复旦大学复变函数期末考试题
复变期末考试试卷
复变期末考试试卷复变函数是数学中的一个重要分支,它在工程学、物理学以及许多其他科学领域中有着广泛的应用。
本期末考试试卷旨在测试学生对复变函数理论的理解和应用能力。
以下是复变期末考试的题目:一、选择题(每题2分,共20分)1. 复数 \( z = 3 + 4i \) 的模是:A. 5B. 7C. 8D. 102. 如果 \( f(z) = z^2 + 2z + 1 \),那么 \( f(2 - i) \) 的值是:A. 3B. 4C. 5D. 63. 以下哪个是解析函数的必要条件?A. 可微B. 可积C. 连续D. 有界...二、填空题(每空2分,共20分)1. 如果 \( z = x + yi \),那么 \( \overline{z} \) 是 ______ 。
2. 复数的乘法满足 \( (z_1 z_2) \overline{z_1} = \) ______ 。
3. Cauchy-Riemann 方程是 ______ 的必要条件。
...三、简答题(每题10分,共20分)1. 解释什么是解析函数,并给出一个解析函数的例子。
2. 描述复平面上的共轭曲线,并给出一个具体的例子。
四、计算题(每题15分,共30分)1. 计算下列积分:\[\int_{|z|=2} \frac{1}{z-1} dz\]2. 给定 \( f(z) = \frac{z^2 - 1}{z^2 + 4z + 3} \),求 \( f(z) \) 在 \( z = -1 \) 处的留数。
五、证明题(每题10分,共10分)证明:如果 \( f(z) \) 在 \( z_0 \) 的某个邻域内解析,并且\( |f(z)| \leq M \) 对所有 \( z \) 都成立,那么 \( f(z) \) 在\( z_0 \) 处的留数存在。
六、应用题(每题10分,共10分)考虑一个简单的 RLC 电路,其阻抗 \( Z(z) \) 可以表示为复数函数。
复变函数考试试题及参考答案
复变函数考试试题及参考答案下面是十道复变函数考试试题(一)的参考试题及答案:1.计算下列复数的幂函数:$z=1+i$,$n=3$。
答案:$(1+i)^3=-2+2i$。
2.计算下列复数的幂函数:$z=-2+i$,$n=4$。
答案:$(-2+i)^4=7-24i$。
3.求解方程:$z^2+4z+5=0$。
答案:可以使用求根公式求解,$(z+2)^2+1=0$,得到两个解:$z_1=-2+i$和$z_2=-2-i$。
4. 计算下列复数的极坐标形式:$z = 3e^{i \pi/6}$。
答案:$z = 3\cos(\pi/6) + 3i\sin(\pi/6) = \frac{3}{2} + \frac{3\sqrt{3}}{2}i$。
5.计算下列复数的共轭复数:$z=2-i$。
答案:$z^*=2+i$。
6. 将下列复数表示为共轭形式:$z = 4e^{i \pi/3}$。
答案:$z = 4\cos(\pi/3) + 4i\sin(\pi/3) = 4(\frac{1}{2} + \frac{\sqrt{3}}{2}i) = 2 + 2\sqrt{3}i$。
7.计算下列复数的实部和虚部:$z=3+2i$。
答案:实部为3,虚部为28.计算下列复数的模长:$z=-4+3i$。
答案:$,z, = \sqrt{(-4)^2 + 3^2} = \sqrt{16 + 9} = \sqrt{25} = 5$。
9.求复数的幂函数:$z=-1-i$,$n=2$。
答案:$(-1-i)^2=1-2i-1=-2i$。
10. 求复数的幂函数:$z = \sqrt{3} + i$, $n = 3$。
答案:$(\sqrt{3} + i)^3 = -2\sqrt{3} + 2i$。
《复变函数》2018-2019期末试题及答案
(c为任意常数)
因此
故得
由f(O)=1得c=0,故得
2.解法1:设
因,(z)在c的内部只有两个有限奇点0与1,故作 由定理4.4有
而
故
解法2:设 因f(z)在c的内部只有两个有限奇点0与l,且知0是f(z)的二级极点,l是f(z)的一级极点,由定理7.1得
而
故
3.解:因为厂(z)的有限奇点只有z=2,所以f(z)在点z=l可展成幂级数,且f(z)在|z—l |<1内可展开,有
四、证明题(本题l5分)证:因为
而函数 在点z=1解析,且 故由定理6.4得知点z=1为函数f(z)的二级极点.
四、证明题(本题t5分)
试证:点z=l是函数 的二级极点.
试题答案及评分标准
一、单项选择题(本题共20分,每小题4分)
1.C 2.C 3.B 4.A 5.B
二、填空题(本题共20分。每小题4分)
1.闭
2.孤立
3.1
4.0
5.直线
三、计算题(本题共45分,每小题15分)
1.解:由C—R条件有
于是
由此得
《复变函数》2018-2019期末试题及答案
一、单项选择题(本题共20分,每小题4分)
1.设 则 可用z表示为( ).
2.点 是集合 的( ).
A.孤立点B.内点
C.外点D.边界点
A.0B.1(:.2 D.3
5.函数 在点Z=l展成幂级数的收敛半径为( ).
A.1B.2C.3D.4
二、填空题(本题共20分,每小题4分)
1.若点集E的全部聚点都属于E,则称E为()集.
2.设点a为函数f(x)的奇点,若,f(x)在点a的某个去心邻域 内解析,则
《复变函数论》试题库及答案
《复变函数论》试题库《复变函数》考试试题(一)一、 判断题(20分):1.若f(z)在z 0的某个邻域内可导,则函数f(z)在z 0解析. ( )2.有界整函数必在整个复平面为常数. ( )3.若}{n z 收敛,则} {Re n z 与}{Im n z 都收敛. ( )4.若f(z)在区域D 内解析,且0)('≡z f ,则C z f ≡)((常数). ( )5.若函数f(z)在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( )6.若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点. ( )7.若)(lim 0z f z z →存在且有限,则z 0是函数f(z)的可去奇点. ( )8.若函数f(z)在是区域D 内的单叶函数,则)(0)('D z z f ∈∀≠. ( ) 9. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C0)(=⎰Cdz z f .( )10.若函数f(z)在区域D 内的某个圆内恒等于常数,则f(z)在区域D 内恒等于常数.( ) 二.填空题(20分)1、 =-⎰=-1||00)(z z nz z dz__________.(n 为自然数)2.=+z z 22cos sin _________. 3.函数z sin 的周期为___________.4.设11)(2+=z z f ,则)(z f 的孤立奇点有__________.5.幂级数nn nz∞=∑的收敛半径为__________.6.若函数f(z)在整个平面上处处解析,则称它是__________.7.若ξ=∞→n n z lim ,则=+++∞→n z z z nn (i)21______________.8.=)0,(Re n zz e s ________,其中n 为自然数.9. zz sin 的孤立奇点为________ .10.若0z 是)(z f 的极点,则___)(lim 0=→z f z z .三.计算题(40分):1. 设)2)(1(1)(--=z z z f ,求)(z f 在}1||0:{<<=z z D 内的罗朗展式.2. .cos 11||⎰=z dz z3. 设⎰-++=C d z z f λλλλ173)(2,其中}3|:|{==z z C ,试求).1('i f +4. 求复数11+-=z z w 的实部与虚部.四. 证明题.(20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数.2. 试证: ()f z =0Re 1z ≤≤的z 平面内能分出两个单值解析分支, 并求出支割线0Re 1z ≤≤上岸取正值的那支在1z =-的值.《复变函数》考试试题(二)一. 判断题.(20分)1. 若函数),(),()(y x iv y x u z f +=在D 内连续,则u (x,y )与v (x,y )都在D 内连续.( )2. cos z 与sin z 在复平面内有界. ( )3. 若函数f (z )在z 0解析,则f (z )在z 0连续. ( )4. 有界整函数必为常数. ( )5. 如z 0是函数f (z )的本性奇点,则)(lim 0z f z z →一定不存在. ( )6. 若函数f (z )在z 0可导,则f (z )在z 0解析. ( )7. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=⎰Cdz z f .( )8. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( ) 9. 若f (z )在区域D 内解析,则|f (z )|也在D 内解析. ( )10. 存在一个在零点解析的函数f (z )使0)11(=+n f 且,...2,1,21)21(==n nn f . ( )二. 填空题. (20分)1. 设i z -=,则____,arg __,||===z z z2.设C iy x z y x i xy x z f ∈+=∀+-++=),sin(1()2()(222,则=+→)(lim 1z f iz ________.3.=-⎰=-1||00)(z z n z z dz_________.(n 为自然数)4. 幂级数0n n nz ∞=∑的收敛半径为__________ .5. 若z 0是f (z )的m 阶零点且m >0,则z 0是)('z f 的_____零点.6. 函数e z 的周期为__________.7. 方程083235=++-z z z 在单位圆内的零点个数为________. 8. 设211)(zz f +=,则)(z f 的孤立奇点有_________. 9. 函数||)(z z f =的不解析点之集为________.10. ____)1,1(Res 4=-zz . 三. 计算题. (40分)1. 求函数)2sin(3z 的幂级数展开式. 2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数z 在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点i z =处的值.3. 计算积分:⎰-=iiz z Id ||,积分路径为(1)单位圆(1||=z )的右半圆.4. 求dzz zz ⎰=-22)2(sin π.四. 证明题. (20分)1. 设函数f (z )在区域D 内解析,试证:f (z )在D 内为常数的充要条件是)(z f 在D 内解析.2. 试用儒歇定理证明代数基本定理.《复变函数》考试试题(三)一. 判断题. (20分).1. cos z 与sin z 的周期均为πk2. ( ) 2. 若f (z )在z 0处满足柯西-黎曼条件, 则f (z )在z 0解析. ( )3. 若函数f (z )在z 0处解析,则f (z )在z 0连续. ( )4. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( )5. 若函数f (z )是区域D 内解析且在D 内的某个圆内恒为常数,则数f (z )在区域D 内为常数. ( )6. 若函数f (z )在z 0解析,则f (z )在z 0的某个邻域内可导. ( )7. 如果函数f (z )在}1|:|{≤=z z D 上解析,且)1|(|1|)(|=≤z z f ,则)1|(|1|)(|≤≤z z f . ( )8. 若函数f (z )在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( )9. 若z 0是)(z f 的m 阶零点, 则z 0是1/)(z f 的m 阶极点. ( ) 10. 若0z 是)(z f 的可去奇点,则0)),((Res 0=z z f . ( )二. 填空题. (20分)1. 设11)(2+=z z f ,则f (z )的定义域为___________.2. 函数e z 的周期为_________.3. 若n n n i n n z )11(12++-+=,则=∞→n z n lim __________.4. =+z z 22cos sin ___________.5. =-⎰=-1||00)(z z n z z dz_________.(n 为自然数) 6. 幂级数∑∞=0n n nx 的收敛半径为__________.7. 设11)(2+=z z f ,则f (z )的孤立奇点有__________.8. 设1-=ze ,则___=z .9. 若0z 是)(z f 的极点,则___)(lim 0=→z f z z .10. ____)0,(Res =n zze .三. 计算题. (40分)1. 将函数12()zf z z e =在圆环域0z <<∞内展为Laurent 级数.2. 试求幂级数nn n z nn ∑+∞=!的收敛半径.3. 算下列积分:⎰-C z z z ze )9(d 22,其中C 是1||=z .4. 求0282269=--+-z z z z在|z |<1内根的个数.四. 证明题. (20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数.2. 设)(z f 是一整函数,并且假定存在着一个正整数n ,以及两个正数R 及M ,使得当R z ≥||时n z M z f |||)(|≤,证明)(z f 是一个至多n 次的多项式或一常数。
复变函数期末试题及答案
复变函数期末试题及答案一、选择题(每题5分,共20分)1. 若复数 \( z = a + bi \)(其中 \( a, b \) 为实数),则\( \bar{z} \) 表示()A. \( a - bi \)B. \( -a + bi \)C. \( -a - bi \)D. \( a + bi \)答案:A2. 对于复变函数 \( f(z) = u(x, y) + iv(x, y) \),以下说法正确的是()A. \( u \) 和 \( v \) 都是调和函数B. \( u \) 和 \( v \) 都是解析函数C. \( u \) 和 \( v \) 都是连续函数D. \( u \) 和 \( v \) 都是可微函数答案:A3. 若 \( f(z) \) 在 \( z_0 \) 处可导,则下列说法中正确的是()A. \( f(z) \) 在 \( z_0 \) 处解析B. \( f(z) \) 在 \( z_0 \) 处连续C. \( f(z) \) 在 \( z_0 \) 处可微D. \( f(z) \) 在 \( z_0 \) 处的导数为0答案:C4. 已知 \( f(z) \) 是解析函数,且 \( f(z) \) 在 \( z_0 \) 处有孤立奇点,则 \( f(z) \) 在 \( z_0 \) 处的留数是()A. 0B. \( \infty \)C. 1D. \( -1 \)答案:A二、填空题(每题5分,共20分)1. 若 \( z = x + yi \),且 \( |z| = 2 \),则 \( x^2 + y^2 = \_\_\_\_\_ \)。
答案:42. 设 \( f(z) = z^2 \),则 \( f(2 + 3i) = \_\_\_\_\_ \)。
答案:-5 + 12i3. 若 \( f(z) \) 在 \( z_0 \) 处解析,则 \( f(z) \) 在 \( z_0 \) 处的导数 \( f'(z_0) \) 等于 \_\_\_\_\_。
复变函数期末考试复习题及答案详解
《复变函数》考试试题(一)三 . 计算题( 40 分):dz1、|z z 0 | 1 ( z z )n__________. ( n 为自然数)f ( z)12.sin 2 z cos 2z _________.3. 函数sin z的周期为 ___________.f (z)14. z 2 1 ,则f ( z)的孤立奇点有 __________.设 5. 幂级数nz n的收敛半径为 __________.n 06. 若函数 f(z) 在整个平面上处处解析,则称它是__________.lim z nlimz 1z 2 ... z n7. 若 n,则 nn ______________.Res(ez8.n,0)z________,其中 n 为自然数 .9.sin z的孤立奇点为 ________ .z10. 若zlimf (z) ___是f (z) 的极点,则z z.1. 设( z 1)( z 2) ,求 f ( z) 在 D { z : 0 | z | 1}内的罗朗展式 .1dz.2.|z| 1cos zf ( z) 3 2 71,其中 C { z :| z |3} ,试求 f '(1 i ).3.d设Czwz 14. 求复数 z 1 的实部与虚部 .四 . 证明题 .(20 分 )1. 函数f (z)在区域 D 内解析 . 证明:如果 | f ( z) |在 D 内为常数, 那么它在 D 内为常数 .2. 试证 :f (z)z(1 z) 在割去线段 0 Re z 1 的 z 平面内能分出两个单值解析分支 , 并求出支割线 0 Re z 1 上岸取正值的那支在 z 1 的值 .《复变函数》考试试题(二)二. 填空题 . (20 分)1.设z i ,则| z |__,arg z__, z__2.设 f ( z)(x2 2 xy) i (1 sin( x2y2 ), z x iy C,则lim f (z)________.z1idz_________. (n为自然数)3.|z z0 |1 ( z z )n4.幂级数nz n的收敛半径为 __________ .n05.若 z0是 f(z) 的 m 阶零点且 m>0,则 z0是f ' ( z)的 _____零点 .6.函数 e z的周期为 __________.7.方程 2z5z33z 8 0 在单位圆内的零点个数为________.18.设 f ( z)1z2,则 f ( z) 的孤立奇点有_________.9.函数 f (z)| z |的不解析点之集为________.10.Res( z41,1)____ . z三.计算题 . (40 分)1.求函数sin(2z3)的幂级数展开式 .2. 在复平面上取上半虚轴作割线 . 试在所得的区域内取定函数z在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点z i 处的值.计算积分: Ii1)单位圆(| z |1)3.| z | dz,积分路径为(i的右半圆 .sin zdzz22( z)4.求2.四. 证明题 . (20 分)1.设函数 f(z) 在区域 D 内解析,试证:f(z)在 D 内为常数的充要条件是 f ( z)在D内解析.2.试用儒歇定理证明代数基本定理 .《复变函数》考试试题(三)二. 填空题 .(20 分)11.设 f ( z),则f(z)的定义域为___________.z212.函数 e z的周期为_________.3.若 z nn 2 i (1 1 )n,则 lim z n __________.1 nn n4. sin 2 z cos 2z___________.dz5.|z z 0 | 1 ( z z )n_________. ( n 为自然数)6.幂级数nx n的收敛半径为 __________.n 07.设f (z)1,则 f ( z ) 的孤立奇点有 __________.z218. 设ez1,则 z___ .9.若z 0 是 f (z) 的极点,则 limf ( z) ___ .z z 010.Res( e z,0)____.z n三. 计算题 . (40分)11.将函数 f ( z)z 2e z在圆环域 0z内展为 Laurent 级数 .n!n2. 试求幂级数nnz的收敛半径 .n3. 算下列积分:e zdz,其中C 是| z| 1.Cz 2 (z29)4. 求z 9 2z 6z28z 2 0 在 | z |<1内根的个数 .四 . 证明题 . (20 分)1.函数f (z)在区域 D 内解析 . 证明:如果 | f ( z) |在 D 内为常数,那么它在D 内为常数 .2.设f (z) 是一整函数,并且假定存在着一个正整数n ,以及两个正数R 及 M ,使得当| z|R 时| f (z) |M | z |n ,证明f (z) 是一个至多 n 次的多项式或一常数。
复变函数期末试卷(含答案)
解:令,则
因在处连续,故在处连续。
又,故在处不可导。
16.设在区域内解析,且。试证在内必为常数。
证:因在内解析,故
已知等式两边分别对求偏导,并用上式得:
同理可得,故均为常数,进一步有在内必为常数。
17.计算积分,其中为不过和的任一简单闭曲线。
解:①均在的外部,在所围的闭区域上解析,故
②在内部,在外部,由高阶导数公式
《复变函数》期末试卷
1、 单项选择题(每题2分,共20分)
1. 以下命题正确的是
A.
B.零的辐角为零
C.
D.对任意复数有 [ A ]
2.若,则
A.
B.
C.
D.
[D ]
3.设在区域内解析,则
A.
B.
C.
D.
[B]
4.下列说法正确的是
A.如果存在,则在处解析
B.如果和在区域内可微,则在区域内解析
C.如果在区域内处处可导,则在区域内解析
[ A]
B.二级零点
C.三级零点 10.设则 A.
D.四级零点 B.
[C ] [C]
C.
D.
[D ]
Hale Waihona Puke 二、填空题(每空2分,共10分)
11.
12.设为包围的任一简单闭曲线,为整数,则 或0
13.的主值等于
14.函数在处的主要部分为
,
在处的主要部分为
0
2、 解答题
15.讨论函数在原点的连续性与可导性。
D.如果在区域内解析,则在区域内一定不解析
5.下列等式中不正确的是
A. (为整数) B.
C. (为整数)
D. [ B ]
6.设在复平面内处处解析(其中为常数),则
《复变函数》考试试题(三)参考答案
《复变函数》考试试题(三)参考答案一. 判断题1.× 2.×3.√ 4.√ 5.√6.√7. √ 8.√ 9.√ 10.√. 二.填空题.1.{},z z i z C ≠±∈且;2. 2()k i k z π∈;3. 1ei -+;4. 1;5. 2101in n π=⎧⎨≠⎩; 6. 1; 7. i ±; 8. (21)z k i π=+; 9. ∞; 10. 1(1)!n -.三. 计算题.1. 解 1222211(1)2!!n zn zz e z zzn -+∞==+++⋅⋅⋅=∑.2. 解 11!(1)11l i ml i m l i m ()l i m (1)(1)!n n nn n n n n n n c n n n e c n n nn +→∞→∞→∞→∞+++=⋅==+=+. 所以收敛半径为e . 3. 解 令 22()(9)zef z z z =-, 则 201Re ()99zz z es f z z ====--.故原式022R e ()9z i i s f z ππ===-.4. 解 令 962()22f z z z z =-+-, ()8z z ϕ=-.则在:C 1z =上()()f z z ϕ与均解析, 且()6()8f z z ϕ≤<=, 故由儒歇定理有 (,)(,)1N f C N f C ϕϕ+=+=. 即在 1z < 内, 方程只有一个根. 四. 证明题.1. 证明 证明 设在D 内()f z C =. 令2222(),()f z u iv f z u v c =+=+=则.两边分别对,x y 求偏导数, 得 0(1)0(2)x x y y uu vv uu vv +=⎧⎨+=⎩ 因为函数在D 内解析, 所以,x y y x u v u v ==-. 代入 (2) 则上述方程组变为 00x x x x uu vv vu uv +=⎧⎨-=⎩. 消去x u 得, 22()0x u v v +=. 1) 220u v +=, 则 ()0f z = 为常数.2) 若0x v =, 由方程 (1) (2) 及 ..C R -方程有0,x u = 0y u =, 0y v =.所以12,u c v c ==. (12,c c 为常数). 所以12()f z c ic =+为常数.2. 证明 取 r R >, 则对一切正整数 k n > 时, ()1!()!(0)2nk k kz rk f z k M r f dz zrπ+=≤≤⎰.于是由r 的任意性知对一切k n >均有()(0)0k f=.故0()nnn k f z cz ==∑, 即()f z 是一个至多n 次多项式或常数.。
复变函数与积分变换期末考试试卷及答案
一、单项选择题(本大题共15小题,每小题2分,共30分) 1.下列复数中,位于第三象限的复数是( )A. 12i +B. 12i --C. 12i -D. 12i -+ 2.下列等式中,不成立的等式是( )4.34arctan3A i π-+-的主辐角为 .arg(3)arg()B i i -=-2.rg(34)2arg(34)C a i i -+=-+2.||D z z z ⋅=3.下列命题中,正确..的是( ) A. 1z >表示圆的内部B. Re()0z >表示上半平面C. 0arg 4z π<<表示角形区域D. Im()0z <表示上半平面4.关于0limz zz zω→=+下列命题正确的是( ) A.0ω=B. ω不存在C.1ω=-D.1ω=5.下列函数中,在整个复平面上解析的函数是( ).z A z e +2sin .1z B z + .tan z C z e + .sin zD z e +6.在复平面上,下列命题中,正确..的是( )A. cos z 是有界函数B. 22Lnz Lnz =.cos sin iz C e z i z =+.||D z =7.在下列复数中,使得ze i =成立的是( ).ln 223iA z i ππ=++.ln 423iB z i ππ=++.ln 226C z i ππ=++.ln 426D z i ππ=++8.已知31z i =+,则下列正确的是( )12.iA z e π=34.i B z π=712.i C z eπ=3.iD z π=9.积分||342z dz z =-⎰的值为( )A. 8i πB.2C. 2i πD. 4i π10.设C 为正向圆周||4z =, 则10()zC e dz z i π-⎰等于( ) A.110!B.210!iπ C.29!iπ D.29!iπ- 11.以下关于级数的命题不正确的是( )A.级数0327nn i ∞=+⎛⎫⎪⎝⎭∑是绝对收敛的B.级数212(1)n n in n ∞=⎛⎫+ ⎪-⎝⎭∑是收敛的 C. 在收敛圆内,幂级数绝对收敛D.在收敛圆周上,条件收敛12.0=z 是函数(1cos )ze z z -的( )A. 可去奇点B.一级极点C.二级极点D. 三级极点13.1(2)z z -在点 z =∞ 处的留数为( )A. 0.1B C.12D. 12-14.设C 为正向圆周1||=z , 则积分 sin z c e dzz⎰等于( )A .2πB .2πiC .0D .-2π15.已知()[()]F f t ω=F ,则下列命题正确的是( ) A. 2[(2)]()j f t eF ωω-=⋅FB. 21()[(2)]j ef t F ωω-⋅=+FC. [(2)]2(2)f t F ω=FD. 2[()](2)jte f t F ω⋅=-F二、填空题(本大题共5小题,每小题2分,共10分) 16. 设121,1z i z =-=,求12z z ⎛⎫=⎪⎝⎭____________. 17. 已知22()()()f z bx y x i axy y =++++在复平面上可导,则a b +=_________. 18. 设函数)(z f =cos zt tdt ⎰,则)(z f 等于____________.19. 幂极数n n2n 1(2)z n ∞=-∑的收敛半径为_______. 20. 设3z ω=,则映射在01z i =+处的旋转角为____________,伸缩率为____________.20. 设函数2()sin f t t t =,则()f t 的拉氏变换等于____________.三、计算题(本大题共4小题,每题7分,共28分) 21.设C 为从原点到3-4i 的直线段,计算积分[()2]CI x y xyi dz =-+⎰22. 设2()cos ze f z z z i=+-. (1)求)(z f 的解析区域,(2)求).(z f '24.已知22(,)4u x y x y x =-+,求一解析函数()(,)(,)f z u x y iv x y =+,并使(0)3f = 23. 将函数1()(1)(2)f z z z =--在点0=z 处展开为洛朗级数.25. 计算2||3(1)()(4)z dzz z i z =++-⎰.四、综合题(共4小题,每题8分,共32分) 25. 计算201.54cos d πθθ-⎰26. 求分式线性映射()f z ω=,使上半平面映射为单位圆内部并满足条件(2)0f i =,arg (0)1f =.27. 求函数2,10(),010,t f t t t --<≤⎧⎪=<≤⎨⎪⎩其它的傅氏变换。
复变函数期末考试试卷及答案详解
复变函数期末考试试卷及答案详解《复变函数》考试试题(一) 三.计算题(40分):dz1,1、 __________.(为自然数)nn,f(z),|z,z|,10(zz),0D,{z:0,|z|,1}(z,1)(z,2)f(z),求在1. 设22sinz,cosz,2. _________. 内的罗朗展式.1sinz3.函数的周期为___________. dz.,|z|,1cosz2. 12f(z),,,,,3712,f(z)fzd,()z,1C,{z:|z|,3}f'(1,i).,C4.设,则的孤立奇点有__________. ,z,3. 设,其中,试求,z,1nw,nz5.幂级数的收敛半径为__________. ,z,14. 求复数的实部与虚部. n0,6.若函数f(z)在整个平面上处处解析,则称它是__________. 四. 证明题.(20分)zzz,,...,1. 函数在区域D内解析. 证明:如果在D内为常数,f(z)|f(z)|12n,limlimz,,n,,nnn,,7.若,则______________.D那么它在内为常数. zesRe(,0),n0Re1,,z2. 试证: 在割去线段的平面内能分出两zfzzz()(1),,z8.________,其中n为自然数.z,,10Re1,,z个单值解析分支, 并求出支割线上岸取正值的那支在sinz的值.9. 的孤立奇点为________ .《复变函数》考试试题(二) z二. 填空题. (20分)limf(z),___zf(z)z,z0010.若是的极点,则.13sin(2z)1. 设,则 z,,i|z|,__,argz,__,z,__的幂级数展开式. 1. 求函数2222.设,则f(z),(x,2xy),i(1,sin(x,y),,z,x,iy,C2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数在正z实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点________. limf(z),z,1,i处的值. z,idz,3. _________.(为自然数) inn,|z,z|,10(zz),0I,|z|dz3. 计算积分:,积分路径为(1)单位圆()|z|,1,,i,nnz4. 幂级数的收敛半径为__________ . 的右半圆. ,n0,sinzdz,z,25. 若z是f(z)的m阶零点且m>0,则z是的_____零点. ,f'(z)002(,)z24. 求 .z6. 函数e的周期为__________.四. 证明题. (20分) 537. 方程在单位圆内的零点个数为________. 2z,z,3z,8,0f(z)1. 设函数f(z)在区域D内解析,试证:f(z)在D内为常数的充要条件是1f(z),8. 设,则的孤立奇点有_________. f(z)2在D内解析. 1,z2. 试用儒歇定理证明代数基本定理. 9. 函数的不解析点之集为________.f(z),|z|《复变函数》考试试题(三)二. 填空题. (20分) z,1110. . Res(,1),____f(z),1. 设,则f(z)的定义域为___________. 42z,1zz三. 计算题. (40分) 2. 函数e的周期为_________.2n,21n,,z,,i(1,)3. 若,则__________. limz,nnn!n,,1,nnn的收敛半径.2. 试求幂级数z,n22n4. ___________. sinz,cosz,n,dzzedz,5. _________.(为自然数) nn,|z,z|,13. 算下列积分:,其中是.C|z|,10(zz),22,0Cz(z,9),nnx6. 幂级数的收敛半径为__________. ,962n,0z,2z,z,8z,2,04. 求在|z|<1内根的个数.四. 证明题. (20分) 1f(z),7. 设,则f(z)的孤立奇点有__________. 21. 函数在区域D内解析. 证明:如果在D内为常f(z)|f(z)|z,1z数,那么它在D内为常数. 8. 设,则. z,___e,,12. 设是一整函数,并且假定存在着一个正整数n,以及两个正数f(z)z9. 若是的极点,则. f(z)limf(z),___0z,z0R及M,使得当时 |z|,Rzen10. Res(,0),____. n|f(z)|,M|z|, z三. 计算题. (40分) 证明是一个至多n次的多项式或一常数。
复变函数期末考试试题
复变函数期末考试试题一、单项选择题(每题3分,共30分)1. 若函数f(z)在z=a处解析,则以下哪个选项是正确的?A. f(z)在z=a的邻域内解析B. f(z)在z=a的任何邻域内解析C. f(z)在z=a处可导D. f(z)在z=a处连续2. 以下哪个函数是解析的?A. |z|B. z^2C. Re(z)D. Im(z)3. 若f(z)=u(x,y)+iv(x,y),则以下哪个条件是f(z)解析的必要条件?A. u_x=v_yB. u_y=-v_xC. u_x=v_y且u_y=-v_xD. u_x=v_y或u_y=-v_x4. 以下哪个函数是整函数?A. e^zB. sin(z)C. z/(z-1)D. 1/z5. 若f(z)和g(z)都是解析函数,则以下哪个函数也是解析的?A. f(z)+g(z)B. f(z)-g(z)C. f(z)g(z)D. f(z)/g(z)(g(z)≠0)6. 以下哪个函数是调和函数?A. e^zB. z^2C. Re(z)D. Im(z)7. 若f(z)是解析函数,则以下哪个函数也是解析的?A. f(z)的实部B. f(z)的虚部C. f(z)的共轭复数D. f(z)的逆函数8. 若f(z)在z=a处有极点,则以下哪个选项是正确的?A. f(z)在z=a处解析B. f(z)在z=a处有界C. f(z)在z=a处无界D. f(z)在z=a处有界且解析9. 若f(z)是解析函数,则以下哪个函数是f(z)的导数?A. u_x+iv_xB. u_x-iv_xC. u_y+iv_yD. u_y-iv_y10. 若f(z)是解析函数,则以下哪个函数是f(z)的积分?A. ∫(u_x+iv_x)dxdyB. ∫(u_x-iv_x)dxdyC. ∫(u_y+iv_y)dxdyD. ∫(u_y-iv_y)dxdy二、填空题(每题4分,共20分)1. 若f(z)=u(x,y)+iv(x,y),则f(z)的柯西-黎曼方程为________。
《复变函数》期末复习题及答案
第 1 页 共 12 页复变函数复习题及答案一、选择题1.下列各式中表示有界区域的是( C ).A.0Re >zB.0Im >zC.2|2|<-zD.2||>z2.在映射2z w =下,双曲线122=-y x 在w 平面上的象是(A ).A.平行于u 的直线B.平行于v 的直线C.双曲线D.圆3.方程2|||1|=+++i z z 所表示的曲线是( B ).A .圆 B.椭圆 C .双曲线 D.直线4.下列方程中表示直线的是( C ).A.1Re 2=z B.1=z z C.1=+z z D.1||||=+z z5.复数iiz -+=21在第( A )象限.A.一B.二C.三D.四 6.=Lni ( A ),其中k 是整数.A.i k ⎪⎭⎫ ⎝⎛+ππ22B.i k ⎪⎭⎫ ⎝⎛+-ππ22C.i k ⎪⎭⎫⎝⎛+ππ24 D.i k ⎪⎭⎫ ⎝⎛+-ππ24 7.对于幂级数,下列命题中正确的是( B ).A.在收敛圆内,其条件收敛B.在收敛圆内,其绝对收敛C.在收敛圆上,其处处收敛 D 在收敛圆上,其处处发散8.0=z 是()zz z f 2sin =的( D ).A.本性奇点B.极点C.连续点D.可去奇点9.在复平面内,关于z sin 的命题中,错误的是( C ).A.z sin 是周期函数B.z sin 是解析函数C.1|sin |≤zD.()z z cos sin /=10.设C 为正向曲线1||=z ,则()=--⎰Ci z dz21( A ).A.0B.iπ1C.i πD. i π211.设()zz z z f 222-+=,则()[]=0,Re z f s ( C ).A.0B.1C.1-D. 2第 2 页 共 12 页12.函数()zz f 1=将z 平面上的曲线1=x 映射成w 平面内的一条( A ).A .圆 B.椭圆 C .双曲线 D.直线13. 下列积分中,值不为零的是( D )(其中C 是正向曲线1||=z ). A.⎰Czdz B.⎰C dz z zsin C.()⎰-Cdz z z 5.01D.()⎰-Cdz z z 2114. 下列级数中,绝对收敛的级数为( D ). A.∑∞=1n )1(1n i n + B.∑∞=1n ]2)1([n n i n +- C.∑∞=2n n i n ln D.∑∞=1n n ni 215. 2lim1n n nini→∞+-=( A ).A.12i -+B.12i +C.2i +D.∞16. 0=z 为函数()()zz z z z f 1sin11)(+-=的( A ).A.非孤立奇点B.极点C.本性奇点D.可去奇点17.下列式子中成立的是( D ). A.ii 2< B.1sin ≤z C.z z ln 2ln 2=D.z Lnz Lnz ln 2+=18.若幂级数∑+∞=0n nn z c 在点12i +收敛,则∑+∞=1n nn n z c 在点2=z 处的敛散性为( A ).A.绝对收敛B.条件收敛C.发散D.不能确定(∑+∞=1n nn n z c 与∑+∞=0n n n z c 收敛半径是一样的,再根据阿贝尔定理)19.0=z 是函数()zzz f 1sin =的( D ). A.可去奇点 B.极点 C.本性起点 D.非孤立奇点20.下列级数中条件收敛的是( B ).A. nn i ∑∞+=⎪⎭⎫⎝⎛+021 B.∑+∞=0n nn i C. ∑+∞=02n nn i D. ∑+∞=+021n nni21.下列级数绝对收敛的是( B ).第 3 页 共 12 页()()()()()221111112nnnn n n n i i i A B C i D nnn ∞∞∞∞====⎛⎫++ ⎪⎝⎭∑∑∑∑22、级数∑∞=++-111)1(n n n nz 的收敛半径R 和和函数为( B ). A.1),1ln(=+R z B.1),1ln(=+R z z C.1),1ln(=-R zD.1),1ln(=-R z z (∑∞=++-111)1(n n n nz = ∑⎰∑∑∞=∞=++∞=+-=+-=-0001211d )1(1)1()1(n z n n n n n n n n z z z n z z n z z()z z dz zz dz z z z z z zz n nn znn +=+=-=-=⎰⎰∑∑⎰∞=∞=+1ln 11)(d )1(001)23.设C 为椭圆1422=+y x ,则积分⎰Cz z d 1= ( A ). A.i π2 B.π C.0 D.i π2- 24.设),(y x v 在区域D 内为),(y x u 的共轭调和函数,则( B )为D 内解析函数.A.),(),(y x iu y x v +B.),(),(y x iu y x v -C.),(),(y x iv y x u -D.xvi x u ∂∂-∂∂ 25. 级数∑∑+∞=+∞=+01n n nn n n bz z a b a ,(是复常数),则其收敛域是( D ).A.||||a z <B.||||b z <C.+∞<<||0zD.当||||b a <时||||||b z a <<二、填空题第 4 页 共 12 页1. 设42πiez -=,则=z Re 12. ()()112-+=z z z z f 在奇点0=z 附近的洛朗级数的收敛圆环域为1||0<<Z .3. 方程0=chz 的根是i k π⎪⎭⎫ ⎝⎛+21 4. -⎰=1||12sin z dz z zπ____i π_________.5. =⎥⎦⎤⎢⎣⎡-0,sin Re 4z z z s 61. 6.=⎰=1||z dz z i π2.7. ()()by x i ay x z f +++=在复平面内解析,则=a 1-,=b 1 .8.设i e z +=1,则=z Im i k ⎪⎭⎫⎝⎛+24π;9.函数2z w =将z 平面内的曲线222=-y x 映射成w 平面内曲线的方程为2=u .10.=⎰+idz z 102()3131i +. 11.设()12-=z ze z f z,则()=0///f__-9_____________.(()12-=z ze z f z z z z e zze z z z ze 222111--=-=-= ()⎪⎪⎭⎫ ⎝⎛++++++++-=...!31 (3)253z z z z z z z = (2)332----=z z z ()()()()()32///!3002100z f z f z f f z f '''+++=所以()()9!3230,23!30-=-='''-='''f f ) 12.设()∑+∞=-=+02111n nn z c z ,则此幂级数的收敛半径是2 .13.=⎥⎦⎤⎢⎣⎡-+0,1sin Re 6z chz z s 1201. 14.=-⎰=3||24z dz z i π2第 5 页 共 12 页15. =⎥⎦⎤⎢⎣⎡∞+,11Re 3z s ___0_______.16. 设i z 22-=,则z arg =4π-,z ln =i 48ln π-.17.dz zez z⎰=11= i π18.设i z 432+=,则=||z 5.19. 若函数23),(axy x y x u +=为某一解析函数的虚部,则常数=a ____-3 .20. 0=z 是函数()121sin z e z z f z --=的__10__级极点.21. =⎥⎥⎦⎤⎢⎢⎣⎡∞,Re 21z e 0 .22.函数()4ln 2-=z zz f 的奇点的集合是}2{]0,( -∞ 23. 若n n ni n n z )11(12++-+=,则=∞→n z n lim __-1+ie________. 24.()1-=z zz f 将区域2||=z 映射成___________________.25. z=0为()()122-=z e z z f 的 4 级零点.三、计算题1. 计算()i -1ln ,()1sin -i π和21的值解:()()i i i i i 42ln 211arg |1|ln 1ln π-=-+-=- ()i ee sh i ch i 211cos 1sin sin 2--=+=+πππ(()xshy i xchy iy x cos sin sin +=+)()()ππππ2sin 2cos 12)1(ln 2122i eeeii Ln +====+2. 求解析函数()iv u z f +=其中()01,22=+=f y x yu 解:()()()222222222/2z iy xy x iy x xy y u i x u z f =+-++=∂∂-∂∂= ()()c zidz z fz f +-==⎰/由()01=f 得到,i c = 3. 求满足方程i y iix 21+=++的x 和y 的值。
福师范复变函数期末考试作业
福师范复变函数期末考试作业单选题、单选题(共50 道试题,共100 分。
)1. 如果|z|<1,那么关于下列函数判断正确的是()A. |e^z|B. |sinz|<1C. |cosz|<1D. |tanz|<π满分:2 分2. 若z0是f(z)的m(m为正整数)级零点,则z0是f'(z)/f(z)的()A. 可去奇点B. 极点C. 本性奇点D. 零点满分:2 分3. 复函数在单连通域B内解析是该函数曲线积分与路径无关的()A. 充分条件B. 必要条件C. 充要条件D. 既非充分也非必要条件4.A.B.C.D.满分:2 分5.A.B.C.D.满分:2 分6. 对于同一条简单闭曲线,复函数曲线积分的实部()复函数实部的曲线积分A. 相等于B.大于C.小于D.无法判断7. 复函数f(z)在单连通区域B内解析,C为B内任一闭路,则必有()A. Ref(z)沿C积分为0B. Imf(z)沿C积分为0C. |f(z)|沿C积分为0D. 以上都不一定满分:2 分8. 下列关于解析函数的实部函数与虚部函数说法错误的是()A. 实部函数与虚部函数都是解析函数B. 实部函数与虚部函数都是调和函数C. 实部函数与虚部函数共轭调和D. 已知实部函数,可以用偏积分法求虚部函数满分:2 分9.A.B.C.D.满分:2 分10. 关于泰勒级数和**朗级数的区别,下列说法错误的是()A. 收敛区域形状一定不同B. 泰勒级数能表示的解析函数类型不如**朗级数广C. 泰勒级数是**朗级数的特例D. **朗级数是泰勒级数的推广满分:2 分11. 函数在复平面内为整函数是其为亚纯函数的()A. 充分条件B. 必要条件C. 充要条件D. 既非充分也非必要条件满分:2 分12.A.B.C.D.满分:2 分13. 一个复数列,其实部和虚部均有极限是复数列有极限的()A. 充分条件B. 必要条件C. 充要条件D. 既非充分也非必要条件满分:2 分14.A.B.C.D.满分:2 分15. 下列说法错误的是:解析函数在一点解析,则()A. 则在一个区域内每点都解析B. 存在任意阶导数,且导数解析C. 可以展开成幂级数D. 展开成的幂级数在复平面上处处收敛满分:2 分16. 下列说法正确的是()A. sinz在复平面内模有界1B. cosz在复平面内模有界1C. e^(iz)在复平面内模有界1D. 以上都错满分:2 分17. 关于幂级数的收敛半径,下列说法错误的是()A. 幂级数可能仅仅只在原点收敛B. 可能在复平面上处处收敛C. 求导后导数的收敛半径变小D. 任意阶导数都与原幂级数的收敛半径一致满分:2 分18. 下列说法错误的是:有理函数在复平面内()A. 处处解析B. 除掉极点外处处解析C. 奇点都是极点D. 只有有限个奇点满分:2 分19. 下列说法中错误的是:一个复数的n次方根()A. 有n个B. 模相等C. 辐角主值成等差数列D. 和为0满分:2 分20.A.B.C.D.满分:2 分21.A.B.C.D.满分:2 分22.A. AB. BC. CD. D满分:2 分23. z=0是f(z)=(cosz-1)/z的()A. 可去奇点B. 极点C. 本性奇点D. 非孤立奇点满分:2 分24.A.B.C.D.满分:2 分25. 关于两个复级数的和级数,下列说法错误的是()A. 两个复级数都收敛则和级数收敛B. 一个复级数收敛一个发散,则和函数发散C. 两个复级数都发散则和函数发散D. 两个复级数都无法判定则和函数也无法判定满分:2 分26.A.B.C.D.满分:2 分27.A.B.C.D.满分:2 分28. 关于单位圆周和单位圆内部下列说法正确的是()A. 都是开集B. 都是闭集C. 圆周是开集,内部是闭集D. 圆周是闭集,内部是开集满分:2 分29.A.B.C.D.满分:2 分30.A.B.C.D.满分:2 分31.A.B.C.D.满分:2 分32.A.B.C.D.满分:2 分33. 下列说法错误的是:复函数在一点处可导,则()A. 在该点处可微B. 实部函数与虚部函数均在该点可微C. 满足C-R条件D. 在该点处解析满分:2 分34. 下列说法错误的是,幂级数在收敛圆内()A. 处处收敛B. 绝对收敛C. 一致收敛D. 内闭一致收敛满分:2 分35. z0是f(z)的m(m为大于1的正整数)级零点,那么z0是f(z)导数的()A. 可去奇点B. m-1级零点C. m-1级极点D. 本性奇点满分:2 分36. 复函数在某点邻域内解析是在这个邻域内每一点都解析的()A. 充分条件B. 必要条件C. 充要条件D. 既非充分也非必要条件满分:2 分37.A.B.C.D.满分:2 分38.A.B.C.D.满分:2 分39. f(x,y)=e^x在复平面上()A. 处处连续B. 处处解析C. 在原点解析D. 在x轴上解析满分:2 分40. **朗级数在收敛圆环内()A. 处处解析B. 可以逐项求导数C. 可以逐项求积分D. 以上都对满分:2 分41.A.B.C.D.满分:2 分42. z0是f(z)的m级极点,那么z0是1/f(z)的()A. 可去奇点B. m级零点C. m级极点D. 本性奇点满分:2 分43.A.B.C.D.满分:2 分44. z0是f(z)的m(m为大于1的正整数)级极点,那么z0是f(z)导数的()A. 可去奇点B. m+1级零点C. m+1级极点D. 本性奇点满分:2 分45.A.B.C.D.满分:2 分46. 复函数在一点有极限是是在该点连续的()A. 充分条件B. 必要条件C. 充要条件D. 既非充分也非必要条件满分:2 分47. 下列说法错误的是:关于整函数有()A. 整函数的零点必定是孤立点B. 整函数在一段连续曲线上都取值0则处处为0C. 在闭区域内,整函数必定在边界上取到模的最大值D. 整函数在整个复平面上无法取到模的最大值满分:2 分48. 下列函数中是单值函数的是()A. 对数函数B. 幂函数C. 三角函数D. 反三角函数满分:2 分49.A.B.C.D.满分:2 分50.A.B.C.D.满分:2 分友情提示:范文可能无法思考和涵盖全面,供参考!最好找专业人士起草或审核后使用,感谢您的下载!。
《复变函数》考试试题与答案各种总结
《复变函数》考试试题(一)一、 判断题(20分):1.若f(z)在z 0的某个邻域内可导,则函数f(z)在z 0解析. ( )2.有界整函数必在整个复平面为常数. ( )3.若}{n z 收敛,则} {Re n z 与}{Im n z 都收敛. ( )4.若f(z)在区域D 内解析,且0)('≡z f ,则C z f ≡)((常数). ( )5.若函数f(z)在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( )6.若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点. ( )7.若)(lim 0z f z z →存在且有限,则z 0是函数f(z)的可去奇点. ( )8.若函数f(z)在是区域D 内的单叶函数,则)(0)('D z z f ∈∀≠. ( ) 9. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C0)(=⎰Cdz z f .( )10.若函数f(z)在区域D 内的某个圆内恒等于常数,则f(z)在区域D 内恒等于常数.( ) 二.填空题(20分)1、 =-⎰=-1||00)(z z nz z dz__________.(n 为自然数)2.=+z z 22cos sin _________. 3.函数z sin 的周期为___________.4.设11)(2+=z z f ,则)(z f 的孤立奇点有__________.5.幂级数nn nz∞=∑的收敛半径为__________.6.若函数f(z)在整个平面上处处解析,则称它是__________.7.若ξ=∞→n n z lim ,则=+++∞→n z z z nn (i)21______________.8.=)0,(Re n zz e s ________,其中n 为自然数.9. zz sin 的孤立奇点为________ .10.若0z 是)(z f 的极点,则___)(lim 0=→z f z z .三.计算题(40分):1. 设)2)(1(1)(--=z z z f ,求)(z f 在}1||0:{<<=z z D 内的罗朗展式.2. .cos 11||⎰=z dz z3. 设⎰-++=C d z z f λλλλ173)(2,其中}3|:|{==z z C ,试求).1('i f +4. 求复数11+-=z z w 的实部与虚部.四. 证明题.(20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数. 2. 试证: ()f z =在割去线段0Re 1z ≤≤的z 平面内能分出两个单值解析分支,并求出支割线0Re 1z ≤≤上岸取正值的那支在1z =-的值.《复变函数》考试试题(一)参考答案一. 判断题1.×2.√ 3.√ 4.√ 5.√ 6.√ 7.×8.×9.×10.× 二.填空题 1. 2101i n n π=⎧⎨≠⎩; 2. 1; 3. 2k π,()k z ∈; 4. z i =±; 5. 16. 整函数;7. ξ;8. 1(1)!n -; 9. 0; 10. ∞.三.计算题.1. 解 因为01,z << 所以01z <<111()(1)(2)12(1)2f z z z z z ==-----001()22nn n n z z ∞∞===-∑∑.2. 解 因为22212Re ()limlim 1cos sin z z z z s f z z z ππππ→→=+===--, 22212Re ()limlim 1cos sin z z z z s f z z zππππ→-→-=--===-. 所以22212(Re ()Re ()0cos z z z dz i s f z s f z z πππ==-==+=⎰. 3. 解 令2()371ϕλλλ=++, 则它在z 平面解析, 由柯西公式有在3z <内, ()()2()c f z dz i z z ϕλπϕλ==-⎰.所以1(1)2()2(136)2(613)z i f i i z i i i πϕππ=+''+==+=-+. 4. 解 令z a bi =+, 则 222222122(1)2(1)211111(1)(1)(1)z a bi a bw z z a b a b a b -+-+==-=-=-+++++++++. 故 2212(1)Re()11(1)z a z a b -+=-+++, 2212Im()1(1)z bz a b -=+++. 四. 证明题.1. 证明 设在D 内()f z C =.令2222(),()f z u iv f z u v c =+=+=则.两边分别对,x y 求偏导数, 得 0(1)0(2)x x yy uu vv uu vv +=⎧⎨+=⎩因为函数在D 内解析, 所以,x y y x u v u v ==-. 代入 (2) 则上述方程组变为00x x x x uu vv vu uv +=⎧⎨-=⎩. 消去x u 得, 22()0x u v v +=. 1) 若220u v +=, 则 ()0f z = 为常数.2) 若0x v =, 由方程 (1) (2) 及 ..C R -方程有0,x u = 0y u =, 0y v =. 所以12,u c v c ==. (12,c c 为常数).所以12()f z c ic =+为常数. 2.证明()f z =0,1z =. 于是割去线段0Re 1z ≤≤的z 平面内变点就不可能单绕0或1转一周, 故能分出两个单值解析分支.由于当z 从支割线上岸一点出发,连续变动到0,1z = 时, 只有z 的幅角增加π. 所以()f z =2π. 由已知所取分支在支割线上岸取正值, 于是可认为该分支在上岸之幅角为0, 因而此分支在1z =-的幅角为2π,故2(1)i f e π-==.《复变函数》考试试题(二)一. 判断题.(20分)1. 若函数),(),()(y x iv y x u z f +=在D 内连续,则u (x,y )与v (x,y )都在D 内连续. ( )2. cos z 与sin z 在复平面内有界. ( )3. 若函数f (z )在z 0解析,则f (z )在z 0连续. ( )4. 有界整函数必为常数. ( )5. 如z 0是函数f (z )的本性奇点,则)(lim 0z f z z →一定不存在. ( )6. 若函数f (z )在z 0可导,则f (z )在z 0解析. ( )7. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=⎰Cdz z f .( )8. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( ) 9. 若f (z )在区域D 内解析,则|f (z )|也在D 内解析. ( )10. 存在一个在零点解析的函数f (z )使0)11(=+n f 且,...2,1,21)21(==n nn f .( )二. 填空题. (20分)1. 设i z -=,则____,arg __,||===z z z2.设C iy x z y x i xy x z f ∈+=∀+-++=),sin(1()2()(222,则=+→)(lim 1z f iz ________.3.=-⎰=-1||00)(z z n z z dz_________.(n 为自然数)4. 幂级数0n n nz ∞=∑的收敛半径为__________ .5. 若z 0是f (z )的m 阶零点且m >0,则z 0是)('z f 的_____零点.6. 函数e z 的周期为__________.7. 方程083235=++-z z z 在单位圆内的零点个数为________. 8. 设211)(zz f +=,则)(z f 的孤立奇点有_________. 9. 函数||)(z z f =的不解析点之集为________.10. ____)1,1(Res 4=-zz . 三. 计算题. (40分)1. 求函数)2sin(3z 的幂级数展开式. 2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数z在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点i z=处的值.3. 计算积分:⎰-=iiz z Id ||,积分路径为(1)单位圆(1||=z )的右半圆.4. 求dzz zz ⎰=-22)2(sin π.四. 证明题. (20分)1. 设函数f (z )在区域D 内解析,试证:f (z )在D 内为常数的充要条件是)(z f 在D 内解析.2. 试用儒歇定理证明代数基本定理.《复变函数》考试试题(二)参考答案一. 判断题.1.√ 2.×3.√ 4.√ 5.×6.×7.×8.√ 9.×10.×. 二. 填空题1.1,2π-, i ; 2. 3(1sin 2)i +-; 3. 2101i n n π=⎧⎨≠⎩; 4. 1; 5. 1m -. 6. 2k i π,()k z ∈. 7. 0; 8. i ±; 9. R ; 10. 0. 三. 计算题1. 解 3212163300(1)(2)(1)2sin(2)(21)!(21)!n n n n n n n z z z n n +++∞∞==--==++∑∑.2. 解 令i z re θ=.则22(),(0,1)k if z k θπ+===.又因为在正实轴去正实值,所以0k =.所以4()if i eπ=.3. 单位圆的右半圆周为i z e θ=, 22ππθ-≤≤.所以22222ii i iz dz de ei ππθθππ---===⎰⎰.4. 解dz z zz ⎰=-22)2(sin π2)(sin 2ππ='=z z i 2cos 2ππ==z zi =0.四. 证明题.1. 证明 (必要性) 令12()f z c ic =+,则12()f z c ic =-. (12,c c 为实常数). 令12(,),(,)u x y c v x y c ==-. 则0x y y x u v u v ====. 即,u v 满足..C R -, 且,,,x y y x u v u v 连续, 故()f z 在D 内解析. (充分性) 令()f z u iv =+, 则 ()f z u iv =-, 因为()f z 与()f z 在D 内解析, 所以,x y y x u v u v ==-, 且(),()x y y y x x u v v u v v =-=-=--=-.比较等式两边得 0x y y x u v u v ====. 从而在D 内,u v 均为常数,故()f z 在D 内为常数.2. 即要证“任一 n 次方程 101100(0)n n n n a z a z a z a a --++⋅⋅⋅++=≠ 有且只有 n 个根”.证明 令1011()0nn n n f z a z a z a z a --=++⋅⋅⋅++=, 取10max ,1n a a R a ⎧⎫+⋅⋅⋅+⎪⎪>⎨⎬⎪⎪⎩⎭, 当z 在:C z R =上时, 有 111110()()n n nn n n z a R a R a a a R a R ϕ---≤+⋅⋅⋅++<+⋅⋅⋅+<.()f z =.由儒歇定理知在圆 z R < 内, 方程10110n n n n a z a z a z a --++⋅⋅⋅++= 与 00na z = 有相同个数的根. 而 00na z = 在 z R < 内有一个 n 重根 0z =. 因此n 次方程在z R <内有n 个根.《复变函数》考试试题(三)一. 判断题. (20分).1. cos z 与sin z 的周期均为πk2. ( ) 2. 若f (z )在z 0处满足柯西-黎曼条件, 则f (z )在z 0解析. ( )3. 若函数f (z )在z 0处解析,则f (z )在z 0连续. ( )4. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( )5. 若函数f (z )是区域D 内解析且在D 内的某个圆内恒为常数,则数f (z )在区域D 内为常数. ( )6. 若函数f (z )在z 0解析,则f (z )在z 0的某个邻域内可导. ( )7. 如果函数f (z )在}1|:|{≤=z z D 上解析,且)1|(|1|)(|=≤z z f ,则)1|(|1|)(|≤≤z z f . ( ) 8. 若函数f (z )在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( ) 9. 若z 0是)(z f 的m 阶零点, 则z 0是1/)(z f 的m 阶极点. ( ) 10. 若0z 是)(z f 的可去奇点,则0)),((Res 0=z z f . ( )二. 填空题. (20分)1. 设11)(2+=z z f ,则f (z )的定义域为___________.2. 函数e z 的周期为_________.3. 若n n n i n n z )11(12++-+=,则=∞→n z n lim __________.4. =+z z 22cos sin ___________.5. =-⎰=-1||00)(z z n z z dz_________.(n 为自然数) 6. 幂级数∑∞=0n n nx 的收敛半径为__________.7. 设11)(2+=z z f ,则f (z )的孤立奇点有__________.8. 设1-=ze ,则___=z .9. 若0z 是)(z f 的极点,则___)(lim 0=→z f z z .10. ____)0,(Res =n zze .三. 计算题. (40分)1. 将函数12()zf z z e =在圆环域0z <<∞内展为Laurent 级数.2. 试求幂级数nn n z nn ∑+∞=!的收敛半径.3. 算下列积分:⎰-C z z z ze )9(d 22,其中C 是1||=z .4. 求0282269=--+-z z z z在|z |<1内根的个数.四. 证明题. (20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数. 2. 设)(z f 是一整函数,并且假定存在着一个正整数n ,以及两个正数R 及M ,使得当R z ≥||时n z M z f |||)(|≤,证明)(z f 是一个至多n 次的多项式或一常数。
复变函数试题及答案
复变函数试题及答案一、选择题(每题4分,共40分)1. 下列哪个函数在全平面上是解析的?A. f(z) = |z|^2B. f(z) = e^zC. f(z) = ln(z)D. f(z) = 1/z答案:B2. 设f(z) = u(x, y) + iv(x, y)是解析函数,其中u(x, y)和v(x, y)是实函数。
下列哪个条件是解析函数的充分必要条件?A. u满足柯西-黎曼方程B. v满足柯西-黎曼方程C. u和v满足柯西-黎曼方程D. u和v的一阶偏导数满足柯西-黎曼方程答案:C3. 设f(z) = u(r, θ)是解析函数,其中r和θ是极坐标系下的变量。
下列哪个条件是解析函数的充分必要条件?A. u满足极坐标下的柯西-黎曼方程B. f(z)在全平面上是解析的C. f(z)在圆心附近是解析的D. f(z)在正实轴上是解析的答案:A4. 设f(z) = u(x, y) + iv(x, y)是解析函数,其中u(x, y)和v(x, y)是实函数。
若u和v满足柯西-黎曼方程,则A. f(z)在全平面上是解析的B. f(z)在实轴上是解析的C. f(z)在虚轴上是解析的D. f(z)在解析的那部分上满足柯西-黎曼方程答案:A5. 设f(z) = u(x, y) + iv(x, y)是解析函数,其中u(x, y)和v(x, y)是实函数。
若f(z)在实轴上是解析的,则A. u(x, y)在全平面上是解析的B. v(x, y)在全平面上是解析的C. u(x, y)和v(x, y)满足柯西-黎曼方程D. u(x, y)和v(x, y)处处可微分答案:C二、填空题(每空5分,共30分)1. 若f(z) = x^2 - y^2 + 2xyi是解析函数,则它的共轭函数为________。
答案:f*(z) = x^2 - y^2 - 2xyi2. 设f(z) = u(x, y)是解析函数,且满足柯西-黎曼方程的实部形式,则函数f(z)可表示为f(z) = ________。
复变函数期末考试试卷及答案详解
复变函数期末考试试卷及答案详解《复变函数》考试试题(一) 三.计算题(40分):dz1,1、 __________.(为自然数)nn,f(z),|z,z|,10(zz),0D,{z:0,|z|,1}(z,1)(z,2)f(z),求在1. 设22sinz,cosz,2. _________. 内的罗朗展式.1sinz3.函数的周期为___________. dz.,|z|,1cosz2. 12f(z),,,,,3712,f(z)fzd,()z,1C,{z:|z|,3}f'(1,i).,C4.设,则的孤立奇点有__________. ,z,3. 设,其中,试求,z,1nw,nz5.幂级数的收敛半径为__________. ,z,14. 求复数的实部与虚部. n0,6.若函数f(z)在整个平面上处处解析,则称它是__________. 四. 证明题.(20分)zzz,,...,1. 函数在区域D内解析. 证明:如果在D内为常数,f(z)|f(z)|12n,limlimz,,n,,nnn,,7.若,则______________.D那么它在内为常数. zesRe(,0),n0Re1,,z2. 试证: 在割去线段的平面内能分出两zfzzz()(1),,z8.________,其中n为自然数.z,,10Re1,,z个单值解析分支, 并求出支割线上岸取正值的那支在sinz的值.9. 的孤立奇点为________ .《复变函数》考试试题(二) z二. 填空题. (20分)limf(z),___zf(z)z,z0010.若是的极点,则.13sin(2z)1. 设,则 z,,i|z|,__,argz,__,z,__的幂级数展开式. 1. 求函数2222.设,则f(z),(x,2xy),i(1,sin(x,y),,z,x,iy,C2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数在正z实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点________. limf(z),z,1,i处的值. z,idz,3. _________.(为自然数) inn,|z,z|,10(zz),0I,|z|dz3. 计算积分:,积分路径为(1)单位圆()|z|,1,,i,nnz4. 幂级数的收敛半径为__________ . 的右半圆. ,n0,sinzdz,z,25. 若z是f(z)的m阶零点且m>0,则z是的_____零点. ,f'(z)002(,)z24. 求 .z6. 函数e的周期为__________.四. 证明题. (20分) 537. 方程在单位圆内的零点个数为________. 2z,z,3z,8,0f(z)1. 设函数f(z)在区域D内解析,试证:f(z)在D内为常数的充要条件是1f(z),8. 设,则的孤立奇点有_________. f(z)2在D内解析. 1,z2. 试用儒歇定理证明代数基本定理. 9. 函数的不解析点之集为________.f(z),|z|《复变函数》考试试题(三)二. 填空题. (20分) z,1110. . Res(,1),____f(z),1. 设,则f(z)的定义域为___________. 42z,1zz三. 计算题. (40分) 2. 函数e的周期为_________.2n,21n,,z,,i(1,)3. 若,则__________. limz,nnn!n,,1,nnn的收敛半径.2. 试求幂级数z,n22n4. ___________. sinz,cosz,n,dzzedz,5. _________.(为自然数) nn,|z,z|,13. 算下列积分:,其中是.C|z|,10(zz),22,0Cz(z,9),nnx6. 幂级数的收敛半径为__________. ,962n,0z,2z,z,8z,2,04. 求在|z|<1内根的个数.四. 证明题. (20分) 1f(z),7. 设,则f(z)的孤立奇点有__________. 21. 函数在区域D内解析. 证明:如果在D内为常f(z)|f(z)|z,1z数,那么它在D内为常数. 8. 设,则. z,___e,,12. 设是一整函数,并且假定存在着一个正整数n,以及两个正数f(z)z9. 若是的极点,则. f(z)limf(z),___0z,z0R及M,使得当时 |z|,Rzen10. Res(,0),____. n|f(z)|,M|z|, z三. 计算题. (40分) 证明是一个至多n次的多项式或一常数。
《复变函数》考试试题与答案各种总结
《复变函数》考试试题(一)一、 判断题(20分):1.若f(z)在z 0的某个邻域内可导,则函数f(z)在z 0解析. ( )2.有界整函数必在整个复平面为常数. ( )3.若}{n z 收敛,则} {Re n z 与} {Im n z 都收敛. ( )4.若f(z)在区域D 内解析,且0)('≡z f ,则C z f ≡)((常数). ( )5.若函数f(z)在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( )6.若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点. ( )7.若)(lim 0z f z z →存在且有限,则z 0是函数f(z)的可去奇点. ( )8.若函数f(z)在是区域D 内的单叶函数,则)(0)('D z z f ∈∀≠. ( ) 9. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C0)(=⎰Cdz z f .( )10.若函数f(z)在区域D 内的某个圆内恒等于常数,则f(z)在区域D 内恒等于常数.( ) 二.填空题(20分)1、 =-⎰=-1||00)(z z nz z dz__________.(n 为自然数)2.=+z z 22cos sin _________. 3.函数z sin 的周期为___________.4.设11)(2+=z z f ,则)(z f 的孤立奇点有__________.5.幂级数nn nz∞=∑的收敛半径为__________.6.若函数f(z)在整个平面上处处解析,则称它是__________.7.若ξ=∞→n n z lim ,则=+++∞→n z z z nn (i)21______________.8.=)0,(Re n zz e s ________,其中n 为自然数.9. zz sin 的孤立奇点为________ .10.若0z 是)(z f 的极点,则___)(lim 0=→z f z z .三.计算题(40分):1. 设)2)(1(1)(--=z z z f ,求)(z f 在}1||0:{<<=z z D 内的罗朗展式.2. .cos 11||⎰=z dz z3. 设⎰-++=C d z z f λλλλ173)(2,其中}3|:|{==z z C ,试求).1('i f +4. 求复数11+-=z z w 的实部与虚部.四. 证明题.(20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数. 2. 试证: ()(1)f z z z =-在割去线段0Re 1z ≤≤的z 平面内能分出两个单值解析分支,并求出支割线0Re 1z ≤≤上岸取正值的那支在1z =-的值.《复变函数》考试试题(一)参考答案一. 判断题1.×2.√ 3.√ 4.√ 5.√ 6.√ 7.×8.×9.×10.× 二.填空题 1. 2101i n n π=⎧⎨≠⎩; 2. 1; 3. 2k π,()k z ∈; 4. z i =±; 5. 16. 整函数;7. ξ;8. 1(1)!n -; 9. 0; 10. ∞.三.计算题.1. 解 因为01,z << 所以01z <<111()(1)(2)12(1)2f z z z z z ==-----001()22nn n n z z ∞∞===-∑∑.2. 解 因为22212Re ()limlim 1cos sin z z z z s f z z z ππππ→→=+===--, 22212Re ()limlim 1cos sin z z z z s f z z zππππ→-→-=--===-. 所以22212(Re ()Re ()0cos z z z dz i s f z s f z z πππ==-==+=⎰. 3. 解 令2()371ϕλλλ=++, 则它在z 平面解析, 由柯西公式有在3z <内, ()()2()c f z dz i z z ϕλπϕλ==-⎰.所以1(1)2()2(136)2(613)z i f i i z i i i πϕππ=+''+==+=-+. 4. 解 令z a bi =+, 则 222222122(1)2(1)211111(1)(1)(1)z a b i a b w z z a b a b a b -+-+==-=-=-+++++++++. 故 2212(1)Re()11(1)z a z a b -+=-+++, 2212Im()1(1)z bz a b -=+++. 四. 证明题.1. 证明 设在D 内()f z C =. 令2222(),()f z u iv f z u v c =+=+=则.两边分别对,x y 求偏导数, 得 0(1)0(2)x x y y uu vv uu vv +=⎧⎨+=⎩因为函数在D 内解析, 所以,x y y x u v u v ==-. 代入 (2) 则上述方程组变为x x x x uu vv vu uv +=⎧⎨-=⎩. 消去x u 得, 22()0x u v v +=. 1) 若220u v +=, 则 ()0f z = 为常数.2) 若0x v =, 由方程 (1) (2) 及 ..C R -方程有0,x u = 0y u =, 0y v =. 所以12,u c v c ==. (12,c c 为常数).所以12()f z c ic =+为常数. 2. 证明()(1)f z z z =-的支点为0,1z =. 于是割去线段0Re 1z ≤≤的z 平面内变点就不可能单绕0或1转一周, 故能分出两个单值解析分支.由于当z 从支割线上岸一点出发,连续变动到0,1z = 时, 只有z 的幅角增加π. 所以()(1)f z z z =-的幅角共增加2π. 由已知所取分支在支割线上岸取正值, 于是可认为该分支在上岸之幅角为0, 因而此分支在1z =-的幅角为2π, 故2(1)22i f e i π-==.《复变函数》考试试题(二)一. 判断题.(20分)1. 若函数),(),()(y x iv y x u z f +=在D 内连续,则u (x,y )与v (x,y )都在D 内连续. ( )2. cos z 与sin z 在复平面内有界. ( )3. 若函数f (z )在z 0解析,则f (z )在z 0连续. ( )4. 有界整函数必为常数. ( )5. 如z 0是函数f (z )的本性奇点,则)(lim 0z f z z →一定不存在. ( )6. 若函数f (z )在z 0可导,则f (z )在z 0解析. ( )7. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=⎰Cdz z f .( )8. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( ) 9. 若f (z )在区域D 内解析,则|f (z )|也在D 内解析. ( )10. 存在一个在零点解析的函数f (z )使0)11(=+n f 且,...2,1,21)21(==n nn f . ( )二. 填空题. (20分)1. 设i z -=,则____,arg __,||===z z z2.设C iy x z y x i xy x z f ∈+=∀+-++=),sin(1()2()(222,则=+→)(lim 1z f i z ________.3.=-⎰=-1||00)(z z n z z dz_________.(n 为自然数)4. 幂级数0n n nz ∞=∑的收敛半径为__________ .5. 若z 0是f (z )的m 阶零点且m >0,则z 0是)('z f 的_____零点.6. 函数e z 的周期为__________.7. 方程083235=++-z z z 在单位圆内的零点个数为________. 8. 设211)(zz f +=,则)(z f 的孤立奇点有_________. 9. 函数||)(z z f =的不解析点之集为________.10. ____)1,1(Res 4=-zz .三. 计算题. (40分)1. 求函数)2sin(3z 的幂级数展开式. 2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数z在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点i z=处的值.3. 计算积分:⎰-=iiz z Id ||,积分路径为(1)单位圆(1||=z )的右半圆.4. 求dzz zz ⎰=-22)2(sin π.四. 证明题. (20分)1. 设函数f (z )在区域D 内解析,试证:f (z )在D 内为常数的充要条件是)(z f 在D 内解析.2. 试用儒歇定理证明代数基本定理.《复变函数》考试试题(二)参考答案一. 判断题.1.√ 2.×3.√ 4.√ 5.×6.×7.×8.√ 9.×10.×. 二. 填空题1.1,2π-, i ; 2. 3(1sin 2)i +-; 3. 2101i n n π=⎧⎨≠⎩; 4. 1; 5. 1m -.6. 2k i π,()k z ∈.7. 0;8. i ±;9. R ; 10. 0. 三. 计算题1. 解 3212163300(1)(2)(1)2sin(2)(21)!(21)!n n n n n n n z z z n n +++∞∞==--==++∑∑. 2. 解 令i z re θ=. 则22(),(0,1)k if z z rek θπ+===.又因为在正实轴去正实值,所以0k =.所以4()if i eπ=.3. 单位圆的右半圆周为i z e θ=, 22ππθ-≤≤.所以22222ii i iz dz de ei ππθθππ---===⎰⎰.4. 解dz z zz ⎰=-22)2(sin π2)(sin 2ππ='=z z i 2cos 2ππ==z zi =0.四. 证明题.1. 证明 (必要性) 令12()f z c ic =+,则12()f z c ic =-. (12,c c 为实常数). 令12(,),(,)u x y c v x y c ==-. 则0x y y x u v u v ====. 即,u v 满足..C R -, 且,,,x y y x u v u v 连续, 故()f z 在D 内解析. (充分性) 令()f z u iv =+, 则 ()f z u iv =-, 因为()f z 与()f z 在D 内解析, 所以,x y y x u v u v ==-, 且(),()x y y y x x u v v u v v =-=-=--=-.比较等式两边得 0x y y x u v u v ====. 从而在D 内,u v 均为常数,故()f z 在D 内为常数. 2. 即要证“任一 n 次方程 101100(0)nn n n a z a z a z a a --++⋅⋅⋅++=≠ 有且只有 n 个根”.证明 令1011()0nn n n f z a z a z a z a --=++⋅⋅⋅++=, 取10max ,1n a a R a ⎧⎫+⋅⋅⋅+⎪⎪>⎨⎬⎪⎪⎩⎭, 当z 在:C z R =上时, 有 111110()()n n nn n n z a R a R a a a R a R ϕ---≤+⋅⋅⋅++<+⋅⋅⋅+<.()f z =.由儒歇定理知在圆 z R < 内, 方程10110n n n n a z a z a z a --++⋅⋅⋅++= 与 00n a z = 有相同个数的根. 而 00n a z = 在 z R < 内有一个 n 重根 0z =. 因此n 次方程在z R < 内有n 个根.《复变函数》考试试题(三)一. 判断题. (20分).1. cos z 与sin z 的周期均为πk2. ( ) 2. 若f (z )在z 0处满足柯西-黎曼条件, 则f (z )在z 0解析. ( )3. 若函数f (z )在z 0处解析,则f (z )在z 0连续. ( )4. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( )5. 若函数f (z )是区域D 内解析且在D 内的某个圆内恒为常数,则数f (z )在区域D 内为常数. ( )6. 若函数f (z )在z 0解析,则f (z )在z 0的某个邻域内可导. ( )7. 如果函数f (z )在}1|:|{≤=z z D 上解析,且)1|(|1|)(|=≤z z f ,则)1|(|1|)(|≤≤z z f . ( )8. 若函数f (z )在z 0处解析,则它在该点的某个邻域内可以展开为幂级数.( ) 9. 若z 0是)(z f 的m 阶零点, 则z 0是1/)(z f 的m 阶极点. ( ) 10. 若0z 是)(z f 的可去奇点,则0)),((Res 0=z z f . ( )二. 填空题. (20分)1. 设11)(2+=z z f ,则f (z )的定义域为___________.2. 函数e z 的周期为_________.3. 若n n n i n n z )11(12++-+=,则=∞→n z n lim __________. 4. =+z z 22cos sin ___________.5. =-⎰=-1||00)(z z n z z dz_________.(n 为自然数) 6. 幂级数∑∞=0n n nx 的收敛半径为__________.7. 设11)(2+=z z f ,则f (z )的孤立奇点有__________.8. 设1-=ze,则___=z .9. 若0z 是)(z f 的极点,则___)(lim 0=→z f z z .10. ____)0,(Res =nzze . 三. 计算题. (40分)1. 将函数12()zf z z e =在圆环域0z <<∞内展为Laurent 级数.2. 试求幂级数nn n z nn ∑+∞=!的收敛半径.3. 算下列积分:⎰-C z z z ze )9(d 22,其中C 是1||=z .4. 求0282269=--+-z z z z在|z |<1内根的个数.四. 证明题. (20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数. 2. 设)(z f 是一整函数,并且假定存在着一个正整数n ,以及两个正数R 及M ,使得当R z ≥||时n z M z f |||)(|≤,证明)(z f 是一个至多n 次的多项式或一常数。