2014届绵阳二诊文科数学
绵阳高2014级第三学期数学(文)试题及答案
![绵阳高2014级第三学期数学(文)试题及答案](https://img.taocdn.com/s3/m/d6ddfb9365ce0508763213cd.png)
秘密★启用前【考试时间:2016年1月21日8:00~9:40】高中2014级第三学期末教学质量测试数学(文科)第Ⅰ卷(选择题,共48分)一、选择题:本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.直线01=+x的倾斜角为A.0ºB.90ºC.120ºD.180º2.抛物线y2=4x的焦点坐标是A.F(-1,0)B.F(0,1)C.F(0,-1)D.F(1,0)3.下列说法中正确的是A.抛掷一枚硬币10次,一定有5次正面朝上B.明天本地降水概率为70%,是指本地下雨的面积是CD.若A与B为互斥事件,则P(A)+P(B)≤14.读右边的程序,若输入6,则运行的结果是A.13B.14C.37D.655.给出下列三个问题:①从高二(3)班60名学生中,抽出8名学生去参加座谈;②将全年级学号尾数为5的同学的作业收来检查;③甲乙丙三个车间生产了同一种产品分别为60件,40件,30件,为了解产品质量,取一个容量为13的样本调查.则以上问题适宜采用的抽样方法分别是A.系统抽样、分层抽样、简单随机抽样B.简单随机抽样、分层抽样、系统抽样C.简单随机抽样、系统抽样、分层抽样D.系统抽样、简单随机抽样、分层抽样6.如图,茎叶图记录了某校“春季运动会”甲、乙两名运动员的成绩,他们的平均成绩均为82分,则x+y=A.4B.5 C.6 D.77.从统计学的角度看,下列关于变量间的关系说法正确的是A.人体的脂肪含量与年龄之间没有相关关系B.吸烟量与健康水平正相关C.汽车的重量和汽车每消耗1L汽油所行驶的平均路程负相关D.气温与热饮销售好不好正相关8.如图,半径为R的圆形纸板上有一内接正六边形图案,将一颗豆子随机地扔到平放的纸板上,假设豆子不落在线上,则豆子落在正六边形区域的概率是A.π23B.π233C.π43D.π4339.在等比数列{a n}中,4623aaa=⋅,11=a,数列{b n}是等差数列,4711abab==,,则b4=A.2 B.3 C.4 D.510.设双曲线12222=-byax(a>0,b>0)的一条渐近线与抛物线y=x2+1只有一个公共点,则双曲线的离心率为A.45B.5C.25D.511.椭圆1222=+yx与直线y=x+m相交于A,B两点,当m变化时,|AB|的最大值为A.362B.334C.32D.3412.已知在圆x2+y2=5x内过点(25,23)有若干条弦,若它们的长刚好构成等差数列,且公差11,1510d⎛⎫∈ ⎪⎝⎭,则这些弦最多有A.4条B.5条C.15条D.16条第Ⅱ卷(非选择题,共52分)二、填空题:本大题共4小题,每小题3分,共12分.把答案直接填在答题卷中的横线上.13.在空间直角坐标系中,点A(1,1,1)到坐标原点的距离是 .14.执行下边的程序框图,则输出的s的值是.5672y5x48467091甲乙15.某公司对其50名员工的工作积极性和参加团队活动的态度进行了调查,统计数据得到如下2×2列联表:独立性检验界值表其中,))()()(()(2d b c a d c b a bc ad n K ++++-=)则至少有__________的把握可以认为员工的工作积极性与参加团队活动的态度有关.(请用百分数表示) 16.已知椭圆12222=+bya x (a >b >0)与直线x +y =1相交于M 、N 两点,过线段MN 的中点P 和原点的直线斜率为41,则ab=_________. 三、解答题:本大题共4小题,每小题10分,共40分.解答应写出文字说明、证明过程或演算步骤.17.某中学举行电脑知识竞赛,对40名参赛选手考试成绩(单位:分)进行统计,发现他们的成绩分布在)6050[,,)7060[,,)8070[,,)9080[,,)10090[,,并得到如右图所示的频率分布直方图. (1)求频率分布直方图中a 的值; (2)求参赛选手成绩的众数和中位数;(3)从成绩在)7050[,的学生中任选2人,求这两人分别来自第一组、第二组的概率.18.已知等比数列{a n }的前3项依次分别为a ,a +1,a +3.(1)求a n ;(2)在等差数列{b n }中,2211a b a b ==,,n T 为数列{b n }的前n 项和,求nT T T T 1111321+⋅⋅⋅+++.19.点P (0,4)关于x -y +3=0的对称点Q 在直线l 上,且l 与直线3x -y +2=0平行.(1)求直线l 的方程;(2)求圆心在直线l 上,与x 轴相切,且被直线x -2y =0截得的弦长为4的圆的方程.20.动圆M 与圆C 1:81)1(22=++y x 外切,同时与圆C 2:0841222=-+-y x x 内切,不垂直于x 轴的直线l 交动圆圆心M 的轨迹C 于A ,B 两点. (1)求点M 的轨迹C 的方程;(2)若C 与x 轴正半轴交于A 2,以AB 为直径的圆过点A 2,试问直线l 是否过定点,若是,请求出该定点坐标;若不是,请说明理由.高中2014级第三学期末教学质量测试数学(文科)参考答案及评分意见一、选择题(每小题4分,共48分)1~5 BDDAC 6~10 ACBAD 11~12 BC 二、填空题(每小题3分,共12分)13.314.3115.99.9% 16.21三、解答题(每小题10分,共40分)17.解:(1)由图知组距为10,则110)972(=⨯++++a a a a a , ························ 2分解得a =0.005. ···················································································· 3分 (2)众数为29080+=85; 设中位数点x 0距70的距离为x ,则10a +10×2a +x ×7a =(10-x )a +10×9a +10a ,解得x =10,∴ 中位数为80. ················································································· 5分(3)成绩在)6050[,中的学生有40×0.005×10=2人,设为A 1,A 2, 在)7060[,中的学生有40×0.005×2×10=4人,设为B 1,B 2,B 3,B 4. ·········· 6分则抽取的基本事件有A 1A 2,A 1B 1,A 1B 2,A 1B 3,A 1B 4,A 2B 1,A 2B 2,A 2B 3,A 2B 4,B 1B 2,B 1B 3,B 1A 4,B 2B 3,B 2B 4,B 3B 4共n =15个,设事件A 为“两人分别来自第一组,第二组”,其事件有A 1B 1,A 1B 2,A 1B 3,A 1B 4,A 2B 1,A 2B 2,A 2B 3,A 2B 4共m =8个,∴ 158)(==n m A P . ··········································································· 10分18.解:(1)由已知可得(a +1)2=a (a +3),解得a =1.∴ a 1=1,a 2=2,a 3=4.∴ 数列{a n }的首项为1,公比为2,∴ a n =11221--=⨯n n . ·········································································· 5分 (2)解:由(1)得b 1=11=a ,b 2=2, ∴ 数列{b n }的公差d =b 2-b 1=1, ∴ 2)1(12)1(1+=⨯-+⨯=n n n n n T n . ······················································ 7分 ∴n T T T T 1111321+⋅⋅⋅+++=)1(2432322212++⋅⋅⋅+⨯+⨯+⨯n n=)11141313121211(2+-+⋅⋅⋅+-+-+-n n =12+n n. ························································ 10分19.解:(1)设点Q (m ,n )为点(0,4)关于03=+-y x 的对称点.则⎪⎪⎩⎪⎪⎨⎧=++--=-,,0324214n m mn ············································································ 2分解得⎩⎨⎧==,,31n m 即Q (1,3). ······································································· 3分由l 与直线023=+-y x 平行,得l 的斜率为3. ········································ 4分 又Q (1,3)在直线l 上,所以直线l 的方程为)1(33-=-x y ,即03=-y x .···································· 5分 (2)设圆的方程为)0()()(222>=-+-r r b y a x .由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧=+-==-,,,2222)52(03r b a r b b a ································································ 7分解得⎪⎩⎪⎨⎧=-=-=,,,331r b a 或⎪⎩⎪⎨⎧===,,,331r b a . ······································································· 9分∴ 圆的方程为9)3()1(22=+++y x 或9)3()1(22=-+-y x . ······················ 10分 20.解:(1)设动圆M 的半径为r ,圆C 2:849)1(22=+-y x . ························· 1分 由题意得|MC 1|=42+r , |MC 2|=427-r , ················································· 2分 即2||22||||2121=>=+C C MC MC .∴ 点M 的轨迹是以C 1(-1,0),C 2(1,0)为焦点的椭圆,且长半轴长a =22,焦半距2c =2,从而短半轴长b =22c a -=1,于是点M 的轨迹方程为1222=+y x . ······················································· 4分 (2)设直线l 的方程为m kx y +=,)()(2211y x B y x A ,,,,由⎪⎩⎪⎨⎧=++=,,1222y x m kx y 得0224)21(222=-+++m mkx x k , ∴ 0)22)(21(4)4(222>-+-=∆m k km ,22212212122214k m x x k mk x x +-=⋅+-=+,. ················································ 6分∵ m kx y m kx y +=+=2211,,∴ 2212122121)())((m x x km x x k m kx m kx y y +++=++=⋅222222142122m k mk mk k m k ++-++-=22212k k m +-=, ·············································· 7分 因为点2A (2,0)在以AB 为直径的圆周上,∴ 22BA AA ⊥,即022=⋅BA AA . ·························································· 8分 又)2()2(222112y x BA y x AA --=--=,,,, ∴ 0)2()2(2211=--⋅--y x y x ,,,即0)(22)2()2(2121212121=+++-=⋅+-⋅-y y x x x x y y x x ,代入得 0212212221422222222=+-++-++⋅+kk m k m k mk 化简得0324222=++m mk k ,即0)32)(2(=++m k m k , ∴02=+m k 或032=+m k . ··························································· 9分当m k =-2时,)2(:-=x k y l 过定点)02(,,此为椭圆右顶点,不满足; 当m k 32=-时,)32(32:-=-=x k k kx y l ,过定点)032(,.∴ 直线l 过定点)032(,.…………………………………………………………10分。
2024届绵阳二诊试题及答案、数学文
![2024届绵阳二诊试题及答案、数学文](https://img.taocdn.com/s3/m/0e67581603768e9951e79b89680203d8ce2f6a9e.png)
绵阳市高中2021级第二次诊断性考试文科数学参考答案及评分意见一、选择题:本大题共12小题,每小题5分,共60分.BACDC BACAD AB二、填空题:本大题共4小题,每小题5分,共20分.13.721014.12-15.1216.0y ±=三、解答题:本大题共6小题,共70分.(2)111111()(23)(25)22325n n a a n n n n +==-++++,······························8分∴1111111(...)257792325n T n n =-+-++-++·················································10分11=104101025n n n =-++.······················································12分18.解:(1)22()()()()()n ad bc K a b c d a c b d -=++++,···········································2分2100(20203030)=4>3.84160405050⨯-⨯=⨯⨯⨯······················································4分故有95%的把握认为喜欢旅游与性别有关;········································5分(2)按分层抽样喜欢旅游的男性为2人,记为A 1,A 2,女性为3人,记为B 1,B 2,B 3,····························································································6分随机抽取2人的事件有:(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,B 1),(A 2,B 2),(A 2,B 3),(B 1,B 2),(B 1,B 3),(B 2,B 3),····················8分不同性别的事件为:(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,B 1),(A 2,B 2),(A 2,B 3),···10分故两人是不同性别的概率63==105P .···············································12分19.解:(1)∵43sin BA BC bc A⋅=⋅ ∴4cos 3sin a B b A ⋅=⋅··································································2分∴4sin cos 3sin sin A B B A =,····················································3分∴4tan 3B =,则3cos 5B =,·························································4分又∵424BA BC c ⋅= ,∴4cos 24ac B c =,·····································································5分∴cos 6a B =,∴65610cos 3a B ==⨯=;·····························································6分(2)由余弦定理:2222cos b a c ac B =+-⋅,··································7分∴2210012b c c =+-,·································································8分又48a b c ++=,则38b c +=,····················································9分∴22(38)10012c c c -=+-,·······················································10分∴21c =,·················································································11分∴114102184225ABC S ac sinB =⋅=⨯⨯⨯=.··································12分20.解:(1)设),(11y x A ,),(22y x B ,联立⎩⎨⎧=-=py x kx y 222,消y 整理得:0422=+-p pkx x ,························2分所以:pk x x 221=+,p x x 421=,·················································3分22112211)22()22(22x p kx x p kx x p y x p y k k FB F A +-++-=-+-=212121))(22(2x x x x p x kx ++-=041()22(22=-=+-=p k p k k ,·············································4分∴4=p ,即抛物线E 的方程为:y x 82=;·····································5分(2)由(1)可知:k x x 821=+,1621=x x ···················································6分且064642>-=∆k ,所以:12>k ,184)(||22122121-=-+=-k x x x x x x ,······································7分直线FA 的方程为:2211+-=x x y y ,所以:11114424kx x y x x M -=-=,····8分同理:22224424kx x y x x N -=-=,所以|4444|||||2211kx x kx x x x MN N M ---=-=······················································9分|)(416)(16|2122121x x k x x k x x ++--=···································································10分1618|1|18222≥-=--=k k k ······································································11分解得:125-<≤-k 或251≤<k .·············································12分21.解:(1)2cos )3(2x a x x f '-+=,····················································1分∴2cos (0035)f '=+=,···································································2分切线斜率为5,················································································3分曲线()f x 在x =0处的切线方程为y =5x .···············································4分(2)解法一:①当[]0,x π∈时'()2cos 23f x x ax =-+,····················5分若0a <时,2cos 23x ax >-恒成立,若0a ≥时'()f x 在[]0,π上单调递减.················································6分∴''()()2230f x f a ππ≥=--+≥,则102a π≤≤,···························7分综上:12a π≤;··············································································8分②当,02x π⎡⎤∈-⎢⎥⎣⎦时若0a ≥时,2cos 23x ax >-恒成立,∴'()0f x ≥恒成立,········································································9分若0a <时'()f x 在,02π⎡⎤-⎢⎥⎣⎦上单调递增.∴''()()302f x f a ππ≥-=+≥,则30a π-≤<,······························10分∴3a π≥-,··················································································11分综上所述:312a ππ-≤≤.·································································12分解法二:由(1)可知23=5>0(0)f +'=,∴()f x 在[]2ππ-,上必是单调递增函数,···············································5分令2cos )3(2x a x x f '-+=,则()302≥a f ππ'-=+,()120f a ππ'=-≥,··············································6分∴312a ππ-≤为()f x 在[]2ππ-上是增函数成立的必要条件,···················7分令2cos )3(2x a x x f '-+=,下证:当312a ππ-≤≤时,()≥0f x '对任意[]2,x ππ∈-恒成立,···················8分①当102a π≤≤时,[]2x ππ∈-,则11[42,ax ∈-,12[1]2,ax -∈-,∴2cos 2312(0)≥≥x ax a f x x -+-'=;·····················································9分②当30a π-<≤时,[0],x π∈,20ax ->,很显然()2cos 30f x x '>+>;[0]2,x π∈-,()f x '为增函数,()()302≥≥≥f x f a ππ''-+;·························10分∴当312a ππ-≤≤时,()≥0g x 对任意[]2,x ππ∈-恒成立,·························11分∴312a ππ-≤,使得()f x 在[]2,ππ-上是单调函数.·····························12分22.(1)由题意:11)2()32222=+-=+t t y x (,且0132≥-=t x ,··················2分∴曲线C 的普通方程为:)0(14922≥=+x y x ·························································3分∴曲线C 的极坐标方程为14sin 9cos 2222=+θρθρ(22πθπ≤≤-),即θρ22sin 5436+=(22πθπ≤≤-);··················································5分(2)由(1)得θρ22sin 5436+=,因为且OA ⊥OB ,不妨设)(1θρ,A ,)2(2πθρ+,B ,·····························6分∴θρ221sin 5436+=,······································································7分∴2222)2(sin 5436πθρ++==θ2cos 5436+,··········································8分∴2211OB OA +222211ρρ+=····················································································9分36cos 54sin 5422θθ+++=3658+=3613=.·········································10分23.(1)证明:因为))(11(22by ax b a ++2222y aby b ax x +++=a by b ax y x 22222⋅++≥222)(2y x xy y x +=++=,············3分∴()ba by ax y x 11222+≤++,·······································································4分当且仅当aby b ax 22=,即by ax =时,等号成立;·····································5分(2)函数245144)(22++++=x x x x x f 245)12(22+++=x x x []222)1(23)1(+⋅+⋅++=x x x x ·························7分根据(1)的结论,[]652131)1(23)1(222=+≤+⋅+⋅++x x x x ,··································8分当且仅当)1(23+=x x ,即2=x 时,等号成立.·····································9分∴函数)0(245144)(22>++++=x x x x x x f 的最大值为65,此时x =2.·····················10分。
四川省绵阳市高中2014-2015学年高二第二学期期末教学质量测试数学文试题
![四川省绵阳市高中2014-2015学年高二第二学期期末教学质量测试数学文试题](https://img.taocdn.com/s3/m/ba4f5bf2524de518964b7da0.png)
四川省绵阳市高中2013级第二学年末教学质量测试数学(文科)第I 卷(选择题,共40分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、复数1z ,2z 互为共轭复数,若112z i =-,则12z z -=( )A .4i -B .4iC .0D .2 2、()f x '是定义在R 上的函数()f x 的导函数,0R x ∈,设命题:P ()00f x '=;命题Q :0x x =是函数()f x 的极值点,则P 是Q 成立的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 3、不等式1101x ->-的解集是( ) A .()2,+∞ B .(),1-∞ C .()1,2 D .()(),12,-∞+∞4、设x ,R y ∈,若0x y ->,则下列不等式中正确的是( ) A .11x y< B .11x y > C .22x y < D .22x y >5、以下命题正确的个数是( )①命题“R x ∀∈,sin 0x >”的否定是“R x ∃∈,sin 0x ≤”.②命题“若2120x x +-=,则4x =”的逆否命题为“若4x ≠,则2120x x +-≠”. ③若p q ∧为假命题,则p 、q 均为假命题.A .0个B .1个C .2个D .3个6、设曲线12x y e ax =+在点()0,1处的切线与直线210x y +-=垂直,则实数a =( )A .3B .2C .1D .0 7、已知函数()32f x ax bx c =++,其导函数()f x '的图象如图,则函数()f x 的极小值为( )A .cB .a b c ++C .84a b c ++D .32a b +8、若实数x ,y 满足22002x y x y -+<⎧⎪>⎨⎪<⎩,则1y x -的取值范围为( )A .()(),12,-∞-+∞B .()(),10,2-∞-C .()()1,00,2-D .()1,2-9、设0a >,1b >,若2a b +=,且不等式24181m m a b +>+-恒成立,则m 的取值范围是( )A .9m >或1m <- B .1m >或9m <- C .91m -<< D .19m -<< 10、若函数()cos f x kx x x =+在区间0,2π⎛⎫⎪⎝⎭上单调递增,则k 的最小值是( )A .1B .1-C .2π-D .2π 第II 卷(非选择题,共60分)二、填空题(本大题共5小题,每小题4分,共20分.) 11、已知R b ∈,若()()12bi i +-为纯虚数,则1bi += .12、若曲线ln y ax x =-在()1,a 处的切线平行于x 轴,则实数a = . 13、若点()2,3A 与点()01,y B 位于直线:l 250x y -+=的两侧,则0y 的取值范围是 .14、函数()24f x x x =++-的最小值为 .15、函数()3123f x x x =-+,()3x g x m =-,若对[]11,5x ∀∈-,[]20,2x ∃∈,()()12f x g x ≥,则实数m 的最小值是 .三、解答题(本大题共4小题,共40分.解答应写出文字说明、证明过程或演算步骤.)16、(本小题满分10分)已知命题:p对于a ⎡∈-⎣,不等式1m -≤立,命题:q 不等式20x mx m ++<有解,若p q ∨为真,且p q ∧为假,求实数m 的取值范围.17、(本小题满分10分)已知某公司生产一种零件的年固定成本是3万元,每生产1千件,须另投入2万元,设该公司年内共生产该零件x 千件并全部销售完,每1千件的销售收入为()R x 万元,且()()()225.601030R 133125010x x x x xx ⎧-<≤⎪⎪=⎨⎪->⎪⎩. ()1写出年利润()W x (万元)关于年产量x (千件)的函数解析式;()2当年产量为多少千件时,该公司在这种零件的生产中所获利润最大?(注:年利润=年销售收入-年总成本)18、(本小题满分10分)设函数()321262a f x ax x ⎛⎫=+- ⎪⎝⎭,()ln g x m x =,其中0a ≠.()1若函数()y g x =的图象恒过定点P ,且点P 在函数()y f x =的图象上,求函数()y f x =在点P 处的切线方程;()2当4m =时,设()()()F x f x g x '=-(其中()f x '是()f x 的导函数),试讨论()F x 的单调性.19、(本小题满分10分)已知()ln f x mx x =-(0x e <≤),()ln xg x x=,其中e 是自然对数的底数,R m ∈.()1当1m =时,求函数()f x 的单调区间和极值;()2求证:当1m =时,()()11f x g x e >+-;()3是否存在实数m ,使()f x 的最小值是2?若存在,求出m 的值;若不存在,请说明理由.绵阳市高2013级第二学年末考试数学(文科)参考答案及评分意见一、选择题:每小题4分,共40分.1.A 2.B 3.D 4.D 5.C 6.B 7.C 8.A 9.C 10.D 二、填空题:每小题4分,共20分.11.512.113.(3,+∞)14.615.14三、解答题:共40分.16.解:∵ [2a ∈-,∴∈[2,3].∵ 对于[2a ∈-,不等式|1|m -恒成立,可得|1|m -≤2,∴ p :-1≤m ≤3. ……………………………………………………………………2分 又命题q :x 2+mx +m <0有解,∴ Δ=m 2-4m >0,解得 m <0或m >4. ………………………………………………4分 ∵ p ∨q 为真,且p ∧q 为假,∴ p 与q 必有一真一假. ……………………………………………………………5分当p 真q 假时,有⎩⎨⎧≤≤≤≤-,,4031m m 即0≤m ≤3;…………………………………………7分当p 假q 真时,有1340m m m m <->⎧⎨><⎩或,或,即m <-1或m >4.………………………………9分综上,实数m 的取值范围是(1)-∞-,∪[0,3] ∪(4)+∞,.……………………10分 17.解:(1)当0<x ≤10时,W (x )=xR (x )-(3+2x )=3306.33--x x . 当x >10时,W (x )= xR (x )-(3+2x )=x x21250130--,∴ 33.63(010)30()12501302(10)x x x W x x x x ⎧--<≤⎪⎪=⎨⎪-->⎪⎩,.…………………………………………………3分 (2)①当0<x ≤10时,由()W x '=23.610x -=0,得x =6,又当x ∈(6,10)时,()W x '<0,即W (x )在(6,10)上是减函数, 当x ∈(0,6)时,()W x '>0,即W (x )在(0,6)上是增函数,∴ 当x =6时,W (x )max = W (6) =4.11330666.33=--⨯. ②当x >10,W =)21250(130********x x x x +-=--≤130-2x x21250⨯=30, 当且仅当x x21250=时,即x =25时,W (x )max =30, 由①②知,当x =25千件时,W 取最大值30万元.………………………………10分 18.解:(1)P 点为(1,0),又点P 在y =f (x )的图象上,所以0=2261-+aa ,解得a =3, ∴ 232121)(x x x f -=. 于是x x x f -='223)(, ∴ y =f (x )在点P 处的切线的斜率为k =21)1(='f . ∴ y =f (x )在点P 处的切线方程为210x y --=. …………………………………4分(2)当m =4时,x x a ax x x f x F ln 4)4(21ln 4)()(2--+=-'=,(x >0), ∴ 24(4)4(1)(4)()(4)ax a x x ax F x ax a x x x+--+-'=+--==.当a <0时,因为x >0,所以0)(<'x F ,所以F (x )在(0,+∞)上为减函数; 当a >0时,由0)(>'x F 得a x 4>,由0)(<'x F 得ax 40<<,∴ F (x )在(0,a 4)上为减函数,在(a4,+∞)上为增函数. 综上,当a <0时,F (x )在(0,+∞)上为减函数;当a >0时,F (x )在(0,a4)上为减函数,在(a4,+∞)上为增函数.……………………………………………………………10分 19.解:(1)∵ f (x )=x -ln x ,∴xx x x f 111)(-=-=',(0)x e <≤ 由()0f x '>得1<x <e ,由0)(<'x f 得0<x <1∴ ()f x 的单调递减区间为(01),,单调递增区间为(1,e ); ∴ ()f x 的极小值为(1)1f =.…………………………………………………………3分 (2)由(1)知()f x 的极小值为1,也就是()f x 在]0(e ,上的最小值为1, 令h (x )=1()1g x e +-=ln 11x x e +-,21ln ()xh x x-'=, 当0<x <e 时,0)(>'x h ,所以h (x )在]0(e ,上单调递增, ∴ h (x )max = h (e )=1111ee+-=. ∵ max ()()1h x h e ==与min ()(1)1f x f ==不同时取到,∴ ()()f x h x > 即1()()1f x g x e>+-.………………………………………………6分 (3)假设存在实数m ,使f (x )=mx -ln x (x ∈]0(e ,)有最小值2,11()mx f x m x x-'=-=. ①当m ≤0时,f (x )在]0(e ,上单调递减, ()f x min =f (e )=me -1=2,解得m =30e>,舍去.②当0<1m <e 时,因为f (x )在(0,1m)上单调递减,在1(]e m ,上单调递增,所以()f x min =f (1m)=1+ln m =2,解得m =e ,满足条件. ③当1m≥e 时,因为f (x )在]0(e ,上单调递减, 所以()f x min =f (e )=me -1=2,解得m =3e ,不满足1m≥e ,舍去.综上,存在实数m =e ,使得当x ∈]0(e ,时f (x )有最小值2.……………………10分。
四川省绵阳市2014届高三第三次诊断性考试_数学文试题
![四川省绵阳市2014届高三第三次诊断性考试_数学文试题](https://img.taocdn.com/s3/m/f55575956294dd88d1d26b00.png)
四川省绵阳市2014届高三第三次诊断性考试数学文试题本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
第I 卷1至2页,第II 卷3至4页。
满分150分。
考试时间120分钟。
注意事项:1. 答题前,考生务必将自己的姓名、考号用0.5毫米的黑色签字笔填写在答题卡上,并将条形码粘贴在答题卡的指定位置。
2. 选择题使用2B 铅笔填涂在答题卡对应题目标号的位置上,非选择题用0.5毫米的黑色签字笔书写在答题卡的对应框内,超出答题区域书写的答案无线;在草稿纸、试题卷上答题无效。
3. 考试结束后,将答题卡收回。
1. 已知集合{}1==x x M ,{}x x x N ==2,则=⋃N MA.{}1B.{}1,1-C.{}1,0D.{}1,0,1-2. 复数25-i 的共轭复数是 A.i +-2 B.i +2 C.i --2 D.i -23. 某设备零件的三视图如右图所示,则这个零件的表面积为 A.8 B.6 C.4 D.34. 已知命题a x R x p ≥∈∃sin ,:,下列a 的取值能使“p ⌝”命题是真命题的是A.2=aB.1=aC.0=aD.R a ∈ 5. 执行如右图所示的程序框图,如输入2=x ,则输出的值为 A.5 B.5log 8 C.9 D.9log 86. 点P 在边长为1的正方形ABCD 内运动,则动点P 到顶点A 的距离1<PA 的概率为A.41 B.21 C.4πD.π 7. 函数4ln )2()44ln()2()(2--+--=x x x x x f 的零点个数为 A.3 B.2 C.1 D.08. 已知函数)0(sin )(>w wx x f =的一段图像如图所示,△ABC 的顶点A 与坐标原点O 重 合,B 是)(x f 的图像上一个最低点,C 在x 轴上,若内角C B A ,,所对边长为c b a ,,, 且△ABC 的面积S 满足22212a c b S -+=,将)(x f 右移一个单位得到)(x g ,则)(x g 的表达式为 A.)2cos()(x x g π=B.)2cos()(x x g π-=C.)212sin()(+=x x gD.)212sin()(-=x x g9. 已知椭圆)0(1222>>n m ny m x =+的左顶点为A ,右焦点为F ,点B 在椭圆上.BC ⊥x 轴,点C 在x 轴正半轴上.如果△ABC 的角C B A ,,所对边分别为c b a ,,,其它的面积S 满足)(5222c a b S --=,则椭圆的离心率为A.41 B.51 C.22 D.4210. 设R c b a ∈,,,且2=++c b a ,12222=++c b a ,则c 的最大值和最小值的差为 A.2B.310C.316D.32011. 为了参加全市的中学生创新知识竞赛,绵阳一中举行选拔赛,共有2000名学生参加.为 了了解成绩情况,从中抽取了50名学生成绩(得分均为整数,满分100分)进行统计请 你根据如下表所示未完成的频率分布表,估计该校成绩超过80分的人数为______. 12. 设y x ,满足约束条件⎩⎨⎧≤-≤-≤≤0131y x x则y x z -=2的最大值为________. 13. 已知幂函数)(x f y =的图像经过点)22,21(,则=+)5(lg )2(lg f f _________. 14. 已知b a ,是两个单位向量,且kb a b ka -=+3,若b a ,的夹角为60°则实数=k ___. 15. 对非负实数m “四舍五入”到个位的值记为m .如048.0=,164.0=,1495.1=, ........,若3)23(2=+-x x ,则=x ________.16.(本小题满分12分)已知n S 是等比数列{}n a 的前n 项和,693,,S S S 成等差数列. (Ⅰ)求数列{}n a 的公比q ; (Ⅱ)证明:582,,a a a 成等差数列.17.(本小题满分12分)绵阳市农科所研究出一种新的棉花品种,为监测长势状况.从甲、乙两块试验田中各抽取了10株棉花苗,量出它们的株高如下(单位:厘米):甲 37 21 31 20 29 19 32 23 25 33 乙 10 30 47 27 46 14 26 10 44 46(Ⅰ)画出两组数据的茎叶图,并根据茎叶图对甲、乙两块试验田中棉花棉的株高进行比较,写出两个统计结论;(Ⅱ)从甲、乙两块试验田的棉花苗株高在[23,29]中抽3株,求至少各有1株分别属于甲、乙两块试验田的概率.18.(本小题满分12分)如图,在平面直角坐标系xOy 中,点),(),,(2211y x B y x A 在单位平面上,∠xOA=α, ∠AOB =π4,且α∈(π6,π2).(Ⅰ)若cos (α+π3)147-=,求1x 的值; (Ⅱ)过点A,B 分别做x 轴的垂线,垂足为C 、D ,记△AOC 的面积为S 1,△BOD 的面积为S 2.设f (α)=S 1+S 2,求函数f (α)的最大值.19.(本小题满分12分)如图,在多面体ABCDEF 中,底面ABCD 是梯形,且满足AD=DC=CB =a AB =21在直角梯形ACEF 中,︒=∠90,21//ECA AC EF ,已知二面角E-AC-B 是直二面角.(Ⅰ)求证:AF BC ⊥;(Ⅱ)求多面体ABCDEF 的体积. ★20.(本小题满分13分) 已知函数,221ln )(2x ax x x f --=其中0,≠∈a R a . (Ⅰ)若))1(,1(f 是)(x f 的一个极值点,求a 的值;(Ⅱ)若函数)(x f 的图像上任意一点处切线的斜率1-≥k 恒成立,求实数a 的最大值; (III )试着讨论)(x f 的单调性.★21.(本小题满分14分)已知圆E的圆心在x轴上,且与y轴切于原点.过抛物线y2=2px(p>0)焦点F作垂直于x轴的直线l分别交圆和抛物线于A、B两点.已知l截圆所得的弦长为3,且FA32 .FB(Ⅰ)求圆和抛物线的标准方程;(Ⅱ)若P在抛物线运动,M、N在y轴上,且⊙E的切线PM(其中B为切点)且PN⊙E与有一个公共点,求△PMN面积S的最小值.绵阳市高2011级第三次诊断性考试数学(文科)参考答案及评分意见一、选择题:每小题5分,共50分.1.D 2.C 3.B 4.A 5.D 6.C 7.B 8.A 9.B 10.C提示:第10题:由a +b +c =2,有a +b =2-c .由a 2+b 2+c 2=12知,(a +b )2-2ab +c 2=12,代入可得(2-c )2-2ab +c 2=12,整理得ab =c 2-2c -4.于是a ,b 可以看成是关于x 的方程x 2-(2-c )x + c 2-2c -4=0的两根,∴Δ=(2-c )2-4(c 2-2c -4)≥0,解得-2≤c ≤103,于是最大值与最小值之差为163. 二、填空题:每小题5分,共25分.11.88012.313.1214.1 15.1或2三、解答题:共75分.16.解:(Ⅰ)由S 3,S 9,S 6成等差数列,可得2 S 9=S 3+S 6.当q =1时,即得1111836a a a ≠+,不成立.…………………………………………3分当1q ≠时,即得9361112(1)(1)(1)111a q a q a q q q q---=+---,整理得:63210q q --=,即3232()10q q --=,解得:1q =(舍去),或2q =-7分 (Ⅱ)证明:由(Ⅰ)知3612q q +=,∴ 4325111(1)a a a q a q a q q +=+=+671122a q q a q =⋅=, ∵ 78122a a q =,∴ 2582a a a +=,即a 2,a 8,a 5成等差数列. ……………………………………12分 17.解:(Ⅰ)画出的茎叶图如右所示.根据茎叶图可得统计结论如下:结论一:甲试验田棉花苗的平均珠高度小于乙试验田棉花苗的平均珠高.结论二:甲试验田棉花苗比乙试验田棉花苗长得整齐. ………………………………6分(Ⅱ)甲试验田中棉花苗株高在[23,29]共有3株,分别记为A ,B ,C , 乙试验田中棉花苗株高在[23,29]共有2株,分别记为a ,b , 从甲,乙两块试验田中棉花苗株高在[23,29]中抽3株基本事件为:ABC ,Aab ,Bab ,Cab ,ABa ,ACa ,BCa ,ABb ,ACb ,BCb ,共10个. ……8分 其中,甲,乙两块试验田中棉花苗至少各有1株的基本事件为:Aab ,Bab ,Cab ,ABa ,ACa ,BCa ,ABb ,ACb ,BCb ,共9个, ……………10分∴ 910P =.……………………………………………………………………………12分 18.解:(Ⅰ)由三角函数的定义有12cos cos()3x x παα==+,, ……………………2分∵ cos()()31462πππαα+=-∈,,, ∴sin()314πα+=, ………………………………………………………………4分 ∴ 1cos cos ()cos()cos sin()sin 333333x ππππππαααα⎡⎤==+-=+++⎢⎥⎣⎦,∴1x =. …………………………………………………………………………6分 (Ⅱ)∵ 1sin y α=,则11111cos sin sin 224S x y ααα===.5()()62326πππππαα∈+∈由,,得,,∴2221112cos()sin()sin(2)223343S x y πππααα=-=-++=-+, ………………8分12112()sin 2sin(2)44331sin 222cos 2)82)46f S S παααααααπα∴=+=-+==-=-, 5()2()62666πππππαα∈-∈由,,可得,,262ππα-=于是当,即max ()3f παα=,12分 19.(Ⅰ)证明:取AB 的中点G ,连结CG .由底面ABCD 是梯形,知DC //AG .又∵ DC =21AB =AG=a , ∴ 四边形ADCG 是平行四边形,得AD=CG=a ,∴ CG =12AB . ∴ AC ⊥BC .又∵ 二面角E -AC -B 是直二面角,即平面ACEF ⊥平面ABCD , ∴ BC ⊥平面ACEF .∴ BC ⊥AF .……………………………………………………………………………6分(Ⅱ)解:连结DG 交AC 于H ,连结FH . ∵ 平面ACEF ⊥平面ABCD , 由(Ⅰ)知BC ⊥面ACEF ,DH //BC , ∴ DH ⊥面ACEF .即BC 、DH 分别是四棱锥B -ACEF 、D -ACEF 的高.在Rt △ACB 中,AC =,EF a . 由EF 错误!未指定书签。
2014年四川省成都市高考数学二诊答案(文科)
![2014年四川省成都市高考数学二诊答案(文科)](https://img.taocdn.com/s3/m/949b5e09227916888486d756.png)
2014年四川省成都市高考数学二诊试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.2.(5分)(2014•成都二模)设复数z=3+i(i为虚数单位)在复平面中对应点A,将OA绕原点O逆时针旋转90°的坐标,得到向量的坐标,则∴,将,,则,即,解得:或∴3.(5分)(2014•成都二模)执行如图的程序框图,若输入的x值为7,则输出的x的值为().4.(5分)(2014•成都二模)在平面直角坐标系xOy中,P为不等式所表示的平面区域上一动点,D.,解得,即,7.(5分)(2014•成都二模)已知实数4,m,1构成一个等比数列,则圆锥曲线+y2=1的离心率为().C或D.或3时,圆锥曲线是椭圆,时,圆锥曲线是双曲线.8.(5分)(2014•安徽模拟)已知P是圆(x﹣1)2+y2=1上异于坐标原点O的任意一点,直线OP的倾斜角为θ,.C D.<(9.(5分)(2014•成都二模)已知过定点(2,0)的直线与抛物线x2=y相交于A(x1,y1),B(x2,y2)两点.若2.==10.(5分)(2014•北海模拟)已知定义在R上的奇函数f(x),当x>0时,f(x)=则关2t=t==(=(t=对应二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)(2014•成都二模)甲、乙两组各有三名同学,他们在一次测验中的成绩的茎叶图如图所示,如果分别从甲、乙两组中各随机挑选一名同学,则这两名同学成绩相同的概率是.,则共有故答案为:12.(5分)(2014•成都二模)如图所示的正三角形是一个圆锥的俯视图,则这个圆锥的侧面积为2π.13.(5分)(2014•安徽模拟)已知定义在(0,+∞)上的函数f(x)=3x,若f(a+b)=9,则f(ab)的最大值为3.14.(5分)(2014•成都二模)如图,在平行四边形ABCD中,BH⊥CD于点H,BH交AC于点E,已知||=3,=15,则=λ,则λ=.|=2===的值.||=3∵∴=•﹣)=||||=3|∴||=5,∴||=2====,故答案为:15.(5分)(2014•成都二模)已知单位向量,的夹角为θ(0<θ<π,且θ≠),若平面向量满足=x+y(x,y∈R),则有序实数对(x,y)称为向量在“仿射”坐标系Oxy(O为坐标原点)下的“仿射”坐标,记作=(x,y)θ.有下列命题:①已知=(2,﹣1)θ,=(1,2)θ,则=0;②已知=,=,其中xy≠0,则且仅当x=y时,向量的夹角取得最小值;③已知=(x1,y1)θ,=(x2,y2)θ,则﹣=(x1﹣x2,y1﹣y2)θ;④已知=(1,0)θ,,则线段AB的长度为2sin.其中真命题有③④(写出所有真命题的序号)==,则2﹣+2②,==若,=)∴﹣④∴||22sin三、解答题:本大题共6小题,共75分.16.(12分)(2014•成都二模)设函数f(x)=sin(ωx+)+2sin2ωx(ω>0),已知函数f(x)的图象的相邻对称轴的距离为π.(Ⅰ)求函数f(x)的解析式;(Ⅱ)若△ABC的内角为A,B,C所对的边分别为a,b,c(其中b<c),且f(A)=,△ABC面积为S=6,a=2,求b,c的值.)x==)的解析式=,得A=,S=6a=2∴2=b17.(12分)(2014•成都二模)已知等差数列{a n}的公差为2,其前n项和为S n=pn2+2n,n∈N*.(1)求p值及a n;(2)在等比数列{b n}中,b3=a1,b4=a2+4,若等比数列{b n}的前n项和为T n.求证:数列{T n+}为等比数列.q=,=∴}18.(12分)(2014•成都二模)节能灯的质量通过其正常使用时间来衡量,使用时间越长,表明治疗越好.若使用时间小于4千小时的产品为不合格产品;使用时间在4千小时到6千小时(不含6千小时)的产品为合格品;使用时间大于或等于6千小时的产品为优质品.某节能灯生产厂家为了解同一类型号的某批次产品的质量情况,随机抽取了部分产品作为样本,得到实验结果的频率直方图如图所示.若上述实验结果中使用时间落入各组的频率作为相应的概率.(1)若该批次有产品2000件,试估计该批次的不合格品,合格品,优质品分别有多少件?(2)已知该节能灯生产厂家对使用时间小于6千小时的节能灯实习“三包”.通过多年统计可知:该型号节能灯每件产品的利润y(单位:元)与使用时间t(单位:千小时)的关系式为y=.现从大量的该型号节能灯中随机抽取一件,其利润记为X(单位:元),求X≥20的概率.,,相加,即得,=19.(12分)(2014•成都二模)已知三棱柱ABC﹣A1B1C1中,∠BCA=90°,AA1=AC=BC=2,A1在底面ABC上的射影恰为AC的中点D.(Ⅰ)求证:AC1⊥BA1;(Ⅱ)求四棱锥A1﹣BCC1B1的体积.和)∵=×××=D=××=2∴﹣=2=20.(13分)(2014•成都二模)已知函数f(x)=(x2﹣2ax+a2)lnx,a∈R,(1)当a=0时,求函数f(x)的单调区间;(2)当a=﹣1时,令F(x)=+x﹣lnx,证明:F(x)≥﹣e﹣2,其中e为自然对数的底数;(3)若函数f(x)不存在极值点,求实数a的取值范围.)2>,,,+x()的单调递增区间为()(﹣2;﹣或21.(14分)(2014•上海模拟)在平面直角坐标系xOy中,已知M(0,),N(0,﹣),平面上一动点P满足|PM|+|PN|=4,记点P的轨迹为P.(1)求轨迹P的方程;(2)设过点E(0,1)且不垂直于坐标轴的直线l1:y=kx+b1与轨迹P相交于A,B两点,若y轴上存在一点Q,使得直线QA,QB关于y轴对称,求出点Q的坐标;(3)是否存在不过点E(0,1),且不垂直坐标轴的直线l,它与轨迹P及圆E:x2+(y﹣1)2=9从左到右依次交于C,D,F,G四点,且满足?若存在,求出当△OCG的面积S取得最小值时k2的值;若不存在,请说明理由.2,由,得(k,由2c=的方程为.+4,∴,轴对称,∴∵∴(,解得=,=d=,S=|CG|×∴构造函数∴,或,∴)在(当,即参与本试卷答题和审题的老师有:maths;翔宇老师;wsj1012;zlzhan;清风慕竹;sllwyn;caoqz;742048;sxs123;刘长柏;837357642(排名不分先后)菁优网2014年8月19日。
2014年绵阳二诊文数
![2014年绵阳二诊文数](https://img.taocdn.com/s3/m/f7c07e11fad6195f312ba646.png)
绵阳市高中2014届第二次诊断性考试数 学(文科)第Ⅰ卷(选择题,共50分)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合S ={1,2},集合T ={x |(x -1)(x -3)=0},那么S ∪T = A .∅B .{1}C .{1,2}D .{1,2,3}2.复数(1+i)2(1-i)= A .-2-2iB .2+2iC .-2+2iD .2-2i 3.执行右图的程序,若输入的实数x =4,则输出结果为A .4B .3C .2D .144.下列函数中定义域为R ,且是奇函数的是 A .()f x =x 2+x B .()f x =tan x C .()f x =x +sin xD .()f x =1lg1xx-+ 5.已知l ,m ,n 是三条不同的直线,α,β是不同的平面,则下列条件中能推出α⊥β的是 A .l ⊂α,m ⊂β,且l ⊥mB .l ⊂α,m ⊂β,n ⊂β,且l ⊥m ,l ⊥nC .m ⊂α,n ⊂β,m //n ,且l ⊥mD .l ⊂α,l //m ,且m ⊥β6.抛物线28x y =的焦点到双曲线2213y x -=的渐近线的距离是 A .1 B .2 CD .7.一个机器零件的三视图如图所示,其中俯视图是一个半圆内切于边长为2的正方形,则该机器零件的体积为 A .8+3πB .8+23πC .8+83πD .8+163π俯视图正视图侧视图8.已知O 是坐标原点,点(11)A -,,若点()M x y ,为平面区域220240330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,,上的一个动点,则|AM |的最小值是 ABCD9.已知△ABC 的外接圆的圆心为O ,半径为1,若345OA OB OC ++=0,则△AOC 的面积为 A .25B . 12C .310D .6510.若存在x 使不等式x x me-m 的取值范围为 A .1()e-∞-, B .1()e e-,C .(0)-∞,D .(0)+∞,第Ⅱ卷(非选择题,共100分)二.填空题:本大题共5小题,每小题5分,共25分. 11.tan300º=______.12.若直线l 1:x +(1+k )y =2-k 与l 2:kx +2y +8=0平行,则k 的值是_____. 13.右图的茎叶图是甲、乙两人在4次模拟测试中的成绩,其中一个数字被污损,则甲的平均成绩不超过乙的平均成绩的概率为 . 14.已知A 是抛物线y 2=4x 上一点,F 是抛物线的焦点,直线F A 交抛物线的准线于点B (点B 在x 轴上方),若|AB |=2|AF |,则点A 的坐标为________.15.P 是以F 1,F 2为焦点的椭圆22221(0)x y a b a b+=>>上的任意一点,若∠PF 1F 2=α,∠PF 2F 1=β,且cos αsin(α+β)=35,则此椭圆的离心率为 . 三.解答题:本大题共6小题,共75分.解答应写出文字说明.证明过程或演算步骤. 16.(本题满分12分)已知向量a =(sin 2cos )x x ,,b =(2sin sin )x x ,,设函数()f x =a ⋅b . (Ⅰ)求()f x 的单调递增区间; (Ⅱ)若将()f x 的图象向左平移6π个单位,得到函数()g x 的图象,求函数()g x 在区间7[]1212ππ,上的最大值和最小值. 17.(本题满分12分)已知首项为12的等比数列{a n }是递减数列,其前n 项和为S n ,且S 1+a 1,S 2+a 2,S 3+a 3成等差数列. (Ⅰ)求数列{a n }的通项公式;甲 乙 8 85 39 9 21 ● 5(Ⅱ)已知2log n n n b a a =⋅,求数列{b n }的前n 项和n T . 18.(本题满分12分)据《中国新闻网》10月21日报道,全国很多省市将英语考试作为高考改革的重点,一时间“英语考试该如何改”引起广泛关注.为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了3600人调查(若所选择的在校学生的人数低于被调查人群总数的80%,则认为本次调查“失效”),就“是否取消英语听力”的问题,调查统计的结果如下表:(Ⅰ)现用分层抽样的方法在所有参与调查的人中抽取360人进行深入访谈,问应在持“无所谓”态度的人中抽取多少人?(Ⅱ)已知y ≥657,z ≥55,求本次调查“失效”的概率. 19.(本题满分12分)如图,四边形ABCD 为矩形,四边形ADEF 为梯形,AD //FE ,∠AFE =60º,且平面ABCD ⊥平面ADEF ,AF =FE =AB =12AD =2,点G 为AC 的中点.(Ⅰ)求证:EG //平面ABF ; (Ⅱ)求三棱锥B -AEG 的体积;(Ⅲ)试判断平面BAE 与平面DCE 是否垂直?若垂直,请证明;若不垂直,请说明理由. 20.(本题满分13分)已知圆心为C 的圆,满足下列条件:圆心C 位于x 轴正半轴上,与直线3x -4y +7=0相切,且被y 轴截得的弦长为,圆C 的面积小于13. (Ⅰ)求圆C 的标准方程;(Ⅱ)设过点M (0,3)的直线l 与圆C 交于不同的两点A ,B ,以OA ,OB 为邻边作平行四边形OADB .是否存在这样的直线l ,使得直线OD 与MC 恰好平行?如果存在,求出l 的方程;如果不存在,请说明理由. 21.(本题满分14分)设函数2()2(4)ln f x ax a x x =+++.(Ⅰ)若()f x 在x =41处的切线与直线4x +y =0平行,求a 的值; (Ⅱ)讨论函数()f x 的单调区间;(Ⅲ)若函数()y f x =的图象与x 轴交于A ,B 两点,线段AB 中点的横坐标为0x ,证明0()0f x '<.绵阳市高2011级第二次诊断性考试数学(文)参考解答及评分标准一、选择题:本大题共10小题,每小题5分,共50分.DBCCD AABAC二、填空题:本大题共5小题,每小题5分,共25分.11.12.113.0.314.(3-,或(31,332)15三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.解:(Ⅰ) f (x )=a •b =2sin 2x +2sin x cos x =22cos 12x-⨯+sin2xx -4π)+1, ……………………………… 3分由-2π+2k π≤2x -4π≤2π+2k π,k ∈Z ,得-8π+k π≤x ≤83π+k π,k ∈Z , ∴ f (x )的单调递增区间是[-8π+k π,83π+k π]( k ∈Z ). …………………… 6分(II )由题意g (x x +6π)-4πx+12π)+1,………… 9分由12π≤x ≤127π得4π≤2x+12π≤45π,∴ 0≤g (x ),即 g (x ),g (x )的最小值为0. … 12分 17.解:(I )设等比数列{a n }的公比为q ,由题知a 1= 12,又∵ S 1+a 1,S 2+a 2,S 3+a 3成等差数列, ∴ 2(S 2+a 2)=S 1+a 1+S 3+a 3,变形得S 2-S 1+2a 2=a 1+S 3-S 2+a 3,即得3a 2=a 1+2a 3,∴ 32 q =12 +q 2,解得q =1或q=12 , …………………………………………4分 又由{a n }为递减数列,于是q=12,∴ a n =a 11-n q =( 12 )n . …………………………………………………………6分(Ⅱ)由于b n =a n log 2a n =-n ∙( 12)n ,∴ ()211111[1+2++1]2222n nn T n n -=-⋅⋅-⋅+⋅()()(),于是()211111[1++1]2222n n n T n n +=-⋅-⋅+⋅()()(),两式相减得:2111111[()++()]22222n n n T n +=--⋅+()111[1()]122=1212n n n +⋅--+⋅-(), 整理得222n nn T +=-. ………………………………………………………12分 18.解:(I )∵ 抽到持“应该保留”态度的人的概率为0.05,∴3600120x+=0.05,解得x =60. ………………………………………………2分 ∴ 持“无所谓”态度的人数共有3600-2100-120-600-60=720. ……… 4分∴ 应在“无所谓”态度抽取720×3603600 =72人. ………………………… 6分(Ⅱ)∵ y +z =720,y ≥657,z ≥55,故满足条件的(y ,z )有:(657,63),(658,62),(659,61),(660,60),(661,59),(662,58),(663,57),(664,56),(665,55)共9种. …………………………… 8分 记本次调查“失效”为事件A ,若调查失效,则2100+120+y <3600×0.8,解得y <660.∴ 事件A 包含:(657,63),(658,62),(659,61)共3种.∴ P (A )= 39 =13 . …………………………………………………………… 12分19.(I )证明:取AB 中点M ,连FM ,GM .∵ G 为对角线AC 的中点,∴ GM ∥AD ,且GM =12 AD ,又∵ FE ∥12 AD ,∴ GM ∥FE 且GM =FE .∴四边形GMFE 为平行四边形,即EG ∥FM . 又∵ EG ⊄平面ABF ,FM ⊂平面ABF ,∴ EG ∥平面ABF .…………………………………………………………… 4分 (Ⅱ)解:作EN ⊥AD ,垂足为N ,由平面ABCD ⊥平面AFED ,面ABCD ∩面AFED =AD , 得EN ⊥平面ABCD ,即EN 为三棱锥E -ABG 的高. ∵ 在△AEF 中,AF =FE ,∠AFE =60º, ∴ △AEF 是正三角形. ∴ ∠AEF =60º,由EF //AD 知∠EAD =60º, ∴ EN =AE ∙sin60º∴三棱锥B-AEG的体积为11122332B AEG E ABG ABGV V S EN--∆==⋅=⨯⨯⨯=.……………………8分(Ⅲ)解:平面BAE⊥平面DCE.证明如下:∵四边形ABCD为矩形,且平面ABCD⊥平面AFED,∴CD⊥平面AFED,∴CD⊥AE.∵四边形AFED为梯形,FE∥AD,且60AFE∠=°,∴=120FAD∠°.又在△AED中,EA=2,AD=4,60EAD∠=°,由余弦定理,得ED=.∴EA2+ED2=AD2,∴ED⊥AE.又∵ED∩CD=D,∴AE⊥平面DCE,又AE⊂面BAE,∴平面BAE⊥平面DCE.…………………………………………………12分20.解:(I)设圆C:(x-a)2+y2=R2(a>0),由题意知RR=⎩,,解得a=1 或a=138,………………………………………3分又∵S=πR2<13,∴a=1,∴圆C的标准方程为:(x-1)2+y2=4.……………………………………6分(Ⅱ)当斜率不存在时,直线l为:x=0不满足题意.当斜率存在时,设直线l:y=kx+3,A(x1,y1),B(x2,y2),又∵l与圆C相交于不同的两点,联立223(1)4y kxx y=+⎧⎨-+=⎩,,消去y得:(1+k2)x2+(6k-2)x+6=0,…………………9分∴Δ=(6k-2)2-24(1+k2)=36k2-6k-5>0,解得1k<或1k>.x1+x2=2621kk--+,y1+ y2=k(x1+x2)+6=2261kk++,121211()()22OD OA OB x x y y=+=++,,(13)MC=-,,假设OD∥MC,则12123()x x y y-+=+,∴ 226226311k k k k -+⨯=++,解得3(1(1)4k =∉-∞⋃++∞,,假设不成立. ∴ 不存在这样的直线l . ……………………………………………………13分 21.解:(I )由题知f (x )=2ax 2+(a +4)x +ln x 的定义域为(0,+∞),且x x a ax x f 1)4(4)(2+++='.又∵ f (x )的图象在x =14处的切线与直线4x +y =0平行,∴ 1()44f '=-,解得 a =-6.…………………………………………………………………… 4分(Ⅱ)xax x x x a ax x f )1)(14(1)4(4)(2++=+++=',由x >0,知xx 14+>0. ①当a ≥0时,对任意x >0,)(x f '>0, ∴ 此时函数f (x )的单调递增区间为(0,+∞).②当a <0时,令)(x f '=0,解得1x a=-,当10x a <<-时,)(x f '>0,当1x a>-时,)(x f '<0,此时,函数f (x )的单调递增区间为(0,a 1-),单调递减区间为(a1-,+∞).………………………………………………………………9分 (Ⅲ)不妨设A (1x ,0),B (2x ,0),且120x x <<,由(Ⅱ)知 0a <, 于是要证)(x f '<0成立,只需证:01x a >-即1212x x a+>-. ∵()21111()24ln 0f x ax a x x =+++=, ①()22222()24ln 0f x ax a x x =+++=, ②①-②得2212111222()()2(4)ln 2(4)ln 0f x f x ax a x x ax a x x -=+++--+-=, 即2212121212(22)4()ln ln 0a x x x x x x x x -+-+-+-=,∴ 22112211222214ln 4ln x x x x a x x x x +---=+--,故只需证2212112211222224ln 4ln x x x x x x x x x x ++-->+--,即证明()()221212121122()[4ln ln ]4242x x x x x x x x x x +-+-<+--,即证明12121222ln ln x x x x x x --<+,变形为11212222ln 1x xx x x x ⋅-<+,设12x t x =(01)t <<,令22()ln 1t g t t t -=-+, 则214()(1)g t t t '=-+22(1)(1)t t t -=+, 显然当t >0时,)(t g '≥0,当且仅当t =1时,)(t g '=0, ∴ g (t )在(0,+∞)上是增函数. 又∵ g (1)=0,∴ 当t ∈(0,1)时,g (t )<0总成立,命题得证.……………………………14分。
2017绵阳 二诊 文科数学试题+答案
![2017绵阳 二诊 文科数学试题+答案](https://img.taocdn.com/s3/m/665cf3eef61fb7360b4c65b2.png)
绵阳市高2014级第二次诊断性考试数学(文史类)参考解答及评分标准一、选择题:本大题共12小题,每小题5分,共60分. CABCA DBCDD CB二、填空题:本大题共4小题,每小题5分,共20分.13.1422=-y x 14.24 15.3216.25- 三、解答题:本大题共6小题,共70分.17.解 :(Ⅰ)设{a n }的公差为d ,则由题意可得 ⎪⎩⎪⎨⎧+=+++-=⨯+,,d a d a d a d a 453922331111……………………………………………………3分 解得a 1=-4,d =1, ……………………………………………………………5分 ∴ a n =-4+1×(n -1)=n -5. ……………………………………………………6分 (Ⅱ)T n =a 1+a 2+a 3+…+a n +n a a a 22221+⋅⋅⋅++ =2)54(-+-n n +)222(32121n +⋅⋅⋅++ ………………………………10分 =21)21(23212)9(--⋅+-n n n =16122)9(-+-n n n .……………………………………………………12分 18.解:(Ⅰ) ∵a c 2=, ∴ 由正弦定理有sin C =2sin A . …………………………………………2分 又C =2A ,即sin2A =2sin A ,于是2sin A cos A =2sin A , …………………………………………………4分 在△ABC 中,sin A ≠0,于是cos A =22, ∴ A =4π. ……………………………………………………………………6分 (Ⅱ)根据已知条件可设21+=+==n c n b n a ,,, n ∈N *. 由C =2A ,得sin C =sin2A =2sin A cos A ,∴ ac A C A 2sin 2sin cos ==. ……………………………………………………8分 由余弦定理得ac bc a c b 22222=-+, 代入a ,b ,c 可得 nn n n n n n 22)2)(1(2)2()1(222+=++-+++, ……………………………………………10分 解得n =4,∴ a =4,b =5,c =6,从而△ABC 的周长为15,即存在满足条件的△ABC ,其周长为15. ………………………………12分19.解:(Ⅰ)由已知有 1765179181176174170=++++=x , 6656870666462=++++=y , 2222)176179()176181()176174()176170()6668)(176179()6670)(176181()6664)(176174()6662)(176170(ˆ-+-+-+---+--+--+--=b =3727≈0.73, 于是17673.066ˆˆ⨯-=-=x b y a=-62.48, ∴ 48.6273.0ˆˆˆ-=+=x a x b y.………………………………………………10分 (Ⅱ) x =185,代入回归方程得48.6218573.0ˆ-⨯=y≈72.57, 即可预测M 队的平均得分为72.57. ………………………………………12分20.解:(Ⅰ) 点A (0,2)在椭圆C 上,于是122=b ,即b 2=2. 设椭圆C 的焦半距为c ,则由题意有23=a c ,即2243a c =, 又a 2=b 2+c 2,代入解得a 2=8, ∴ 椭圆C 的标准方程为12822=+y x . ……………………………………4分 (Ⅱ)设直线PQ :1+=ty x ,)()(2211y x Q y x P ,,,.联立直线与椭圆方程: ⎪⎩⎪⎨⎧+==+,,112822ty x y x 消去x 得:072)4(22=-++ty y t , 显然Δ=4t 2+28(t 2+4)>0,∴ y 1+y 2=422+-t t ,y 1y 2=472+-t . ………………………………………7分 于是482)(22121+=++=+t y y t x x , 故P ,Q 的中点)444(22+-+t t t D ,. ………………………………………8分 设)1(0y N ,-, 由NQ NP =,则1-=⋅PQ ND k k , 即t t t ty -=+--++4414220,整理得4320++=t t t y ,得)431(2++-t t t N ,. 又△NPQ 是等边三角形, ∴ PQ ND 23=,即2243PQ ND =, 即]474)42)[(1(43)44()144(22222222+-⋅-+-+=+++++t t t t t t t t , 整理得22222)4(8424)144(++=++t t t , 即222222)4(8424)48(++=++t t t t ,解得 102=t ,10±=t , …………………………………………………11分∴ 直线l 的方程是110+±=y x . ………………………………………12分 21.解:(Ⅰ)∵ xe ax xf -=2)(在)0(∞+,上有两个零点, ∴ 方程2x e a x =有两个根,等价于y =a 与2xe y x=有两个交点. 令2)(xe x h x =,则3)2()(x x e x h x -=',……………………………………………3分 于是x ∈(0,2)时,0)(<'x h ,即h (x )在(0,2)上单调递减; 当x ∈(2,+∞)时,0)(>'x h ,即h (x )在(2,+∞)上单调递增,∴ h (x )mi n =h (2)=42e , ∴ a 的取值范围为(42e ,+∞). ……………………………………………5分 (Ⅱ)∵)(2121x x x x <,是x e ax xf -=2)(在)0(∞+,上的零点, ∴ 121x e ax =,222x e ax =, 两式相除可得12212)(x x e x x -=. ………………………………………………7分 令)1(12>=t t x x , ① 上式变为122x x e t -=,即t t x x ln 2ln 212==-, ② 联立①②解得:1ln 21-=t t x ,1ln 22-=t t t x . …………………………………9分 要证明421>+x x , 即证明41ln 21ln 2>-+-t t t t t , 即证明22ln ln ->+t t t t . 令22ln ln )(+-+=t t t t t h ,则1ln 1)(-+='t tt h . …………………………10分 令0111)(1ln 1)(22>-=-='-+=tt t t t t t t ϕϕ,, 故)(t ϕ在)1(∞+,上单调递增,故0)1()(=>ϕϕt , 即0)(>'t h , 故)(t h 在)1(∞+,上单调递增,故0)1()(=>h t h ,即22ln ln ->+t t t t ,得证. ………………………………………………12分22.解:(Ⅰ)消去参数得1322=+y x . …………………………………………5分(Ⅱ)将直线l 的方程化为普通方程为0323=++y x .设Q (ααsin cos 3,),则M (ααsin 211cos 23+,), ∴ 233)4sin(26232sin 233cos 23++=+++=παααd ,∴ 最小值是4636-.………………………………………………………10分 23.解:(Ⅰ) 当t =2时,21)(-+-=x x x f . 若x ≤1,则x x f 23)(-=,于是由2)(>x f 解得x <21.综合得x <21. 若1<x <2,则1)(=x f ,显然2)(>x f 不成立 . 若x ≥2,则32)(-=x x f ,于是由2)(>x f 解得x >25.综合得x >25. ∴ 不等式2)(>x f 的解集为{x | x <21,或x >25}. …………………………5分 (Ⅱ))(x f ≥x a +等价于a ≤f (x )-x .令g (x )= f (x )-x . 当-1≤x ≤1时,g (x )=1+t -3x ,显然g (x )min =g (1)=t -2. 当1<x <t 时,g (x )=t -1-x ,此时g (x )>g (1)=t -2. 当t ≤x ≤3时,g (x )=x -t -1,g (x )min =g (1)=t -2. ∴ 当x ∈[1,3]时,g (x )min = t -2.又∵ t ∈[1,2],∴ g (x )min ≤-1,即a ≤-1.综上,a 的取值范围是a ≤-1. …………………………………。
2014-2015年四川省绵阳市高二上学期期末数学试卷(文科)与解析
![2014-2015年四川省绵阳市高二上学期期末数学试卷(文科)与解析](https://img.taocdn.com/s3/m/cab6ac3a6bd97f192279e9e4.png)
2014-2015学年四川省绵阳市高二(上)期末数学试卷(文科)一、选择题(本大题共10小题,每小题4分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(4分)刘徽是我国古代最伟大的数学家之一,他的()是极限思想的开始,他计算体积的思想是积分学的萌芽.A.割圆术B.勾股定理C.大衍求一术D.辗转相除法2.(4分)在极坐标系中,极坐标方程ρ=4sinθ表示的曲线是()A.圆B.直线C.椭圆D.抛物线3.(4分)直线l的方程为x+3y﹣1=0,则直线l的倾斜角为()A.30°B.60°C.120°D.150°4.(4分)下列关于统计的说法正确的是()A.一组数据只能有一个众数B.一组数据可以有两个中位数C.一组数据的方差一定是非负数D.一组数据中的每一个数据都加上同一非零常数后,平均数不会发生变化5.(4分)若封闭曲线x2+y2+2mx+2=0的面积不小于4π,则实数m的取值范围为()A.(﹣∞,﹣]∪[,+∞)B.[﹣,]C.(﹣∞,﹣2]∪[2,+∞)D.[﹣2,2]6.(4分)有5件产品,其中3件正品,2件次品,从中任取2件,则互斥而不对立的两个事件是()A.至少有1件次品与至多有1件正品B.至少有1件次品与都是正品C.至少有1件次品与至少有1件正品D.恰有1件次品与恰有2件正品7.(4分)已知抛物线C:y2=2x上一点P到y轴的距离为3,则P到焦点的距离为()A.2B.C.D.38.(4分)某市要对辖区内的中学教师的年龄进行调查,现从中随机抽出200名教师,已知抽到的教师年龄都在[25,50)岁之间,根据调查结果得出教师的年龄情况残缺的频率分布直方图如图所示,利用这个残缺的频率分布直方图估计该市辖区内中学教师的年龄的中位数大约是()A.37.1岁B.38.1岁C.38.7岁D.43.1岁9.(4分)执行如图的程序框图,任意输入一次x(x∈Z,﹣2≤x≤2)与y(y ∈Z,﹣2≤y≤2),则能输出数对(x,y)的概率为()A.B.C.D.10.(4分)椭圆=1(a>b>0)的左、右焦点分别为F1、F2,若以F1F2为直径的圆与椭圆有交点,则椭圆离心率e的取值范围为()A.[,1)B.[,1)C.(0,]D.(0,]二、填空题(本大题共5小题,每小题4分,共20分.)11.(4分)设A(3,2,1),B(1,0,5),则AB的中点M的坐标为.12.(4分)质检部门对某超市甲、乙、丙三种商品进行分层抽样检查,已知甲、乙、丙三种商品的数量比为3:5:2,已知从全部300件乙商品中抽取了20件,则甲商品应抽取件.13.(4分)如图算法最后输出的结果是.14.(4分)王明接到快递公司电话,说他的包裹可能在11:30~12:30送到办公室,但王明按惯例离开办公室的时间是12:00~13:00之间,则他离开办公室前能得到包裹的概率是.15.(4分)已知圆C:x2+y2+4x﹣2y+3=0,点A的坐标是(﹣1,1),从圆C外一动点P(x,y)向该圆引一条切线,切点为M,若|PM|=|PA|,则|PM|的最小值是.三、解答题(本大题共4小题,每小题10分,共40分.解答应写出文字说明、证明过程或演算步骤.)16.(10分)直线l经过两直线2x﹣y+4=0与x﹣y+5=0的交点,且与直线l1:x+y ﹣6=0平行.(1)求直线l的方程;(2)若点P(a,1)到直线l的距离与直线l1到直线l的距离相等,求实数a的值.17.(10分)甲、乙两个竞赛队都参加了10场比赛,比赛得分情况记录如下(单位:分):甲队:57,41,51,40,49,39,52,43,45,53乙队:30,50,67,47,66,34,46,30,64,66(1)根据得分情况记录,请将茎叶图补充完整,并求乙队得分的中位数;(2)如果从甲、乙两队的10场得分中,各随机抽取一场不小于50分的得分,求甲的得分大于乙的得分的概率.18.(10分)已知等轴双曲线的顶点在x轴上,两顶点间的距离是4,右焦点为F.(1)求双曲线的标准方程和渐近线方程;(2)椭圆E的中心在原点O,右顶点与F点重合,上述双曲线中斜率大于0的渐近线交椭圆于A,B两点(A在第一象限),若AB⊥AF,试求椭圆E的离心率.19.(10分)已知线段AB的端点B的坐标为(4,﹣3),端点A在圆(x+4)2+(y﹣3)2=4上运动.(1)求线段AB的中点M的轨迹E的方程;(2)设(1)中所求的轨迹E分别交x轴正、负半轴于G、H点,交y轴正半轴于F点,过点F的直线l交曲线E于D点,且与x轴交于P点,直线FH与GD 交于点Q,O为坐标原点,求证:当P点异于点G时,为定值.2014-2015学年四川省绵阳市高二(上)期末数学试卷(文科)参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(4分)刘徽是我国古代最伟大的数学家之一,他的()是极限思想的开始,他计算体积的思想是积分学的萌芽.A.割圆术B.勾股定理C.大衍求一术D.辗转相除法【解答】解:刘徽是我国古代最伟大的数学家之一,他的“割圆术”是极限思想的开始,他计算体积的思想是积分学的萌芽.故选:A.2.(4分)在极坐标系中,极坐标方程ρ=4sinθ表示的曲线是()A.圆B.直线C.椭圆D.抛物线【解答】解:由ρ=4sinθ,得x2+y2=4y,∴x2+(y﹣2)2=4,它表示一个以(0,2)为圆心,以2为半径的圆,故选:A.3.(4分)直线l的方程为x+3y﹣1=0,则直线l的倾斜角为()A.30°B.60°C.120°D.150°【解答】解:由直线l的方程为x+3y﹣1=0,可得直线的斜率为k=﹣,设直线的倾斜角为α(0°≤α<180°),则tanα=,∴α=150°.故选:D.4.(4分)下列关于统计的说法正确的是()A.一组数据只能有一个众数B.一组数据可以有两个中位数C.一组数据的方差一定是非负数D.一组数据中的每一个数据都加上同一非零常数后,平均数不会发生变化【解答】解:一组数据可能有多个众数,A错误,一组数据只能有一个中位数,B错误,一组数据的方差一定是非负数,C正确,一组数据中的每一个数据都加上同一非零常数后,平均数发生变化,D错误,故选:C.5.(4分)若封闭曲线x2+y2+2mx+2=0的面积不小于4π,则实数m的取值范围为()A.(﹣∞,﹣]∪[,+∞)B.[﹣,]C.(﹣∞,﹣2]∪[2,+∞)D.[﹣2,2]【解答】解:圆的标准方程为(x+m)2+y2=m2﹣2,则圆的半径R=,(m2﹣2>0),若封闭曲线x2+y2+2mx+2=0的面积不小于4π,则πR2=π(m2﹣2)≥4π,即m2﹣2≥4,m2≥6,解得m≤﹣或m≥,故选:A.6.(4分)有5件产品,其中3件正品,2件次品,从中任取2件,则互斥而不对立的两个事件是()A.至少有1件次品与至多有1件正品B.至少有1件次品与都是正品C.至少有1件次品与至少有1件正品D.恰有1件次品与恰有2件正品【解答】解:A、至少有1件次品与至多有1件正品不互斥,它们都包括了“一件正品与一件次品”的情况,故不满足条件.B、至少有1件次品与都是正品是对立事件,故不满足条件.C、至少有1件次品与至少有1件正品不互斥,它们都包括了“一件正品与一件次品”的情况,故不满足条件.D、恰有1件次品与恰有2件正是互斥事件,但不是对立事件,因为除此之外还有“两件都是次品”的情况,故满足条件.故选:D.7.(4分)已知抛物线C:y2=2x上一点P到y轴的距离为3,则P到焦点的距离为()A.2B.C.D.3【解答】解:由题意得,抛物线y2=2x的准线方程为x=﹣,∵抛物线y2=2x上一点P到y轴的距离为3,∴P到抛物线的准线的距离为3+=,由抛物线的定义得,点P到抛物线的焦点F的距离为,故选:C.8.(4分)某市要对辖区内的中学教师的年龄进行调查,现从中随机抽出200名教师,已知抽到的教师年龄都在[25,50)岁之间,根据调查结果得出教师的年龄情况残缺的频率分布直方图如图所示,利用这个残缺的频率分布直方图估计该市辖区内中学教师的年龄的中位数大约是()A.37.1岁B.38.1岁C.38.7岁D.43.1岁【解答】解:根据频率和等于1,得;年龄在[30,35)岁之间的频率为1﹣(0.01+0.08+0.05+0.02)×5=0.2∵0.01×5+0.2=0.25<0.5,0.25+0.08×5=0.65>0.5,∴令0.25+0.08×x=0.5,解得x=3.125;∴该市辖区内中学教师的年龄的中位数大约35+3.125≈38.1岁.故选:B.9.(4分)执行如图的程序框图,任意输入一次x(x∈Z,﹣2≤x≤2)与y(y ∈Z,﹣2≤y≤2),则能输出数对(x,y)的概率为()A.B.C.D.【解答】解:本题是古典概型,由题意x∈Z,﹣2≤x≤2.x=﹣2,﹣1,0,﹣1,2;y∈Z,﹣2≤y≤2,y=﹣2,﹣1,0,1,2;所有的基本事件Ω={(x,y)|,x∈Z,y∈Z},共有25个实数对.设能输出数对(x,y)为事件A,则A={(x,y)|,x∈Z,y∈Z},有(﹣1,1),(﹣1,0),(﹣1,﹣1),(0,1),(0,0),(0,﹣1),(1,0),(1,1),(1,﹣1).共9个实数对.∴所求概率为:.故选:A.10.(4分)椭圆=1(a>b>0)的左、右焦点分别为F1、F2,若以F1F2为直径的圆与椭圆有交点,则椭圆离心率e的取值范围为()A.[,1)B.[,1)C.(0,]D.(0,]【解答】解:由题可知以F1F2为直径的圆的方程为:x2+y2=c2,将其代入椭圆方程,消去y可得:(a2﹣b2)x2+a2b2﹣a2c2=0,∵圆与椭圆有交点,∴△=0﹣4(a2﹣b2)(a2b2﹣a2c2)≥0,∴c2•a2•(a2﹣2c2)≤0,∴a2≤2c2,即e=≥,又椭圆斜率e<1,∴≤e<1,故选:B.二、填空题(本大题共5小题,每小题4分,共20分.)11.(4分)设A(3,2,1),B(1,0,5),则AB的中点M的坐标为(2,1,3).【解答】解:∵A(3,2,1),B(1,0,5),∴设AB中点M坐标为(x,y,z),可得x=(3+1)=2,y=(2+0)=1,z=(1+5)=3,即得M坐标为(2,1,3)故答案为:(2,1,3)12.(4分)质检部门对某超市甲、乙、丙三种商品进行分层抽样检查,已知甲、乙、丙三种商品的数量比为3:5:2,已知从全部300件乙商品中抽取了20件,则甲商品应抽取12件.【解答】解:设甲商品应抽取x,由分层抽样的定义得,解得x=12,故答案为:1213.(4分)如图算法最后输出的结果是18.【解答】解:模拟执行程序,可得i=1,S=2满足条件i<5,i=3,S=8满足条件i<5,i=5,S=18不满足条件i<5,退出循环,输出S的值为18.故答案为:18.14.(4分)王明接到快递公司电话,说他的包裹可能在11:30~12:30送到办公室,但王明按惯例离开办公室的时间是12:00~13:00之间,则他离开办公室前能得到包裹的概率是.【解答】解:设投递员人到达的时间为x,王明离开办公室的时间为y.(x,y)可以看成平面中的点试验的全部结果所构成的区域为Ω=(x,y|11.5≤x ≤12.5,12≤y≤13}是一个正方形区域,事件A表示王明离开办公室前能拿到文件,所构成的区域为A={(x,y)∈Ω|x ≤y},表示的区域的面积为1﹣=,又SΩ=1.事件A所这是一个几何概型,所以P(A)=.故答案为:.15.(4分)已知圆C:x2+y2+4x﹣2y+3=0,点A的坐标是(﹣1,1),从圆C外一动点P(x,y)向该圆引一条切线,切点为M,若|PM|=|PA|,则|PM|的最小值是.【解答】解:圆的标准方程为(x+2)2+(y﹣1)2=2,圆心C坐标为(﹣2,1),半径R=,AC=1,则A在圆C内,∵切线PM与半径CM垂直,∴|PM|2=|PC|2﹣|CM|2=|PA|2,∴(x+2)2+(y﹣1)2﹣2=(x+1)2+(y﹣1)2.∴x=.∴动点P的轨迹是直线x=.∴|PM|的最小值就是|PA|的最小值.而|PA|的最小值为A到直线x=的距离d=|+1|=,故答案为:三、解答题(本大题共4小题,每小题10分,共40分.解答应写出文字说明、证明过程或演算步骤.)16.(10分)直线l经过两直线2x﹣y+4=0与x﹣y+5=0的交点,且与直线l1:x+y ﹣6=0平行.(1)求直线l的方程;(2)若点P(a,1)到直线l的距离与直线l1到直线l的距离相等,求实数a的值.【解答】解:(1)由,解得.即两直线的交点为(1,6),∵直线l1:x+y﹣6=0的斜率为﹣1,∴直线l的斜率为﹣1,∴直线l的方程为y﹣6=﹣(x﹣1),即x+y﹣7=0;(2)由题意知,,整理得:|a﹣6|=1.解得:a=7或a=5.17.(10分)甲、乙两个竞赛队都参加了10场比赛,比赛得分情况记录如下(单位:分):甲队:57,41,51,40,49,39,52,43,45,53乙队:30,50,67,47,66,34,46,30,64,66(1)根据得分情况记录,请将茎叶图补充完整,并求乙队得分的中位数;(2)如果从甲、乙两队的10场得分中,各随机抽取一场不小于50分的得分,求甲的得分大于乙的得分的概率.【解答】解:(1)补全的茎叶图如图.乙队的中位数为(47+50)÷2=48.(2)甲队中得分不小于50(分)的有4场,乙队中得分不小于50(分)的有5场,∴各从中抽取一场进行比较,共有20种情况.其中,甲的得分大于乙的得分仅有取到乙的得分为50的情况,共4种情况.∴所求的概率为.18.(10分)已知等轴双曲线的顶点在x轴上,两顶点间的距离是4,右焦点为F.(1)求双曲线的标准方程和渐近线方程;(2)椭圆E的中心在原点O,右顶点与F点重合,上述双曲线中斜率大于0的渐近线交椭圆于A,B两点(A在第一象限),若AB⊥AF,试求椭圆E的离心率.【解答】解:(1)设双曲线的方程为=1(a>0),则2a=4,解得a=2,∴双曲线的方程为=1,渐近线方程为y=±x.(2)设椭圆的标准方程为=1(a>b>0),由(1)知F(2,0),于是a=2.设A(x0,y0),则x0=y0.①∵AB⊥AF,且AB的斜率为1,∴AF的斜率为﹣1,故=﹣1.②由①②解得A(,).代入椭圆方程有=1,解得b2=,∴c2=a2﹣b2=8﹣=,得c=,∴椭圆E的离心率为e==.19.(10分)已知线段AB的端点B的坐标为(4,﹣3),端点A在圆(x+4)2+(y﹣3)2=4上运动.(1)求线段AB的中点M的轨迹E的方程;(2)设(1)中所求的轨迹E分别交x轴正、负半轴于G、H点,交y轴正半轴于F点,过点F的直线l交曲线E于D点,且与x轴交于P点,直线FH与GD 交于点Q,O为坐标原点,求证:当P点异于点G时,为定值.【解答】解:(1)设M(x,y),A(x0,y0),则x=,y=,∴x0=2x﹣4,y0=2y+3,∵A点在圆(x+4)2+(y﹣3)2=4上运动,∴(2x﹣4+4)2+(2y+3﹣3)2=4,化简得x2+y2=1.即轨迹E的方程为x2+y2=1.(2)由(1)知G(1,0),H(﹣1,0),F(0,1),∴FH的方程为x﹣y+1=0.当l的斜率不存在时,GD∥FH,与题意不合.设l的斜率为k,则l的方程为y=kx+1,易得P(﹣,0).由消去y,整理得(1+k2)x2+2kx=0,解得x=0,或x=﹣.∴D的纵坐标为y=﹣•k+1=.∴GD的方程为y=(x﹣1),整理得y=(x﹣1).联立解得,即Q(﹣k,k+1).∴=1(定值).赠送—高中数学知识点【1.3.1】单调性与最大(小)值(1)函数的单调性②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减. (2)打“√”函数()(0)af x x a x=+>的图象与性质 ()f x 分别在(,]a -∞-、[,)a +∞上为增函数,分别在[,0)a -、]a 上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤; (2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法yxo②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.。
2014年四川省成都七中高考数学二模试卷(文科)(解析版)
![2014年四川省成都七中高考数学二模试卷(文科)(解析版)](https://img.taocdn.com/s3/m/2299ec8df524ccbff12184a8.png)
2014年四川省成都七中高考数学二模试卷(文科)一、选择题:本题共10小题,每小题5分,共50分.1.(5分)已知复数z=,则z的共轭复数是()A.1﹣i B.1+i C.i D.﹣i2.(5分)全集为实数集R,M={x|﹣2≤x≤2},N={x|x<1},则(∁R M)∩N=()A.{x|x<﹣2}B.{x|﹣2<x<1}C.{x|x<1}D.{x|﹣2≤x<1} 3.(5分)正项等比数列{a n}中,若log2(a2a98)=4,则a40a60等于()A.﹣16B.10C.16D.2564.(5分)某程序框图如图所示,现输入如下四个函数,则可以输出的函数是()A.f(x)=x2B.f(x)=C.f(x)=e x D.f(x)=sin x 5.(5分)已知F1,F2是椭圆的两个焦点,过F1且与椭圆长轴垂直的直线交椭圆于A,B 两点,若△ABF2是正三角形,则这个椭圆的离心率是()A.B.C.D.6.(5分)实数x,y满足不等式组,则的取值范围是()A.[﹣1,1)B.(﹣∞,0)C.[﹣1,+∞)D.[﹣1,0]7.(5分)已知m、n是不重合的直线,α、β是不重合的平面,有下列命题:①若m⊂α,n∥α,则m∥n;②若m∥α,m∥β,则α∥β;③若α∩β=n,m∥n,则m∥α且m∥β;④若m⊥α,m⊥β,则α∥β.其中真命题的个数是()A.0B.1C.2D.38.(5分)设a>0,b>0,则以下不等式中不恒成立的是()A.≥4B.a3+b3≥2ab2C.a2+b2+2≥2a+2b D.≥9.(5分)已知定义在R上的函数f(x)满足f(2﹣x)为奇函数,函数f(x+3)关于直线x=1对称,则函数f(x)的最小正周期为()A.4B.8C.12D.1610.(5分)在平面直角坐标系中,已知三点A(m,n),B(n,t),C(t,m),直线AC的斜率与倾斜角为钝角的直线AB的斜率之和为,而直线AB恰好经过抛物线x2=2p(y ﹣q),(p>0)的焦点F并且与抛物线交于P、Q两点(P在y轴左侧).则||=()A.9B.4C.D.二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卡的相应位置. 11.(5分)把命题“∃x0∈R,x02﹣2x0+1<0”的否定写在横线上.12.(5分)一个空间几何体的三视图如图所示,其正视图、侧视图、俯视图均为等腰直角三角形,且直角边长都为1,则这个几何体的体积是.13.(5分)已知函数f(x)=,g(x)=lnx,则函数y=f(x)﹣g(x)的零点个数为.14.(5分)过抛物线y2=4x的焦点作直线l,交抛物线于A,B两点,若线段AB中点的横坐标为3,则|AB|等于.15.(5分)O是面α上一定点,A、B、C是面α上△ABC的三个顶点,∠B,∠C分别是边AC,AB对应的角.以下命题正确的序号是①动点P满足,则△ABC的外心一定在满足条件的P点集合中.②动点P满足,则△ABC的内心一定在满足条件的P点集合中.③动点P满足,则△ABC的重心一定在满足条件的P点集合中.④动点P满足,则△ABC的垂心一定在满足条件的P点集合中.三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤.16.(12分)等比数列{a n}中,已知a1=2,a4=16(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若a3,a5分别为等差数列{b n}的第3项和第5项,试求数列{b n}的通项公式及前n项和S n.17.(12分)已知向量=(1+cosωx,1),=(1,a+sinωx)(ω为常数且ω>0),函数f(x)=在R上的最大值为2.(Ⅰ)求实数a的值;(Ⅱ)把函数y=f(x)的图象向右平移个单位,可得函数y=g(x)的图象,若y=g (x)在[0,]上为增函数,求ω取最大值时的单调增区间.18.(12分)如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°(Ⅰ)证明:AB⊥A1C;(Ⅱ)若AB=CB=2,A1C=,求三棱柱ABC﹣A1B1C1的体积.19.(12分)从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:(1)根据频数分布表计算苹果的重量在[90,95)的频率;(2)用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,其中重量在[80,85)的有几个?(3)在(2)中抽出的4个苹果中,任取2个,求重量在[80,85)和[95,100)中各有1个的概率.20.(13分)已知椭圆C:=1(a>b>0)的短轴长为2,离心率为.(1)求椭圆C的方程;(2)若过点M(2,0)的引斜率为k的直线与椭圆C相交于两点G、H,设P为椭圆C上一点,且满足(O为坐标原点),当时,求实数t的取值范围?21.(14分)已知函数f(x)=x﹣1+(a∈R,e为自然对数的底数).(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;(Ⅱ)求函数f(x)的极值;(Ⅲ)当a=1的值时,若直线l:y=kx﹣1与曲线y=f(x)没有公共点,求k的最大值.2014年四川省成都七中高考数学二模试卷(文科)参考答案与试题解析一、选择题:本题共10小题,每小题5分,共50分.1.(5分)已知复数z=,则z的共轭复数是()A.1﹣i B.1+i C.i D.﹣i【解答】解:复数z==所以它的共轭复数为:1﹣i故选:A.2.(5分)全集为实数集R,M={x|﹣2≤x≤2},N={x|x<1},则(∁R M)∩N=()A.{x|x<﹣2}B.{x|﹣2<x<1}C.{x|x<1}D.{x|﹣2≤x<1}【解答】解:∵M={x|﹣2≤x≤2},∴∁R M={x|x<﹣2,或x>2},又∵N={x|x<1},∴(∁R M)∩N={x|x<﹣2}故选:A.3.(5分)正项等比数列{a n}中,若log2(a2a98)=4,则a40a60等于()A.﹣16B.10C.16D.256【解答】解:∵log2(a2a98)=4,∴a2a98=16∵数列{a n}为等比数列∴a40a60=a2a98=16故选:C.4.(5分)某程序框图如图所示,现输入如下四个函数,则可以输出的函数是()A.f(x)=x2B.f(x)=C.f(x)=e x D.f(x)=sin x 【解答】解:∵A:f(x)=x2、C:f(x)=e x,不是奇函数,故不满足条件①又∵B:f(x)=的函数图象与x轴没有交点,故不满足条件②而D:f(x)=sin x既是奇函数,而且函数图象与x也有交点,故D:f(x)=sin x符合输出的条件故选:D.5.(5分)已知F1,F2是椭圆的两个焦点,过F1且与椭圆长轴垂直的直线交椭圆于A,B 两点,若△ABF2是正三角形,则这个椭圆的离心率是()A.B.C.D.【解答】解:由题,∴即∴,∴,解之得:(负值舍去).故选:C.6.(5分)实数x,y满足不等式组,则的取值范围是()A.[﹣1,1)B.(﹣∞,0)C.[﹣1,+∞)D.[﹣1,0]【解答】解:满足约束条件的平面区域,如下图所示:∵表示区域内点与(0,1)点连线的斜率又∵当x=1,y=0时,W=﹣1,直线与x﹣y=0平行时,W=1∴的取值范围为[﹣1,1)故选:A.7.(5分)已知m、n是不重合的直线,α、β是不重合的平面,有下列命题:①若m⊂α,n∥α,则m∥n;②若m∥α,m∥β,则α∥β;③若α∩β=n,m∥n,则m∥α且m∥β;④若m⊥α,m⊥β,则α∥β.其中真命题的个数是()A.0B.1C.2D.3【解答】解:①若m⊂α,n∥α,则m与n平行或异面,故不正确;②若m∥α,m∥β,则α与β可能相交或平行,故不正确;③若α∩β=n,m∥n,则m∥α且m∥β,m也可能在平面内,故不正确;④若m⊥α,m⊥β,则α∥β,垂直与同一直线的两平面平行,故正确故选:B.8.(5分)设a>0,b>0,则以下不等式中不恒成立的是()A.≥4B.a3+b3≥2ab2C.a2+b2+2≥2a+2b D.≥【解答】解:∵a>0,b>0,∴A.≥≥4故A恒成立,B.a3+b3≥2ab2,取,则B不成立C.a2+b2+2﹣(2a+2b)=(a﹣1)2+(b﹣1)2≥0故C恒成立D.若a<b则≥恒成立若a≥b,则=2﹣2b=2(﹣)≥0,∴≥故选:B.9.(5分)已知定义在R上的函数f(x)满足f(2﹣x)为奇函数,函数f(x+3)关于直线x=1对称,则函数f(x)的最小正周期为()A.4B.8C.12D.16【解答】解:∵f(x)满足f(2﹣x)为奇函数,∴f(2+x)=﹣f(2﹣x),即f(4+x)=﹣f(﹣x)①,∵函数f(x+3)关于直线x=1对称,∴将函数f(x+3)的图象向右平移3个单位得到y=f(x)的图象,则函数f(x)的图象关于直线x=4对称,∴f(4+x)=f(4﹣x)②,由①②得:f(4﹣x)=﹣f(﹣x),即f(x+4)=﹣f(x),∴f(x+8)=﹣f(x+4)即f(x+8)=f(x),故函数f(x)的最小正周期为8.故选:B.10.(5分)在平面直角坐标系中,已知三点A(m,n),B(n,t),C(t,m),直线AC的斜率与倾斜角为钝角的直线AB的斜率之和为,而直线AB恰好经过抛物线x2=2p(y﹣q),(p>0)的焦点F并且与抛物线交于P、Q两点(P在y轴左侧).则||=()A.9B.4C.D.【解答】解:设k AB=,k AC=,则+=,∵(n﹣m)•k AB=t﹣n=(t﹣m)+(m﹣n),∴=﹣,∴k AB﹣=,解得k AB=﹣或2(舍去),∵直线AB过抛物线x2=2p(y﹣q)的焦点,和直线AB过抛物线x2=2py的焦点,对||的值没有影响,故可研究AB过抛物线x2=2py的情况,∴直线AB的方程为y=﹣x+,与抛物线联立消去y,整理得x2+x﹣p2=0,求得x=﹣或.∵抛物线x2=2py的焦点为(0,),设P(x1,y1),Q(x2,y2),P在y轴左侧,∴x1=﹣,x2=∴|PF|=(|x1﹣0|)=|x1|,|QF|=(|x1﹣0|)=x2,∴||=||=||=||=9.故选:A.二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卡的相应位置. 11.(5分)把命题“∃x0∈R,x02﹣2x0+1<0”的否定写在横线上∀x∈R,x2﹣2x+1≥0.【解答】解:特称命题的否定是全称命题∴命题“∃x0∈R,x02﹣2x0+1<0”的否定是:∀x∈R,x2﹣2x+1≥0.故答案为:∀x∈R,x2﹣2x+1≥0.12.(5分)一个空间几何体的三视图如图所示,其正视图、侧视图、俯视图均为等腰直角三角形,且直角边长都为1,则这个几何体的体积是.【解答】解:由三视图可知:几何体是三棱锥,∵正视图、侧视图、俯视图均为等腰直角三角形,且直角边长都为1,∴三棱锥的高为1,底面是直角边长为1的等腰直角三角形,∴几何体的体积V=××1×1×1=.故答案为:.13.(5分)已知函数f(x)=,g(x)=lnx,则函数y=f(x)﹣g(x)的零点个数为.【解答】解:令g(x)=f(x)﹣lnx=0得f(x)=lnx∴函数g(x)=f(x)﹣lnx的零点个数即为函数f(x)与函数y=lnx的图象的交点个数,在同一坐标系中画出函数f(x)与函数y=lnx的图象,如图所示,有图象知函数y=f(x)﹣lnx上有3个零点.故答案为:3个.14.(5分)过抛物线y2=4x的焦点作直线l,交抛物线于A,B两点,若线段AB中点的横坐标为3,则|AB|等于8.【解答】解:∵抛物线方程为y2=4x,∴抛物线的焦点为F(1,0),准线为l:x=﹣1设线段AB的中点为M(3,y0),则M到准线的距离为:|MN|=3﹣(﹣1)=4,过A、B分别作AC、BD与l垂直,垂足分别为C、D根据梯形中位线定理,可得|AC |+|BD |=2|MN |=8 再由抛物线的定义知:|AF |=|AC |,|BF |=|BD | ∴|AB |=|AF |+|BF |=|AC |+|BD |=8. 故答案为:815.(5分)O 是面α上一定点,A 、B 、C 是面α上△ABC 的三个顶点,∠B ,∠C 分别是边AC ,AB 对应的角.以下命题正确的序号是 ②③④ ①动点P 满足,则△ABC 的外心一定在满足条件的P 点集合中.②动点P 满足,则△ABC 的内心一定在满足条件的P 点集合中. ③动点P 满足,则△ABC 的重心一定在满足条件的P 点集合中. ④动点P 满足,则△ABC 的垂心一定在满足条件的P 点集合中. 【解答】解:①∵动点P 满足,∴,则点P 是△ABC 的重心,因此①不正确;②∵动点P 满足,∴(λ>0), ∵向量在∠BAC 的平分线上,∴与∠BAC 的平分线所在向量共线,∴△ABC的内心一定在满足条件的P点集合中.因此正确.③∵动点P满足,∴=.过点A作AD⊥BC,垂足为D,则,∴,而向量与BC边的中线共线,因此△ABC的重心一定在满足条件的P点集合中,故正确.④∵动点P满足,∴=,∴==λ=0,∴,∴△ABC的垂心一定在满足条件的P点集合中.因此正确.综上可知:只有②③④正确.故答案为:②③④.三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤.16.(12分)等比数列{a n}中,已知a1=2,a4=16(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若a3,a5分别为等差数列{b n}的第3项和第5项,试求数列{b n}的通项公式及前n项和S n.【解答】解:(I)设{a n}的公比为q由已知得16=2q3,解得q=2∴=2n(Ⅱ)由(I)得a3=8,a5=32,则b3=8,b5=32设{b n}的公差为d,则有解得.从而b n=﹣16+12(n﹣1)=12n﹣28所以数列{b n}的前n项和.17.(12分)已知向量=(1+cosωx,1),=(1,a+sinωx)(ω为常数且ω>0),函数f(x)=在R上的最大值为2.(Ⅰ)求实数a的值;(Ⅱ)把函数y=f(x)的图象向右平移个单位,可得函数y=g(x)的图象,若y=g (x)在[0,]上为增函数,求ω取最大值时的单调增区间.【解答】解:(Ⅰ)函数f(x)==1+cosωx+a+sin x=2sin(ωx+)+a+1,…(3分)∵函数f(x)在R上的最大值为2,∴3+a=2故a=﹣1…(4分)(Ⅱ)由(Ⅰ)知:f(x)=2sin(ωx+),把函数f(x)=2sin(ωx+)的图象向右平移个单位,可得函数y=g(x)=2sinωx…(7分)又∵y=g(x)在[0,]上为增函数,∴g(x)的周期T=≥π即ω≤2.∴ω的最大值为2…(10分)此时单调增区间为…(12分)18.(12分)如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°(Ⅰ)证明:AB⊥A1C;(Ⅱ)若AB=CB=2,A1C=,求三棱柱ABC﹣A1B1C1的体积.【解答】(Ⅰ)证明:如图,取AB的中点O,连结OC,OA1,A1B.因为CA=CB,所以OC⊥AB.由于AB=AA1,,故△AA1B为等边三角形,所以OA1⊥AB.因为OC∩OA1=O,所以AB⊥平面OA1C.又A1C⊂平面OA1C,故AB⊥A1C;(Ⅱ)解:由题设知△ABC与△AA1B都是边长为2的等边三角形,所以.又,则,故OA 1⊥OC.因为OC∩AB=O,所以OA1⊥平面ABC,OA1为三棱柱ABC﹣A1B1C1的高.又△ABC的面积,故三棱柱ABC﹣A1B1C1的体积.19.(12分)从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:(1)根据频数分布表计算苹果的重量在[90,95)的频率;(2)用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,其中重量在[80,85)的有几个?(3)在(2)中抽出的4个苹果中,任取2个,求重量在[80,85)和[95,100)中各有1个的概率.【解答】解:(1)苹果的重量在[90,95)的频率为.(2)重量在[80,85)的有个.(3)设这4个苹果中,重量在[80,85)段的有1个,编号为1.重量在[95,100)段的有3个,编号分别为2、3、4,从中任取两个,可能的情况有:(1,2)(1,3)(1,4)(2,3)(2,4)(3,4)共6种.设任取2个,重量在[80,85)和[95,100)中各有1个的事件为A,则事件A包含有(1,2)(1,3)(1,4)共3种,所以.20.(13分)已知椭圆C:=1(a>b>0)的短轴长为2,离心率为.(1)求椭圆C的方程;(2)若过点M(2,0)的引斜率为k的直线与椭圆C相交于两点G、H,设P为椭圆C上一点,且满足(O为坐标原点),当时,求实数t的取值范围?【解答】解:(1)∵椭圆C:=1(a>b>0)的短轴长为2,离心率为,∴b=1,=,∵a2=b2+c2,∴a=,b=1,∴椭圆C的方程为…(3分)(2)设G(x1,y1),H(x2,y2),设直线y=k(x﹣2),联立椭圆,可得(1+2k2)x2﹣8kx+8k2﹣2=0△=(﹣8k)2﹣4(1+2k2)(8k2﹣2)>0,得,…(5分)条件转换一下就是,∵x1+x2=,x1x2=根据弦长公式,•<,得到.…(7分)设P(x,y),则∵,∴(x1+x2,y1+y2)=t(x,y),∴x=(x1+x2),y=(y1+y2)根据x1+x2=,x1x2=,把x1,x2消成k,得(9分)然后代入椭圆,得到关系式,…(11分)∴,∵,∴实数t的取值范围为…(13分)21.(14分)已知函数f(x)=x﹣1+(a∈R,e为自然对数的底数).(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;(Ⅱ)求函数f(x)的极值;(Ⅲ)当a=1的值时,若直线l:y=kx﹣1与曲线y=f(x)没有公共点,求k的最大值.【解答】解:(Ⅰ)由f(x)=x﹣1+,得f′(x)=1﹣,又曲线y=f(x)在点(1,f(1))处的切线平行于x轴,∴f′(1)=0,即1﹣=0,解得a=e.(Ⅱ)f′(x)=1﹣,①当a≤0时,f′(x)>0,f(x)为(﹣∞,+∞)上的增函数,所以f(x)无极值;②当a>0时,令f′(x)=0,得e x=a,x=lna,x∈(﹣∞,lna),f′(x)<0;x∈(lna,+∞),f′(x)>0;∴f(x)在∈(﹣∞,lna)上单调递减,在(lna,+∞)上单调递增,故f(x)在x=lna处取到极小值,且极小值为f(lna)=lna,无极大值.综上,当a≤0时,f(x)无极值;当a>0时,f(x)在x=lna处取到极小值lna,无极大值.(Ⅲ)当a=1时,f(x)=x﹣1+,令g(x)=f(x)﹣(kx﹣1)=(1﹣k)x+,则直线l:y=kx﹣1与曲线y=f(x)没有公共点,等价于方程g(x)=0在R上没有实数解.假设k>1,此时g(0)=1>0,g()=﹣1+<0,又函数g(x)的图象连续不断,由零点存在定理可知g(x)=0在R上至少有一解,与“方程g(x)=0在R上没有实数解”矛盾,故k≤1.又k=1时,g(x)=>0,知方程g(x)=0在R上没有实数解,所以k的最大值为1.。
绵阳-二诊--文科数学试题+答案
![绵阳-二诊--文科数学试题+答案](https://img.taocdn.com/s3/m/385c9b00b9f3f90f77c61b34.png)
绵阳市高2014级第二次诊断性考试数学(文史类)参考解答及评分标准一、选择题:本大题共12小题,每小题5分,共60分.CA BCA DBC DD CB二、填空题:本大题共4小题,每小题5分,共20分.13.1422=-y x 14.24 ﻩ 15.32ﻩ 16.25-三、解答题:本大题共6小题,共70分.17.解 :(Ⅰ)设{a n }的公差为d ,则由题意可得⎪⎩⎪⎨⎧+=+++-=⨯+,,d a d a d a d a 453922331111……………………………………………………3分 解得a1=-4,d =1, ……………………………………………………………5分∴ a n =-4+1×(n -1)=n -5. ……………………………………………………6分 (Ⅱ)Tn =a 1+a 2+a 3+…+a n+n a a a 22221+⋅⋅⋅++ =2)54(-+-n n +)222(32121n +⋅⋅⋅++ ………………………………10分 =21)21(23212)9(--⋅+-n n n =16122)9(-+-n n n .……………………………………………………12分 18.解:(Ⅰ) ∵a c 2=,∴ 由正弦定理有s in C =2sin A . …………………………………………2分 又C =2A,即sin2A=2si nA ,于是2sin A cos A =2s inA , …………………………………………………4分 在△ABC 中,sin A ≠0,于是cos A =22, ∴ A =4π. ……………………………………………………………………6分 (Ⅱ)根据已知条件可设21+=+==n c n b n a ,,, n ∈N *.由C =2A ,得sin C =sin2A =2sin A cos A,∴ ac A C A 2sin 2sin cos ==. ……………………………………………………8分 由余弦定理得ac bc a c b 22222=-+, 代入a ,b,c 可得 nn n n n n n 22)2)(1(2)2()1(222+=++-+++, ……………………………………………10分 解得n =4,∴ a =4,b =5,c =6,从而△ABC 的周长为15,即存在满足条件的△ABC ,其周长为15. (2)19.解:(Ⅰ)由已知有 1765179181176174170=++++=x , 6656870666462=++++=y , 2222)176179()176181()176174()176170()6668)(176179()6670)(176181()6664)(176174()6662)(176170(ˆ-+-+-+---+--+--+--=b =3727≈0.73, 于是17673.066ˆˆ⨯-=-=x b y a=-62.48, ∴ 48.6273.0ˆˆˆ-=+=x a x b y.………………………………………………10分 (Ⅱ) x =185,代入回归方程得48.6218573.0ˆ-⨯=y≈72.57, 即可预测M 队的平均得分为72.57. ………………………………………12分 20.解:(Ⅰ) 点A (0,2)在椭圆C上,于是122=b ,即b2=2. 设椭圆C的焦半距为c ,则由题意有23=a c ,即2243a c =, 又a 2=b 2+c2,代入解得a 2=8, ∴ 椭圆C 的标准方程为12822=+y x . ……………………………………4分 (Ⅱ)设直线PQ :1+=ty x ,)()(2211y x Q y x P ,,,.联立直线与椭圆方程: ⎪⎩⎪⎨⎧+==+,,112822ty x y x 消去x 得:072)4(22=-++ty y t , 显然Δ=4t 2+28(t 2+4)>0,∴ y 1+y 2=422+-t t ,y 1y2=472+-t . ………………………………………7分 于是482)(22121+=++=+t y y t x x , 故P ,Q 的中点)444(22+-+t t t D ,. ………………………………………8分 设)1(0y N ,-, 由NQ NP =,则1-=⋅PQ ND k k , 即t t t ty -=+--++4414220,整理得4320++=t t t y ,得)431(2++-t t t N ,. 又△NPQ 是等边三角形, ∴ PQ ND 23=,即2243PQ ND =, 即]474)42)[(1(43)44()144(22222222+-⋅-+-+=+++++t t t t t t t t , 整理得22222)4(8424)144(++=++t t t , 即222222)4(8424)48(++=++t t t t ,解得 102=t ,10±=t , …………………………………………………11分∴ 直线l的方程是110+±=y x . ………………………………………12分 21.解:(Ⅰ)∵ xe ax xf -=2)(在)0(∞+,上有两个零点, ∴ 方程2x e a x =有两个根,等价于y=a与2xe y x=有两个交点. 令2)(xe x h x =,则3)2()(x x e x h x -=',……………………………………………3分 于是x∈(0,2)时,0)(<'x h ,即h (x )在(0,2)上单调递减;当x ∈(2,+∞)时,0)(>'x h ,即h (x )在(2,+∞)上单调递增,∴ h (x )min =h(2)=42e , ∴ a的取值范围为(42e ,+∞). ……………………………………………5分 (Ⅱ)∵)(2121x x x x <,是x e ax xf -=2)(在)0(∞+,上的零点, ∴ 121x e ax =,222x e ax =, 两式相除可得12212)(x x e x x -=. ………………………………………………7分 令)1(12>=t t x x , ①上式变为122x x e t -=,即t t x x ln 2ln 212==-, ② 联立①②解得:1ln 21-=t t x ,1ln 22-=t t t x . …………………………………9分 要证明421>+x x , 即证明41ln 21ln 2>-+-t t t t t , 即证明22ln ln ->+t t t t . 令22ln ln )(+-+=t t t t t h ,则1ln 1)(-+='t tt h . …………………………10分 令0111)(1ln 1)(22>-=-='-+=tt t t t t t t ϕϕ,, 故)(t ϕ在)1(∞+,上单调递增,故0)1()(=>ϕϕt , 即0)(>'t h , 故)(t h 在)1(∞+,上单调递增,故0)1()(=>h t h ,即22ln ln ->+t t t t ,得证. (2)22.解:(Ⅰ)消去参数得1322=+y x . …………………………………………5分(Ⅱ)将直线l 的方程化为普通方程为0323=++y x .设Q(ααsin cos 3,),则M(ααsin 211cos 23+,), ∴ 233)4sin(26232sin 233cos 23++=+++=παααd ,∴ 最小值是4636-.………………………………………………………10分 23.解:(Ⅰ) 当t=2时,21)(-+-=x x x f . 若x ≤1,则x x f 23)(-=,于是由2)(>x f 解得x <21.综合得x <21. 若1<x <2,则1)(=x f ,显然2)(>x f 不成立 . 若x ≥2,则32)(-=x x f ,于是由2)(>x f 解得x >25.综合得x>25. ∴ 不等式2)(>x f 的解集为{x| x <21,或x >25}. …………………………5分 (Ⅱ))(x f ≥x a +等价于a ≤f (x )-x .令g (x)= f (x )-x . 当-1≤x ≤1时,g (x )=1+t -3x,显然g (x )m in =g (1)=t-2.当1<x <t 时,g (x )=t -1-x ,此时g (x)>g (1)=t-2.当t ≤x ≤3时,g (x )=x-t -1,g (x)mi n=g (1)=t-2.∴ 当x ∈[1,3]时,g (x)min = t-2.又∵ t ∈[1,2],∴ g (x )m in ≤-1,即a ≤-1.综上,a 的取值范围是a ≤-1. …………………………………。
2011级(2014届)绵阳二诊数学(理科)试题及答案
![2011级(2014届)绵阳二诊数学(理科)试题及答案](https://img.taocdn.com/s3/m/82d7bcaffd0a79563c1e722d.png)
保密 ★ 启用前 【考试时间:2014年1月23日15:00—17:00】绵阳市高中2014届第二次诊断性考试数 学(理科)第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1+y -1=0的倾斜角是A .30°B .60°C .120°D .150°2.计算:1+i+i 2+i 3+…+i 100(i 为虚数单位)的结果是A .0B .1C .iD .i+1 3.已知a 、b ∈R ,那么“ab <0”是“方程ax 2+by 2=1表示双曲线”的A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分又不必要条件4.为了得到函数3sin(2)5y x π=+的图象,只需把函数3sin()5y x π=+图象上所有点的A .横坐标缩短到原来的12倍,纵坐标不变 B .横坐标伸长到原来的2倍,纵坐标不变 C .纵坐标缩短到原来的12倍,横坐标不变 D .纵坐标伸长到原来的2倍,横坐标不变5.一个正三棱柱(底面为正三角形的直棱柱)的三视图如右图所示,则这个正三棱柱的体积为 AB.C.D.6.若log a (a 2+1)<log a 2a <0,则a 的取值范围是A .(0,21)B .(21,1)C .(0,1)D .(0,1)∪(1,+∞)7.现有1位老师、2位男学生、3位女学生共6人站成一排照相,若男学生站两端,3位女学生中有且只有两位相邻,则不同排法的种数是 A .12种B .24种C .36种D .72种8.已知椭圆22221x y a b +=(a >b >0)的半焦距为c (c >0),左焦点为F ,右顶点为A ,抛物线215()8y a c x =+与椭圆交于B 、C 两点,若四边形ABFC 是菱形,则椭圆的离心率是 A .815B .415C .23D .129.已知关于x 的一元二次方程x 2-2x +b -a +3=0,其中a 、b 为常数,点(a ,b )是区域Ω:0404a b ≤≤⎧⎨≤≤⎩,内的随机点.设该方程的两个实数根分别为x 1、x 2,则x 1、x 2满足0≤x 1≤1≤x 2的概率是 A .332B .316C .532D .91610.一只小球放入一长方体容器内,且与共点的三个面相接触.若小球上一点到这三个面的距离分别为4、5、5,则这只小球的半径是 A .3或8B .8或11C .5或8D .3或11第Ⅱ卷 (非选择题,共100分)二、填空题:本大题共5小题,每小题5分,共25分.11.《人再囧途之泰囧》首映结束,为了了解观众对该片的看法,决定从500名观众中抽取10%进行问卷调查,在这500名观众中男观众占40%,若按性别用分层抽样的方法抽取采访对象,则抽取的女观众人数为 人. 12.右图表示的程序所输出的结果是.13.51(21)(1)x x+-的展开式的常数项是__________.(填写具体数字)14.我们把离心率之差的绝对值小于12的两条双曲线称为“相近双曲线”.已知双曲线221412x y -=与双曲线221x y m n -=是“相近双曲线”,则n m的取值范围是 . 15.已知函数()f x ,若对给定的三角形ABC ,它的三边的长a 、b 、c 均在函数()f x 的定义域内,都有()f a 、()f b 、()f c 也为某三角形的三边的长,则称()f x 是△ABC 的“三角形函数”.下面给出四个命题:①函数1()((0))f x x ∈+∞,是任意三角形的“三角形函数”;②若定义在(0)+∞,上的周期函数2()f x 的值域也是(0)+∞,,则2()f x 是任意三角形的“三角形函数”;③若函数33()3f x x x m =-+在区间2433(,)上是某三角形的“三角形函数”,则m的取值范围是正视图侧视图俯视图62+27∞(,); ④若a 、b 、c 是锐角△ABC 的三边长,且a 、b 、c ∈N +,则24()+ln (0)f x x x x =>是△ABC 的“三角形函数”.以上命题正确的有 .(写出所有正确命题的序号)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)已知函数f (x )=(sin x +cos x )2-2sin 2x .(Ⅰ)求f (x )的单调递减区间;(Ⅱ)A 、B 、C 是△ABC 的三内角,其对应的三边分别为a 、b 、c.若()8A f =AB AC ⋅=12,a =b <c ,求b 、c 的长.17.(本小题满分12分)如图,在四棱锥P -ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD =DC ,点E 是PC 的中点,作EF ⊥PB 交PB 于F .(Ⅰ)求证:P A ∥平面EDB ; (Ⅱ)求证:PB ⊥平面EFD ; (Ⅲ)求二面角C -PB -D 的大小.18.(本小题满分12分)甲、乙两位同学练习三分球定点投篮,规定投中得三分,未投中得零分,甲每次投中的概率为13,乙每次投中的概率为14.(Ⅰ)求甲投篮三次恰好得三分的概率;(Ⅱ)假设甲投了一次篮,乙投了两次篮,设X 是甲这次投篮得分减去乙这两次投篮得分总和的差,求随机变量X 的分布列.19.(本小题满分12分)已知各项均不为零的数列{a n }的首项134a =,2a n +1a n =ka n -a n +1(n ∈N +,k 是不等于1的正常数).(Ⅰ)试问数列12{}1n a k --是否成等比数列,请说明理由; (Ⅱ)当k =3时,比较a n 与3435n n ++的大小,请写出推理过程.20.(本小题满分13分)动点M (x ,y )与定点F (1,0)的距离和它到直线l :x =4的距离之比是常数12,O 为坐标原点.(Ⅰ)求动点M 的轨迹E 的方程,并说明轨迹E 是什么图形?(Ⅱ)已知圆CC 的切线m ,使得m 与圆C 相切于点P ,与轨迹E 交于A 、B 两点,且使等式2AP PB OP ⋅= 成立?若存在,求出m 的方程;若不存在,请说明理由.21.(本小题满分14分)已知函数f (x )=x ln x (x ∈(0,+∞)).(Ⅰ)求(+1)()+1f xg x x x =-(x ∈(-1,+∞))的单调区间与极大值; (Ⅱ)任取两个不等的正数x 1、x 2,且x 1<x 2,若存在x 0>0使21021()()()f x f x f x x x -'=-成立,求证:x 1<x 0<x 2;(Ⅲ)已知数列{a n }满足a 1=1,1211(1)2n n n a a n+=++(n ∈N +),求证:114n a e <(e 为自然对数的底数).DA BCPF E绵阳市高中2010级第二次诊断性考试数学(理)参考解答及评分标准一、选择题:本大题共10小题,每小题5分,共50分.CBCAA BBDAD二、填空题:本大题共5小题,每小题5分,共25分.11.30 12.3013.-9 14.44[]215,∪521[]44, 15.①④ 三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.解:(Ⅰ)f (x )=1+sin2x-1+cos2xx+4π),∴ 当22k ππ+≤2x+4π≤322k ππ+时,f (x )单调递减, 解得8k ππ+≤x ≤58k ππ+, 即f (x )的单调递减区间为[8k ππ+,58k ππ+](k ∈Z ). ……………………6分 (Ⅱ)f (8A4A +4πsin(4A +4π,∴4A +4π=3π或23π,即A=3π或53π(舍).由AB AC ⋅ =c ·b ·cos A =12,cos A =12,得bc =24.①又cos A=222122b c a a bc +-==,b 2+c 2=52.∵ b 2+c 2+2bc =(b+c )2=100,b >0,c >0, ∴ b+c=10,②联立①②,且b <c ,解得b =4,c =6. ………12分 17.解:如图所示建立空间直角坐标系,设DC =1.(Ⅰ)连结AC ,交BD 于G ,连结EG .依题意得A (1,0,0),P (0,0,1),E (0,12,12).∵ 底面ABCD 是正方形,所以G 是此正方形的中心,故点G 的坐标为(12,12,0), 且11(101)(0)22PA EG =-=- ,,,,,.∴ 2=,这表明P A //EG .而EG ⊂平面EDB 且P A ⊄平面EDB , ∴ P A //平面EDB . ……………………………………………………………4分(Ⅱ)依题意得B (1,1,0),PB=(1,1,-1).又11(0)22DE = ,,, 故110022PB DE ⋅=+-= .∴DE PB ⊥.由已知PB EF ⊥,且E DE EF = ,∴ ⊥PB 平面EFD .…………………………………………………………8分 (Ⅲ)由(Ⅱ)知PB EF ⊥,PB DF ⊥,故EFD ∠是所求二面角的平面角.设点F 的坐标为(x 0,y 0,z 0),PF kPB =,则(x 0,y 0,z 0-1)=k (1,1,-1),从而x 0=k ,y 0=k ,z 0=1-k ,∵ PB FD ⋅ =0,所以(1,1,-1)·(k ,k ,1-k )=0,解得13k =,∴ 点F 的坐标为112()333,,,且111()366FE =-- ,,,112()333FD =--- ,,∴ 1cos 2||||FE FD EFD FE FD ⋅∠==,得3π=∠EFD . ∴ 二面角C -PB -D 的大小为3π.…………………………………………12分18.解:(Ⅰ)甲投篮三次恰好得三分即1次投中2次不中,∵ 甲投篮三次中的次数x ~B (3,13), ∴ P (x =1)=123114(1)339C ⋅⋅-=, 甲投篮三次恰好得三分的概率为49.…………………………………………4分 (Ⅱ)设甲投中的次数为m ,乙投中的次数为n , ①当m =0,n =2时,X =-6,∴ P (X =-6)=222211()3424C ⋅⋅=.②当m =1,n =2或m =0,n =1时,X =-3, ∴ P (X =-3)=2121121313()3434448C ⋅+⋅⋅⋅=. ③当m =1,n =1或m =0,n =0时,X =0,∴ P (X =0)=10222113231()344342C C ⋅⋅⋅+⋅⋅=. ④当m =1,n =0时,X =3,∴ P (X =3)=022139()3448C ⋅⋅=. ∴X 的分布列为…………………………………12分19.解:(Ⅰ)由 2a n +1a n =ka n -a n +1,可得11n a +=12n nka a +, ∴11n a +21k --=12n n ka a +21k --=112()1n k a k --,首项为11242131a k k -=---. 若42031k -=-,即k=52时,数列12{}1na k --为零数列,不成等比数列. 若42031k -≠-,即k>0,k ≠1且k ≠52时, 数列12{}1n a k --是以4231k --为首项,1k为公比的等比数列.∴ 综上所述,当k=52时,数列12{}1n a k --不成等比数列;当k>0,k ≠1且k ≠52时,数列12{}1n a k --是等比数列.……………………………………6分 (Ⅱ)当k =3时,数列1{1}n a -是以13为首项,13为公比的等比数列. ∴ 111()3n n a -=,即a n =331nn +=1-131n +, ∴ a n -3435n n ++=1-131n +-(1-135n +)=135n +-131n +=334(35)(31)n nn n --++, 令F (x ) =3x -3x -4(x ≥1),则()F x '=3x ln3-3≥(1)F '>0,∴ F (x )在[1)+∞,上是增函数. 而F (1)=-4<0,F (2)=-1<0,F (3)=14>0, ∴ ①当n =1和n =2时, a n <3435n n ++; ②当n ≥3时,3n +1>3n +5,即135n +>131n +,此时a n >3435n n ++. ∴ 综上所述,当n =1和n =2时,a n <3435n n ++;当n ≥3时,a n >3435n n ++.…12分 20.解:12=,化简得:22143x y +=,即轨迹E 为焦点在x 轴上的椭圆. ………………5分(Ⅱ)设A (x 1,x 2),B (x 2,y 2). ∵ OA OB ⋅ =(OP PA + )۰(OP PB + )=2OP +OP PB ⋅ +PA OP ⋅ +PA PB ⋅ ,由题知OP ⊥AB ,故OP PB ⋅ =0,PA OP ⋅=0.∴ OA OB ⋅ =2OP +PA PB ⋅ =2OP -AP PB ⋅=0.假设满足条件的直线m 存在,①当直线m 的斜率不存在时,则m 的方程为x =代入椭圆22143x y +=,得y =. ∴ OA OB ⋅ =x 1x 2+y 1y 2=-2-64≠0,这与OA OB ⋅ =0矛盾,故此时m 不存在.②当直线m 的斜率存在时,设直线m 的方程为y =kx +b , ∴|OP |==b 2=2k 2+2.联立22143x y +=与y =kx+b 得,(3+4k 2)x 2+8kbx +4b 2-12=0,∴ x 1+x 2=2348kb k -+,x 1x 2=2241234k b -+,y 1y 2=(kx 1+b )(kx 2+b )=k 2x 1x 2+kb (x 1+x 2)+b 2=22231234b k k +-,∴ OA OB ⋅ =x 1x 2+y 1y 2=2241234kb -++22231234b k k+-=0. ∴ 7b 2-12k 2-12=0, 又∵ b 2=2k 2+2,∴ 2k 2+2=0,该方程无解,即此时直线m 也不存在.综上所述,不存在直线m 满足条件.………………………………………13分 21.解:(Ⅰ)由已知有(+1)()+1f xg x x x =-=ln(+1)x x -, 于是1()1=+11xg x x x '=--+. 故当x ∈(-1,0)时,()g x '>0;当x ∈(0,+∞)时,()g x '<0.所以g (x )的单调递增区间是(-1,0),单调递减区间是(0,+∞),g (x )的极大值是g (0)=0. ……………………………………………………………………4分 (Ⅱ)因为()ln +1f x x '=,所以0ln +1x =2121()()f x f x x x --,于是02ln ln x x -=21221()()ln 1f x f x x x x ----=2211221ln ln ln 1x x x x x x x ----=121121ln ln 1x x x x x x ---=2121ln11x x x x --,令21x x =t (t >1),ln ln 1()111t t t h t t t -+-=--=, 因为10t ->,只需证明ln +10t t -<.令ln +1t t t ϕ=-(),则110t tϕ'=-<(),∴ t ϕ()在(1+)t ∈∞,递减,所以10t ϕϕ<()()=, 于是h (t )<0,即02ln ln x x <,故02x x <.仿此可证10x x <,故102x x x <<.……………………………………………10分 (Ⅲ)因为11a =,1211(1)2n n n n a a a n+=++>,所以{}n a 单调递增,n a ≥1. 于是1222111111(1)(1)=(1)222n n n n n n n n a a a a a n n n +=++≤++++, 所以1211ln ln ln(1)2n n n a a n +≤+++. (*) 由(Ⅰ)知当x >0时,ln 1+x ()<x . 所以(*)式变为1211ln ln 2n n n a a n +<++. 即11211ln ln 2(1)k k k a a k ---<+-(k ∈N ,k ≥2), 令k =2,3,…,n ,这n -1个式子相加得1121222111111ln ln +++)[]22212(1)n n a a n --<++++- (1221111111)[]2122334(2)(1)n n n -<++++++⨯⨯-- (- =1111111111)[1()()()]24233421n n n -+++-+-++--- (- =111111)1)2421n n -+++--(-( 1111111=4214n n --<--, 即11111ln ln 44n a a <+=,所以114n a e <.……………………………………14分。
绵阳二诊】四川省绵阳市2017届高三第二次诊断性测试 数学(文) 扫描版含答案
![绵阳二诊】四川省绵阳市2017届高三第二次诊断性测试 数学(文) 扫描版含答案](https://img.taocdn.com/s3/m/40c7ac569a6648d7c1c708a1284ac850ad02041b.png)
绵阳二诊】四川省绵阳市2017届高三第二次诊断性测试数学(文) 扫描版含答案参考解答及评分标准:绵阳市高2014级第二次诊断性考试数学(文史类)一、选择题:本大题共12小题,每小题5分,共60分。
答案:CABCADBCDDCB。
二、填空题:本大题共4小题,每小题5分,共20分。
第一小题:解法为(x+y)(x-y)=114,求得x^2-y^2=114.第二小题:解法为cos(α+β)=cosαcosβ-sinαsinβ,代入α=30°,β=45°可得cos75°=cos30°cos45°-sin30°sin45°,计算得cos75°=√6-√2/4.第三小题:解法为(a+b)(a-b)=2413,求得a^2-b^2=2413.第四小题:解法为a/b=3/4,b/c=5/6,代入可得a/c=1/2.三、解答题:本大题共6小题,共70分。
第十五小题:解法为设{an}的公差为d,由题意得到3a1+2d=16.5,a1+4d=23,解得a1=-4,d=1,代入得到an=n-5.第十七小题:解法为(Ⅰ)设{an}的公差为d,由题意得到3a1+2d=16.5,a1+4d=23,解得a1=-4,d=1;(Ⅱ)根据已知条件可设a=n,b=n+1,c=n+2,n∈N*,代入得到cosA=2/(2n-1),代入cosA=2sinA得到sinA=2/(2n+1),代入余弦定理可得到2bc/(a^2+b^2-c^2)=(n+1)/(n+2),整理得到n=4,代入得到a=4,b=5,c=6,从而得到△ABC的周长为15.第十八小题:解法为(Ⅰ)由正弦定理得到sinC=2sinA,又C=2A,即sin2A=2sinA,代入得到2sinAcosA=2sinA,在△ABC中,sinA≠0,所以cosA=1/2,代入得到A=π/4;(Ⅱ)代入余弦定理可得到cosA=c/(2a),代入已知条件可得到cosA=√10/20,代入得到sinA=√6/20,代入正弦定理可得到sinC=√10/20,代入余弦定理可得到cosC=1/5,代入三角形的内角和为180°可得到B=5π/36,从而得到△ABC的三个内角的度数。
四川省绵阳市2024届高三上学期“二诊”模拟数学(文)试题含解析
![四川省绵阳市2024届高三上学期“二诊”模拟数学(文)试题含解析](https://img.taocdn.com/s3/m/f885af0032687e21af45b307e87101f69f31fb40.png)
绵阳高2021级“二诊”模拟考试文科数学(答案在最后)第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2log 1A x x =<,集合{B y y ==,则A B = ()A.(),2∞- B.(],2∞- C.()0,2 D.[)0,∞+【答案】C 【解析】【分析】先求出集合A,B ,再求交集即可【详解】解:{}()2log 10,2A x x =<=,{[)0,B y y ===+∞,()0,2A B ∴⋂=.故选:C ,【点睛】此题考查集合的交集运算,考查对数不等式的解法,属于基础题2.已知复数z 满足()1i 1z -⋅=+(i 是虚数单位),则复数z 的共轭复数z 的虚部为()A.1B.iC.i- D.1-【答案】D 【解析】【分析】根据复数的运算法则和概念即可得答案.【详解】∵()1i 12z -⋅=+=,∴()()()21i 21i 1i 1i 1i z +===+--+,∴1i z =-,∴z 的虚部为1-.故选:D .3.若双曲线C :2219x y m-=的焦距长为8,则该双曲线的渐近线方程为()A.4y x =±B.54y x =±C.43y x =±D.3y x =±【答案】D 【解析】【分析】利用双曲线的性质计算即可.【详解】由题意可知28972m m ⎛⎫+=⇒= ⎪⎝⎭,即22:197x y C -=,令220973x y y x -=⇒=±.故选:D4.若P ,Q 分别为直线3x +4y -12=0与6x +8y +5=0上任意一点,则|PQ |的最小值为()A.95B.185C.2910D.295【答案】C 【解析】【分析】先判定两直线平行,再求出两平行线之间的距离即得解.【详解】因为3412=685≠-,所以两直线平行,将直线3x +4y -12=0化为6x +8y -24=0,由题意可知|PQ |的最小值为这两条平行直线间的距离,2910,所以|PQ |的最小值为2910.故选:C.【点睛】本题主要考查平行直线的判定和两平行线之间的距离的求法,意在考查学生对这些知识的理解掌握水平.5.2022年11月,国内猪肉、鸡蛋、鲜果、禽肉、粮食、食用油、鲜菜价格同比(与去年同期相比)的变化情况如图所示,则下列说法正确的是()A.猪肉、鸡蛋、鲜果、禽肉、粮食、食用油这6种食品中,食用油价格同比涨幅最小.B.这7种食品价格同比涨幅的平均值超过7%C.去年11月鲜菜价格要比今年11月低D.猪肉价格同比涨幅超过禽肉价格同比涨幅的5倍【答案】B 【解析】【分析】根据统计图计算可得答案.【详解】由图可知,粮食价格同比涨幅比食用油价格同比涨幅小,故A 不正确;这7种食品价格同比涨幅的平均值为34.4%10.4%9.6%8.5%3%7.6%21.2%7.47%7%7+++++-≈>,故B 正确;因为鲜菜价格同比涨幅为21.2%-,说明去年11月鲜菜价格要比今年11月高,故C 不正确;猪肉价格同比涨幅为34.4%,禽肉价格同比涨幅为8.5%,34.4%58.5%0-⨯<,故D 不正确.故选:B.6.已知()f x 是定义域为R 的奇函数,当0x >时,()f x 单调递增,且()40f =,则满足不等式()10x f x ⋅-<的x 的取值范围是()A.()3,1- B.()1,5 C.()()3,01,5- D.()(),31,5-∞- 【答案】C 【解析】【分析】由奇函数的定义和单调性的性质,即可求解不等式.【详解】因为()f x 是定义在R 上的奇函数,0x >时,()f x 单调递增,且()40f =,所以当()(),40,4x ∈-∞-⋃时,()0f x <,当()()4,04,x ∈-⋃+∞时,()0f x >,不等式()10x f x ⋅-<,则当0x <时,有()10f x ->,即410x -<-<或14x ->,解得31x -<<或5x >,又0x <,30x ∴-<<;当0x >时,有()10f x -<,即14x -<-或014x <-<,又0x >,解得15x <<;综上,不等式()10x f x ⋅-<的解集为()()3,01,5- .故选:C.7.已知非零向量,a b满足||2||a b =,且|2||4|a b a b -=+,则,a b的夹角为()A.6π B.3πC.23π D.56π【答案】C 【解析】【分析】利用平面向量的数量积和模长求夹角即可.【详解】由已知|2||4|a b a b -=+可得222244816a a b b a a b b -⋅⋅+=+⋅+ ,即20a b b ⋅+= ,又因为||2||a b =,所以21cos ,2b a b a b-==-⋅ ,所以夹角为2π3.故选:C8.已知数列{}n a 是递增的等比数列,其前n 项和为n S .若3134a a -=,4158S =-,则2a =()A.932-B.12-C.932-或12- D.-3或12-【答案】B 【解析】【分析】利用等比数列通项公式和求和公式进行基本量的计算即可.【详解】设等比数列{}n a 的公比为()0q q >,则()()231141431411518a a a q a q S q ⎧-=-=⎪⎪⎨-⎪==-⎪-⎩,解得:12q =或3q =-(舍去),所以11a =-,所以212a =-.故选:B.9.已知函数()32221f x x ax a x =-++在1x =处有极小值,则a 的值为()A.1B.3C.1或3D.1-或3【答案】A 【解析】【分析】由()f x 在1x =处有极小值可知,()10f '=解出a 的值,并根据单调性验证.【详解】因为()32221f x x ax a x =-++,所以()2234f x x ax a '=-+,因为函数()32221f x x ax a x =-++在1x =处有极小值,所以()21340f a a '=-+=,解得1a =或3a =,当1a =时,()()()2341311f x x x x x '=-+=--,当()0f x ¢>时,13x <或1x >,当()0f x '<时,113x <<,()f x 在1x =处取到极小值,符合题意;当3a =时,()()()23129313f x x x x x =-+=--',当()0f x ¢>时,1x <或3x >,当()0f x '<时,13x <<,()f x 在1x =处取到极大值,不符合题意;综上:a 的值为1.故选:A.10.若点A 在焦点为F 的抛物线24y x =上,且2AF =,点P 为直线1x =-上的动点,则PA PF +的最小值为()A. B.2+ C.2+ D.4【答案】A 【解析】【分析】先求得A 点的坐标,求得F 关于直线=1x -的对称点F ',根据三点共线求得PA PF +的最小值.【详解】抛物线24y x =的焦点()1,0F ,准线=1x -,12,1A A AF x x =+==,则24,2A A y y ==±,不妨设()1,2A ,()1,0F 关于直线=1x -的对称点为()3,0F '-,由于PF PF '=,所以当,,A P F '三点共线时PA PF +最小,所以PA PF +的最小值为=.故选:A11.已知函数()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>><⎪⎝⎭的图象如图所示,图象与x 轴的交点为5,02M ⎛⎫⎪⎝⎭,与y 轴的交点为N ,最高点()1,P A ,且满足NM NP ⊥.若将()f x 的图象向左平移1个单位得到的图象对应的函数为()g x ,则(1)g -=()A.B.0C.102-D.102【答案】D 【解析】【分析】根据题意得6T =,π6ϕ=,进而得0,2A N ⎛⎫⎪⎝⎭,再根据NM NP ⊥结合向量垂直关系的表示解得A =,进而得()ππ36f x x ⎛⎫=+ ⎪⎝⎭,再根据平移变换得()π3g x x =,最后求函数值即可.【详解】由题知,函数()f x 的周期T 满足531422M P T x x =-=-=,解得6T =,所以2ππ63ω==,由图象与x 轴的交点为5,02M ⎛⎫⎪⎝⎭得()π5πZ 32k k ϕ⨯+=∈,因为π2ϕ<,所以π6ϕ=,即()ππsin 36f x A x ⎛⎫=+ ⎪⎝⎭,所以,()f x 图象与y 轴的交点为0,2A N ⎛⎫ ⎪⎝⎭,因为NM NP ⊥,所以255,1,022224A A A NM NP ⎛⎫⎛⎫⋅=-⋅=-= ⎪ ⎪⎝⎭⎝⎭,解得A =,所以A =,所以()ππ36f x x ⎛⎫=+⎪⎝⎭,所以若将()f x 的图象向左平移1个单位得到的图象对应的函数为()g x ,()πππ323g x x x ⎛⎫=+= ⎪⎝⎭,所以()π132g ⎛⎫-=-= ⎪⎝⎭.故选:D12.已知函数12ln ,(e)ey a x x =-≤≤的图象上存在点M ,函数21y x =+的图象上存在点N ,且M ,N 关于x 轴对称,则a 的取值范围是()A.21e ,2⎡⎤--⎣⎦B.213,e∞⎡⎫--+⎪⎢⎣⎭C.213,2e ⎡⎤---⎢⎥⎣⎦D.2211e ,3e⎡⎤---⎢⎥⎣⎦【答案】A 【解析】【详解】因为函数21y x =+与函数21y x =--的图象关于x 轴对称,根据已知得函数12ln ,(e)ey a x x =-≤≤的图象与函数21y x =--的图象有交点,即方程22ln 1a x x -=--在1,e e x ⎡⎤∈⎢⎥⎣⎦上有解,即22ln 1a x x =--在1,e ex ⎡⎤∈⎢⎥⎣⎦上有解.令()22ln 1gx x x =--,1,e e x ⎡⎤∈⎢⎥⎣⎦,则()()22212222x x g x x x x x--'=-==,可知()g x 在1,1e ⎡⎤⎢⎥⎣⎦上单调递增,在[]1,e 上单调递减,故当1x =时,()()max 12g x g ==-,由于21e e 13g ⎛⎫=--⎪⎝⎭,()2e e 1g =-,且2211e3e -->-,所以212e a -≤≤-.故选:A .第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.设α是第二象限角,(),1P x 为其终边上一点,且1cos 3x α=,则tan α=_________.【答案】4-##【解析】【分析】由三角函数的定义及角所在象限、终边上的点列方程求参数,进而求正切值.【详解】由题设1cos 03x α==<,则21119x =+且0x <,可得x =-,所以1tan 4α==-x .故答案为:4-14.为美化校园,创建读书角,同学将莫言的3部作品《红高粱》《酒国》《蛙》随机地排在书架上,《蛙》恰好放在三本书中间的概率是___________.【答案】13【解析】【分析】利用排列数公式计算三本书不同的排法种数,根据古典概型求解.【详解】3本书随机排在书架上共有33A 种,其中《蛙》恰好放在三本书中间共有22A 种排法,根据古典概型可知22332163A P A ===.故答案为:1315.在平面直角坐标系xOy 中,已知点(,0)(0)A t t ->,(,0)B t ,点C 满足8AC BC =,且点C 到直线:34240l x y -+=的最小距离为95,则实数t 的值是__________.【答案】1【解析】【分析】根据题意求出点C 的轨迹,根据几何意义即可求得实数t 的值.【详解】因为点(,0)(0)A t t ->,(,0)B t ,点C 满足8AC BC =,设()00,C x y ,则()()222000000,,,,88AC x t y BC x t y AC BC x y t =+=-⋅=⇒+=+ ,所以点C 是以原点()0,0O为圆心,半径r的圆,而()0,0O 到直线:34240l x y -+=的距离24955d =>,因为点C 到直线:34240l x y -+=的最小距离为95,所以()2493,0155r r t t -=⇒==>⇒=.故答案为:116.设椭圆22221(0)x y a b a b+=>>的焦点为1F ,2F ,P 是椭圆上一点,且12π3F PF ∠=,若12F PF △的外接圆和内切圆的半径分别为R ,r ,当3R r =时,椭圆的离心率为______.【答案】35##0.6【解析】【分析】由正弦定理得到R =,再根据三角形面积公式和余弦定理得到)3a c r -=,从而根据3R r=得到方程,求出离心率.【详解】由题意得122F F c =,由正弦定理得12122sin 32F F F PF R ∠==,故R =,由椭圆定义可知,122PF PF a +=,故()()12212112PF F S PF PF F F r a c r =++=+V ,又121212211sin 2PF F S PF PF F PF PF =⋅∠=⋅V ,由余弦定理得()2222212121212121212122cos 22PF PF PF PF F F PF PF F F F PF PF PF PF PF +-⋅-+-∠==⋅⋅,即222112424122a PF PF c PF PF -⋅-=⋅,解得2212443a c PFPF -⋅=,故())222244334a c a c a cr --+==,解得)3a c r -=,因为3R r=)33a c =-⨯,解得35c a =.故答案为:35三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.(一)必考题:每题12分,共60分.17.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量()()()cos ,sin m A B A B =-- ,()cos ,sin n B B =- ,且35m n ⋅=- .(1)求sin A 的值;(2)若42a =5b =,求ABC 的面积.【答案】(1)45(2)2【解析】【分析】(1)利用数量积的坐标表示及两角和的余弦公式求出cos A ,即可求出sin A ;(2)由余弦定理求出c ,最后由面积公式计算可得.【小问1详解】因为()()()cos ,sin m A B A B =-- ,()cos ,sin n B B =- ,且35m n ⋅=- ,3cos()cos sin()sin 5A B B A B B ∴---=-,()3cos cos 5A B B A ∴-+==-⎡⎤⎣⎦,又∵A 为ABC 内角,24sin 1cos 5A A ∴=-=,【小问2详解】由余弦定理2222cos a b c bc A =+-,得233225255c c ⎛⎫=+-⨯⨯⨯- ⎪⎝⎭,解得1c =或7c =-(舍去),故1c =,所以114sin 512225ABC S bc A ==⨯⨯⨯= .18.某面包店记录了最近一周A 口味的面包的销售情况,如下表所示:A 口味星期一二三四五六日销量/个16121410181913(1)求最近一周A 口味的面包日销量的中位数.(2)该面包店店主将在下一周每天都制作n 个A 口味的面包,假设下一周A 口味的面包日销量和被记录的这一周的日销量保持一致,每个面包当天卖出可获利6元,当天未售出则将损失5元,从14,15n =中选一个,你应该选择哪一个?说明你的理由.【答案】(1)14(2)14n =【解析】【分析】(1)将销量从小到大的顺序排列,确定中位数;(2)分别求出时的获利情况,然后比较大小来确定.【小问1详解】最近一周A 口味的面包日销量按照从小到大的顺序排列为10,12,13,14,16,18,19.所以A 口味的面包日销量的中位数为14.【小问2详解】当14n =时,下一周A 口味的面包可获利()()()()1412141014141361412141014135511++++++⨯--+-+-⨯=⎡⎤⎣⎦元.当15n =时,下一周A 口味的面包可获利()()()()()15121410151513615121514151015135509++++++⨯--+-+-+-⨯=⎡⎤⎣⎦元.因为511509>,所以应该选14n =.19.已知各项都是正数的数列{}n a ,前n 项和n S 满足()2*2n n n a S a n =-∈N .(1)求数列{}n a 的通项公式.(2)记n P 是数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和,n Q 是数列121n a -⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前n 项和.当2n ≥时,试比较n P 与n Q 的大小.【答案】(1)n a n=(2)n nP Q <【解析】【分析】(1)根据n S 与n a 的关系,结合等差数列的通项公式进行求解即可;(2)根据裂项相消法,结合等比数列前n 项和、二项式定理进行求解即可.【小问1详解】当1n =时,211112a S a a =-=,所以11a =或10a =(舍去),当2n ≥时,有221112,2,n n n n n n a S a a S a ---⎧=-⎨=-⎩两式相减得221112n n n n n n n a a a a a a a ----=-+=+,整理得()()111n n n n n n a a a a a a ---+-=+,因为{}n a 的各项都是正数,所以11n n a a --=,所以{}n a 是首项为1,公差为1的等差数列,所以()111n a n n =+⋅-=;【小问2详解】由(1)得()12n n n S +=,则()1211211n S n n n n ⎛⎫==- ⎪++⎝⎭,所以12111111111212122311n n P S S S n n n ⎛⎫⎛⎫=+++=-+-++-=- ⎪ ⎪++⎝⎭⎝⎭,由(1)得11211,2n n a --=所以21211222111111111121211222212n n n n n Q a a a a --⎛⎫- ⎪⎛⎫⎝⎭=+++=++++==- ⎪⎝⎭- ,因为()()12(11)11022n n n n n n n +=+=+++>+>≥ ,所以1121n n <+,故111121n n->-+,所以当2n ≥时,n n P Q <.20.已知函数()ln 1x f x me x =--.(1)当1m =时,求曲线()y f x =在点(1, (1))f 处的切线方程;(2)若(1,)m ∈+∞,求证:()1f x >.【答案】(1)(1)y e x =-;(2)见解析【解析】【分析】(1)代入1m =,可得()y f x =的解析式.求得导函数,即可得直线方程的斜率,求得点坐标后,由点斜式即可求得切线方程.(2)根据放缩法,由1m >得()ln 1ln 1x x f x me x e x ->--=-.从而证明ln 20x e x -->即可.构造函数()ln x g x e x =-,通过求得导函数1()x g x e x '=-,再令1()x h x e x =-,求得21()0x h x e x '=+>.即可判断1()x h x e x =-的单调性,进而求得1()x g x e x '=-的零点所在区间,并判断出该零点为()ln x g x e x =-的极小值点,求得在该点的最小值,即证明不等式成立.【详解】(1)当1m =时,()ln 1x f x e x =--所以1()x f x e x'=-所以(1)1f e '=-,又因为(1)1 f e =-,即点坐标为(1,1)e -所以曲线()yf x =在点(1,1)e -处的切线方程为(1)(1)(1)y e e x --=--即(1)y e x=-(2)证明:当1m >时,()ln 1ln 1x x f x me x e x ->--=-,要证明()1f x >,只需证明ln 20x e x -->,设()ln x g x e x =-,则1()xg x e x'=-,设1()x h x e x =-,则21()0x h x e x '=+>,所以函数1()()x h x g x e x '==-在(0,)+∞上单调递增,因为121202g e '⎛⎫=-< ⎪⎝⎭,(1)10g e '=->,所以函数1()x g x e x '=-在(0,)+∞上有唯一零点0x ,且01,12x ⎛⎫∈ ⎪⎝⎭,因为()00g x '=,所以001x e x =,即00ln x x =-,当()00,x x ∈时,()0g x '<;当()0,x x ∈+∞时,()0g x '>,所以当0x x =时,()g x 取得最小值()0g x ,故()000001()=e ln 220x g x g x x x x ≥--=+->,01,12x ⎛⎫∈ ⎪⎝⎭综上可知,若(1,)m ∈+∞,()1f x >.【点睛】本题考查了利用导数求切线方程,由导数证明不等式成立.根据导数判断函数的单调性和极值,函数的最值及零点的综合应用,对思维能力要求较高,是高考的常考点和重难点,属于难题.21.已知抛物线2:4C x y =,M 为直线:1l y =-上任意一点,过点M 作抛物线C 的两条切线MA,MB,切点分别为A,B.(1)当M 的坐标为(0,-1)时,求过M,A,B 三点的圆的方程;(2)证明:以AB 为直径的圆恒过点M.【答案】(1)22(1)4x y +-=(2)见证明【解析】【分析】(1)设出过M 点的切线方程,与抛物线方程联立,得到一个元二次方程,它的判别式为零,可以求出切线方程的斜率,这样可以求出A,B 两点的坐标,设出圆心P 的坐标为(0,)a ,由PM PB =,可以求出a ,最后求出圆的方程;(2)设0(,1)M x -,设切点分别为211(,4x A x ,222(,4x B x ,把抛物线方程化24x y =,求导,这样可以求出切线的斜率,求出切线MA 的方程,切线MB 的方程,又因为切线MA 过点0(,1)M x -,切线MB 也过点0(,1)M x -,这样可以发现1x ,2x 是一个关于x 的一元二次方程的两个根,计算出2110(,1)4x MA x x =-+uuu r ,2220(,1)4x MB x x =-+uuu r ,计算MA MB ⋅ ,根据根与系数关系,化简MA MB ⋅ ,最后计算出MA MB ⋅ =0,这样就证明出以AB 为直径的圆恒过点M.【详解】解:(1)解:当M 的坐标为(0,1)-时,设过M 点的切线方程为1y kx =-,由24,1,x y y kx ⎧=⎨=-⎩消y 得2440x kx -+=.(1)令2(4)440k ∆=-⨯=,解得1k =±.代入方程(1),解得A(2,1),B(-2,1).设圆心P 的坐标为(0,)a ,由PM PB =,得12a +=,解得1a =.故过,,M A B 三点的圆的方程为22(1)4x y +-=.(2)证明:设0(,1)M x -,由已知得24x y =,12y x '=,设切点分别为211(,4x A x ,222(,)4x B x ,所以12MA x k =,22MB x k =,切线MA 的方程为2111()42x x y x x -=-即2111124y x x x =-,切线MB 的方程为2222()42x x y x x -=-即2221124y x x x =-.又因为切线MA 过点0(,1)M x -,所以得201111124x x x -=-.①又因为切线MB 也过点0(,1)M x -,所以得202211124x x x -=-.②所以1x ,2x 是方程2011124x x x -=-的两实根,由韦达定理得1202,x x x +=124x x =-.因为2110(,1)4x MA x x =-+uuu r ,2220(,1)4x MB x x =-+uuu r ,所以22121020()()(1)(1)44x x MA MB x x x x ⋅=--+++uuu r uuu r 22221212012012121()()21164x x x x x x x x x x x x ⎡⎤=-+++++-+⎣⎦.将1202,x x x +=124x x =-代入,得0MA MB ⋅=.所以以AB 为直径的圆恒过点M .【点睛】本题考查利用直线与抛物线的位置关系,求出切线的斜率,又考查了利用导数,研究抛物线的切线问题,同时考查了求过三点的圆的方程.考查了方程思想、数学运算能力.(二)选考题,共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.数学中有许多美丽的曲线,例如曲线sin 2:cos x t E y t =⎧⎨=⎩,(t 为参数)的形状如数字8(如图),动点A ,B 都在曲线E 上,对应参数分别为t α=与()π02π2t αα=-<<,设O 为坐标原点,OC OA OB =+ .(1)求C 的轨迹的参数方程;(2)求C 到坐标原点的距离d 的最大值和最小值.【答案】(1)2sin 2sin cos x y ααα=⎧⎨=+⎩,(α为参数,02πα<<)(2,最小值4.【解析】【分析】(1)利用条件找出A ,B 点的坐标,利用向量的基本坐标运算,得出C 的轨迹的参数方程;(2)设出C 的坐标,利用点到直线的距离公式求出表达式,即可求出.【小问1详解】由题意有()sin 2,cos A αα,()sin 2,sin B αα.又OC OA OB =+,所以()2sin 2,sin cos C ααα+,故C 的轨迹的参数方程为2sin 2sin cos x y ααα=⎧⎨=+⎩,(α为参数,02πα<<).【小问2详解】C 点到坐标原点的距离)02πd α=<<.因为[]sin 21,1α∈-,所以当sin 21α=时,d 取得最大值,因为1sin 28α=-,d 取得最小值4.[选修4-5:不等式选讲]23.已知函数()244f x x a x a =+-+.(1)若2a =,求不等式()112f x x +<的解集;(2)若R x ∃∈,[]0,2a ∃∈,使得12f x m ⎛⎫> ⎪⎝⎭能成立,求实数m 的取值范围.【答案】(1){2x x <-或14615x ⎫-<<⎬⎭;(2)(),2-∞.【解析】【分析】(1)分类讨论的方法求解绝对值不等式.(2)利用绝对值的几何意义有2222x a x a a a +-+≤-,将问题转化为[]0,2a ∃∈使2a a m ->成立,结合()2g a a a =-的图象确定其最大值,即可得m 的取值范围.【小问1详解】依题意,得1424412x x x +-++<,当1x ≤-时,1424412x x x --+++<,可得<2x -;当112x -<<-时,1424412x x x ----+<,可得141152x -<<-;当21x ≥-时,1424412x x x +--+<,可得162x -≤<;综上,不等式()112f x x +<的解集为{|2x x <-或146}15x -<<.【小问2详解】依题意,21222f x m x a x a m ⎛⎫>⇔+-+> ⎪⎝⎭,又2222222x a x a x a x a a a +-+≤+--=-,故2a a m ->,令()2g a a a =-,[]0,2a ∈,结合()g a 的图象知,()()max 22g a g ⎡⎤==⎣⎦,故2m <,。
2014年四川省绵阳市高考数学二模试卷(文科)
![2014年四川省绵阳市高考数学二模试卷(文科)](https://img.taocdn.com/s3/m/d9168d7b581b6bd97e19ea6a.png)
2014年四川省绵阳市高考数学二模试卷(文科)学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10小题,共50.0分)1.已知集合S={1,2},集合T={x|(x-1)(x-3)=0},那么S∪T=()A.∅B.{1}C.{1,2}D.{1,2,3}【答案】D【解析】解:由T中的方程解得:x=1或x=3,即T={1,3},∵S={1,2},∴S∪T={1,2,3}.故选:D.求出T中方程的解确定出T,找出S与T的并集即可.此题考查了并集及其运算,熟练掌握并集的定义是解本题的关键.2.复数(1+i)2(1-i)=()A.-2-2iB.2+2iC.-2+2iD.2-2i【答案】B【解析】解:原式=2i•(1-i)=2i+2.故选:B.利用复数的运算法则即可得出.本题考查了复数的运算法则,属于基础题.3.执行如图的程序,若输入的实数x=4,则输出结果为()A.4B.3C.2D.【答案】C【解析】解:∵x=4满足条件x>1,∴执行y=log24=2.∴输出结果为2.故选C.x=4满足条件x>1,则执行y=log24,从而求出最后的y值即可.本题主要考查了条件结构,解题的关键是读懂程序框图.4.下列函数中定义域为R,且是奇函数的是()A.f(x)=x2+xB.f(x)=tanxC.f(x)=x+sinxD.f(x)=【答案】【解析】解:A.∵f(-x)=x2-x≠-f(x),∴A不是奇函数.B..∵函数的定义域不是R,∴B不满足条件.C.函数的定义域为R,且f(-x)=-x-sinx=-(x+sinx)=-f(x),∴C满足条件.D.由>得(x+1)(x-1)<0,解得-1<x<1,即函数的定义域不是R,∴D不满足条件.故选:C.根据函数奇偶性的定义,分别进行判断即可得到结论.本题主要考查函数的定义域和奇偶性的判断,要求熟练掌握常见函数的奇偶性,比较基础.5.已知l,m,n是三条不同的直线,α,β是不同的平面,则下列条件中能推出α⊥β的是()A.l⊂α,m⊂β,且l⊥mB.l⊂α,m⊂β,n⊂β,且l⊥m,l⊥nC.m⊂α,n⊂β,m∥n,且l⊥mD.l⊂α,l∥m,且m⊥β【答案】D【解析】解:对于A,l⊂α,m⊂β,且l⊥m,α,β可以平行、相交、垂直,故A不正确;对于B,l⊂α,m⊂β,n⊂β,且l⊥m,l⊥n,则l不一定与β垂直,故B不正确;对于C,m⊂α,n⊂β,m∥n,且l⊥m,α,β可以平行、相交、垂直,故C不正确;对于D,l⊂α,l∥m,且m⊥β,可得l⊥β,根据面面垂直的判定,可知α⊥β,故D正确.故选:D.利用面面垂直的判定定理,即可得出结论.本题考查面面垂直的判定定理,考查学生分析解决问题的能力,属于中档题.6.抛物线x2=8y的焦点到双曲线的渐近线的距离是()A.1B.2C.D.2【答案】A【解析】解:抛物线x2=8y的焦点坐标为(0,2),双曲线的渐近线的方程为,∴抛物线x2=8y的焦点到双曲线的渐近线的距离是=1.故选A.求出抛物线x2=8y的焦点坐标、双曲线的渐近线的方程,利用点到直线的距离公式,即可得出结论.本题考查双曲线、抛物线简单性质,考查点到直线的距离公式的应用,求出焦点坐标和渐近线方程,是解题的突破口.7.一个机器零件的三视图如图所示,其中俯视图是一个半圆内切于边长为2的正方形,则该机器零件的体积为()A.8+B.8+C.8+D.8+【答案】A【解析】解:由三视图知几何体的下部是边长为2正方体,上部是球,且半球的半径为1,∴几何体的体积V=V正方体+球=23+××π13=8+.故选A.由三视图知几何体的下部是边长为2正方体,上部是球,且半球的半径为1,代入体积公式求出正方体的体积与球的体积相加.本题考查了由三视图求几何体的体积,解题的关键是判断几何体的形状及数据所对应的几何量.8.已知O是坐标原点,点A(-1,1),若点M(x,y)为平面区域上的一个动点,则|AM|的最小值是()A. B. C. D.【答案】A【解析】解:作出不等式组对应的平面区域如图:由图象可知当M为A在直线2x+y-2=0上的射影时,|AM|的距离最小,即d=,故选:A.作出不等式组对应的平面区域,根据两点间的距离公式,结合数形结合即可得到结论.本题主要考查线性规划的应用,利用点到直线的距离公式是解决本题的关键.9.已知△ABC的外接圆的圆心为O,半径为1,若=,则△AOC的面积为()A. B. C. D.【答案】A【解析】又=,∴,平方可得=25,代入数据可得9++16=25,解得=0,可得,以O为原点,,为x,y轴建立平面直角坐标系(如图)设C(m,n)则可得=(1,0),=(0,1),=(m,n)代入=可得:3(1,0)+4(0,1)+5(m,n)=0.解得m=-,n=-∴S△AOC=OA•|n|==故选:A由题意可判,以O为原点,,为x,y轴建立平面直角坐标系,设C(m,n)分别可得,,的坐标,代入=可得m,n的值,而S△AOC=OA•|n|,代计算可得.本题主要考查向量的数量积运算和三角形的面积公式.三角函数和向量的综合题是高考的重点和热点,属中档题.10.若存在x使不等式>成立,则实数m的取值范围为()A. ,B.,C.(- ,0)D.(0,+ )【答案】C【解析】解:不等式>,等价于m<,故存在x使不等式>成立,等价于m<()max,令y=,则y′=1-≤1-1=0,∴y=在[0,+ )上是单调减函数,∴m<0.故选C.不等式>,等价于m<,故存在x使不等式>成立,等价于m<()max,构造函数,确定单调性,即可得出结论.本题考查存在性问题,同时考查了转化的思想,属于中档题.求解本题的关键是正确理解题意,区分存在问题与恒成立问题的区别.二、填空题(本大题共5小题,共25.0分)11.tan390°= ______ .【答案】【解析】解:因为tan390°=tan(360°+30°)=tan30=故答案为根据诱导公式tan(360°+α)=-tanα化简原式,然后利用特殊角的三角函数值求出即可.考查学生运用诱导公式化简求值的能力,以及会用特殊角的三角函数值进行求值.12.若直线l1:x+(1+k)y=2-k与l2:kx+2y+8=0平行,则k的值是______ .【答案】1【解析】解:∵直线l1:x+(1+k)y=2-k与l2:kx+2y+8=0平行,∴.∴,化为k2+k-2=0,解得k=1或-2,当k=-2时,两条直线重合,应舍去.故k=1.故答案为:1.由于直线l1:x+(1+k)y=2-k与l2:kx+2y+8=0平行,可得.解出并验证即可.本题考查了两条直线平行与斜率的关系,属于基础题.13.如图的茎叶图是甲、乙两人在4次模拟测试中的成绩,其中一个数字被污损,则甲的平均成绩不超过乙的平均成绩的概率为______ .【答案】【解析】解:由已知中的茎叶图可得甲的4次综合测评中的成绩分别为88,89,91,92,设污损数字为x,x∈N,则乙的5次综合测评中的成绩分别为83,83,87,99,90+x,则乙的平均成绩:(85+83+95+90+x)=88.25+,当x=9,甲的平均数小于乙的平均数,当x=8,甲的平均数小于乙的平均数,当x=7,甲的平均数正好等于乙的平均数,当0≤x≤6,甲的平均数大于乙的平均数,不满足条件.故甲的平均成绩不超过乙的平均成绩的概率为,故答案为:.由已知的茎叶图,求出甲乙两人的平均成绩,然后求出乙的平均成绩不小于甲的平均成绩的概率,得到答案.本题考查的知识点是平均数,茎叶图,古典概型概率计算公式,要求会读图,并且掌握茎叶图的特点:个位数从主干向外越来越大,属简单题.14.已知A是抛物线y2=4x上一点,F是抛物线的焦点,直线FA交抛物线的准线于点B (点B在x轴上方),若|AB|=2|AF|,则点A的坐标为______ .【答案】,或(,)【解析】解:设B(-1,t),A(m,n),则∵抛物线y2=4x,∴F(1,0),∵|AB|=2|AF|(点B在x轴上方),∴=2(n>0)或=(n<0),=2(n>0)时,(m+1,n-t)=2(1-m,-n),∴,∴m=,代入y2=4x可得n=;=(n<0)时,(m+1,n-t)=2(m-1,n),∴m=3,代入y2=4x可得n=-2.∴点A的坐标为,或(,).故答案为:,或(,).设B(-1,t),A(m,n),则根据|AB|=2|AF|(点B在x轴上方),可得=2(n>0)或=(n<0),分类讨论,即可求得点A的坐标.本题考查抛物线的性质,考查向量知识的运用,考查分类讨论的数学思想,属于中档题.15.P是以F1,F2为焦点的椭圆>>上的任意一点,若∠PF1F2=α,∠PF2F1=β,且cosα=,sin(α+β)=,则此椭圆的离心率为______ .【答案】【解析】解:∵cosα=,sin(α+β)=,∴sinα=,cos(α+β)=±,∴sinβ=sin[(α+β)-α]=•+•=或•-•<0(舍去),设|PF1|=m,|PF2|=n,则由正弦定理可得,∴m=n,∵m+n=2a,∴n=,m=由余弦定理可得,整理可得,∵0<e<1,∴e=.故答案为:.先计算sinβ,设|PF1|=m,|PF2|=n,再利用正弦定理求出n=,m=,利用余弦定理,即可得出结论.本题考查正弦定理、余弦定理的运用,考查椭圆的离心率,考查学生的计算能力,综合性强.三、解答题(本大题共6小题,共75.0分)16.已知向量=(sinx,2cosx),=(2sinx,sinx),设函数f(x)=•.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)若将f(x)的图象向左平移个单位,得到函数g(x)的图象,求函数g(x)在区间,上的最大值和最小值.【答案】由-+2kπ≤2x-≤+2kπ,k∈Z,得-+kπ≤x≤+kπ,k∈Z,∴f(x)的单调递增区间是[-+kπ,+kπ](k∈Z).(II)由题意g(x)=sin[2(x+)-]+1=sin(2x+)+1,由≤x≤,可得≤2x+≤,∴0≤g(x)≤+1,即g(x)的最大值为+1,g(x)的最小值为0.【解析】(Ⅰ)利用两个向量的数量积公式求得f(x)=sin(2x-)+1,由-+2kπ≤2x-≤+2kπ,k∈Z,求得x的范围,可得f(x)的单调递增区间.(II)由题意求得g(x)=sin(2x+)+1,由x的范围,可得2x+的范围,从而求得g(x)的最大值和最小值.本题主要考查两个向量的数量积公式,三角函数的恒等变换,正弦函数的单调性,属于中档题.17.已知首项为的等比数列{a n}是递减数列,其前n项和为S n,且S1+a1,S2+a2,S3+a3成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)已知b n=a n•log2a n,求数列{b n}的前n项和T n.【答案】解:(I)设等比数列{a n}的公比为q,由题知a1=,又∵S1+a1,S2+a2,S3+a3成等差数列,∴2(S2+a2)=S1+a1+S3+a3,变形得S2-S1+2a2=a1+S3-S2+a3,即得3a2=a1+2a3,∴q=+q2,解得q=1或q=,…(4分)又由{a n}为递减数列,得q=,∴a n=a1q n-1=()n.…(6分)(Ⅱ)∵a n=a1q n-1=()n,∴b n=a n log2a n=-n∙()n,∴,,两式相减得:=,解得.…(12分)【解析】(Ⅰ)由题设条件,利用等差数列和等比数列的性质能求出等比数列{a n}的首项和公比,由此能求出数列{a n}的通项公式.(Ⅱ)由(Ⅰ)知b n=a n log2a n=-n∙()n,由此利用错位相减法能求出数列{b n}的前n项和T n.本题考查数列的通项公式和前n项和的求法,解题时要熟练掌握等差数列和等比数列的性质,注意错位相减求和法的合理运用.18.据《中国新闻网》10月21日报道,全国很多省市将英语考试作为高考改革的重点,一时间“英语考试该如何改”引起广泛关注.为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了3600人调查(若所选择的在校学生的人数低于被调查人群总数的80%,则认为本次调查“失效”),就“是否取消英语听力”的问题,调查统计的结果如下表:已知在全体样本中随机抽取1人,抽到持“应该保留”态度的人的概率为0.05.(Ⅰ)现用分层抽样的方法在所有参与调查的人中抽取360人进行深入访谈,问应在持“无所谓”态度的人中抽取多少人?(Ⅱ)已知y≥657,z≥55,求本次调查“失效”的概率.【答案】解:(I)∵抽到持“应该保留”态度的人的概率为0.05,∴=0.05,解得x=60.∴持“无所谓”态度的人数共有3600-2100-120-600-60=720.∴应在“无所谓”态度抽取720×=72人.(Ⅱ)∵y+z=720,y≥657,z≥55,故满足条件的(y,z)有:57),(664,56),(665,55)共9种.记本次调查“失效”为事件A,若调查失效,则2100+120+y<3600×0.8,解得y<660.∴事件A包含:(657,63),(658,62),(659,61)共3种.∴P(A)==.【解析】(I)由=0.05,解得x的值,可得持“无所谓”态度的人数,再根据抽样的比例求得应在“无所谓”态度抽取的人数.(Ⅱ)由y+z=720,y≥657,z≥55,用列举法求得满足条件的(y,z)有9种,若调查失效,则2100+120+y<3600×0.8,解得y<660,列举求得调查失效的情况共3种,由此求得调查失效的概率.本题主要考查古典概型及其概率计算公式的应用,列举法,是解决古典概型问题的一种重要的解题方法.还考查了分层抽样的定义和方法,属于基础题.19.如图,四边形ABCD为矩形,四边形ADEF为梯形,AD∥FE,∠AFE=60°,且平面ABCD⊥平面ADEF,AF=FE=AB==2,点G为AC的中点.(Ⅰ)求证:EG∥平面ABF;(Ⅱ)求三棱锥B-AEG的体积;(Ⅲ)试判断平面BAE与平面DCE是否垂直?若垂直,请证明;若不垂直,请说明理由.【答案】(I)证明:取AB中点M,连FM,GM.∵G为对角线AC的中点,∴GM∥AD,且GM=AD,又∵FE∥AD,∴GM∥FE且GM=FE.∴四边形GMFE为平行四边形,即EG∥FM.又∵EG⊄平面ABF,FM⊂平面ABF,∴EG∥平面ABF.…(4分)(Ⅱ)解:作EN⊥AD,垂足为N,由平面ABCD⊥平面AFED,面ABCD∩面AFED=AD,得EN⊥平面ABCD,即EN为三棱锥E-ABG的高.∵在△AEF中,AF=FE,∠AFE=60°,∴△AEF是正三角形.∴∠AEF=60°,∴EN=AE∙sin60°=.∴三棱锥B-AEG的体积为.…(8分)(Ⅲ)解:平面BAE⊥平面DCE.证明如下:∵四边形ABCD为矩形,且平面ABCD⊥平面AFED,∴CD⊥平面AFED,∴CD⊥AE.∵四边形AFED为梯形,FE∥AD,且∠AFE=60°,∴∠FAD=120°.又在△AED中,EA=2,AD=4,∠EAD=60°,由余弦定理,得ED=.∴EA2+ED2=AD2,∴ED⊥AE.又∵ED∩CD=D,∴AE⊥平面DCE,又AE⊂面BAE,∴平面BAE⊥平面DCE.…(12分)【解析】(Ⅰ)取AB中点M,连接MG,则EF∥MG,①即得证.(Ⅱ)转换三棱锥B-AEG为E-ABG即可求得体积.(Ⅲ)只要证明AE⊥CDE即可.本题考查了线面平行的判定,借助体积的计算考查了线面垂直以及面面垂直的判定和性质.20.已知圆心为C的圆,满足下列条件:圆心C位于x轴正半轴上,与直线3x-4y+7=0相切,且被y轴截得的弦长为,圆C的面积小于13.(Ⅰ)求圆C的标准方程;(Ⅱ)设过点M(0,3)的直线l与圆C交于不同的两点A,B,以OA,OB为邻边作平行四边形OADB.是否存在这样的直线l,使得直线OD与MC恰好平行?如果存在,求出l的方程;如果不存在,请说明理由.【答案】解:(I)设圆C:(x-a)2+y2=R2(a>0),由题意知,解得a=1或a=,…(3分)又∵S=πR2<13,∴a=1,∴圆C的标准方程为:(x-1)2+y2=4.…(6分)(Ⅱ)当斜率不存在时,直线l为:x=0不满足题意.当斜率存在时,设直线l:y=kx+3,A(x1,y1),B(x2,y2),又∵l与圆C相交于不同的两点,联立,消去y得:(1+k2)x2+(6k-2)x+6=0,…(9分)∴△=(6k-2)2-24(1+k2)=3k2-6k-5>0,解得<或>.x1+x2=,y1+y2=k(x1+x2)+6=,=(x1+x2,y1+y2),,,假设∥,则-3(x1+x2)=y1+y2,∴,解得 ,,,假设不成立.∴不存在这样的直线l.…(13分)【解析】(Ⅰ)利用点到直线的距离公式,结合勾股定理,建立方程,根据圆C的面积小于13,即可求圆C的标准方程;(Ⅱ)分类讨论,设出直线方程与圆的方程联立,利用韦达定理,再假设∥,则-3(x1+x2)=y1+y2,即可得出结论.本题考查圆的方程,考查直线与圆的位置关系,考查韦达定理的运用,考查学生分析解决问题的能力,综合性强.21.设函数f(x)=2ax2+(a+4)x+lnx.(Ⅰ)若f(x)在x=处的切线与直线4x+y=0平行,求a的值;(Ⅱ)讨论函数f(x)的单调区间;(Ⅲ)若函数y=f(x)的图象与x轴交于A,B两点,线段AB中点的横坐标为x0,证明f′(x0)<0.【答案】解:(I)由题知f(x)=2ax2+(a+4)x+lnx,则′.又∵f(x)的图象在x=处的切线与直线4x+y=0平行,∴′,即4a×+×(a+4)+1=-1,解得a=-6.…(4分)(Ⅱ)由(I)得,′,由题知f(x)=2ax2+(a+4)x+lnx的定义域为(0,+ ),由x>0,得>0.①当a≥0时,对任意x>0,f′(x)>0,∴此时函数f(x)的单调递增区间为(0,+ ).②当a<0时,令f′(x)=0,解得,当<<时,f′(x)>0,当>时,f′(x)<0,此时,函数f(x)的单调递增区间为(0,),单调递减区间为(,+ ).(Ⅲ)不妨设A(x1,0),B(x2,0),且0<x1<x2,由(Ⅱ)知a<0,于是要证f'(x)<0成立,只需证:>即>.∵,①,②①-②得,即,∴,故只需证>,即证明<,即证明<,变形为<,设(0<t<1),令,则′=,显然当t>0时,g′(t)≥0,当且仅当t=1时,g′(t)=0,∴g(t)在(0,+ )上是增函数.又∵g(1)=0,∴当t∈(0,1)时,g(t)<0总成立,命题得证.…(14分)【解析】(Ⅰ)利用求导公式求出导数并化简,由导数的几何意义和题意可得f′()=-4,解出a的值即可;(Ⅱ)对导数因式分解后,再求出函数f(x)的定义域,然后在定义域内分a≥0,a<0两种情况,解不等式f′(x)>0,f′(x)<0可得函数的单调区间;(Ⅲ)设出函数y=f(x)的图象与x轴交于A,B两点的横坐标,利用分析法和根据(II)结论进行证明,根据要证明的结论和分析的过程,利用放缩法、换元法、构造函数法解答,再利用导数求出函数的最值,即可证明结论.本题考查了利用导数研究函数的单调性、最值,导数的几何意义及不等式的证明问题,体现了分类讨论和转化的思想方法.考查了学生观察、推理以及创造性地分析问题、解决问题的能力,综合性较强,计算量大,难度较大,对能力要求较高.。
2014年绵阳二诊文科综合答案
![2014年绵阳二诊文科综合答案](https://img.taocdn.com/s3/m/0aedc20376c66137ee06192f.png)
第Ⅰ卷(选择题,共48分)一、选择题(每小题4分,共48分)1—5:BBDAD 6—10:ACCAD 11—12:BC第Ⅱ卷(非选择题,共52分)二、非选择题(52分)13(24分)(1)最适宜生长的土壤以酸性、微酸性土壤为主(2分);育苗期需气温(≥10℃)温暖(2分),生长期水热需求量大(2分)。
(2)全国种植面积整体呈现下降趋势(2分);传统种植大省中的云南、四川、湖南等省,面积有所增加(2分),尤其是云南增长最快(2分),而河南、贵州、黑龙江等省种植面积减少明显(2分);小规模种植省区,除福建省外,面积均有所减少。
(2分)(3)吸烟有害健康,减少烤烟种植面积可以减少烤烟带来的危害;与优质云烟相比,其在竞争中处于劣势;该省纬度位置较高,低温冻害频率大,对烤烟(初期)生长不利;通过结构调整,可进一步加强粮食、大豆等农业专业化生产,扩大药材等特色作物种植面积。
(每点2分,其它言之有理酌情给分)。
14(28分)(1)地势整体上西(北)高东(南)低(2分)。
理由是河流几乎都自西(北)向东(南)流(2分)。
(2)由南向北干燥度愈来愈大(2分)。
原因:受秦岭阻挡,由南向北(受夏季风影响愈来愈小),降水量逐渐减少(2分);愈向北,离冬季风的源地越近(气候的大陆性越强),大风天气越多,蒸发愈强(2分);愈向北,植被覆盖率愈低,蒸发更旺盛(2分)。
(3)北部:位于秦岭以北(1分),旱地农业为主(1分),作物两年三熟(1分),主要粮食作物小麦(谷子),经济作物棉花(1分)南部:位于秦岭以南(1分),水田农业(立体农业)为主(1分),作物一年两熟(1分),主要粮食作物是水稻,经济作物油菜(1分)(4)赞同。
理由:煤炭在我国的能源消费结构中长期占主要地位,市场需求量大;该省是我国的煤炭储量和生产大省,(紧邻京津唐地区,距沪宁杭地区近),能源的区位优势明显;大力发展火电可以缓减煤炭外运压力;围绕发电和炼焦等产业,能够延长产业链,提高能源的综合利用;并能减少三废的排放量;其最终目的是将资源优势转化为经济优势。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
保密 ★ 启用前 【考试时间:2014年1月16日15:00—17:00】绵阳市高中2011级第二次诊断性考试数 学(文科)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷2至4页.满分150分.考试时间120分钟.注意事项:1.答题前,考生务必将自己的姓名.考号用0.5毫米的黑色签字笔填写在答题卡上,并将条形码粘贴在答题卡的指定位置.2.选择题使用2B 铅笔填涂在答题卡对应题目标号的位置上,非选择题用0.5毫米的黑色签字笔书写在答题卡的对应框内,超出答题区域书写的答案无效;在草稿纸.试题卷上答题无效.3.考试结束后,将答题卡收回.第Ⅰ卷(选择题,共50分)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合S ={1,2},集合T ={x |(x -1)(x -3)=0},那么S ∪T = A .∅B .{1}C .{1,2}D .{1,2,3}2.复数(1+i)2(1-i)= A .-2-2iB .2+2iC .-2+2iD .2-2i 3.执行右图的程序,若输入的实数x =4,则输出结果为A .4B .3C .2D .144.下列函数中定义域为R ,且是奇函数的是 A .()f x =x 2+x B .()f x =tan x C .()f x =x +sin xD .()f x =1lg1xx-+5.已知l ,m ,n 是三条不同的直线,α,β是不同的平面,则下列条件中能推出α⊥β的是 A .l ⊂α,m ⊂β,且l ⊥mB .l ⊂α,m ⊂β,n ⊂β,且l ⊥m ,l ⊥nC .m ⊂α,n ⊂β,m //n ,且l ⊥mD .l ⊂α,l //m ,且m ⊥β6.抛物线28x y =的焦点到双曲线2213y x -=的渐近线的距离是A .1B .2 CD .7.一个机器零件的三视图如图所示,其中俯视图是一个半圆内切于边长为2的正方形,则该机器零件的体积为 A .8+3πB .8+23πC .8+83πD .8+163π8.已知O 是坐标原点,点(11)A -,,若点()M x y ,为平面区域220240330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,,上的一个动点,则|AM |的最小值是 ABCD9.已知△ABC 的外接圆的圆心为O ,半径为1,若345OA OB OC ++=0,则△AOC 的面积为 A .25 B . 12C .310D .6510.若存在x 使不等式xx me -成立,则实数m 的取值范围为 A .1()e -∞-, B .1()e e-,C .(0)-∞,D .(0)+∞,第Ⅱ卷(非选择题,共100分)二.填空题:本大题共5小题,每小题5分,共25分. 11.tan300º=______.12.若直线l 1:x +(1+k )y =2-k 与l 2:kx +2y +8=0平行,则k 的值是_____. 13.右图的茎叶图是甲、乙两人在4次模拟测试中的成绩,其中一个数字被污损,则甲的平均成绩不超过乙的平均成绩的概率为 .甲 乙 885 3 9 9 21 ● 5俯视图正视图侧视图14.已知A 是抛物线y 2=4x 上一点,F 是抛物线的焦点,直线F A 交抛物线的准线于点B(点B 在x 轴上方),若|AB |=2|AF |,则点A 的坐标为________.15.P 是以F 1,F 2为焦点的椭圆22221(0)x y a b a b+=>>上的任意一点,若∠PF 1F 2=α,∠PF 2F 1=β,且cos α,sin(α+β)=35,则此椭圆的离心率为 . 三.解答题:本大题共6小题,共75分.解答应写出文字说明.证明过程或演算步骤. 16.(本题满分12分)已知向量a =(sin 2cos )x x ,,b =(2sin sin )x x ,,设函数()f x =a ⋅b . (Ⅰ)求()f x 的单调递增区间; (Ⅱ)若将()f x 的图象向左平移6π个单位,得到函数()g x 的图象,求函数()g x 在区间7[]1212ππ,上的最大值和最小值. 17.(本题满分12分)已知首项为12的等比数列{a n }是递减数列,其前n 项和为S n ,且S 1+a 1,S 2+a 2,S 3+a 3成等差数列.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)已知2log n n n b a a =⋅,求数列{b n }的前n 项和n T . 18.(本题满分12分)据《中国新闻网》10月21日报道,全国很多省市将英语考试作为高考改革的重点,一时间“英语考试该如何改”引起广泛关注.为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了3600人调查(若所选择的在校学生的人数低于被调查人群总数的80%,则认为本次调查“失效”),就“是否取消英语听力”的问题,调查统计的结果如下表:. (Ⅰ)现用分层抽样的方法在所有参与调查的人中抽取360人进行深入访谈,问应在持“无所谓”态度的人中抽取多少人?(Ⅱ)已知y ≥657,z ≥55,求本次调查“失效”的概率.19.(本题满分12分)如图,四边形ABCD 为矩形,四边形ADEF 为梯形,AD //FE ,∠AFE =60º,且平面ABCD ⊥平面ADEF ,AF =FE =AB =12AD =2,点G 为AC 的中点.(Ⅰ)求证:EG //平面ABF ; (Ⅱ)求三棱锥B -AEG 的体积;(Ⅲ)试判断平面BAE 与平面DCE 是否垂直?若垂直,请证明;若不垂直,请说明理由. 20.(本题满分13分)已知圆心为C 的圆,满足下列条件:圆心C 位于x 轴正半轴上,与直线3x -4y +7=0相切,且被y轴截得的弦长为C 的面积小于13. (Ⅰ)求圆C 的标准方程;(Ⅱ)设过点M (0,3)的直线l 与圆C 交于不同的两点A ,B ,以OA ,OB 为邻边作平行四边形OADB .是否存在这样的直线l ,使得直线OD 与MC 恰好平行?如果存在,求出l 的方程;如果不存在,请说明理由. 21.(本题满分14分)设函数2()2(4)ln f x ax a x x =+++. (Ⅰ)若()f x 在x =41处的切线与直线4x +y =0平行,求a 的值; (Ⅱ)讨论函数()f x 的单调区间;(Ⅲ)若函数()y f x =的图象与x 轴交于A ,B 两点,线段AB 中点的横坐标为0x ,证明0()0f x '<.绵阳市高2011级第二次诊断性考试数学(文)参考解答及评分标准一、选择题:本大题共10小题,每小题5分,共50分.DBCCD AABAC二、填空题:本大题共5小题,每小题5分,共25分.11.12.113.0.314.(3-,或(31,332)15.7三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.解:(Ⅰ) f (x )=a •b =2sin 2x +2sin x cos x =22cos 12x-⨯+sin2xx -4π)+1, ……………………………… 3分 由-2π+2k π≤2x -4π≤2π+2k π,k ∈Z ,得-8π+k π≤x ≤83π+k π,k ∈Z ,∴ f (x )的单调递增区间是[-8π+k π,83π+k π]( k ∈Z ). …………………… 6分(II )由题意g (x sin[2(x +6π)-4πx+12π)+1,………… 9分 由12π≤x ≤127π得4π≤2x+12π≤45π,∴ 0≤g (x ),即 g (x )+1,g (x )的最小值为0. … 12分 17.解:(I )设等比数列{a n }的公比为q ,由题知a 1= 12,又∵ S 1+a 1,S 2+a 2,S 3+a 3成等差数列, ∴ 2(S 2+a 2)=S 1+a 1+S 3+a 3,变形得S 2-S 1+2a 2=a 1+S 3-S 2+a 3,即得3a 2=a 1+2a 3,∴ 32 q =12 +q 2,解得q =1或q=12 , …………………………………………4分又由{a n }为递减数列,于是q=12,∴ a n =a 11-n q =( 12 )n . …………………………………………………………6分(Ⅱ)由于b n =a n log 2a n =-n ∙( 12)n ,∴ ()211111[1+2++1]2222n nn T n n -=-⋅⋅-⋅+⋅ ()()(),于是()211111[1++1]2222n n n T n n +=-⋅-⋅+⋅ ()()(),两式相减得:2111111[()++()]22222n n n T n +=--⋅ +()111[1()]122=1212n n n +⋅--+⋅-(),整理得222n nn T +=-. ………………………………………………………12分 18.解:(I )∵ 抽到持“应该保留”态度的人的概率为0.05,∴3600120x+=0.05,解得x =60. ………………………………………………2分 ∴ 持“无所谓”态度的人数共有3600-2100-120-600-60=720. ……… 4分∴ 应在“无所谓”态度抽取720×3603600=72人. ………………………… 6分(Ⅱ)∵ y +z =720,y ≥657,z ≥55,故满足条件的(y ,z )有:(657,63),(658,62),(659,61),(660,60),(661,59),(662,58),(663,57),(664,56),(665,55)共9种. …………………………… 8分 记本次调查“失效”为事件A ,若调查失效,则2100+120+y <3600×0.8,解得y <660.∴ 事件A 包含:(657,63),(658,62),(659,61)共3种.∴ P (A )= 39 =13 . …………………………………………………………… 12分19.(I )证明:取AB 中点M ,连FM ,GM .∵ G 为对角线AC 的中点,∴ GM ∥AD ,且GM =12 AD ,又∵ FE ∥12 AD ,∴ GM ∥FE 且GM =FE .∴四边形GMFE 为平行四边形,即EG ∥FM . 又∵ EG ⊄平面ABF ,FM ⊂平面ABF ,∴ EG ∥平面ABF .…………………………………………………………… 4分 (Ⅱ)解:作EN ⊥AD ,垂足为N ,由平面ABCD ⊥平面AFED ,面ABCD ∩面AFED =AD , 得EN ⊥平面ABCD ,即EN 为三棱锥E -ABG 的高. ∵ 在△AEF 中,AF =FE ,∠AFE =60º,∴△AEF是正三角形.∴∠AEF=60º,由EF//AD知∠EAD=60º,∴EN=AE∙sin60º∴三棱锥B-AEG的体积为11122332B AEG E ABG ABGV V S EN--∆==⋅=⨯⨯⨯=.……………………8分(Ⅲ)解:平面BAE⊥平面DCE.证明如下:∵四边形ABCD为矩形,且平面ABCD⊥平面AFED,∴CD⊥平面AFED,∴CD⊥AE.∵四边形AFED为梯形,FE∥AD,且60AFE∠=°,∴=120FAD∠°.又在△AED中,EA=2,AD=4,60EAD∠=°,由余弦定理,得ED=∴EA2+ED2=AD2,∴ED⊥AE.又∵ED∩CD=D,∴AE⊥平面DCE,又AE⊂面BAE,∴平面BAE⊥平面DCE.…………………………………………………12分20.解:(I)设圆C:(x-a)2+y2=R2(a>0),由题意知RR==⎩,,解得a=1 或a=138,………………………………………3分又∵S=πR2<13,∴a=1,∴圆C的标准方程为:(x-1)2+y2=4.……………………………………6分(Ⅱ)当斜率不存在时,直线l为:x=0不满足题意.当斜率存在时,设直线l:y=kx+3,A(x1,y1),B(x2,y2),又∵l与圆C相交于不同的两点,联立223(1)4y kxx y=+⎧⎨-+=⎩,,消去y得:(1+k2)x2+(6k-2)x+6=0,…………………9分∴Δ=(6k-2)2-24(1+k2)=36k2-6k-5>0,解得13k <-或13k >+ x 1+x 2=2621k k --+,y 1+ y 2=k (x 1+x 2)+6=2261k k++, 121211()()22OD OA OB x x y y =+=++ ,,(13)MC =- ,, 假设OD ∥MC,则12123()x x y y -+=+,∴ 226226311k k k k -+⨯=++,解得3(1(1)4k =∉-∞⋃+∞,,假设不成立. ∴ 不存在这样的直线l . ……………………………………………………13分21.解:(I )由题知f (x )=2ax 2+(a +4)x +ln x 的定义域为(0,+∞),且x x a ax x f 1)4(4)(2+++='.又∵ f (x )的图象在x =14处的切线与直线4x +y =0平行,∴ 1()44f '=-,解得 a =-6.…………………………………………………………………… 4分(Ⅱ)xax x x x a ax x f )1)(14(1)4(4)(2++=+++=', 由x >0,知xx 14+>0. ①当a ≥0时,对任意x >0,)(x f '>0, ∴ 此时函数f (x )的单调递增区间为(0,+∞). ②当a <0时,令)(x f '=0,解得1x a=-, 当10x a <<-时,)(x f '>0,当1x a>-时,)(x f '<0, 此时,函数f (x )的单调递增区间为(0,a 1-),单调递减区间为(a1-,+∞). ………………………………………………………………9分(Ⅲ)不妨设A (1x ,0),B (2x ,0),且120x x <<,由(Ⅱ)知 0a <,于是要证)(x f '<0成立,只需证:01x a >-即1212x x a+>-.∵()21111()24ln 0f x ax a x x =+++=, ①()22222()24ln 0f x ax a x x =+++=, ②①-②得2212111222()()2(4)ln 2(4)ln 0f x f x ax a x x ax a x x -=+++--+-=, 即2212121212(22)4()ln ln 0a x x x x x x x x -+-+-+-=,∴ 22112211222214ln 4ln x x x x a x x x x +---=+--,故只需证2212112211222224ln 4ln x x x x x x x x x x ++-->+--, 即证明()()221212121122()[4ln ln ]4242x x x x x x x x x x +-+-<+--,即证明12121222ln ln x x x x x x --<+,变形为11212222ln 1x xx x x x ⋅-<+,设12x t x =(01)t <<,令22()ln 1t g t t t -=-+, 则214()(1)g t t t '=-+22(1)(1)t t t -=+,显然当t >0时,)(t g '≥0,当且仅当t =1时,)(t g '=0, ∴ g (t )在(0,+∞)上是增函数. 又∵ g (1)=0,∴ 当t ∈(0,1)时,g (t )<0总成立,命题得证.……………………………14分。