七年级数学上册全册单元测试卷达标检测(Word版 含解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学上册全册单元测试卷达标检测(Word版含解析)
一、初一数学上学期期末试卷解答题压轴题精选(难)
1.如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD于点F
(1)当△PMN所放位置如图①所示时,则∠PFD与∠AEM的数量关系为________;(2)当△PMN所放位置如图②所示时,求证:∠PFD−∠AEM=90°;
(3)在(2)的条件下,若MN与CD交于点O,且∠DON=30°,∠PEB=15°,求∠N的度数.
【答案】(1)∠PFD+∠AEM=90°
(2)过点P作PG∥AB
∵AB∥CD,
∴PG∥AB∥CD,
∴∠AEM=∠MPG,∠PFD=∠NPG
∵∠MPN=90°
∴∠NPG-∠MPG=90°
∴∠PFD-∠AEM=90°;
(3)设AB与PN交于点H
∵∠P=90°,∠PEB=15°
∴∠PHE=180°-∠P-∠PEB=75°
∵AB∥CD,
∴∠PFO=∠PHE=75°
∴∠N=∠PFO-∠DON=45°.
【解析】【解答】(1)过点P作PH∥AB
∵AB∥CD,
∴PH∥AB∥CD,
∴∠AEM=∠MPH,∠PFD=∠NPH
∵∠MPN=90°
∴∠MPH+∠NPH=90°
∴∠PFD+∠AEM=90°
故答案为:∠PFD+∠AEM=90°;
【分析】(1)过点P作PH∥AB,然后根据平行于同一条直线的两直线平行可得PH∥AB∥CD,根据平行线的性质可得∠AEM=∠MPH,∠PFD=∠NPH,然后根据∠MPH+∠NPH=90°和等量代换即可得出结论;(2)过点P作PG∥AB,然后根据平行于同一条直线的两直线平行可得PG∥AB∥CD,根据平行线的性质可得∠AEM=∠MPG,∠PFD=∠NPG,然后根据∠NPG-∠MPG=90°和等量代换即可证出结论;(3)设AB与PN 交于点H,根据三角形的内角和定理即可求出∠PHE,然后根据平行线的性质可得∠PFO=∠PHE,然后根据三角形外角的性质即可求出结论.
2.如图,数轴上线段AB=4(单位长度),CD=6(单位长度),点A在数轴上表示的数是-16,点C在数轴上表示的数是18.
(1)点B在数轴上表示的数是________,点D在数轴上表示的数是________,线段AD=________;
(2)若线段AB以4个单位长度/秒的速度向右匀速运动,同时线段CD以2个单位长度/秒的速度向左匀速运动,设运动时间为t秒,
①若BC=6(单位长度),求t的值;
②当0<t<5时,设M为AC中点,N为BD中点,求线段MN的长.
【答案】(1)-12;24;40
(2)解:①设运动t秒时,BC=6
当点B在点C的左边时,
由题意得:4t+6+2t=30,
解之:t=4;
当点B在点C的右边时,
由题意得:4t−6+2t=30,
解之:t=6.
综上可知,若BC=6(单位长度),t的值为4或6秒;
②当0 A点表示的数为−16+4t,B点表示的数为−12+4t, C点表示的数为18−2t,D点表示的数为24−2t, ∵M为AC中点,N为BD中点, ∴点M表示的数为:=1+t,点N表示的数为: =6+t ∴MN=6+t-(1+t)=5. 【解析】【解答】解:(1)∵AB=4,A在数轴上表示的数是-16, ∴点B在数轴上表示的数为:-16+4=-12 ∵点C在数轴上表示的数是18,CD=6, ∴点D在数轴上表示的数为:18+6=24; ∵点A在数轴上表示的数是-16,点D在数轴上表示的数为24, ∴AD=|-16-24|=40 故答案为:-12;24;40 【分析】(1)由线段AB=4,点A在数轴上表示的数是-16,根据两点间的距离公式可得点B在数轴上表示的数;由CD=6,点C在数轴上表示的数是18,根据两点间的距离公式可得点D在数轴上表示的数;根据两点间的距离公式可得AD的长。 (2)①设运动t秒时,BC=6(单位长度),然后分点B在点C的左边和右边两种情况,根据题意列出方程求解即可;②当0 3.如图 (1)观察思考 如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段; (2)模型构建 如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性; (3)拓展应用 8位同学参加班上组织的象棋比赛,比赛采用单循环制(即每两位同学之间都要进行一场比赛),那么一共要进行多少场比赛? 请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题. 【答案】(1)解:∵以点A为左端点向右的线段有:线段AB、AC、AD,以点C为左端点 向右的线段有线段CD、CB,以点D为左端点的线段有线段DB,∴共有3+2+1=6条线段 (2)解:, 理由:设线段上有m个点,该线段上共有线段x条, 则x=(m-1)+(m-2)+(m-3)+…+3+2+1, ∴倒序排列有x=1+2+3+…+(m-3)+(m-2)+(m-1), ∴2x= =m(m-1), ∴x= (3)解:把8位同学看作直线上的8个点,每两位同学之间的一场比赛看作为一条线段,直线上8个点所构成的线段条数就等于比赛的场数, 因此一共要进行场比赛 【解析】【分析】(1)线段AB上共有4个点A、B、C、D,得到线段共有4×(4-1)÷2条;(2)根据规律得到该线段上共有m(m-1)÷2条线段;(3)由每两位同学之间进行一场比赛,得到要进行8×(8-1)÷2场比赛. 4.如图1,已知∠AOB=140°,∠AOC=30°,OE是∠AOB内部的一条射线,且OF平分∠AOE. (1)若∠EOB=30°,则∠COF=________; (2)若∠COF=20°,则∠EOB=________; (3)若∠COF=n°,则∠EOB=________(用含n的式子表示). (4)当射线OE绕点O逆时针旋转到如图2的位置时,请把图补充完整;此时,∠COF与∠EOB有怎样的数量关系?请说明理由. 【答案】(1)20° (2)40° (3)80°-2n° (4)如图所示:∠EOB=80°+2∠COF.