第七章 相关分析与回归分析(补充例题)
第7章 相关分析与回归分析(含SPSS)
四、偏相关分析
(一) 偏相关分析和偏相关系数 偏相关分析也称净相关分析,它在控制其他变量 的线性影响的条件下分析两变量间的线性相关性, 所采用的工具是偏相关系数(净相关系数)。
偏相关分析的主要用途是根据观测资料应用偏相 关分析计算偏相关系数,可以判断哪些解释变量对 被解释变量的影响较大,而选择作为必须考虑的解 释变量。这样在计算多元回归分析时,只要保留起 主要作用的解释变量,用较少的解释变量描述被解 释变量的平均变动量。
(7.7)
偏相关系数的取值范围及大小含义与相关系数相 同。
2、对样本来自的两总体是否存在显著的偏相关 进行推断。
(1)提出原假设:两总体的偏相关系数与零无显 著差异。
(2)选择检验统计量。偏相关系数的检验统计量 为 t 统计量。 (3)计算检验统计量的观测值和相伴概率 p 。
(4)给定显著性水平 ,并作出决策。如果相 伴概率值小于或等于给定的显著性水平,则拒绝 原假设;如果相伴概率值大于给定的显著性水平, 则不能拒绝原假设。
(二)偏相关系数在SPSS中的实现
1、建立或打开数据文件后,进入Analyze→ Correlate →Partial主对话框,如图7-6所示。
图7-6 偏相关分析主对话框
2、选择分析变量送入Valiables框,选择控制变
量进入Controlling for框。
3、在Test of Significance 栏中选择输出偏相
图7-7 偏相关分析的选项对话框
(1)Statistics 统计量选择项,有两个选项: ①
Means and standard deviations 复选项,要求
SPSSZero-order correlations 复选项,要求显示零阶
第7章 回归分析与相关分析(3)-可线性化的非线性回归
第二篇回归分析与相关分析第7章可线性化的非线性回归线性模型在现实中其实是较少出现的,大量的规律都表现为非线性模型。
线性模型的价值与其说在于处理线性问题,毋宁说在于处理线性化的非线性模型,或者说近似拟合相互作用不太强烈非线性系统。
在实际工作中,我们会遇到许多简单而又实用的非线性模型,这些模型都可以通过某种数学变换转换为线性关系,从而利用最小二乘技术进行回归运算。
比较常见的有指数模型、对数模型、幂指数模型、双曲线模型、抛物线模型、正态分布模型,等等。
下面逐一举例说明。
§7.1 线性与非线性非线性是相对于线性关系而言的。
当变量数目一定的时候,线性关系只有一种,而非线性关系各式各样,千变万化。
传统的科学理论主要是基于线性理论建立起来的,非线性科学的兴起历史并不长久。
虽然非线性理论年龄尚幼,但简单的非线性关系的应用却历史悠久。
首先需要区别函数y=f(x)对自变量x的依赖关系。
对于一个变量而言,线性形式为=,bxy+a这是只有一个自变量的一次多项式表达,式中a、b为参数,表现为常数形式。
如果多项式出现大于1的幂次,就是非线性函数。
最简单的非线性函数之一是抛物线,这是一种二次多项式=2,cy++axbx式中a、b、c为参数。
一般函数为f=,yμ(x),式中μ为参量集。
我们可以从如下方面理解线性关系和非线性关系的区别。
第一,线性是简单的比例关系,而非线性则是对简单比例关系的偏离。
有位学者打了一个通俗的比方,线性就是水涨船高,多多益善;非线性就是过犹不及,物极必反。
以三次曲线为例,该曲线是对线性关系的局部偏离,科学上称之为“微扰”或者“摄动”。
第二,线性关系表明各个变量之间互不相干,独立贡献,非线性关系则意味着相互作用。
线性关系暗示各个变量可以相互叠加,对于非线性而言,暗示整体不等于部分之和。
因此,线性回归要求各个自变量彼此独立,因为最小二乘技术主要是基于线性思想发展的一种参数求解方法。
第三,线性关系意味着信号的频率成分不变,而非线性关系则暗示频率结构发生变化。
第七章 相关回归分析 思考题及练习题
实用价值越小。
13、在相关分析中,要求相关的两个变量( )
A、都是随机变量
B、都不是随机变量
C、其中因变量是随机变量 D、其中自变量是随机变量
14、在简单回归直线
中,
表示( ) A、当
增加一个单位时,
增加
的数量 B、当
增加一个单位时,
增加
的数量 C、当
增加一个单位时,
的平均增加值 D、当
增加一个单位时,
按一定数额变化时,变量
也随之近似地按固定的数额变化,那么,这时变量
和
之间存在着( )
A、正相关关系
B、负相关关系
C、直线相关关系 D、曲线相关关系
18、两个变量间的相关关系称为( )
A、单相关
B、无相关
C、复相关
D、多相关
19、如果两个变量之间的相关系数
,说明这两个变量之间存在( )。 A、低度相关关系 B、高度相关关系 C、完全相关关系 D、显著相关关系 20、已知
第七章 思考题及练习题
(一) 填空题
1、 1、 在相关关系中,把具有因果关系相互联系的两个变
量中起影响作用的变量称为_______,把另一个说明观察结果的
变量称为________。
2、 2、 现象之间的相关关系按相关的程度分有________相
关、________相关和_______相关;按相关的方向分有________
E、 E、回归方程实用价值大小的指标 10、现象之间相互联系的类型有( )
A、函数关系 B、回归关系 C、相关关系 D、随机关系 E、结构关系 11、相关关系种类( ) A、从相关方向分为正相关和负相关 B、从相关形态分为线性相关和非线性相关 C、从相关程度分为完全相关、不完全相关和零相关
第七章回归与相关分析练习及答案
第七章回归与相关分析一、填空题1.现象之间的相关关系按相关的程度分为、和;按相关的形式分为和;按影响因素的多少分为和。
2.两个相关现象之间,当一个现象的数量由小变大,另一个现象的数量,这种相关称为正相关;当一个现象的数量由小变大,另一个现象的数量,这种相关称为负相关。
3.相关系数的取值X围是。
4.完全相关即是关系,其相关系数为。
5.相关系数,用于反映条件下,两变量相关关系的密切程度和方向的统计指标。
6.直线相关系数等于零,说明两变量之间;直线相关系数等1,说明两变量之间;直线相关系数等于—1,说明两变量之间。
7.对现象之间变量的研究,统计是从两个方面进行的,一方面是研究变量之间关系的,这种研究称为相关关系;另一方面是研究关于自变量和因变量之间的变动关系,用数学方程式表达,称为。
8.回归方程y=a+bx中的参数a是,b是。
在统计中估计待定参数的常用方法是。
9. 分析要确定哪个是自变量哪个是因变量,在这点上它与不同。
10.求两个变量之间非线性关系的回归线比较复杂,在许多情况下,非线性回归问题可以通过化成来解决。
11.用来说明回归方程代表性大小的统计分析指标是。
12.判断一条回归直线与样本观测值拟合程度好坏的指标是。
二、单项选择题1.下面的函数关系是( )A销售人员测验成绩与销售额大小的关系 B圆周的长度决定于它的半径C家庭的收入和消费的关系 D数学成绩与统计学成绩的关系2.相关系数r的取值X围( )A -∞<r<+∞B -1≤r≤+1C -1<r<+1D 0≤r≤+13.年劳动生产率z(干元)和工人工资y=10+70x,这意味着年劳动生产率每提高1千元时,工人工资平均( )A增加70元 B减少70元 C增加80元 D减少80元4.若要证明两变量之间线性相关程度是高的,则计算出的相关系数应接近于( )A+1 B 0 C 0.5 D [1]5.回归系数和相关系数的符号是一致的,其符号均可用来判断现象( ) A线性相关还是非线性相关 B正相关还是负相关C完全相关还是不完全相关 D单相关还是复相关6.某校经济管理类的学生学习统计学的时间(x)与考试成绩(y)之间建=a+b x。
第七章-相关关系分析法-简答题
第七章 相关关系分析法 简答题1.什么是相关关系?相关分析与回归分析的主要内容有哪些?相关关系:指现象之间客观存在的、不确定的数量依存关系。
主要内容:(1)确定变量之间是否相关;(2)确定变量之间的相关类型;关系的密切程度和方向(3)确定变量之间的相关关系的密切程度和方向;(4)建立变量之间的回归方程;(5)给定自变量的值,求因变量的值;(6)测定因变量的估计标准误差。
其中前三个属于相关关系,后三个属于回归关系。
2.什么是相关系数?r 的计算公式中,标准差和协方差分别起的作用是什么? 相关系数:是说明两种现象之间直线相关关系密切程度的统计分析指标。
协方差的作用:显示x 与y 之间相关的性质,即是正相关、负相关; 显示x 与y 之间线性相关关系密切程度的大小。
标准差作用 :消除离差积乘中两个变量原有计量单位的影响;将相关系数的值局限在-1到+1之间。
3.如何利用相关系数来判别现象之间的相关关系?(1)相关系数的取值范围为:-1≤r ≤1 。
(2)r >0,是正相关, r <0,是负相关。
(3)r 越接近0,相关程度越,为不相关。
(4)1=r ,为完全相关,0=r 。
(5)3.0<r , 为不相关或微弱相关低;r 越接近1,相关程度越高。
5.03.0<≤r ,为低度相关; 8.05.0<≤r ,为显著相关; 18.0<≤r , 为高度相关。
4.简述简单直线回归分析的特点。
(1)在两个变量之间必须根据研究的目的确定哪个是自变量,哪个是因变量。
(2)在没有明显因果关系的两个变量中,可配合两个回归方程。
值得注意的是,若两个变量存在明显的因果关系时,只能计算一条回归直线,另一条配合出来也没意义。
(3)回归方程的作用在于给出自变量的数值来估计因变量的可能值。
(4)直线回归方程中,自变量的系数b称为回归系数。
回归系数的符号为正时表示正相关,为负表示负相关。
(5) 回归分析中,因变量是随机的,而把自变量当作研究时可以控制的量。
【精品】统计学题目第七章相关与回归分析
1、填空题现象之间的相关关系按相关的程度分有________相关、________相关和_______相关;按相关的方向分有________相关和________相关;按相关的形式分有________相关和________相关;按影响因素的多少分有________相关和________相关。
2、对现象之间变量关系的研究中,对于变量之间相互关系密切程度的研究,称为_______;研究变量之间关系的方程式,根据给定的变量数值以推断另一变量的可能值,则称为_______。
3、完全相关即是________关系,其相关系数为________。
4、在相关分析中,要求两个变量都是_______;在回归分析中,要求自变量是_______,因变量是_______。
5、person相关系数是在________相关条件下用来说明两个变量相关________的统计分析指标。
6、相关系数的变动范围介于_______与_______之间,其绝对值愈接近于_______,两个变量之间线性相关程度愈高;愈接近于_______,两个变量之间线性相关程度愈低.当_______时表示两变量正相关;_______时表示两变量负相关.7、 当变量x 值增加,变量y 值也增加,这是________相关关系;当变量x值减少,变量y 值也减少,这是________相关关系。
8、 在判断现象之间的相关关系紧密程度时,主要用_______进行一般性判断,用_______进行数量上的说明。
9、 在回归分析中,两变量不是对等的关系,其中因变量是_______变量,自变量是_______量。
10、 已知13600))((=----∑y y x x ,14400)(2=--∑x x ,14900)(2=-∑-y y ,那么,x 和y 的相关系数r 是_______。
11、 用来说明回归方程代表性大小的统计分析指标是________指标。
12、 已知1502=xy σ,18=xσ,11=y σ,那么变量x 和y 的相关系数r 是_______.13、 回归方程bx a y c +=中的参数b 是________,估计特定参数常用的方法是_________.14、 若商品销售额和零售价格的相关系数为-0。
第七章相关分析与回归分析
第七章相关分析与回归分析1.企业 编号 产量(千 件)生产费用 (千元)企业编 号 产量(千 件)生产费用 (千元) 1 40 130 7 84 165 2 42 140 8 100 170 3 49 155 9 110 167 4 49 150 10 114 183 550 154 11 125 175 65516012130189试根据上表材料: (1) 绘制散点图。
(2) 计算相关系数。
(3) 配合一条直线回归方程。
解: ( 1)(2) 企业编号产量(千件)x生产费用(千元)yxy x2 y2 1 40 130 **** **** 16900 2 42 140 5880 1764 19600 3 49 155 **** **** 24025 4 49 150 **** **** 22500 5 50 154 7700 2500 23716 6 55 160 8800 3025 25600 784 165 138607056272258 100170 17000 10000 28900 911016718370 12100 278896080040200 150 100产量与生产费用散点图512x159062 -948x1938.12 88368 -9482、12 316190 -19382(3)设回归方程为? = a bxb』甞7n Z x 一(送 x)12 159062-948 1938 12y -bx =1^ -0.4423948=126.558312 12所以回归方程为$ =126.5583 0.4423x2.某县城研究居民月家庭人均生活费支出和月家庭收入的相互关系,随机抽样 10利用上表材料:(1) 绘制散点图并观察两变量之间是否存在线性关系 (2) 计算相关系数,建立回归方程。
(3) 计算估计标准误差。
(4) 测算人均收入为200时,其人均生活费应为多少元 解: ( 1)12 88368-9482_ n 瓦xy-任x)任y) n' x 2 -r x)2. n' y 2 -(' y)2 71520 78838.84-0.907271520 161712二 0.4423(2) 家庭序号月人均收入(元)x月人均生活费(元)yxy x2y21 100 85 8500 10000 72252 110 88 968012100 77443 120 90 10800 14400 81004 130 94 12220 16900 88365 140 96 13440 19600 9216 6 150 100 15000 22500 100007 160 106 16960 25600 112368 170 118 20060 28900 13924 9180 120 21600 32400 14400 10 190 124 23560 36100 15376合计14501021151820 218500 106057n' xy-C x)(' y)10 151820 -1450 1021设回归方程为bxn £ xy-(£ x)(£ y) 10 汇 151820 —1450 乂 1021 n' x 2-C x)2 n' y 2-(' y)2 _ 10 218500 -14502a-bx=1021-0.45761450=35.74810 10所以回归方程为? =35.748 0.4576x (3)、10 218500 -14502 一 10 106057 -10212费活生均人月200-C x)2 .. n'y 2-c y)2 3775038673.54= 0.97613775082500 = 0.4576月人均生活费与人均收入散点图120140160月人均收入180oo oooooo 4 2 0 8 6 4 2' y2-a' y-b' xy _ 106057-35.748 1021-0.4576 151820 目二n-2 「10-2= 3.2684(4)当x=200 时,人均生活费为:y =35.748 0.4576 200 =127.2683. 已知x、y两变量的相关系数r = 0.8 , X =20, y = 50,二y为二x的两倍,求y 对x 的回归方程。
第7章 相关与回归分析课后习题解答
所以,Yf的置信度为 95%的预测区间为
所以,区间预测为
3.讨论以下几种场合的回归方程:
中回归系数的经济意义和应取的
符号。
(1)Yt为商业利润率;X2t他为人均销售额;X3t为流通费用率; (2)Yt为粮食销售量;X2t为人口数;X3t为人均收入; (3)Yt为工业总产值;X2t为占用的固定资产;X3t为职工人数; (4)Yt为国内生产总值;X2t为工业总产值;X3t为农业总产值。 答:
图 7—1
1 如果“数据分析命令”没有出现在“工具”菜单,则需要先运行“加载宏”命令,加载“分析工具库”。
图 7—2 在“回归”窗口中确定因变量 Y 值和自变量 X 值的区域后,点击“确定”。见图 7—3。回归结果见图 7—4。
图 7—3
图 7—4
从计算结果可知,拟合的样本回归方程为 (2)由图 7—4 可知,回归估计的标准误差为 638.7076;决定系数为 0.9987。 (3)回归系数的 5%显著性检验。 首先对β1的显著性进行检验2:
构造 t 统计量: 查t分布表可知:显著性水平为 5%,自由度为 21 的双测t检验的临界值为 2.080,t值小于临界值,故 无法拒绝零假设,说明β1在 5%的显著性水平下没有通过检验。 同理,可对β2进行显著性检验: t值远大于临界值 2.080,故拒绝零假设,说明β2在 5%的显著性水平下通过了显著性检验。 (4)预测: 点估计:Xf=104880 亿元,代入回归方程,Yf=62024.16 亿元。 置信度 95%的预测区间为: 计算Sef:
图 7—5 的消费” 步骤二:进行回归分析。 选择“工具”→“数据分析”→“回归”,在该窗口中选定自变量和因变量的数据区域,最后点击“确 定”完成操作。 得到回归分析的输出结果见图 7—6。
第七章相关与回归分析习题答案.doc
334229.09425053.730.7863334229.0922.0889V425053.73=0.003204 245.4120第七章相关与回归分析习题答案一、填空题1.完全相关、不完全相关、不相关2. —iWrWl3.函数、|r| = l4.无线性相关、完全正相关、完全负相关5.密切程度6.正相关、负相关7.直线相关、曲线相关8.回归系数9.随机的、给定的10.最小二乘法,残差平方和二、 单项选择题I. B 2. B 3. A 4. A 5. B 6. C 7. D 8. B9. A 10. CII. C 12. B 13. D 14. B 15. C三、 多项选择题1. BCD2. ACD3. ABD4. ABCD5. ACE四、 计算题1解:B\=V - p 2x = 549.8 - 0.7863 * 647.88 = 40.37202 _ [£ (匕顼(X,侦)]2 '"£(x,-x )2£(y,-y )20.999834425053.73*262855.25 ;2=(1-产切 _y )2 =43.6340= 2.0889 n — 2(3) H°:”2=0,H I :”2 邳腐 _ 0.7863~S~ ~ 0.003204〃2券(〃-2)=诲(10) = 2.228t 值远大于临界值2.228,故拒绝零假设,说明月在5%的显著性水平下通过了显著性 检验。
(4) Y f =40.3720 + 0.7863*800 = 669.41 (万元)0.0273 S' =S l + 厂 Xf =2.0089」1 + 土 +华°「647・88)2 = 2 1429 所以,Yf 的置信度为 7V n Z (X,-X )2 V 12 425053.73 95 %的预测区间为:Y f ±t a/2(n-2)S ef = 669.41 ±2.228* 1.0667 = 669.41 ±2.3767 所以,区间预测为: 664.64 < Y f <674.182解:A _ £(匕一双%一灭)—N £X ,E —£x,£匕) 乃一 Z (x,一文尸一 (£x )9*803.02-13.54*472 八= ------------------------------------ =0.02739*28158-472*472& = Y-$2X =13.54/9-0.0273 * 472/9 = 0.0727(2)决定系数: , [y (y-F )(x-%)]2 r 2 =¥,_ 盘——;=0.9723Z (x,-x )Na-V )-残差平方和^<=(l-r 2)^(y-y )2 =0.0722 (3)身高与体重的相关系数: r =序=J0.9723 = 0.9861H O :A = A = O ,H 1:A W 2不同时为零厂。
第七章 习题及答案
第七章 相关与回归分析一、单项选题题1、当自变量X 减少时,因变量Y 随之增加,则X 和Y 之间存在着( ) A 、线性相关关系 B 、非线性相关关系 C 、正相关关系 D 、负相关关系2、下列属于函数关系的有( )A 、身高与体重之间B 、广告费用支出与商品销售额之间C 、圆面积与半径之间D 、施肥量与粮食产量之间 3、下列相关程度最高的是( )A 、r=0.89B 、r=-0.93C 、r=0.928D 、r=0.8 4、两变量x 与y 的相关系数为0.8,则其回归直线的判定系数为( ) A 、0.80 B 、0.90 C 、0.64 D 、0.50 5、在线性回归模型中,随机误差项被假定服从( )A 、二项分布B 、t 分布C 、指数分布D 、正态分布6、物价上涨,销售量下降,则物价与销售量之间的相关属于( ) A 、无相关 B 、负相关 C 、正相关 D 、无法判断7、相关分析中所涉及的两个变量( )A 、必须确定哪个是自变量、哪个是因变量B 、都不能为随机变量C 、都可以是随机变量D 、不是对等关系 8、单位产品成本y (元)对产量x (千件)的回归方程为:t t x y 2.0100-=∧,其中“—0.2”的含义是( )A 、产量每增加1件,单位成本下降0.2元B 、产量每增加1件,单位成本下降20%C 、产量每增加1000件,单位成本下降20%D 、产量每增加1000件,单位成本平均下降0.2元E 、产量每增加1000件,单位成本平均下降20% 二、多项选择题1、下列说法正确的有( )A 、相关分析和回归分析是研究现象之间相关关系的两种基本方法B 、相关分析不能指出变量间相互关系的具体形式,也无法从一个变量的变化来推测另一个变量的变化情况 C、回归分析可以不必确定变量中哪个是自变量,哪个是因变量 D、相关分析必须事先研究确定具有相关关系的变量中哪个为自变量,哪个为因变量 E、相关分析中所涉及的变量可以都是随机变量,而回归分析中因变量是随机的,自变量是非随机的2、判定现象之间有无相关关系的方法有()A、计算回归系数B、编制相关表C、绘制相关图D、计算相关系数E、计算中位数3、相关关系按相关的形式可分为()A、正相关B、负相关C、线性相关D、非线性相关E、复相关4、在直线回归方程∧yt=∧β1+∧β2Xt中,回归系数∧β2的数值()A、表明两变量之间的平衡关系B、其正、负号表明两变量之间的相关方向C、表明两变量之间的密切程度D、表明两变量之间的变动比例E、在数学上称为斜率5、下列那些项目属于现象完全相关()A、r=0B、r= —1C、r= +1D、y的数量变化完全由X的数量变化所确定E、r=0.986、在回归分析中,要求所涉及的两个变量x和y()A、必须确定哪个是自变量、哪个是因变量B、不是对等关系C、是对等关系D、一般来说因变量是随机的,自变量是非随机变量E、y对x的回归方程与x对y的回归方程是一回事7、下列有相关关系的是()A、居民家庭的收入与支出B、广告费用与商品销售额C、产量与单位产品成本D、学生学习的时间与学习成绩E、学生的身高与学习成绩8、可决系数2r=86.49%时,意味着()A 、自变量与因变量之间的相关关系密切B 、因变量的总变差中,有80%可通过回归直线来解释 C 、因变量的总变差中,有20%可由回归直线来解释 D 、相关系数绝对值一定是0.93 E 、相关系数绝对值一定是0.8649 三、填空题1、相关系数r 的取值范围为 。
(第七章 相关分析
统计学
STATISTICS
直线回归分析 第三节 直线回归分析
8 - 25
STAT
回归: 回归:退回 regression
平均身高
1877年 弗朗西斯 高尔顿爵士 年 弗朗西斯高尔顿爵士 学研究 回归线
遗传
STAT
回归分析(regression):通过一个 通过一个 回归分析 或几个变量的变化去解释另一变量的 变化。包括找出自变量与因变量、 变化。包括找出自变量与因变量、设 定数学模型、检验模型、 定数学模型、检验模型、估计预测等 环节。 SxS y
总体相关系数
样本相关系数
相关系数的常用算法: 相关系数的常用算法:
r=
n∑ xy ∑ x∑ y n∑ x (∑ x )
2 2
n ∑ y (∑ y )
2
2
相关系数取值在 -1 与 1 之间。 相关系数取值在 之间。 相关系数是一种对称测量。 相关系数是一种对称测量。 相关系数是一种对称测量 相关系数无量纲,可以进行比较。 相关系数无量纲,可以进行比较。 相关系数无量纲
STAT
二、一元线性回归模型 最小二乘法
STAT
求 a、b 的公式: 、 的公式:
∑ y = na + b∑ x ∑ xy = a∑ x + b∑ x n∑ xy ∑ x ∑ y b= n∑ x (∑ x)
2 2
2
a = y bx
学 身高 体重 生 x y
x2
y2
xy
估计值
残差
47.291 49.448 51.606 53.764 55.921 58.079 60.236 62.394 64.552 66.709
判定系数(Coefficient of determination): 判定系数 估计的回归方程拟合优度的度量, 估计的回归方程拟合优度的度量,表明 Y 的变异性能被估计的回归方程解释的 部分所占比例。 部分所占比例。
第七章相关分析
y 实际值;
y n
c 2
估计值;
自由度。例
Syx
y2aybxy
n2
Syx越小 观测值离回归直线越近,回归直线代表性越大; Syx越大 观测值离回归直线越远,回归直线代表性越小; Syx=0 所有相关点都落在回归直线上,估计结果完全准确。
2.判定系数R2——用来度量回归直线与样本 观察值拟合优劣的程度。
3)从中可以解出:
b
nxy x y nx2 (x)2
a y bx
这样就得到了直线回归方程: yc abx
举例
回归方程 链接开篇案例
回归方程的评价
回归直线或曲线是用来代表变量之间关系的一般水平。根 据回归线推测的因变量显然与实际值有差异,这种差异大小说 明推算的准确性以及回归线代表性的大小。
Q (y a b)2 xm,i分n 别求一阶偏导:
Q 0 a
Q 0 b
Q a2 (yab)x (1 )0 Q b2 [y ( a b)x (x)]0
整理得到二元一次方程:
yn ab x x y a x b x 2
一、相关表和相关图
相关表:是指将相关变量的数值,按标志值的大小 顺序一一对应而平行排列起来的统计表。
例(续前例1)
相关图:在平面直角坐标系中,以横轴表示变量X,纵轴
相关图 表示变量Y,将相关变量的资料数值在坐标图
例(续前例2)
中表示出来(能较直观地看出两个变量之间相 关关系的粗略形式),也称散点图、散布图。
y
回归线 ·· ·······
x
常用的评价回归方程的指标有:估计标准误差 和判定系数
1.估计标准误差——因变量实际值(观测值)y和估计值
第七章期末复习总结与习题相关与回归分析
第七章期末复习总结与习题相关与回归分析第七章相关与回归分析相关分析一、函数关系、相关关系的概念1、函数关系:函数关系是一种严格的依存关系,这种关系可以用y = f (x )的方程来表现。
2、相关关系:相关关系是一种不完全确定的随机关系。
函数关系与相关关系的联系:对具有相关关系的现象进行分析时,必须利用相应的函数关系的数学表达式来表明现象之间的相关方程式。
四、相关关系的判别方法(一)相关图表利用直角坐标系第一象限,把自变量置于横轴上,因变量置于纵轴上,在将两变量相对应的变量值用坐标点形式描绘出来即可。
利用相关图可以:判断现象之间有无相关关系、观察相关关系的类型、观察相关关系的密切程度(二)相关系数相关系数是测定变量之间相关密切程度的统计指标。
1.简单线性相关系数1. 对变量之间关系密切程度的度量2. 对两个变量之间线性相关程度的度量称为简单相关系数3. 若相关系数是根据总体全部数据计算的,称为总体相关系数,记为ρ4. 若是根据样本数据计算的,则称为样本相关系数,记为 r样本相关系数的定义公式实质总体相关系数的定义式是:ρ=)()(),(Y Var X Var Y X Cov (7.1)式中,Cov (X ,Y )是变量X 和Y 的协方差;Var(X )和Var(Y )分别为变量X 和Y 的方差。
总体相关系数是反映两变量之间线性相关程度的一种特征值,表现为一个常数。
y x xy r σσσ2=式中:n y y x x xy ))((2-∑-=σ,是变量 x 和y 的协方差。
n x x x ∑-=2)(σ,是变量 x 的标准差。
n y y y ∑-=2)(σ,是变量y 的标准差。
相关系数按“之间的相关程度。
积差法公式为:相关系数的性质1. r 的取值范围是 [-1,1]2. |r |=1,为完全相关r =1,为完全正相关r = -1,为完全负正相关3 .r = 0,不存在线性相关关系,它并不意味着X与Y之间不存在其他类型的关系。
《统计学》 第七章 相关与回归分析
第七章 相关与回归分析(一)填空题1、相关关系按其相关的程度不同,可分为 、 和 。
2、相关系数的正负表示相关关系的方向,r 为正值,两变量是 ;r 为负数,两变量是 。
3、r=0,说明两个变量之间 ;r=+1,说明两个变量之间 ;r=-1说明两个变量之间 。
4、一元线性回归方程bx a y+=ˆ 中的参数a 代表 ,数学上称为 ;b 代表 ,数学上称为 。
5、 分析要根据研究的目的确定哪一个为自变量,哪一个为因变量,在这一点与 分析时不同。
6、相关关系按方向不同,可分为 和 。
7、完全线性相关的相关系数r 值等于 。
8、计算回归方程要注意资料中因变量是 的,自变量是 的。
9、回归方程只能用于由 推算 。
(二)单项选择题(在每小题备选答案中,选出一个正确答案)1、相关分析研究的是( )A. 变量之间关系的密切程度B. 变量之间的因果关系C. 变量之间严格的相互依存关系D. 变量之间的线性关系2、相关关系是( )A 、现象间客观存在的依存关系B 、现象间的一种非确定性的数量关系C 、现象间的一种确定性的数量关系D 、现象间存在的函数关系3、下列情形中称为正相关的是( )A. 随着一个变量的增加,另一个变量也增加B. 随着一个变量的减少,另一个变量增加C. 随着一个变量的增加,另一个变量减少D. 两个变量无关4、当自变量x 的值增加,因变量y 的值也随之增加,两变量之间存在着( )A 、曲线相关B 、正相关C 、负相关D 、无相关5、相关系数r 的取值范围是( )A. B.C. D. 6、当自变量x 的值增加,因变量y 的值也随之减少,两变量之间存在着( )A 、曲线相关B 、正相关C 、负相关D 、无相关7、相关系数等于零表明两变量( )A. 是严格的函数关系B. 不存在相关关系C. 不存在线性相关关系D. 存在曲线相关关系8、相关系数r 的取值范围是( )A 、从0到1B 、从-1到0C 、从-1到1D 、无范围限制11<<-r 10≤≤r 11≤≤-r9、相关分析对资料的要求是( )A. 两变量均为随机的B. 两变量均不是随机的C. 自变量是随机的,因变量不是随机的D. 自变量不是随机的,因变量是随机的10、相关分析与回归分析相比,对变量的性质要求是不同的,回归分析中要求( )A 、自变量是给定的,因变量是随机的B 、两个变量都是随机的C 、两个变量都是非随机的D 、因变量是给定的,自变量是随机的11、回归方程 中的回归系数b说明自变量变动一个单位时,因变量( )A. 变动b 个单位B. 平均变动b 个单位C. 变动a+b 个单位 D. 变动a 个单位12、一般来说,当居民收入减少时,居民储蓄存款也会相应减少,二者之间的关系是( )A 、负相关B 、正相关C 、零相关D 曲线相关13、回归系数与相关系数的符号是一致的,其符号均可判断现象( )A. 线性相关还是非线性相关B. 正相关还是负相关C. 完全相关还是不完全相关D. 简单相关还是复相关14、配合回归方程比较合理的方法是( )A 、移动平均法B 、半数平均法C 、散点法D 、最小平方法15、在相关分析中不能把两个变量区分为确定性的自变量和随机性的因变量,在回归分析中( )A. 也不能区分自变量和因变量B. 必须区分自变量和因变量C. 能区分,但不重要D. 可以区分,也可以不区分16、价格愈低,商品需求量愈大,这两者之间的关系是( )A 、复相关B 、不相关C 、正相关D 、负相关17、按最小平方法估计回归方程 中参数的实质是使( )A. B. C. D. 18、判断现象之间相关关系密切程度的方法是( )A 、作定性分析B 、制作相关图C 、计算相关系数D 、计算回归系数19、在线性相关条件下,自变量的标准差为2,因变量的标准差为5,而相关系数为0.8,其回归系数为( )A. 8B. 12.5C. 0.32D. 2.020、已知某产品产量与生产成本有直线关系,在这条直线上,当产量为1000件时,其生产成本为50000元,其中不随产量变化的成本为12000元,则成本总额对产量的回归方程是( )A 、Y=12000+38XB 、Y=50000+12000XC 、Y=38000+12XD 、Y=12000+50000Xbx a y +=ˆbx a y +=ˆ∑=-最小值2)ˆ(y y21、已知,则相关系数为() A.不能计算 D. 22、相关图又称( )A 、散布表B 、折线图C 、散点图D 、曲线图23、工人的出勤率与产品合格率之间的相关系数如果等于0.85,可以断定两者是( )A 、显著相关B 、高度相关C 、正相关D 、负相关24、相关分析与回归分析的一个重要区别是( )A 、前者研究变量之间的关系程度,后者研究变量间的变动关系,并用方程式表示B 、前者研究变量之间的变动关系,后者研究变量间的密切程度C 、两者都研究变量间的变动关系D 、两者都不研究变量间的变动关系25、当所有观测值都落在回归直线上,则这两个变量之间的相关系数为( )A 、1B 、-1C 、+1或-1D 、大于-1,小于+126、一元线性回归方程y=a+bx 中,b 表示( )A 、自变量x 每增加一个单位,因变量y 增加的数量B 、自变量x 每增加一个单位,因变量y 平均增加或减少的数量C 、自变量x 每减少一个单位,因变量y 减少的数量D 、自变量x 每减少一个单位,因变量y 增加的数量(三)多项选择题(在每小题备选答案中,至少有两个答案是正确的)1、直线回归方程 中,两个变量x 和y ( )A. 前一个是自变量 ,后一个是因变量B. 两个变量都是随机变量C. 两个都是给定的量D. 前一个是给定的量 ,后一个是随机变量E. 前一个随机变量 ,后一个是给定的量2、相关分析( )A 、分析对象是相关关系B 、分析方法是配合回归方程C 、分析方法主要是绘制相关图和计算相关系数D 、分析目的是确定自变量和因变量E 、分析目的是判断现象之间相关的密切程度,并配合相应的回归方程以便进行推算和预测3、相关分析的特点有 ( )A. 两个变量是对等的关系B. 它只反映自变量和因变量的关系C. 可以计算出两个相关系数D. 相关系数的符号都是正的E. 相关的两个变量必须都是随机的4、下列现象中存在相关关系的有( )A 、职工家庭收入不断增长,消费支出也相应增长B 、产量大幅度增加,单位成本相应下降C 、税率一定,纳税额随销售收入增加而增加D 、商品价格一定,销售额随销量增加而增加E 、农作物收获率随着耕作深度的加深而提高bx a y +=ˆ5、相关关系与函数关系的区别在于( )A. 相关关系是变量间存在相互存在依存关系,而且函数关系是因果关系B. 相关关系的变量间是确定不变的,而函数关系值是变化的C. 相关关系是模糊的,函数关系是确定的D. 两种关系没有区别6、商品流通费用率与商品销售额之间的关系是( )A 、相关关系B 、函数关系C 、正相关D 、负相关E 、单相关7、为了揭示变量x 与y 之间的相互关系,可运用( )A. 相关表B. 回归方程C.相关系数D. 散点图8、相关系数( )A 、是测定两个变量间有无相关关系的指标B 、是在线性相关条件下测定两个变量间相关关系密切程度的指标C 、也能表明变量之间相关的方向D 、其数值大小决定有无必要配合回归方程E 、与回归系数密切相关9、可以借助回归系数来确定( )A. 两变量之间的数量因果关系B. 两变量之间的相关方向C. 两变量之间的相关的密切程度D. 揭示它与相关系数的数量关系,即10、直线回归方程( )A 、建立前提条件是现象之间具有较密切的直线相关关系B、关键在于确定方程中的参数a 和bC 、表明两个相关变量间的数量变动关系D 、可用来根据自变量值推算因变量值,并可进行回归预测E 、回归系数b=0时,相关系数r=011、可用来判断现象相关方向的指标有( )A. 相关系数B. 回归系数C. 回归参数aD. 协方差E. 估计标准误差 12、某种产品的单位成本y (元)与工人劳动生产率x (件/人)之间的回归直线方程Y=50-0.5X ,则( )A 、0.5为回归系数B 、50为回归直线的起点值C 、表明工人劳动生产率每增加1件/人,单位成本平均提高0.5元D 、表明工人劳动生产率每增加1件/人,单位成本平均下降0.5元E 、表明工人劳动生产率每减少1件/人,单位成本平均提高50元13、对于回归系数,下列说法中正确的有( )A. b 是回归直线的斜率B. b 的绝对值介于0-1之间C. bD. bE. b 满足方程组 y S ⎪⎩⎪⎨⎧+=+=∑∑∑∑∑2xb x a xy x b na y14、相关关系的特点是()A、现象之间确实存在数量上的依存关系B、现象之间不确定存在数量上的依存关系C、现象之间的数量依存关系值是不确定的D、现象之间的数量依存关系值是确定的E、现象之间不存在数量上的依存关系15、回归方程可用于( )A. 根据自变量预测因变量B. 给定因变量推算自变量C. 给定自变量推算因变量D. 推算时间数列中缺失的数据E. 用于控制因变量16、建立一元线性回归方程是为了()A、说明变量之间的数量变动关系B、通过给定自变量数值来估计因变量的可能值C、确定两个变量间的相关程度D、用两个变量相互推算E、用给定的因变量数值推算自变量的可能值17、在直线回归方程中,两个变量x和y()A、一个是自变量,一个是因变量B、一个是给定的变量,一个是随机变量C、两个都是随机变量D、两个都是给定的变量E、两个是相关的变量18、在直线回归方程中()A、在两个变量中须确定自变量和因变量B、回归系数只能取正值C、回归系数和相关系数的符号是一致的D、要求两个变量都是随机的E、要求因变量是随机的,而自变量是给定的19、现象间的相关关系按相关形式分为()A、正相关B、负相关C、直线相关D、曲线相关E、不相关20、配合一元线性回归方程须具备下列前提条件()A、现象间确实存在数量上的相互依存关系B、现象间的关系是直线关系,这种直线关系可用散点图来表示C、具备一组自变量与因变量的对应资料,且能明确哪个是自变量,哪个是因变量D、两个变量之间不是对等关系E、自变量是随机的,因变量是给定的值21、由直线回归方程y=a+bx所推算出来的y值()A、是一组估计值B、是一组平均值C、是一个等差级数D、可能等于实际值E、与实际值的离差平方和等于0(四)是非题1、判断现象之间是否存在相关关系必须计算相关系数。
统计学课后习题答案第七章相关分析与回归分析
第七章相关分析与回归分析一、单项选择题1.相关分析是研究变量之间的A.数量关系B.变动关系C.因果关系D.相互关系的密切程度2.在相关分析中要求相关的两个变量A.都是随机变量B.自变量是随机变量C.都不是随机变量D.因变量是随机变量3.下列现象之间的关系哪一个属于相关关系A.播种量与粮食收获量之间关系B.圆半径与圆周长之间关系C.圆半径与圆面积之间关系D.单位产品成本与总成本之间关系4.正相关的特点是A.两个变量之间的变化方向相反B.两个变量一增一减C.两个变量之间的变化方向一致D.两个变量一减一增5.相关关系的主要特点是两个变量之间A.存在着确定的依存关系B.存在着不完全确定的关系C.存在着严重的依存关系D.存在着严格的对应关系6.当自变量变化时, 因变量也相应地随之等量变化,则两个变量之间存在着A.直线相关关系B.负相关关系C.曲线相关关系D.正相关关系7.当变量X值增加时,变量Y值都随之下降,则变量X和Y之间存在着A.正相关关系B.直线相关关系C.负相关关系D.曲线相关关系8.当变量X值增加时,变量Y值都随之增加,则变量X和Y之间存在着A.直线相关关系B.负相关关系C.曲线相关关系D.正相关关系9.判定现象之间相关关系密切程度的最主要方法是A.对现象进行定性分析B.计算相关系数C.编制相关表D.绘制相关图10.相关分析对资料的要求是A.自变量不是随机的,因变量是随机的B.两个变量均不是随机的C.自变量是随机的,因变量不是随机的D.两个变量均为随机的11.相关系数A.既适用于直线相关,又适用于曲线相关B.只适用于直线相关C.既不适用于直线相关,又不适用于曲线相关D.只适用于曲线相关12.两个变量之间的相关关系称为A.单相关B.复相关C.不相关D.负相关13.相关系数的取值范围是≤r≤1 ≤r≤0≤r≤1 D. r=014.两变量之间相关程度越强,则相关系数A.愈趋近于1B.愈趋近于0C.愈大于1D.愈小于115.两变量之间相关程度越弱,则相关系数A.愈趋近于1B.愈趋近于0C.愈大于1D.愈小于116.相关系数越接近于-1,表明两变量间A.没有相关关系B.有曲线相关关系C.负相关关系越强D.负相关关系越弱17.当相关系数r=0时,A.现象之间完全无关B.相关程度较小B.现象之间完全相关 D.无直线相关关系18.假设产品产量与产品单位成本之间的相关系数为,则说明这两个变量之间存在A.高度相关B.中度相关C.低度相关D.显着相关19.从变量之间相关的方向看可分为A.正相关与负相关B.直线相关和曲线相关C.单相关与复相关D.完全相关和无相关20.从变量之间相关的表现形式看可分为A.正相关与负相关B.直线相关和曲线相关C.单相关与复相关D.完全相关和无相关21.物价上涨,销售量下降,则物价与销售量之间属于A.无相关B.负相关C.正相关D.无法判断22.配合回归直线最合理的方法是A.随手画线法B.半数平均法C.最小平方法D.指数平滑法23.在回归直线方程y=a+bx中b表示A.当x增加一个单位时,y增加a的数量B.当y增加一个单位时,x增加b的数量C.当x增加一个单位时,y的平均增加量D.当y增加一个单位时, x的平均增加量24.计算估计标准误差的依据是A.因变量的数列B.因变量的总变差C.因变量的回归变差D.因变量的剩余变差25.估计标准误差是反映A.平均数代表性的指标B.相关关系程度的指标C.回归直线的代表性指标D.序时平均数代表性指标26.在回归分析中,要求对应的两个变量A.都是随机变量B.不是对等关系C.是对等关系D.都不是随机变量27.年劳动生产率(千元)和工人工资(元)之间存在回归方程y=10+70x,这意味着年劳动生产率每提高一千元时,工人工资平均A.增加70元B.减少70元C.增加80元D.减少80元28.设某种产品产量为1000件时,其生产成本为30000元,其中固定成本6000元,则总生产成本对产量的一元线性回归方程为:=6+ =6000+24x=24000+6x =24+6000x29.用来反映因变量估计值代表性高低的指标称作A.相关系数B.回归参数C.剩余变差D.估计标准误差二、多项选择题1.下列现象之间属于相关关系的有A.家庭收入与消费支出之间的关系B.农作物收获量与施肥量之间的关系C.圆的面积与圆的半径之间的关系D.身高与体重之间的关系E.年龄与血压之间的关系2.直线相关分析的特点是A.相关系数有正负号B.两个变量是对等关系C.只有一个相关系数D.因变量是随机变量E.两个变量均是随机变量3.从变量之间相互关系的表现形式看,相关关系可分为A.正相关B.负相关C.直线相关D.曲线相关E.单相关和复相关4.如果变量x与y之间没有线性相关关系,则A.相关系数r=0B.相关系数r=1C.估计标准误差等于0D.估计标准误差等于1E.回归系数b=05.设单位产品成本(元)对产量(件)的一元线性回归方程为y=,则A.单位成本与产量之间存在着负相关B.单位成本与产量之间存在着正相关C.产量每增加1千件,单位成本平均增加元D.产量为1千件时,单位成本为元E.产量每增加1千件,单位成本平均减少元6.根据变量之间相关关系的密切程度划分,可分为A.不相关B.完全相关C.不完全相关D.线性相关E.非线性相关7.判断现象之间有无相关关系的方法有A.对现象作定性分析B.编制相关表C.绘制相关图D.计算相关系数E.计算估计标准误差8.当现象之间完全相关的,相关系数为B.-1 E.-9.相关系数r =0说明两个变量之间是A.可能完全不相关B.可能是曲线相关C.肯定不线性相关D.肯定不曲线相关E.高度曲线相关10.下列现象属于正相关的有A.家庭收入愈多,其消费支出也愈多B.流通费用率随商品销售额的增加而减少C.产量随生产用固定资产价值减少而减少D.生产单位产品耗用工时,随劳动生产率的提高而减少E.工人劳动生产率越高,则创造的产值就越多11.直线回归分析的特点有A.存在两个回归方程B.回归系数有正负值C.两个变量不对等关系D.自变量是给定的,因变量是随机的E.利用一个回归方程,两个变量可以相互计算12.直线回归方程中的两个变量A.都是随机变量B.都是给定的变量C.必须确定哪个是自变量,哪个是因变量D.一个是随机变量,另一个是给定变量E.一个是自变量,另一个是因变量13.从现象间相互关系的方向划分,相关关系可以分为A.直线相关B.曲线相关C.正相关D.负相关E.单相关14.估计标准误差是A.说明平均数代表性的指标B.说明回归直线代表性指标C.因变量估计值可靠程度指标D.指标值愈小,表明估计值愈可靠E.指标值愈大,表明估计值愈可靠15.下列公式哪些是计算相关系数的公式16.用最小平方法配合的回归直线,必须满足以下条件A.?(y-y c )=最小值B.?(y-y c )=0C.?(y-y c )2=最小值D.?(y-y c )2=0E.?(y-y c )2=最大值17.方程y c =a+bx222222)()(.)()())((...))((.y y n x x n y x xy n r E y y x x y y x x r D L L L r C L L L r B n y y x x r A xx xy xy yy xx xy yx ∑-∑⋅∑-∑∑⋅∑-∑=-∑⋅-∑--∑===--∑=σσA.这是一个直线回归方程B.这是一个以X为自变量的回归方程C.其中a是估计的初始值D.其中b是回归系数是估计值18.直线回归方程y c=a+bx中的回归系数bA.能表明两变量间的变动程度B.不能表明两变量间的变动程度C.能说明两变量间的变动方向D.其数值大小不受计量单位的影响E. 其数值大小受计量单位的影响19.相关系数与回归系数存在以下关系A.回归系数大于零则相关系数大于零B.回归系数小于零则相关系数小于零C.回归系数等于零则相关系数等于零D.回归系数大于零则相关系数小于零E.回归系数小于零则相关系数大于零20.配合直线回归方程的目的是为了A.确定两个变量之间的变动关系B.用因变量推算自变量C.用自变量推算因变量D.两个变量相互推算E.确定两个变量之间的相关程度21.若两个变量x和y之间的相关系数r=1,则A.观察值和理论值的离差不存在的所有理论值同它的平均值一致和y是函数关系与y不相关与y是完全正相关22.直线相关分析与直线回归分析的区别在于A.相关分析中两个变量都是随机的;而回归分析中自变量是给定的数值,因变量是随机的B.回归分析中两个变量都是随机的;而相关分析中自变量是给定的数值,因变量是随机的C.相关系数有正负号;而回归系数只能取正值D.相关分析中的两个变量是对等关系;而回归分析中的两个变量不是对等关系E.相关分析中根据两个变量只能计算出一个相关系数;而回归分析中根据两个变量只能计算出一个回归系数三、填空题1.研究现象之间相关关系称作相关分析。
第七章相关与回归分析
第七章 相关与回归分析一、单项选择1.年劳动生产率x (千元)和职工工资y (元)之间的回归方程为y=10+70x 这意味着年劳动生产率每提高1千元时,职工工资平均( )A .增加70元B .减少70元C .增加80元D .减少80元2.用最小平方法配合的趋势线,必须满足的一个基本条件是( ) A .()2∑-Yc Y =最小值 B .()=-∑Yc Y 最小值 C .()=-∑2Yc Y 最大值 D .()=-∑Yc Y 最大值3.在正态分布条件下,以2Sy (Sy 为估计标准误差)为距离作平行于回归直线的两条直线,在这两条直线中,包括的观察值的数目大约为全部观察值的( )A .68.27%B .90.11%C .95.45%D .99.73%4.合理施肥量与农作物亩产量之间的关系是( )A .函数关系B .单项因果关系C .互为因果关系D .严格的依存关系5.由变量X 对变量Y 回归,同由变量Y 对变量X 回归,所得到的回归方程是不同的,表现在( ) A .与方程对应的两条直线只有一条经过点(__,Y X )B .参数的估计方法不同C .方程中参数的实际意义不同D .如果其中一个方程反映的是正相关,那么另一个方程反映的就是负相关6.某企业的运动鞋产量和生产成本有直接关系,在生产成本对运动鞋产量的回归直线上,当产量为1000双时,其生产成本为30000元,其中不变成本6000元,该直线的回归方程为( )。
(Y 以元为单位,X 以双为单位)A .Yc=6000+24XB .Yc=6+0.24XC .Yc=24000+6XD .Yc=24+6000X7.已知变量X 的标准差为 x σ,变量Y 的标准差为y σ,并且xy σ=x σ)4/1(=2y σ,则判定系数 2r 为( )A .不能计算B .1/2C .2/2D .1/48.如果变量X 和Y 之间直线相关,在同一平面坐标图上,Y 倚X 的回归直线和X倚Y 的回归直线重合,那么( )A .相关系数等于零B .回归系数a=0C .回归系数b=0D .估计标准误差Sy=09.当自变量X 作等差增减时,因变量Y 随之作等比增减,则X 和Y 之间应配合( )A .抛物线回归方程B .指数曲线回归方程C .双曲线回归方程D .直线回归方程10.下列关系式中正确的是( ),(其中r 为相关系数,r 为判定系数,b 为回归系数)A .y x xy r σσσ⋅=22B .yyxx xy L L L r ⋅=2 C .y xb r σσ⋅= D .yx b r σσ⋅=2 11.方差分析是关于两个主变量线性相关程度的分析方法,它将一组样本数据所发生的总变差依可能引发变差的来源分割为数个部分,其中,回归平方和是( )A .∑=-n i i y y 12_)(B .∑=-n i i i y y 12_^)( C .∑=-n i i i y y 12^)( D . ∑=-n i i i y y 12_^)(+∑=-n i i i y y 12^)(12.当自变量的数值确定后,因变量的数值也随之完全确定,这种关系属于( )A .相关关系B .函数关系C .回归关系D .随机关系13.测定变量之间线性相关密切程度的代表性指标是( )A .估计标准误B .两个变量的协方差C .相关系数D .两个变量的标准差14.现象之间的相关关系可以归纳为两种类型,即( )A .相关关系和函数关系B .相关关系和因果关系C .相关关系和随机关系D .函数关系和因果关系15.相关系数的取值范围是( )A .0≤r ≤1B .-1<r <1C .-1≤r ≤1D .-1≤r ≤016.变量之间的线性相关程度越低则相关系数的数值( )A .越小B .越接近于0C .越接近于-1D .越接近于117.在价格不变的条件下,商品销售额和销售量之间存在着( )A .不完全的依存关系B .不完全的随机关系C .完全的随机关系D .完全的依存关系18.下列哪两个变量之间的相关程度高( )A .商品销售额和销售量的相关系数是0.9B .商品销售额与商业利润率的相关系数是0.84C .平均流通费用率与商业利润率的相关系数是-0.94D .商品销售价格和销售量的相关系数是-0.9119.回归分析中的两个变量( )A .都是随机变量B .关系是对等的C .都是给定的量D .一个是自变量,一个是因变量20.每一吨铸铁成本(元)倚铸件废品率(%)变动的回归方程为:Yc=56+8X ,这意味着( )A .废品率每增加1%,成本每吨增加64元B .废品率每增加1%,成本每吨增加8%C .废品率每增加1%,成本每吨增加8元D .如果废品率每增加1%,则每吨成本为56元21.某校对学生的考试成绩和学习时间的关系进行测定,建立了考试成绩倚学习时间的直线回归方程为:Yc=180-5X ,该方程明显有错,错误在于( )A .a 值的计算有误,b 值是对的B .b 值的计算有误,a 值是对的C .a 值和b 值的计算都有误D .自变量和因变量的关系搞错了22.配合回归方程对资料的要求是( )A .因变量是给定的数值,自变量是随机的B .自变量是给定的数值,因变量是随机的C .自变量和因变量都是随机的D .自变量和因变量都不是随机的23.估计标准误说明回归直线的代表性,因此( )A .估计标准误数值越大,说明回归直线的代表性越大B .估计标准误数值越大,说明回归直线的代表性越小C .估计标准误数值越小,说明回归直线的代表性越小D .估计标准误数值越小,说明回归直线的实用价值小24.交互列表中的行边缘频数是指( )A 列频数之和B 行频数C 列频数与行频数总计D 行频数合计25.若自变量在表的主栏位置,分析变量之间的相关关系时,应该使用( )A 列频率B 行频率C 行边缘频数D 列边缘频数26.下列计算公式中,属于2χ统计量的是( )A ()02e e f f f χ-=∑ B ()020e f f f χ-=∑C ()020e f f f χ-=∑D ()202e e f f f χ-=∑27.运用2χ统计量检验变量之间相关关系的显著性时,拒绝原假设的准则是( ) A 222αχχ> B 222αχχ< C 22αχχ> D 22αχχ<28.测定害类变量之间相关程度的是( )A 简单相关系数B 复相关系数C 品质相关系数D 偏相关系数29.如果r c ⨯双变量交互列表中,任意一个变量所划分的类目数大于2,则φ系数可按下式计算( )A φ=2n χφ=C φ=2nφχ=30.下列公式中,属于v 系数的计算公式是( )A. v =v =v =31. 描述两个定序变量之间相关程度的指标是( )A φ系数B v 系数C λ系数D 等级相关系数32.当10n ≥时,等级相关系数的抽样分布近似为正态分布,其标准差为() 11n - C 11n - D 1n -33. 简单相关系数的取值范围是( )A []0,1B []1,1-C []1,0-D []1,034. 若0r =,说明x 与y 之间不存在( )A 任何关系B 非线性关系C 线性关系D 相关关系35.检验相关系数的显著性采用的统计量为( )A t =B t =t =D t = 36.反映一个因变量与多个自变量之间数量变化关系密切程度的指标是( )A 简单相关系数B 等级相关系数C 偏相关系数D 复相关系数37.在多变量观测数据中分析两个特定变量之间数量变化关系密切程度的指标是( )A 简单相关系数B 复相关系数C 偏相关系数D 等级相关系数二、多项选择1.相关系数等于零,说明两变量之间的关系是( )A .可能完全不相关B .可能是曲线相关C .高度相关D .中度相关E .以上都不对2.当现象完全相关时:( )A .r=0B .r=1-C .r=1D .r=0.5E .r=5.0-3.测定现象之间有无相关关系的方法有( )A .编制相关表B .绘制相关图C .对客观现象做定性分析D .计算估计标准误E .配合回归直线4.直线回归分析中( )A .自变量是可控制的量,因变量是随机的B .两个变量不是对等的关系C .利用一个回归方程,两个变量可以互相推算D .根据回归系数可判定相关的方向E .对于没有明显因果关系的两变量可求得两个回归方程5.下列属于正相关的现象是( )A .家庭收入越多,其消费支出也越多B .某产品产量随工人劳动生产率的提高而增加C .流通费用率随商品销售额的增加而减少D .生产单位产品所消耗工时随劳动生产率的提高而减少E .产品产量随生产用固定资产价值的减少而减少6.直线回归方程Yc=a+bX 中的b 称为回归系数,回归系数的作用是( )A .可确定两变量之间因果的数量关系B .可确定两变量的相关方向C .可确定两变量相关的密切程度D .可确定因变量的实际值与估计值的变异程度E .可确定当自变量增加一个单位时,因变量的平均增加值7.计算相关系数是( )A .相关的两个变量都是随机的B .相关的两个变量是对等的关系C .相关的两个变量一个是随机的,一个是可控制的量D .相关系数有正负号,可判断相关的方向E .可以计算出自变量和因变量两个相关系数8.可用来判断现象之间相关方向的指标有( )A .估计标准误B .相关系数C .回归系数D .两个变量的协方差E .两个变量的标准差9.由变量Y 倚变量X 回归,同变量X 倚变量Y 回归( )A .是具有不同逻辑意义的两个问题B .方程的参数估计方法不同C .两个方程有不同的判定系数D .估计标准误差一般是不同的E .方程参数的实际意义是不同的10.简单直线回归方程的估计标准误差受诸多因素的影响,其中包括( )A .两变量间的相关系数rB .因变量的标准差C .样本容量的大小nD .因变量的平均数E .自变量的平均数11.如果变量X 和Y 存在正相关关系,当X 和Y 都大于0时,可以允许存在以下情况( )A .X 按固定数额增加,Y 也大致按固定数额增加B .X 按固定数额减少,Y 也大致按固定数额减少C .当X 按固定数额增加时,Y 大致按固定比例增加D .当X 按固定数额减少时,Y 大致按固定比例减少E .当X 按固定数额减少时,Y 大致按固定比例增加12.判定系数2r 形式简单,内容丰富,其内容包括( )A .它是线性相关系数的平方B .它是自变量方差与因变量方差之比C .它是Y 对X 作直线回归的斜率同X 对Y 作直线回归的斜率的乘积D .它是剩余平方和占总离差平方和的比例E .它是回归平方和占总离差平方和的比例13.在进行线性关系的显著性检验中,选取的统计量F= ()2-n Q U ( ) A .F 服从第一自由度为1,第二自由度为n-2的F 分布B .F 很大则认为X ,Y 线性关系不显著C .F 很大则认为X ,Y 线性关系显著D .对于给定的显著性水平α,查F 分布表得 λ=αF (1,n-2)且F λ> ,则线性关系显著E .F=()()2122--n r r14.工人的工资(元)倚劳动生产率(千元)的回归方程为Y=10+70X ,这意味着( )A .如果劳动生产率等于1000元,则工人工资为70元B .如果劳动生产率每增加1000元,则工人工资平均提高70元C .如果劳动生产率每增加1000元,则工人工资增加80元D .如果劳动生产率等于1000元,则工人工资为80元E .如果劳动生产率每下降1000元,则工人工资平均减少70元15.在回归分析中,就两个相关变量X 与Y 而言,变量Y 倚变量X 的回归和变量X 倚变量Y 的回归所得的两个回归方程是不同的,这种不同表现在( )A .方程中参数估计的方法不同B .方程中参数的数值不同C .参数表示的实际意义不同D .估计标准误的计算方法不同E .估计标准误的数值不同16.估计标准误是反映( )A .回归方程代表性大小的指标B .估计值与实际值平均误差程度的指标C .自变量与因变量离差程度的指标D .因变量估计值的可靠程度的指标E .回归方程实用价值大小的指标17.对于定类数据进行相关分析,可采用的方法有( )A 交互列表方法B 2χ检验方法C 品质相关系数D 等级相关系数E 复相关系数18.对于定量数据进行相关分析,可采用的方法有( )A 相关表和相关图B 简单相关系数C 复相关系数D 偏相关系数E 2χ检验方法19.列联表分析法是一套分析技术的总称,它包括( )A 交互列表分析技术B 2χ检验分析技术C 品质相关系数分析技术D 等级相关系数分析技术E 复相关系数分析技术20.分析定量数据相关关系时,可以采用的指标有( )A 简单相关系数B 复相关系数C 净相关系数D 品质相关系数E 等级相关系数三、填空1.现象之间的相关关系按相关的程度分有_______相关,_______相关,和_______相关;按相关的方向分有——相关和_______相关;按相关的形式分有_______相关和_______相关;按相关的影响因素分有_______相关和_______相关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章 相关分析与回归分析
例1、有10个同类企业的固定资产和总产值资料如下:
根据以上资料计算(1)协方差和相关系数;(2)建立以总产值为因变量的一元线性回归方程;(3)当固定资产改变200万元时,总产值平均改变多少?(4)当固定资产为1300万元时,总产值为多少?
解:计算表如下:
(1)协方差——用以说明两指标之间的相关方向。
2
2)
)((n
y
x xy n n
y y x x xy
∑∑∑∑-
=
-
-=
σ
35.126400100
9801
6525765915610>=⨯-⨯=
计算得到的协方差为正数,说明固定资产和总产值之间存在正相关关系。
(2)相关系数用以说明两指标之间的相关方向和相关的密切程度。
∑∑∑
∑∑∑∑---
=
]
)(][)
([2
2
2
2
y y n x x n y
x xy n r 95
.0)
980110866577
10()6525566853910(9801
65257659156102
2
=-⨯⨯-⨯⨯-⨯=
计算得到的相关系数为0.95,表示两指标为高度正相关。
(3)
2
2
26525
56685391098016525765915610)
(-⨯⨯-⨯=
--=
∑∑∑∑∑x x
n y x xy n b
90
.014109765
126400354257562556685390
6395152576591560==
--=
85
.39210
65259.010
9801=⨯
-=
-=x b y a
回归直线方程为:
x y
9.085.392ˆ+=
(4)当固定资产改变200万元时,总产值平均改变多少?
x y ∆=∆9.0,180
2009.0|200=⨯=∆=∆x y 万元
当固定资产改变200万元时,总产值平均增加180万元。
(5)当固定资产为1300万元时,总产值为多少?
85
.156213009.085.392|1300=⨯+==x y 万元
当固定资产为1300万元时,总产值为1562.85万元。
例2、试根据下列资产总值和平均每昼夜原料加工量资料计算相关系数。
解:【分析】本题中“企业数”应看成资产总值和平均每昼夜原料加工量两变量的次数,在计算相关系数的过程,要进行“加权”。
计算列表如下:
相关系数
∑∑∑∑∑∑∑∑∑∑---=
]
)(][)([2
2
2
2
f y f
y f f x f x
f
yf xf xyf f r 84
.0)
331.2842()21600
11740000
42(33
2160017960422
2
=-⨯⨯-⨯⨯-⨯=
例3、检查5位同学统计学的学习时间与成绩分数如下表:
要求:(1)编制直线回归方程;(2)由此计算出学习时数与学习成绩之间的相关系数。
解:先列出计算表:
解:(1)bx
a y c
+=
2.540
37053104027405)
(2
2
2
=-⨯⨯-⨯=
--=
∑∑∑∑∑x x
n y
x xy n b
4
.205402.55
310=⨯
-=
-=x b y a
回归直线方程为:
x y c 2.54.20+=
(2)
∑∑∑
∑∑∑∑---
=
]
)(][)
([2
2
2
2
y y n x x n y
x xy n r 956
.002
.8681.151300)
310207005()403705(310
40274052
2
=⨯=
-⨯⨯-⨯⨯-⨯=
计算得到的相关系数为0.95,表示两指标为高度正相关。
956
.09135.02
==
=
r r
说明学习时数x 与成绩得分y 之间有高度的相关关系。
例3、检查5位同学统计学的学习时间与成绩分数如下表:
要求:(1)编制直线回归方程;(2)计算估计标准误差;(3)对学习成绩的方差进行分解分析,指出总误差平方和中有多少比重可由回归方程来解释;(4)由此计算出学习时数与学习成绩之间的相关系数。
解:先列出计算表:
解:(1)bx
a y c
+=
2.540
37053104027405)
(2
2
2
=-⨯⨯-⨯=
--=
∑∑∑∑∑x x
n y
x xy n b
4
.205402.55
310=⨯
-=
-=x b y a
回归直线方程为:
x y c 2.54.20+=
(2)53
.63
2740
2.53104.20207002
2
=⨯-⨯-=
---=
∑∑∑n xy b y a y
S yx
(3)总误差分解列表如下:
63
5
310==
y
∑∑∑-+
-=
-2
2
2
)()()
(y y
y
y y y c
c
1480=128+1352
9135.01480
1352)
()(2
2
2
==
--=
∑∑y y y y r c
计算总误差平方和中有91.35%可以由回归方程来解释,学习时数x 与成绩得分y 之间有高度的相关。
如果用理论分数c y 来估计实际分数
y
,平均将发生6.53分的误差,这个数字与平均成绩62分对比约占
10.5%。
(4)956
.09135.02
==
=
r r
说明学习时数x 与成绩得分y 之间有高度的相关关系。