轮上有五个不同半径(r)的绕线轮。
砝码钩上可以放置不同数量的砝码,以获得不同的外力矩。
实验原理:空实验台(仅有承物台)对于中垂轴OO’的转动惯量用J o表示,加上试样(被测物体)后的总转动惯量用J 表示,则试样的转动惯量J 1 :J 1 = J –J o (1) 由刚体的转动定律可知:T r – M r = J α (2) 其中M r 为摩擦力矩。
而 T = m(g -r α) (3) 其中 m —— 砝码质量 g —— 重力加速度 α —— 角加速度 T —— 张力1. 测量承物台的转动惯量J o未加试件,未加外力(m=0 , T=0)令其转动后,在M r 的作用下,体系将作匀减速转动,α=α1,有 -M r1 = J o α1 (4) 加外力后,令α =α2m(g –r α2)r –M r1 = J o α2 (5) (4)(5)式联立得J o =212212mr mgrααααα--- (6)测出α1 , α2,由(6)式即可得J o 。
2. 测量承物台放上试样后的总转动惯量J ,原理与1.相似。
加试样后,有 -M r2=J α3 (7) m(g –r α4)r –Mr 2= J α4 (8)∴ J =234434mr mgr ααααα--- (9)注意:α1 , α3值实为负,因此(6)、(9)式中的分母实为相加。
实验1 刚体转动惯量的测定
实验1:刚体转动惯量的测定教师:徐永祥1.前言:转动惯量(Moment of inertia)是表征物体转动惯性大小的物理量,它与物体平动的质量是完全对应的。
转动惯量和物体的形状、大小、密度以及转轴的位置等因素有关,密度均匀形状规则的刚体(Rigid body),其转动惯量可以方便地计算出来,但不符合此条件的刚体的转动惯量一般需要通过实验的方法测出。
目前,测量转动惯量的方法有多种,如动力学法、扭摆法(三线扭摆法、单线摆法)及复摆法等等。
本实验采用动力学方法测量被测物体的转动惯量。
2.教学方式与时间安排教师讲解、示范及与学生互动相结合;总实验时间:120分钟左右。
3.实验基本要求1) 会通过转动惯量实验仪的操作测量规则物体的转动惯量,并与理论值比较进行误差分析;2) 学会用实验方法验证平行轴原理;3)学会用作图法处理数据,熟悉并掌握用作图法处理数据的基本要求。
4.实验仪器与部件转动惯量实验仪,电子毫秒计,可编程电子计算器,铝环,小钢柱等。
5.仪器介绍转动惯量实验仪的主体由十字形承物台和塔轮构成。
塔轮带有5个不同半径的绕线轮(半径r分别为15,20,25,30,35mm共5挡),使轻质细线通过滑轮连着砝码钩;砝码钩上挂着不同数量的砝码,以改变转动体系的动力矩。
承物台呈十字形,它沿半径方向等距离地排有三个小孔,这些孔离中心的距离分别为45,60,75,90,105mm,小孔中可以安插小钢珠,籍以改变体系的转动惯量。
承物台下方连有两个细棒,它们随承物台一起转动,到达光电门处产生遮光并通过脉冲电路引起脉冲触发信号,从而便于计算遮光次数及某两次遮光之间的时间间隔,并最终由数字毫秒计显示出来。
关于数字毫秒计使用方法,请参见本实验讲义P66“数字毫秒计”部分。
6. 实验原理1)转动惯量的测定由刚体转动的动力学定律得到:βJM=(1)式中,M为转动体系所受的合外力矩,包括细绳作用于塔轮的力矩以及阻力矩;J为系统绕竖直轴的转动惯量。
刚体转动惯量的测量
实验三、刚体转动惯量的测量转动惯量是描述刚体转动惯性大小的物理量,是研究和描述刚体转动规律的一个重要物理量,它不仅取决于刚体的总质量,而且与刚体的形状、质量分布以及转轴位置有关。
对于质量分布均匀、具有规则几何形状的刚体,可以通过数学方法计算出它绕给定转动轴的转动惯量。
对于质量分布不均匀、没有规则几何形状的刚体,用数学方法计算其转动惯量是相当困难的,通常要用实验的方法来测定其转动惯量。
实验上测定刚体的转动惯量,一般都是使刚体以某一形式运动,通过描述这种运动的特定物理量与转动惯量的关系来间接地测定刚体的转动惯量。
测定转动惯量的实验方法较多,如拉伸法、扭摆法、三线摆法等,本实验利用“刚体转动惯量实验仪”来测定刚体的转动惯量。
为了便于与理论计算比较,本实验采用形状规则的圆形铝圈。
实验目的1、掌握电子毫秒计的使用;2、掌握利用最小二乘法处理线性数据的方法;3、掌握由转动定律测转动惯量的方法。
实验仪器JM—2型转动惯量仪、MUJ——6B型电脑通用计时器、YP3001N型电子天平、量程125mm,分度值0.02mm游标卡尺、量程50cm钢板尺转动惯量仪:由十字型承物台、绕线塔轮、遮光细棒和小滑轮组成,如图所示。
承物台θ=)遮挡一次固定在底转动时固定在载物台边缘并随之转动的遮光细棒,每转动半圈(π座圆周直径相对两端的光电门,即产生一个光电脉冲送入光电计时计数仪,计数器将计下时间和遮挡次数。
计数器从第一次挡光(第一个光电脉冲发生)开始计时、计数,并且可以连续记录,存储多个脉冲时间。
塔轮上有五个不同半径的绕线轮,中间一个的半径为2.5cm,其余每相邻两个塔轮之间的半径相差0.5cm。
砝码钩上可以放置一定数量的砝码,重力矩作为外力矩,结构如图:转动惯量仪结构图1、砝码,2、滑轮,3、光电门,4、承物台,5、绕线塔轮,6、遮光细棒实验原理利用转动定律公式:αJ M = (1)定轴转动系统的力矩由砝码重力所产生的拉力和系统阻力两部分组成,并且从静止开始转动,则有下列公式μM mgd M −=2/ (2)221t αθ= (3)联立有224rM J m gdt gdθ=+ (4) 由上面公式可知,砝码质量与转过θ所用的时间平方分之一为线性关系,由此可以通过改变砝码质量m,测得一系列的⎟⎠⎞⎜⎝⎛21,t m ,通过最小二乘法公式,可求得斜率b 和截矩a gdM a gd J b /2/4μθ== (5)从而可求得转动惯量:θ4/gdb J = 2/gda M =μ铝圈转动惯量为全系统和空载转动惯量之差: 21J J J −= (6) 最后得到 ()214b b gdJ −=θ(7) 实验内容1. 测量全系统(加铝圈)时在不同重量的砝码牵引下,转过两圈所用的时间2. 测量空载时在不同重量的砝码牵引下,转过两圈所用的时间3. 测量绕线塔轮的直径4. 测量铝圈的相关参数实验步骤一、调整转动惯量仪初始状态1. 移动转动惯量仪到实验桌合适位置,以方便操作为宜;2. 使用水平仪调整转动惯量仪与桌面接触的3个脚,使其水平;3. 确定绕线塔轮轮槽,一般选取从上往下的第三个轮槽4. 试绕线:将线的末端打结,卡在轮槽边缘的狭缝里,然后均匀缠绕在轮槽上(注意不要有绞缠),一般缠绕3圈以上为宜,然后将悬挂有砝码底座的线的另一端通过桌边固定的滑轮引出,让其自由垂下;5. 通过观察轮槽与滑轮之间的细线是否水平来调节桌边滑轮的高度,使滑轮轮槽与绕线塔轮轮槽保持基本水平6. 在自由垂下的砝码底座上加砝码,调节砝码基本静止,然后释放,让系统自由转动,观察系统是否可以顺滑的转动(注意是否有磕碰,若有磕碰,需检查原因以排除) 二、选择数字毫秒计的功能和参数1. 打开插线板电路开关,按下数字毫秒计的“power”键,使数字毫秒计处于工作状态;2. 连续按下“功能”键,将数字毫秒计的功能选定在“周期”上;3. 按住转换键,使周期参数从0开始增加,到“2”时松开转换键(数字毫秒计计时圈数为两圈)4. 试运行:将遮光杆放入光电门内,然后释放,直到数字毫秒计显示时间,观察转过圈数是否为两圈,制动系统三、测量全系统(加铝圈)不同质量砝码牵引下,转过两圈所用的时间1. 确定自己所要选取的7个不同质量(从20克开始,可选择每次增加10克或5克,够7组为止),填写到原始数据表格中;2.把铝圈放到转动平台上(注意铝圈边缘要和平台边缘完全重合)3.选择自己原始数据表格中的一个质量,把合适砝码加到底座上,使总质量(加砝码底座)达到预期,使砝码自由垂下,保持基本静止;4.把遮光杆放到光电门中,按下数字毫秒计“功能”键,然后释放,数字毫秒计显示时间时制动,记录砝码加底座质量和数字毫秒计时间,填在原始数据记录纸相应表格中。
实验一 测量刚体的转动惯量
实验一 测量刚体的转动惯量【实验目的】1.学习用恒力矩转动法测定刚体转动惯量的原理和方法。
2.观测转动惯量随质量、质量分布及转动轴线的不同而改变的状况,验证平行轴定理。
3.学会使用通用电脑计时器测量时间。
【实验仪器】ZKY —ZS 转动惯量实验仪,ZKY —JI 通用电脑计时器。
【实验原理】1.恒力矩转动法测定转动惯量的原理根据刚体的定轴转动定律:βJ M = (1-1)只要测定刚体转动时所受的总合外力矩M 及该力矩作用下刚体的角速度 β,则可计算出该刚体的转动惯量J 。
设以某初始角速度转动的空实验台转动惯量J 1,未加砝码时,在摩擦阻力矩M μ 的作用下,实验台将以角速度β1作匀减速运动,即:-M μ = J 1β1 (1-2 ) 将质量为m 的砝码用细线绕在半径为R 的实验台塔轮上,并让砝码下落,系统在恒外力作用下将作匀加速运动。
若砝码的加速度为a ,则细线所受张力为T = m (g -a )。
若此时实验台的角加速度β2,则有a = R β2。
细线施加给实验台的力矩为TR = m (g -R β2) R ,此时有:m (g -R β2)R - M μ= J 1β2 (1-3) 将(1-2)、(1-3)两式联立消去M μ后,可得:J 1=122)(βββ--R g mR (1-4) 同理,若在实验台上加上被测物体后系统的转动惯量为J 2,加砝码前后的角加速度分别为β3与β4,则有:J 2=344)(βββ--R g mR (1-5) 由转动惯量的迭加原理可知,被测试件的转动惯量J 3为:J 3= J 2-J 1 (1-6)测得R 、m 及β1、β2、β3、β4,由(23-4)、(23-5)、(23-6)式即可计算被测试件的转动惯量。
2.β 的测量实验中采用ZKY-JI 通用电脑计时器记录遮挡次数和相应的时间。
固定在载物台圆周边缘相差π角的两遮光细棒,每转动半圈遮挡一次固定在底座上的光电门,即产生一个计数光电脉冲,计数器计下遮挡次数K 和相应得时间t 。
刚体转动惯量测量方法
刚体转动惯量测量方法
刚体转动惯量测量方法:
①转动惯量作为物体抵抗角加速度变化能力的物理量对于理解机械系统动态行为至关重要;
②实验室中最常见测量方法之一为扭摆法通过观察物体绕轴自由摆动周期计算得出;
③实验装置通常包含一个水平放置的光滑转轴物体被固定于其上允许自由旋转;
④物体释放后开始围绕转轴做小角度振荡运动此时可近似认为角加速度与角位移呈线性关系;
⑤通过光电门或其他计时装置记录物体完成一次完整来回运动所需时间即为周期T;
⑥利用物理公式I=MR²×T²/4π²计算转动惯量其中M代表物体质量R为到转轴距离;
⑦另一种方法为落锤法适用于较大刚体测试过程模拟物体受到瞬间冲击反应;
⑧实验设置包括将待测物体悬挂于可旋转支点下方再用重锤撞击引发瞬时旋转;
⑨测量撞击前后物体角速度变化结合已知冲击力矩即可推算出转动惯量大小;
⑩对于复杂形状或非均匀物质构成的物体往往需要结合数值模拟与实验数据综合分析;
⑪计算机辅助工程软件如ANSYS或MATLAB提供了强大工具箱帮助工程师快速估算复杂结构转动惯量;
⑫不论采用哪种方法都需要仔细校准仪器排除外界干扰确保测量结果准确可靠用于后续工程设计中。
测量刚体的转动惯量
测量刚体的转动惯量一. 实验简介在研究摆的重心升降问题时,惠更斯发现了物体系的重心与后来欧勒称之为转动惯量的量。
转动惯量是表征刚体转动惯性大小的物理量,它与刚体的质量、质量相对于转轴的分布有关。
本实验将学习测量刚体转动惯量的基本方法,目的如下:1(用实验方法验证刚体转动定律,并求其转动惯量;2(观察刚体的转动惯量与质量分布的关系3(学习作图的曲线改直法,并由作图法处理实验数据。
二. 实验仪器刚体转动仪,滑轮,秒表,砝码刚体转动仪:包括:A.、塔轮,由五个不同半径的圆盘组成。
上面绕有挂小砝码的细线,由它对刚体施加外力矩。
B、对称形的细长伸杆,上有圆柱形配重物,调节其在杆上位置即可改变转动惯量。
与A和配重物构成一个刚体。
C.、底座调节螺钉,用于调节底座水平,使转动轴垂直于水平面。
此外还有转向定滑轮,起始点标志,滑轮高度调节螺钉等部分。
三. 实验原理1(刚体的转动定律具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律:M = Iβ (1)利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。
2(应用转动定律求转动惯量如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。
刚体将在砝码的拖动下绕竖直轴转动。
设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,2其运动方程为mg – t=ma,在t时间内下落的高度为h=at/2。
刚体受到张力的力矩为T和轴摩擦力力矩M。
由转动定律可得到刚体的转动运动方程:T - M = rfrfIβ。
绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到: 2m(g - a)r - M = 2hI/rt (2) fM与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<<g, f 所以可得到近似表达式:2mgr = 2hI/ rt (3) 式中r、h、t可直接测量到,m是试验中任意选定的。
刚体转动惯量的测定
刚体转动惯量的测定【实验目的】1. 测定刚体的转动惯量。
2. 验证转动定律及平行移轴定理。
【实验仪器】1.JM-3 智能转动惯量实验仪。
2. 电脑毫秒计。
【实验原理】转动惯量是反映刚体转动惯性大小的物理量,它与刚体的质量及质量对轴的分布有关。
对于几何形状规则,质量分布均匀的物体,可以计算出转动惯量。
但对于几何形状不规则的物体,以及质量分布不均匀的物体,只能用实验方法来测量。
本实验是用转动惯量实验仪和通用电脑式毫秒计来测量几种刚体的转动惯量,并与计算结果加以比较。
转动惯量实验仪,是一架绕竖直轴转动的圆盘支架。
如图一和图二所示。
待测物体可以放 5 6 1. 承物台 2. 遮光细棒 3. 绕线塔轮4. 光电门5. 滑轮6. 砝码图一 刚体转动惯量实验仪 图二 承物台俯视图设转动惯量仪空载(不加任何试件)时的转动惯量为J 0。
我们称它为该系统的本底转动惯量,加试件后该系统的转动惯量用J 1表示,根据转动惯量的叠加原理,该试件的转动惯量J 2为:J 2=J 1-J 0 (1)如何测量J 0、J 1让我们从刚体动力学的理论来加以推导。
一、如果不给该系统加外力矩(即不加重力砝码),该系统在某一个初角速度的启动下转动,此时系统只受摩擦力矩的作用,根据转动定律则有。
-L 2= J 0β1 (2)(2)式中J 0为本底转动惯量,L 2为摩擦力矩,负号是因L 的方向与外力矩的方向相反,β1为角加速度,计算出β1值应为负值。
(即加适当的重力砝码),则该系统的受力分析如图三所示。
mg -T=ma (3) T ·r -L= J 0β2 (4)a=r β2 (5) 图三 示意图 β2是在外力矩与摩擦力矩的共同作用下,系统的角加速度,r 是 塔轮的半径, ⑵、⑶、⑷、⑸、式联立求解得:由于β1本身是负值所以计算时β2-(-β1)=β2+β1,则(6)应该为:同理加试件后,也可用同样的方法测出J 1……,然后代入(1)式减去本底转动惯量J 0即可得到试件的转动惯量。
三线摆法测量物体的转动惯量2015
实验 三线摆法测量物体的转动惯量转动惯量是刚体转动惯性大小的量度,是表征刚体特征的一个物理量。
转动惯量的大小除与物体质量有关外,还与转轴的位置和质量分布(即形状、大小和密度)有关。
如果刚体形状简单,且质量分布均匀,可以直接计算出它绕特定轴的转动惯量。
但是工程实践中,我们常常碰到大量的形状复杂,且质量分布不均匀刚体,理论计算将极其复杂,通常采用实验方法来测定。
转动惯量的测量,一般都是使刚体以一定的形式运动。
通过表征这种运动特征的物理量与转动惯量之间的关系,进行转换测量。
测量刚体转动惯量的方法有多种,三线摆法具有设备简单、直观、测试方便的优点。
一.实验目的1. 学会用三线摆测量物体的转动惯量。
2. 学会用积累放大法测量扭摆运动的周期。
3. 验证转动惯量的平行轴定理。
二. 实验仪器DH4601转动惯量测试仪,计时器,圆环,圆柱体,游标卡尺,米尺,水平仪三. 实验原理图1是三线摆实验装置的示意图。
上、下圆盘均处于水平,悬挂在横梁上。
三个对称分布的等长悬线将两圆盘相连。
上圆盘固定,下圆盘转动角很小,且略去空气阻力时,扭摆的运动可以近似的看作简谐运动。
根据能量守恒定律和刚体的转动定律均可以导出物体绕中心轴OO ’的转动惯量(推导过程见附录):2002004T H gRr m I π=(1-1) 式中各物理量的含义如下:0m 为下盘的质量r 、R 分别为上下悬点离各自圆盘中心的距离 0H 为平衡时上下盘间的垂直距离0T 为下盘作简谐运动的周期,g 为重力加速度。
将质量为m 的待测圆环放在下盘上,并使待测圆环的转轴与OO ’轴重合。
测出此时摆运动的周期1T 和上下圆盘间的垂直距离H 。
那么,可以求得待测圆环和下圆盘对中心转轴OO ’的总转动惯量为:212014T HgRr m m I π)(+=(1-2) 图1 三线摆实验示意图如果不计因重量变化而引起的悬线伸长,则有0H H ≈。
那么,待测圆环绕中心轴OO ’的转动惯量为:01I I I -= (1-3)因此,通过长度、质量和时间的测量,便可以求出刚体绕某轴的转动惯量。
刚体转动惯量的测量
刚体转动惯量的测量1. 引言刚体转动惯量是描述刚体绕某一轴旋转时所表现出的惯性特性,它反映了刚体对旋转运动的抵抗能力。
测量刚体转动惯量对于研究物体的旋转运动和确定物体的物理特性具有重要意义。
本文将介绍刚体转动惯量的定义、测量方法以及实验步骤。
2. 刚体转动惯量的定义刚体转动惯量(或称为“转动惯性矩”)是描述刚体绕某一轴旋转时所表现出的抵抗力矩大小的物理量。
它与刚体质量分布和轴线位置相关,可以用数学公式表示为:I=∫r2⋅dm其中,I为刚体相对于旋转轴的转动惯量,r为质点到旋转轴的距离,dm为质点的微小质量。
3. 测量方法3.1 转动定律法利用牛顿第二定律和角加速度与力矩之间的关系,可以通过测定加速度和力矩来计算刚体的转动惯量。
具体步骤如下:1.将待测刚体固定在水平轴上,并使其能够绕该轴自由旋转。
2.在刚体上施加一个垂直于旋转轴的力矩,使刚体产生角加速度。
3.测量施加力矩前后刚体的角加速度,并计算力矩大小。
4.根据牛顿第二定律和角加速度与力矩之间的关系,计算出刚体的转动惯量。
3.2 定滑轮法利用滑轮原理,可以通过测量绕定滑轮旋转的物体的线速度、重物块质量以及滑轮半径来计算刚体的转动惯量。
具体步骤如下:1.将待测刚体固定在定滑轮上,并使其能够自由旋转。
2.在滑轮上挂一重物块,将其与刚体通过一根绳子相连。
3.调整重物块的高度,使得刚体开始自由旋转。
4.测量重物块下降的高度和旋转时间,并记录滑轮半径和重物块质量。
5.根据滑轮原理和动能定理,计算出刚体的转动惯量。
4. 实验步骤4.1 转动定律法实验步骤1.准备实验装置:水平轴、刚体、力矩测量仪器等。
2.将刚体固定在水平轴上,并保证其能够自由旋转。
3.在刚体上施加一个垂直于旋转轴的力矩,使其产生角加速度。
4.使用力矩测量仪器测量施加力矩前后的角加速度,并记录下来。
5.根据牛顿第二定律和角加速度与力矩之间的关系,计算出刚体的转动惯量。
4.2 定滑轮法实验步骤1.准备实验装置:定滑轮、刚体、重物块、绳子等。
刚体的转动惯量的测量
刚体的转动惯量的测量转动惯量和转动定律是物理学的基本概念和基本定律。
测定转动体系的转动惯量也是生产实践中经常会遇到的一个课题。
【实验目的】1. 学习使用刚体转动惯量实验仪测定规则物体的转动惯量,并与理论值进行比较。
2. 用作图法处理数据,熟悉并掌握有关作图法的基本要求。
3. 用实验方法验证平行轴定理。
【实验原理】1.刚体的转动惯量实验仪刚体的转动惯量实验仪如图1所示。
转动体系由十字形承物台和塔轮组成,遮光细棒随刚体系一起转动,依次通过光电门不断遮光,两个光电门将光信号转变成电信号分别送到双通道电子毫秒计的A路和B路计时器输入端(实验过程中只使用一路通道),以测量转动所经过的时间。
光电门灯泡的电源由毫秒计提供。
塔轮上有五个不同半径的绕线轮,砝码钩上可以放置不同数量的砝码,以改变转动体系所受的力矩。
在十字形承物台上沿半径方向等距离地有三个小孔,如图2所示。
小钢柱可以放在这些小孔的位置上,改变小钢柱的位置可以改变包括小钢柱在内的转动体系的转动惯量。
小孔之间的距离是d。
(1)空实验台转动时,转动体系由承物台和塔轮组成,体系对转动轴的转动惯量用J0表示。
若另有待测物体如铝环、铝盘等,要测其对转动轴的转动惯量J x时,可以将其放在承物台上,转动体系对转动轴的转动惯量为J,J=J0+J x。
分别测出J0和J 后,便可求出J x。
J x = J - J0(1)刚体系受到的外力矩有两个,一个是绳子的张力T作用的力矩,M=T r, r为塔轮上绕线轮的半径。
由牛顿第二定律知,砝码下落的运动方程式mg-T= ma ,其中m 是砝码和砝码钩的总质量,a 为砝码下落的加速度,当a <<g 时,可以近似地认为T= mg ,因而M= mgr 。
另一个力矩是轴承处的摩擦力矩M μ。
由转动定律可知M- M μ=J β即 mg r - M μ=J β (2)其中J 是转动体系的转动惯量,β是角加速度。
从(2)式可以看出,测定转动惯量的关键是确定角加速度β和摩擦力矩M μ。
刚体转动惯量的测定
(4)用一对圆柱来验证平行轴定理。
注意: 1、原始数据记录表需要记录4个表格(空
转台、圆环、圆盘、1对圆柱 )
【数据处理】
1、计算出圆盘、圆环的转动惯量。
2、计算出两圆柱的转动惯量,验证平行轴定理。
3、计算出圆盘、圆环及园柱转动惯量的相对误差。
*由于存在各方面的误差,测出来的实验值和理论值误 差范围在15%——30%内都是允许的。
J2
mRg R4
4 3
由于转动惯量具有叠加性,被测物体的转动惯量J3为
J3 J2 J1
2、β的测量
通用电脑计时器计录遮挡次数和载物台旋转 kπ弧度所经历的时间。固定在载物台边缘相差π弧 度的两遮片,在转台每转动半圈遮挡一次光电门, 光电门产生一个计数光电脉冲,计数器可以记录 遮档次数k和相应的时间t。
的张力为T=m(g-a)若此时转台的角加速度 为β2,则有a=Rβ2 ,细线给转台的力矩为 TR=m(g- Rβ2 )R,此时有:
mg R 2 R M J1 2
将Mμ带入上式,可得:
J1
mRg
2
R 2 1
同理,若转台放上被测物体后系统的转动惯量
为J2,加砝码前后的角加速度分别为β3和β4, 则有:
在实验上测定刚体的转动惯量通常采用扭 摆法或恒力矩转动法。本实验我们采用的是恒 力矩转动法来测量刚体的转动惯量。为了方便 理论值与计算值进行比较,实验中我们选择的 刚体仍然是形状简单、质量分布均匀的刚体。
【实验目的】
➢ 掌握测定刚体转动惯量的方法和原理,测定出 刚体的转动惯量。
➢ 验证平行轴定理。 ➢ 学会使用通用电脑计量器来测量时间 。
实验报告评分细则
刚体转动惯量的测定实验报告
刚体转动惯量的测定实验报告实验目的,通过实验测定刚体转动惯量,掌握测定刚体转动惯量的方法和技巧。
实验仪器,转动惯量实验仪、测微卡尺、螺旋测微器、电子天平、计时器等。
实验原理,刚体转动惯量是刚体绕固定轴线旋转时所具有的惯性。
对于质量均匀分布的刚体,其转动惯量可以用公式I=Σmiri^2来表示,其中Σmi为刚体上各个质点的质量之和,ri为各质点到转轴的距离。
实验步骤:1. 将实验仪器放置在水平台面上,并调整水平仪使其处于水平状态。
2. 用测微卡尺测量实验仪器上转轴的直径d,并记录下数据。
3. 将刚体放置在转轴上,并用螺旋测微器测量刚体到转轴的距离r,并记录下数据。
4. 用电子天平测量刚体的质量m,并记录下数据。
5. 通过实验仪器上的刻度盘,测量刚体转动的角度θ,并记录下数据。
6. 重复以上步骤,分别在不同的转动角度下进行测量。
实验数据处理:根据实验数据,我们可以计算出刚体的转动惯量。
根据公式I=Σmiri^2,我们可以根据实验数据计算出不同转动角度下的转动惯量,并绘制出转动惯量随角度变化的曲线图。
实验结果分析:通过实验数据处理和曲线图的分析,我们可以得出刚体转动惯量与转动角度之间的关系。
从曲线图可以看出,随着转动角度的增大,刚体的转动惯量也随之增大。
这符合我们对刚体转动惯量的理论预期。
实验结论:通过本次实验,我们成功测定了刚体的转动惯量,并得出了转动惯量随角度变化的规律。
同时,我们也掌握了测定刚体转动惯量的方法和技巧,对刚体转动惯量有了更深入的理解。
实验中还存在一些误差,如实验仪器的精度限制、实验操作技巧等因素都可能对实验结果产生影响。
因此,在今后的实验中,我们需要更加严格地控制实验条件,提高实验操作技巧,以减小误差,提高实验结果的准确性和可靠性。
总之,本次实验对我们深入理解刚体转动惯量的概念和测定方法具有重要意义,为我们今后的学习和科研工作奠定了基础。
【精品】刚体转动惯量的测量
【精品】刚体转动惯量的测量1. 理论基础刚体转动惯量是描述物体转动惯性的物理量。
它表示了一个物体绕某一轴旋转时所具有的惯性,即惯性力矩和角加速度的比值。
刚体的转动惯量与物体的质量、形状以及绕轴线的位置和方向有关。
转动惯量的单位是千克·米²(kg·m²),可以通过实验测量获得。
本文介绍的实验测量刚体转动惯量的方法是通过测量物体绕不同轴转动的角加速度,利用转动惯量与角加速度的关系确定刚体的转动惯量值。
2. 实验原理为测量刚体转动惯量,可以利用旋转定理和运动学方程进行推导。
设圆柱体的质量为m,高为h,半径为r,绕圆柱底面贴在光滑平面上的轴转动。
设圆柱体与光滑平面之间的摩擦系数为μ。
在某一时刻,设圆柱体的角速度为ω,因为圆柱体受到外力(重力和摩擦力)和惯性力的作用,因此可以得到以下方程:∑F = mamgfr - μmgcosθ = ma其中,θ为圆柱体与垂直方向的夹角,f为圆柱体与平面之间的摩擦力。
根据旋转定理可知,物体所受的扭矩等于转动惯量与角加速度的乘积,即:τ = Iα其中,τ为圆柱体所受的扭矩,α为圆柱体的角加速度,I为圆柱体绕轴的转动惯量。
由于在实验中,圆柱体绕轴的转动惯量是不变的,因此可以将上面两个方程组合起来,得到以下方程:通过解方程可以求得圆柱体的角加速度α,并且由于转动惯量与角加速度的关系为:可以通过实验中所得到的角加速度来确定圆柱体的转动惯量。
3. 实验流程1)悬挂圆柱体,调整至垂直状态,并记录圆柱体的质量、半径、高等参数。
2)在圆柱体轴的两端固定两个细绳,将细绳竖直向下,让圆柱体绕轴转动,并记录转动时间t。
3)通过重力计法,计算出圆柱体所受的力作用以及圆柱体与平面之间的摩擦力。
4)利用上述方程,计算出圆柱体的角加速度α。
5)重复以上步骤,改变圆柱体的转动轴,测出不同转动轴上的角加速度。
6)根据实验中所得到的角加速度值,利用上述公式计算出圆柱体在不同转动轴上的转动惯量值。
刚体转动惯量的测定
一、试验目旳
一、实验目的
1、测定刚体旳转动惯量并观察刚体旳转动 惯量随质量及质量分布而变化旳情况。
2、研究刚体转动时合外力矩与刚体转动角加速 度旳关系。
3、验证平行轴定理
二、试验仪器
七、思考题
思索题
1、怎样安装和调整刚体转动试验仪?
2、本试验过程中应该注意哪些问题?
(2-6-7)
(2-6-8)
三、实验原理
从(2-6-6)、(2-6-8)两式中消去 ,可得:
由式(2-6-9)即可计算角加速度 。
(2-6-9)
三、实验原理
3、考察刚体旳质量分布对转动惯量旳影响
理论分析表白,质量为
旳物体围绕经过质心O旳转轴转动时旳转动惯量
行移动距离 后,绕新转轴转动旳转动惯量为:
最小。当转轴平
(2-6-10)
四、试验内容
四、实验内容及步骤 1、试验准备
2、测量并计算试验台旳转动惯量 (1)测量 (2)测量
3、测量并计算试验台加待测物旳转动惯量
其中
圆环外径 =120 ,内径 =105 ,质量
圆盘半径 =120 ,质量
=465 ;
半径 =15 ,质量
=332 ;
=436 ;
六、数据处理 圆盘、圆柱绕几何中心轴转动旳转动惯量理论值为
圆围绕几何中心轴旳转动惯量理论值为
(2-6-11) (2-6-12)
计算试样旳转动惯量理论值并与测量值 比较,计算测量值旳相对误差
(2-6-13)
六、数据处理
2、平行轴定理验证 按照转动惯量测量计算措施求出测量值,并与由式(2-6-10)、(2-6-11)所得 旳计算值进行分析比较,得出结论。
测量刚体转动惯量的方法
测量刚体转动惯量的方法刚体转动惯量是个很有趣的概念呢。
那怎么测量它呢?一种常见的方法是三线摆法。
先把三线摆装置安装好呀,这就像搭积木一样,要仔仔细细的,可不能马虎。
把待测刚体放在三线摆的下盘中心位置,这就如同把宝贝放在正中间的宝盒里。
然后轻轻转动上盘,让下盘做小幅度扭转振动。
这时候要注意哦,转动的幅度可不能太大,就像你轻轻推秋千,而不是大力猛推。
测量下盘摆动的周期,通过特定的公式就能算出转动惯量啦。
这个过程中,要确保三线摆的支架稳稳当当的,就像大树扎根在土里一样牢固。
要是支架不稳,那测量结果肯定是乱七八糟的,这可太糟糕了!在安全方面,因为只是小幅度的转动操作,只要小心手指别被线缠住,基本不会有什么危险,这多让人安心呀。
再说说扭摆法吧。
把扭摆的弹簧调节好,将待测刚体固定在扭摆上,这感觉就像给刚体找了个专属的小座位。
给扭摆一个初始的扭转角,让它开始摆动。
这个角度也不能太大哦,不然就像脱缰的野马不受控制了。
在摆动过程中,测量摆动的周期等数据,再用相关公式算出转动惯量。
这里呢,扭摆的弹簧要是质量不好或者安装不对,那就像汽车少了个好轮胎,整个测量就会有大问题。
不过只要操作正确,这种方法还是挺安全的。
在应用场景方面,在机械工程领域可太有用了。
比如设计汽车发动机的零部件,知道了转动惯量就能更好地设计它们的转动性能,这就好比厨师知道食材的特性才能做出美味佳肴。
要是不知道转动惯量,那设计出来的东西就像没有方向的船只在大海里乱漂,多可怕呀!实际案例也不少呢。
就说工厂里制造的大型旋转机械部件吧。
通过准确测量转动惯量,能够优化其运行的稳定性。
就像给运动员调整好重心一样,机械部件运行起来又稳又好。
要是不测量,那机械部件运行起来晃晃悠悠的,就像醉汉走路,不仅效率低,还可能出故障,这谁能受得了呢?我觉得测量刚体转动惯量的这些方法都很棒呢。
它们各有各的妙处,只要操作得当,就能给很多领域带来极大的便利。
这就像拥有了一把神奇的钥匙,能打开好多未知的大门。
刚体转动惯量的测量
分析与思考
1.分析实验误差产生的原因。 2.在本实验理论的基础上,能否再提出一种新的实验方案,并推导计算公式。
归纳பைடு நூலகம்小结
用转动定律测转动惯量要解决的关键之一就是要处理好阻力矩问题。实验中将阻 力矩当作常量来处理。两种思路均从(3.4-31)式出发。式中有 Mr、J、β三个未知量, 要解决问题还缺少两个独立关系式。根据运动学可以提出 3.4-32 关系式,却又增加了 ,仍缺少两个独立关系式。这么 未知量 ω 0 (θ 、t 是可以直接测量的,不看成未知量) 做似乎是把问题复杂化了,其实不然。因为(3.4-32)式中每改变一组θ、t 值就可以 新增加一个关系式而不增加新的未知量,由三组θ 、t 值就能得到转动惯量值。但是有 ,这时必须另想办法。 的老式数字毫秒计最多只能记录两组(或只能记录一组θ 、t 值) 第一种思路是针对只能记录两组数据情况提出的。 实验中改变砝码质量 (变为零) ,
M r =bgr
实验方案
1.角度与时间的测量 用数字毫秒计(计时器)计时,在承放刚体的转盘径向装有一对挡光杆。当挡杆 随转盘转动首次通过光电门挡住光束,开始计时。转盘每转动半周挡一次光电门,毫 秒计就计时一次,其中第 N 次计数时对应的转动角度为θ N=(N—1) π。 MCJS20 型自动计数仪是一种单片机控制的自动毫秒计,可以记录、存储并显示 转动角为π、2π、3π、……、99π的时间值。操作步骤如下: 开机数秒后显示选项菜单,用上移和下移键选择”刚体转动惯量测定”项,按”进入” 键进入测量菜单,按”启动”键后开始计时;随着转盘的转动,显示各转动角度对应的计 时值;按”停止”键后,可通过按上移和下移键显示全部计时值。再按”启动”键则进入 新一轮测量。 2.测试装置本身转动惯量的扣除 上面方法测量的转动惯量实际是待测样品转动惯量和仪器系统转动惯量之和。仪 器系统的转动惯量包括托盘、塔轮和转轴等装置的转动惯量,可以统记做 J'。实验时 可先测出总的转动惯量 J,再测出系统的转动惯量 J',样品净转动惯量为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
把铝环从承物台上取下,其余条件不变,重复步骤(1)。
五、数据与数据处理(所有计算都要求有计算过程)
1.计算法测量转动惯量
表一:承载时转动惯量的测量( =2, =8;计算 时把 看作直接测量量,且只考虑A类不确定度。)
条件
次数
1
2
3
4
5
M=9mgr
(秒)
(秒)
M=3mgr
’(秒)
’(秒)
=
=
2.在推导式 时,忽略了哪些条件,并做了怎样的近似?
七、作业题
本实验由于近似 , ,使得测量结果偏大还是偏小?若 不满足,使得I值偏大还是偏小?
=。
测量铝环绕轴的转动惯量,可先测量承载时的转动惯量I,再测量空载时的转动惯量 ,则其转动惯量 。
四、实验内容:
1.用计算法测量铝环对中心轴的转动惯量
(1)测承载时的转动惯量I
把铝环放在承物台上,取m为9个砝码质量,r=2.50cm(第3个塔轮半径),取 分别为2和8,所对应的时间 和 ,即由毫秒计分别读出所对应的时间 和 。重复五次。取m为3个砝码质量,其余条件不变,由毫秒计分别读出所对应的时间 和 。重复五次。
三、实验原理:
当砝码以加速度a加速下落带动转动体系运动时,在a<<g条件下,并设摩擦力矩为 在转动过程中不变时,则由转动定律得到转动体系的运动方程为。
1.的计算
用毫秒计时器分别测出的时间 ,可以得到
=。
2.I的计算
(a)当外力为 时,。
当外力为 时,。
联立得 =。
(b)若 ,则有
,
改变m,测得不同的 ,由线性回归法求出k,可得转动惯量
实验名称:刚体转动惯量的测量
姓名学号班级
桌同组人
本实验指导教师实验地点:基教1208教室
实验日期20年月日时段
1.用实验方法检验刚体的转动定律;
2.掌握利用刚体转动定律测定刚体转动惯量的实验方法;
3.学习曲线改直的方法;
4.学习用ORIGIN软件处理实验数据。
二、实验仪器与器件
刚体转动惯量仪一套,毫秒计时器一台,铝圆环一个,请自带计算器。
(2)测空载时的转动惯量
把铝环从承物台上取下,重复上述步骤,得 , , , ,重复五次。
2.用最小二乘法处理数据,测铝环对中心轴的转动惯量
需要满足 (怎样操作?),为此,挡光柱初始位置应在光电门处,使体系一开始转动就开始计时。
(1)测量I
把铝环放在承物台上,r=2.50cm,取=8,所对应的时间t,分别加4,5,6,7,8个砝码进行测量。
=
=
(计算时,分别取 , 。)
= =
表二:空载时转动惯量的测量( =2, =8)
条件
次数
1
2
3
4
5
(秒)
M=9mgr
(秒)
’(秒)
M=3mgr
’(秒)
=
=
=
= = =
铝环的转动惯量
= =
铝环的转动惯量也可由如下公式计算(R内=10.5 cm,R外=12.0 cm,铝环质量m=),
2.用最小二乘法(一元线性回归法)求转动惯量
表三最小二乘法测量转动惯量(r=2.50 cm,=8)
条件
m(g)
承载
t (s)
1/t (s )
空载
t’(s)
1/t’ (s )
最小二乘法计算转动惯量:
承载时:m=()1/t2+(),相关系数:r=,I=
空载时:m=()1/t’2+(),相关系数:r=,I0=
六、预习题
1.什么是物体的转动惯量?它和哪些因素有关?