概率论与数理统计练习题练习题及参考答案(东师)

合集下载

概率论与数理统计练习题(含答案)

概率论与数理统计练习题(含答案)

第一章 随机事件及其概率练习: 1. 判断正误(1)必然事件在一次试验中一定发生,小概率事件在一次试验中一定不发生。

(B )(2)事件的发生与否取决于它所包含的全部样本点是否同时出现。

(B )(3)事件的对立与互不相容是等价的。

(B ) (4)若()0,P A = 则A =∅。

(B )(5)()0.4,()0.5,()0.2P A P B P AB ===若则。

(B ) (6)A,B,C 三个事件至少发生两个可表示为AB BC AC ⋃⋃(A ) (7)考察有两个孩子的家庭孩子的性别,{()Ω=两个男孩(,两个女孩),(一个男孩,}一个女孩),则P{}1=3两个女孩。

(B )(8)若P(A)P(B)≤,则⊂A B 。

(B ) (9)n 个事件若满足,,()()()i j i j i j P A A P A P A ∀=,则n 个事件相互独立。

(B )(10)只有当A B ⊂时,有P(B-A)=P(B)-P(A)。

(A ) 2. 选择题(1)设A, B 两事件满足P(AB)=0,则©A. A 与B 互斥B. AB 是不可能事件C. AB 未必是不可能事件D. P(A)=0 或 P(B)=0 (2)设A, B 为两事件,则P(A-B)等于(C)A. P(A)-P(B)B. P(A)-P(B)+P(AB)C. P(A)-P(AB)D. P(A)+P(B)-P(AB) (3)以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为(D)A. “甲种产品滞销,乙种产品畅销”B. “甲乙两种产品均畅销”C. “甲种产品滞销”D. “甲种产品滞销或乙种产品畅销”(4)若A, B 为两随机事件,且B A ⊂,则下列式子正确的是(A) A. P(A ∪B)=P(A) B. P(AB)=P(A) C. P(B|A)=P(B) D. P(B-A)=P(B)-P(A) (5)设(),(),()P A B a P A b P B c ⋃===,则()P AB 等于(B)A. ()a c c + B . 1a c +-C.a b c +- D. (1)b c -(6)假设事件A 和B 满足P(B|A)=1, 则(B)A. A 是必然事件 B . (|)0P B A = C. A B ⊃ D. A B ⊂ (7)设0<P(A)<1,0<P(B)<1, (|)(|)1P A B P A B += 则(D)A. 事件A, B 互不相容B. 事件A 和B 互相对立C. 事件A, B 互不独立 D . 事件A, B 互相独立8.,,.,,.D ,,.,,.,,1419.(),(),(),(),()37514131433.,.,.,.,37351535105A B A AB A B B AB A B C AB A B D AB A B P B A P B A P AB P A P B A B C φφφφ≠=≠====对于任意两个事件必有(C )若则一定独立;若则一定独立;若则有可能独立;若则一定不独立;已知则的值分别为:(D)三解答题1.(),(),(),(),(),(),().P A p P B q P AB r P A B P AB P A B P AB ===设求下列事件的概率:解:由德摩根律有____()()1()1;P A B P AB P AB r ⋃==-=-()()()();P AB P B AB P B P AB q r =-=-=-()()()()(1)()1;P A B P A P B P AB p q q r r p ⋃=+-=-+--=+-________()()1[()()()]1().P AB P A B P A P B P AB p q r =⋃=-+-=-+-2.甲乙两人独立地对同一目标射击一次,命中率分别是0.6和0.5,现已知目标被命中,求它是甲射击命中的概率。

概率论与数理统计练习题集及答案

概率论与数理统计练习题集及答案

概率论与数理统计练习题集及答案一、选择题:1.某人射击三次,以i A 表示事件“第i 次击中目标”,则事件“三次中至多击中目标一次”的正确表示为 A 321A A A ++ B 323121A A A A A A ++ C 321321321A A A A A A A A A ++ D 321A A A2.掷两颗均匀的骰子,它们出现的点数之和等于8的概率为 A365 B 364 C 363 D 362 3.设随机事件A 与B 互不相容,且0)(,0)(>>B P A P ,则A )(1)(B P A P -= B )()()(B P A P AB P =C 1)(=+B A PD 1)(=AB P4.随机变量X 的概率密度为⎩⎨⎧<≥=-000)(2x x ce x f x ,则=EXA 21B1 C2 D 415.下列各函数中可以作为某随机变量的分布函数的是A +∞<<∞-+=x x x F ,11)(21 B ⎪⎩⎪⎨⎧≤>+=001)(2x x x x x FC +∞<<∞-=-x e x F x ,)(3D +∞<<∞-+=x x x F ,arctan 2143)(4π6.已知随机变量X 的概率密度为)(x f X ,令X Y 2-=,则Y 的概率密度)(y f Y 为A )2(2y f X -B )2(y f X -C )2(21y f X -- D )2(21y f X -7.已知二维随机向量),(Y X 的分布及边缘分布如表hg p fe d x c b a x p y y y X Y Y j Xi 61818121321,且X 与Y 相互独立,则=h A 81 B 83 C 41 D 318.设随机变量]5,1[~U X ,随机变量)4,2(~N Y ,且X 与Y 相互独立,则=-)2(Y XY EA3 B6 C10 D129.设X 与Y 为任意二个随机变量,方差均存在且为正,若EY EX EXY ⋅=,则下列结论不正确的是A X 与Y 相互独立B X 与Y 不相关C 0),cov(=Y XD DY DX Y X D +=+)(答案:1. B2. A 6. D 7. D 8. C 9. A1.某人射击三次,以i A 表示事件“第i 次击中目标”,则事件“三次中恰好击中目标一次”的正确表示为 C A 321A A A ++ B 323121A A A A A A ++C 321321321A A A A A A A A A ++D 321A A A2.将两封信随机地投入4个邮筒中,则未向前两个邮筒中投信的概率为 AA 2242B 2412C C C 24!2AD !4!23.设随机事件A 与B 互不相容,且0)(,0)(>>B P A P ,则 D A )()|(A P B A P = B )()()(B P A P AB P = C )()()|(B P A P B A P = D 0)|(=B A P4.随机变量X 的概率密度为⎩⎨⎧∈=其他),0(2)(a x x x f ,则=EX AA 32B1 C 38 D316 5.随机变量X 的分布函数⎩⎨⎧≤>+-=-0)1()(x x e x A x F x,则=A B A0 B1 C2 D36.已知随机变量X 的概率密度为)(x f X ,令X Y 3-=,则Y 的概率密度)(y f Y 为 DA )3(3y f X -B )3(y f X -C )3(31y f X --D )3(31y f X -7.已知二维随机向量),(Y X 的分布及边缘分布如表hg p fe d x c b a x p y y y X Y Y j Xi 61818121321,且X 与Y 相互独立,则=e B A 81 B 41 C 83 D 318.设随机变量Y X ,相互独立,且)5.0,16(~b X ,Y 服从参数为9的泊松分布,则=+-)12(Y X D CA-14 B13 C40 D419.设),(Y X 为二维随机向量,则X 与Y 不相关的充分必要条件是 D A X 与Y 相互独立 B EY EX Y X E +=+)( C DY DX DXY ⋅= D EY EX EXY ⋅= 一、填空题1.设A ,B 是两个随机事件,5.0)(=A P ,8.0)(=+B A P ,)1(若A 与B 互不相容,则)(B P = ;)2(若A 与B 相互独立,则)(B P = .2.一袋中装有10个球,其中4个黑球,6个白球,先后两次从袋中各取一球不放回.已知第一次取出的是黑球,则第二次取出的仍是黑球的概率为 .3.设离散型随机变量X 的概率分布为}{k a k X P 3==, ,2,1=k ,则常数=a .4.设随机变量X 的分布函数为⎪⎩⎪⎨⎧>≤≤<=2,120,0,0)(2x x ax x x F则常数=a ,}31{<<X P = . 5.设随机变量X 的概率分布为则)33(2+X E = .6.如果随机变量X 服从],[b a 上的均匀分布,且3)(=X E ,34)(=X D ,则a = ,b = .7.设随机变量X ,Y 相互独立,且都服从参数为6.0的10-分布,则}{Y X P == .8.设X ,Y 是两个随机变量,2)(=X E ,20)(2=X E ,3)(=Y E ,34)(2=Y E ,5.0=XY ρ,则)(Y X D - = .答案:1. 3.0,6.02. 313. 414.41,435.5.46. 1,57. 0.52 8. 211.设A ,B 是两个随机事件,3.0)(=A P ,)()(B A P AB P =,则)(B P = .2.甲、乙、丙三人在同一时间分别破译某一个密码,破译成功的概率依次为,,,则密码能译出的概率为 .3.设随机变量X 的概率分布为,5,4,3,2,1,15}{===k kk X P 则}31123{<<X P = . 4.设随机变量X 的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤≤<=2,120,sin 0,0)(ππx x x x x F ,则=<}6{πX P .5.设随机变量X 服从]3,1[上的均匀分布,则X1的数学期望为 .6.设随机变量21,X X 相互独立,其概率分布分别为则}{21X X P == .7.设X ,Y 是两个随机变量,)3,0(~2N X ,)4,1(~2N Y ,X 与Y 相互独立,则~Y X + .8.设随机变量21,X X 相互独立,且都服从0,1上的均匀分布,则=-)3(21X X D .9.设随机变量X 和Y 的相关系数为5.0,=)(X E 0)(=Y E ,=)(2X E 2)(2=Y E ,则2)(Y X E + = . 答案:1. 0.72.3.314. 0.55. 3ln 216. 957. )5,1(2N8. 659. 6二、有三个箱子,第一个箱子中有3个黑球1个白球,第二个箱子中有3个黑球3个白球,第三个箱子中有3个黑球5个白球. 现随机地选取一个箱子,再从这个箱子中任取1个球.1求取到的是白球的概率;2若已知取出的球是白球,求它属于第二个箱子的概率.解:设事件i A 表示该球取自第i 个箱子)3,2,1(=i ,事件B 表示取到白球.2411853163314131)|()()(31=⨯+⨯+⨯==∑=i i i A B P A P B P114)()|()()()()|(241163312222=⨯===B P A B P A P B P B A P B A P三、某厂现有三部机器在独立地工作,假设每部机器在一天内发生故障的概率都是2.0. 在一天中,若三部机器均无故障,则该厂可获取利润2万元;若只有一部机器发生故障,则该厂仍可获取利润1万元;若有两部或三部机器发生故障,则该厂就要亏损5.0万元. 求该厂一天可获取的平均利润.设随机变量X 表示该厂一天所获的利润万元,则X 可能取5.0,1,2-,且512.08.0}2{3===X P ,384.08.02.0}1{213=⨯⨯==C X P ,104.0384.0512.01}5.0{=--=-=X P .所以356.1104.0)5.0(384.01512.02)(=⨯-+⨯+⨯=X E 万元四、设随机向量),(Y X 的密度函数为⎩⎨⎧≤≤≤≤=其它,010,10,4),(y x xy y x f .)1(求}{Y X P <;)2(求Y X ,的边缘密度,并判断X 与Y 的独立性.解: 1 5.0)1(24),(}{102110=-===<⎰⎰⎰⎰⎰<dx x x xydy dx dxdy y x f Y X P x yx ;2,,010,24),()(,,010,24),()(1010⎪⎩⎪⎨⎧≤≤===⎪⎩⎪⎨⎧≤≤===⎰⎰⎰⎰∞+∞-∞+∞-其它其它y y xydx dx y x f y f x x xydy dy y x f x f Y X由),()()(y x f y f x f Y X =知随机变量Y X ,相互独立.五、设随机变量X 的密度函数为⎩⎨⎧≤≤=其它,010,3)(2x x x f X ,求随机变量12+=X Y 的密度函数.解法一:Y 的分布函数为)21(}21{}12{}{)(-=-≤=≤+=≤=y F y X P y X P y Y P y F X Y , 两边对y 求导,得⎪⎩⎪⎨⎧≤≤≤-≤-=-=-=其它即,0311210,)1(83)21(23)21(21)(22y y y y y f y f X Y解法二:因为12+=x y 是10≤≤x 上单调连续函数,所以⎪⎩⎪⎨⎧≤≤≤-=≤-=⨯-==其它即,031121)(0,)21(2321)21(3|)(|))(()(22y y y h y y dy y dh y h f y f X Y注:21)(-==y y h x 为12+=x y 的反函数;二、设甲、乙、丙三人生产同种型号的零件,他们生产的零件数之比为5:3:2. 已知甲、乙、丙三人生产的零件的次品率分别为%2%,4%,3. 现从三人生产的零件中任取一个. )1(求该零件是次品的概率;)2(若已知该零件为次品,求它是由甲生产的概率.解:设事件321,,A A A 分别表示取到的零件由甲、乙、丙生产,事件B 表示取到的零件是次品.1 028.0%2105%4103%3102)|()()(31=⨯+⨯+⨯==∑=i i i A B P A P B P ;2 143028.0%32.0)()|()()()()|(1111=⨯===B P A B P A P B P B A P B A P .三、设一袋中有6个球,分别编号1,2,3,4,5,6. 现从中任取2个球,用X 表示取到的两个球的最大编号. )1(求随机变量X 的概率分布;)2(求EX .解:X 可能取6,5,4,3,2,且6,5,4,3,2,1511}{26=-=-==k k C k k X P所以X 的概率分布表为3/115/45/115/215/165432P X且31415162=-⨯=∑=k k k EX .四、设随机向量),(Y X 的密度函数为⎩⎨⎧≤≤≤≤=其它,020,10,),(y x x y x f .)1(求}1{≤+Y X P ;)2(求Y X ,的边缘密度,并判断X 与Y 的独立性.解:1 31),(}1{1020101====≤+⎰⎰⎰⎰⎰≤+dx x xdy dx dxdy y x f Y X P x y x ; 2,,020,21),()(,,010,2),()(1020⎪⎩⎪⎨⎧≤≤===⎪⎩⎪⎨⎧≤≤===⎰⎰⎰⎰∞+∞-∞+∞-其它其它y xdx dx y x f y f x x xdy dy y x f x f Y X由),()()(y x f y f x f Y X =知随机变量Y X ,相互独立.五、设随机变量X 服从区间]3,0[上的均匀分布,求随机变量13-=X Y 的密度函数.解法一:由题意知⎩⎨⎧≤≤=其它,030,3/1)(x x f X . Y 的分布函数为)31(}31{}13{}{)(+=+≤=≤-=≤=y F y X P y X P y Y P y F X Y , 两边对y 求导,得⎪⎩⎪⎨⎧≤≤-≤+≤=+=其它即,0813310,91)31(31)(y y y f y f X Y 解法二:因为13-=x y 是30≤≤x 上单调连续函数,所以⎪⎩⎪⎨⎧≤≤-≤+=≤=⨯==其它即,081,331)(0,913131|)(|))(()(y y y h dy y dh y h f y f X Y 注:31)(+==y y h x 为13-=x y 的反函数; 三、已知一批产品中有90%是合格品,检查产品质量时,一个合格品被误判为次品的概率为,一个次品被误判为合格品的概率是.求:1任意抽查一个产品,它被判为合格品的概率; 2一个经检查被判为合格的产品确实是合格品的概率. 解:设=1A “确实为合格品”,=2A “确实为次品”, =B “判为合格品”1)|()()|()()(2211A B P A P A B P A P B P += 859.004.01.095.09.0=⨯+⨯=29953.0)()|()()|(111==B P A B P A P B A P四、设二维连续型随机向量),(Y X 的概率密度为⎩⎨⎧<<=-其他0),(yx e y x f y,求:1边缘密度函数)(x f X 和)(y f Y ;2判断X 与Y 是否相互独立,并说明理由; 3}1{<+Y X P . 解:1⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==-+∞-∞+∞-⎰⎰000000),()(x x ex x dy e dy y x f x f x x y X⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==--∞+∞-⎰⎰00000),()(0y y yey y dx e dx y x f y f y y y Y 2)()(),(y f x f y x f Y X ≠ ∴ X 与Y 不独立 315.0210121}1{----+-==<+⎰⎰e e dxdy e Y X P xxy四、设二维连续型随机向量),(Y X 的概率密度为⎩⎨⎧<<>=-其他10,02),(y x ye y x f x,求:1边缘密度函数)(x f X 和)(y f Y ;2判断X 与Y 是否相互独立,并说明理由; 3}{Y X P <. 解:1⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==--∞+∞-⎰⎰0000002),()(10x x ex x dy ye dy y x f x f x x X⎩⎨⎧<<=⎪⎩⎪⎨⎧<<==⎰⎰+∞-∞+∞-其他其他01020102),()(0y y y dx ye dx y x f y f x Y2)()(),(y f x f y x f Y X = ∴ X 与Y 独立 3142}{1101-==<--⎰⎰e dxdy ye Y X P x x一、单项选择题1. 对任何二事件A 和B,有=-)(B A P C .A. )()(B P A P -B. )()()(AB P B P A P +-C. )()(AB P A P -D. )()()(AB P B P A P -+ 2. 设A 、B 是两个随机事件,若当B 发生时A 必发生,则一定有 B . A. )()(A P AB P = B. )()(A P B A P =⋃ C. 1)/(=A B P D. )()/(A P B A P = 3. 甲、乙两人向同一目标独立地各射击一次,命中率分别为0.5,0.8,则目标被击中的概率为 C 甲乙至少有一个击中A. 0.7B. 0.8C. 0.9D.0.854. 设随机变量X 的概率分布为则a,b 可以是 D 归一性. A. 4161==,b a B. 125121==,b a C. 152121==,b a D.3141==,b a 5. 设函数0.5,()0,a x bf x ≤≤⎧=⎨⎩其它 是某连续型随机变量X 的概率密度,则区间],[b a 可以是 B 归一性.A. ]1,0[B. ]2,0[C. ]2,0[D. ]2,1[6. 设二维随机变量),(Y X 的分布律为则==}0{XY P D .A. 0.1B. 0.3C.D.7. 设随机变量X 服从二项分布),(p n B ,则有 D 期望和方差的性质.A. 12(-X E np 2)=B. 14)12(-=-np X EC. 1)1(4)12(--=-p np X DD. )1(4)12(p np X D -=- 8.已知随机变量(,)X B n p ,且 4.8, 1.92EX DX ==,则,n p 的值为 AA.8,0.6n p == B.6,0.8n p == C.16,0.3n p ==D.12,0.4n p == 9.设随机变量(1,4)XN ,则下式中不成立的是 BA. 1EX =B. 2DX =C. {1}0P X ==D.{1}0.5P X ≤=10. 设X 为随机变量,1,2=-=DX EX ,则)(2X E 的值为 A 方差的计算公式.A .5 B. 1- C. 1 D. 311. 设随机变量X 的密度函数为⎩⎨⎧≤≤+=其它,010,)(x b ax x f ,且EX=0,则A 归一性和数学期望的定义.A. 6,4a b =-=B. 1,1a b =-=C. 6,1a b ==D.1,5a b ==12. 设随机变量X 服从参数为的指数分布,则下列各项中正确的是 A A. ()0.2,()0.04E X D X == B. ()5,()25E X D X == C. ()0.2,()4E X D X == D. ()2,()0.25E X D X == 13. 设(,)X Y 为二维连续型随机变量,则X 与Y 不相关的充分必要条件是 D .A. X 与Y 相互独立B.()()()E X Y E X E Y +=+C. ()()()E XY E X E Y =D. 221212(,)(,,,0)X Y N μμσσ 二、填空题1. 已知PA=,PA-B=,且A 与B 独立,则PB= .2. 设B A ,是两个事件,8.0)(,5.0)(=⋃=B A P A P ,当A, B 互不相容时,PB=;当A, B 相互独立时,PB=53 .3. 设在试验中事件A 发生的概率为p,现进行n 次重复独立试验,那么事件A 至少发生一次的概率为1(1)n p --.4. 一批产品共有8个正品和2个次品,不放回地抽取2次,则第2次才抽得次品的概率P =845. 5. 随机变量X 的分布函数Fx 是事件 PX )x ≤ 的概率.6. 若随机变量X ~ )0)(,(2>σσμN ,则X 的密度函数为 .7.设随机变量X 服从参数2=θ的指数分布,则X 的密度函数()f x = ; 分布函数Fx= .8. 已知随机变量X 只能取-1,0,1,三个值,其相应的概率依次为125236,,c c c,则c = 2 归一性 . 9. 设随机变量X 的概率密度函数为2,01()0,x x f x λ⎧<<=⎨⎩其它,则λ= 3归一性 .10. 设随机变量X ~2(2,)N σ,且{23}0.3P X <<=,则{1}P X <=.22232{23}{}11()(0)0.3,(0)0.5()=0.821211{1}{}=()=1()=0.2X P X P X P X P σσσσσσσσσ---<<=<<=Φ-Φ=Φ=∴Φ--<=<Φ--Φ又,,11. 设随机变量X ~N1,4,φ=,φ=,则P{|X |﹥2}= .{||>2}1{||2}1{22}2112111{}1{1.50.5}22221((0.5)( 1.5)0.9332),( 1.5)0.06680.69150.06680.31(1.5)=1-{||>2}=1((0.5)( 1.5))=751)3(P X P X P X X X P P P X ==-≤=--≤≤-----=-≤≤=--≤≤=-Φ-Φ-Φ-=-Φ∴-Φ-Φ--=-又 12. 设随机变量X ~ ),(211σμN ,Y ~ ),(222σμN ,且X 与Y 相互独立,则X+Y ~221212(,)N μμσσ++ 分布.13. 设随机变量X 的数学期望EX 和方差0DX >都存在,令DXEX X Y -=,则____0__=EY ;___1___=DY .14. 若X 服从区间0,2上的均匀分布,则2()E X =4/3 . 15. 若X ~(4,0.5)B ,则(23)D X -= 9 . 17. 设随机变量X 的概率密度23,01()0,x x f x ⎧<<=⎨⎩其它,()_____E X =,()_____D X =.18. 设随机变量X 与Y 相互独立,1,3DX DY ==,则(321)D X Y -+=(3)(2)9()4()D X D Y D X D Y +=+=21 .三、计算题1. 设随机变量X 与Y 独立,X ~(1,1)N ,Y ~)2,2(2N ,且0.2XY ρ=,求随机变量函数23Z X Y =-的数学期望与方差. 四、证明题1. 设随机变量X 服从标准正态分布,即X ~)1,0(N ,2X Y =,证明:Y 的密度函数为⎪⎩⎪⎨⎧≤>=-0,00,21)(2y y e yy f y Y π .五、综合题1.设二维随机变量X,Y 的联合密度为⎩⎨⎧<<<<=其它,010,10,6),(2y x xy y x f ,求:1关于X,Y 的边缘密度函数;2判断X,Y 是否独立;3求{}P X Y >.。

概率论与数理统计-东北师范大学考试及答案

概率论与数理统计-东北师范大学考试及答案

《 概率论与数理统计》练习题一一、判断正误,在括号内打√或×1.n X X X ,,,21 是取自总体),(2σμN 的样本,则∑==ni iXnX 11服从)1,0(N 分布; 错2.设随机向量),(Y X 的联合分布函数为),(y x F ,其边缘分布函数)(x F X 是)0,(x F ;错 3.设{}∞+-∞=Ω<<x x |,{}20|<x x A ≤=,{}31|<x x B ≤=,则B A 表示{}10|<<x x ; 错4.若事件A 与B 互斥,则A 与B 一定相互独立; 错 5.对于任意两个事件B A 、,必有=B A B A ;错6.设A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为“甲种产品滞销或乙种产品畅销”; 对7.B A 、为两个事件,则A B A AB = ; 对 8.已知随机变量X 与Y 相互独立,4)(,8)(==Y D X D ,则4)(=-Y X D ; 错9.设总体)1,(~μN X , 1X ,2X ,3X 是来自于总体的样本,则321636161ˆX X X ++=μ是μ的无偏估计量; 错10.回归分析可以帮助我们判断一个随机变量和另一个普通变量之间是否存在某种相关关系。

对 二、填空题1.设C B A 、、是3个随机事件,则事件“A 和B 都发生而C 不发生”用C B A 、、表示2.设随机变量X 服从二项分布),(p n B ,则EXDX3.是 ⎪⎩⎪⎨⎧≤≤-=,,0,1)(其他b x a a b x f4.若事件C B A 、、相互独立,且25.0)(=A P ,5.0)(=B P ,4.0)(=C P ,则)(C B A P =73.0 ;5.设随机变量X 的概率分布为则a 6.设随机变量X 的概率分布为7.若随机变量X 与Y 相互独立,2)(,)(==Y E a X E ,则)(XY E8.设1θ 与2θ 是未知参数θθ满足)()(21θθ D D <,则称1θ 比2θ有效;9.设n X X X ,,,21 是从正态总体),(2σμN 抽得的简单随机样本,已知202σσ=,现检验假设0μμ=:H 00)(σμ-X n 服从)1,0(N ;10.在对总体参数的假设检验中,若给定显著性水平α(10<<α),则犯第一类错误的概三、计算题1.已知随机事件A 的概率5.0)(=A P ,事件B 的概率6.0)(=B P ,条件概率8.0)|(=A B P ,试求事件B A 的概率)(B A P 。

山东师范大学《概率论与数理统计》期末考试复习题及参考答案

山东师范大学《概率论与数理统计》期末考试复习题及参考答案
A.F(x) = F(-x)
B.F(x) = - F(-x)
C.f (x) = f (-x)
D.f (x) = - f (-x)
参考答案:C
32.(1.5分)
参考答案:C
33.(1.5分)
参考答案:A
34.(1.5分)
参考答案:B
35.(1.5分)
参考答案:B
36.(1.5分)
在一个确定的假设检验中,与判断结果相关的因素有()
A.样本值与样本容量
B.显著性水平α
C.检验统计量
D.A,B,C同时成立
参考答案:D
37.(1.5分)
参考答案:A
38.(1.5分)
参考答案:B
39.(1.5分)
D.以上都不对
参考答案:C
40.(1.5分)
A.1/27
B.8/27
C.19/27
D.26/27
参考答案:C
41.(1.5分)
下列函数中可作为随机变量分布函数的是( )
参考答案:C
42.(1.5分)
A.1/2
B.1
C.-1
D.3/2
参考答案:B
43.(1.5分)
在对单个正态总体均值的假设检验中,当总体方差已知时,选用()
A.t检验法
B.u检验法
C.F检验法
D参考答案:B
44.(1.5分)
A.增大
B.减少
C.不变
D.增减不变
参考答案:C
45.(1.5分)
参考答案:B
参考答案:B
51.(1.5分)
对于事件A,B,下列命题正确的是
C.若A,B互不相容,且概率都大于零,则A,B也相互独立。
D

概率论与数理统计习题(含解答,答案)

概率论与数理统计习题(含解答,答案)

概率论与数理统计习题(含解答,答案)概率论与数理统计复习题(1)⼀.填空.1.3.0)(,4.0)(==B P A P 。

若A 与B 独⽴,则=-)(B A P ;若已知B A ,中⾄少有⼀个事件发⽣的概率为6.0,则=-)(B A P 。

2.)()(B A p AB p =且2.0)(=A P ,则=)(B P 。

3.设),(~2σµN X ,且3.0}42{ },2{}2{=<<≥==>}0{X P 。

4.1)()(==X D X E 。

若X 服从泊松分布,则=≠}0{X P ;若X 服从均匀分布,则=≠}0{X P 。

5.设44.1)(,4.2)(),,(~==X D X E p n b X ,则==}{n X P6.,1)(,2)()(,0)()(=====XY E Y D X D Y E X E 则=+-)12(Y X D 。

7.)16,1(~),9,0(~N Y N X ,且X 与Y 独⽴,则=-<-<-}12{Y X P (⽤Φ表⽰),=XY ρ。

8.已知X 的期望为5,⽽均⽅差为2,估计≥<<}82{X P 。

9.设1?θ和2?θ均是未知参数θ的⽆偏估计量,且)?()?(2221θθE E >,则其中的统计量更有效。

10.在实际问题中求某参数的置信区间时,总是希望置信⽔平愈愈好,⽽置信区间的长度愈愈好。

但当增⼤置信⽔平时,则相应的置信区间长度总是。

⼆.假设某地区位于甲、⼄两河流的汇合处,当任⼀河流泛滥时,该地区即遭受⽔灾。

设某时期内甲河流泛滥的概率为0.1;⼄河流泛滥的概率为0.2;当甲河流泛滥时,⼄河流泛滥的概率为0.3,试求:(1)该时期内这个地区遭受⽔灾的概率;(2)当⼄河流泛滥时,甲河流泛滥的概率。

三.⾼射炮向敌机发射三发炮弹(每弹击中与否相互独⽴),每发炮弹击中敌机的概率均为0.3,⼜知若敌机中⼀弹,其坠毁的概率是0.2,若敌机中两弹,其坠毁的概率是0.6,若敌机中三弹则必坠毁。

2020年春季《概率论与数理统计》离线考核奥鹏东师参考答案

2020年春季《概率论与数理统计》离线考核奥鹏东师参考答案
离线作业考核
《概率论与数理统计》
2020年春季奥鹏东北师大考核试题标准答案
试读1页答案在最后
满分100分
一、计算题(每题10分,共70分)
1、已知随机事件 的概率 ,事件 的概率 ,条件概率 ,试求事件 的概率 。
解:
因为 , ,所以

进而可得 。
2、设随机变量 ,且 ,试求 , 。
解:
因为随机变量 ,所以
5、若随机变量 在区间[0,1]上服从均匀分布,试求它的标准差 。
解:因为随机变量 在区间[0,1]上服从均匀分布,所以它的方差具有形式如下:

进而开根号可得它的标准差 ;
6、已知 ,试求 。
解:利用均值的性质可得 ;
又因为 ,所以 ;
代入上式可以求得 。
7、设 , 是取自正态总体 的一个容量为2的样本。试判断下列三个估计量是否为 的无偏估计量: , , 并指出其中哪一个方差较小。

由此可得 ,解得 , ;
3、已知连续型随机变量 ,试求它的密度函数 。
解:因为随机变量 服从正态分布,所以它的密度函数具有如下形式:

进而,将 代入上述表达式可得所求的密度函数为:

4、已知随机变量 的概率密度为 ,试求(1)常数 ;(2) 。
解:(1)由于
即 2A=1,A= ,所总体 的样本,所以 。
又因为 ,


所以三个估计量都是 的无偏估计;又因为



所以 的方差最小。
二、证明题(共30分)
设二维连续型随机向量 的联合密度函数为
证明: 与 相互独立。
证明:由二维连续型随机向量 的联合密度函数为
可得两个边缘密度函数分别为:

概率论和数理统计练习题与答案解析

概率论和数理统计练习题与答案解析

概率论与数理统计练习题集及答案一、选择题:1.某人射击三次,以i A 表示事件“第i 次击中目标〞,则事件“三次中至多击中目标一次〞的正确表示为〔 〕〔A 〕321A A A ++ 〔B 〕323121A A A A A A ++ 〔C 〕321321321A A A A A A A A A ++ 〔D 〕321A A A2.掷两颗均匀的骰子,它们出现的点数之和等于8的概率为〔 〕 〔A 〕365 〔B 〕364 〔C 〕363 〔D 〕3623.设随机事件A 与B 互不相容,且0)(,0)(>>B P A P ,则〔 〕〔A 〕)(1)(B P A P -= 〔B 〕)()()(B P A P AB P = 〔C 〕1)(=+B A P 〔D 〕1)(=AB P4.随机变量X 的概率密度为⎩⎨⎧<≥=-00)(2x x ce x f x ,则=EX 〔 〕〔A 〕21〔B 〕1 〔C 〕2 〔D 〕41 5.以下各函数中可以作为某随机变量的分布函数的是〔 〕〔A 〕+∞<<∞-+=x x x F ,11)(21 〔B 〕⎪⎩⎪⎨⎧≤>+=001)(2x x x x x F 〔C 〕+∞<<∞-=-x e x F x ,)(3 〔D〕+∞<<∞-+=x x x F ,arctan 2143)(4π6.随机变量X 的概率密度为)(x f X ,令X Y 2-=,则Y 的概率密度)(y f Y 为〔 〕〔A 〕)2(2y f X - 〔B 〕)2(y f X - 〔C 〕)2(21yf X --〔D 〕)2(21y f X -7.二维随机向量),(Y X 的分布及边缘分布如表hgp fe d x c b a x p y y y XY Y jX i 61818121321,且X 与Y 相互独立,则=h 〔 〕〔A 〕81 〔B 〕83 〔C 〕41 〔D 〕31 8.设随机变量]5,1[~U X ,随机变量)4,2(~N Y ,且X 与Y 相互独立,则=-)2(Y XY E 〔 〕〔A 〕3 〔B 〕6 〔C 〕10 〔D 〕129.设X 与Y 为任意二个随机变量,方差均存在且为正,假设EYEX EXY ⋅=,则以下结论不正确的选项是〔 〕〔A 〕X 与Y 相互独立 〔B 〕X 与Y 不相关 〔C 〕0),cov(=Y X 〔D 〕DY DX Y X D +=+)(答案:1. B2. A3.D4.A5.B6. D7. D8. C9. A1.某人射击三次,以i A 表示事件“第i 次击中目标〞,则事件“三次中恰好击中目标一次〞的正确表示为〔 C 〕 〔A 〕321A A A ++ 〔B 〕323121A A A A A A ++ 〔C 〕321321321A A A A A A A A A ++ 〔D 〕321A A A2.将两封信随机地投入4个邮筒中,则未向前两个邮筒中投信的概率为〔 A 〕〔A 〕2242 〔B 〕2412C C 〔C 〕24!2A 〔D 〕!4!23.设随机事件A 与B 互不相容,且0)(,0)(>>B P A P ,则〔 D 〕 〔A 〕)()|(A P B A P = 〔B 〕)()()(B P A P AB P = 〔C 〕)()()|(B P A P B A P = 〔D 〕0)|(=B A P4.随机变量X 的概率密度为⎩⎨⎧∈=其他),0(2)(a x x x f ,则=EX 〔 A 〕 〔A 〕32〔B 〕1 〔C 〕38 〔D 〕316 5.随机变量X 的分布函数⎩⎨⎧≤>+-=-0)1()(x x e x A x F x,则=A 〔 B 〕 〔A 〕0 〔B 〕1 〔C 〕2 〔D 〕3 6.随机变量X 的概率密度为)(x f X ,令X Y 3-=,则Y 的概率密度)(y f Y 为〔 D 〕〔A 〕)3(3y f X - 〔B 〕)3(yf X - 〔C 〕)3(31y f X -- 〔D 〕)3(31y f X - 7.二维随机向量),(Y X 的分布及边缘分布如表hgp fe d x c b a x p y y y XY Y jX i 61818121321,且X 与Y 相互独立,则=e 〔 B 〕〔A 〕81〔B 〕41 〔C 〕83 〔D 〕31 8.设随机变量Y X ,相互独立,且)5.0,16(~b X ,Y 服从参数为9的泊松分布,则=+-)12(Y X D 〔 C 〕〔A 〕-14 〔B 〕13 〔C 〕40 〔D 〕41 9.设),(Y X 为二维随机向量,则X 与Y 不相关的充分必要条件是〔 D 〕〔A 〕X 与Y 相互独立 〔B 〕EY EX Y X E +=+)( 〔C 〕DY DX DXY ⋅= 〔D 〕EY EX EXY ⋅= 一、填空题A ,B 是两个随机事件,5.0)(=A P ,8.0)(=+B A P ,)1(假设A 与B 互不相容,则)(B P = ;)2(假设A 与B 相互独立,则)(B P = .2.一袋中装有10个球,其中4个黑球,6个白球,先后两次从袋中各取一球〔不放回〕.第一次取出的是黑球,则第二次取出的仍是黑球的概率为 .X 的概率分布为}{k a k X P 3==, ,2,1=k ,则常数=a . X 的分布函数为 则常数=a ,}31{<<X P = .X 的概率分布为则)33(2+X E = .6.如果随机变量X 服从],[b a 上的均匀分布,且3)(=X E ,34)(=X D ,则a = ,b = .X ,Y 相互独立,且都服从参数为6.0的10-分布,则}{Y X P == .X ,Y 是两个随机变量,2)(=X E ,20)(2=X E , 3)(=Y E ,34)(2=Y E ,5.0=XY ρ,则)(Y X D - = .答案:1. 3.0,6.0 2. 313. 414.41,435. 5.46. 1,57. 8. 21A ,B 是两个随机事件,3.0)(=A P ,)()(B A P AB P =,则)(B P = .2.甲、乙、丙三人在同一时间分别破译某一个密码,破译成功的概率依次为0.8,0.7,0.6,则密码能译出的概率为 .X 的概率分布为,5,4,3,2,1,15}{===k kk X P 则}31123{<<X P = . 4.设随机变量X 的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤≤<=2,120,sin 0,0)(ππx x x x x F ,则=<}6{πX P .5.设随机变量X 服从]3,1[上的均匀分布,则X1的数学期望为 .21,X X 相互独立,其概率分布分别为 则}{21X X P == .7.设X ,Y 是两个随机变量,)3,0(~2N X ,)4,1(~2N Y ,X 与Y 相互独立,则~Y X + .8.设随机变量21,X X 相互独立,且都服从[0,1]上的均匀分布,则=-)3(21X X D .9.设随机变量X 和Y 的相关系数为5.0,=)(X E 0)(=Y E ,=)(2X E 2)(2=Y E ,则2)(Y X E + = . 答案:1. 0.72. 0.9763. 314. 0.55. 3ln 216.95 7. )5,1(2N 8. 659. 6二、有三个箱子,第一个箱子中有3个黑球1个白球,第二个箱子中有3个黑球3个白球,第三个箱子中有3个黑球5个白球. 现随机地选取一个箱子,再从这个箱子中任取1个球.〔1〕求取到的是白球的概率;〔2〕假设取出的球是白球,求它属于第二个箱子的概率.解:设事件i A 表示该球取自第i 个箱子)3,2,1(=i ,事件B 表示取到白球.三、某厂现有三部机器在独立地工作,假设每部机器在一天内发生故障的概率都是2.0. 在一天中,假设三部机器均无故障,则该厂可猎取利润2万元;假设只有一部机器发生故障,则该厂仍可猎取利润1万元;假设有两部或三部机器发生故障,则该厂就要亏损5.0万元. 求该厂一天可猎取的平均利润.设随机变量X 表示该厂一天所获的利润〔万元〕,则X 可能取5.0,1,2-,且512.08.0}2{3===X P ,384.08.02.0}1{213=⨯⨯==C X P ,104.0384.0512.01}5.0{=--=-=X P .所以356.1104.0)5.0(384.01512.02)(=⨯-+⨯+⨯=X E 〔万元〕 四、设随机向量),(Y X 的密度函数为⎩⎨⎧≤≤≤≤=其它,010,10,4),(y x xy y x f .)1(求}{Y X P <;)2(求Y X ,的边缘密度,并推断X 与Y 的独立性.解: (1)5.0)1(24),(}{102110=-===<⎰⎰⎰⎰⎰<dx x x xydy dx dxdy y x f Y X P x yx ;(2)由),()()(y x f y f x f Y X =知随机变量Y X ,相互独立.五、设随机变量X 的密度函数为⎩⎨⎧≤≤=其它,010,3)(2x x x f X ,求随机变量12+=X Y 的密度函数.解法一:Y 的分布函数为)21(}21{}12{}{)(-=-≤=≤+=≤=y F y X P y X P y Y P y F X Y ,两边对y 求导,得解法二:因为12+=x y 是10≤≤x 上单调连续函数,所以 注:21)(-==y y h x 为12+=x y 的反函数。

概率论与数理统计答案(华东师大魏宗舒版)

概率论与数理统计答案(华东师大魏宗舒版)

概率论与数理统计答案(华东师大魏宗舒版)第一章 事件与概率1.1 写出下列随机试验的样本空间及表示下列事件的样本点集合。

(1)10件产品中有1件是不合格品,从中任取2件得1件不合格品。

(2)一个口袋中有2个白球、3个黑球、4个红球,从中任取一球,(ⅰ)得白球,(ⅱ)得红球。

解 (1)记9个合格品分别为 921,正正正,, ,记不合格为次,则,,,,,,,,,)()()(){(1913121次正正正正正正正 =Ω,,,,,,,,,)()()()(2924232次正正正正正正正 ,,,,,,,)()()(39343次正正正正正 )}()()(9898次正次正正正,,,,,,=A ){(1次正,,,,)(2次正)}(9次正,,(2)记2个白球分别为1ω,2ω,3个黑球分别为1b ,2b ,3b ,4个红球分别为1r ,2r ,3r ,4r 。

则=Ω{1ω,2ω,1b ,2b ,3b ,1r ,2r ,3r ,4r }(ⅰ) =A {1ω,2ω} (ⅱ) =B {1r ,2r ,3r ,4r }1.2 在数学系的学生中任选一名学生,令事件A 表示被选学生是男生,事件B 表示被选学生是三年级学生,事件C 表示该生是运动员。

(1) 叙述C AB 的意义。

(2)在什么条件下C ABC =成立? (3)什么时候关系式B C ⊂是正确的? (4) 什么时候B A =成立?解 (1)事件C AB 表示该是三年级男生,但不是运动员。

(2) C ABC = 等价于AB C ⊂,表示全系运动员都有是三年级的男生。

(3)当全系运动员都是三年级学生时。

(4)当全系女生都在三年级并且三年级学生都是女生时`。

1.3 一个工人生产了n 个零件,以事件i A 表示他生产的第i 个零件是合格品(n i ≤≤1)。

用i A 表示下列事件:(1)没有一个零件是不合格品;(2)至少有一个零件是不合格品; (3)仅仅只有一个零件是不合格品; (4)至少有两个零件是不合格品。

《概率论与数理统计》习题及答案

《概率论与数理统计》习题及答案

概率论与数理统计 第一部份 习题第一章 概率论基本概念一、填空题1、设A ,B ,C 为3事件,则这3事件中恰有2个事件发生可表示为 。

2、设3.0)(,1.0)(=⋃=B A P A P ,且A 与B 互不相容,则=)(B P 。

3、口袋中有4只白球,2只红球,从中随机抽取3只,则取得2只白球,1只红球的概率为 。

4、某人射击的命中率为0.7,现独立地重复射击5次,则恰有2次命中的概率为 。

5、某市有50%的住户订晚报,有60%的住户订日报,有80%的住户订这两种报纸中的一种,则同时订这两种报纸的百分比为 。

6、设A ,B 为两事件,3.0)(,7.0)(==B A P A P ,则=)(B A P 。

7、同时抛掷3枚均匀硬币,恰有1个正面的概率为 。

8、设A ,B 为两事件,2.0)(,5.0)(=-=B A P A P ,则=)(AB P 。

9、10个球中只有1个为红球,不放回地取球,每次1个,则第5次才取得红球的概率为 。

10、将一骰子独立地抛掷2次,以X 和Y 分别表示先后掷出的点数,{}10=+=Y X A{}Y X B >=,则=)|(A B P 。

11、设B A ,是两事件,则B A ,的差事件为 。

12、设C B A ,,构成一完备事件组,且,7.0)(,5.0)(==B P A P 则=)(C P ,=)(AB P 。

13、设A 与B 为互不相容的两事件,,0)(>B P 则=)|(B A P 。

14、设A 与B 为相互独立的两事件,且4.0)(,7.0)(==B P A P ,则=)(AB P 。

15、设B A ,是两事件,,36.0)(,9.0)(==AB P A P 则=)(B A P 。

16、设B A ,是两个相互独立的事件,,4.0)(,2.0)(==B P A P 则=)(B A P 。

17、设B A ,是两事件,如果B A ⊃,且2.0)(,7.0)(==B P A P ,则=)|(B A P 。

概率论与数理统计练习册(内附答案)

概率论与数理统计练习册(内附答案)

概率论与数理统计练习册 复习题和自测题解答第一章 复习题1、一个工人生产了n 个零件,以事件i A 表示他生产的第i 个零件是正品(i =1,2,3,……,n ),用i A 表示下列事件: (1) 没有一个零件是次品; (2) 至少有一个零件是次品; (3) 仅仅只有一个零件是次品; (4) 至少有两个零件是次品。

解:1)1ni i A A ==2)1ni i A =3)11nn i j i j j i B A A ==≠⎡⎤⎛⎫⎢⎥ ⎪=⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎣⎦4)A B2、任意两个正整数,求它们的和为偶数的概率。

解:{}(S =奇,奇),(奇,偶),(偶,奇),(偶,偶) 12P ∴=3、从数1,2,3,……,n 中任意取两数,求所取两数之和为偶数的概率。

解:i A -第i 次取到奇数(i =1,2);A -两次的和为偶数1212()()P A P A A A A =当n 为奇数时:11111112222()112n n n n n P A n n n n n----+--=⋅+⋅=-- 当n 为偶数时:1122222()112(1)n n n n n P A n n n n n ---=⋅+⋅=---4、在正方形{(,)|1,1}p q p q ≤≤中任意取一点(,)p q ,求使方程20x px q ++=有两个实根的概率。

解: 21411136x S dx dy --==⎰⎰ 13136424p ∴==5、盒中放有5个乒乓球,其中4个是新的,第一次比赛时从盒中任意取2个球去用,比赛后放回盒中,第二次比赛时再从盒中任意取2个球,求第二次比赛时取出的2个球都是新球的概率。

解:i A -第一次比赛时拿到i 只新球(i =1,2)B -第二次比赛时拿到2只新球1)()()1122()()|()|P B P A P B A P A P B A =⋅+⋅2122344222225555950C C C C C C C C =⨯+⨯=6、两台机床加工同样的零件,第一台加工的零件比第二台多一倍,而它们生产的废品率分别为0.03与0.02,现把加工出来的零件放在一起 (1)求从中任意取一件而得到合格品的概率;(2)如果任意取一件得到的是废品,求它是第一台机床所加工的概率。

概率论与数理统计练习题(含答案)

概率论与数理统计练习题(含答案)

数理统计练习题一、填空题1、设A 、B 为随机事件,且P (A )=0.5,P (B )=0.6,P (B |A )=0.8,则P (A +B )=__ 0.7 __。

2、某射手对目标独立射击四次,至少命中一次的概率为8180,则此射手的命中率32。

3、设随机变量X 服从[0,2]上均匀分布,则=2)]([)(X E X D 1/3 。

4、设随机变量X 服从参数为λ的泊松(Poisson )分布,且已知)]2)(1[(−−X X E =1,则=λ___1____。

5、一次试验的成功率为p ,进行100次独立重复试验,当=p 1/2_____时 ,成功次数的方差的值最大,最大值为 25 。

6、(X ,Y )服从二维正态分布),,,,(222121ρσσμμN ,则X 的边缘分布为 ),(211σμN 。

7、已知随机向量(X ,Y )的联合密度函数⎪⎩⎪⎨⎧≤≤≤≤=其他,010,20,23),(2y x xy y x f ,则E (X )=34。

8、随机变量X 的数学期望μ=EX ,方差2σ=DX ,k 、b 为常数,则有)(b kX E += ,k b μ+;)(b kX D +=22k σ。

9、若随机变量X ~N (-2,4),Y ~N (3,9),且X 与Y 相互独立。

设Z =2X -Y +5,则Z ~ N(-2, 25) 。

10、θθθ是常数21ˆ ,ˆ的两个 无偏 估计量,若)ˆ()ˆ(21θθD D <,则称1ˆθ比2ˆθ有效。

1、设A 、B 为随机事件,且P (A )=0.4, P (B )=0.3, P (A ∪B )=0.6,则P (B A )=_0.3__。

2、设X ∼B (2,p ),Y ∼B (3,p ),且P {X ≥ 1}=95,则P {Y ≥ 1}=2719。

3、设随机变量X 服从参数为2的泊松分布,且Y =3X -2, 则E (Y )=4 。

4、设随机变量X 服从[0,2]上的均匀分布,Y =2X +1,则D (Y )= 4/3 。

《概率论与数理统计》考试练习题及参考答案

《概率论与数理统计》考试练习题及参考答案

《概率论与数理统计》考试练习题及参考答案一、单选题1. 设X~N(2,9),Y~N(2,1),E(XY)=6,则D(X-Y)之值为A 、14B 、6C 、12D 、4答案:B2. 设X,Y的方差存在,且不等于0,则D(X+Y)=DX+DY是X,YA 、不相关的充分条件,但不是必要条件B 、独立的必要条件,但不是充分条件C 、不相关的必要条件,但不是充分条件D 、独立的充分必要条件答案:B3. 已知P(A)=0.3 ,P(B)=0.5 ,P(A∪B)=0.6,则P(AB)=A 、0.2B 、0.1C 、0.3D 、0.4答案:A4. 已知随机变量X服从二项分布,且EX=2.4,DX=1.44,则二项分布中的参数n,p的值分别为A 、n=4 ,p=0.6B 、n=6 ,p=0.4C 、n=8 ,p=0.3D 、n=24 ,p=0.1答案:B5. 若随机变量X与Y的方差D(X), D(Y)都大于零,且E(XY)=E(X)E(Y),则有A 、X与Y一定相互独立B 、X与Y一定不相关C 、D(XY)=D(X)D(Y)D 、D(X-Y)=D(X)-D(Y)答案:B6. 同时抛掷3枚硬币,则至多有1枚硬币正面向上的概率是A 、1/8B 、1/6C 、1/4D 、1/2答案:D7. 将长度为1的木棒随机地截成两段,则两段长度的相关系数为A 、1B 、1/2C 、2D 、-1答案:D8. 假设一批产品中一、二、三等品各占60% 、30% 、10%,今从中随机取一件产品,结果不是三等品,则它是二等品的概率为A 、1/3B 、1/2C 、2/3D 、1/4答案:A9. 袋中有50个乒乓球,其中20个黄球,30个白球,甲、乙两人依次各取一球,取后不放回,甲先取,则乙取得黄球的概率为A 、2/5B 、3/5C 、1/5D 、4/5答案:A10. 设随机变量X服从正态分布N(1 ,4) ,Y服从[0 ,4]上的均匀分布,则E(2X+Y )=A 、1B 、2C 、3D 、4答案:D11. 某电路由元件A 、B 、C串联而成,三个元件相互独立,已知各元件不正常的概率分别为:P(A)=0.1 ,P(B)=0.2 ,P(C)=0.3,求电路不正常的概率A 、0.496B 、0.7C 、0.25D 、0.8答案:A12. 一套五卷选集随机地放到书架上,则从左到右或从右到左卷号恰为1 ,2 ,3 ,4 ,5顺序的概率为A 、1/120B 、1/60C 、1/5D 、1/2答案:B13. 设随机变量X与Y独立同分布,记随机变量U=X+Y ,V=X-Y,且协方差Cov(U.V)存在,则U和V必然A 、不相关B 、相互独立C 、不独立D 、无法判断答案:A14. 设P(A)>0,P(B)>0,则下列各式中正确的是A 、P(A-B)=P(A)-P(B)B 、P(AB)=P(A)P(B)C 、P(A+B)=P(A)+P(B)D 、P(A+B)=P(A)+P(B)-P(AB)答案:D15. 随机变量X的所有可能取值为0和x ,且P{X=0}=0.3,E(X)=1,则x=A 、10/7B 、4/5C 、1D 、0答案:A16. 已知人的血型为O 、A 、B 、AB的概率分别是0.4;0.3;0.2;0.1。

东北师范大学2018年秋《概率论与数理统计》

东北师范大学2018年秋《概率论与数理统计》

期末作业考核《概率论与数理统计》满分100分一、判断正误,在括号内打√或×(每题2分,共20分) ( × )1.n X X X ,,,21 是取自总体),(2σμN 的样本,则∑==ni iXnX 11服从)1,0(N 分布;( × )2.设随机向量),(Y X 的联合分布函数为),(y x F ,其边缘分布函数)(x F X 是),(lim y x F y +∞→;( √ )3.设{}∞+-∞=Ω<<x x |,{}20|<x x A ≤=,{}31|<x x B ≤=,则B A 表示{}10|<<x x ; ( × )4.若0)(=AB P ,则AB 一定是空集; ( × )5.对于任意两个事件B A 、,必有=B A B A ; ( × )6.设C B A 、、表示3个事件,则C B A 表示“C B A 、、中不多于一个发生”; ( √)7.B A 、为两个事件,则A B A AB = ; ( √)8.已知随机变量X 与Y 相互独立,4)(,8)(==Y D X D ,则4)(=-Y X D ;( √)9.设总体)1,(~μN X , 1X ,2X ,3X 是来自于总体的样本,则321636161ˆX X X ++=μ是μ的无偏估计量;( √ )10.回归分析可以帮助我们判断一个随机变量和另一个普通变量 之间是否存在某种相关关系。

二、填空题(每题3分,共30分)1.设C B A 、、是3个随机事件,则“三个事件都不发生”用C B A 、、表示为; 2.若事件C B A 、、相互独立,则)(C B A P =P (A )+P (B )+P (C )-P(AB) -P(BC) -P(AC)+P(ABC)3.设离散型随机变量X 的概率分布为除了要求每个≥k p 0之外,这些k p 还应满足1p +2p +……+ k p =1 ; 4.若随机变量X 服从区间[]π2,0上的均匀分布,则=)(X E π ;5.设随机变量X 的概率分布列为)0,2,1,0(!)(>===-λλλ; k e k k X P k,则=)(X D λ ;6.),(Y X 为二维随机向量,其协方差),cov(Y X 与相互系数XY ρ的关系为XY ρ7.已知3)(=X E ,5)(=X D ,则=+2)2(X E 30 ; 8.设离散型随机变量X 的概率分布为其分布函数为)(x F ,则=)3(F 1 ;9.设n X X X ,,,21 为总体),(~2σμN X 的一个简单随机样本,若方差2σ未知,则μ的)1(α-的置信区间为。

东北大学概率论与数理统计课后习题答案

东北大学概率论与数理统计课后习题答案
05且abc1解n2时?niia1?n3时????12112121aaaaaaaa????????213121321aaaaaaaaa???一般地?????213121aaaaaa??????????????1212131211???nnniiaaaaaaaaaaa121123121aaaaaaaaaannn?????????23
求P(B). 解 由于 P(AB)=P(A)+P(B)-P(A+B) =P(A)+P(B)-1+P(A+B) =P(A)+P(B)-1+P(A B)
所以, P(A)+P(B)-1=0
即, P(B)=1-P(A)=1-p
精选课件
13
第一章习题1.3(第19页)
2. 在1500个产品中, 有400个次品, 1100个正品, 从中
=1, 2, 3,… ,A={1, 2, 3}
(3)把单位长度的一根细棒折成 三段, 观察各段的长度,
A表示“三段细棒能构精选成课件一个三角形”.
1
=(a, b, 1-a-b)|a, b>0且a+b<1,
=(a, b, c)|a, b, c>0且a+b+c=1,
A={(a, b, 1-a-b)|0<a, b<0.5且a+b>0.5}
(2) P=3/12=1/4=0.25
精选课件
16
6. 假设2个叫Davis的男孩, 3个叫Jones的男孩, 4个叫Smith
的男孩随意地坐在一排9座的座位上. 那么叫Davis的男孩
刚好坐在前两个座位上, 叫Jones的男孩坐在挨着的3个座
位上, 叫Smith的男孩坐在最后4个座位上的概率是多少?
任取200个, 求: (1) 恰有90个次品的概率; (2) 至少有2个

概率论及数理统计练习题(含答案)

概率论及数理统计练习题(含答案)

第一章 随机事件及其概率练习: 1. 判定正误(1)必然事件在一次实验中必然发生,小概率事件在一次实验中必然不发生。

(B )(2)事件的发生与否取决于它所包括的全数样本点是不是同时显现。

(B )(3)事件的对立与互不相容是等价的。

(B ) (4)假设()0,P A = 那么A =∅。

(B )(5)()0.4,()0.5,()0.2P A P B P AB ===若则。

(B ) (6)A,B,C 三个事件至少发生两个可表示为AB BC AC ⋃⋃(A ) (7)考察有两个小孩的家庭小孩的性别,{()Ω=两个男孩(,两个女孩),(一个男孩,}一个女孩),那么P{}1=3两个女孩。

(B )(8)假设P(A)P(B)≤,那么⊂A B 。

(B ) (9)n 个事件假设知足,,()()()i j i j i j P A A P A P A ∀=,那么n 个事件彼此独立。

(B )(10)只有当A B ⊂时,有P(B-A)=P(B)-P(A)。

(A ) 2. 选择题(1)设A, B 两事件知足P(AB)=0,那么©A. A 与B 互斥B. AB 是不可能事件C. AB 未必是不可能事件D. P(A)=0 或 P(B)=0 (2)设A, B 为两事件,那么P(A-B)等于(C)A. P(A)-P(B)B. P(A)-P(B)+P(AB)C. P(A)-P(AB)D. P(A)+P(B)-P(AB) (3)以A 表示事件“甲种产品畅销,乙种产品滞销”,那么其对立事件A 为(D)A. “甲种产品滞销,乙种产品畅销”B. “甲乙两种产品均畅销”C. “甲种产品滞销”D. “甲种产品滞销或乙种产品畅销”(4)假设A, B 为两随机事件,且B A ⊂,那么以下式子正确的选项是(A)A. P(A ∪B)=P(A)B. P(AB)=P(A)C. P(B|A)=P(B)D. P(B-A)=P(B)-P(A) (5)设(),(),()P A B a P A b P B c ⋃===,那么()P AB 等于(B)A. ()a c c + B . 1a c +-C.a b c +- D. (1)b c -(6)假设事件A 和B 知足P(B|A)=1, 那么(B)A. A 是必然事件 B . (|)0P B A = C. A B ⊃ D. A B ⊂(7)设0<P(A)<1,0<P(B)<1, (|)(|)1P A B P A B += 那么(D)A. 事件A, B 互不相容B. 事件A 和B 相互对立C. 事件A, B 互不独立 D . 事件A, B 相互独立8.,,.,,.D ,,.,,.,,1419.(),(),(),(),()37514131433.,.,.,.,37351535105A B A AB A B B AB A B C AB A B D AB A B P B A P B A P AB P A P B A B C φφφφ≠=≠====对于任意两个事件必有(C )若则一定独立;若则一定独立;若则有可能独立;若则一定不独立;已知则的值分别为:(D)三解答题1.(),(),(),(),(),(),().P A p P B q P AB r P A B P AB P A B P AB ===设求下列事件的概率:解:由德摩根律有____()()1()1;P A B P AB P AB r ⋃==-=-()()()();P AB P B AB P B P AB q r =-=-=-()()()()(1)()1;P A B P A P B P AB p q q r r p ⋃=+-=-+--=+-________()()1[()()()]1().P AB P A B P A P B P AB p q r =⋃=-+-=-+-2.甲乙两人独立地对同一目标射击一次,命中率别离是0.6和0.5,现已知目标被命中,求它是甲射击命中的概率。

《概率论与数理统计》复习题(附答案)

《概率论与数理统计》复习题(附答案)

概率练习题附答案06-07-1《概率论与数理统计》试题A一、填空题(每题3分,共15分)1. 设A ,B 相互独立,且2.0)(,8.0)(==A P B A P ,则=)(B P __________. 2. 设事件A 、B 、C 构成一完备事件组,且()0.5,()0.7,P A P B ==则()P C =3. 已知),2(~2σN X ,且3.0}42{=<<X P ,则=<}0{X P __________.4. 设X 与Y 相互独立,且2)(=X E ,()3E Y =,()()1D X D Y ==,则=-])[(2Y X E ___5. 设),3(~),,2(~p B Y p B X ,且95}1{=≥X P ,则=≥}1{Y P __________. 二、选择题(每题3分,共15分)1. 一盒产品中有a 只正品,b 只次品,有放回地任取两次,第二次取到正品的概率为 【 】(A) 11a a b -+-;(B) (1)()(1)a a a b a b -++-;(C) a a b +;(D) 2a ab ⎛⎫ ⎪+⎝⎭.2. 设随机变量X 的概率密度为()130, 其他c x p x <<⎧=⎨⎩则方差D(X)= 【 】 (A) 2; (B)12; (C) 3; (D) 13. 3. 设A 、B 为两个互不相容的随机事件,且()0>B P ,则下列选项必然正确的是【 】()A ()()B P A P -=1;()B ()0=B A P ;()C ()1=B A P ;()D ()0=AB P .4. 设()x x f sin =是某个连续型随机变量X 的概率密度函数,则X 的取值范围是【 】()A ⎥⎦⎤⎢⎣⎡2,0π;()B []π,0; ()C ⎥⎦⎤⎢⎣⎡-2,2ππ; ()D ⎥⎦⎤⎢⎣⎡23,ππ. 5. 设()2,~σμN X ,b aX Y -=,其中a 、b 为常数,且0≠a ,则~Y 【 】 ()A ()222,b a b a N +-σμ; ()B ()222,b a b a N -+σμ; ()C ()22,σμa b a N +; ()D ()22,σμa b a N -.三、(本题满分8分) 甲乙两人独立地对同一目标射击一次,其命中率分别为0.5和0.4,现已知目标被命中,求它是乙命中的概率.四、(本题满分12分)设随机变量X 的密度函数为xx e e Ax f -+=)(,求:(1)常数A ; (2)}3ln 210{<<X P ; (3)分布函数)(x F .五、(本题满分10分)设随机变量X 的概率密度为()⎩⎨⎧<<-=其他,010),1(6x x x x f 求12+=X Y 的概率密度.六、(本题满分10分)将一枚硬币连掷三次,X 表示三次中出现正面的次数,Y 表示三次中出现正面次数与出现反面次数之差的绝对值,求:(1)(X ,Y )的联合概率分布;(2){}X Y P >.七、(本题满分10分)二维随机变量(X ,Y )的概率密度为⎩⎨⎧>>=+-其他,00,0,),()2(y x Ae y x f y x 求:(1)系数A ;(2)X ,Y 的边缘密度函数;(3)问X ,Y 是否独立。

东北林业大学概率论与数理统计答案

东北林业大学概率论与数理统计答案

第一章习题答案1、解:""的红色球编号为i r i ==i 1,2,3,4,5,6 ""的绿色球编号为j g j =j =1,2,3,4,5,6(1)}{654321654321,,,,,,,,,,,g g g g g g r r r r r r =Ω (2)A=}{654321,,,,,r r r r r r , B=}{642642,,,,,,,g g g r r rC=}{43214321,,,,,,,g g g g r r r rA+B=}{642654321,,,,,,,,g g g r r r r r r AB=}{642,,r r rA+B-C=}{665,,g r r ABC=}{42,r r2、解:(1)C B A ;(2)BC A ;(3)C B A ++;(4)BC AC AB ++ (5)C B A C B A C B A ++;(6)C B C A B A ++3、解:(1)4303201101C C C P =;4304203201102C C C C P += (2)430320110141P P P C P =;430420320110142P P P P C P += 4、解:(1)2013102411=C C C (2)1213102511=C C C 5、解:218)(41041245=C C C 6、解:(1)161443= (2)83433334=P C 7、解:rrP 3653658、解:221a S G π=⎰+==4022)214()c o s 2(211ππθθa d a S G ππππ2221)214(221+=+==a a S S P GG9、解:0.3=)(7.0)()()(AB P AB P A P B A P -=-=-⇒4.0)(=AB P 6.0)(1)(=-=AB P AB P10、解:[])()()(1)(1)()(AB P B P A P B A P B A P B A P -+-=+-=+=)()()(1AB P B P A P +--=)()(B A P AB P = 1)()(=+∴B P A P 因此 p A P B P -=-=1)(1)(11、解:32.08.04.0)()()(=⨯==A B P A P AB P68.032.06.04.0)()()()(=-+=-+=+AB P B P A P B A P 12、解:1.06.03.04.0)()()()(=-+=+-+=B A P B P A P AB P 3.01.04.0)()()(=-=-=AB P A P B A P 13、解:0)(0)(=⇒=ABC P AB P)()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++=++12701211210414141=+---++=125)(1)()(=++-=++=C B A P C B A P C B A P14、解:2,1,0""==i i A i 个黑球从甲袋中取出""从乙袋中取出黑球=B B A A A A A A ⊃Ω=++210210,,,两两互斥,且25232)(C C C A P iii -=,2,1,0,8)4()(=+=i i A B P i(1)6.0)()()(2∑===i i iA BP A P B P(2)85)()()()(111==B P A B P A P B A P15、解:"",""""21取到白球丢黑球,丢白球===B A A B A A A A ⊃Ω=+Φ=2121,,155)(,1510)(21==A P A P ,)(214291C C A B P =,)(2142102C C A B P =138)()()()()()()(2211111=+=A B P A P A B P A P A B P A P B A P 135)()()()()()()(2211222=+=A B P A P A B P A P A B P A P B A P ∴丢白球的可能性大。

概率论与数理统计练习题练习题及参考答案(东师)

概率论与数理统计练习题练习题及参考答案(东师)

《 概率论与数理统计》练习题一一、判断正误,在括号内打√或×1.n X X X ,,,21 是取自总体),(2σμN 的样本,则∑==ni iXnX 11服从)1,0(N 分布;2.设随机向量),(Y X 的联合分布函数为),(y x F ,其边缘分布函数)(x F X 是)0,(x F ;3.(√)设{}∞+-∞=Ω<<x x |,{}20|<x x A ≤=,{}31|<x x B ≤=,则B A 表示{}10|<<x x ; 4.若事件A 与B 互斥,则A 与B 一定相互独立; 5.对于任意两个事件B A 、,必有=B A B A ;6.设A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为“甲种产品滞销或乙种产品畅销”; 7.(√)B A 、为两个事件,则A B A AB = ; 8.(√)已知随机变量X 与Y 相互独立,4)(,8)(==Y D X D ,则4)(=-Y X D ;9.(√)设总体)1,(~μN X ,1X ,2X ,3X 是来自于总体的样本,则321636161ˆX X X ++=μ是μ的无偏估计量;10.(√)回归分析可以帮助我们判断一个随机变量和另一个普通变量之间是否存在某种相关关系。

二、填空题1.设C B A 、、是3个随机事件,则事件“A 和B 都发生而C 不发生”用C B A 、、表示为C AB 2.设随机变量X 服从二项分布),(p n B ,则=EXDXp -1: 3.⎪⎩⎪⎨⎧≤≤-=,,,0,1)(其他b x a a b x f 是均匀分布的密度函数;4.若事件C B A 、、相互独立,且25.0)(=A P ,5.0)(=B P ,4.0)(=C P ,则)(C B A P =分布函数; 5.设随机变量X 的概率分布为则=a )()(Y D X D +; 6.设随机变量X 的概率分布为则12+X 的概率分布为22)(21σμπσ--x e7.若随机变量X 与Y 相互独立,2)(,)(==Y E a X E ,则=)(XY E )()(y f x f Y X ⋅8.设1θ 与2θ 是未知参数θ的两个0.99估计,且对任意的θ满足)()(21θθ D D <,则称1θ 比2θ有效;9.设n X X X ,,,21 是从正态总体),(2σμN 抽得的简单随机样本,已知202σσ=,现检验假设0μμ=:H ,则当222121)()(n n Y D X D σσ+=+时,0)(σμ-X n 服从)1,0(N ;10.在对总体参数的假设检验中,若给定显著性水平α(10<<α),则犯第一类错误的概率是α.三、计算题1.已知随机事件A 的概率5.0)(=A P ,事件B 的概率6.0)(=B P ,条件概率8.0)|(=A B P ,试求事件B A 的概率)(B A P 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《 概率论与数理统计》练习题一一、判断正误,在括号内打√或×1.n X X X ,,,21 是取自总体),(2N 的样本,则ni iXnX 11服从)1,0(N 分布;2.设随机向量),(Y X 的联合分布函数为),(y x F ,其边缘分布函数)(x F X 是)0,(x F ;3.(√)设 <<x x |, 20|<x x A , 31|<x x B ,则B A 表示 10|<<x x ; 4.若事件A 与B 互斥,则A 与B 一定相互独立; 5.对于任意两个事件B A 、,必有 B A B A ;6.设A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为“甲种产品滞销或乙种产品畅销”; 7.(√)B A 、为两个事件,则A B A AB ; 8.(√)已知随机变量X 与Y 相互独立,4)(,8)( Y D X D ,则4)( Y X D ;9.(√)设总体)1,(~ N X , 1X ,2X ,3X 是来自于总体的样本,则321636161ˆX X X是 的无偏估计量;10.(√)回归分析可以帮助我们判断一个随机变量和另一个普通变量之间是否存在某种相关关系。

二、填空题1.设C B A 、、是3个随机事件,则事件“A 和B 都发生而C 不发生”用C B A 、、表示为C AB 2.设随机变量X 服从二项分布),(p n B ,则EXDXp 1: 3. ,,,0,1)(其他b x a a b x f 是 均匀 分布的密度函数;4.若事件C B A 、、相互独立,且25.0)( A P ,5.0)( B P ,4.0)( C P ,则)(C B A P =分布函数; 5.设随机变量X 的概率分布为则 a )()(Y D X D ; 6.设随机变量X 的概率分布为则12 X 的概率分布为222)(21x e7.若随机变量X 与Y 相互独立,2)(,)( Y E a X E ,则 )(XY E )()(y f x f Y X8.设1 与2 是未知参数 的两个 0.99 估计,且对任意的 满足)()(21 D D ,则称1 比2有效;9.设n X X X ,,,21 是从正态总体),(2 N 抽得的简单随机样本,已知202,现检验假设0 :H ,则当222121)()(n n Y D X D时,0)( X n 服从)1,0(N ;10.在对总体参数的假设检验中,若给定显著性水平 (10 ),则犯第一类错误的概率是 .三、计算题1.已知随机事件A 的概率5.0)( A P ,事件B 的概率6.0)( B P ,条件概率8.0)|( A B P ,试求事件B A 的概率)(B A P 。

解:因为5.0)( A P ,8.0)|( A B P ,所以4.0)|()()( A B P A P AB P 。

进而可得7.0)()()()( AB P B P A P B A P 。

2.设随机变量),(~p n B ,且28.1)(,6.1)( X D X E ,试求n ,p 。

解:因为随机变量),(~p n B ,所以)1()(,)(p np X D np X E ,由此可得28.1)1(,6.1 p np np ,解得8 n ,2.0 p ;3.已知连续型随机变量)2,3(~ N X ,试求它的密度函数)(x f 。

解:4)23( X E4.已知一元线性回归直线方程为x a y4ˆˆ ,且3 x ,6 y ,试求a ˆ。

解:0,2;5.设总体X 的概率密度为,0,10,)1();(其它,x x x f 式中 >-1是未知参数,n X X X ,,,21 是来自总体X 的一个容量为n 的简单随机样本,用最大似然估计法求 的估计量。

解:0.8 ;6.设n X X X ,,,21 是取自正态总体),0(2 N 的一个样本,其中0 未知。

已知估计量ni i X k 122ˆ是2 的无偏估计量,试求常数k 。

解:)10ex p(101)(2z z f7. 设有10个零件,其中2个是次品,任取2个,试求至少有1个是正品的概率。

解:(1)由于12)(0dx e Adx Aedx x p x x即 2A =1,A =21,所以xe x p 21)(; (2)2121}10{110 e dx e X P x ;四、证明题1.设二维连续型随机向量),(Y X 的联合密度函数为其他。

,;,,010104),(y x xy y x f证明:X 与Y 相互独立。

2. 1.若事件A 与B 相互独立,则A 与B 也相互独立。

证明:由二维连续型随机向量),(Y X 的联合密度函数为其他。

,;,,010104),(y x xy y x f可得两个边缘密度函数分别为:其他。

,;,0102),()(x x dy y x f x f X其他。

,;,0102),()(y y dx y x f y f Y从而可得)()(),(y f x f y x f Y X ,所以X 与Y 相互独立。

2.若事件B A ,则)()(B P A P 。

《概率论与数理统计》练习题二一、判断正误,在括号内打√或×.1.若0)( AB P ,则AB 一定是空集; 2.对于任意两个事件B A 、,必有 B A B A ; 3.n X X X ,,,21 是取自总体),(2N 的样本,则ni iXnX 11服从),(2nN 分布;4.设 <<x x |, 20|<x x A , 31|<x x B ,则B A 表示 10|<<x x ; 5.若事件A 与B 互斥,则A 与B 一定相互独立; 6.(√)设甲、乙、丙人进行象棋比赛,考虑事件A ={甲胜乙负},则A 为{甲负乙胜}; 7.(√)设C B A 、、表示3个事件,则C B A 表示“C B A 、、三个事件都不发生”; 8.若B A 、为两个事件,则必有A B A AB ;9.设随机变量X 和Y 的方差存在且不为零,若)()()(Y D X D Y X D 成立,则X 和Y 一定不相关;10. (√)设)1,(~ N X ,321,,X X X 来自于总体的样本,321515252ˆX X X是 的无偏估计量; 二、填空题4.对于随机变量X ,函数)()(x X P x F 称为X 的 0.73 ;5.设X 与Y 是两个相互独立的随机变量,)()(Y D X D 、分别为其方差,则 )(Y X D 3/20;6.若随机变量X 服从正态分布),(2 N ,则其概率密度函数)(x p =7.设),(y x f 是二维随机变量),(Y X 的联合密度函数,)(x f X 与)(y f Y 分别是关于X 与Y 的边缘概率密度,且X 与Y 相互独立,则有 ),(y x f a 2;8.对于随机变量X ,仅知其3)( X E ,251)(X D ,则由契比雪夫不等式可知 )2|3(|X P 无偏;9.设),(~),,(~222211 N Y N X ,X 与Y 相互独立,1,,,21n X X X 是X 的样本,2,,,21n Y Y Y 是Y 的样本,则 )(Y X D 0H 成立;10.n X X X ,,,21 是总体X 的简单随机样本的条件是:(1)n X X X ,,,21 相互独立;(2)n X X X ,,,21 与总体X 有相同的概率分布。

三、计算题3. 已知离散型随机变量X 服从参数为2的普阿松分布,即,2,1,0,!2)(2k k e k X P k …,试求随机变量23 X Z 的数学期望。

解:因为随机变量X 服从正态分布,所以它的密度函数具有如下形式:)(21)(222)(x ex f x;进而,将2,3代入上述表达式可得所求的密度函数为:)(x f )(214)3(2x ex;4.设连续型随机变量X 的密度函数为其他,,0,10,)(x b ax x f 且31)(X E ,试求常数a 和b 。

解:由4ˆ b可得6ˆˆ x b y a ; 5. 若随机变量X 在区间)6,1(上服从均匀分布,试求方程012Xy y 有实根的概率。

解:21)1();()(11dx x dx x xf X E 由矩估计法知,令X =++21得参数 的矩估计量 ˆˆ112 XX --=。

6.已知随机变量)1,3(~ N X ,)1,2(~N Y ,且X 与Y 相互独立,设随机变量72 Y X Z ,试求Z 的密度函数。

解:n1。

7. 已知随机变量X 的概率密度为 x Ae x p x,)(,试求(1)常数A ;(2) 10 X P 。

解:十、证明题一个电子线路上电压表的读数X 服从[ , +1]上的均匀分布,其中 是该线路上电压的真值,但它是未知的,假设n X X X ,,,21 是此电压表上读数的一组样本,试证明:(1)样本均值X 不是 的无偏估计;(2)的矩估计是 的无偏估计。

设),,,(21n X X X 是取自总体),0(2N 的样本,试证明统计量 ni i X X n 12)(11是总体方差2 的无偏估计量。

证明:(1)由 )(X E ,知X 不是 的无偏估计;(2) 的矩估计为21X ,由21X E ,知它是 的无偏估计。

相关文档
最新文档