图形的旋转

合集下载

《图形的旋转》评课稿通用5篇

《图形的旋转》评课稿通用5篇

《图形的旋转》评课稿《图形的旋转》评课稿(通用5篇)文字像精灵,只要你用好它,它就会产生让你意想不到的效果。

所以无论我们说话还是作文,都要运用好文字。

只要你能准确灵活的用好它,它就会让你的语言焕发出活力和光彩。

下面,小编为大家分享《图形的旋转》评课稿,希望对大家有所帮助!《图形的旋转》评课稿篇1《图形的旋转》这一课充分体现了〃以学生为本,一切为了学生的发展〃的教育理念。

教学活动建立在学生的认知发展水平和已有的知识经验基础之上,激发了学生的学习积极性,使学生真正成为学习的主人。

下面我先对本节的说课进行简要评析。

老师的说课课件制作新颖,条理清晰,使人一目了然。

她的说课自然流畅,内容充实。

用清晰、准确的语言,详细地从教材、学习目标、教学方法和手段、教学过程四个方面对本课进行了说明,解释了每个教学环节的设计意图、操作方法;介绍了如何突出重点,突破难点;预设了教学过程中可能出现的问题,并对可能出现的生成性问题准备了应对策略。

把备课中的隐性思维过程及其理论根据详实地表述出来。

我再对本节的讲课进行评析。

本节课李老师有很强的教学功底,教学态度亲切自然、语言简洁明了,善于调动学生的学习积极性,点拨适时到位。

本节课对对教学目标的确定明确、具体、全面,符合学生的认知特点。

对教学重点、难点的确定恰当,主次分明,抓住了主要矛盾。

教法的选择和运用合理、实用,适合数学学科的教学要求、特点。

能根据具体的教学目的选用教法,符合学生的年龄特点,调动了学生的学习积极性。

学法具有指导性和可操作性。

教法符合学法。

与学法相适应。

能够考虑到学生实际情况,对不同层次的学生的不同指导,可以达到的不同目标。

注重培养学生的能力和学习习惯。

教学程序的设计比较科学,能达到教学目的。

授课内容科学、正确,注重了思想教育。

教学结构合理,重点突出,并且注重难点的突破。

纵观李老师的教学过程,有如下亮点:1、重视学生在学习中的主体地位本课从孩子熟知的生活中的旋转入手,导入新课,这样有利于聚拢学生的思维,激发学生兴趣,对新课的开展创造了良好的教学氛围。

23.1 图形的旋转(9大题型)

23.1 图形的旋转(9大题型)

23.1 图形的旋转旋转的概念将一个图形绕一个定点转动一定的角度,这样的图形运动称为图形的旋转.定点称为旋转中心,旋转的角度称为旋转角.注意:旋转的三要素:旋转中心、旋转方向和旋转角度;图形的旋转不改变图形的形状、大小.题型1:旋转中的概念及对应元素1.下列运动中,属于旋转运动的是( )A.小明向北走了4 米B.一物体从高空坠下C.电梯从1 楼到12 楼D.小明在荡秋千【答案】D【解析】【解答】解:A. 小明向北走了 4 米,是平移,不属于旋转运动,A不合题意;B. 一物体从高空坠下,是平移,不属于旋转运动,B不合题意;C. 电梯从1 楼到12 楼,是平移,不属于旋转运动,C不合题意;D. 小明在荡秋千,是旋转运动,D符合题意.故答案为:D.【分析】根据图形旋转的定义求解即可。

【变式1-1】如图,线段AB绕着点O旋转一定的角度得线段A'B',下列结论错误的是( )A.AB=A'B'B.∠AOA'=∠BOB'C.OB=OB'D.∠AOB'=100°【答案】D【解析】【解答】∵线段AB绕着点O旋转一定的角度得线段A'B',∴AB=A′B′,∠AOA′=BOB′,OB=OB′,故A,B,C选项正确,∵∠AOB和∠BOB′的度数不确定,∴∠AOB′≠100°,故D选项错误.故答案为:D.【分析】由旋转的性质可得AB=A′B′,∠AOA′=BOB′,OB=OB′,据此判断.【变式1-2】如图(1)中,△和△都是等腰直角三角形,∠和∠都是直角,点在上,△绕着点经过逆时针旋转后能够与△重合,再将图(1)作为“基本图形”绕着点经过逆时针旋转得到图(2).两次旋转的角度分别为( )A.45°,90°B.90°,45°C.60°,30°D.30°,60°【答案】A【解析】根据图1可知,∵△ABC和△ADE是等腰直角三角形,∴∠CAB=45°,即△ABC绕点A逆时针旋转45°可到△ADE;如右图,∵△ABC和△ADE是等腰直角三角形,∴∠DAE=∠CAB=45°,∴∠FAB=∠DAE+∠CAB=90°,即图1可以逆时针连续旋转90°得到图2.故选A.旋转的性质一个图形和它经过旋转所得到的图形中:(1)对应点到旋转中心的距离相等; (2)两组对应点分别与旋转中心连线所成的角相等. 注意:图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转.题型2:旋转的性质及旋转中心的确定2.如图,△DEF是由△ABC绕着某点旋转得到的,则这点的坐标是( )A.(1,1)B.(0,1)C.(-1,1)D.(2,0)【答案】B【解析】【解答】解:如图,连接AD、BE,作线段AD、BE的垂直平分线,两线的交点即为旋转中心O′.其坐标是(0,1).故答案为:B.【分析】连接AD、BE,作线段AD、BE的垂直平分线,根据旋转的性质即可求解。

《图形的旋转》教案14篇

《图形的旋转》教案14篇

《图形的旋转》教案14篇《图形的旋转》教案篇1一、游戏创设情景,导入新课。

幸运大转盘:转一转转盘上的指针,你想玩哪一种,看看你幸运吗?师:盼望每个同学都能拥有健康的身体,学会聪慧地思索,在学习数学的过程中体验胜利的欢乐。

转盘上指针的运动方式,在三班级我们已经有肯定了解,叫旋转。

请看大屏幕〔转杆的关和合〕,在小区门口看过这个转杆吗?转杆的运动方式是〔同学一起说〕师:对了,转杆的打开和关闭也是旋转。

今日我们一起来讨论旋转。

〔揭示课题:旋转〕二、探究线段旋转,体会旋转三要素1、对比讨论转杆的运动〔1〕用手势来比划转杆的运动转杆的打开、关闭是旋转运动,今日我们就以这个为例来讨论。

举起右手,用手臂来表示转杆,一起来做做打开、关闭的运动。

〔2〕争论:转杆的打开与关闭这两次旋转运动的相同点与不同点。

你们觉的打开、关闭的运动完全一样吗?想想有哪些地方是相同的。

哪些地方是不同的?同桌沟通。

不同点:这两次旋转的方向不同。

你们知道转杆关闭的方向叫〔顺时针方向〕为什么叫顺时针方向呢?〔显示钟面是时针的运动〕那和钟面上相反呢?叫逆时针方向,这里转杆的打开是什么方向啊?伸出手一起来表示这两个方向。

相同点:都围着一个点在旋转,这个点就是旋转的中心点。

都旋转了90度。

〔3〕小结刚才我们学了旋转重要的三个特点:中心、方向、角度。

其实全部的物体的旋转都是这样围绕中心不是顺时针就是逆时针旋转的,都转有肯定的角度,角度有大有小〔显示旋转的图片时钟、折扇、风车〕2.巩固练习刚才我们认识了顺时针或逆时针旋转90度,你们能利用这些知识解决下面的问题吗?a、:多重的物品可以使台称上的指针按顺时针方向旋转90度。

〔演示将一袋盐放入盘中〕取出物品指针又是怎样旋转的呢?b、请看,老师这里还有一个转盘呢!谁情愿和老师合作玩“我说你转”的游戏:〔老师提要求,同学转动转盘〕请把指针从A点顺时针旋转90,转到〔〕,再把指针从B点逆时针旋转90,转到〔〕。

要想清晰地知道一个物体是怎样旋转的,就得把这三方面说清晰。

图形的旋转、平移与翻折

图形的旋转、平移与翻折

图形的旋转、平移与翻折在几何学中,图形的旋转、平移与翻折是常见的操作,可以通过这些操作改变图形的位置、形状和方向。

这些操作在数学、物理学和计算机图形学等领域都有广泛的应用。

本文将介绍图形的旋转、平移与翻折的基本概念和相关应用。

一、图形的旋转图形的旋转是指将图形绕一个旋转中心按一定角度旋转。

旋转可以使图形发生变化,同时保持图形的大小和形状不变。

旋转操作常用的单位是度数,顺时针为正方向,逆时针为负方向。

图形的旋转可以通过旋转矩阵来描述。

设图形的坐标为(x, y),旋转的角度为θ,旋转中心为(x0, y0),则旋转后的坐标可以表示为:x' = (x - x0) * cosθ - (y - y0) * sinθ + x0y' = (x - x0) * sinθ + (y - y0) * cosθ + y0通过这个公式,我们可以将任意点围绕旋转中心进行旋转变换。

图形的旋转可以应用于很多领域,例如地理学中的地图旋转变换、物理学中的刚体旋转运动等。

在计算机图形学中,旋转操作经常用于图像处理、动画制作等方面。

二、图形的平移图形的平移是指将图形沿着特定的方向和距离进行移动。

平移操作只改变图形的位置而不改变图形的形状和方向。

图形的平移可以通过平移向量来表示。

设图形的坐标为(x, y),平移向量为(dx, dy),则平移后的坐标可以表示为:x' = x + dxy' = y + dy通过这个公式,我们可以将图形沿水平方向和垂直方向进行平移变换。

图形的平移操作在几何学中经常用于研究几何关系、证明定理等方面。

在计算机图形学中,平移操作经常用于图像编辑、游戏开发等方面。

三、图形的翻折图形的翻折是指将图形在一个轴线上进行对称变换。

翻折操作将图形上的每个点关于轴线镜像对称,使得图形在镜像轴两侧成为对称的。

图形的翻折可以通过翻折矩阵来表示。

设图形的坐标为(x, y),轴线为x轴或y轴,对称变换为x轴翻折或y轴翻折,对应的翻折矩阵为:对于x轴翻折:x' = xy' = -y对于y轴翻折:x' = -xy' = y通过这个公式,我们可以将图形关于x轴或y轴进行翻折变换。

《图形的旋转》教学设计十篇

《图形的旋转》教学设计十篇

《图形的旋转》教学设计十篇《图形的旋转》教学设计1教学内容:教材第5页例3和例4。

教学目标:一.知识与技能1.通过生活事例,使学生进一步认识图形的平移和旋转变换。

并能正确判断图形的这两种变换。

2.通过实践操作,使学生能在方格纸上把一个简单图形旋转90°。

3.初步学会利用旋转的方法在方格纸上设计图案。

二.情感态度与价值观1.结合生活实际,能初步感知旋转现象,探索旋转的特征和性质,发展学生的空间观念。

2.初步感知平移和旋转现象。

初步渗透变换的数学思想方法。

3.让学生在上述活动中,欣赏图形的旋转变换所创造出的美,培养学生的审美能力;感受旋转在生活中的应用,体会数学的价值。

教学重点:1.理解图形旋转变换的含义;能正确区别平移和旋转现象。

2.探索图形旋转的特征和性质。

教学难点:能在方格纸上将一个简单图形旋转90°。

教学过程:一.教学旋转的含义1.教学例3(出示教具钟表)2.引导学生观察钟表的指针,并思考:指针从12到1是怎样旋转的?绕着哪个点旋转?是按什么方向旋转?转动了多少度?(指针从12绕点o顺时针旋转30°到1)师演示指针由“1”到“3”。

问:这次指针又是如何旋转的?(指针从1绕点o 顺时针旋转60°到3)师演示指针由3到6。

生反馈:指针从几开始?是绕哪个点旋转的?怎样旋转?旋转了多少度?通过学生交流,老师引导,弄清顺时针和逆时针旋转的含义。

师:生活中,你还见过哪些旋转现象呢?( 风扇、陀螺、钟表、车轮、风车……)3.板书课题:旋转4.归纳总结旋转要素(旋转物体、起止位置、绕哪一点、旋转方向、旋转度数)板书:点方向度数二.探索图形旋转的特征和性质1.观察风车的旋转过程。

(出示课件)请学生说一说,在风的吹动下,风车是如何旋转的。

风车绕点o逆时针旋转90°。

思考:你是怎样判断风车旋转的角度呢?(小组交流观察到的现象。

)师引导:(首先是由图1到图2,风车绕点o逆时针旋转了90°;第二是根据三角形变换的位置判断风车旋转的角度;第三是根据对应的线段判断风车旋转的角度;第四是根据对应的点判断风车旋转的角度。

《图形的旋转》教学设计一等奖4篇

《图形的旋转》教学设计一等奖4篇

《图形的旋转》教学设计篇1教学目标:1.通过实例观察,了解一个简单的图形经过旋转制作复杂图形的过程。

2.能在方格纸上将简单图形旋转90°。

教学重难点:能在方格纸上将简单图形旋转90°。

教学器具:多媒体教学系统,卡纸,小三角形,90度扇形。

教学课时:1课时。

教学过程:一、回忆旧知识、导入新课教师:同学们,你们喜欢看大风车这个节目吗?老师带来(风车),你们喜欢玩吗?(教师前后拉动,使得风车依次顺时针,逆时针的旋转)提问:同学们,风车有时向这边转,有时向那边转,这两个方向我们在三年级的时候叫做什么呢?(顺时针方向,逆时针方向)(课件展示顺时针,逆时针旋转的图片)设问:我们看到风车旋转的时候非常漂亮,那如果我们用一些图形来旋转的话,情况又会怎样呢?(图形器材展示出来)这节课我们就来学习:图形的旋转(板书)二、创设情景,进入新课内容在生活中,有各种美丽的图案,但其中有很多图案是由简单的图形经过平移或旋转获得。

今天,老师给同学们带来了一些,请欣赏!(课件展示图片)教师:这些图片有什么特点呢?(由一个图形经过旋转变化而成的)学生:漂亮,正方形,旋转等等。

教师:取出一个大图形,其中的一小部分放在黑板方格子上。

你们看看,这个小图形怎样才可以变成上面的大图形呢?学生:观察,讨论,回答。

教师:进行旋转,逐步展示简单图形经过旋转后形成复杂图案的过程。

当然,每一次的旋转,都要学生说说是什么图形绕着哪一点旋转的?旋转的角度是多少?学生:o点,90度┈┈教师:(课件展示两个图形各形成两个大图形的过程。

)设问:还有其他什么方法旋转使得图形变得漂亮?请同学们拿起我们的卡片和小图形试试看。

(目的在于让学生动手操作,用顺时针逆时针两种方法旋转得到大图形)学生:(分组,拿起表格,小图形在桌子上试试看。

)教师:请同学回答,上来示范。

(顺时针逆时针两种方法旋转得到大图形)让学生分小组相互说一说旋转的过程和旋转时应该注意的问题。

《图形的旋转》教学设计

《图形的旋转》教学设计

《图形的旋转》教学设计作为一名老师,时常需要编写教学设计,教学设计是一个系统化规划教学系统的过程。

你知道什么样的教学设计才能切实有效地帮助到我们吗?下面是小编帮大家整理的《图形的旋转》教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。

《图形的旋转》教学设计1教学目标:1、通过生活事例,使学生初步了解图形的旋转变换。

结合生活实际,能初步感知旋转现象,探索旋转的特征和性质。

2、通过动手操作,使学生会在方格纸上将一个简单图形旋转90°。

3、初步学会运用旋转的方法在方格纸上设计图案,发展学生的空间观念。

4、欣赏图形的旋转变换所创造出的美,培养学生的审美能力;感受旋转在生活中的应用,体会数学的价值。

教学重点:1、理解图形旋转变换的含义。

2、探索图形旋转的特征和性质。

教学难点:能在方格纸上将一个简单图形旋转90°。

教学过程:一、创设情境,揭示课题1、欣赏旋转的美生:真美呀!师:你知道这些美丽的图形都是做了什么运动得到的吗?(旋转)2、揭示课题师:今天这节课我们就一起来研究《图形的旋转》2、仔细观察,认识旋转的要素1、出示生活中物体师:你知道下面哪些物体是在做旋转吗?生:电风扇、风车、旋转木马、地球2、在生活中你还见过哪些旋转现象?(秋千、汽车的车轮、过山车-----)师:同学们的思维很开阔,生活中像这样的旋转现象很多,那到底什么是旋转呢?3、师:仔细观察它们都绕一个什么在旋转呢?你能用自己的话说一说什么是旋转吗?(-物体绕某一个点或轴运动的过程叫做旋转。

)师:现在我们知道了什么是旋转,那物体是怎样旋转的?旋转有什么特征呢?3、师:今天我们就从日常生活中关系密切的钟表和风车开始研究“旋转”现象你能看出它们的旋转有什么相同点和不同点吗?相同点:图形的旋转都围绕一个固定的点旋转。

我们把这个相对固定的点叫做中心点。

不同点:图形旋转的方向不同4、用你的手比划一下,时钟的指针是怎样运动的?师:我们把时钟旋转的方向叫做顺时针,风车的旋转方向与时钟相反,叫什么旋转?(逆时针旋转)5、出示:电风扇、地球、齿轮师:旋转你会判断顺时针旋转和逆时针旋转吗?6、再次用手势确认顺时针和逆时针的方向师:通过刚才的学习我们知道了要研究图形的旋转必要考虑(中心点、方向)除了以上所述的,还有什么值得我们继续研究的吗?请同学们继续往下看7、师:你要仔细观察哦!8、指针从“12”绕点O 顺时针旋转30°到“1”指针从“1”绕点O 顺时针旋转60°到( )指针从“3”绕点O顺时针旋转( )度到“6”指针从“6”绕点O顺时针旋转()度到“12”。

23.1图形的旋转教学课件(共35张PPT)

23.1图形的旋转教学课件(共35张PPT)

线段的旋转作法
C
A
O
D
B
作法: 1. 将点A绕点O顺时针旋 转60˚,得点aC; 2. 将点B绕点O顺时针旋 转60 ˚,得点D ; 3. 连接CD, 则线段CD即 为所求作.
例题 已知△OAB,画出△OAB绕点O逆时针旋转
100°后的图形。
作法:
C 图形的旋转作法
1. 连接OA。
A′
2. 作∠AOC=100°,在
花——美丽的图形变换
观察
把叶片当成一个图形, 那么它可风以车绕风着轮中的心每固个定点 转动叶一片定在角风度的。吹动下转
动到新的位置。
怎样来定义 这种图形变换?
紫荆花会徽
o
车标
雪花
这些图案有什么共同特征?
观察
这种图怎时形样以,变来绕时钟换定着把针表?义中时转的针心动指当固了针成定_在1_一点2_不0_个转°_停_图动地度形一转。,定动那角,么度从它。12可时到4
归纳
在上面两个实验中,△ABC在旋转过程中, 哪些发生了变化?
• 各点的位置发生变化。
点A
点A′
点B
点B′
点C
点C′
• 从而,各线段、各角的位置发生变化。
在上面两个实验中,△ABC在旋转过程中, 哪些没有改变?
• 边的相等关系:
AB=A′B′
BC=B′C′
对应边相等
CA=C′A′
OA=OA′
OB=OB′
A
O
BB′
A′
O 秋千的固定点
45°
把小孩看作
B
A一个质点来
分析问题
点A绕_O__点沿_顺__时__针__方向,转动了_4_5_度到点 B。

《图形的旋转》教学设计(通用16篇)

《图形的旋转》教学设计(通用16篇)

《图形的旋转》教学设计(通用16篇)《图形的旋转》教学设计篇1教学内容:北师大版数学试验教材四班级上册第四单元"图形的变换"第一课时。

教学目标:1、通过实例观看,了解一个简洁的图形经过旋转制作简单图形的过程。

2、能在方格纸上将简洁图形旋转90°。

教学重难点:能在方格纸上将简洁图形旋转90°一、创设情境用数学书按老师的指令做平移或旋转运动。

师:大家做得这么好,老师请你们观赏几幅图案。

(课件出示)想知道它们是怎么设计出来的吗?(老师演示)请你们认真观看,你发觉了什么?(它们都是由简洁的图形通过旋转得到的。

今日我们就来讨论图形的旋转。

(出示课题:图形的旋转)二、探究学习1、活动一:课件出示转换前后的两幅图。

先让同学观看图a是如何变换成图b的,再让同学摆一摆,说一说。

结合课件和实物展台演示。

2、活动二:小组同学合作,利用两个三角形设计一个图形,然后利用旋转的学问进行变换,并说说它的变换过程。

强调绕哪一个点旋转的。

(板书:旋转点不动大小不变顺时针或逆时针)3、选择:教材55页说一说第1题。

操作并利用课件加以演示。

4、活动三:(教材54页风车)课件出示。

用手中的学具你能变换出这个图形吗?小组共同探究。

边打操作边说说你们是怎样做的?强调哪个图形绕哪一个点旋转,如何旋转,旋转多少度。

观看感悟,发觉规律。

师:从图形a旋转到图形b,图形b旋转到图形c,图形c旋转到图形d的过程中,你发觉了什么?(老师依据同学的回答板书:大小不变、点o是固定的,顺时针方向、旋转90度)5、活动四:教材55页说一说第2题。

把手中的三角形与方格纸上的三角形重合起来,接着以这个三角形的一个顶点o为中心进行旋转(旋转的角度是90度),最终在小组里面说一说从图形1到图形2,从图形2到图形4等旋转的角度。

师:在我们的生活中,有很多图案都是这样旋转得来的,你们能依据这个方法或用自己喜爱的方法来设6、活动五:请同学们自己剪一个任意的三角形,接着一边旋转,一边把旋转后所得的图形描绘下来,让孩子们自己去制造,老师作适当的指导。

《图形的旋转》平移旋转和轴对称

《图形的旋转》平移旋转和轴对称
描述
这种组合在实际生活中并不常见,因为在实际应用中,旋转和轴对 称两种操作通常会分开进行。
应用
在几何学中,旋转轴对称组合常用于研究图形的旋转对称性质,如 圆形、椭圆形的性质等。
05
实际应用案例
平移旋转在机械制造中的应用
平移旋转在机械制造中有着广泛的应用。通过平移和旋转,可以方便地对机械零件 进行精确加工和调整。
《图形的旋转》平移旋转和 轴对称
2023-11-08
目 录
• 平移 • 旋转 • 轴对称 • 平移旋转和轴对称的组合应用 • 实际应用案例
01
平移
定义
平移是指在平面内,将一个图形沿某个方向移动一定的距离 。
平移不改变图形的形状、大小和方向,只改变图形的位置。
性质
平移前后,图形的对应线段平行且相等,对应角相等,对应点所连接的线段平行 且相等。
描述
这种组合在实际生活中很常见,比 如汽车在公路上行驶,除了位置的 移动,车身也会围绕自己的轴线旋 转,保持方向不变。
应用
在几何学中,平移旋转组合常用于 研究图形的性质和变化,如平行四 边形的性质、三角形的稳定性等。
平移轴对称组合应用
定义
平移轴对称组合是指将平移和轴 对称两种操作结合起来,使图形 在平面上进行移动的同时,绕某
应用
在几何学中,旋转被广泛应用于图形 的位置和形状的变换。
在物理学中,旋转运动被广泛应用于 物体的运动和平衡状态的研究。
在机械工程中,旋转运动被广泛应用 于机器人的关节和传动装置。
在艺术领域,旋转被广泛应用于舞蹈 、音乐和绘画的表现形式。
03
轴对称
定义
轴对称是指一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线是 它的对称轴。

图形的旋转和翻转操作技巧

图形的旋转和翻转操作技巧

图形的旋转和翻转操作技巧一、图形的旋转1.旋转的概念:在平面内,将一个图形绕着某一个点旋转一个角度的图形变换叫做旋转。

2.旋转的性质:a.旋转不改变图形的形状和大小,只是改变图形的位置。

b.旋转前后的图形全等。

c.旋转中心即为图形的对称中心。

3.旋转的公式:若将一个图形绕着点O旋转θ度,得到的新图形为O’,则有:O’ = O + (O -> O’) * θ4.旋转的应用:a.在实际生活中,如风扇、汽车方向盘等的转动都是旋转的应用。

b.在计算机图形学中,旋转用于实现图形的变换和动画效果。

二、图形的翻转1.翻转的概念:在平面内,将一个图形沿着某一条直线翻转一定角度,使得翻转后的图形与原图形关于这条直线对称,这种图形变换叫做翻转。

2.翻转的类型:a.水平翻转:将图形沿着x轴翻转。

b.垂直翻转:将图形沿着y轴翻转。

c.对称翻转:将图形沿着任意直线翻转,使得翻转后的图形与原图形关于这条直线对称。

3.翻转的性质:a.翻转不改变图形的形状和大小,只是改变图形的位置。

b.翻转前后的图形全等。

c.翻转的中心线即为图形的对称轴。

4.翻转的应用:a.在实际生活中,如镜子、穿衣镜等的翻转都是翻转的应用。

b.在计算机图形学中,翻转用于实现图形的变换和动画效果。

三、操作技巧1.旋转操作技巧:a.确定旋转中心:通常选择图形的某个顶点或重心作为旋转中心。

b.确定旋转方向:顺时针或逆时针旋转。

c.确定旋转角度:根据实际需求确定旋转的角度。

d.画出旋转后的图形:以旋转中心为中心,按照旋转方向和角度,画出旋转后的图形。

2.翻转操作技巧:a.确定翻转中心线:通常选择图形的中心线作为翻转中心线。

b.确定翻转方向:沿中心线翻转,使得翻转后的图形与原图形关于中心线对称。

c.画出翻转后的图形:按照翻转方向,将原图形关于中心线翻转,得到翻转后的图形。

通过以上知识点的学习和操作技巧的掌握,学生可以更好地理解和运用图形的旋转和翻转,提高他们在几何学习和实际应用中的能力。

图形的旋转(基础)

图形的旋转(基础)

图形的旋转【要点梳理】 要点一、旋转的概念把一个图形绕着某一点O 转动一个角度的图形变换叫做旋转..点O 叫做旋转中心,转动的角叫做旋转角(如∠AOA ′),如果图形上的点A 经过旋转变为点A ′,那么,这两个点叫做这个旋转的对应点.要点诠释:旋转的三个要素:旋转中心、旋转方向和旋转角度. 要点二、旋转的性质(1)对应点到旋转中心的距离相等(OA = OA ′); (2)对应点与旋转中心所连线段的夹角等于旋转角; (3)旋转前、后的图形全等(△ABC ≌△A B C ''').要点诠释:图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转. 要点三、旋转的作图在画旋转图形时,首先确定旋转中心,其次确定图形的关键点,再将这些关键点沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形. 要点诠释:作图的步骤:(1)连接图形中的每一个关键点与旋转中心;(2)把连线按要求(顺时针或逆时针)绕旋转中心旋转一定的角度(旋转角); (3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点; (4)连接所得到的各对应点.B 'AA 'C 'CBO【典型例题】类型一、旋转的概念与性质【例1】 如图,把四边形AOBC 绕点O 旋转得到四边形DOEF . 在这个旋转过程中: (1)旋转中心是谁? (2)旋转方向如何?(3)经过旋转,点A 、B 的对应点分别是谁? (4)图中哪个角是旋转角?(5)四边形AOBC 与四边形DOEF 的形状、大小有何关系? (6) AO 与DO 的长度有什么关系? BO 与EO 呢? (7)∠AOD 与∠BOE 的大小有什么关系?【变式】 如图所示:O 为正三角形ABC 的中心.你能用旋转的方法将△ABC 分成面积相等的三部分吗?如果能,设计出分割方案,并画出示意图.OBDFECAA BCO【例2】如图,将图(1)中的正方形图案绕中心旋转180°后,得到的图案是( )A .B .C .D .类型二、旋转的作图【例3】如图,已知△ABC 与△DEF 关于某一点对称,作出对称中心.【例4】如图,在正方形网格中,每个小正方形的边长均为1个单位.将ABC ∆向下平移4个单位,得到C B A '''∆,再把C B A '''∆绕点顺时针旋转90°,得到C B A '''''∆,请你画出C B A '''∆和C B A '''''∆(不要求写画法).【变式】如图,画出ABC ∆绕点O 逆时针旋转100︒所得到的图形.ABCDFE中心对称与中心对称图形【要点梳理】要点一、中心对称和中心对称图形1.中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.要点诠释:(1)有两个图形,能够完全重合,即形状大小都相同;(2)位置必须满足一个条件:将其中一个图形绕着某一个点旋转180°能够与另一个图形重合(全等图形不一定是中心对称的,而中心对称的两个图形一定是全等的) .2.中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.要点诠释:(1)中心对称图形指的是一个图形;(2)线段,平行四边形,圆等等都是中心对称图形.3.中心对称与中心对称图形的区别与联系:中心对称中心对称图形区别①指两个全等图形之间的相互位置关系.②对称中心不定.①指一个图形本身成中心对称.②对称中心是图形自身或内部的点.联系如果将中心对称的两个图形看成一个整体(一个图形),那么这个图形就是中心对称图形.如果把中心对称图形对称的部分看成是两个图形,那么它们又关于中心对称.要点二、关于原点对称的点的坐标特征关于原点对称的两个点的横、纵坐标均互为相反数.即点P(x,y)关于原点的对称点P'坐标为P'(-x,-y),反之也成立.【典型例题】类型一、中心对称和中心对称图形【例1】下列图形不是中心对称图形的是()A.①③B.②④C.②③D.①④【变式】如图,若正方形EFGH由正方形ABCD绕某点旋转得到,则可以作为旋转中心的是()A.M或O或N B.E或O或C C.E或O或N D.M或O或C【例2】我们平时见过的几何图形,如:线段、角、等腰三角形、等边三角形、平行四边形、矩形、菱形、正方形中,有哪些是中心对称图形?哪些是轴对称图形?中心对称图形指出对称中心,轴对称图形指出对称轴.类型二、作图【例3】已知:如图甲,试用一条直线把图形分成面积相等的两部分(至少三种方法).【变式】如图①, 1O ,2O ,3O ,4O 为四个等圆的圆心,A ,B ,C ,D 为切点,请你在图中画出一条直线,将这四个圆分成面积相等的两部分,并说明这条直线经过的两个点是 ;如图②,1O ,2O ,3O ,4O ,5O 为五个等圆的圆心,A ,B ,C ,D ,E 为切点,请你在图中画出一条直线,将这五个圆...分成面积相等的两部分,并说明这条直线经过的两个点是 .类型三、利用图形变换的性质进行计算或证明【例4】如图所示,边长为3的正方形ABCD 绕点C 按顺时针方向旋转30°后得到正方形EFCG ,EF 交AD 于点H ,那么DH 的长是__________.1o 2o 3o 4oCB DA图① 图②1o2o3o4o 5oABCED【变式】如图,三个圆是同心圆,则图中阴影部分的面积为.旋转【要点梳理】 要点一、旋转1. 旋转的概念:把一个图形绕着某一点O 转动一个角度的图形变换叫做旋转..点O 叫做旋转中心,转动的角叫做旋转角(如∠AO A ′),如果图形上的点A 经过旋转变为点A ′,那么,这两个点叫做这个旋转的对应点.要点诠释:旋转的三个要素:旋转中心、旋转方向和旋转角度. 2.旋转的性质: (1)对应点到旋转中心的距离相等(OA = OA ′); (2)对应点与旋转中心所连线段的夹角等于旋转角; (3)旋转前、后的图形全等(△ABC ≌△A B C ''').要点诠释:图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转.3. 旋转的作图: 在画旋转图形时,首先确定旋转中心,其次确定图形的关键点,再将这些关键沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形. 要点诠释:作图的步骤:(1)连接图形中的每一个关键点与旋转中心;(2)把连线按要求(顺时针或逆时针)绕旋转中心旋转一定的角度(旋转角); (3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点; (4)连接所得到的各对应点.B 'AA 'C 'CBO要点二、特殊的旋转—中心对称1.中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.要点诠释:(1)有两个图形,能够完全重合,即形状大小都相同;(2)位置必须满足一个条件:将其中一个图形绕着某一个点旋转180°能够与另一个图形重合(全等图形不一定是中心对称的,而中心对称的两个图形一定是全等的) .2.中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.要点诠释:(1)中心对称图形指的是一个图形;(2)线段,平行四边形,圆等等都是中心对称图形.【典型例题】类型一、旋转【例1】数学课上,老师让同学们观察如图所示的图形,问:它绕着圆心O旋转多少度后和它自身重合?甲同学说:45°;乙同学说:60°;丙同学说:90°;丁同学说:135°. 以上四位同学的回答中,错误的是().A.甲B. 乙C. 丙D. 丁【变式】以图1的边缘所在直线为轴将该图案向右翻折180°后,再按顺时针方向旋转180°,所得到图形是().A B C D类型二、中心对称【例2】如图,C B A '''∆是△ABC 旋转后得到的图形,请确定旋转中心、旋转角.【变式】下列图形中,既是中心对称图形又是轴对称图形的是( ).A .B .C .D .类型三、平移、轴对称、旋转【例3】如图,设P 是等边三角形ABC 内一点,PB =3,P A =4,PC =5,求∠APB 的度数.B 'AA 'C 'CB APBC【变式】已知D是等边△ABC外一点,∠BDC=120º.求证:AD=BD+DC.【例4】如图,在四边形ABCD中,∠ABC=30°,∠ADC=60°,AD=CD. 求证:BD2=AB2+BC2.AC BDADB C【例5】正方形ABCD和正方形AEFG有一个公共点A,点G、E分别在线段AD、AB上(1)如图连结DF、BF,试问:当正方形AEFG绕点A旋转时,DF、BF的长度是否始终相等?若相等请证明;若不相等请举出反例.(2)若将正方形AEFG绕点A顺时针方向旋转,连结DG,在旋转过程中,能否找到一条线段的长度与线段DG的长度相等,并画图加以说明.【变式】如图,把边长为1的正方形ABCD绕顶点A逆时针旋转30°到正方形AB′C′D′,则它们的公共部分的面积等于_________.【例6】如图,已知△ABC 为等腰直角三角形,∠BAC =900,E 、F 是BC 边上点且∠EAF =45°.求证:222EF CF BE =+.ACF EB。

《图形的旋转》教案及教学反思(精选7篇)

《图形的旋转》教案及教学反思(精选7篇)

《图形的旋转》教案及教学反思(精选7篇)《图形的旋转》及篇1【教学内容】义务教育课程标准北师大版试验教材六年级上册第三单元第34页“图形的变换”。

【教学目标】1、通过观察、操作、想象,经历一个简单图形经过平移或旋转制作复杂图形的过程,体验图形的变换,发展空间观念。

2、借助方格纸上的操作和分析,有条理地表达图形的平移或旋转的变换过程。

3、利用七巧板在方格纸上变换各种图形,进一步提高学生的想象能力。

【教学重、难点】通过观察、操作活动,说出图形的平移或旋转的变换过程。

【教具、学具准备】三角尺、直尺、彩笔、圆规、每人准备一张方格纸,4张大小相等的等腰直角三角形(硬纸)、一副七巧板【个性化修改】难点:1、在于学生对轴对称的理解。

轴对称是图形变换的一种方法。

2、学生对于旋转的度数的把握。

【】教学过程一、创设情境师:在以前的学习中我们已初步认识了平移和旋转,下面请同学们用一个三角形在方格纸上边摆边说,说说什么是平移、什么是旋转。

学生在自己的方格纸上操作交流,然后请几位学生展示。

师:同学们我们在分析图形的变换时,不仅要说出它的平移或旋转情况,还要说清楚是怎样平移或旋转的,这样就能清楚地知道它的变换过程。

师:同学们的'交流很好,下面请同桌的两个同学互相合作,用两个三角形自己设计一个图形,然后进行变换,并说一说它的变换过程。

(学生进行自己的设计与操作,师巡视指导)师:同学们做得很好。

下面请几个同学上来演示他们设计的图形,并说一说它是怎样变换图形的。

如果是经过旋转组成的图案,每旋转一次,都应说一说是什么图形绕者哪一点旋转的?二、尝试练习:师:接下来,请同学们观察下图,边观察边思考,并拿出课前准备好的方格纸和三角形,分别给四个三角形标上A、B、C、D,自己摆一摆,移一移,转一转,进行图形的变换,然后按照下面老师提出的四个问题,与同桌同学进行交流。

(1)四个三角形A、B、C、D如何变换得到“风车”图形?(2)“风车”图形中的四个三角形如何变换得到长方形?(3)长方形中的四个三角形如何变换得到正方形?(4)正方形中的四个三角形如何变换回到最初的图形?学生自己操作,同桌交流图形变换的方法,教师巡视指导。

《图形的旋转》练习题

《图形的旋转》练习题

《图形的旋转》练习题一、判断题1、图形的旋转是图形沿着某个点旋转一定的角度。

()2、图形的旋转是由旋转中心、旋转方向和旋转角度所决定的。

()3、图形的旋转改变了图形的形状和大小。

()4、图形的旋转不改变图形的形状和大小。

()5、一个图形围绕某一点旋转一定角度后,只要与原来的图形重合,那么这个图形就被旋转对称了。

()6、一个图形围绕某一点旋转一定角度后,只要与原来的图形不重合,那么这个图形就不是旋转对称的。

()7、旋转对称图形是旋转对称的。

()8、旋转对称的图形是旋转对称的。

()9、一个图形如果和另一个图形是旋转对称的,那么这两个图形一定也是轴对称的。

()10、一个图形如果和另一个图形是轴对称的,那么这两个图形一定是旋转对称的。

()二、填空题1、在平面内,将一个图形绕某点转动一个角度,这样的图形运动称为__________。

2、在平面内,将一个图形绕某点转动一个角度,这样的图形变换称为__________。

3、在平面内,将一个图形绕某点转动一个角度,这样的图形变换称为__________。

4、在平面内,将一个图形绕某点转动一个角度,这样的图形变换称为__________。

5、在平面内,将一个图形绕某点转动一个角度,这样的图形变换称为__________。

6、在平面内,将一个图形绕某点转动一个角度,这样的图形变换称为__________。

7、在平面内,将一个图形绕某点转动一个角度,这样的图形变换称为__________。

8、在平面内,将一个图形绕某点转动一个角度,这样的图形变换称为__________。

9、在平面内,将一个图形绕某点转动一个角度,这样的图形变换称为__________。

10、在平面内,将一个图形绕某点转动一个角度,这样的图形变换称为__________。

《图形的平移与旋转》复习全攻略【介绍】《图形的平移与旋转》是初中数学中的重要一课,它涉及到平面几何的基本概念和变换方法。

在这篇复习全攻略中,我们将一起回顾图形的平移和旋转的基本概念、考点、解题技巧以及难点解析,帮助大家充分掌握这一课的内容。

《图形的旋转》说课稿(精选6篇)

《图形的旋转》说课稿(精选6篇)

《图形的旋转》说课稿(精选6篇)《图形的旋转》说课稿(精选6篇)作为一位兢兢业业的人民教师,可能需要进行说课稿编写工作,说课稿有助于顺利而有效地开展教学活动。

那么什么样的说课稿才是好的呢?以下是小编收集整理的《图形的旋转》说课稿,希望能够帮助到大家。

《图形的旋转》说课稿篇1一、说教学内容北师大版小学数学第七册第四单元第一节《图形的旋转》二、教材的地位和作用我在尊重教材的基础上,,让学生在充分的经历与欣赏中感悟旋转;同时针对学生思维活跃的特点,引导学生对比图形旋转前后的变化,以渗透刚体变换的思想。

三、说教学目标知识目标:了解一个简单图形经过旋转形成复杂图案的过程,并能在方格纸上将简单图形旋转90度,运用旋转设计图案。

能力目标:运用观察、操作、归纳、联想等思维方法培养学生抽象思维能力,发展空间观念。

情感目标:感悟数学的美,培养学生学习数学的兴趣和热爱生活的情感。

教学难点:认识图形的旋转,解一个简单图形经过旋转形成复杂图案的过程,能在方格纸上将简单图形旋转90度。

教学难点是:能在方格纸上将简单图形旋转90度,并运用旋转设计图案。

三、说教法与学法学习本单元前,学生只初步感受到了生活中的平移和旋转现象,接触了两种图形变换方式:对称、平移。

本课是把学生的视角引入到第三种图形变换——旋转,意在通过欣赏、探索、创作等一系列活动,使学生体验到简单图形变成复杂图案的过程,理解旋转的中心点、方向、角度不同,形成的图案也不同,进一步发展学生的空间观念,为今后继续学习图形变换奠定基础。

四年级学生,形象思维在其认知过程中仍占主导地位。

因此,要本着“边操作边感悟”的原则,让学生在经历中体会旋转的三要素,感受图形旋转带来的变换美。

四、说教学准备图片、小黑板、方格纸、自制风车五、流程设计:(一)游戏激趣,感受图形的旋转此环节通过创设情景,初步感受旋转。

利用学生比较喜欢的情景,即风车,美丽的图形等引入,极大地激发了学生的学习热情。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图形的旋转
知识要点
1、旋转:将一个图形绕着某点O转动一个角度的变换叫做旋转。

其中,O叫做旋转中心,转动的角度叫做旋转角。

2、旋转性质
①旋转后的图形与原图形全等
②对应线段与O形成的角叫做旋转角
③各旋转角都相等
3、平移:将一个图形沿着某条直线方向平移一定的距离的变换叫做平移。

其中,该直线的
方向叫做平移方向,该距离叫做平移距离。

4、平移性质
①平移后的图形与原图形全等
②两个图形的对应边连线的线段平行相等(等于平行距离)
③各组对应线段平行且相等
5、中心对称与中心对称图形
①中心对称:若一个图形绕着某个点O旋转180°,能够与另一个图形完全重合,则这两个图形关于这个点对称或中心对称。

其中,点O叫做对称中心、两个图形的对应点叫做关于中心的对称点。

②中心对称图形:若一个图形绕着某个点O旋转180°,能够与原来的图形完全重合,则这个图形叫做中心对称图形。

其中,这个点叫做该图形的对称中心。

6、轴对称与轴对称图形
(1)轴对称:若两个图形沿着某条轴对折,能够完全重合,则这两个图形关于这条轴对称或它们成轴对称。

其中,这条轴叫做对称轴。

注:轴对称的性质:①两个图形全等;②对应点连线被对称轴垂直平分(2)轴对称图形:若一个图形沿着某条轴对折,能够完全重合,则这个图形叫做轴对称图形。

7、点的对称变换
(1)、关于原点对称的点的特征
两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P'(-x,-y)
(2)、关于x轴对称的点的特征
两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x 轴的对称点为P'(x,-y)
(3)、关于y轴对称的点的特征
两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y 轴的对称点为P'(-x,y)
注:y=x的直线是过一三象限的角平分线,y=-x的直线是过二四象限的角平分线。

综合练习
1(1)将一个平面图形F上的每一点,绕这个平面一_____ 点旋转,得到图形F’,图形的这种变换就叫做旋转。

(2)对应点到对应中心的距离____________.
(3)对应点与旋转中心所成的角彼此_______,且等于_________角
(4)旋转不改变图形的________和_______.
2、如图,将△ABC绕点A旋转50°后成为△AB′C′,那么点B的对应点是_____,点C的对应点是_________,线段AB的对应线段是线段________,线段BC的对应线段是线段
_________;∠B的对应角是_________,∠C的对应角是__________,旋转中心是点_______,旋转的角度是_____________;
3、如图,△ABC是等腰三角形,∠BAC=36°,D是BC上一点,
△ABD经过旋转后到达△ACE的位置,
⑴旋转中心是哪一点?
⑵旋转了多少度?
⑶如果M是AB的中点,那么经过上述旋转后,点M转到了
什么位置?
4、如图,四边形ABCD是正方形,△DAE旋转后能与△DCF重合。

⑴旋转中心是哪一点?
⑵旋转了多少度?
⑶如果连接EF,那么△DEF是怎样的三角形?
E
C D
E
F
5:钟表的分针匀速旋转一周需要60分. (1)指出它的旋转中心;
(2)经过20分,分针旋转了多少度?
6
7、如图,△ABC 按逆时针方向转动一个角后到△AB ′
C ′,则线段AB=_______,AC=_______,BC=________;∠BAC=_________,∠B=_________,∠C=___________;
8:已知:把△ABC 顺时针旋转60°后能与△A
’BC ’重合,
求:(1)找出旋转中心, (2)指出对应顶点和对应边, (3)指出旋转角
(4)连接A A ’, △ABA ’是什么三角形?为什么?连接CC ’,△CBC ’呢?
9:如图,四边形ABCD 是长方形,四边形AEFG 也是长方形,E 在AD 上,如果长方形ABCD
旋转后能与长方形AEFG 重合,那么
(1)旋转中心是哪一点? A B C B′
A
(2)旋转角是几度?
10:如图,如果四边形CDEF 旋转后能与正方形ABCD 重合,那么图形所在的平面上,可以作旋转中心的点共有几个?
11:如图:若∠AOD=∠BOC=60°,A 、O 、C 三点在同一条线上,△AOB 与△COD 是能够重合的
图形。

求:
(1)旋转中心, (2)旋转角度数, (3)图中经过旋转后能重合的三 角形共有几对?若A 、O 、C 三点不共线,结论还成立 吗?为什么?
(4)求当△BOC 为等腰直角三角形 时的旋转角度
(5)若∠A=15°,则求当A 、C 、B 在同一条线上时的旋 转角度
12、画出△ABC 绕点A 逆时针90°后的图形。

13、画出所绘图形绕点D 顺时针旋转90°后的图形,再经几次90°旋转可以与原图重合?
A B
C
14、如图,△ACD 、△ECB 都是等边三角形,画出△ACE 以点C 为旋转中心顺时针方向旋转 60°后的三角形。

15、如图所示的图形,绕哪一点旋转多少度方能与自身重合?
⑴ ⑵
16、正六边形ABCDEF 中,点O 是对角线的交点,正六边形ABCDE 以点O 为旋转中心旋转多少度后才能与原来的图形重合?
17、根据下面的图形镶嵌图,试说明图形2、3、4、5、6分别可以看成由图形1经过图形的什么运动而得到。

若是轴对称,请指出对称轴;若是平移,请指出平移的方向与平移的距离;若是旋转,请指出旋转的中心与旋转的角度;若是几个运动的结合,请分别加以说明。

A
B C
D
B
D
E。

相关文档
最新文档