12.3.1 角平分线的性质习题

合集下载

人教版八年级数学角的平分线的性质(第一课时)+练习题

人教版八年级数学角的平分线的性质(第一课时)+练习题

1.(教材1
2.3 复习巩固)用三角尺可按下面方法画角平分线,在已知的∠AOB的两边
上,分别取OM=ON,再分别过点M,N作OA,OB的垂线,交点为P,画射线OP,则OP平分∠AOB,为什么?
2. 如图所示,在△ABC中:
(1)下列操作中,作∠ABC的平分线的正确顺序是(将序号按正确的顺序写在横线上).
①分别以点M,N为圆心,大于1
2
MN的长为半径作圆弧,在∠ABC内,两弧交于点P;
②以点B为圆心,适当长为半径作圆弧,交AB于点M,交BC于N点;
③画射线BP,交AC于点D.
(2)能说明∠ABD=∠CBD的依据是(填序号).
①SSS.②ASA.③AAS.④角平分在线的点到角两边的距离相等.(3)若AB=18,BC=12,S△ABC=120,过点D作DE⊥AB于点E,求DE的长.
1。

八年级数学人教版上册同步练习角的平分线的性质(原卷版)

八年级数学人教版上册同步练习角的平分线的性质(原卷版)

12.3角的平分线的性质一、单选题1.如图①,已知ABC ∠,用尺规作它的角平分线.如图②,步骤如下:第一步:以B 为圆心,以a 为半径画弧,分别交射线BA ,BC 于点D ,E ;第二步:分别以D ,E 为圆心,以b 为半径画弧,两弧在ABC ∠内部交于点P ;第三步;画射线BP ,射线BP 即为所求.下列叙述不正确的是( )A .0a >B .作图的原理是构造SSS 三角形全等C .由第二步可知,DP EP =D .12b DE <的长 2.如图,Rt ABC 中,90C ∠=︒,利用尺规在BC ,BA 上分别截取BE ,BD ,使BE BD =;分别以D ,E 为圆心、以大于12DE 的长为半径作弧,两弧在CBA ∠内交于点F ;作射线BF 交AC 于G .若2CG =.P 为AB 上一动点,则GP 的最小值为( )A .无法确定B .1C .2D .43.如图,Rt △ABC 中,∠C =90°,用尺规分别截取BE ,BD ,使BE =BD ,分别以D 、E 为圆心、以大于12DE 的长为半径作弧,两弧在∠CBA 内交于点F ;作射线BF 交AC 于点G .若CG =1,P 为AB 上一动点,则GP 的最小值为( )A .无法确定B .12C .1D .24.如图,//,AF CD CB 平分,ACD BD ∠平分EBF ∠,且BC BD ⊥,下列结论:①BC 平分ABE ∠,②//AC BE ;③90BCD D ∠+∠=︒;④2DBF ABC ∠=∠.其中正确的个数为( )A .4个B .3个C .2个D .1个5.如图,在Rt ABC 中,90C ∠=︒,AD 平分CAB ∠,DE AB ⊥于E ,则下列结论中,不正确的是( )A .DE 平分ADB ∠ B .BD ED BC += C .AD 平分EDC ∠ D .ED AC AD +>6.如图,在Rt ABC 中,90,B AD ∠=︒平分BAC ∠,交BC 于点D ,DE AC ⊥,垂足为点E ,若1BD =,则DE 的长为( )A .12B .1C .2D .67.如图,//AB CD ,CE 平分ACD ∠交AB 于点E ,EG 平分BEF ∠交CD 于点G ,若90CEG ∠=︒,则下列结论:①EC 平分AEF ∠;②//EF AC ;③180EFG A ∠+∠=︒;④12EGC A ∠=∠.其中正确的有( )A .1个B .2个C .3个D .4个8.如图,在四边形ABCD 中,∠A =∠BDC =90°,∠C =∠ADB ,点P 是BC 边上的一动点,连接DP ,若AD =4,则DP 的长不可能是( )A .6B .5C .4D .3二、填空题目 9.如图,已知AB ∥CD ,∠BFC =127°4',观察图中尺规作图的痕迹,可知∠BCD 的度数为_____.10.如图,在平面直角坐标系中,以点O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧在第二象限交于点P .若点P 的坐标为(a +2b ,a +1),则a +b =________.11.我们定义:一个三角形最小内角的角平分线将这个三角形分割得到的两个三角形它们的面积之比称为“最小角割比Ω”(1Ω≥),那么三边长分别为7,24,25的三角形的最小角割比Ω是______. 12.如图,已知ABC ∆中,90,C AC BC ∠=︒=,点D 在BC 上,DE AB ⊥,点E 为垂足,且DC DE =,联结AD ,则ADB ∠的大小为___________.13.如图所示,已知AOB ∠,求作射线OC ,使OC 平分AOB ∠,作法的合理顺序是__.(将①②③重新排列)①作射线OC ;②以O 为圆心,任意长为半径画弧交OA 、OB 于D 、E ;③分别以D 、E 为圆心,大于12DE 的长为半径作弧,在AOB ∠内,两弧交于点C .14.如图,在Rt △ABC 中,∠ACB =90°,BE 平分∠ABC ,DE ⊥AB ,垂足为D ,其中CE =4.5,AB =10,那么△ABE 的面积为_____.三、解答题15.如图AOB ∠是一个锐角.(1)用尺规作图法作出AOB ∠的平分线OC ;(2)若点P 是OC 上一点,过点P 作PD OA ⊥于点D ,PE OB ⊥于点E ,求证:OD OE =. 16.如图,已知//58AM BN A ∠=︒,,点P 是射线AM 上一动点(与点A 不重合),BC BD 、分别平分ABP ∠和PBN ∠,分别交射线AM 于点C ,D .(1)①ABN ∠的度数是_______度;②∵//AM BN ,∴ACB ∠=∠________.(2)求CBD ∠的度数.(3)当点P 运动时,APB ∠与ADB ∠之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由:若变化,请写出变化规律.17.如图,将ABC 绕点A 按逆时针方向旋转DAC ∠的度数得到AED .(1)尺规作图:确定AED 的顶点E 的位置(保留作图痕迹,不写作法与证明过程);(2)连接AE ,DE ,设BC 的延长线交DE 于点G ,连接AG .求证:AG 平分DGB ∠.18.如图,在ABC 中,按以下步骤作图:①以点B 为圆心,任意长为半径作弧,分别交边AB ,BC 于点D ,E ;②分别以点D ,E 为圆心,大于12DE 的相同长度为半径作弧,两弧交于点F ; ③作射线BF 交AC 于点G .(1)根据上述步骤补全作图过程(要求:规作图,不写作法,保留作图痕迹);(2)如果8AB =,12BC =,那么ABG 的面积与CBG 的面积的比值是________.19.(1)如图1,ABC 中,ABC ∠的角平分线与ACB ∠的外角ACD ∠的平分线交于1A .当A ∠为80︒时,则为1A ∠的度数.(2)在(1)的条件下,若1A BC ∠的角平分线与1ACD ∠的角平分线交于2A ,2A BC ∠与A CD 2的平分线交于3A ,如此继续下去可得1A …,n A ,则6A ∠=______°;(3)如图2,四边形ABCD 中,F ∠为ABC ∠的角平分线及外角DCE ∠的平分线所在的直线构成的角,若230A D ∠+∠=︒,则F ∠=_________°;(4)如图3,ABC 中,ABC ∠的角平分线与ABC 的外角ACD ∠的平分线交于1A ,若E 为BA 延长线上一动点,连EC ,AEC ∠与ACE ∠的角平分线交于Q ,①求证1Q A ∠+∠的值为定值;②1Q A ∠-∠的值为定值.其中有且只有一个是正确的,请写出正确的结论 (填编号),并写出其值.20.如图,△ABC 中,∠C =90°,请按要求解决问题.(1)求作∠A 的平分线交BC 边于点D .(用尺规作图,保留作图痕迹,不写画法)(2)若AC =6,AB =10,求△ABD 的面积.21.如图所示,在ABC 中,AB AC =.(1)尺规作图:过点A 作ABC 的角平分线AD (不写作法,保留作图痕迹); (2)在AD 上任取一点E ,连接BE 、CE .求证:ABE ACE ∠∠. 22.如图,CA 平分∠BCD ,AB =AD ,AE ⊥BC ,AF ⊥CD ,垂足分别为E 、F . (1)若∠ABE =60°,求∠CDA 的大小;(2)若AE =2,BE =1,CD =3,求四边形AECD 的面积.祝福语祝你考试成功!。

2019-2020学年八年级上学期数学专题12.3 角平分线的性质(测试)(解析版)

2019-2020学年八年级上学期数学专题12.3 角平分线的性质(测试)(解析版)

专题12.3角平分线的性质(测试)一、单选题1.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于D,若BD=2CD,点D到AB的距离为4,则BC的长是()A.4 B.8 C.12 D.16【答案】C【解析】解:如图,过D作DE⊥AB于E,∵∠C=90°,∴CD⊥AC,∵AD平分∠BAC,∴CD=DE,∵D到AB的距离等于4,∴CD=DE=4,又∵BD=2CD,∴BD=8,∴BC=4+8=12,故选:C.2.如图,图中直线表示三条相互交叉的路,现要建一个货运中转站,要求它到三条公路的距离相等,则选择的地址有()A.4处B.3处C.2处D.1处【答案】A【解析】解:∵△ABC 内角平分线的交点到三角形三边的距离相等, ∴△ABC 内角平分线的交点满足条件; 如图:点P 是△ABC 两条外角平分线的交点, 过点P 作PE ⊥AB ,PD ⊥BC ,PF ⊥AC , ∴PE=PF ,PF=PD , ∴PE=PF=PD ,∴点P 到△ABC 的三边的距离相等,∴△ABC 两条外角平分线的交点到其三边的距离也相等,满足这条件的点有3个; 综上,到三条公路的距离相等的点有4个, ∴可供选择的地址有4个. 故选:A .3.如图,在ABC ∆中,90C ∠=︒,10AB =,AD 是ABC ∆的一条角平分线.若3CD =,则ABD ∆的面积为( )A .3B .10C .12D .15【答案】D【解析】解:如图,作DE ⊥AB 于E ,∵AD平分∠BAC,DE⊥AB,DC⊥AC,∴DE=CD=3.∴△ABD的面积为12×3×10=15.故选:D.4.△ABC中,AB=7,BC=24,AC=25.在△ABC内有一点P到各边的距离相等,则这个距离为()A.1 B.2 C.3 D.4【答案】C【解析】解:∵△ABC中,AB=7,BC=24,AC=25,∴AB2+BC2=72+242=252=AC2,∴∠ABC=90°,连接AP,BP,CP.设PE=PF=PG=xS△ABC=12×AB×CB=84,S△ABC=12AB×x+12AC×x+12BC×x=12(AB+BC+AC)•x=12×56x=28x,则28x=84,x=3.故选:C.5.如图,OP平分∠AOB,点C,D分别在射线OA,OB上,添加下列条件,不能判定△POC≌△POD的是()A .OC =ODB .∠CPO =∠DPOC .PC =PD D .PC ⊥OA ,PD ⊥OB【答案】C【解析】∵OP 是∠AOB 的平分线, ∴∠AOP =∠BOP ,而OP 是公共边,A 、添加OC =OD 可以利用“SAS ”判定△POC ≌△POD ,B 、添加∠OPC =∠OPD 可以利用“ASA ”判定△POC ≌△POD , C 、添加PC =PD 符合“边边角”,不能判定△POC ≌△POD , D 、添加PC ⊥OA ,PD ⊥OB 可以利用“AAS ”判定△POC ≌△POD , 故选:C .6.如图,已知ABC ∆的面积为28cm ,BP 为ABC ∠的平分线,AP BP ⊥于点P ,则PBC ∆的面积为( ).A .23.5cmB .23.9cmC .24cmD .24.2cm【答案】C【解析】延长AP 交BC 的延长线于点E , ∵AP 垂直PB 且PB 平分ABC ∠, ∴ABP EBP ∠=∠.又BP BP =,90APB BPE ∠=∠=︒, ∴()ABP EBP ASA ∆≅∆. ∴BAP BEP S S ∆∆=,AP PE =. ∴APC PCE S S ∆∆=.设ACE S m ∆=,∴8ABE ABC ACE S S S m ∆∆∆=+=+,∴284cm 211222PBC ABE ACE S S S m m ∆∆∆+-==-=.7.如图,在ABC ∆中,90C ∠=︒,AD 平分BAC ∠交BC 于点D ,若32BC =,且:9:7BD CD =,则点D 到AB 边的距离为( ).A .18B .16C .14D .12【答案】C【解析】过点D 作DE AB ⊥于点E , ∵AD 平分BAC ∠,∴DC DE =.又:9:7BD CD =且32BC =,∴18BD =,14CD =. 即14DE =.即点D 到AB 边的距离为14. 故选C8.如图所示,P 是BAC ∠的平分线上一点,PM AB ⊥于点M ,PN AC ⊥于点N .有下列结论:①PM PN =;②AM AN =;③APM ∆与APN ∆面积相等;④90PAN APM ∠+∠=︒,其中正确结论的个数是( )A .1B .2C .3D .4【答案】D【解析】由角平分线性质可知①是正确的;可证()Rt Rt AMP ANP HL ∆≅∆,∴AM=AN,APM APN S S ∆∆=,可得②③是正确的;由()Rt Rt AMP ANP HL ∆≅∆可得∠APM=∠APN ,由∠APN+∠PAN=90°可得∠PAN+∠APM=90°,可知④是正确的,故选D.9.如图,在ABC ∆中,90C ∠=︒,AD 平分BAC ∠交BC 于点D ,DE AB ⊥于点E ,下列结论中正确的个数是( ).①AD 平分CDE ∠:②BAC BDE ∠=∠;③DE 平分ADB ∠;④AB AC BE =+. A .3个 B .2个C .1个D .4个【答案】A【解析】因为DE AB ⊥,所以90AED ∠=︒.又AD 是CAB ∠的角平分线,AC CD ⊥,由角平分线的性质得DC DE =,又AD AD =,故ACD AED ∆≅∆,所以ADC ADE ∠=∠,故①成立;在Rt ABC ∆中,90C ∠=︒,故90BAC B ∠+∠=︒,在Rt BDE ∆中,90B EDB ∠+∠=︒,因此BAC B B EDB ∠+∠=∠+∠,即BAC BDE ∠=∠,故②成立;∵ACD AED ∆≅∆,故AC AE =,因此AB AE EB AC BE =+=+,④成立; 当60B ∠=︒时,30EDB ∠=︒,75ADE ∠=︒,显然EDB ADE ∠≠∠,故③不成立.10.作∠AOB 的角平分线的作图过程如下,用下面的三角形全等判定法则解释其作图原理,最为恰当的是( )A.SAS B.ASA C.AAS D.SSS【答案】D【解析】连接CD、CE,根据作图步骤知OD=OE、CD=CE、OC=OC所以根据SSS可判定△OCE≌△OCD,所以∠BOC=∠AOC,OC平分∠AOB故用尺规作图画∠AOB的角平分线OC,作图依据是SSS,故选:D.11.如图,点P在∠MON的角平分线上,A、B分别在∠MON的边OM、ON上,若OB=3,S△OPB=6,则线段AP的长不可能是()A.3 B.4 C.5 D.6【答案】A【解析】作PC⊥OM于C,PD⊥ON于D,如图所示:∵点P在∠MON的角平分线上,∴PC=PD,∵S△OPB=12OB⋅PD=6,OB=3,∴PD=4,∴线段AP的长不可能是3,故选:A.12.如图,在△ABC中,∠C=90°,AC=BC,AB=4cm,AD平分∠BAC交BC于点D,DE⊥AB于点E,则以下结论:①AD平分∠CDE;②DE平分∠BDA;③AE-BE=BD;④△BDE周长是4cm.其中正确的有()A.4个B.3个C.2个D.1个【答案】B【解析】解:∵DE⊥AB,∴∠DEA=∠DEB=90°,∵AD平分∠CAB,∴∠CAD=∠BAD,∵∠C=90°,∠CDA+∠C+∠CAD=180°,∠DEA+∠BAD+∠EDA=180°,∴∠CDA=∠EDA,∴①正确;∵在△ABC中,∠C=90°,AC=BC,∴∠CAB=∠B=45°,∵∠C=∠DEA=∠DEB=90°,∴∠CDE=360°-90°-45°-90°=135°,∠BDE=180°-90°-45°=45°,∵∠CDA=∠EDA,∴∠CDA=∠EDA=11352︒⨯=67.5°≠45°,∴∠EDA≠∠BDE,∴DE不平分∠BDA,∴②错误;∵AD平分∠CAB,∠C=90°,DE⊥AB,∴CD=DE,由勾股定理得:AC=AE,∴AE=AC=BC , ∵∠B=∠BDE=45°, ∴BE=DE=CD ,∴AE-BE=BC-CD=BD ,∴③正确;△BDE 周长是BE+DE+BD=BE+CD+BD=BC+BE=AE+BE=AB=4cm ,∴④正确; 即正确的个数是3, 故选:B .13.如图,AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 于点F .若S △ABC =28,DE =4,AB =8,则AC 长是( )A .8B .7C .6D .5【答案】C【解析】解:∵AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 交AC 于点F , ∴DF =DE =4.又∵S △ABC =S △ABD +S △ACD ,AB =8,112884422AC ∴=⨯⨯+⨯⨯,∴AC =6. 故选:C .14.如图,在△ABC 中,∠C =90°,∠B =30°,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,则下列说法中:①AD 是∠BAC 的平分线;②∠ADC =60°;③点D 在AB 的中垂线上;④△ABD 边AB 上的高等于DC.其中正确的个数是( )A.1 B.2 C.3 D.4【答案】D【解析】①根据作图的过程可知,AD是∠BAC的平分线.故①正确;②∵在△ABC中,∠C=90°,∠B=30°,∴∠CAB=60°.又∵AD是∠BAC的平分线,∴∠CAD=∠BAD=12∠CAB=30°,∴∠ADC=90°-∠2=60°,即∠ADC=60°.故②正确;③∵∠BAD =∠B=30°,∴AD=BD,∴点D在AB的中垂线上.故③正确;④角平分线上的一点到线段两端点的距离相等, 因此判断出△ABD边AB上的高等于DC.故④正确.综上所述,正确的结论是:①②③④,共有4个.故选D.15.如图,BP平分∠ABC,D为BP上一点,E,F分别在BA,BC上,且满足DE=DF,若∠BED=140°,则∠BFD的度数是()A.40°B.50°C.60°D.70°【答案】A【解析】作DG ⊥AB 于G ,DH ⊥BC 于H ,∵D 是∠ABC 平分线上一点,DG ⊥AB ,DH ⊥BC ,∴DH=DG ,在Rt △DEG 和Rt △DFH 中,DG DH DE DF⎧⎨⎩== ∴Rt △DEG ≌Rt △DFH (HL ),∴∠DEG=∠DFH ,又∠DEG+∠BED=180°,∴∠BFD+∠BED=180°,∴∠BFD 的度数=180°-140°=40°,故选:A .16.如图,在四边形ABDC 中,∠B =∠D =90°,∠BAC 与∠ACD 的平分线交于点O ,且点O 在线段BD 上,BD =4,则点O 到边AC 的距离是( )A .1B .1.5C .2D .3【答案】C 【解析】解:过O 作OE ⊥AC 于E ,∵∠B =∠D =90°,∠BAC 与∠ACD 的平分线交于点O ,∴OB =OE =OD ,∵BD =4,∴OB =OE =OD =2,∴点O到边AC的距离是2,故选:C.二、填空题17.如图,以O为圆心,适当长为半径画弧,交横轴于点M,交纵轴于点N,再分别以点M、N为圆心,大于12MN的长为半径画弧,两弧交于点P.若点P到横轴和纵轴的距离分别为2a-1、a+2,则a=_____.【答案】3【解析】根据作图方法可得点P在第二象限角平分线上,则P点横纵坐标的和为0,故2a-1=a+2,整理得:a =3,18.如图所示,AB//CD,O为∠A、∠C的平分线的交点O,OE⊥AC于E,且OE=2,则AB与CD之间的距离等于_______.【答案】4【解析】解:过点O作OF⊥AB于F,作OG⊥CD于G,∵O为∠BAC、∠DCA的平分线的交点,OE⊥AC,∴OE=OF,OE=OG,∴OE=OF=OG=2,∵AB∥CD,∴∠BAC+∠ACD=180°,∴∠EOF+∠EOG=(180°−∠BAC)+(180°−∠ACD)=180°,∴E、O、G三点共线,∴AB与CD之间的距离=OF+OG=2+2=4.故答案为:4.19.如图,在Rt△ABC中,∠C=90°,以A为圆心,任意长为半径画弧,分别交AC,AB于点M,N;再分别以M,N为圆心,以大于12MN的长为半径画弧,两弧交于点G;作射线AG交BC于点D,若CD=2,BD=2.5,P为AB上一动点,则PD的最小值为_____.【答案】2【解析】解:由作法得AD平分∠BAC,∴点D到AB的距离等于DC=2,∴PD的最小值为2.故答案为2.20.Rt△ABC中,∠C是直角,O是角平分线的交点,AC=3,BC=4,AB=5,O到三边的距离r=______.【答案】1【解析】解:∵Rt△ABC中,∠C是直角,O是角平分线的交点,AC=3,BC=4,AB=5,∴S△ABC=12AC•BC=12(AC+BC+AB)•r,∴3×4=(3+4+5)×r,解得:r=1.故答案为:1.三、解答题21.按下列要求画图并填空:(1)过点B画出直线AC的垂线,交直线AC于点D,那么点B到直线AC的距离是线段的长.(2)用直尺和圆规作出∠ACB的平分线,若角平分线上有一点P到边AC的距离是3cm,通过你的测量,点P到边BC的距离是cm(保留作图痕迹).【答案】(1)见解析;(2)见解析.【解析】(1)如图所示:点B到直线AC的距离是线段BE的长.(2) 如图所示:点P到边BC的距离是3cm.22.在△ABC中,∠B=20°,∠ACB=110°,AE平分∠BAC,AD⊥BD于点D,求∠EAD的度数.【答案】45°【解析】∵在△ABC中,∠B=20°,∠ACB=110°,∴∠BAC=180°﹣20°﹣110°=50°.∵AE平分∠BAC,∴∠BAE=12∠BAC=25°,∴∠AEC=∠B+∠BAE=20°+25°=45°.∵AD⊥BC,∴∠D =90°,∴∠EAD =90°﹣∠AED =90°﹣45°=45°.23.如图,△ABC 中,∠C=90°,DE ⊥AB 于点E ,F 在AC 上且BE=FC,BD=FD ,求证:AD 是∠BAC 的平分线。

12.3(3)角的平分线的性质--两内角平分线

12.3(3)角的平分线的性质--两内角平分线

12.3(3)角的平分线的性质--两内角平分线一.【知识要点】1.两内角平分线二.【经典例题】1.如图,△ABC 的角平分线BM ,CN 交于点P .求证:试说明点P 到AB ,BC ,CA 三边的距离相等2.如图,已知ABC ∆的周长是16,MB 和MC 分别平分ABC ∠和ACB ∠,过点M 作BC 的垂线交BC 于点D ,且4MD =,则ABC ∆的面积是( )A .64B .48C .32D .423.如图,在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O , 过点O 作EF ∥BC ,交AB 于点E ,交AC 于点F ,过点作OD ⊥AC 于点D.某班学生在一次数学活动课中,探索出如下结论:①EF= BE+CF;②点O 到△ABC 各边的距离相等;③∠BOC=90°+∠A;④设OD=m ,AE+AF=n ,则12AEF S mn =.其中正确的有( ) A.1个 B.2个 C.3个 D.4个4.(2022年绵阳期末第16题)如图,在等腰△ABC 中,AB =BC =a ,CE =b ,∠BAC 和∠ABC 的平分线分别为AD ,BE 相交于点O ,AD 交BC 于点D ,BE 交AC 于点E ,过点O 作OF ⊥AB 于F ,若OF =c ,则△ABC 的面积为 .三.【题库】【A 】1【B 】1.如图,O 是ABC ∆内的一点,且点O 到ABC ∆三边AB ,BC ,AC 的距离相等()OD OE OF ==,若70A ∠=︒,OB=OC,则=∠BOD .【C 】1.如图,∠B=∠C=90∘,AE 平分∠BAD,DE 平分∠ADC,若32CDE ABE S S ∆∆=,则:DEC ADES S ∆∆=_________.2.如图所示,已知P是△ABC三条角平分线的交点,PD⊥AB于点D,若PD=5,△ACB的周长为20,则△ABC的面积是.3.如图,四边形ABCD中,AB∥CD,M为BC边上的一点,且AM平分∠BAD,DM平分∠ADC.求证:(1)AM⊥DM;(2)M为BC的中点.【D】1.如图,△ABC的三边AB、BC、AC的长分别12,18,24,O是△ABC三条角平分线的交点,则S △OAB:S△OBC:S△OAC=().A.1︰1︰1 B.1︰2︰3 C.2︰3︰4 D.3︰4︰52.如图,Rt△ACB中,∠ACB=90°,△ABC的角平分线AD、BE相交于点P,过P作PF⊥AD交BC的延长线于点F,交AC于点H,则下列结论:①∠APB=135°;②PF =PA;③AH+BD=AB;④S四边形ABDE=S△ABP,其中正确的是()A.①③B.①②④C.①②③D.②③。

12.3 角的平分线的性质(基础训练)(解析版)

12.3 角的平分线的性质(基础训练)(解析版)

12.3 角的平分线的性质【基础训练】一、单选题1.如图,在ABC 中,90ACB ∠=︒,BE 平分ABC ∠,ED AB ⊥于D ,3DE cm =,那么CE 等于() A cmB .2 cmC .3 cmD .4 cm【答案】C【分析】根据角平分线到两边的距离相等得出DE =CE ,即可得出CE 的值.【详解】解:∵ED AB ⊥,90ACB ∠=︒,BE 平分∵ABC ,∵DE CE =,∵3DE cm =∵3CE cm =;故选:C .【点睛】此题考查了角平分线的性质,熟练掌握角平分线性质是解本题的关键.2.如图,点P 是∵AOB 平分线OC 上一点,PD ∵OB ,垂足为D ,若PD =2,则点P 到边OA 的距离是()A .1B .2CD .4【答案】B【分析】根据角平分线的性质直接可得.【详解】如图,过点P 作PG OA ⊥,垂足为点G ,根据角平分线上的点到角的两边距离相等可得,2PG PD ==. 故选B .【点睛】本题考查了角平分线的性质;掌握好有关角平分线的基础知识是关键.3.如图,已知在ABC 中,CD 是AB 边上的高线,BE 平分ABC ∠,交CD 于点,E P 是BC 上一动点,5CD =,则CE EP +的最小值是( )A .10B .7C .5D .4【答案】C【分析】 CE 的值固定,所以要求CE EP +的最小值,只要求出EP 的最小值即可,P 是BC 上一动点,过点E 作BC 的垂线,设垂足为F ,则垂线段EF 的长度即为EP 的最小值,再结合题意可得DE=EF ,故CE EP +的最小值即可求得.【详解】解:过点E 作EF∵BC ,垂足为F ,如图,∵P 是BC 上一动点,∵垂线段EF 的长度即为EP 的最小值,又∵CD 是AB 边上的高线,BE 平分ABC ∠,∵EF=DE,∵CE EP +的最小值为CE EF +=CE+DE=CD,∵5CD =,∵CE EP +的最小值为5.故选:C .【点睛】本题考查了点到直线的距离,角平分线的性质,解题的关键是作出点E 到直线BC 的距离.4.下列命题中是假命题的是( )A .全等三角形的对应角相等B .三角形的外角大于任何一个内角C .等边对等角D .角平分线上的点到角两边的距离相等【答案】B【分析】直接利用全等三角形的性质以及三角形的外角、角平分线的性质分别分析得出答案.【详解】解:A 、全等三角形的对应角相等,是真命题,不合题意;B 、三角形的外角大于任何一个与它不相邻的内角,钝角三角形钝角的外角比与它相邻的内角小,故原命题是假命题,符合题意;C 、等边对等角,是真命题,不合题意;D 、角平分线上的点到角两边的距离相等,是真命题,不合题意;故选:B .【点睛】本题主要考查全等三角形的性质,三角形的外角的性质,角平分线的性质,利用性质选出正确选项即可,属于基础问题.5.如图,已知BD AE ⊥于点B ,DC AF ⊥于点C ,且DB DC =,40BAC ︒∠=,130ADG ︒∠=,则CDG ∠的度数为( )A .30︒B .40︒C .50︒D .60︒【答案】D【分析】 先根据到角的两边距离相等的点在角的平分线上得到AD 是∵BAC 的平分线,求出∵CAD 的度数,再根据直角三角形的两锐角互余求出∵CDA 的度数,即可求解.【详解】解:∵BD∵AE 于B ,DC∵AF 于C ,且DB=DC ,∵AD 是∵BAC 的平分线,∵∵BAC=40°, ∵∵CAD=12∵BAC=20°, ∵∵CDA=90°-20°=70°,∵130ADG ︒∠=,∵∵CDG=∵ADG -∵CDA=130°-70°=60°.故选:D .【点睛】本题考查了角平分线的判定与直角三角形的两锐角互余的性质,仔细分析图形是解题的关键.6.如图,在ABC 中,90C ∠=︒,AD 是ABC 的角平分线,若3CD =,则点D 到AB 边的距离为( )A .3B .32C .2D .3【答案】A【分析】根据角平分线的性质即可知点D 到AB 边的距离等于CD 长,即可选择.【详解】∵AD 是BAC ∠的角平分线,∵点D 到AB 边的距离等于CD=3.故选:A .【点睛】本题考查角平分线的性质.熟知角平分线上的点到角两边的距离相等是解答本题的关键.7.如图,在ABC 中,90B ∠=︒,AD 平分BAC ∠,10BC =,6CD =,则点D 到AC 的距离为( )A .4B .6C .8D .10【答案】A【分析】 由D 在∵BAC 的平分线AD 上得,点D 到AC 的距离与点D 到AB 的距离BD 相等,因此求得BD 的长即可.【详解】解:∵BC=10,CD=6,∵BD=4.∵∵B=90°,AD 平分∵BAC .由角平分线的性质,得点D 到AC 的距离等于BD=4.故选:A .【点睛】本题主要考查角平分线的性质,由已知能够注意到D 到AC 的距离即为BD 长是解决问题的关键. 8.三角形中,到三边距离相等的点是( )A .三条高线的交点B .三条中线的交点C.三条角平分线的交点D.三边垂直平分线的交点【答案】C【分析】根据角平分线的性质:角平分线上的点到角两边的距离相等,即可得出结论.【详解】解:三角形中,到三边距离相等的点是三条角平分线的交点故选C.【点睛】此题考查的是角平分线的性质,掌握角平分线的性质是解题关键.9.如图所示,在∵ABC中,∵ACB=90°,BE平分∵ABC,DE∵AB于点D,如果AC=3cm,那么AE+DE 等于()A.2cm B.3cm C.4cm D.5cm【答案】B【分析】直接利用角平分线的性质得出DE=EC,进而得出答案.【详解】解:∵∵ABC中,∵ACB=90°,BE平分∵ABC,DE∵AB于点D,∵EC=DE,∵AE+DE=AE+EC=3cm.故选:B.【点睛】此题主要考查了角平分线的性质,得出EC=DE是解题关键.10.如图,在∵ABC中,∵C=90°,AC=BC,D为BC上一点,且DE∵AB于E,若DE=CD,AB=8cm,则∵DEB的周长为()A .4cmB .8cmC .10cmD .14cm【答案】B【分析】 因为DE 和CD 相等,DE∵AB ,∵C=90°,所以AD 平分CAB ,可证得∵ACD∵∵AED ,得到AC=AE ,再根据∵BDE 为等腰直角三角形得出DE=BE ,从而可得∵DEB 的周长.【详解】解:∵∵C=90°,DE∵AB ,DE=CD ,∵∵C=∵AED=90°,∵CAD=∵EAD ,在Rt∵ACD 和Rt∵AED 中,=CD ED AD AD ⎧⎨=⎩, ∵∵ACD∵∵AED (HL ),∵AC=AE ,又∵∵AED=90°,∵B=45°,可得∵EDB 为等腰直角三角形,DE=EB=CD ,∵∵DEB 的周长=DE+ BE +DB=CD+DB+ BE=CB+ BE=AC+BE=AE+BE=AB=8,故选:B .【点睛】本题考查了角平分线的判定,全等三角形的判定与性质,熟记性质并求出∵BED 的周长=AB 是解题的关键. 11.角平分线的作法(尺规作图)∵以点O 为圆心,任意长为半径画弧,交OA 、OB 于C 、D 两点;∵分别以C 、D 为圆心,大于CD 长为半径画弧,两弧交于点P ;∵过点P 作射线OP ,射线OP 即为所求.角平分线的作法依据的是( )A .SSSB .SASC .AASD .ASA【答案】A【分析】根据角平分线的作法步骤,连接CP 、DP ,由作图可证∵OCP ∵∵ODP ,则∵COP =∵DOP ,而证明∵OCP ∵∵ODP 的条件就是作图的依据.【详解】解:如下图所示:连接CP 、DP在∵OCP 与∵ODP 中,由作图可知:OC ODCP DP OP OP=⎧⎪=⎨⎪=⎩∵∵OCP ∵∵ODP (SSS )故选:A .【点睛】本题考查了角平分线的求证过程,从角平分线的作法中寻找证明三角形全等的条件是解决本题的关键。

人教版数学八年级上册 12.3 角的平分线的性质同步练习(含答案)

人教版数学八年级上册 12.3 角的平分线的性质同步练习(含答案)

12.3 角的平分线的性质 同步测试基础闯关全练知识点一 作已知角的平分线1.用直尺和圆规作已知角的平分线的示意图,如图12 -3-1,则说明∠CAD= ∠DAB 的依据是 ( )A.SSSB.SASC.ASAD.AAS2.作∠AOB 的平分线时,以O 为圆心,某一长度为半径作弧,与OA ,OB 分别相交于C ,D ,然后分别以C ,D 为圆心,适当的长度为半径作弧,使两弧相交于一点.则这个适当的长度为 ( )A .大于21CDB .等于21CD c .小于21CD D .以上都不对 知识点二角平分线的性质3.如图12 -3-2,已知BG 是∠ABC 的平分线,DE ⊥AB 于点E ,DF ⊥BC 于点F ,DE=6.则DF 的长度是 ( )A.2B.3C.4D.64.如图12-3-3,在Rt △ABC 中,∠C= 90°,以顶点A 为圆心,适当长为半径画弧,分别交AC 、AB 于点M 、N ,再分别以点M 、N 为圆心,大于21MN 的长为半径画弧,两弧交于点P ,作射线AP 交BC 于点D ,若CD=5,AB=18,则△ABD 的面积是 ( )A.15 B .30 C.45 D .605.如图12-3-4,BD 是△ABC 的角平分线,DE ⊥AB 于点E ,若BC=5,△BCD 的面积为5,则DE= ( ) A.21 B.1 C.2 D.56.如图12-3-5.在△ABC 中,∠ACB= 90°.AD 是△ABC 的角平分线,BC= 10 cm ,BD :DC=3:2.则点D 到AB 的距离为 .7.如图12-3-6,已知点O 在∠BAC 的平分线上,BO ⊥AC ,CO ⊥AB ,垂足分别为D 、E ,求证:OB= OC.知识点三 角平分线的判定8.如图12-3 -7,已知点P 到BE 、BD 、AC 的距离恰好相等,则点P 的位置:①在∠B的平分线上:②在∠DAC 的平分线上;③在∠ECA 的平分线上;④恰在∠B ,∠DAC ,∠ECA 的平分线的交点处,上述结论中,正确的有 ( )A.1个B.2个C.3个D.4个9.如图12 -3-8.PM ⊥OA .PN ∠OB ,垂足分别为点M ,N ,PM =PN,∠BOC= 30°.则∠AOB= .10.如图12-3-9,BE= CF ,DE ⊥AB ,交AB 的延长线于点E ,DF ⊥AC 于点F ,且DB= DC.求证:AD 是∠BAC 的平分线.知识点四 证明几何文字命题的一般步骤11.求证:三角形的互为同旁内角的两个外角的平分线的交点到三角形三边(或所在直线)的距离相等.能力提升全练1.如图12 -3 -10.△ABC 的三边AB ,BC ,AC 的长分别为12,18,24,O 是△ABC 三条角平分线的交点,则S S S OAC OBC OAB △△△::= ( )A.1 : 1 : 1B.1 : 2 : 3C.2 : 3 : 4D.3 : 4 : 52.如图12 -3 - 11,△ABC 的外角的平分线BD 与CE 相交于点P ,若点P 到AC 的距离为3,则点P 到AB 的距离为 ( )A.1B.2C.3D.43.如图12 -3 - 12,在△ABC 中,点O 是△ABC 内一点,且点O 到△ABC 三边的距离相等,若∠A=70°.则∠BOC 的度数为 ( )A.35°B.125°C.55°D.135° 三年模拟全练 一、选择题1.如图12 -3 -13,在△ABC 中,AD 是角平分线,DE ⊥AB 于点E .△ABC 的面积为15,AB=6,DE=3.则AC 的长是 ( ) A.8 B.6 C.5 D.42.如图12 -3 -14,在△ABC 中,点D 在边BC 上,若∠BAD=∠CAD ,AB=6,AC=3,S ABD △=3,则S ACD △= ( )A. 3B. 6C.23D.293.如图12 -3 - 15,已知AB ∥CD ,AD ⊥DC ,AE ⊥BC 于点E ,∠DAC= 35°,AD=AE ,则∠B 等于 ( )A.50°B.60°C.70°D.80° 三,解答题4.如图12 -3 - 16,四边形ABCD 中,∠B= 90°,AB ∥CD ,M 为BC 边上一点,且AM平分∠BAD ,DM 平分∠ADC.求证:(1)AM ⊥DM ;(2)M 为BC 的中点.五年中考全练 选择题1.如图12 -3 -17,∠B= ∠C=90°,M 是BC 的中点,DM 平分∠ADC ,且∠ADC= 110°,则∠MAB= ( )A.30°B.35°C.45°D.60°2.如图12 -3 - 18,OP 为∠AOB 的平分线,PC ⊥ OA ,PD ⊥OB ,垂足分别是C 、D ,则下列结论错误的是 ( )A.PC=PDB.∠CPO=∠DOPC.∠CPO= ∠DPOD.OC=OD3.如图12 -3 -19,AB ∥CD ,BP 和CP 分别平分∠ABC 和∠DCB .AD 过点P .且与AB垂直,若AD=8,则点P 到BC 的距离是 ( )A.8B.6C.4D.2 核心素养全练1.本节课我们知道了角的平分线有以下性质:角的平分线上的点到角的两边的距离相等.从而小芳产生了以下的想法:如图12 -3 - 20.已知△ABC 中,AD 平分∠BAC ,那么AB :AC= BD :CD 成立吗?若成立,请尝试证明.2.如图12 -3 -21,在△ABC 中,∠B= ∠C ,D 是BC 边上的一动点,过点D 作DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F .当点D 移动到什么位置时,AD 恰好平分∠BAC?请说明理由.12.3角的平分线的性质基础闯关全练1.A从角平分线的作法得出,△AFD与△AED的三边对应相等,则△AFD≌△AED( SSS),所以∠CAD= ∠DAB.故选A.2.A适当的长度为大于21CD.3.D ∵BG是∠ABC的平分线,DE⊥AB,DF⊥BC,∴DF=DE=6.故选D.4.C作DE⊥AB于E,由题意知AD是△ABC的角平分线,∵∠C= 90°,DE⊥AB,∴DE=DC=5.∴△ABD的面积=21AB·DE=45,故选C.5.C作DF⊥BC交BC的延长线于F.∵BC=5.△BCD的面积为5,∴21BC·DF=5,∴DF:2,∵BD平分∠ABC,DE⊥AB,DF⊥BC,∴DE=DF=2,故选C.6.答案4 cm解析∵BC= 10 cm,BD:DC=3:2,∴DC=4 cm,∵AD是△ABC的角平分线,∠ACB= 90°,∴点D到AB的距离等于DC的长,即点D到AB的距离等于4 cm.7.∴证明∵点O在∠BAC的平分线上,BO⊥AC,CO⊥AB, ∴OE=OD,∠BEO= ∠CD0=90°.在△BEO和△CDO中,∵∴△BEO≌△CDO( ASA),∴O B=OC.8.D点P到BE、BD、AC的距离恰好相等,根据角平分线的判定可知①②③④都是正确的.9.答案60°解析∵PM⊥OA,PN⊥OB,PM =PN,∴∠AOC= ∠BOC=30°.∴∠AOB= 60°.10.证明∵DE⊥AB.DF⊥AC,∴∠AED= ∠CFD=90°.又∵DB =DC.BE= CF.∴Rt△BED≌Rt ACFD( HL).∴DE =DF.又∵DE⊥AB.DF⊥AC.∴AD是∠BAC的平分线.11.证明已知:如图,BD为△ABC的外角∠CBG的平分线,CE为△ABC的外角∠BCH 的平分线,BD、CE相交于点P求证:点P到△ABC的三边(或所在直线)的距离相等,证明:如图,过点P作PF⊥BC,PM⊥AC,PN⊥AH,垂足分别为F,M.N.∵PF⊥BC,PM⊥AG,且BD平分上CBG,∴PF=PM.同理,PF=PN,∴PF=PM=PN,即点P到△ABC的三边(或所在直线)的距离相等.能力提升全练1.C ∵O是△ABC三条角平分线的交点,AB,BC,AC的长分别为12,18,24,∴SSS OACOBCOAB△△△::=AB:CB:AC= 12: 18:24=2:3:4故选C2.C如图,过P作PQ⊥AC于Q,PW⊥BC于W,PR⊥AB于R,∵△ABC的外角的平分线BD与CE相交于点P,∴PQ=PW,PW=PR,∴PR=PQ,∵点P到AC的距离为3,即PQ=3,∴PR=3.即点P到AB的距离为3.3.B ∵∠A= 70°,∴∠ABC+∠ACB=180°-70°=110°,∵点O到△ABC三边的距离相等,∴BO平分∠ABC,CO平分∠ACB,∴∠OBC+ ∠OCB=21×( ∠ABC+∠ACB)= 550,∴∠BOC=180°-55°=125°,故选B.三年模拟全练一、选择题1.D过点D作DF⊥AC于F.如图,∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=3,∴S ABC△=21×6×3+21AC×3= 15,解得AC=4.故选D.2.C如图,过D作DP⊥AC交AC的延长线于P,DQ∠AB于Q,∵∠BAD=∠CAD,∴DP=DQ,∵S ABD△=21AB·DQ=21×6·DQ=3,∴DQ=1,∴DP=1,∴S ACD△=21AC·DP=23,故选C.3.C ∵AD⊥DC,AE⊥BC,AD=AE,∴CA平分∠BCD, ∵∠DAC=35°,AD⊥DC,∴∠ACD=90°-35°=55°,∴∠BCD=2∠ACD=2×55°=110°,∵AB∥CD,∴∠B=180°-∠BCD=180°-110°=70°.故选C.二、解答题4.证明(1)∵AB∥CD,∴∠BAD+∠ADC=180°, ∵AM平分∠BAD ,DM平分∠ADC,∴2∠MAD+2 ∠ADM= 180°,∴∠MAD+ ∠ADM= 90°,∴∠AMD= 90°,即AM⊥DM.(2)如图,过M作MN⊥AD,交AD于N,∵∠B=90°,AB∥CD,∴BM⊥AB, CM⊥CD,∵AM平分∠BAD,DM平分∠ADC,∴BM =MN ,MN= CM,∴BM=CM.即M为BC的中点.五年中考全练选择题1.B 如图,作MN⊥AD于N,∵∠B= ∠C=90°, ∴AB∥CD,∴∠DAB=180°-∠ADC=70°,∵DM平分∠ADC,MN⊥AD,MC⊥CD,∴MN=MC,∵M是BC的中点,∴MC=MB,∴MN=MB,又MN⊥AD,MB⊥AB,∴∠MAB=21∠DAB=35°,故选B.2.B A.由角平分线上的点到角两边的距离相等,得PC= PD,故A中结论正确;B.∵DP为∠AOB的平分线,∴∠COP= ∠DOP,∵∠COP≠∠CPO,∴∠CPO≠∠DOP,故B中结论错误;C.∵PC⊥OA,PD⊥OB,∴∠PCO= ∠PDO=90°,∵∠COP= ∠DOP,OP=OP,∴△COP≌△DOP( AAS),∴∠CPO= ∠DPO,故C中结论正确; D.∵△COP≌△DOP,∴OC=OD,故D中结论正确.故选B.3.C 如图,过点P作PE⊥BC于E,∵AB∥CD, PA⊥BA,∴PD⊥CD,∵BP和CP分别平分∠ABC和∠DCB,∴PA=PE,PD=PE,∴PE=PA=PD,∵PA +PD =AD=8,∴PA= PD=4,∴PE =4.故选C.核心素养全练1.解析成立.在图1中作DE⊥AB,DF⊥AC,垂足分别为E,F,∵AD平分∠BAC,∴DE=DF,∵S ABD△=21AB·DE,SACD△=21AC·DF,∴SABD△:S ACD△=AB:AC.在图2中作AP⊥BC,垂足为P, ∴S ABD△=21BD·AP,SACD△=21CD·AP,∴S ABD△:S ACD△=BD:CD.∴AB:AC=BD:CD.2.解析当点D移动到BC的中点时.AD恰好平分∠BAC. 理由:当D是BC的中点时,BD= CD.∵DE⊥AB.DF⊥AC.∴∠DEB= ∠DFC=90°.又∵∠B=∠C,BD= CD,∴△DEB≌△DFC( AAS).∴DE =DF.又∵DE⊥AB.DF⊥AC,∴AD平分∠BAC.。

人教版八年级上册数学12.3角平分线性质证明题训练

人教版八年级上册数学12.3角平分线性质证明题训练

人教版八年级上册数学12.3角平分线性质证明题训练1.已知,如图,∠A=∠B=90°,E是AB的中点,DE平分∠ADC,求证:CE 平分∠BCD.(提示:需过点E作CD的垂线段)2.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF.(1)求证:AD平分∠BAC;(2)已知AB=12,AC=20,求BE的长.3.四边形ABCD中(BC>AB),BD平分∠ABC,且AD=CD,DE⊥BC于E.(1)求证:∠BAD+∠BCD=180︒;(2)如果BC=5,AB=3,求CE的长.4.如图,BD 是∠ABC 的平分线,AB =BC ,点E 在BD 上,连接AE ,CE ,DF ⊥AE ,DG ⊥CE ,垂足分别是F ,G . (1)求证:△ABE ≌△CBE ; (2)求证:DF =DG .5.已知:如图,,BD AC CE AB ⊥⊥,垂足分别为D ,E ,BD 与CE 相交于点O ,AO 平分BAC ∠.求证:OB OC =.6.如图,AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC ,垂足分别是E 、F ,连接EF ,EF 与AD 相交于点G .AD 与EF 垂直吗?证明你的结论.7.如图,四边形ABCD 中,AB CB AD CD ==,,对角线AC ,BD 相交于点O ,,OE AB OF CB ⊥⊥,垂足分别是E 、F ,求证:OE OF =.8.已知:如图,在ABC 中,D 为BC 的中点,DE BC ⊥交BAC ∠的平分线于点E ,过点E 作EF AB ⊥于交AB 于,F EC AC ⊥交AC 的延长线于G .求证:BF CG =.9.如图,在ABC △中,BM MC =,ABM ACM ∠=∠.求证:AM 平分BAC ∠.10.如图,PB 、PC 分别是ABC △的外角平分线且相交于点P .求证:点P 在A ∠的平分线上.11.如图,AP 、CP 分别是ABC 外角MAC ∠,NCA ∠的平分线,它们交于点P ,PD BM ⊥,PF BN ⊥,垂足分别为D 、F ,则BP 是MBN ∠的平分线吗?请说明理由.12.如图,AD BC ⊥于点D ,EG BC ⊥于点G ,3E ∠=∠.求证:AD 平分BAC ∠.13.如图,△ABC 中,∠A =46°,CE 是∠ACB 的平分线,B 、C 、D 在同一直线上,FD ∥EC ,∠D =42°,求证:∠B =50°.14.如图,OC 是∠AOB 的平分线,且∠1=∠2,试说明EF∥OB.15.如图,在△ABC 中,∠ACB=90°,高CD 和角平分线AE 交于点F ,EH⊥AB 于点H ,那么CF=EH 吗?说明理由.16.如图所示,点B,C在∠A的两边上,且AC=AB,P为∠A内一点,PC=PB,PE⊥AB、PF⊥AC,垂足分别为E,F.求证:PE=PF.17.如图,BF⊥AC于点F,CE⊥AB于点E,BF与CE交于D,且BD=CD.(1)求证:D在∠BAC的平分线上;(2)若将条件:BD=CD和结论:D在∠BAC的平分线上互换,结论成立吗?试说明理由.18.已知:如图,在Rt△ABC中,∠C=90°,D是AC上一点,DE⊥AB于E,且DE=DC.(1)求证:BD平分∠ABC;(2)若∠A=36°,求∠BDC的度数.19.如图,在△ABC中,∠ABC的平分线与∠ACB的外角的平分线相交于点P,连接AP.(1)求证:PA平分∠BAC的外角∠CAM;(2)过点C作CE⊥AP,E是垂足,并延长CE交BM于点D.求证:CE=ED.20.已知点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.(1)如图1,若点O在边BC上,求证:∠ABC=∠ACB;(2)如图2,若点O在△ABC的内部,则∠ABC=∠ACB成立吗?并说明理由;(3)若点O在△ABC的外部,则∠ABC=∠ACB成立吗?请画图表示.参考答案1.证明:如图,过E 作EQ CD ⊥于,Q 而∠A =∠B =90°,90,A DQE ∴∠=∠=︒DE 平分∠ADC ,,ADE QDE ∴∠=∠,DE DE =,ADE QDE ∴≌,AE QE ∴=E 是AB 的中点,,EA EB ∴=,QE BE ∴= 而90,B EQC ∠=∠=︒CE ∴平分.BCD ∠2.(1)证明:∵DE ⊥AB ,DF ⊥AC , ∴∠E =∠DFC =90°, 在Rt △BED 和Rt △CFD 中,BD CD BE CF=⎧⎨=⎩, ∴Rt △BED ≌Rt △CFD (HL ), ∴DE =DF ,∵DE ⊥AB ,DF ⊥AC , ∴AD 平分∠BAC ;(2)由(1)知,Rt △ADE ≌Rt △ADF , ∴AE =AF ,∵AB =AE −BE =AF −BE =AC −CF −BE ,BE =CF , ∴AB =AC −2BE , ∵AB =12,AC =20, ∴BE =2012422AC AB --==. 【点睛】本题考查了全等三角形的性质和判定的应用,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS ,HL (直角三角形),全等三角形的对应边相等,对应角相等.3.(1)证明见解析;(2)1 【分析】(1)过点D 作DF ⊥BA ,交BA 延长线于F ,由角平分线的性质即可得到DF =DE ,由此证明△DFA ≌△DEC 得到∠ECD =∠FAD ,再由∠FAD +∠BAD =180°,即可得到∠BCD +∠BAD =180°;(2)由△DFA ≌△DEC ,即可得到AF =CE ,DE =DF ,从而可证△BFD ≌△BED 得到BF =BE ,则BE =BF =AB +AF =AB +CE =3+CE ,再由BC =BE +CE =5求解即可. 【详解】解:(1)如图所示,过点D 作DF ⊥BA ,交BA 延长线于F , ∵DF ⊥BA ,DE ⊥BC ,BD 是∠ABC 的角平分线, ∴∠DFA =∠DEC =90°,DF =DE , 又∵AD =CD ,∴△DFA ≌△DEC (HL ), ∴∠ECD =∠FAD , ∵∠FAD +∠BAD =180°, ∴∠BCD +∠BAD =180°;(2)∵△DFA≌△DEC,∴AF=CE,DE=DF,又∵BD=BD,∠BFD=∠BED=90°,∴△BFD≌△BED(HL),∴BF=BE,∴BE=BF=AB+AF=AB+CE=3+CE,∵BC=BE+CE=5,∴3+CE+CE=5,∴CE=1.【点睛】本题主要考查了角平分线的性质,全等三角形的性质与判定,解题的关键在于能够熟练掌握角平分线的性质.4.(1)见解析;(2)见解析【分析】(1)根据BD是∠ABC的平分线,可得ABE CBE∠=∠,进而根据边角边证明≌即可;ABE CBE△△(2)由(1)得AEB CEB∠=∠,由DF AE DG CE∠=∠,从而AED CED,,根据角⊥⊥平分线上的点到角的两边的距离相等,可得DF DG=.【详解】(1) BD是∠ABC的平分线,∴ABE CBE∠=∠,在ABE△与CBE△中,AB BC ABE CBE BE BE =⎧⎪∠=∠⎨⎪=⎩∴ABE CBE △△≌,(2)ABE CBE △△≌∴AEB CEB ∠=∠,∴AED CED ∠=∠, 又∵DF AE DG CE ⊥⊥,, ∴DF DG =. 5.证明:∵AO 平分BAC ∠,,BD AC CE AB ⊥⊥ ∴ OEOD ,90,90BEO CDO ∠=∠=在BOE △和COD △中,90BEO CDO OE OD BOE COD ⎧∠=∠=⎪=⎨⎪∠=∠⎩∴BOE COD ≌ ∴OB OC = 6.证明:∵AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC , ∴DE =DF ,∠AED =∠AFD =90°, 在Rt △AED 和Rt △AFD 中,AD ADDE DF =⎧⎨=⎩,∴Rt △AED ≌Rt △AFD , ∴AE =AF , ∵DE =DF ,∴AD 是EF 的垂直平分线, ∴AD 与EF 垂直. 7.在△ABD 和△CBD 中,AB CB AD CD BD BD =⎧⎪=⎨⎪=⎩, ∴△ABD≌△CBD(SSS ),∴∠ABD=∠CBD,∴BD 平分∠ABC.又∵OE⊥AB,OF⊥CB,∴OE=OF.8.证明:连接BE 、EC ,∵ED⊥BC,D 为BC 中点,∴BE=EC ,∵EF⊥AB EG⊥AG,且AE 平分∠FAG,∴FE=EG ,在Rt△BFE 和Rt△CGE 中BE CE EF EG ⎧⎨⎩==, ∴Rt△BFE≌Rt△CGE (HL ),∴BF=CG9.证明:如图,过点M 作ME AB ⊥,MF AC ⊥,垂足分别为E 、F .∴90BEM CFM∠=∠=︒.在BEM△和CFM△中,BEM CFMEBM FCM BM CM∠=∠⎧⎪∠=∠⎨⎪=⎩,∴BEM△≌CFM△.∴ME MF=.又ME AB⊥,MF AC⊥,∴点M在BAC∠的平分线上,即AM平分BAC∠.10.证明:如图,过点P作PE、PF、PG分别垂直于AB、BC、AC,垂足分别为E、F、G.∵PB、PC分别是ABC△的外角平分线,∴PE PF=,PF PG=,∴PE PG=.∴点P在A∠的平分线上.11.解:BP为MBN∠的平分线.理由如下:作PE AC⊥,垂足为E.∵AP ,CP 分别是MAC ∠与NCA ∠的平分线,且PD BM ⊥,PF BN ⊥, ∴PD PE =,PF PE =.∴PD PF =.又PD BM ⊥,PF BN ⊥,∴点P 在MBN ∠的平分线上.∴BP 为MBN ∠的平分线.12.∵AD BC ⊥,EG BC ⊥,∴90ADC EGC ∠=∠=︒.∴AD EG .∴13∠=∠,2E ∠=∠.又3E ∠=∠,∴12∠=∠.∴AD 平分BAC ∠.13.证明:∵FD ∥EC ,∠D =42°,∴∠BCE =42°,∵CE 是∠ACB 的平分线,∴∠ACB =2∠BCE =84°,∵∠A =46°,∴∠B =180°-84°-46°=50°14.∵OC 平分∠AOB(已知),∴∠1=∠BOC(角平分线的定义)∵∠1=∠2(已知),∴∠2=∠BOC(等量代换),∴EF∥OB(内错角相等,两直线平行).15.【详解】∵在△ABC中,∠ACB=90°,高CD和角平分线AE交于点F,EH⊥AB于点H,∴CE=HE,∠CAE=∠EAH,∵∠CAE+∠AEC=90°,∠EAH+∠AEF=90°∴∠AEC=∠AEH,∵CD⊥AB,EH⊥AB,∴CD∥EH,∴∠EFC=∠AEH,∴∠AEC=∠E FC,∴CE=CF,∴CF=EH.16.【详解】证明:如图连接AP,在△ABP和△ACP中,∵AB ACAP APPB PC=⎧⎪=⎨⎪=⎩(公共边),∴△ABP≌△ACP(SSS),∴∠BAP=∠CAP(三角形全等对应角相等),又∵PE⊥AB,PF⊥AC,∴PE=PF.17.(【详解】(1)证明:∵BF⊥AC,CE⊥AB,∴∠B ED=∠CFD=90°,在Rt△BED和Rt△CFD中,∵BED CFDEDB FDCBD CD∠=∠⎧⎪∠=∠⎨⎪=⎩(对顶角相等),∴Rt△BED≌Rt△CFD(AAS),∴DE=DF(全等三角形的对应边相等),∴D在∠BAC的平分线上(到角的两边距离相等的点在角的平分线上);(2)解:成立.理由如下:∵点D在∠BAC的平分线上,且BF⊥AC,CE⊥AB,∴DE=DF,∠BED=∠CFD=90°,在Rt△BED和Rt△CFD中,∵BED CFDDE DFEDB FDC∠=∠⎧⎪=⎨⎪∠=∠⎩,∴Rt△BED≌Rt△CFD(ASA),∴BD=DC(全等三角形的对应边相等).18.(1)证明:∵DC⊥BC,DE⊥AB,DE=DC,∴点D在∠ABC的平分线上,∴BD平分∠ABC.(2)解:∵∠C=90°,∠A=36°,∴∠ABC=54°,∵BD平分∠ABC,∴∠DBC=∠ABD=27°.19.解:证明:(1)过P作PT⊥BC于T,PS⊥AC于S,PQ⊥BA于Q,如图,∵在△ABC中,∠ABC的平分线与∠ACB的外角的平分线相交于点P,∴PQ=PT,PS=PT,∴PQ=PS,∴AP 平分∠DAC,即PA 平分∠BAC 的外角∠CAM;(2)∵PA 平分∠BAC 的外角∠CAM,∴∠DAE=∠CAE,∵CE⊥AP,∴∠AED=∠AEC=90°,在△AED 和△AEC 中,DAE CAE AE AEDEA CEA ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AED≌△A EC (ASA ),∴CE=ED.20.(1)证明:如图1,过O 作OE⊥AB 于E ,OF⊥AC 于F ,则∠OEB=∠OFC=90°,∵点O 到△ABC 的两边AB 、AC 所在直线的距离相等,∴OE=OF,在Rt△OE B 和Rt△OFC 中,OB OC OE OF⎧⎨⎩==, ∴Rt△OEB≌Rt△OFC(HL ),∴∠ABC=∠ACB;(2)证明:如图2,过O 作OE⊥AB 于E ,OF⊥AC 于F , 则∠OEB=∠OFC=90°,∵点O 到△ABC 的两边AB 、AC 所在直线的距离相等,∴OE=OF,在Rt△OEB 和Rt△OFC 中OB OC OE OF⎧⎨⎩== ∴Rt△OEB≌Rt△OFC(HL ),∴∠ABO=∠ACO,∵∠OBC=∠OCB,∴∠ABC=∠ACB;(3)解:若O 点在△ABC 的外部,∠ABC=∠ACB 不一定成立, 理由是:①当∠A 的平分线和BC 的垂直平分线重合时,如图3,过O 作OE⊥AB 交AB 的延长线于E ,OF⊥AC 交AC 的延长线于F , 则∠OEB=∠OFC=90°,∵点O 到△ABC 的两边AB 、AC 所在直线的距离相等,∴OE=OF,在Rt△OEB 和Rt△OFC 中OB OC OE OF⎧⎨⎩== ∴Rt△OEB≌Rt△OFC(HL ),∴∠EBO=∠FCO,∵OB=OC,∴∠OBC=∠OCB,∵∠ABC=180°-(∠OBC+∠EBO),∠ACB=180°-(∠OCB+∠FCO), ∴∠ABC=∠ACB;②当∠A 的平分线和BC 的垂直平分线不重合时,如图④,此时∠ABC 和∠ACB 不相等.。

专题12.3 角的平分线的性质(解析版)

专题12.3  角的平分线的性质(解析版)

专题12.3 角的平分线的性质1.角平分线的定义将一个已知的角平分为两个相等的角的射线叫做这个已知角的平分线。

2.作角平分线(尺规作图,四弧一线)角平分线的作法(尺规作图)①以点O为圆心,任意长为半径画弧,交OA、OB于C、D两点;②分别以C、D为圆心,大于CD长为半径画弧,两弧交于点P;③过点P作射线OP,射线OP即为所求.3.角平分线的性质定理:角平分线上的点到角的两边的距离相等。

符号语言:∵OP平分∠AOB,AP⊥OA,BP⊥OB,∴AP=BP.4.角平分线性质定理的逆定理:到角的两边距离相等的点在角的平分线上。

符号语言:∵AP⊥OA,BP⊥OB,AP=BP,∴点P在∠AOB的平分线上.5.角平分线的综合应用(1)为推导线段相等、角相等提供依据和思路;(2)实际生活中的应用.6.证明命题基本方法(1)明确命题中的已知和求(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)(2)根据题意,画出图形,并用数字符号表示已知和求证.(3)经过分析,找出由已知推出求证的途径,写出证明过程.【例题1】已知:OC平分∠MON,P是OC上任意一点,PA⊥OM,PB⊥ON,垂足分别为点A、点B.求证:PA=PB.【答案】见解析。

【解析】证明:∵PA⊥OM,PB⊥ON∴∠PAO=∠PBO=90°∵OC平分∠MON∴∠1=∠2在△PAO和△PBO中,∴△PAO≌△PBO∴PA=PB【例题2】已知:点P是∠MON内一点,PA⊥OM于A,PB⊥ON于B,且PA=PB.求证:点P在∠MON的平分线上.【答案】见解析。

【解析】证明:连结OP在Rt△PAO和Rt△PBO中,PA=PB OP=OP∴Rt△PAO≌Rt△PBO(HL)∴∠1=∠2∴OP平分∠MON即点P在∠MON的平分线上.【例题3】已知:如图,在R t△ABC中,∠C=90°,D是AC上一点,DE⊥AB于E,且DE=DC.(1)求证:BD平分∠ABC;(2)若∠A=36°,求∠DBC的度数.【答案】见解析。

人教版八年级上册数学 12.3 角的平分线的性质 同步练习(含答案)

人教版八年级上册数学 12.3 角的平分线的性质 同步练习(含答案)

12.3 角的平分线的性质同步练习一.选择题1.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D.若AD=2,则点D到BC的距离为()A.1 B.C.D.22.如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,若AC=6,BC=8,则S△ABD:S△ACD为()A.5:3 B.5:4 C.4:3 D.3:53.如图所示,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,DE=4,BC=9,则BD的长为()A.6 B.5 C.4 D.34.如图,在CD上求一点P,使它到边OA,OB的距离相等,则点P是()A.线段CD的中点B.CD与过点O作CD的垂线的交点C.CD与∠AOB的平分线的交点D.以上均不对5.点P在∠AOB的平分线上,点P到OA边的距离等于m,点Q是OB边上的一个动点,则PQ与m的大小关系是()A.PQ<m B.PQ>m C.PQ≤m D.PQ≥m6.如图,在△ABC中,∠ACB的外角平分线与∠ABC的外角平分线相交于点D.则下列结论正确的是()A.AD平分BC B.AD平分∠CAB C.AD平分∠CDB D.AD⊥BC7.如图在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于D,如果△ADE的周长为6cm,AC=4cm,那么AD等于()A.2cm B.4cm C.3cm D.6cm8.如图,点O在△ABC内,且到三边的距离相等.若∠A=40°,则∠BOC等于()A.110°B.115°C.125°D.130°9.如图,∠MON=60°.①以点O为圆心,2cm长为半径画弧,分别交OM、ON于点A、C;②在分别以A、C为圆心,2cm长为半径画弧,两弧交于点B;③连结AB、BC,则四边形OABC的面积为()A.4cm2B.2cm2C.4cm2D.2cm210.如图,四边形ABDC中,对角线AD平分∠BAC,∠ACD=136°,∠BCD=44°,则∠ADB的度数为()A.54°B.50°C.48°D.46°二.填空题11.如图,在Rt△ABC中,∠ACB=90°,AD平分∠BAC交BC于点D,若AB=5,DC =2,则△ABD的面积为.12.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于点E,DF⊥AC于点F,若△ABC的面积为21cm2,AB=8cm,AC=6cm,则DE的长为cm.13.如图,点E在∠BOA的平分线上,EC⊥OB,垂足为C,点F在OA上,若∠AFE =30°,EC=3,则EF=.14.如图,若BD⊥AE于B,DC⊥AF于C,且DB=DC,∠BAC=40°,∠ADG=130°,则∠DGF=.15.如图,已知在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB 于点E,AB=8cm,那么△DEB的周长是cm.三.解答题16.如图,已知CD是△ABC的角平分线,DE⊥BC,垂足为E,若AC=4,BC=10,△ABC的面积为14,求DE的长.17.如图,点P是∠MON中一点,P A⊥OM于点A,PB⊥ON于点B,连接AB,∠P AB =∠PBA.求证:OP平分∠MON.18.如图,在△ABC中,AD平分∠BAC,∠C=90°,DE⊥AB于点E,点F在AC上,BD=DF.(1)求证:CF=EB.(2)若AB=12,AF=8,求CF的长.参考答案1.D2.A3.B4.C5.D6.B7.A8.A9.B10.D11.512.313.614.150°15.816.解:过点D作DF⊥AC交CA的延长线于点F,如图,∵CD平分∠ACB,DE⊥BC于E,∴DF=DE.∵△ABC的面积为14,∴S△BCD+S△ACD=14,∴×DE×10+×DF×4=14,即5DE+2DE=14,∴DE=2.17.证明:∵∠P AB=∠PBA,∴P A=PB,∵P A⊥OM于点A,PB⊥ON于点B,∴OP平分∠MON.18.(1)证明:∵AD平分∠BAC,∠C=90°,DE⊥AB于E,∴DE=DC.在△CDF与△EDB中,,∴Rt△CDF≌Rt△EDB(HL),∴CF=EB.(2)解:设CF=x,则AE=12﹣x,∵AD平分∠BAC,DE⊥AB,∴CD=DE.在△ACD与△AED中,,∴△ACD≌△AED(HL),∴AC=AE,即8+x=12﹣x,解得x=2,即CF=2.。

12.3 角的平分线的性质 第1课时 作业

12.3 角的平分线的性质 第1课时 作业

12.3 角的平分线的性质第1课时基础性作业:1.如图 12.3-1,用尺规作∠AOB的平分线的方法如下:(1)以点O为圆心,适当长为半径画弧,交OA于点M,交OB于点N.(由此可得线段= )(2)分别以点M,N为圆心,的长为半径画弧,两弧在∠AOB的内部相交于点C.(可得线段 = )(3)画射线OC.射线 OC 即为∠AOB 的角平分线.由以上作法可得≌依据是。

2.角的平分线上的点到角的两边的距离。

3.如图12.3-2,AM是∠BAC的平分线,点P在AM上,PD⊥AB,PE⊥AC,垂足分别是D,E,PD=4cm,则PE= cm.巩固性作业:4.如图12.3-3,△ABC中,∠C=90°,AD平分∠CAB,且BC=8,BD=5,则点D到AB的距离是。

5.如图12.3-4,OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别是C,D,下列结论中错误的是( )A.PC=PDB. OC=ODC. ∠CPO=∠DPOD. OC=PC6.如图12.3-5,在Rt△ABC中,∠B=90°,AD平分∠BAC,交BC于点D,DE⊥AC,垂足为E.若BD=3,AC=8,则△ADC的面积为 ( )A.8B.10C.12D.16拓展性作业:7.如图12.3-6,AI、BI、CI分别平分LBAC、∠ABC、ZACB,ID⊥ BC,△ABC 的周长为18,ID=3.则△ABC的面积为()A.18B.30C.24D.278.如图12.3-7,在Rt△ABC中,BD平分∠ABC,DE⊥AB于E,则:(1)哪条线段与DE相等?为什么?(2)若AB=10,BC=8,AC=6,求BE,AE的长和△AED的周长.。

人教版八年级数学上册角平分线的性质同步练习题

人教版八年级数学上册角平分线的性质同步练习题

12.3 角的平分线的性质 第1课时 角平分线的性质一、选择题1. 用尺规作已知角的平分线的理论依据是( ) A .SAS B .AAS C .SSS D .ASA2. 如图,∠1=∠2,PD ⊥OA ,PE ⊥OB ,垂足分别为D ,E ,下列结论错误的是( ) A 、PD =PE B 、OD =OE C 、∠DPO=∠EPO D 、PD =OD3. 如图,Rt △ABC 中,∠C =90°,∠ABC 的平分线BD 交AC 于D ,若CD =3cm ,则点D 到AB 的距离DE 是( ) A .5cm B .4cm C .3cm D .2cm4. 如图,△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB 交BC 于D ,DE ⊥AB 于E ,且AB =6㎝,则△DEB 的周长为( )A. 4㎝B. 6㎝C. 10㎝D. 不能确定21DAPOEB第2题图 第3题图 第4题图 5.如图,OP 平分AOB ∠,PA OA ⊥,PB OB ⊥,垂足分别为A ,B .下列结论中不一定成立的是( )A.PA PB =B.PO 平分APB ∠C.OA OB =D.AB 垂直平分OP6.如图,AD 是△ABC 中∠BAC 的平分线,DE ⊥A B 于点E ,DF ⊥AC 交AC 于点F . S △ABC =7,DE=2,AB=4,则AC 长是( )A . 4B . 3C . 6D . 5DCAEBFE ODCA B第5题图 第6题图 第7题图7.如图,AD 是△ABC 的角平分线,DF ⊥AB ,垂足为F ,DE=DG ,△ADG 和△AED 的面积分别为50和39,则△EDF 的面积为( )A 、11B 、5.5C 、7D 、3.58.已知:如图,△ABC 中,∠C =90o ,点O 为△ABC 的三条角平分线的交点,OD ⊥BC ,OE ⊥AC ,OF ⊥AB ,点D 、E 、F 分别是垂足,且AB =10cm ,BC =8cm ,CA =6cm ,则点O 到三边AB 、AC 和BC 的距离分别等于( )(A )2cm 、2cm 、2cm . (B )3cm 、3cm 、3cm . (C )4cm 、4cm 、4cm . (D )2cm 、3cm 、5cm . 二、填空题9.如图,P 是∠AOB 的角平分线上的一点,PC ⊥OA 于点C ,PD ⊥OB 于点D ,写出图中一对相等的线段(只需写出一对即可) .10.如图,在△ABC 中,∠A =90°,BD 平分∠ABC ,AD =2 cm ,则点D 到BC 的距离为________cm . 11 .如图,OP 平分∠MON ,PA ⊥ON 于点A ,点Q 是射线OM 上一个动点,若PA=3,则PQ 的最小值为 .第9题图 第10题图 第11题图12.如图,在Rt △ABC 中,∠A=90°,∠ABC 的平分线BD 交AC 于点D ,AD=3,BC=10,则△BDC 的面积是 .第12题图 第13题图 第15题图13.如图,在Rt △ABC 中,∠C=90°,若BC=10,AD 平分∠BAC 交BC 于点D ,且BD :CD=3:2,则点D 到线段AB 的距离为 .14.已知△ABC 中,AD 是角平分线,AB=5,AC=3,且S △ADC =6,则S △ABD = .15.如图,AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC ,垂足分别为点E ,F ,连接EF ,则EF 与AD 的关系是 .16.通过学习我们已经知道三角形的三条内角平分线是交于一点的.如图,P 是△ABC 的内角平分线的交点,已知P 点到AB 边的距离为1,△ABC 的周长为10,则△ABC 的面积为 .17.如图,AD ∥BC ,∠ABC 的角平分线BP 与∠BAD 的角平分线AP 相交于点P ,作PE ⊥AB 于点E .若PE=2,则两平行线AD 与BC 间的距离为 .第16题图 第17题图 第18题图18. 如图,△ABC 的三边AB 、BC 、CA 长分别为40、50、60.其三条角平分线交于点O ,则S △ABO :S △BCO :S △CAO = .三、解答题19.已知:AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC ,垂足分别是E 、F ,BD =CD ,求证:∠B =∠C.A F DE B20. 如图,画∠AOB=90°,并画∠AOB的平分线OC,将三角尺的直角顶点落在OC的任意一点P上,使三角尺的两条直角边与∠AOB的两边分别相交于点E、F,试猜想PE、PF的大小关系,并说明理由.21.如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E,F为圆心,大于EF长为半径作圆弧,两条圆弧交于点P,作射线AP,交CD于点M.(1)若∠ACD=114°,求∠MAB的度数;(2)若CN⊥AM,垂足为N,求证:△ACN≌△MCN.22. 如图,已知△ABC中,AB=AC,BE平分∠ABC交AC于E,若∠A=90°,那么BC、BA、AE三者之间有何关系?并加以证明.23. 如图,△ABC中,D为BC的中点,DE⊥BC交∠BAC的平分线AE于点E,EF⊥AB于F,EG⊥A G交AC的延长线于G.求证:BF=CG.12.3 角的平分线的性质第1课时角的平分线的性质一、选择题1.C2.D3.C4.B5.D6.B7.B8.A二、填空题9.PC=PD(答案不唯一)10. 2 11. 3 12. 15 13. 4 14. 10 15. AD垂直平分EF 16. 5 17. 4 18. 4:5:6三、解答题19.证明:∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF,在Rt△DEB与Rt△DFC中,BD=CD,DE=DF,∴Rt△DEB≌Rt△DFC(HL),∴∠B=∠C.20. 解:PE=PF,理由是:过点P作PM⊥OA,PN⊥OB,垂足是M,N,则∠PME=∠PNF=90°,∵OP平分∠AOB,∴PM=PN,∵∠AOB=∠PME=∠PNF=90°,∴∠MPN=90°,∵∠EPF=90°,∴∠MPE=∠FPN,在△PEM和△PFN中∴△PEM≌△PFN,∴PE=PF.21.(1)解:∵AB∥CD,∴∠ACD+∠CAB=180°,又∵∠ACD=114°,∴∠CAB=66°,由作法知,AM是∠CAB的平分线,∴∠MAB=∠CAB=33°(2)证明:∵AM平分∠CAB,∴∠CAM=∠MAB,∵AB∥CD,∴∠MAB=∠CMA,∴∠CAM=∠CMA,又∵CN⊥AM,∴∠ANC=∠MNC,在△ACN和△MCN中,∵,∴△ACN≌△MCN.22 . 解:BC、BA、AE三者之间的关系:BC=BA+AE,理由如下:过E作ED⊥BC交BC于点D,∵BE平分∠ABC,BA⊥CA,∴AE=DE,∠EDC=∠A=∠BDE=90°,∵在Rt△BAE和Rt△BDE中,∴Rt△BAE≌Rt△BDE(HL),∴BA=BD,∵AB=AC,∠A=90°∴∠C=45°,∴∠CED=45°=∠C,∴DE=CD,∵AE=DE,∴AE=CD=DE,∴BC=BD+DC=BA+AE.23. 证明:连接BE 、EC , ∵ED ⊥BC , D 为BC 中点, ∴BE=EC ,∵EF ⊥AB EG ⊥AG , 且AE 平分∠FAG , ∴FE=EG ,在Rt △BFE 和Rt △CGE 中 ,∴Rt △BFE ≌Rt △CGE (HL ), ∴BF=CG高频考点强化训练:三视图的有关判断及计算时间:30分钟 分数:50分 得分:________ 一、选择题(每小题4分,共24分)1.(2016·杭州中考)下列选项中,如图所示的圆柱的三视图画法正确的是( )乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..2.(2016·贵阳中考)如图是一个水平放置的圆柱形物体,中间有一细棒,则此几何体的俯视图是【易错6】( )3.如图所示的主视图、左视图、俯视图是下列哪个物体的三视图( )4.如图所示的几何体的主视图、左视图、俯视图中有两个视图是相同的,则不同的视图是( )5.一个长方体的主视图、俯视图如图所示(单位:cm),则其左视图的面积为( )A .36cm 2B .40cm 2C .90cm 2D .36cm 2或40cm 2第5题图 第6题图6.(2016·承德模拟)由一些大小相同的小正方体组成的几何体的俯视图和左视图如图所示,那么组成这个几何体的小正方体个数乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..可能有( )A .8个B .6个C .4个D .12个二、填空题(每小题4分,共16分)7.下列几何体中:①正方体;②长方体;③圆柱;④球.其中,三个视图形状相同的几何体有________个,分别是________(填几何体的序号).8.如图,水平放置的长方体的底面是边长为3和5的长方形,它的左视图的面积为12,则长方体的体积等于________.9.如图,由五个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体的主视图和左视图的面积之和是________.第8题图 第9题图 第10题图10.(2016·秦皇岛卢龙县模拟)由若干个相同的小立方体搭成的一个几何体的主视图和俯视图如图所示,俯视图的方格中的字母和数字表示该位置上小立方体的个数,则x 的值为________,y 的值为________.乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..三、解答题(10分)11.如图所示的是某个几何体的三视图.(1)说出这个几何体的名称;(2)根据图中的有关数据,求这个几何体的表面积.中考必考点强化训练专题:简单三视图的识别 ◆类型一 简单几何体的三视图 1.(2016·杭州中考)下列选项中,如图所示的圆柱的三视图画法正确的是( ) 第1 题图 第2题图 第3题图乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………………密………………………………….封……………………….线…………………………………………………………………………..2.(2016·抚顺中考)如图所示几何体的主视图是( )3.(2016·南陵县模拟)如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是( )4.(2016·肥城市一模)如图所示的四个几何体中,它们各自的主视图与俯视图不相同的几何体的个数是( )A.1个 B.2个 C.3个 D.4个5.(2016·宁波中考)如图所示的几何体的主视图为( )6.(2016·鄂州中考)一个几何体及它的主视图和俯视图如图所示,那么它的左视图正确的是( )7.(2016·菏泽中考)如图所示,该几何体的俯视图是( )◆类型二 简单组合体的三视图 8.(2016·黔西南州中考)如图,是由几个完全相同的小正方体搭建的几何体,它的左视图是( ) 9.(2016·营口中考)如图所示的物体是由两个紧靠在一起的圆柱体组成,小明准备画出它的三视图,那么他所画的三视图中的主视图应该是( ) 10.(2016·日照中考)如图,小明同学将一个圆锥和一个三棱柱组成组合图形,观察其三视图,其俯视图是( ) 11.(2016·烟台中考)如图,圆柱体中挖去一个小圆柱,那么这个几何体的主视图和俯视图分别为( ) 乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………………密………………………………….封……………………….线…………………………………………………………………………..。

人教版八年级数学上册第12单元第3节 第1课时 角平分线的性质 同步练习题(含答案)

人教版八年级数学上册第12单元第3节 第1课时 角平分线的性质 同步练习题(含答案)

12.3 角的平分线的性质一、选择题1.下列说法:①角的内部任意一点到角的两边的距离相等;•②到角的两边距离相等的点在这个角的平分线上;③角的平分线上任意一点到角的两边的距离相等;④△ABC 中∠BAC 的平分线上任意一点到三角形的三边的距离相等,其中正确的( )A .1个B .2个C .3个D .4个2. 已知AD 是△ABC 的角平分线,DE ⊥AB 于E,且DE=3cm,则点D 到AC 的距离是( ) A.2cm; B.3cm; C.4cm; D.6cm3.如图1,已知CE 、CF 分别是△ABC 的内角和外角平分线,•则图中与∠BCE 互余的角有( )A .4个B .3个C .2个D .1个4.如图2,已知点P 到AE 、AD 、BC 的距离相等,则下列说法:①点P 在∠BAC 的平分线上;②点P 在∠CBE 的平分线上;③点P 在∠BCD 的平分线上;④点P 是∠BAC 、∠CBE 、∠BCD 的平分线的交点,其中正确的是( )A .①②③④B .①②③C .④D .②③D CBA EFPDCBAEPDCBA E(1) (2) (3) 二、填空题5.用直尺和圆规平分已知角的依据是______________.6.角的平分线上的点到_______________相等;到___________________________相等的点在这个角的平分线上.7.如图3,AB ∥CD ,AP 、CP 分别平分∠BAC 和∠ACD ,PE ⊥AC 于E ,且PE=•2cm ,则AB 与CD 之间的距离是___________. 三、解题题8.请你画一个角,并用直尺和圆规把这个角两等分.9.如图,四边形ABCD 中AB=AD ,CB=CD ,点P 是对角线AC 上一点,PE ⊥BC 于E ,PF ⊥CD 于F ,求证PE=PF .PDC BAEF10.如图,四边形ABCD 中AB=AD ,AB ⊥BC ,AD ⊥CD ,P 是对角线AC 上一点,•求证:PB=PC .PDCBA参考答案:1.B 2.B 3.C 4.A 5.SSS6.角的两边的距离;角的两边的距离 7.4cm 8.略 9.证明AC 平分∠BCD10.先证Rt△ABC≌Rt△ADC,再证△APB≌△APD。

12.3角的平分线的性质同步练习含答案解析

12.3角的平分线的性质同步练习含答案解析

《12.3 角的平分线的性质》一、填空题1.如图,∠B=∠D=90゜,根据角平分线性质填空:(1)若∠1=∠2,则______=______.(2)若∠3=∠4,则______=______.2.如图,BD是∠ABC的平分线,DE⊥AB于E,DF⊥BC于F,AB=12,BC=15,S△ABD =36,则S△BCD=______.3.如图,△ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将△ABC分成三个三角形,则S△ABO :S△BCO:S△CAO等于______.4.如图,AD是△ABC的角平分线,若AB=2AC.则S△ABD :S△ACD=______.二、选择题5.如图,已知点P、D、E分别在OC、OA、OB上,下列推理:①∵OC平分∠AOB,∴PD=PE;②∵OC平分∠AOB,PD⊥OA,PE⊥OB,∴PD=PE;③∵PD⊥OA,PE⊥OB,∴PD=PE;其中正确的个数有()A.0个B.1个C.2个D.3个6.如图△ABC中,∠ACB=90゜,AD平分∠BAC交BC于D,DE垂直AB于E,若DE=1.5cm,BD=3cm,则BC=()A.3cm B.7.5cm C.6cm D.4.5cm7.在△ABC中,∠C=90゜,AD平分∠BAC交BC于D,BD:DC=3:2,点D到AB的距离为6,则BC 长为()A.10 B.20 C.15 D.258.如图,在△ABC中,∠B、∠C的角平分线交于点0,OD⊥AB于D,OE⊥AC于E,则OD与OE的大小关系是()A.OD>OE B.OD<OE C.OD=OE D.不能确定三、解答题9.如图,△ABC中,∠C=90゜,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,且BE=CF,求证:(1)DE=DC;(2)BD=DF.10.如图,四边形ABCD中,AB=AD,CB=CD,点P是AC上一点,PE⊥BC于E,PF⊥CD于F,求证:PE=PF.11.已知,如图,BD是∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD,PN⊥CD,垂足分别是M、N.试说明:PM=PN.12.如图,BD是∠ABC的平分线,DE⊥AB于E,S=90,AB=18,BC=12,求DE的长.△ABC13.如图.已知在△ABC中,∠A、∠B的角平分线交于点O,过O作OP⊥BC于P,OQ⊥AC于Q,OR ⊥AB于R,AB=7,BC=8,AC=9.(1)求BP、CQ、AR的长.(2)若BO的延长线交AC于E,CO的延长线交AB于F,若∠A=60゜,求证:OE=OF.《12.3 角的平分线的性质》参考答案与试题解析一、填空题1.如图,∠B=∠D=90゜,根据角平分线性质填空:(1)若∠1=∠2,则BC = DC .(2)若∠3=∠4,则AB = AD .【考点】角平分线的性质.【分析】(1)根据角平分线性质推出即可;(2)根据角平分线性质推出即可.【解答】解:(1)∵∠B=∠D=90°,∴AB⊥BC,AD⊥DC,∵∠1=∠2,∴BC=CD,故答案为:BC,DC.(2)∵AB⊥BC,AD⊥DC,∵∠3=∠4,∴AB=AD,故答案为:AB,AD.【点评】本题考查了角平分线性质的应用,注意:角平分线上的点到角两边距离相等.2.如图,BD是∠ABC的平分线,DE⊥AB于E,DF⊥BC于F,AB=12,BC=15,S△ABD =36,则S△BCD= 45 .【考点】角平分线的性质.【分析】首先根据△ABD的面积计算出DE的长,再根据角平分线上的点到角两边的距离相等可得DE=DF,然后计算出DF的长,再利用三角形的面积公式计算出△BCD的面积即可.【解答】解:∵S△ABD=36,∴•AB•ED=36,×12×ED=36,解得:DE=6,∵BD是∠ABC的平分线,DE⊥AB于E,DF⊥BC于F,∴DE=DF,∴DF=6,∵BC=15,∴S△BCD=•CB•DF=×15×6=45,故答案为:45.【点评】此题主要考查了角平分线的性质,关键是掌握角平分线上的点到角两边的距离相等.3.如图,△ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将△ABC分成三个三角形,则S△ABO :S△BCO:S△CAO等于2:3:4 .【考点】角平分线的性质;三角形的面积.【专题】常规题型.【分析】由角平分线的性质可得,点O到三角形三边的距离相等,即三个三角形的AB、BC、CA的高相等,利用面积公式即可求解.【解答】解:过点O 作OD ⊥AC 于D ,OE ⊥AB 于E ,OF ⊥BC 于F ,∵O 是三角形三条角平分线的交点,∴OD=OE=OF ,∵AB=20,BC=30,AC=40,∴S △ABO :S △BCO :S △CAO =2:3:4.故答案为:2:3:4.【点评】此题主要考查角平分线的性质和三角形面积的求法,难度不大,作辅助线很关键.4.如图,AD 是△ABC 的角平分线,若AB=2AC .则S △ABD :S △ACD = 2 .【考点】角平分线的性质.【分析】过D 作DM ⊥AC 于M ,DN ⊥AB 于N ,根据角平分线性质得出DM=DN ,根据三角形面积公式求出即可.【解答】解:过D 作DM ⊥AC 于M ,DN ⊥AB 于N ,∵AD 是△ABC 的角平分线,∴DM=DN ,∴S △ABD :S △ACD =(AB ×DN ):(AC ×DM )=AB :AC=2AC :AC=2,故答案为:2.【点评】本题考查了角平分线性质的应用,注意:角平分线上的点到角两边的距离相等.二、选择题5.如图,已知点P、D、E分别在OC、OA、OB上,下列推理:①∵OC平分∠AOB,∴PD=PE;②∵OC平分∠AOB,PD⊥OA,PE⊥OB,∴PD=PE;③∵PD⊥OA,PE⊥OB,∴PD=PE;其中正确的个数有()A.0个B.1个C.2个D.3个【考点】角平分线的性质.【分析】直接根据角平分线的性质进行解答即可.【解答】解:∵OC平分∠AOB,PD⊥OA,PE⊥OB,∴PD=PE.故选B.【点评】本题考查的是角平分线的性质,即角平分线上的点到角两边的距离相等.6.如图△ABC中,∠ACB=90゜,AD平分∠BAC交BC于D,DE垂直AB于E,若DE=1.5cm,BD=3cm,则BC=()A.3cm B.7.5cm C.6cm D.4.5cm【考点】角平分线的性质.【分析】根据角平分线的性质得出CD长,代入BC=BD+DC求出即可.【解答】解:∵∠ACB=90°,∴AC⊥BC,∵DE⊥AB,AD平分∠BAC,∴DE=DC=1.5cm,∵BD=3cm,∴BC=BD+DC=3cm+1.5cm=4.5cm,故选D.【点评】本题考查了角平分线性质的应用,注意:角平分线上的点到角两边的距离相等.7.在△ABC中,∠C=90゜,AD平分∠BAC交BC于D,BD:DC=3:2,点D到AB的距离为6,则BC 长为()A.10 B.20 C.15 D.25【考点】角平分线的性质.【分析】过点D作DE⊥AB于E,根据角平分线上的点到角的两边的距离相等可得DC=DE,然后求出BD的长,再根据BC=BD+DE代入数据进行计算即可得解.【解答】解:如图,过点D作DE⊥AB于E,∵点D到AB的距离为6,∴DE=6,∵∠C=90°,AD平分∠BAC交BC于D,∴DC=DE=6,∵BD:DC=3:2,∴BD=×3=9,∴BC=BD+DE=9+6=15.故选C.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键,作出图形更形象直观.8.如图,在△ABC中,∠B、∠C的角平分线交于点0,OD⊥AB于D,OE⊥AC于E,则OD与OE的大小关系是()A.OD>OE B.OD<OE C.OD=OE D.不能确定【考点】角平分线的性质.【分析】根据三角形的角平分线相交于一点,连接AO,则AO平分∠BAC,然后根据角平分线上的点到角的两边的距离相等解答.【解答】解:如图,连接AO,∵∠B、∠C的角平分线交于点0,∴AO平分∠BAC,∵OD⊥AB,OE⊥AC,∴OD=OE.故选C.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,根据三角形的角平分线相交于一点作辅助线并判断出AO平分∠BAC是解题的关键.三、解答题9.如图,△ABC中,∠C=90゜,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,且BE=CF,求证:(1)DE=DC;(2)BD=DF.【考点】角平分线的性质;全等三角形的判定与性质.【专题】证明题.【分析】(1)根据角平分线上的点到角的两边的距离相等证明即可;(2)利用“边角边”证明△BDE和△FDC全等,再根据全等三角形对应边相等证明即可.【解答】证明:(1)∵∠C=90°,AD是∠BAC的平分线,DE⊥AB,∴DE=DC;(2)在△BDE和△FDC中,,∴△BDE≌△FDC(SAS),∴BD=DF.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,是基础题,熟记性质是解题的关键.10.如图,四边形ABCD中,AB=AD,CB=CD,点P是AC上一点,PE⊥BC于E,PF⊥CD于F,求证:PE=PF.【考点】全等三角形的判定与性质;角平分线的性质.【专题】证明题.【分析】根据“SSS”可得到△ABC≌△ADC,则∠BCA=∠DCA,再利用角平分线的性质即可得到结论.【解答】证明:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠BCA=∠DCA,∵PE⊥BC于E,PF⊥CD于F,∴PE=PF.【点评】本题考查了全等三角形的判定与性质:三边都对应相等的两三角形全等;全等三角形的对应边相等,对应角相等.角平分线的性质:角的平分线上的点到角的两边的距离相等.11.已知,如图,BD是∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD,PN⊥CD,垂足分别是M、N.试说明:PM=PN.【考点】角平分线的性质;全等三角形的判定与性质.【专题】证明题.【分析】根据角平分线的性质以及已知条件证得△ABD≌△CBD(SAS),然后由全等三角形的对应角相等推知∠ADB=∠CDB;再由垂直的性质和全等三角形的判定定理AAS判定△PMD≌△PND,最后根据全等三角形的对应边相等推知PM=PN.【解答】证明:在△ABD和△CBD中,AB=BC(已知),∠ABD=∠CBD(角平分线的性质),BD=BD(公共边),∴△ABD≌△CBD(SAS),∴∠ADB=∠CDB(全等三角形的对应角相等);∵PM⊥AD,PN⊥CD,∴∠PMD=∠PND=90°;又∵PD=PD(公共边),∴△PMD≌△PND(AAS),∴PM=PN(全等三角形的对应边相等).【点评】本题考查了角平分线的性质、全等三角形的判定与性质.由已知证明△ABD≌△CBD是解决的关键.12.如图,BD是∠ABC的平分线,DE⊥AB于E,S=90,AB=18,BC=12,求DE的长.△ABC【考点】角平分线的性质.【分析】过点D作DF⊥BC于F,根据角平分线上的点到角的两边的距离相等可得DE=DF,然后根据三角形的面积列出方程求解即可.【解答】解:如图,过点D作DF⊥BC于F,∵BD是∠ABC的平分线,DE⊥AB,∴DE=DF,=AB•DE+BC•DF=90,∴S△ABC即×18•DE+×12•DE=90,解得DE=6.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,三角形的面积,熟记性质并作出辅助线是解题的关键.13.如图.已知在△ABC中,∠A、∠B的角平分线交于点O,过O作OP⊥BC于P,OQ⊥AC于Q,OR ⊥AB于R,AB=7,BC=8,AC=9.(1)求BP、CQ、AR的长.(2)若BO的延长线交AC于E,CO的延长线交AB于F,若∠A=60゜,求证:OE=OF.【考点】角平分线的性质;全等三角形的判定与性质.【分析】(1)根据角平分线性质得出OR=OQ=OP,根据勾股定理起床AR=AQ,CQ=CP,BR=BP,得出方程组,求出即可;(2)过O作OM⊥AC于肘,ON⊥AB于N,求出OM=ON,证出△FON≌△EOM即可.【解答】解:连接AO,OB,OC,∵OP⊥BC,OQ⊥AC,OR⊥AB,∠A、∠B的角平分线交于点O,∴OR=OQ,OR=OP,∴由勾股定理得:AR2=OA2﹣OR2,AQ2=AO2﹣OQ2,∴AR=AQ,同理BR=BP,CQ=CP,即O在∠ACB角平分线上,设BP=BR=x,CP=CQ=y,AQ=AR=z,则x=3,y=5,z=4,∴BP=3,CQ=5,AR=4.(2)过O作OM⊥AC于M,ON⊥AB于N,∵O在∠A的平分线,∴OM=ON,∠ANO=∠AMO=90°,∵∠A=60°,∴∠NOM=120°,∵O在∠ACB、∠ABC的角平分线上,∴∠EBC+∠FCB=(∠ABC+∠ACB)=×(180°﹣∠A)=60°,∴∠FON=∠EOM,在△FON和△EOM中∴△FON≌△EOM,∴OE=OF.【点评】本题考查了角平分线性质和全等三角形的性质和判定的应用,注意:角平分线上的点到角两边的距离相等.。

12.3角的平分线的性质同步练习题

12.3角的平分线的性质同步练习题

角的平分线的性质(一)知识点:1、角平分线的定义:从一个角的顶点出发把一个角分成两个相等的角的射线叫做角的平分线。

如右图:OC平分∠AOB∵OC平分∠AOB∴∠AOC=∠BOC2、角的平分线的性质:角平分线上的点到角的两边的距离相等。

【重点】如上图:`∵OC平分∠AOB(或∠1=∠2),PE⊥OA,PD⊥OB∴PD=PE,此时我们知道△OPE≌△OPD(直角三角形斜边是OP即公共边,直角边斜边)3、角的平分线的判定:角的内部到角的两边距离相等的点在角的平分线上。

∵PE⊥OA,PD⊥OB,PD=PE∴OC平分∠AOB(或∠1=∠2)同步测试题:1、角的平分线的性质:如图:用几何语言表示是:∵∴2、逆定理:如上图所示:用几何语言可表示为:;∵∴3、如图所示,CD⊥AB于D点,BE⊥AC于E点,BE、CD交于O点,(1)、若AO平分∠BAC,求证:OB=OC。

》(2)、若OB=OC,求证:AO平分∠BAC4、如图,AD⊥DC,BC⊥DC:,E是DC上一点,AE平分∠DAB.(1)如果BE平分∠ABC,求证:点E是DC的中点;(2)如果E是DC的中点,求证:BE平分∠ABC.PM。

CBAOOEDB CA*5.如图,在△ABC 中,D 是BC 的中点,DE ⊥AB ,DF ⊥AC ,垂足分别是E ,F ,(1)若BE =CF 。

求证:AD 是△ABC 的角平分线。

(2)若AD 是△ABC 的角平分线。

求证:BE =CF6.工人师傅常用角尺平分一个任意角,做法如下:如图,∠AOB 是一个任意角,在边OA ,OB 上分别取OM=ON ,移动角尺,使角尺两边相同的刻度分别与M 、N 重合,过角尺顶点C 的射线OC 便是∠AOB 的平分线。

为什么ABCE ¥F D。

人教版八年级数学上册12.3角平分线的性质课时训练(含答案)

人教版八年级数学上册12.3角平分线的性质课时训练(含答案)

人教版八年级数学上册12.3角平分线的性质课时训练(含答案)人教版八年级数学上册12.3 角平分线的性质课时训练一、选择题1. 如图,PD⊥AB,PE⊥AC,垂足分别为D,E,且PD=PE,则△APD与△APE 全等的理由是()A.SAS B.AAA C.SSS D.HL2. 如图,P是∠AOB的平分线OC上一点,PD⊥OA,垂足为D.若PD=2,则点P到边OB的距离是()A.4 B. 3 C.2 D.13. 如图,P为OC上一点,PM⊥OA,PN⊥OB,垂足分别为M,N,PM=PN,∠BOC=30°,则∠AOB的度数为()A.30°B.45°C.60°D.50°4. 下面是黑板上给出的尺规作图题,需要回答横线上符号代表的内容.已知∠AOB.求作:∠AOB的平分线.作法如下:①以点O为圆心,适当长为半径画弧,交OA于点M,交__○__于点N;②分别以点__⊕__为圆心,大于__△__的长为半径画弧,两弧在__?__的内部交于点C;③画射线OC,OC即为所求.则下列回答正确的是()A.○表示OA B.⊕表示M,CC.△表示MN D.?表示∠AOB5. 如图,在直角坐标系中,AD是Rt△OAB的角平分线,点D的坐标是(0,-3),那么点D到AB的距离是()A.3B.-3C.2D.-26. 如图,利用尺规作∠AOB的平分线OC,其作法如下:(1)以点O为圆心,适当长为半径画弧,与OA,OB分别交于点D,E;(2)分别以点D,E为圆心,大于DE的长为半径画弧,两弧在∠AOB的内部交于点C;(3)画射线OC,则射线OC就是∠AOB的平分线.这样作图的原理是三角形全等的一种判定方法,这种判定方法是()A.SSSB.SASC.ASAD.AAS7. 如图,AB∥CD,以点A为圆心,小于AC的长为半径画弧,与AB,AC分别交于点E,F,再分别以点E,F为圆心,大于EF的长为半径画弧,两弧在∠CAB的内部交于点G,作射线AG交CD于点H.若∠C=140°,则∠AHC 的大小是()A.20°B.25°C.30°D.40°8. 如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D.若CD=4,AB=16,则△ABD的面积是()A.14 B.32 C.42 D.569. 如图,已知在四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=6,BC =9,CD=4,则四边形ABCD的面积是()A.24 B.30C.36 D.4210. 如图,AD是△ABC的角平分线,DE⊥AB,AB=6 cm,DE=4 cm,S△ABC=30 cm2,则AC的长为()A.10 cmB.9 cmC.4.5 cmD.3 cm二、填空题11. 如图,OP为∠AOB的平分线,PC⊥OB于点C,且PC=3,点P到OA的距离为________.12. 如图,在△ABC中,两条外角平分线交于点P,PM⊥AC交AC的延长线于点M.若PM=6 cm,则点P到AB的距离为.13. 将两块完全相同的三角尺在∠AOB的内部如图摆放,两块三角尺较短的直角边分别与∠AOB的两边重合,且含30°角的顶点恰好也重合于点C,则射线OC 即为∠AOB的平分线,理由是______________________.14. 如图,∠B=∠D=90°,根据角平分线的性质填空:(1)若∠1=∠2,则________=________.(2)若∠3=∠4,则________=________.15. 如图,在△ABC中,E为AC的中点,AD平分∠BAC交BC于点D,AB︰AC=2︰3,AD与BE相交于点O.若△OAE的面积比△BOD的面积大1,则△ABC的面积是.三、解答题16. 育新中学校园内有一块直角三角形(Rt△ABC)空地,如图所示,园艺师傅以角平分线AD为界,在其两侧分别种上了不同的花草,在△ABD区域内种植了一串红,在△ACD区域内种植了鸡冠花,并量得两直角边AB=20 m,AC=10 m,分别求一串红与鸡冠花两种花草的种植面积.17. 如图,已知∠1=∠2,BA18. 如图,在∠AOB的两边OA,OB上分别取点D,M和点E,N,使OM=ON,OD=OE,DN和EM相交于点C.求证:点C在∠AOB的平分线上.19. 如图,A,B两点分别在射线OM,ON上,点C在∠MON的内部且CA=CB,CD⊥OM,CE⊥ON,垂足分别为D,E,且AD=BE.(1)求证:OC平分∠MON;(2)如果AO=10,BO=4,求OD的长.20. 如图,在Rt△ABC中,∠ACB=90°,∠B=60°,AD,CE是角平分线,AD 与CE相交于点F,FM⊥AB,FN⊥BC,垂足分别为M,N.求证:FE=FD.人教版八年级数学上册12.3 角平分线的性质课时训练-答案一、选择题1. 【答案】D2. 【答案】C[解析] 如图,过点P作PE⊥OB于点E.∵P是∠AOB的平分线OC上一点,PD⊥OA,PE⊥OB,∴PE=PD=2.3. 【答案】C[解析] ∵点P在OC上,PM⊥OA,PN⊥OB,PM =PN,∴OC是∠AOB的平分线.∵∠BOC=30°,∴∠AOB=60°.4. 【答案】D5. 【答案】A[解析] 如图,过点D作DE⊥AB于点E.∵点D的坐标是(0,-3),∴OD=3.∵AD是△OAB的角平分线,∴ED=OD=3,即点D到AB的距离是3.6. 【答案】A7. 【答案】A[解析] 由题意可得AH平分∠CAB.∵AB∥CD,∴∠C+∠CAB=180°,∠HAB=∠AHC.∵∠ACD=140°,∴∠CAB=40°.∵AH平分∠CAB,∴∠HAB=20°.∴∠AHC=20°.8. 【答案】B[解析] 如图,过点D作DH⊥AB于点H. 由作法得AP平分∠BAC.∵DC⊥AC,DH⊥AB,∴DH=DC=4.∴S△ABD=12×16×4=32.9. 【答案】B[解析] 过点D作DH⊥AB交BA的延长线于点H. ∵BD平分∠ABC,∠BCD=90°,∴DH=CD=4.∴四边形ABCD的面积=S△ABD+S△BCD=12AB·DH+12BC·CD=12×6×4+12×9×4=30.10. 【答案】B[解析] 如图,过点D作DF⊥AC于点F.∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=4.∵AB=6,∴S △ABC =S △ABD +S △ACD =×6×4+AC ×4=30, 解得AC=9(cm).故选B .二、填空题11. 【答案】3 【解析】如解图,过点P 作PD ⊥OA 于点D ,∵OP 为∠AOB 的平分线,PC ⊥OB 于点C ,∴PD =PC ,∵PC =3,∴PD =3,即点P 到点OA 的距离为3.12. 【答案】6 cm[解析] 如图,过点P 作PN ⊥BC 于点N ,PQ ⊥AB 交AB 的延长线于点Q.∵BP ,CP 是两条外角的平分线,PM ⊥AC ,∴PN=PM ,PQ=PN.∴PQ=PM.∵PM=6 cm,∴PQ=6 cm,即点P 到AB 的距离为6 cm .13. 【答案】角的内部到角的两边距离相等的点在角的平分线上14. 【答案】(1)BCCD (2)AB AD15. 【答案】10[解析] 如图,过点D 作DM ⊥AC 于点M ,DN ⊥AB 于点N.∵AD 平分∠BAC,DM ⊥AC ,DN ⊥AB , ∴DM=DN.∵S △ABD ︰S △ADC =BD ︰DC ,且S △ABD =·AB ·DN ,S △ADC =·AC ·DM ,∴BD ∶DC=AB ∶AC=2∶3. 设△ABC 的面积为S ,则S △ADC =S.∵E 为AC 的中点, ∴S △BEC =S.∵△OAE 的面积比△BOD 的面积大1, ∴△ADC 的面积比△BEC 的面积大1. ∴S-S=1.∴S=10.故答案为10.三、解答题16. 【答案】解:如图,过点D 作DE ⊥AB 于点E ,DF ⊥AC 于点F.∵AD 是∠BAC 的平分线,∴DE =DF. ∵AB =20 m ,AC =10 m ,∴S △ABC =12×20×10=12×20·DE +12×10·DF ,解得DE =203(m).∴△ACD 的面积=12×10×203=1003(m 2),△ABD 的面积=12×20×203=2003(m 2).故一串红的种植面积为2003 m 2,鸡冠花的种植面积为1003 m 2.17. 【答案】证明:如图,过点P 作PE ⊥BA 交BA 的延长线于点E.又∵∠1=∠2,PF ⊥BC ,∴PE=PF ,∠PEA=∠PFC=90°. 在Rt △PEA 与Rt △PFC 中,∴Rt △PEA ≌Rt △PFC (HL). ∴∠P AE=∠PCB. ∵∠P AE+∠BAP=180°, ∴∠PCB+∠BAP=180°.18. 【答案】证明:如图,过点C 作CG ⊥OA 于点G ,CF ⊥OB 于点F .在△MOE 和△NOD 中,∴△MOE ≌△NOD (SAS). ∴S △MOE =S △NOD .∴S △MOE -S 四边形ODCE =S △NOD -S 四边形ODCE ,即S △MDC =S △NEC .由三角形面积公式得DM ·CG=EN ·CF .∵OM=ON ,OD=OE ,∴DM=EN.∴CG=CF . 又∵CG ⊥OA ,CF ⊥OB ,∴点C 在∠AOB 的平分线上.19. 【答案】解:(1)证明:∵CD ⊥OM ,CE ⊥ON ,∴∠CDA =∠CEB =90°.在Rt △ACD 与Rt △BCE 中,CA =CB ,AD =BE ,∴Rt △ACD ≌Rt △BCE(HL).∴CD=CE.又∵CD ⊥OM ,CE ⊥ON ,∴OC 平分∠MON. (2)在Rt △ODC 与Rt △OEC 中,CD =CE ,OC =OC ,∴Rt △ODC ≌Rt △OEC. ∴OD =OE. 设BE =x.∵BO =4,∴OE =OD =4+x. ∵AD =BE =x ,∴AO =OD +AD =4+2x =10. ∴x =3.∴OD =4+3=7.20. 【答案】证明:如图,连接BF.∵F 是△ABC 的角平分线AD ,CE 的交点,∴BF 平分∠ABC. ∵FM ⊥AB ,FN ⊥BC ,∴FM =FN ,∠DNF =∠EMF =90°.∵在Rt △ABC 中,∠ACB =90°,∠ABC =60°,∴∠BAC =30°.∵AD 平分∠BAC ,∴∠DAC =12∠BAC =15°. ∴∠CDA =75°.∵CE 平分∠ACB ,∠ACB =90°,∴∠ACE =45°. ∴∠MEF =75°=∠NDF. 在△DNF 和△EMF 中,∠DNF =∠EMF ,∠NDF =∠MEF ,FN =FM ,∴△DNF ≌△EMF(AAS).∴FE =FD.。

初中数学人教版八年级上册第十二章 全等三角形12.3 角的平分线的性质-章节测试习题(17)

初中数学人教版八年级上册第十二章 全等三角形12.3 角的平分线的性质-章节测试习题(17)

章节测试题1.【题文】如图所示,PA=PB,∠1+∠2=180°.求证:OP平分∠AOB.【答案】见解答.【分析】过P作PE⊥OA于E,PF⊥OB于F,证△PEA≌△PFB,得出PE=PF,再根据角平分线判定即可得出.【解答】解:过点P作PE⊥AO,PF⊥BO,垂足分别为E,F,则∠AEP=∠BFP=90°.∵∠1+∠2=180°,∠2+∠PBF=180°,∴∠1=∠PBF.在△APE与△BPF中,∠1=∠PBF,∠AEP=∠BFP,PA=PB,∴△APE≌△BPF,∴PE=PF.∴点P在∠AOB的平分线上,即OP平分∠AOB.2.【题文】如图所示,∠1=∠2,AE⊥OB于点E,BD⊥OA于点D,AE与BD相交于点C.求证:AC=BC.【答案】见解答.【分析】先根据角平分线的性质可以得到CD=CE,然后再证明Rt△ACD≌Rt△BCE 便可得答案.【解答】解:∵∠1=∠2,BD⊥OA,AE⊥OB,∴CD=CE.∵CD⊥OA,CE⊥OB,∴∠ADC=∠BEC=90°.在△ADC与△BEC中,∠ADC=∠BEC,CD=CE,∠3=∠4.∴△ADC≌△BEC.∴AC=BC.3.【题文】三角形中的角平分线的性质与一个角的平分线性质相同.如题:如图,△ABC中,AD是∠BAC的角平分线,且BD=CD,DE,DF分别垂直于AB,AC,垂足为E,F.请你结合条件认真研究,然后写出三个正确的结论.【答案】如:(1)△BDE≌△CDF,(2)BE=CF,(3)∠B=∠C.【分析】此题答案不唯一,如先利用角平分线的性质,可得DE=DF;在Rt△BDE 和Rt△CDF中,再结合已知条件,可证出Rt△BDE≌Rt△CDF,那么就有BE=CF,∠B=∠C.【解答】解:答案不唯一,如:(1)△BDE≌△CDF;(2)BE=CF;(3)∠B=∠C.证明:∵AD是∠BAC的平分线,DE⊥AB,DF⊥AC,∴DE=DF,又∵BD=CD,∴Rt△BDE≌Rt△CDF,∴BE=CF,∠B=∠C.4.【题文】如图,BD是∠ABC的平分线,DE⊥AB于E,S△ABC=90,AB=18,BC=12,求DE的长.【答案】6【分析】作BC边上的垂线,DE长等于ABC,BC边的高.【解答】解:如图,过点D作DF⊥BC于F,∵BD是∠ABC的平分线,DE⊥AB,∴DE=DF,∴S△ABC=AB•DE+BC•DF=90,即×18•DE+×12•DE=90,解得DE=6.5.【题文】如图,△ABC中,∠C=90゜,AD是∠BAC的平分线,DE⊥AB于E,F 在AC上,且BE=CF,求证:(1)DE=DC;(2)BD=DF.【答案】见解答.【分析】(1)利用角平分线的性质.(2)证明△BDE≌△FDC.【解答】证明:(1)∵∠C=90°,AD是∠BAC的平分线,DE⊥AB,∴DE=DC,(2)在△BDE和△FDC中,BE=CF,∠C=∠DEB=90°,DE=DC,∴△BDE≌△FDC(SAS),∴BD=DF.6.【题文】如图,∠AOB=30度,OC平分∠AOB,P为OC上一点,PD∥OA交OB 于D,PE垂直OA于E,若OD=4cm,求PE的长.【答案】2【分析】本题考查了角平分线的性质、平行线的性质.【解答】如图,过P作PF⊥OB于F,∵∠AOB=30°,OC平分∠AOB,∴∠AOC=∠BOC=15°,∵PD∥OA,∴∠DPO=∠AOP=15°,∴PD=OD=4cm,∵∠AOB=30°,PD∥OA,∴∠BDP=30°,∴在Rt△PDF中,PF=PD=2cm,∵OC为角平分线,PE⊥OA,PF⊥OB,∴PE=PF,∴PE=PF=2cm.7.【题文】如图,在∠AOB内找一点P,使得点P到∠AOB的两边距离相等,且使点P到点C的距离最短(尺规作图,请保留作图痕迹).【答案】见解答.【分析】先利用角平分线的性质求作满足到∠AOB的两边距离相等的点所在直线,再根据直线外一点到直线的垂线段距离最短,求出满足条件的点P.【解答】如图,以O为圆心,单位长度为半径画圆弧,交OA,OB分别于两点,再以圆弧与OA,OB两个交点为圆心,相同单位长度为半径画圆弧,两圆弧相交于一点,连接O与圆弧的交点,即为∠AOB的角平分线过点C作角平分线的垂线,垂足为点P,即P为所求作点.8.【题文】如图所示,在△ABC中,∠A=90°,DE⊥BC,BD平分∠ABC,AD=6cm,BC=15cm,求△BDC的面积.【答案】△BDC的面积=45cm2.【分析】根据角平分线的性质得到DE=AD=6cm,根据三角形的面积公式计算即可.【解答】∵BD平分∠ABC,∠A=90°,DE⊥BC,∴DE=AD=6cm,∴△BDC的面积=×BC×DE=×15×6=45cm2.9.【题文】如图,O为码头,A,B两个灯塔与码头的距离相等,OA,OB为海岸线,一轮船从码头开出,计划沿∠AOB的平分线航行,航行途中,测得轮船与灯塔A,B的距离相等,此时轮船有没有偏离航线?画出图形并说明理由.【答案】没有偏离航线【分析】只要证明轮船与O点的连线平分∠AOB就说明轮船没有偏离航线,也就是证明∠AOP=∠BOP,证角相等,常常通过把角放到两个三角形中,利用题目条件证明这两个三角形全等,从而得出对应角相等.【解答】此时轮船没有偏离航线.理由:由题意知:OA=OB,OP=OP,PA=PB∴△OAP≌△OBP(SSS)∴∠AOP=∠BOP.∴此时轮船没有偏离航线.10.【题文】已知,如图,AB=AC,DE=DF,DE⊥AB于点E,DF⊥AC于点F,求证:DB=DC.【答案】见解答【分析】由角平分线的判定得出∠EAD=∠FAD,再由边角边证得△ACD≌△ABD,进而得到DC=DB.【解答】证明:连接AD,∵DE=DF,DE⊥AE,DF⊥AF,∴∠EAD=∠FAD,,在△ACD和△ABD中,,∴△ACD≌△ABD(SAS),∴DC=DB.11.【题文】已知:如图,在△ABC中,∠A=30°,∠B=60°.(1)作∠B的平分线BD,交AC于点D;作AB的中点E(要求:尺规作图,保留作图痕迹)(2)连接DE,求证:△ADE≌△BDE.【答案】(1)作图见解答;(2)证明见解答.【分析】(1)①以B为圆心,任意长为半径画弧,交AB、BC于F、N,再以F、N为圆心,大于FN长为半径画弧,两弧交于点M,过B、M作射线,交AC 于D,线段BD就是∠B的平分线.②分别以A、B为圆心,大于AB长为半径画弧,两弧交于X、Y,过X、Y作直线与AB交于点E,点E就是AB的中点.(2)首先根据角平分线的性质可得∠ABD的度数,从而得到∠ABD=∠A,根据等角对等边可得AD=BD,再加上条件AE=BE,即可利用SAS证明△ADE≌△BDE.【解答】解:(1)作图如下:(2)证明:∵∠ABD=×60°=30°,∠A=30°,∴∠ABD=∠A.∴AD=BD.又∵AE=BE,∴△ADE≌△BDE(SAS).12.【题文】如图,在△ABC中,BD=DC,∠1=∠2,求证:AD是∠BAC的平分线.【答案】证明见解答.【分析】根据BD=DC得出∠DBC=∠DCB,进而利用全等三角形的判定和性质证明即可.【解答】∵BD=DC,∴∠DBC=∠DCB,∵∠1=∠2,∴∠ABC=∠ACB,∴AB=AC,在△ABD与△ACD中,∴△ABD≌△ACD(SAS),∴∠BAD=∠CAD,∴AD是∠BAC的平分线.13.【题文】如图,在△ABC中,∠A=90°,BD是角平分线,DE⊥BC于点E,若AD=3,BC=4,求△BDC的面积.【答案】6.【分析】根据角平分线的性质定理可得DE=AD=3,根据三角形的面积公式即可求解.【解答】∵∠A=90°∴DA⊥AB又BD是角平分线,且DE⊥BC于点E∴DE=AD=3,∴易得△BDC的面积为6.14.【答题】如图,在△ABC中,AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,则下列结论中错误的是()A. DE=DFB. AD上任意一点到E,F两点的距离相等C. AE=AFD. BD=DC【答案】D【分析】根据角的平分线的性质解答即可.【解答】A.正确,角平分线上的点到角的两边的距离相等;B.正确,角平分线上的点到角的两边的距离相等;C.正确,∵DE⊥AB,DF⊥AC,AD=AD,DE=DF,∴△AED≌△AFD(HL),∴AE=AF;D错误.选D.15.【答题】如图,BE⊥AC于E,CF⊥AB于F,AE=AF,BE与CF交于点D,则:①△ABE≌△ACF;②△BDF≌△CDE;③点D在∠BAC的平分线上.以上结论正确的是()A. ①B. ②C. ①②D. ①②③【答案】D【分析】本题考查全等三角形的判定和性质以及角平分线的性质,在判定三角形全等时,关键是选择恰当的判定条件.【解答】∵BE⊥AC,CF⊥AB,∴∠BEA=∠CFA=90°,在△ABE与△ACF中,∵,∴△ABE≌△ACF(AAS)①正确,∴∠B=∠C,AB=AC(全等三角形对应角和对应边相等),∴BF=CE,在△BDF与△CDE中,∵,∴△BDF≌△CDE(AAS)②正确,∴DF=DE(全等三角形对应边相等),∴点D在∠BAC的平分线上(到角的两边距离相等的点,在这个角的平分线上)③正确;故①②③都正确.选D.16.【答题】如图,在△ABC中,P为BC上一点,PR⊥AB,垂足为R,PS⊥AC,垂足为S,∠CAP=∠APQ,PR=PS,下面的结论:①AS=AR;②QP∥AR;③△BRP≌△CSP.其中正确的是()A. ①②B. ②③C. ①③D. ①②③【答案】A【分析】连接AP,由已知条件利用角平行线的判定可得∠1=∠2,由三角形全等的判定得△APR≌△APS,得AS=AR,由已知可得∠2=∠3,得到∠1=∠3,得QP∥AR,答案可得.【解答】连接AP,∵PR=PS,PR⊥AB,垂足为R,PS⊥AC,垂足为S,∴AP是∠BAC的平分线,∠1=∠2,∴△APR≌△APS,∴AS=AR,又AQ=PQ,∴∠2=∠3,又∠1=∠2,∴∠1=∠3,∴QP∥AR,BC只是过点P,没有办法证明△BRP≌△CSP,③不成立.选A.17.【答题】如图,在△ABC中,∠C=90°,AD平分∠BAC,BC=10cm,BD=7cm,则点D到AB的距离是______.【答案】3【分析】利用角平分线的性质作答即可.【解答】解:∵BC=10,BD=7,∴CD=3.由角平分线的性质,得点D到AB的距离等于CD=3.故答案为3.18.【答题】如图所示,在直线l上找一点,使这点到∠AOB的两边OA,OB的距离相等,则这个点是______.【答案】∠AOB的平分线与直线l的交点【分析】本题考查角平分线的性质:角平分线上的点到角的两边距离相等.【解答】根据角平分线上的点到角的两边距离相等,∴取角平分线与直线l的交点.故答案为∠AOB的平分线与直线l的交点.19.【答题】如图所示,在△ABC中,∠C=90°,AD平分∠BAC,BC=20cm,DB=17cm,则D点到AB的距离是______ cm.【答案】3【分析】利用角平分线的性质作答即可.【解答】∵BC=20cm,DB=17cm,∴DC=BC-DB=20-17=3(cm),∵AD平分∠BAC,DE⊥AB,∠C=90°,∴DE=DC=3(cm).故答案为3.20.【答题】如图所示,已知O为∠BAC的平分线与∠ACD的平分线的交点,OE⊥AC于E,若OE=2,则点O到AB的距离与点O到CD的距离的和是______.【答案】4【分析】利用角平分线的性质作答即可.【解答】如图作OF⊥AB于F,OG⊥CD于G,∵O为∠BAC的平分线与∠ACD的平分线的交点,OE⊥AC,∴OF=OE=2,OG=OE=2,则点O到AB的距离与点O到CD的距离的和为OF+OG=2+2=4.故答案为4.。

人教版八年级数学上册角的平分线的性质同步练习题(含答案)

人教版八年级数学上册角的平分线的性质同步练习题(含答案)

人教版八年级数学上册角的平分线的性质同步练习题(含答案)12.3 角的平分线的性质第1课时角的平分线的性质要点感知1 角的平分线的性质:角的平分线上的点到角的两边的距离_____.预习练习1-1 如图,OP平分∠AOB,PC⊥OA,垂足为C,PD⊥OB,垂足为D,则PC与PD的大小关系是( )A.PC>PDB.PC=PDC.PC<PDD.不能确定要点感知2 命题证明的一般步骤为:(1)明确命题中的已知和求证;(2)根据题意画出图形,并用数学符号表示已知和求证;(3)写出证明过程.预习练习2-1 命题“全等三角形对应角的角平分线长度相等”的已知是____,求证是____.知识点1 角平分线的作法1.用直尺和圆规作一个角的平分线的示意图如图所示,则能说明∠AOC=∠BOC的依据是( )A.SSSB.ASAC.AASD.角平分线上的点到角两边距离相等2.已知△ABC,用尺规作图作出∠ABC的角平分线,保留作图痕迹,但不写作法.知识点2 角平分线的性质3.如图,BD是∠ABC的平分线,P是BD上的一点,PE⊥BA于点E,PE=4 cm,则点P到边BC的距离为cm.4.如图所示,E 是∠AOB 的平分线上一点,EC ⊥OA,ED ⊥OB,垂足分别为C ,D.求证:OC=OD.5.如图,BD 平分∠ABC ,DE 垂直于AB 于E 点,△ABC 的面积等于90,AB=18,BC=12,求DE 的长.知识点3 命题证明6.命题“全等三角形对应边上的高线相等”的已知是____,结论是____.7.证明:全等三角形对应边上的中线相等.8.如图,AD ∥B C,∠ABC 的角平分线BP 与∠BAD 的角平分线AP 相交于点P,作PE ⊥AB 于点E.若PE =2,则两平行线AD 与BC 间的距离为____.9.如图,在△ABC ,∠C=90°,∠CAB=50°,按以下步骤作图:①以点A 为圆心,小于AC 的长为半径画弧,分别交AB ,AC 于点E 、F ;②分别以点E,F 为圆心,大于21EF 的长为半径画弧,两弧相交于点G ;③作射线AG 交BC 边于点D ,则∠CDA 的度数为____. 10.已知,如图所示,△ABC 的角平分线AD 将BC 边分成2∶1两部分,若AC=3 cm ,则AB=____.11.已知:如图所示,点O 在∠BAC 的平分线上,BO ⊥AC,CO ⊥AB,垂足分别为D ,E,求证:OB =OC.12.如图,△ABC 中,∠C=90°,AC=BC,AD 平分∠BAC 交BC 于D,DE ⊥AB,垂足为E,且AB=10 cm,求△DEB 的周长.13.求证:有两个角及其中一个角的角平分线对应相等的两个三角形全等.挑战自我14.如图,∠AOB=90°,OM 平分∠AOB ,直角三角板的顶点P 在射线OM 上移动,两直角边分别与OA 、OB 相交于点C 、D ,问PC 与PD 相等吗?试说明理由.参考答案课前预习要点感知1 相等 预习练习1-1 B预习练习2-1 全等三角形对应角的角平分线 对应角的角平分线长度相等 当堂训练 1.A 2.图略. 3.4 4.证明:∵E 是∠AOB 的平分线上一点,CE ⊥OA,ED ⊥OB ,∴EC=ED.在Rt △OCE 和Rt △ODE 中,OE=OE,EC=ED,∴Rt △OCE ≌Rt △ODE(HL).∴OC=OD.5.∵BD 平分∠ABC ,DE 垂直于AB 于E 点,∴点D 到BC 的距离等于DE 的长度.∵AB=18,BC=12,∴S △ABC =S △ABD +S △BCD =21×18·DE+21×12·DE=21DE(18+12)=15·DE.∵△ABC 的面积等于90,∴15·DE=90.∴DE=66.全等三角形对应边的高线 对应边的高线相等7.已知:△ABC ≌△A ′B ′C ′,AD ,A ′D ′分别是BC ,B ′C ′边上的中线.求证:AD=A ′D ′.证明:∵△ABC ≌△A ′B ′C ′,∴AB=A ′B ′,∠B=∠B ′,BC=B ′C ′.又∵AD ,A ′D ′分别是BC ,B ′C ′边上的中线,∴BD=21BC,B ′D ′=21B ′C ′.∴BD=B ′D ′.∴△ABD ≌△A ′B ′D ′(SAS).∴AD=A ′D ′.课后作业 8.4 9.65° 10.6 cm 11.证明:∵点O 在∠BAC 的平分线上,BO ⊥AC,CO ⊥AB,∴OE =OD,∠BEO =∠CDO =90°.在△BEO 与△CDO 中,∠BEO =∠CDO,OE =OD,∠EOB =∠DOC,∴△BEO ≌△CDO(ASA).∴OB =OC.12.∵AD 平分∠BAC 交BC 于D,DE ⊥AB,∠C=90°,∴CD=DE.∴Rt △ACD ≌Rt △AED.∴AE=AC.∴△DEB 的周长=DE+DB+EB=CD+DB+BE=BC+BE=AC+BE=AE+BE=AB=10 cm. 13.已知:如图,在△ABC 和△A ′B ′C ′中,∠B=∠B ′,∠BAC=∠B ′A ′C ′,AD,A ′D ′分别是∠BAC,∠B ′A ′C ′的平分线,且AD=A ′D ′.求证:△ABC ≌△A ′B ′C ′.证明:∵∠BAC=∠B ′A ′C ′,AD ,A ′D ′分别是∠BAC ,∠B ′A ′C ′的角平分线,∴∠BAD=∠B ′A ′D ′.∵∠B=∠B ′,AD=A ′D ′,∴△ABD ≌△A ′B ′D ′(AAS).∴AB=A ′B ′.在△ABC 和△A ′B ′C ′中,∠B=∠B ′,AB=A ′B ′,∠BAC=∠B ′A ′C ′,∴△ABC ≌△A ′B ′C ′(ASA).14.PC=PD.理由如下:过点P 分别作PE ⊥OA ,PF ⊥OB ,垂足分别为点E ,F.又∵OM 平分∠AOB ,∴PE=PF.又∵∠AOB=90°,∠PEO=∠PFO=90°,∴∠EPF=90°.∴∠EPC+∠CPF=90°.又∵∠CPD=90°,∴∠CPF+∠FPD=90°.∴∠EP C=∠FPD.在△PCE 与△PDF 中,∠PEC=∠PFD ,PE=PF ,∠EPC=∠FPD ,∴△PCE ≌△PDF(ASA).∴PC=PD.第2课时 角的平分线的判定要点感知1 角的内部到角的两边的距离相等的点在角的______上.预习练习1-1 已知点P 为∠AOB 内部的一点,PD ⊥OB 于点D,PC ⊥OA 于点C,且PC=PD,则OP 平分_____.要点感知2 三角形的三条内角平分线相交于一点,并且这一点到_____.预习练习2-1 如图,在△ABC 中,BD ,CE 分别平分∠ABC ,∠ACB,并且BD ,CE 相交于点O,过O 点作OP ⊥BC 于点P,OM ⊥AB 于点M,ON ⊥AC 于点N,则OP ,OM ,ON 的大小关系是_____.知识点1 角平分线的判定1.已知:如图,OC是∠AOB内部的一条射线,P是射线OC上任意点,PD⊥OA,PE⊥OB.下列条件中:①∠AOC=∠BOC,②PD=PE,③OD=OE,④∠DPO=∠EPO,能判定OC是∠AOB的角平分线的有( )A.1个B.2个C.3个D.4个2.已知:如图所示,BE=CF,DF⊥AC于点F,DE⊥AB于点E,BF和CE相交于点D.求证:AD平分∠BAC.知识点2 角平分线的性质与判定的综合运用3.如图,△ABC中,∠ABC,∠ACB的角平分线相交于O,下面结论中正确的是( )A.∠1>∠2B.∠1=∠2C.∠1<∠2D.不能确定4.如图,∠ABC的平分线与∠ACB的外角平分线相交于点D,连接AD.求证:AD是∠BAC的外角平分线.知识点3 角平分线的性质与判定的实际应用5.如图,铁路OA和铁路OB交于O处,河道AB与铁路分别交于A处和B处,试在河岸上建一座水厂M,要求M到铁路OA,OB的距离相等,则该水厂M应建在图中什么位置?请在图中标出M点的位置.6.某市有一块由三条公路围成的三角形绿地,现准备在其中建一小亭子,供人们休息,而且要使小亭中心到三条公路的距离相等,试确定小亭的中心位置.7.如图所示,AD⊥OB,BC⊥OA,垂足分别为D,C,AD与BC相交于点P,若PA=PB,则∠1与∠2的大小关系是( )A.∠1=∠2B.∠1>∠2C.∠1<∠2D.无法确定8.如图所示,P为△ABC外部一点,D,E分别在AB,AC的延长线上,若点P到BC,BD,CE 的距离都相等,则关于点P的说法最佳的是( )A.在∠DBC的平分线上B.在∠BCE的平分线上C.在∠BAC的平分线上D.在∠DBC,∠BCE,∠BAC的平分线上9.三条公路两两相交于A,B,C三点,现计划修建一个商品超市,要求这个超市到三条公路距离相等,则可供选择的地方有_____处.10.已知:如图,CD⊥AB于点D,BE⊥AC于点E,BE,CD相交于点O.求证:(1)当∠1=∠2时,OB=OC;(2)当OB=OC时,∠1=∠2.11.如图,D,E,F分别是△ABC三边上的点,CE=BF,△DCE和△DBF的面积相等,求证:AD平分∠BAC.12.如图所示,△ABC中,∠B=∠C,D是BC边上一动点,过D作DE⊥AB,DF⊥AC,E,F分别为垂足,则当D 移动到什么位置时,AD 恰好平分∠BAC,请说明理由.挑战自我13.已知:如图所示,在△ABC 中,BD=DC,∠1=∠2,求证:AD 平分∠BAC.参考答案课前预习要点感知1 平分线 预习练习1-1 ∠AOB要点感知2 三边的距离相等 预习练习2-1 OP=OM=ON 当堂训练 1.D 2.证明:∵DF ⊥AC 于点F ,DE ⊥AB 于点E ,∴∠DEB=∠DFC=90°,在△BDE 和△CDF 中,∠BDE=∠CDF, ∠DEB=∠DFC,BE=CF,∴△BDE ≌△CDF(AAS).∴DE=DF.又∵DF ⊥AC 于点F ,DE ⊥AB 于点E ,∴AD 平分∠BAC. 3.B 4.证明:过点D 分别作DE ⊥AB,DG ⊥AC,DF ⊥BC,垂足分别为E,G,F.又∵BD 平分∠ABC,CD 平分∠ACF,∴DE=DF,DG=DF.∴DE=DG.∴AD 平分∠EAC,即AD 是∠BAC 的外角平分线.5.图略.提示:作∠AOB 的角平分线,与AB 的交点即为点M 的位置.6.在三角形内部分别作出两条角平分线,其交点O 就是小亭的中心位置,图略. 课后作业7.A8.D9.410.(1)证明:∵∠1=∠2,OD ⊥AB ,OE ⊥AC ,∴OE =OD ,∠ODB =∠OEC =90°.在△BOD 和△COE 中,∠BOD=∠COE ,OD=OE ,∠ODB=∠OEC,∴△BOD ≌△COE(ASA).∴OB =OC. (2)证明:在△BOD 和△COE 中,∠ODB=∠OEC ,∠BOD=∠COE , OB=OC ,∴△BOD ≌△COE(AAS).∴OD =OE.又∵OD ⊥AB ,OE ⊥AC ,∴AO 平分∠BAC ,即∠1=∠2.11.证明:过点D 作DH ⊥AB 于H ,DG ⊥AC 于G.∵S △DCE =21CE ·DG,S △DB F=21BF ·DH,S△DCE=S △DBF ,∴21CE ·DG=21BF ·DH.又∵CE=BF,∴DG=DH.∴点D 在∠BAC 的平分线上,即AD 平分∠BAC.12.移动到BC 的中点时,AD 恰好平分∠BAC.理由如下:∵D 是BC 的中点,∴BD =CD.∵DE ⊥AB,DF ⊥AC,∴∠DEB =∠DFC =90°.又∵∠B =∠C,∴△DEB ≌△D FC(AAS).∴DE =DF.又∵DE ⊥AB,DF ⊥AC,∴AD 平分∠BAC.13.证明:过D 作DE ⊥AB 于E ,DF ⊥AC 于F.在△BED 和△CFD 中,∠BED=∠CF D=90°,∠1=∠2,BD=CD,∴△BED ≌△CFD(AAS).∴DE=DF.又DE ⊥AB ,DF ⊥AC ,∴AD 平分∠BAC.。

123角的平分线的性质(原卷版)-2021-2022学年八年级数学上册精选新题汇编(人教版)

123角的平分线的性质(原卷版)-2021-2022学年八年级数学上册精选新题汇编(人教版)

20212022学年人教版数学八年级上册精选新题汇编第十二章《全等三角形》12.3 角的平分线的性质一.选择题1.(2021春•雁塔区校级期末)如图,在△ABC中,∠ACB=90°,AD平分∠BAC交BC于点D,BC=10cm,点D到AB的距离为4cm,则BD的长为()A.4cm B.5cm C.6cm D.8cm2.(2021春•漳州期末)如图,在△ABC中,AD是∠BAC的平分线,DE⊥AC,垂足为E,若AB=12,DE =4,则△ABD的面积是()A.4B.12C.24D.483.(2021春•隆回县期末)如图,△ABC中,AD平分∠BAC,AD交BC于点D,DE⊥AB,垂足为E,若DE=3,AC=4,则△ADC的面积为()A.3B.4C.5D.64.(2021春•禅城区期末)如图,OD平分∠AOB,DE⊥AO于点E,DE=4.2,F是射线OB上的任一点,则DF的长度不可能是()A.3.9B.4.2C.4.7D.5.845.(2021•青海)如图,在四边形ABCD中,∠A=90°,AD=3,BC=5,对角线BD平分∠ABC,则△BCD 的面积为()A.8B.7.5C.15D.无法确定6.(2021春•毕节市期末)如图,已知△ABC中,∠C=90o,AC=BC,AD平分∠CAB,交BC于点D,DE ⊥AB于点E,且AB=10,则△DEB的周长为()A.9B.5C.10D.不能确定7.(2021春•成都月考)如图,三条公路两两相交,现计划修建一个油库,计划使得该油库到三条公路的距离相等,则油库的可选位置有()处.A.1B.2C.3D.48.(2021春•铁岭月考)下列作图语句错误的个数是()①以点O为圆心作弧;②延长射线OM到点A;③延长线段AB到C,使BC=AB;④过三点A,B,C作直线.A.1个B.2个C.3个D.4个9.(2021•雁塔区校级模拟)如图,在△ABC中,∠ACB=90°,AD平分∠BAC,BC=10cm,点D到AB 的距离为4cm,则DB=()A.6cm B.8cm C.5cm D.4cm10.(2021春•武侯区校级期中)如图,AD是△ABC的角平分线,DF⊥AB于点F,且DE=DG,S△ADG=24,S△AED=18,则△DEF的面积为()A.2B.3C.4D.6二.填空题11.(2021春•西安期末)如图,△ABC中,∠CAB和∠CBA的角平分线交于点P,连接PC,若△P AB、△PBC、△P AC的面积分别为S1、S2、S3,则S1S2+S3.(填“>”“<”或“=”)12.(2021春•郫都区期末)如图,OP平分∠AOB,PC⊥OA,点D是OB上的动点,若PC=1cm,则PD 的长的最小值为.13.(2021春•绥宁县期末)如图,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于点D,且AB=4,BD=5,则点D到BC的距离是.14.(2021春•历下区期末)如图,OC是∠AOB的角平分线,点P是OC上一点,PM⊥OB于点M,点N 是射线OA上的一个动点,若PM=6,则PN的最小值为.15.(2021春•渝中区校级期末)如图所示,AD是△ABC的平分线,DF⊥AB于点F,DE=DG,若S△DEF=2,S△ADG=9:则△ADE的面积为.16.(2021春•南山区期末)如图,在△ABC中,∠C=90°,AD平分∠BAC,过点D作DE⊥AB于E,若BE=3,△BDE的周长为11,则BC=.17.(2021•福建)如图,AD是△ABC的角平分线.若∠B=90°,BD=,则点D到AC的距离是.18.(2021春•株洲期末)如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是.19.(2021•长沙)如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E,若BC=4,DE=1.6,则BD的长为.20.(2020秋•肥西县期末)如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D.若BC=3,且BD:DC=5:4,AB=5,则△ABD的面积是.三.解答题21.(2021春•江岸区期末)已知直线EF与直线AB、CD分别交于E、F两点,∠AEF和∠CFE的角平分线交于点P,且∠AEP+∠CFP=90°.(1)求证:AB∥CD;(2)如图2,∠PEF和∠PFM的角平分线交于点Q,求∠Q的度数;(3)如图3,若∠AEP:∠CFP=2:1,延长线段EP得射线EP1,延长线段FP得射线FP2,射线EP1绕点E以每秒15°的速度逆时针旋转360°后停止,射线FP2绕点F以每秒3°的速度顺时针旋转180°以后停止.设它们同时旋转t秒,问t为多少时,射线EP1∥FP2,直接写出t的值t=秒.22.(2021春•侯马市期末)如图,△ABE中,∠E=90°,AC是∠BAE的角平分线.(1)若∠B=40°,求∠BAC的度数;(2)若D是BC的中点,△ADC的面积为16,AE=8,求BC的长.23.(2020秋•云南期末)如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC 面积是152cm2,AB=20cm,AC=18cm,求DE的长.24.(2021•章丘区模拟)如图,BD平分∠ABC交AC于点D,DE⊥AB于E,DF⊥BC于F,AB=6,BC=8,若S△ABC=28,求DE的长.25.(2020秋•肇州县期末)如图,在△ABC中,AD是∠BAC的角平分线,DE⊥AB,DF⊥AC,D是BC的中点,证明:∠B=∠C.26.(2020秋•大安市期末)如图,已知点D、E、F分别是△ABC的三边上的点,CE=BF,且△DCE的面积与△DBF的面积相等.求证:AD平分∠BAC.27.(2020秋•长春期末)教材呈现:如图是华师版八年级上册数学教材第96页的部分内容.定理证明:请根据教材中的分析,结合图①,写出“角平分线的性质定理”完整的证明过程.定理应用:如图②,△ABC的周长是12,BO、CO分别平分∠ABC和∠ACB,OD⊥BC于点D,若OD=3,则△ABC的面积为.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
点D,且OD=2,求△ABC的
O
面积。

B D
C
7、如图Rt△ABC中,∠C=90 AC=BC,AD B 是∠BAC的平分线,DE⊥AB于E, 求证:△DBE的周长等于AB长
D C E
A
作业 课本第51页 4. 5
求证:CF=EB
F C D O E B
2、如图,∠1=∠2、AE⊥OB
1 2
于E,BD⊥OA于D,AE与BD相
交于C, 求证:AC=BC
A
D
C
E
B
E
3、如图,AB=AC,BD=CD, DE⊥AB于E, DF⊥AC于F, 求证:DE=DF
C
B
A
D
F B
4、如图,在∠BAC的平分线
E
M
上任取一点D,在AB,AC上各取
回顾:
1、任画一个锐角∠ABC,求作它角平分线.
2、角平分线的性质是什么?
角的平分线的性质:
角平分线上的点到角的两边的距离相等.
D
A C
几何语言:
∵OC平分∠AOB
O
P E
PD⊥OA,PE⊥OB,
∴PD=PE
B
A
1、如图,△ABC中∠C=90°, AD是∠BAC的平分线,DE⊥AB
于E,F在AC上,BD=DF,
一点E,F,若DE=DF,且AE>AF
D
A
求证: ∠AED=∠DFC
F
N
C
5、如图,在∠BAC的平分线上 任取一点D,在AB,AC上各取一点
M
B E D
E,F,若∠AED+∠AFD=180°,且
AE>AF
A F
N
C
求证:DE=DF
6、如图,已知△ABC的周长 为10,OB、OC分别平分
A
∠ABC、∠ACB、OD⊥BC于
相关文档
最新文档