湖北省宜昌市天问学校2019-2020学年九年级数学中考模拟题(一)

合集下载

湖北省宜昌市名校2019-2020学年中考数学模拟试卷

湖北省宜昌市名校2019-2020学年中考数学模拟试卷

湖北省宜昌市名校2019-2020学年中考数学模拟试卷一、选择题1.关于反比例函数y =﹣,下列说法中正确的是( ) A.它的图象位于一、三象限 B.它的图象过点(﹣1,﹣3) C.当x >0时,y 随x 的增大而增大 D.当x <0时,y 随x 的增大而减小2.如图是二次函数y =ax 2+bx+c 图象的一部分,图象过点A(﹣5,0),对称轴为直线x =﹣2,给出四个结论:①abc >0;②4a+b =0;③若点B(﹣3,y 1)、C(﹣4,y 2)为函数图象上的两点,则y 2<y 1;④a+b+c =0.其中,正确结论的个数是( )A.1B.2C.3D.43.如图,将正方形ABCD 放于平面直角坐标系中,已知点A (﹣4,2),B (﹣2,2),以原点O 为位似中心把正方形ABCD 缩小得到正方形A′B′C′D′,使OA′:OA =1:2,则点D 的对应点D′的坐标是( )A.(﹣8,8)B.(﹣8,8)或(8,﹣8)C.(﹣2,2)D.(﹣2,2)或(2,﹣2) 4.下列代数运算正确的是( ) A .x 3•x 2=x 5 B .(x 3)2=x 5 C .(3x )2=3x 2D .(x ﹣1)2=x 2﹣15.若二次函数2(2)4y ax a x a =+++的图像与x 轴有两个交点12(,0),(,0)x x ,且121x x <<,则a 的取值范围是() A .2153a -<<- B .103a -<< C .203a <<D .1233a << 6.如图,在由边长为1的小正方形组成的网格中,点A ,B ,C ,D 都在这些小正方形的格点上,AB ,CD 相交于点E ,则sin ∠AEC 的值为( )A B C .12D7.下列计算正确的是( ) A.221aa -=-B.()()2220m m m m +-=≠C.1155155⨯⨯⎛⎫-+-= ⎪⎝⎭2-8.如图,已知矩形纸片ABCD ,点E 是AB 的中点,点G 是BC 上的一点,∠BEG >60°.现沿直线EG 将纸片折叠,使点B 落在纸片上的点H 处,连接AH ,则与∠BEG 相等的角的个数为( )A .5B .3C .2D .19.已知三角形ABC 的三个内角满足关系∠B +∠C=3∠A ,则此三角形( ). A .一定有一个内角为45° B .一定有一个内角为60° C .一定是直角三角形D .一定是钝角三角形10.如图,△ABC 是一张顶角为120°的三角形纸片,AB =AC ,BC =6,现将△ABC 折叠,使点B 与点A重合,折痕为DE ,则DE 的长为( )A .1B .2C .D .311.若关于x 的一元二次方程20ax bx c ++=有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,以下关于倍根方程的说法,正确的是( )①方程23+20x x -=是倍根方程;②若(2)()0x mx n --=是倍根方程,则4n m =或n m =③若点()p q ,在双曲线2y x=的图像上,则关于x 的方程230px x q ++=是倍根方程; A .①B .①②C .①③D .①②③12.从0,1,2,3,4,5,6这七个数中,随机抽取一个数,记为a ,若a 使关于x 的不等式组5514x x x a +<+⎧⎨->-⎩的解集为x >1,且使关于x 的分式方程62ax x --=2的解为非负数,那么取到满足条件的a 值的概率为( ) A .17B .27C .37D .47二、填空题13.如图,在菱形ABCD 中,AB=BD,点E 、F 分别在AB ,AD 上,且AE=DF ,连接BF 与DE ,相交于点G ,连接CG ,与BD 相交于点H ,下列结论①△AED ≌△DFB ;②S 四边形BCDG =2;③若AF=2FD ,则BG=6GF,其中正确的有____________.(填序号)14.因式分解:x 2﹣4=______.15.将一个含有45°角的直角三角板摆放在矩形上,如图所示,若∠1=40°,则∠2=________.16.已知x ﹣y=2,则x 2﹣y 2﹣4y=_____. 17.如图,在V ABC 中,MNBC ,分别交AB AC 、于点M N 、,若1AM =,52MB =,3BC = ,则MN 的长为___.18.已知实数x 满足•|x+1|≤0,则x 的值为_____.三、解答题19.如图,在平行四边形ABCD 中,AB =BC =8,∠B =60°,将平行四边形ABCD 沿EF 折叠,点D 恰好落在边AB 的中点D′处,折叠后点C 的对应点为C′,D′C′交BC 于点G ,∠BGD′=32°. (1)求∠D′EF 的度数; (2)求线段AE 的长.20.已知函数y =y 1+y 2,其中y 1与x 成反比例,y 2与x ﹣2成正比例,函数的自变量x 的取值范围是x≥12,且当x =1或x =4时,y 的值均为32.请对该函数及其图象进行如下探究:(1)解析式探究:根据给定的条件,可以确定出该函数的解析式为: . (2)函数图象探究: ①根据解析式,补全下表:(3)结合画出的函数图象,解决问题:①当x=34,214,8时,函数值分别为y1,y2,y3,则y1,y2,y3的大小关系为:;(用“<”或“=”表示)②若直线y=k与该函数图象有两个交点,则k的取值范围是,此时,x的取值范围是.21.某公司将农副产品运往市场销售,记汽车行驶时间为t(h),平均速度为v(km/h)(汽车行驶速度不超过100km/h),v随t的变化而变化.t与v的一组对应值如表:(2)汽车上午7:30出发,能否在上午10:00之前到达市场?请说明理由.22.飞机飞行需加适量燃油,既能飞到目的地,又使着陆时飞机总重量(自重+载重+油重)不超过它的最大着陆重量,否则飞机需通过空中放油(如图1)减重,达标后才能降落.某客机的主要指标如图2,假定该客机始终满载飞行且它的加油量要使它着陆时的总重量恰好达到135 t.例如,该客机飞1 h 的航班,需加油1×5+(135-120)=20 t.(1)该客机飞3 h的航班,需加油 t;(2)该客机飞x h的航班,需加油y t,则y与x之间的函数表达式为;(3)该客机飞11 h的航班,出发2 h时有一位乘客突发不适,急需就医.燃油有价,生命无价,机长决定立刻按原航线原速返航,同时开始以70 t/h的速度实施空中放油.①客机应放油 t;②设该客机在飞行x h时剩余燃油量为R t,请在图3中画出R与x之间的函数图像,并标注必要数据.23.如图,一架无人机在点A处悬停,从地面B处观察无人机的仰角是α,从楼顶C处观察无人机的仰角是β.已知B、AE、CD在同一平面内,BD=115 m,楼高CD=50 m,求无人机的高度AE.(参考数据:2tan2,sin0.89,tan,sin0.553ααββ=≈=≈.)24.计算:(1)﹣30﹣(12)﹣2﹣(14)2010×(﹣4)2011(2)(﹣3a)3﹣(﹣a)•(﹣3a)2.25.某足球队为了解运动员的年龄情况,作了一次年龄调查,根据足球运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)本次接受调查的足球运动员人数为______,图①中m的值为______;(Ⅱ)求统计的这组足球运动员年龄数据的平均数、众数和中位数.【参考答案】***一、选择题13.①②③14.(x+2)(x ﹣2). 15.85° 16.4 17.6718.2 三、解答题19.(1)∠D'EF =76°;(2)11231AE -=.【解析】 【分析】(1)根据折叠的性质可得:∠D =∠ED'G =60°,∠DEF =∠D'EF ,根据平行线的性质有∠DEF =∠EFB.等量代换得到∠D'EF =∠EFB ,在四边形D EFG '中,根据四边形的内角和即可求解.(2)过点E 作EH ⊥AB 于点H ,设AE =x ,根据平行线的性质有∠HAD =∠B =60°,且EH ⊥AB ,求出1,2AH x HE x ==,根据中点的性质有1'2AD AB ==根据勾股定理即可求解. 【详解】解:(1)∵四边形ABCD 是平行四边形, ∴∠B =∠D =60°,AD ∥BC , ∴∠DEF =∠EFB.∵将平行四边形ABCD 沿EF 折叠,点D 恰好落在边AB 的中点D′处, ∴∠D =∠ED'G =60°,∠DEF =∠D'EF , ∴∠D'EF =∠EFB , ∵∠BGD′=32° ∴∠D'GF =148°∵∠D'GF+∠EFB+∠D'EF+∠ED'G =360°,14860360D EF D EF ''+∠+∠+=︒ ,∴∠D'EF =76°;(2)过点E 作EH ⊥AB 于点H ,设AE =x , ∵AD ∥BC ,∴∠HAD =∠B =60°,且EH ⊥AB ,∴1,2AH x HE x ==,∵点D'是AB 中点,∴1'2AD AB == ∵HE 2+D'H 2=D'E 2,∴()22231842x x x ⎛⎫+- ⎪⎝=⎭, ∴x=11231-,∴11231AE -=.【点睛】考查平行四边形的性质,折叠的性质,勾股定理等,综合性比较强,注意题目中辅助线是作法. 20.(1)2112y x x =+-;(2)①见解析;②见解析;(3)①y 2<y 1<y 3;②1<k≤134,12≤x≤8. 【解析】 【分析】(1)根据题意设11k y x=,y 2=k 2(x ﹣2),则12(2)ky k x x =+-,即可解答(2)将表中数据代入2112y x x =+-,即可解答(3)①由(2)中图象可得:(2,1)是图象上最低点,在该点左侧,y 随x 增大而减小;在该点右侧y 随x 增大而增大,即可解答 ②观察图象得:x≥12,图象最低点为(2,1),再代入即可 【详解】 (1)设11k y x=,y 2=k 2(x ﹣2),则12(2)ky k x x =+- ,由题意得:1212323242k k k k ⎧-=⎪⎪⎨⎪+=⎪⎩ ,解得:12212k k =⎧⎪⎨=⎪⎩,∴该函数解析式为2112y x x =+- , 故答案为:2112y x x =+-, (2)①根据解析式,补全下表:(3)①由(2)中图象可得:(2,1)是图象上最低点,在该点左侧,y随x增大而减小;在该点右侧y随x 增大而增大,∴y2<y1<y3,故答案为:y2<y1<y3,②观察图象得:x≥12,图象最低点为(2,1),∴当直线y=k与该图象有两个交点时,1<k≤134,此时x的范围是:12≤x≤8.故答案为:1<k≤134,12≤x≤8.【点睛】此题考查待定系数法求反比例函数的解析式,列出方程式解题关键21.(1)v=300t;(2)上午10:00前汽车不能到达市场.【解析】【分析】(1)根据表格中的数据可以写出v(km/h)关于t(h)的函数解析式;(2)将t=2.5代入(1)中的函数解析式,求出v的值,然后与100比较大小即可解答本题.【详解】(1)由表格中的数据可得,vt=300,则v=300t,即v(km/h)关于t(h)的函数解析式是v=300t;(2)上午10:00前汽车不能到达市场,理由:∵当t=2.5时,v=3002.5=120>100,∴上午10:00前汽车不能到达市场.【点睛】本题考查反比例函数的应用,解答本题的关键是明确题意,利用反比例函数的性质解答.22.(1)30;(2)y=5x+15.(3)①35;②见解析【解析】【分析】(1)根据题意列式解答即可;(2)根据飞机油耗5t/h可得y与x的关系式;(3)①根据题意列式解答即可;②根据题意画图即可.【详解】解:(1)客机飞3h的航班,需加油3×5+(135-120)=30t.故答案为:30;(2)根据飞机油耗5t/h可得:y=5x+15.故答案为:y=5x+15;(3)①客机应放油:5×(11-2×2)=35(t).故答案为:35;②如图所示,【点睛】本题考查了一次函数的应用,解题的关键是根据数量关系,找出函数关系式.23.m【解析】【分析】过点C作CF⊥AE,垂足为F,首先在Rt△ACF中求出AF和FC的关系,进而设FC=3x,则AF=2x,BE=115-3x,在Rt△ABE中,求出AE和BE的关系,进而求出x的值,即可求出AE的长度.【详解】解:如图,过点C作CF⊥AE,垂足为F,根据题意可得FC=ED,EF=CD=50.在Rt△ACF中,∠AFC=90°,∠ACF=β,∵tanAFFC β=,∴ AF=FC·tanβ=23 FC.设FC=3x,则AF=2x,BE=115-3x.在Rt△ABE中,∠AEB=90°,∠ABE=α,∵tanAEBE α=,∴ AE=BE·tanα=2BE.∴ 50+2x=2(115-3x).解得 x=22.5.∴ AE=50+45=95.答:无人机的高度AE为95 m.【点睛】本题考查仰角俯角的定义,要求学生能借助仰角俯角构造直角三角形并解直角三角形,难度一般.24.(1)-1;(2)﹣18a3【解析】【分析】(1)直接利用负指数幂的性质以及积的乘方运算法则化简得出答案;(2)直接利用积的乘方运算法则以及结合单项式乘以单项式运算法则计算得出答案.【详解】(1)原式=﹣1﹣4+(14×4)2010×4=﹣5+4=﹣1;(2)原式=﹣27a3+a•9a2=﹣27a3+9a3=﹣18a3.【点睛】此题主要考查了负指数幂的性质以及积的乘方运算、积的乘方运算法则以及单项式乘以单项式运算,正确掌握运算法则是解题关键.25.(Ⅰ)50,24;(Ⅱ)平均数是14.8;众数为15;中位数为15.【解析】【分析】(1)频数÷所占百分比=样本容量,m=100-28-20-10-18=24,据此解答即可;(2)根据平均数、众数和中位数的定义求解即可.【详解】(Ⅰ)9÷18%=50(名)m=100-28-20-10-18=24,故答案为:50,24.(Ⅱ)观察条形统计图,139141215141610175x14.850⨯+⨯+⨯+⨯+⨯==,∴这组数据的平均数是14.8.∵在这组样本数据中,15出现了14次,出现的次数最多, ∴这组样本数据的众数为15.∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是15,有1515152+=,∴这组样本数据的中位数为15.【点睛】本题考查了条形统计图,扇形统计图,掌握平均数、众数和中位数的定义是解题的关键.。

(3份试卷汇总)2019-2020学年宜昌市名校中考数学联考试题

(3份试卷汇总)2019-2020学年宜昌市名校中考数学联考试题

2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.若x=-2是关于x的一元二次方程x2+32ax-a2=0的一个根,则a的值为()A.-1或4 B.-1或-4C.1或-4 D.1或42.函数y=ax2与y=﹣ax+b的图象可能是()A.B.C.D.3.在同一平面直角坐标系中,一次函数y=kx﹣2k和二次函数y=﹣kx2+2x﹣4(k是常数且k≠0)的图象可能是()A.B.C.D.4.在△ABC中,∠C=90°,tanA=,△ABC的周长为60,那么△ABC的面积为()A.60 B.30 C.240 D.1205.下列事件中,属于必然事件的是()A.三角形的外心到三边的距离相等B.某射击运动员射击一次,命中靶心C.任意画一个三角形,其内角和是180°D.抛一枚硬币,落地后正面朝上6.如图所示的几何体的主视图是()A .B .C .D .7.如图是由长方体和圆柱组成的几何体,它的俯视图是( )A .B .C .D .8.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/时,水速为2千米/时,求A 港和B 港相距多少千米. 设A 港和B 港相距x 千米. 根据题意,可列出的方程是( ).A .32824x x =- B .32824x x =+ C .2232626x x +-=+ D .2232626x x +-=- 9.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x 名同学,那么依题意,可列出的方程是( ) A .x (x+1)=210B .x (x ﹣1)=210C .2x (x ﹣1)=210D .12x (x ﹣1)=210 10.一元二次方程mx 2+mx ﹣12=0有两个相等实数根,则m 的值为( ) A .0 B .0或﹣2C .﹣2D .2 二、填空题(本题包括8个小题)11.如图,在平面直角坐标系中,经过点A 的双曲线y=k x(x >0)同时经过点B ,且点A 在点B 的左侧,点A 的横坐标为1,∠AOB=∠OBA=45°,则k 的值为_______.12.某种水果的售价为每千克a 元,用面值为50元的人民币购买了3千克这种水果,应找回元(用含a 的代数式表示).13.如图①,四边形ABCD 中,AB ∥CD ,∠ADC=90°,P 从A 点出发,以每秒1个单位长度的速度,按A→B→C→D 的顺序在边上匀速运动,设P 点的运动时间为t 秒,△PAD 的面积为S ,S 关于t 的函数图象如图②所示,当P 运动到BC 中点时,△PAD 的面积为______.14.计算()22133x y xy ⎛⎫-⋅= ⎪⎝⎭_______. 15.若关于x 的一元二次方程x 2+2x ﹣m=0有两个相等的实数根,则m 的值为______.16.Rt △ABC 中,∠ABC=90°,AB=3,BC=4,过点B 的直线把△ABC 分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是_____.17.如图,菱形ABCD 的对角线的长分别为2和5,P 是对角线AC 上任一点(点P 不与点A 、C 重合),且PE ∥BC 交AB 于E ,PF ∥CD 交AD 于F ,则阴影部分的面积是__________.18.如图,点E 在正方形ABCD 的边CD 上.若△ABE 的面积为8,CE=3,则线段BE 的长为_______.三、解答题(本题包括8个小题)19.(6分)为了了解某校学生对以下四个电视节目:A 《最强大脑》,B 《中国诗词大会》,C 《朗读者》,D 《出彩中国人》的喜爱情况,随机抽取了部分学生进行调查,要求每名学生选出并且只能选出一个自己最喜爱的节目,根据调查结果,绘制了如下两幅不完整的统计图.请你根据图中所提供的信息,完成下列问题:本次调查的学生人数为________;在扇形统计图中,A 部分所占圆心角的度数为________;请将条形统计图补充完整:若该校共有3000名学生,估计该校最喜爱《中国诗词大会》的学生有多少名?20.(6分)为进一步深化基教育课程改革,构建符合素质教育要求的学校课程体系,某学校自主开发了A 书法、B 阅读,C 足球,D 器乐四门校本选修课程供学生选择,每门课程被选到的机会均等.学生小红计划选修两门课程,请写出所有可能的选法;若学生小明和小刚各计划送修一门课程,则他们两人恰好选修同一门课程的概率为多少?21.(6分)关于x 的一元二次方程mx 2﹣(2m ﹣3)x+(m ﹣1)=0有两个实数根.求m 的取值范围;若m 为正整数,求此方程的根.22.(8分)在甲、乙两个不透明的布袋里,都装有3个大小、材质完全相同的小球,其中甲袋中的小球上分别标有数字1,1,2;乙袋中的小球上分别标有数字﹣1,﹣2,1.现从甲袋中任意摸出一个小球,记其标有的数字为x ,再从乙袋中任意摸出一个小球,记其标有的数字为y ,以此确定点M 的坐标(x ,y ).请你用画树状图或列表的方法,写出点M 所有可能的坐标;求点M (x ,y )在函数y=﹣的图象上的概率. 23.(8分)如图,一次函数y 1=kx +b(k≠0)和反比例函数y 2=m x(m≠0)的图象交于点A(-1,6),B(a ,-2).求一次函数与反比例函数的解析式;根据图象直接写出y 1>y 2 时,x 的取值范围.24.(10分)如图,一次函数5y kx =+(k 为常数,且0k ≠)的图像与反比例函数8y x=-的图像交于()2,A b -,B 两点.求一次函数的表达式;若将直线AB 向下平移(0)m m >个单位长度后与反比例函数的图像有且只有一个公共点,求m 的值.25.(10分)为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的32倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.甲、乙两工程队每天能改造道路的长度分别是多少米?若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?26.(12分)已知:如图,在四边形ABCD 中,AB ∥CD ,对角线AC 、BD 交于点E ,点F 在边AB 上,连接CF 交线段BE 于点G ,CG 2=GE•GD .求证:∠ACF=∠ABD ;连接EF ,求证:EF•CG=EG•CB .参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.C【解析】试题解析:∵x=-2是关于x 的一元二次方程22302x ax a +-=的一个根, ∴(-2)2+32a×(-2)-a 2=0,即a 2+3a-2=0, 整理,得(a+2)(a-1)=0,解得 a 1=-2,a 2=1.即a 的值是1或-2.故选A .点睛:一元二次方程的解的定义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.2.B【解析】A 选项中,由图可知:在2y ax =,0a >;在y ax b =-+,0a ->,∴0a <,所以A 错误;B 选项中,由图可知:在2y ax =,0a >;在y ax b =-+,0a -<,∴0a >,所以B 正确;C 选项中,由图可知:在2y ax =,0a <;在y ax b =-+,0a -<,∴0a >,所以C 错误;D 选项中,由图可知:在2y ax =,0a <;在y ax b =-+,0a -<,∴0a >,所以D 错误.故选B .点睛:在函数2y ax =与y ax b =-+中,相同的系数是“a ”,因此只需根据“抛物线”的开口方向和“直线”的变化趋势确定出两个解析式中“a ”的符号,看两者的符号是否一致即可判断它们在同一坐标系中的图象情况,而这与“b”的取值无关.3.C【解析】【分析】根据一次函数与二次函数的图象的性质,求出k 的取值范围,再逐项判断即可.【详解】解:A 、由一次函数图象可知,k >0,∴﹣k <0,∴二次函数的图象开口应该向下,故A 选项不合题意;B 、由一次函数图象可知,k >0,∴﹣k <0,-22k -=1k >0,∴二次函数的图象开口向下,且对称轴在x 轴的正半轴,故B 选项不合题意;C 、由一次函数图象可知,k <0,∴﹣k >0,-22k -=1k<0,,∴二次函数的图象开口向上,且对称轴在x 轴的负半轴,一次函数必经过点(2,0),当x =2时,二次函数值y =﹣4k >0,故C 选项符合题意; D 、由一次函数图象可知,k <0,∴﹣k >0,-22k -=1k <0,,∴二次函数的图象开口向上,且对称轴在x 轴的负半轴,一次函数必经过点(2,0),当x =2时,二次函数值y =﹣4k >0,故D 选项不合题意; 故选:C .【点睛】本题考查一次函数与二次函数的图象和性质,解决此题的关键是熟记图象的性质,此外,还要主要二次函数的对称轴、两图象的交点的位置等.4.D【解析】【分析】由tanA 的值,利用锐角三角函数定义设出BC 与AC ,进而利用勾股定理表示出AB ,由周长为60求出x的值,确定出两直角边,即可求出三角形面积.【详解】如图所示,由tanA=,设BC=12x,AC=5x,根据勾股定理得:AB=13x,由题意得:12x+5x+13x=60,解得:x=2,∴BC=24,AC=10,则△ABC面积为120,故选D.【点睛】此题考查了解直角三角形,锐角三角函数定义,以及勾股定理,熟练掌握勾股定理是解本题的关键.5.C【解析】分析:必然事件就是一定发生的事件,依据定义即可作出判断.详解:A、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三边的距离相等,是不可能事件,故本选项不符合题意;B、某射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意;C、三角形的内角和是180°,是必然事件,故本选项符合题意;D、抛一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意;故选C.点睛:解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.A【解析】【分析】找到从正面看所得到的图形即可.解:从正面可看到从左往右2列一个长方形和一个小正方形,故选A .【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.7.A【解析】分析:根据从上边看得到的图形是俯视图,可得答案.详解:从上边看外面是正方形,里面是没有圆心的圆,故选A .点睛:本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.8.A【解析】【分析】通过题意先计算顺流行驶的速度为26+2=28千米/时,逆流行驶的速度为:26-2=24千米/时.根据“轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时”,得出等量关系,据此列出方程即可.【详解】解:设A 港和B 港相距x 千米,可得方程:32824x x =- 故选:A .【点睛】本题考查了由实际问题抽象出一元一次方程,抓住关键描述语,找到等量关系是解决问题的关键.顺水速度=水流速度+静水速度,逆水速度=静水速度-水流速度.9.B【解析】【详解】设全组共有x 名同学,那么每名同学送出的图书是(x−1)本;则总共送出的图书为x(x−1);又知实际互赠了210本图书,则x(x−1)=210.故选:B.10.C【解析】由方程有两个相等的实数根,得到根的判别式等于0,求出m的值,经检验即可得到满足题意m的值.【详解】∵一元二次方程mx1+mx﹣12=0有两个相等实数根,∴△=m1﹣4m×(﹣12)=m1+1m=0,解得:m=0或m=﹣1,经检验m=0不合题意,则m=﹣1.故选C.【点睛】此题考查了根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根.二、填空题(本题包括8个小题)11.152【解析】【分析】分析:过A作AM⊥y轴于M,过B作BD选择x轴于D,直线BD与AM交于点N,则OD=MN,DN=OM,∠AMO=∠BNA=90°,由等腰三角形的判定与性质得出OA=BA,∠OAB=90°,证出∠AOM=∠BAN,由AAS 证明△AOM≌△BAN,得出AM=BN=1,OM=AN=k,求出B(1+k,k﹣1),得出方程(1+k)•(k﹣1)=k,解方程即可.详解:如图所示,过A作AM⊥y轴于M,过B作BD选择x轴于D,直线BD与AM交于点N,则OD=MN,DN=OM,∠AMO=∠BNA=90°,∴∠AOM+∠OAM=90°,∵∠AOB=∠OBA=45°,∴OA=BA,∠OAB=90°,∴∠OAM+∠BAN=90°,∴∠AOM=∠BAN,∴△AOM ≌△BAN ,∴AM=BN=1,OM=AN=k ,∴OD=1+k ,BD=OM ﹣BN=k ﹣1∴B (1+k ,k ﹣1),∵双曲线y=k x(x >0)经过点B , ∴(1+k )•(k ﹣1)=k ,整理得:k 2﹣k ﹣1=0,解得:(负值已舍去),. 点睛:本题考查了反比例函数图象上点的坐标特征,坐标与图形的性质,全等三角形的判定与性质,等腰三角形的判定与性质等知识.解决问题的关键是作辅助线构造全等三角形.【详解】请在此输入详解!12.(50-3a ).【解析】试题解析:∵购买这种售价是每千克a 元的水果3千克需3a 元,∴根据题意,应找回(50-3a )元.考点:列代数式.13.1【解析】解:由图象可知,AB+BC=6,AB+BC+CD=10,∴CD=4,根据题意可知,当P 点运动到C 点时,△PAD 的面积最大,S △PAD =12×AD×DC=8,∴AD=4,又∵S △ABD =12×AB×AD=2,∴AB=1,∴当P 点运动到BC 中点时,△PAD 的面积=12×12(AB+CD )×AD=1,故答案为1. 14.33x y -【解析】【分析】根据同底数幂的乘法法则计算即可.【详解】()22133x y xy ⎛⎫-⋅ ⎪⎝⎭22133x y xy =-⨯⋅ 33x y =-故答案是:33x y -【点睛】本题考查了同底数幂的乘法,熟练掌握同底数幂的乘法运算法则是解题的关键.15.-1【解析】【分析】根据关于x 的一元二次方程x 2+2x ﹣m=0有两个相等的实数根可知△=0,求出m 的取值即可.【详解】解:由已知得△=0,即4+4m=0,解得m=-1.故答案为-1.【点睛】本题考查的是根的判别式,即一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.16.3.1或4.32或4.2【解析】【分析】在Rt △ABC 中,通过解直角三角形可得出AC=5、S △ABC =1,找出所有可能的分割方法,并求出剪出的等腰三角形的面积即可.【详解】在Rt △ABC 中,∠ACB=90°,AB=3,BC=4,∴=5,S △ABC =12AB•BC=1. 沿过点B 的直线把△ABC 分割成两个三角形,使其中只有一个是等腰三角形,有三种情况:①当AB=AP=3时,如图1所示,S 等腰△ABP =AP AC •S △ABC =35×1=3.1; ②当AB=BP=3,且P 在AC 上时,如图2所示, 作△ABC 的高BD ,则BD=·34 2.45AB BC AC ⨯==,∴,∴AP=2AD=3.1,∴S 等腰△ABP =AP AC •S △ABC =3.65×1=4.32; ③当CB=CP=4时,如图3所示,S等腰△BCP=CPAC•S△ABC=45×1=4.2;综上所述:等腰三角形的面积可能为3.1或4.32或4.2,故答案为:3.1或4.32或4.2.【点睛】本题考查了勾股定理、等腰三角形的性质以及三角形的面积,找出所有可能的分割方法,并求出剪出的等腰三角形的面积是解题的关键.17.5 2【解析】【分析】根据题意可得阴影部分的面积等于△ABC的面积,因为△ABC的面积是菱形面积的一半,根据已知可求得菱形的面积则不难求得阴影部分的面积.【详解】设AP,EF交于O点,∵四边形ABCD为菱形,∴BC∥AD,AB∥CD.∵PE∥BC,PF∥CD,∴PE∥AF,PF∥AE.∴四边形AEFP是平行四边形.∴S△POF=S△AOE.即阴影部分的面积等于△ABC的面积.∵△ABC的面积等于菱形ABCD的面积的一半,菱形ABCD的面积=12AC BD=5,∴图中阴影部分的面积为5÷2=52.18.5. 【解析】【详解】试题解析:过E作EM⊥AB于M,∵四边形ABCD是正方形,∴AD=BC=CD=AB,∴EM=AD,BM=CE,∵△ABE的面积为8,∴1×AB×EM=8,2解得:EM=4,即AD=DC=BC=AB=4,∵CE=3,由勾股定理得:222243+=+BC CE考点:1.正方形的性质;2.三角形的面积;3.勾股定理.三、解答题(本题包括8个小题)19.(1)120;(2)54;(3)答案见解析;(4)1650.【解析】【分析】(1)依据节目B的数据,即可得到调查的学生人数;(2)依据A部分的百分比,即可得到A部分所占圆心角的度数;(3)求得C部分的人数,即可将条形统计图补充完整;(4)依据喜爱《中国诗词大会》的学生所占的百分比,即可得到该校最喜爱《中国诗词大会》的学生数量.【详解】()16655%120÷=,故答案为120;()18⨯=,236054120故答案为54;()3C:12025%30⨯=,如图所示:()4300055%1650⨯=,答:该校最喜爱《中国诗词大会》的学生有1650名. 【点睛】本题考查了条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合思想解答.20.(1)答案见解析;(2)14 【解析】 分析:(1)直接列举出所有可能的结果即可. (2)画树状图展示所有16种等可能的结果数,再找出他们两人恰好选修同一门课程的结果数,然后根据概率公式求解.详解:(1)学生小红计划选修两门课程,她所有可能的选法有:A 书法、B 阅读;A 书法、C 足球;A 书法、D 器乐;B 阅读,C 足球;B 阅读,D 器乐;C 足球,D 器乐.共有6种等可能的结果数;(2)画树状图为:共有16种等可能的结果数,其中他们两人恰好选修同一门课程的结果数为4,所以他们两人恰好选修同一门课程的概率41.164== 点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.21.(1)98m且0m ≠;(2)10x =,21x =-. 【解析】【分析】(1)根据一元二次方程的定义和判别式的意义得到m≠0且()()22341m m m =----⎡⎤⎣⎦≥0,然后求出两个不等式的公共部分即可;(2)利用m 的范围可确定m=1,则原方程化为x 2+x=0,然后利用因式分解法解方程.【详解】(1)∵2=[(23)]4(1)m m m ∆---- =89m -+.解得98m ≤且0m ≠. (2)∵m 为正整数, ∴1m =.∴原方程为20x x +=.解得10x =,21x =-.【点睛】考查一元二次方程()200ax bx c a ++=≠根的判别式24b ac ∆=-,当240b ac ∆=->时,方程有两个不相等的实数根.当240b ac ∆=-=时,方程有两个相等的实数根.当240b ac ∆=-<时,方程没有实数根.22.(1)树状图见解析,则点M 所有可能的坐标为:(1,﹣1),(1,﹣2),(1,1),(1,﹣1),(1,﹣2),(1,1),(2,﹣1),(2,﹣2),(2,1);(2).【解析】试题分析:(1)画出树状图,可求得所有等可能的结果;(2)由点M (x ,y )在函数y=﹣的图象上的有:(1,﹣2),(2,﹣1),直接利用概率公式求解即可求得答案.试题解析:(1)树状图如下图:则点M 所有可能的坐标为:(1,﹣1),(1,﹣2),(1,1),(1,﹣1),(1,﹣2),(1,1),(2,﹣1),(2,﹣2),(2,1);(2)∵点M (x ,y )在函数y=﹣的图象上的有:(1,﹣2),(2,﹣1),∴点M (x ,y )在函数y=﹣的图象上的概率为:.考点:列表法或树状图法求概率.23.(1)y 1=-2x +4,y 2=-6x;(2)x<-1或0<x<1. 【解析】【分析】 (1)把点A 坐标代入反比例函数求出k 的值,也就求出了反比例函数解析式,再把点B 的坐标代入反比例函数解析式求出a 的值,得到点B 的坐标,然后利用待定系数法即可求出一次函数解析式;(2)找出直线在一次函数图形的上方的自变量x 的取值即可.【详解】解:(1)把点A (﹣1,6)代入反比例函数2m y x =(m≠0)得:m=﹣1×6=﹣6, ∴26y x=-. 将B (a ,﹣2)代入26y x =-得:62a -=-,a=1,∴B (1,﹣2),将A (﹣1,6),B (1,﹣2)代入一次函数y 1=kx+b 得:632k b k b -+=⎧⎨+=-⎩, ∴24k b =-⎧⎨=⎩, ∴124y x =-+;(2)由函数图象可得:x <﹣1或0<x <1.【点睛】本题考查反比例函数与一次函数的交点问题,利用数形结合思想解题是本题的关键.24.(1)152y x =+;(2)1或9. 【解析】试题分析:(1)把A(-2,b)的坐标分别代入一次函数和反比例函数表达式,求得k 、b 的值,即可得一次函数的解析式;(2)直线AB 向下平移m(m >0)个单位长度后,直线AB 对应的函数表达式为y =12x +5-m ,根据平移后的图象与反比例函数的图象有且只有一个公共点,把两个解析式联立得方程组,解方程组得一个一元二次方程,令△=0,即可求得m 的值.试题解析:(1)根据题意,把A(-2,b)的坐标分别代入一次函数和反比例函数表达式,得2582b k b =-+⎧⎪⎨-=⎪-⎩, 解得412b k =⎧⎪⎨=⎪⎩,所以一次函数的表达式为y =12x +5. (2)将直线AB 向下平移m(m >0)个单位长度后,直线AB 对应的函数表达式为y =12x +5-m.由8152y x y x m ⎧=-⎪⎪⎨⎪=+-⎪⎩得, 12x 2+(5-m)x +8=0.Δ=(5-m)2-4×12×8=0, 解得m =1或9.点睛:本题考查了反比例函数与一次函数的交点问题,求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解.25.(1)乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.(2)10天.【解析】【分析】(1)设乙工程队每天能改造道路的长度为x 米,则甲工程队每天能改造道路的长度为32x 米,根据工作时间=工作总量÷工作效率结合甲队改造360米的道路比乙队改造同样长的道路少用3天,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设安排甲队工作m 天,则安排乙队工作12006040m -天,根据总费用=甲队每天所需费用×工作时间+乙队每天所需费用×工作时间结合总费用不超过145万元,即可得出关于m 的一元一次不等式,解之取其中的最大值即可得出结论.【详解】(1)设乙工程队每天能改造道路的长度为x 米,则甲工程队每天能改造道路的长度为32x 米, 根据题意得:360360332x x -=, 解得:x=40,经检验,x=40是原分式方程的解,且符合题意, ∴32x=32×40=60, 答:乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米;(2)设安排甲队工作m 天,则安排乙队工作12006040m -天, 根据题意得:7m+5×12006040m -≤145, 解得:m≥10,答:至少安排甲队工作10天.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式.26.(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)先根据CG2=GE•GD得出CG GDGE CG=,再由∠CGD=∠EGC可知△GCD∽△GEC,∠GDC=∠GCE.根据AB∥CD得出∠ABD=∠BDC,故可得出结论;(2)先根据∠ABD=∠ACF,∠BGF=∠CGE得出△BGF∽△CGE,故FG EGBG CG=.再由∠FGE=∠BGC得出△FGE∽△BGC,进而可得出结论.试题解析:(1)∵CG2=GE•GD,∴CG GD GE CG=.又∵∠CGD=∠EGC,∴△GCD∽△GEC,∴∠GDC=∠GCE.∵AB∥CD,∴∠ABD=∠BDC,∴∠ACF=∠ABD.(2)∵∠ABD=∠ACF,∠BGF=∠CGE,∴△BGF∽△CGE,∴FG EG BG CG=.又∵∠FGE=∠BGC,∴△FGE∽△BGC,∴FE EGBC CG=,∴FE•CG=EG•CB.考点:相似三角形的判定与性质.2019-2020学年中考数学模拟试卷 一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x 尺,绳子长为y 尺,则所列方程组正确的是( )A . 4.50.51y x y x =+⎧⎨=-⎩B . 4.521y x y x =+⎧⎨=-⎩C . 4.50.51y x y x =-⎧⎨=+⎩D . 4.521y x y x =-⎧⎨=-⎩2.随着“中国诗词大会”节目的热播,《唐诗宋词精选》一书也随之热销.如果一次性购买10本以上,超过10本的那部分书的价格将打折,并依此得到付款金额y (单位:元)与一次性购买该书的数量x (单位:本)之间的函数关系如图所示,则下列结论错误的是( )A .一次性购买数量不超过10本时,销售价格为20元/本B .a =520C .一次性购买10本以上时,超过10本的那部分书的价格打八折D .一次性购买20本比分两次购买且每次购买10本少花80元3.已知一组数据1、2、3、x 、5,它们的平均数是3,则这一组数据的方差为( )A .1B .2C .3D .44.在Rt △ABC 中∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,c =3a ,tanA 的值为( ) A .13 B .24 C .2 D .35.在如图所示的数轴上,点B 与点C 关于点A 对称,A 、B 两点对应的实数分别是3和﹣1,则点C 所对应的实数是( )A .3B .3C .3 1D .36.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为( ) A .180元 B .200元 C .225元 D .259.2元7.关于x 的不等式21x a --的解集如图所示,则a 的取值是( )A .0B .3-C .2-D .1-8.如图,在△ABC 中,cosB =22,sinC =35,AC =5,则△ABC 的面积是( )A . 212B .12C .14D .219.要使分式有意义,则x 的取值应满足( ) A .x=﹣2 B .x≠2C .x >﹣2D .x≠﹣2 10.已知关于x 的方程()2kx 1k x 10+--=,下列说法正确的是A .当k 0=时,方程无解B .当k 1=时,方程有一个实数解C .当k 1=-时,方程有两个相等的实数解D .当k 0≠时,方程总有两个不相等的实数解二、填空题(本题包括8个小题)11.分解因:22424x xy y x y --++=______________________.12.函数21y x =-中,自变量x 的取值范围是_____. 13.中国的陆地面积约为9 600 000km 2,把9 600 000用科学记数法表示为 .14.已知一组数据-3,x ,-2, 3,1,6的众数为3,则这组数据的中位数为______.15.一个正多边形的一个外角为30°,则它的内角和为_____.16.已知一组数据1,2,0,﹣1,x ,1的平均数是1,则这组数据的中位数为_____.17.如图,半径为3的⊙O 与Rt △AOB 的斜边AB 切于点D ,交OB 于点C ,连接CD 交直线OA 于点E ,若∠B=30°,则线段AE 的长为 .18.若m+1m =3,则m 2+21m=_____. 三、解答题(本题包括8个小题)19.(6分)为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的32倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.甲、乙两工程队每天能改造道路的长度分别是多少米?若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?20.(6分)为了解中学生“平均每天体育锻炼时间”的情况,某地区教育部门随机调查了若干名中学生,根据调查结果制作统计图①和图②,请根据相关信息,解答下列问题:本次接受随机抽样调查的中学生人数为_______,图①中m的值是_____;求本次调查获取的样本数据的平均数、众数和中位数;根据统计数据,估计该地区250000名中学生中,每天在校体育锻炼时间大于等于1.5h的人数.21.(6分)如图,已知A是⊙O上一点,半径OC的延长线与过点A的直线交于点B,OC=BC,AC=12 OB.求证:AB是⊙O的切线;若∠ACD=45°,OC=2,求弦CD的长.22.(8分)中华文明,源远流长;中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:成绩x/分频数频率50≤x<60 10 0.0560≤x<70 30 0.1570≤x<80 40 n80≤x<90 m 0.3590≤x≤10050 0.25请根据所给信息,解答下列问题:m=,n=;请补全频数分布直方图;若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?23.(8分)某农场用2台大收割机和5台小收割机同时工作2小时共收割小麦3.6公顷,3台大收割机和2台小收割机同时工作5小时共收割小麦8公顷.1台大收割机和1台小收割机每小时各收割小麦多少公顷?24.(10分)一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量y(升)关于加满油后已行驶的路程x(千米)的函数图象.根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量;求y关于x的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程. 25.(10分)一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外都相同,其中红球有1个,若从中随机摸出一个球,这个球是白球的概率为23.求袋子中白球的个数;(请通过列式或列方程解答)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)26.(12分)随着交通道路的不断完善,带动了旅游业的发展,某市旅游景区有A、B、C、D、E等著名景点,该市旅游部门统计绘制出2017年“五•一”长假期间旅游情况统计图,根据以下信息解答下列问题:2017年“五•一”期间,该市周边景点共接待游客万人,扇形统计图中A景点所对应的圆心角的度数是,并补全条形统计图.根据近几年到该市旅游人数增长趋势,预计2018年“五•一”节将有80万游客选择该市旅游,请估计有多少万人会选。

2019-2020年宜昌市初三中考数学一模模拟试题

2019-2020年宜昌市初三中考数学一模模拟试题

2019-2020年宜昌市初三中考数学一模模拟试题一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的) 1.9的平方根为( ) A .3B .-3C .±3D .2.如图的几何体,它的俯视图是( )A .B .C .D .3.下列运算正确的是( ) A .(-3mn )2=-6m2n2 B .4x4+2x4+x4=6x4 C .(xy )2÷(-xy )=-xyD .(a-b )(-a-b )=a2-b24.如图,AE ∥CD ,△ABC 为等边三角形,若∠CBD=15°,则∠EAC 的度数是( )A .60°B .45°C .55°D .75°5.已知正比例函数y=kx (k≠0)的图象经过点A (a-2,b )和点B (a ,b+4),则k 的值为( )A .12B .-12C .2D .-26.如图,△ABC 中,∠A=25°,∠B=65°,CD 为∠ACB 的平分线,CE ⊥AB 于点E ,则∠ECD 的度数是( )A.25°B.20°C.30°D.15°7.直线l1:y=-12x+1与直线l2关于点(1,0)成中心对称,下列说法正确的是()A.将l1向下平移2个单位得到l2B.将l1向右平移2个单位得到l2C.将l1向左平移1个单位,再向下平移2个单位得到l2 D.将l1向左平移4个单位,再向上平移1个单位得到l28.如图,BD为菱形ABCD的一条对角线,E、F在BD上,且四边形ACEF为矩形,若EF=1 2BD,则AEAD的值为()A.B.25C.12D.9.如图,AB是⊙O的直径,弦CD⊥AB于点E,连接OC、BD,若∠AOC=110°,则∠BCD的度数是()A.35°B.46°C.55°D.70°10.关于x的二次函数y=mx2+(m-4)x+2(m<0),下列说法:①二次函数的图象开口向下;②二次函数与x轴有两个交点;③当x<-13,y随x的增大而增大;④二次函数图象顶点的纵坐标大于等于6,其中正确的论述是()A.①②③B.①③④C.①②④D.②③④二、填空题(共4小题,每小题3分,共12分)11.不等式442xx->-的最小整数解为12.如图,在正五边形ABCDE 中,连接AC 、AD ,则∠CAD 的度数是 度13.若直线y=-x+m 与双曲线y=nx (x >0)交于A (2,a ),B (4,b )两点,则mn 的值为 .14.如图,等腰直角△ABC 中,∠C=90°,,E 、F 为边AC 、BC 上的两个动点,且CF=AE ,连接BE 、AF ,则BE+AF 的最小值为三、解答题(共11小题,计78分.解答应写出过程)15.计算:312tan 602-︒⎛⎫-+ ⎪⎝⎭ 16.解方程:13222x xx --=-- 17.如图,已知四边形ABCD 中,AD <BC ,AD ∥BC ,∠B 为直角,将这个四边形折叠使得点A 与点C 重合,请用尺规作图法找出折痕所在的直线.(保留作图痕迹,不写作法)18.如图,AB ∥CD ,且AB=CD ,连接BC ,在线段BC 上取点E 、F ,使得CE=BF ,连接AE 、DF .求证:AE ∥DF .19.我校“点爱”社团倡导全校学生参加“关注特殊儿童”自愿捐款活动,并对此次活动进行抽样调查,得到一组学生捐款情况的数据,将数据整理成如图所示的统计图(图中信息不完整).已知A 、B 两组捐款人数的比为1:5.请结合以上信息解答下列问题.(1)a= ,本次抽样调查样本的容量是;(2)补全“捐款人数分组统计图1”;(3)若记A组捐款的平均数为5元,B组捐款的平均数为15元,C组捐款的平均数为25元,D组捐款的平均数为35元,E组捐款的平均数为50元,全校共有2000名学生参加此次活动,请你估计此次活动可以筹得善款的金额大约为多少元.20.如图,在一笔直的海岸线l上有A,B两个观测站,A在B的正东方向2千米处.有一艘小船在观测点A北偏西60°的方向上航行,一段时间后,到达点C处,此时,从观测点B 测得小船在北偏西15°方向上.求点C与点B之间的距离.(结果保留根号)21.为了美化环境,建设最美西安,我市准备在一个广场上种植甲、乙两种花卉,经市场调查,甲种花卉的种植费用为y(元)与种植面积x(m2)之间的函数关系如图所示,乙种花卉的种植费用为100元/m2.(1)求y与x之间的函数关系式;(2)广场上甲、乙两种花卉的种植面积共1200m2,若甲种花卉的种植面积不少于200m2,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植费用最少?最少费用为多少元?22.甲、乙、丙、丁4人聚会,吗,每人带了一件礼物,4件礼物从外盒包装看完全相同,将4件礼物放在一起.(1)甲从中随机抽取一件,则甲抽到不是自己带来的礼物的概率是 ;(2)甲先从中随机抽取一件,不放回,乙再从中随机抽取一件,求甲、乙2人抽到的都不是自己带来的礼物的概率.23.如图,△ABC 中,∠ACB=90°,∠A=60°,点O 为AB 上一点,且3AO=AB ,以OA 为半径作半圆O ,交AC 于点D ,AB 于点E ,DE 与OC 相交于F . (1)求证:CB 与⊙O 相切; (2)若AB=6,求DF 的长度.24.已知抛物线L :y=ax2+bx+3与x 轴交于A (1,0),B (3,0)两点,与y 轴交于点C ,顶点为D .(1)求抛物线的函数表达式及顶点D 的坐标;(2)若将抛物线L 沿y 轴平移后得到抛物线L′,抛物线L′经过点E (4,1),与y 轴的交点为C′,顶点为D′,在抛物线L′上是否存在点M ,使得△MCC′的面积是△MDD′面积的2倍?若存在,求出点M 的坐标;若不存在,请说明理由.25.发现问题:如图1,直线a ∥b ,点B 、C 在直线b 上,点D 为AC 的中点,过点D 的直线与a ,b 分别相交于M 、N 两点,与BA 的延长线交于点P ,若△ABC 的面积为1,则四边形AMNB 的面积为 ;探究问题:如图2,Rt △ABC 中,∠DAC=13∠BAC ,DA=2,求△ABC 面积的最小值;拓展应用:如图3,矩形花园ABCD 的长AD 为400米,宽CD 为300米,供水点E 在小路AC 上,且AE=2CE ,现想沿BC 上一点M 和CD 上一点N 修一条小路MN ,使得MN 经过E ,并在四边形AMCN 围城的区域内种植花卉,剩余区域铺设草坪根据项目的要求种植花卉的区域要尽量小.请根据相关数据求出四边形AMCN 面积的最小值,及面积取最小时点M 、N 的位置.(小路的宽忽略不计)参考答案与试题解析1. 【分析】根据平方根的定义求解即可,注意一个正数的平方根有两个.【解答】解:9的平方根有:.故选:C.【点评】此题考查了平方根的知识,属于基础题,解答本题关键是掌握一个正数的平方根有两个,且互为相反数.2. 【分析】找到从几何体的上面看所得到的图形即可.【解答】解:这个几何体的俯视图为故选:A.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.3. 【分析】根据积的乘方、合并同类项、整式的乘法、除法,即可解答.【解答】解:A、(-3mn)2=9m2n2,故错误;B、4x4+2x4+x4=7x4,故错误;C、正确;D、(a-b)(-a-b)=-(a2-b2)=b2-a2,故错误;故选:C.【点评】本题考查了积的乘方、合并同类项、整式的乘法、除法,解决本题的关键是熟记相关法则.4. 【分析】如图,延长AC交BD于H.求出∠CHB即可解决问题.【解答】解:如图,延长AC交BD于H.∵△ABC是等边三角形,∴∠ACB=60°,∵∠ACB=∠CBD+∠CHB,∠CBD=15°,∴∠CHB=45°,∵AE∥BD,∴∠EAC=∠CHB=45°,故选:B.【点评】本题考查平行线的性质,等边三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.5. 【分析】由正比例函数y=kx可得k=yx,将点A与B代入可得42b ba a+=-,求出b=2a-4,再将A点代入即可求解.【解答】解:由正比例函数y=kx可得k=y x,∵图象经过点A(a-2,b)和点B(a,b+4),∴42b ba a+=-,∴b=2a-4,∴A(a-2,2a-4),将点A代入y=kx可得2a-4=k(a-2),∴k=2,故选:C.【点评】本题考查正比例函数的性质;能够根据已知点建立方程求出b=2a-4是解题的关键.6. 【分析】根据∠ECD=∠DCB-∠ECB,求出∠DCB,∠ECB即可.【解答】解:∵∠ACB=180°-∠A-∠B=90°,又∵CD平分∠ACB,∴∠DCB=12×90°=45°,∵CE⊥AB,∴∠CEB=90°,∴∠ECB=90°-65°=25°,∴∠ECD=45°-25°=20°.故选:B.【点评】本题考查三角形内角和定理,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7. 【分析】设直线l2的点(x,y),则(2-x,-y)在直线l1:y=-12x+1上,代入可得直线l2解析式,根据直线l1与直线l2的解析式即可判断.【解答】解:设直线l2的点(x,y),则(2-x,-y)在直线l1:y=-12x+1上,∴-y=-12(2-x)+1,∴直线l2的解析式为:y=-12(x-2)+1,∴将l1向右平移2个单位得到l2,故选:B.【点评】本题考查了一次函数图象与几何变换,求得直线l2的解析式是解题的关键.8. 【分析】由菱形的性质可知对角线垂直且互相平分,由矩形的性质可知对角线又互相平分且相等,再加上EF=12BD,可以得到OA=OC=OE=OF=12OB=14BD,设OA=x,用勾股定理可以表示出AE、AD,进而求出他们的比值,再做出选择.【解答】解:连接AC交BD于点O,∵菱形ABCD,∴AC⊥BD,AB=BC=CD=DA,OA=OC=12AC,OB=OD=12BD,∵AFCE是矩形,∴AC=EF=2OF=2OE,又∵EF=12BD,∴OA=OF,OB=2OA,设OA=x,则OE=x,OB=2x,在Rt△AOE和Rt△AOB中,AEAE ABAD====∴==;,故选:A.【点评】考查菱形的性质、矩形的性质、直角三角形的勾股定理等知识,合理的转化以及设参数是解决问题常用方法.9. 【分析】连接BC,根据圆周角定理求得∠ABC的度数,然后根据直角三角形的锐角互余即可求解.【解答】解:连接BC,∵∠AOC=110°,∴∠ABC=12∠AOC═55°,∵CD⊥AB,∴∠BEC=90°,∴∠BCD=90°-55°=35°,故选:A.【点评】本题考查了垂径定理以及圆周角定理,根据圆周角定理把求∠ABD的问题转化成求等腰三角形的底角的问题.10. 【分析】①由m<0即可判断出①;②令y=mx2+(m-4)x+2=0,求出根的判别式△>0,判断②;③求出抛物线的对称轴,即可判断③;④根据顶点坐标式求出抛物线的顶点,然后根据顶点纵坐标判断④.【解答】解:①∵m<0,∴二次函数的图象开口向下,故①正确,②令y=mx2+(m-4)x+2=0,求△=(m-8)2-48,∵m<0,∴△=(m-8)2-48>0,∴二次函数与x轴有两个交点,故②正确,③抛物线开口向下,对称轴42mxm-=-,∵41120 236m mm m---+=<,∴4123 mm--<-,所以当42mxm--<时,y随x的增大而增大,故③错误,④y=mx2+(m-4)x+2,∵2242(4)(4)60 44m m mm m⨯--+-=-…,∴242(4)64m mm⨯--…,∴二次函数图象顶点的纵坐标大于等于6,故④正确,正确的结论有①②④, 故选:C . 【点评】本题主要考查二次函数的性质,解答本题的关键是熟练掌握抛物线的图象以及二次函数的性质,此题难度一般.11. 【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的最小整数解即可.【解答】解:442x x->-,x-4>8-2x , 3x >12 x >4,故不等式442x x->-的最小整数解为5.故答案为:5.【点评】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质. 12. 【分析】根据正五边形的性质和内角和为540°,得到△ABC ≌△AED ,AC=AD ,AB=BC=AE=ED ,先求出∠BAC 和∠DAE 的度数,再求∠CAD 就很容易了. 【解答】解:根据正五边形的性质,△ABC ≌△AED ,∴∠CAB=∠DAE=12(180°-108°)=36°,∴∠CAD=108°-36°-36°=36°.【点评】本题考查了正五边形的性质:各边相等,各角相等,内角和为540°.13【分析】根据反比例函数图象上点的坐标特征和一次函数图象上点的坐标特征得出2244nm n m ⎧-+=⎪⎪⎨⎪-+=⎪⎩①②,解方程组即可求得m 、n 的值,从而求得mn 的值.【解答】解:由题意得2244n m n m ⎧-+=⎪⎪⎨⎪-+=⎪⎩①②,①-②得,4n=2,解得n=8,把n=8代入①求得m=6, ∴mn=48, 故答案为48.【点评】本题考查了一次函数和反比例函数的交点问题,根据题意得到关于m 、n 的方程组是解题的关键. 14.【分析】如图,作点C 关于直线B 的对称点D ,连接AD ,BD ,延长DA 到H ,使得AH=AD ,连接EH ,BH ,DE .想办法证明AF=DE=EH ,BE+AF 的最小值转化为EH+EB 的最小值. 【解答】解:如图,作点C 关于直线B 的对称点D ,连接AD ,BD ,延长DA 到H ,使得AH=AD ,连接EH ,BH ,DE .∵CA=CB ,∠C=90°, ∴∠CAB=∠CBA=45°, ∵C ,D 关于AB 对称,∴DA=DB ,∠DAB=∠CAB=45°,∠ABD=∠ABC=45°, ∴∠CAD=∠CBD=∠ADC=∠C=90°, ∴四边形ACBD 是矩形, ∵CA=CB ,∴四边形ACBD 是正方形,∵CF=AE ,CA=DA ,∠C=∠EAD=90°, ∴△ACF ≌△DAE (SAS ), ∴AF=DE ,∴AF+BE=ED+EB ,∵CA 垂直平分线段DH , ∴ED=EH ,∴AF+BE=EB+EH , ∵EB+EH≥BH ,∴AF+BE 的最小值为线段BH 的长,=,∴AF+BE 的最小值为故答案为【点评】本题考查全等三角形的判定和性质,等腰直角三角形的性质,轴对称最短问题等知识,解题的关键是学会学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型. 15. 【分析】直接利用特殊角的三角函数值以及二次根式的性质、绝对值的性质分别化简得出答案.【解答】解:原式()+8.【点评】此题主要考查了实数运算,正确化简各数是解题关键.16. 【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【解答】解:去分母得:1-x-2x+4=3,解得:x=23,经检验x=23是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.17. 【分析】由折叠可得,折痕所在直线垂直平分对称点的连线AC ,故作线段AC 的垂直平分线EF ,则EF 即为所求.【解答】解:如图所示,连接AC ,作线段AC 的垂直平分线EF ,则EF 即为所求.【点评】本题主要考查了利用轴对称变换作图,利用轴对称的性质是解决问题的关键. 18. 【分析】根据平行线的性质可得∠C=∠B ,再根据等式的性质可得CF=BE ,然后利用SAS 判定△AEB ≌△DFC ,根据全等三角形对应边相等可得∠AEB=∠DFC 即可解决问题. 【解答】证明:∵AB ∥CD , ∴∠C=∠B , ∵CE=BF ,∴CE+EF=FB+EF , 即CF=BE ,在△AEB 和△DFC 中AB CD B C EB CF ⎧⎪⎪⎩∠∠⎨===,∴△AEB ≌△DFC (SAS ), ∴∠AEB=∠DFC , ∴AE ∥DF . 【点评】此题主要考查了全等三角形的性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件. 19. 【分析】(1)由B 组人数为100且A 、B 两组捐款人数的比为1:5可得a 的值,用A 、B 组人数和除以其所占百分比可得总人数; (2)先求出C 组人数,继而可补全图形;(3)先求出抽查的500名学生的平均捐款数,再乘以总人数可得.【解答】解:(1)a=100×15=20,本次调查样本的容量是:(100+20)÷(1-40%-28%-8%)=500, 故答案为:20,500;(2)∵500×40%=200, ∴C 组的人数为200,补全“捐款人数分组统计图1”如右图所示;(3)∵A 组对应百分比为20500×100%=4%,B 组对应的百分比为100500×100%=20%,∴抽查的500名学生的平均捐款数为5×4%+15×20%+25×40%+35×28%+50×8%=27(元), 则估计此次活动可以筹得善款的金额大约为2000×27=54000(元).【点评】此题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.20. 【分析】作BH ⊥AC 于H ,根据含30°的直角三角形的性质求出BH ,根据等腰直角三角形的性质求出BC .【解答】解:作BH ⊥AC 于H ,由题意得,∠BAC=30°,∠ABC=105°, ∴∠C=180°-105°-30°=45°, ∵∠AHB=90°,∠BAC=30°,∴BH=12AB=1,在Rt △BCH 中,∠C=45°,∴,答:点C与点B千米.【点评】本题考查的是解直角三角形的应用-方向角问题,掌握方向角的概念、熟记锐角三角函数的定义是解题的关键.21. 【分析】(1)y与x之间的函数关系是分段函数关系,当0<x≤200时,y与x是正比例函数,当x>200时,y与x是一次函数,可分别用待定系数法求出其函数关系式;(2)根据题意,可以确定自变量的取值范围,在自变量的取值范围内,依据函数的增减性确定种植面积和最小值的问题.【解答】解:(1)当0<x≤200时,y与x是正比例函数,由于过(200,24000)∴k=120∴y与x之间的函数关系式为:y=120x (0<x≤200),当x>200时,y与x是一次函数,由于过(200,24000),(300,32000)设y=kx+b,代入得:2002400030032000k bk b⎨⎩++⎧==,解得:k=80,b=8000,∴y与x之间的函数关系式为:y=80x+8000 (x≥200),答:y与x之间的函数关系式为:y=120?020080()(8000?200)x xx x⎩≤+⎧⎨<>.(2)由题意得:()20021200xx x≥≤-⎧⎨⎩,解得:200≤x≤800,又∵y=80x+8000 (x≥200),∴y随x的增大而增大,当x=200时,y最小=200×80+8000=24000元,此时,甲花卉种200m2,乙花卉种1000m2,答:甲花卉种200m2,乙花卉种1000m2,才能使种植费用最少,最少费用为24000元.【点评】考查一次函数的性质,待定系数法求函数的关系式,一元一次不等式组应用等知识,正确地掌握这些知识,是解决问题的前提和基础.22. 【分析】(1)根据概率公式计算即可得出答案;(2)画出树状图,然后根据概率公式列式进行计算即可得解.【解答】解:(1)甲抽到不是自己带来的礼物的概率为:3 4;故答案为:3 4;(2)设甲、乙、丙、丁4人的礼物分别记为a、b、c、d,根据题意画出树状图如图:一共有12种等可能的结果,甲、乙2人抽到的都不是自己带来的礼物的结果有7个,∴甲、乙2人抽到的都不是自己带来的礼物的概率为7 12.【点评】本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.23. 【分析】(1)过O作OH⊥BC与H,根据直角三角形的性质得到OH=12OB,证得OH=OA,于是得到结论;(2)解直角三角形得到BC=,根据相似三角形的性质即可得到结论.【解答】(1)证明:过O作OH⊥BC与H,∵∠ACB=90°,中学数学一模模拟试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列图案中,不是中心对称图形的是()A.B.C.D.2.(3分)初步核算并经国家统计局核定,2017年广东全省实现地区生产总值约90000亿元,比上年增长7.5%.将90000亿元用科学记数法表示应为()元.A.9×1011B.9×104C.9×1012D.9×10103.(3分)下列说法正确的是()A.2的相反数是2B.2的绝对值是2C.2的倒数是2D.2的平方根是24.(3分)下列运算正确的是()A.a2+a3=a5B.(a2)3=a5C.a3÷a2=a D.(a﹣b)2=a2﹣b25.(3分)下列不等式组的解集中,能用如图所示的数轴表示的是()A.B.C.D.6.(3分)如图,已知矩形纸片的一条边经过一个含30°角的直角三角尺的直角顶点,若矩形纸片的一组对边分别与直角三角尺的两边相交,∠2=115°,则∠1的度数是()A.75°B.85°C.60°D.65°7.(3分)如图,在⊙O中,OC∥AB,∠A=20°,则∠1等于()A.40°B.45°C.50°D.60°8.(3分)有三张正面分别写有数字﹣1,﹣2,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为()A.B.C.D.9.(3分)点A(t,2)在第二象限,OA与x轴所夹的锐角为α,tanα=,则t的值为()A.﹣B.﹣2C.2D.310.(3分)如图,矩形纸片ABCD中,AB=5,BC=3,点E在AD上,且AE=1,点P是线段AB上一动点,折叠纸片,使点P与点E重合,展开纸片得折痕MN,过点P作PQ ⊥AB,交MN所在的直线于点Q.设x=AP,y=PQ,则y关于x的函数图象大致为()A.B.C.D.二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)方程x2=x的解是.12.(4分)因式分解:3x2+6x+3=.13.(4分)把抛物线y=2x2﹣1向上平移一个单位长度后,所得的函数解析式为.14.(4分)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,AC=14cm,BD =8cm,AD=6cm,则△OBC的周长是.15.(4分)在△ABC中BC=2,AB=2,AC=b,且关于x的方程x2﹣4x+b=0有两个相等的实数根,则AC边上的中线长为.16.(4分)如图,在平面直角坐标系xOy中,Rt△OA1C1,Rt△OA2C2,Rt△OA3C3,…的斜边都在坐标轴上,∠A1OC1=∠A2OC2=∠A3OC3=∠A4OC4=…=30°.若点A1的坐标为(3,0),OA1=OC2,OA2=OC3,OA3=OC4,…则依此规律,的值为.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.(6分)计算:﹣|﹣3|+﹣4cos30°18.(6分)先化简,后求值:(x﹣)÷,其中x=2.19.(6分)已知等腰△ABC的顶角∠A=36°(如图).(1)请用尺规作图法作底角∠ABC的平分线BD,交AC于点D(保留作图痕迹,不要求写作法);(2)证明:△ABC∽△BDC.四、解答题(二)(本大题共3小题,每小题7分,共21分)20.(7分)在国务院办公厅发布《中国足球发展改革总体方案》之后,某校为了调查本校学生对足球知识的了解程度,随机抽取了部分学生进行一次问卷调查,并根据调查结果绘制了如图的统计图,请根据图中所给的信息,解答下列问题:(1)本次接受问卷调查的学生总人数是;(2)补全折线统计图.(3)扇形统计图中,“了解”所对应扇形的圆心角的度数为,m的值为;(4)若该校共有学生3000名,请根据上述调查结果估算该校学生对足球的了解程度为“不了解”的人数.21.(7分)某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍.(1)求甲、乙两队单独完成这项工程各需几个月?(2)若甲队每月的施工费为100万元,乙队每月的施工费比甲队多50万元.在保证工程质量的前提下,为了缩短工期,拟安排甲、乙两队分工合作完成这项工程.在完成这项工程中,甲队施工时间是乙队施工时间的2倍,那么,甲队最多施工几个月才能使工程款不超过1500万元?(甲、乙两队的施工时间按月取整数)22.(7分)如图,在正方形ABCD中,边长AB=3,点E(与B,C不重合)是BC边上任意一点,把EA绕点E顺时针方向旋转90°到EF,连接CF.(1)求证:CF是正方形ABCD的外角平分线;(2)当∠BAE=30°时,求CF的长.五、解答题(三)(本大题共3小题,每小题9分,共27分)23.(9分)如图,在平面直角坐标系中,直线AB:y=kx+b(b为常数)与反比例函数y=(x>0)交于点B,与x轴交于点A,与y轴交于点C,且OB=AB.(1)如图①,若点A的坐标为(6,0)时,求点B的坐标及直线AB的解析式;(2)如图①,若∠OBA=90°,求点A的坐标;(3)在(2)的条件下中,如图②,△P A1A是等腰直角三角形,点P在反比例函数y=(x>0)的图象上,斜边A1A都在x轴上,求点A1的坐标.24.(9分)如图,在菱形ABCD中,∠A=60°,以点D为圆心的⊙D与边AB相切于点E.(1)求证:BC是⊙D的切线;(2)设⊙D与BD相交于点H,与边CD相交于点F,连接HF,若AB=2,求图中阴影部分的面积;(3)假设圆的半径为r,⊙D上一动点M从点F出发,按逆时针方向运动,且∠FDM <90°,连接DM,MF,当S四边形DFHM:S四边形ABCD=3:4时,求动点M经过的弧长.25.(9分)如图①,已知抛物线y=ax2+x+c(a≠0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点A坐标为(﹣1,0),点C坐标为(0,),点D 是点C关于抛物线对称轴的对称点,连接CD,过点D作DH⊥x轴于点H,过点A作AE⊥AC交DH的延长线于点E.(1)求a,c的值;(2)求线段DE的长度;(3)如图②,试在线段AE上找一点F,在线段DE上找一点P,且点M为直线PF上方抛物线上的一点,求当△CPF的周长最小时,△MPF面积的最大值是多少?参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列图案中,不是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的定义和各图特点即可解答.【解答】解:只有选项C连接相应各点后是正三角形,绕中心旋转180度后所得的图形与原图形不会重合.故选:C.【点评】本题考查中心对称图形的定义:绕对称中心旋转180度后所得的图形与原图形完全重合,和正奇边形有关的一定不是中心对称图形.2.(3分)初步核算并经国家统计局核定,2017年广东全省实现地区生产总值约90000亿元,比上年增长7.5%.将90000亿元用科学记数法表示应为()元.A.9×1011B.9×104C.9×1012D.9×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:90000亿=9×1012,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)下列说法正确的是()A.2的相反数是2B.2的绝对值是2C.2的倒数是2D.2的平方根是2【分析】根据有理数的绝对值、平方根、倒数和相反数解答即可.【解答】解:A、2的相反数是﹣2,错误;B、2的绝对值是2,正确;C、2的倒数是,错误;D、2的平方根是±,错误;故选:B.【点评】此题考查了实数的性质,关键是根据有理数的绝对值、平方根、倒数和相反数解答.4.(3分)下列运算正确的是()A.a2+a3=a5B.(a2)3=a5C.a3÷a2=a D.(a﹣b)2=a2﹣b2【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式不能合并,不符合题意;B、原式=a6,不符合题意;C、原式=a,符合题意;D、原式=a2﹣2ab+b2,不符合题意,故选:C.【点评】此题考查了同底数幂的除法,合并同类项,幂的乘方与积的乘方,以及完全平方公式,熟练掌握公式及法则是解本题的关键.5.(3分)下列不等式组的解集中,能用如图所示的数轴表示的是()A.B.C.D.【分析】先求出每个不等式的解集,再求出不等式组的解集,再根据数轴判断即可.【解答】解:由数轴可得:﹣2<x≤1,故选:D.【点评】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键.6.(3分)如图,已知矩形纸片的一条边经过一个含30°角的直角三角尺的直角顶点,若矩形纸片的一组对边分别与直角三角尺的两边相交,∠2=115°,则∠1的度数是()A.75°B.85°C.60°D.65°【分析】先根据平行线的性质,得出∠3的度数,再根据三角形外角性质进行计算即可.【解答】解:如图所示,∵DE∥BC,∴∠2=∠3=115°,又∵∠3是△ABC的外角,∴∠1=∠3﹣∠A=115°﹣30°=85°,故选:B.【点评】本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,同位角相等.7.(3分)如图,在⊙O中,OC∥AB,∠A=20°,则∠1等于()A.40°B.45°C.50°D.60°【分析】利用平行线的性质即可求得∠C的度数,根据圆周角定理:同弧所对的圆周角等于圆心角的一半求得∠O的度数,再利用三角形的外角的性质即可求解.【解答】解:∵OC∥AB,∴∠C=∠A=20°,又∵∠O=2∠A=40°,∴∠1=∠O+∠C=20°+40°=60°.故选:D.【点评】本题考查了圆周角定理与平行线的性质定理,正确利用圆周角定理求得∠O的度数是关键.8.(3分)有三张正面分别写有数字﹣1,﹣2,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为()A.B.C.D.【分析】画树状图得出所有等可能结果,再从中找到符合条件的结果数,继而利用概率公式可得答案.【解答】解:画树状图如下:由树状图知,共有6种等可能结果,其中点(a,b)在第二象限的有2种结果,所以点(a,b)在第二象限的概率为=,故选:B.【点评】本题主要考查列表法与树状图法,列举法(树形图法)求概率的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.9.(3分)点A(t,2)在第二象限,OA与x轴所夹的锐角为α,tanα=,则t的值为()A.﹣B.﹣2C.2D.3【分析】如图,作AE⊥x轴于E.根据tan∠AOE==,构建方程即可解决问题.【解答】解:如图,作AE⊥x轴于E.由题意:tan∠AOE==,∵A(t,2),∴AE=2,OE=﹣t,∴=,∴t=﹣,故选:A.【点评】本题考查解直角三角形的应用,坐标与图形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.(3分)如图,矩形纸片ABCD中,AB=5,BC=3,点E在AD上,且AE=1,点P是线段AB上一动点,折叠纸片,使点P与点E重合,展开纸片得折痕MN,过点P作PQ ⊥AB,交MN所在的直线于点Q.设x=AP,y=PQ,则y关于x的函数图象大致为()A.B.C.D.【分析】过点E作EF⊥QP,垂足为F,连接EQ.由翻折的性质可知QE=QP,从而可表示出QF、EF、EQ的长度,然后在△EFQ中利用勾股定理可得到函数的关系式.【解答】解:如图所示,过点E作EF⊥QP,垂足为F,连接EQ.。

2019-2020学年湖北省宜昌市中考数学预测试题

2019-2020学年湖北省宜昌市中考数学预测试题

2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知抛物线y =ax 2+bx+c (a <0)与x 轴交于点A (﹣1,0),与y 轴的交点在(0,2),(0,3)之间(包含端点),顶点坐标为(1,n ),则下列结论:①4a+2b <0; ②﹣1≤a≤23-; ③对于任意实数m ,a+b≥am 2+bm 总成立;④关于x 的方程ax 2+bx+c =n ﹣1有两个不相等的实数根.其中结论正确的个数为( ) A .1个B .2个C .3个D .4个2.如图,△ABC 中,BC =4,⊙P 与△ABC 的边或边的延长线相切.若⊙P 半径为2,△ABC 的面积为5,则△ABC 的周长为( )A .8B .10C .13D .143.抚顺市中小学机器人科技大赛中,有7名学生参加决赛,他们决赛的成绩各不相同,其中一名参赛选手想知道自己能否进入前4名,他除了知道自己成绩外还要知道这7名学生成绩的( ) A .中位数 B .众数 C .平均数 D .方差 4.如果关于x 的不等式组2030x a x b -≥⎧⎨-≤⎩的整数解仅有2x =、3x =,那么适合这个不等式组的整数a 、b组成的有序数对(,)a b 共有() A .3个B .4个C .5个D .6个5.空气的密度为0.00129g/cm 3,0.00129这个数用科学记数法可表示为( ) A .0.129×10﹣2B .1.29×10﹣2C .1.29×10﹣3D .12.9×10﹣16.我国古代数学著作《九章算术》中,将底面是直角三角形,且侧棱与底面垂直的三棱柱称为“堑堵”某“堑堵”的三视图如图所示(网格图中每个小正方形的边长均为1),则该“堑堵”的侧面积为( )A .2B .2C .2D .27.下列运算正确的是( ) A .624a a a -=B .()222a b a b +=+ C .()232622ab a b = D .2326a a a =8.若0<m <2,则关于x 的一元二次方程﹣(x+m )(x+3m )=3mx+37根的情况是( )A.无实数根B.有两个正根C.有两个根,且都大于﹣3mD.有两个根,其中一根大于﹣m9.下面的几何体中,主视图为圆的是()A.B.C.D.10.下列计算或化简正确的是()A.234265+=B.842=C.2(3)3-=-D.2733÷=二、填空题(本题包括8个小题)11.化简:18=_____.12.如图是一个几何体的三视图(图中尺寸单位:cm),根据图中数据计算,这个几何体的表面积为__________2cm.13.请写出一个比2大且比4小的无理数:________.14.在一个不透明的口袋里,装有仅颜色不同的黑球、白球若干只.某小组做摸球实验:将球搅匀后从中随机摸出一个,记下颜色,再放回袋中,不断重复.下表是活动中的一组数据,则摸到白球的概率约是_____.摸球的次数n 100 150 200 500 800 1000摸到白球的次数m 58 96 116 295 484 601摸到白球的频率m/n 0.58 0.64 0.58 0.59 0.605 0.601 15.若m、n 是方程x2+2018x﹣1=0 的两个根,则m2n+mn2﹣mn=_________.16.已知m、n是一元二次方程x2+4x﹣1=0的两实数根,则11m n+=_____.17.如图,在正方形ABCD 中,对角线AC 与BD 相交于点O ,E 为BC 上一点,5CE =,F 为DE 的中点.若CEF ∆的周长为18,则OF 的长为________.18.如果53x x y =-,那么xy=______. 三、解答题(本题包括8个小题)19.(6分)随着地铁和共享单车的发展,“地铁+单车”已经成为很多市民出行的选择.李华从文化宫站出发,先乘坐地铁,准备在离家较近的A ,B ,C ,D ,E 中的某一站出地铁,再骑共享单车回家.设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间1y (单位:分钟)是关于x 的一次函数,其关系如下表: 地铁站 A B C D E X(千米)8 9 10 11.5 13 1y (分钟)1820222528(1)求1y 关于x 的函数表达式;李华骑单车的时间2y (单位:分钟)也受x 的影响,其关系可以用221y x 11x 782=-+来描述.请问:李华应选择在哪一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.20.(6分)如图,已知AB 是圆O 的直径,F 是圆O 上一点,∠BAF 的平分线交⊙O 于点E ,交⊙O 的切线BC 于点C ,过点E 作ED ⊥AF ,交AF 的延长线于点D .求证:DE 是⊙O 的切线;若DE =3,CE =2. ①求BCAE的值;②若点G 为AE 上一点,求OG+12EG 最小值. 21.(6分)如图,在四边形ABCD 中,AB ∥DC ,AB =AD ,对角线AC ,BD 交于点O ,AC 平分∠BAD ,过点C 作CE ⊥AB 交AB 的延长线于点E ,连接OE .求证:四边形ABCD是菱形;若AB=5,BD=2,求OE的长.22.(8分)小明对A,B,C,D四个中小型超市的女工人数进行了统计,并绘制了下面的统计图表,已知A超市有女工20人.所有超市女工占比统计表超市A B C D女工人数占比62.5% 62.5% 50% 75%A超市共有员工多少人?B超市有女工多少人?若从这些女工中随机选出一个,求正好是C超市的概率;现在D超市又招进男、女员工各1人,D超市女工占比还是75%吗?甲同学认为是,乙同学认为不是.你认为谁说的对,并说明理由.23.(8分)先化简再求值:(a﹣22ab ba-)÷22a ba-,其中a=1+2,b=1﹣2.24.(10分)若关于x的方程311x ax x--=-无解,求a的值.25.(10分)在“传箴言”活动中,某班团支部对该班全体团员在一个月内所发箴言条数的情况进行了统计,并制成了如图所示的两幅不完整的统计图:求该班团员在这一个月内所发箴言的平均条数是多少?并将该条形统计图补充完整;如果发了3条箴言的同学中有两位男同学,发了4条箴言的同学中有三位女同学.现要从发了3条箴言和4条箴言的同学中分别选出一位参加该校团委组织的“箴言”活动总结会,请你用列表法或树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.26.(12分)铁岭市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y(千克)与每千克降价x(元)(0<x<20)之间满足一次函数关系,其图象如图所示:求y与x之间的函数关系式;商贸公司要想获利2090元,则这种干果每千克应降价多少元?该干果每千克降价多少元时,商贸公司获利最大?最大利润是多少元?参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.C 【解析】 【分析】①由抛物线的顶点横坐标可得出b=-2a ,进而可得出4a+2b=0,结论①错误; ②利用一次函数图象上点的坐标特征结合b=-2a 可得出a=-3c,再结合抛物线与y 轴交点的位置即可得出-1≤a≤-23,结论②正确; ③由抛物线的顶点坐标及a <0,可得出n=a+b+c ,且n≥ax 2+bx+c ,进而可得出对于任意实数m ,a+b≥am 2+bm 总成立,结论③正确;④由抛物线的顶点坐标可得出抛物线y=ax 2+bx+c 与直线y=n 只有一个交点,将直线下移可得出抛物线y=ax 2+bx+c 与直线y=n-1有两个交点,进而可得出关于x 的方程ax 2+bx+c=n-1有两个不相等的实数根,结合④正确. 【详解】:①∵抛物线y=ax 2+bx+c 的顶点坐标为(1,n ), ∴-2ba=1, ∴b=-2a ,∴4a+2b=0,结论①错误;②∵抛物线y=ax 2+bx+c 与x 轴交于点A (-1,0), ∴a-b+c=3a+c=0, ∴a=-3c. 又∵抛物线y=ax 2+bx+c 与y 轴的交点在(0,2),(0,3)之间(包含端点), ∴2≤c≤3, ∴-1≤a≤-23,结论②正确; ③∵a <0,顶点坐标为(1,n ), ∴n=a+b+c ,且n≥ax 2+bx+c ,∴对于任意实数m ,a+b≥am 2+bm 总成立,结论③正确; ④∵抛物线y=ax 2+bx+c 的顶点坐标为(1,n ), ∴抛物线y=ax 2+bx+c 与直线y=n 只有一个交点, 又∵a <0, ∴抛物线开口向下,∴抛物线y=ax 2+bx+c 与直线y=n-1有两个交点,∴关于x 的方程ax 2+bx+c=n-1有两个不相等的实数根,结合④正确. 故选C . 【点睛】本题考查了二次函数图象与系数的关系、抛物线与x 轴的交点以及二次函数的性质,观察函数图象,逐一分析四个结论的正误是解题的关键. 2.C 【解析】 【分析】根据三角形的面积公式以及切线长定理即可求出答案. 【详解】连接PE 、PF 、PG ,AP ,由题意可知:∠PEC =∠PFA =PGA =90°, ∴S △PBC =12BC•PE =12×4×2=4, ∴由切线长定理可知:S △PFC +S △PBG =S △PBC =4, ∴S 四边形AFPG =S △ABC +S △PFC +S △PBG +S △PBC =5+4+4=13, ∴由切线长定理可知:S △APG =12S 四边形AFPG =132, ∴132=12×AG•PG ,∴AG =132, 由切线长定理可知:CE =CF ,BE =BG , ∴△ABC 的周长为AC+AB+CE+BE =AC+AB+CF+BG =AF+AG =2AG =13, 故选C .【点睛】本题考查切线长定理,解题的关键是画出辅助线,熟练运用切线长定理,本题属于中等题型. 3.A 【解析】 【分析】7人成绩的中位数是第4名的成绩.参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可. 【详解】由于总共有7个人,且他们的分数互不相同,第4的成绩是中位数,要判断是否进入前4名,故应知道中位数的多少, 故选A . 【点睛】本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义,熟练掌握相关的定义是解题的关键. 4.D 【解析】 【分析】求出不等式组的解集,根据已知求出1<2a ≤2、3≤3b<4,求出2<a≤4、9≤b <12,即可得出答案. 【详解】解不等式2x−a≥0,得:x≥2a,解不等式3x−b≤0,得:x≤3b , ∵不等式组的整数解仅有x =2、x =3, 则1<2a ≤2、3≤3b<4, 解得:2<a≤4、9≤b <12, 则a =3时,b =9、10、11; 当a =4时,b =9、10、11;所以适合这个不等式组的整数a 、b 组成的有序数对(a ,b )共有6个, 故选:D . 【点睛】本题考查了解一元一次不等式组,不等式组的整数解,有序实数对的应用,解此题的根据是求出a 、b 的值. 5.C 【解析】试题分析:0.00129这个数用科学记数法可表示为1.29×10﹣1.故选C . 考点:科学记数法—表示较小的数. 6.A 【解析】 【分析】分析出此三棱柱的立体图像即可得出答案. 【详解】由三视图可知主视图为一个侧面,另外两个侧面全等,是长×高=所以答案选择A 项.【点睛】本题考查了由三视图求侧面积,画出该图的立体图形是解决本题的关键. 7.D 【解析】 【分析】分别根据合并同类项、完全平方公式、积的乘方、单项式的乘法法则进行计算即可. 【详解】A 、a 6和a 2不是同类项,无法合并,故本项错误;B 、()2222a b a ab b +=++,故本项错误;C 、()232624ab a b =,故本项错误;D 、23?26a a a =,故本项正确; 故本题答案应为:D. 【点睛】合并同类项、完全平方公式、积的乘方、单项式的乘法是本题的考点,熟练掌握运算法则是解题的关键. 8.A 【解析】 【分析】先整理为一般形式,用含m 的式子表示出根的判别式△,再结合已知条件判断△的取值范围即可. 【详解】方程整理为22x 7mx 3m 370+++=, △()()22249m 43m 3737m 4=-+=-, ∵0m 2<<, ∴2m 40-<, ∴△0<,∴方程没有实数根, 故选A . 【点睛】本题考查了一元二次方程根的判别式,当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根. 9.C 【解析】试题解析:A 、的主视图是矩形,故A 不符合题意; B 、的主视图是正方形,故B 不符合题意; C 、的主视图是圆,故C 符合题意; D 、的主视图是三角形,故D 不符合题意; 故选C .考点:简单几何体的三视图. 10.D 【解析】解:A .不是同类二次根式,不能合并,故A 错误;B=,故B错误;C3=,故C错误;D3===,正确.故选D.二、填空题(本题包括8个小题)11.4【解析】【分析】直接利用二次根式的性质化简求出答案.【详解】===【点睛】本题考查了二次根式的性质与化简,正确掌握二次根式的性质是解题的关键.12.16π【解析】分析:由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其表面积.详解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为6cm,底面半径为2cm,故表面积=πrl+πr2=π×2×6+π×22=16π(cm2).故答案为:16π.点睛:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.13.π)【解析】【分析】利用完全平方数和算术平方根对无理数的大小进行估算,然后找出无理数即可【详解】<<x的取值在4~16【点睛】本题考查估算无理数的大小,能够判断出中间数的取值范围是解题关键14.0.1【解析】【分析】根据表格中的数据,随着实验次数的增大,频率逐渐稳定在0.1左右,即为摸出白球的概率.【详解】解:观察表格得:通过多次摸球实验后发现其中摸到白球的频率稳定在0.1左右,则P白球=0.1.故答案为0.1.【点睛】本题考查了利用频率估计概率,在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近.15.1【解析】【分析】根据根与系数的关系得到m+n=﹣2018,mn=﹣1,把m2n+mm2﹣mn分解因式得到mn(m+n﹣1),然后利用整体代入的方法计算.【详解】解:∵m、n 是方程x2+2018x﹣1=0 的两个根,则原式=mn(m+n﹣1)=﹣1×(﹣2018﹣1)=﹣1×(﹣1)=1,故答案为:1.【点睛】本题考查了根与系数的关系,如果一元二次方程ax2+bx+c=0 的两根分别为与,则解题时要注意这两个关系的合理应用.16.1【解析】先由根与系数的关系求出m•n 及m+n 的值,再把11m n+化为m+n mn 的形式代入进行计算即可. 【详解】 ∵m 、n 是一元二次方程x 2+1x ﹣1=0的两实数根,∴m+n =﹣1,m•n =﹣1, ∴11m n+=m+n mn =-4-1 =1. 故答案为1.【点睛】本题考查的是根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.一元二次方程ax 2+bx+c =0(a≠0)的根与系数的关系为:x 1+x 2=﹣b a ,x 1•x 2=c a . 17.72【解析】【分析】先根据直角三角形的性质求出DE 的长,再由勾股定理得出CD 的长,进而可得出BE 的长,由三角形中位线定理即可得出结论.【详解】解:∵四边形ABCD 是正方形,∴BO DO =,BC CD =,90BCD ︒∠=.在Rt DCE ∆中,F 为DE 的中点, ∴12CF DE EF DF ===. ∵CEF ∆的周长为18,5CE =,∴18513CF EF +=-=,∴13DE DF EF =+=.在Rt DCE ∆中,根据勾股定理,得12DC ==,∴12BC =,∴1257BE =-=.在BDE ∆中,∵BO DO =,F 为DE 的中点,又∵OF 为BDE ∆的中位线, ∴1722OF BE ==. 故答案为:72.本题考查的是正方形的性质,涉及到直角三角形的性质、三角形中位线定理等知识,难度适中.18.52;【解析】【分析】先对等式进行转换,再求解. 【详解】∵53 xx y-=∴3x=5x-5y ∴2x=5y∴5.2 xy=【点睛】本题考查的是分式,熟练掌握分式是解题的关键.三、解答题(本题包括8个小题)19.(1) y1=2x+2;(2) 选择在B站出地铁,最短时间为39.5分钟.【解析】【分析】(1)根据表格中的数据,运用待定系数法,即可求得y1关于x的函数表达式;(2)设李华从文化宫回到家所需的时间为y,则y=y1+y2=12x2-9x+80,根据二次函数的性质,即可得出最短时间.【详解】(1)设y1=kx+b,将(8,18),(9,20),代入y1=kx+b,得:818, 920. k bk b+=⎧⎨+=⎩解得2,2. kb=⎧⎨=⎩所以y1关于x的函数解析式为y1=2x+2. (2)设李华从文化宫回到家所需的时间为y,则y=y1+y2=2x+2+12x2-11x+78=12x2-9x+80=12(x-9)2+39.5.所以当x=9时,y取得最小值,最小值为39.5,答:李华应选择在B站出地铁,才能使他从文化宫回到家所需的时间最短,最短时间为39.5分钟.本题主要考查了二次函数的应用,解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值最小值,在求二次函数的最值时,一定要注意自变量x的取值范围.20.(1)证明见解析(2)①23②3【解析】【分析】(1)作辅助线,连接OE.根据切线的判定定理,只需证DE⊥OE即可;(2)①连接BE.根据BC、DE两切线的性质证明△ADE∽△BEC;又由角平分线的性质、等腰三角形的两个底角相等求得△ABE∽△AFD,所以23 BC CEAE DE==;②连接OF,交AD于H,由①得∠FOE=∠FOA=60°,连接EF,则△AOF、△EOF都是等边三角形,故四边形AOEF是菱形,由对称性可知GO=GF,过点G作GM⊥OE于M,则GM=12EG,OG+12EG=GF+GM,根据两点之间线段最短,当F、G、M三点共线,OG+12EG=GF+GM=FM最小,此时FM =3.故OG+12EG最小值是3.【详解】(1)连接OE∵OA=OE,∴∠AEO=∠EAO∵∠FAE=∠EAO,∴∠FAE=∠AEO ∴OE∥AF∵DE⊥AF,∴OE⊥DE∴DE是⊙O的切线(2)①解:连接BE∵直径AB ∴∠AEB=90°∵圆O与BC相切∴∠ABC=90°∵∠EAB+∠EBA=∠EBA+∠CBE=90°∴∠EAB=∠CBE∵∠ADE=∠BEC=90°∴△ADE ∽△BEC ∴23BC CE AE DE == ②连接OF ,交AE 于G ,由①,设BC=2x ,则AE=3x∵△BEC ∽△ABC ∴BC CE AC BC = ∴22322x x x=+ 解得:x 1=2,212x =-(不合题意,舍去) ∴AE=3x=6,BC=2x=4,AC=AE+CE=8∴AB=∠BAC=30°∴∠AEO=∠EAO=∠EAF=30°,∴∠FOE=2∠FAE=60°∴∠FOE=∠FOA=60°,连接EF ,则△AOF 、△EOF 都是等边三角形,∴四边形AOEF 是菱形由对称性可知GO=GF,过点G 作GM ⊥OE 于M ,则GM=12EG ,OG+12EG=GF+GM,根据两点之间线段最短,当F 、G 、M 三点共线,OG+12EG=GF+GM=FM 最小,此时FM=FOsin60o =3. 故OG+12EG 最小值是3. 【点睛】本题考查了切线的性质、相似三角形的判定与性质.比较复杂,解答此题的关键是作出辅助线,利用数形结合解答.21.(1)见解析;(1)OE =1.【解析】【分析】(1)先判断出∠OAB=∠DCA ,进而判断出∠DAC=∠DAC ,得出CD=AD=AB ,即可得出结论;(1)先判断出OE=OA=OC ,再求出OB=1,利用勾股定理求出OA ,即可得出结论.【详解】解:(1)∵AB ∥CD ,∴∠OAB =∠DCA ,∵AC 为∠DAB 的平分线,∴∠OAB =∠DAC ,∴∠DCA =∠DAC ,∴四边形ABCD是平行四边形,∵AD=AB,∴▱ABCD是菱形;(1)∵四边形ABCD是菱形,∴OA=OC,BD⊥AC,∵CE⊥AB,∴OE=OA=OC,∵BD=1,∴OB=12BD=1,在Rt△AOB中,AB OB=1,∴OA1,∴OE=OA=1.【点睛】此题主要考查了菱形的判定和性质,平行四边形的判定和性质,角平分线的定义,勾股定理,判断出CD=AD=AB是解本题的关键22.(1)32(人),25(人);(2)13;(3)乙同学,见解析.【解析】【分析】(1)用A超市有女工人数除以女工人数占比,可求A超市共有员工多少人;先求出D超市女工所占圆心角度数,进一步得到四个中小型超市的女工人数比,从而求得B超市有女工多少人;(2)先求出C超市有女工人数,进一步得到四个中小型超市共有女工人数,再根据概率的定义即可求解;(3)先求出D超市有女工人数、共有员工多少人,再得到D超市又招进男、女员工各1人,D超市有女工人数、共有员工多少人,再根据概率的定义即可求解.【详解】解:(1)A超市共有员工:20÷62.5%=32(人),∵360°-80°-100°-120°=60°,∴四个超市女工人数的比为:80:100:120:60=4:5:6:3,∴B超市有女工:20×54=25(人);(2)C超市有女工:20×64=30(人).四个超市共有女工:20×45634+++=90(人).从这些女工中随机选出一个,正好是C超市的概率为30=1.理由:D 超市有女工20×34=15(人),共有员工15÷75%=20(人), 再招进男、女员工各1人,共有员工22人,其中女工是16人,女工占比为1622=811≠75%. 【点睛】本题考查了统计表与扇形统计图的综合,以及概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.23.原式=a b a b-=+【解析】【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除法运算,最后将数个代入进行计算即可.【详解】 原式=()()222a ab b a a a b a b -+⨯+- =()()()2·a b a aa b a b -+- =a b a b-+,当,b=1时,原式【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.24.1-2a =或【解析】 分析:该分式方程311x a x x--=-无解的情况有两种:(1)原方程存在增根;(2)原方程约去分母后,整式方程无解.详解:去分母得:x (x-a )-1(x-1)=x (x-1),去括号得:x 2-ax-1x+1=x 2-x ,移项合并得:(a+2)x=1.(1)把x=0代入(a+2)x=1,∴a 无解;(2)(a+2)x=1,当a+2=0时,0×x=1,x无解即a=-2时,整式方程无解.综上所述,当a=1或a=-2时,原方程无解.故答案为a=1或a=-2.点睛:分式方程无解,既要考虑分式方程有增根的情形,又要考虑整式方程无解的情形.25.(1)3,补图详见解析;(2)7 12【解析】【分析】(1)总人数=3÷它所占全体团员的百分比;发4条的人数=总人数-其余人数(2)列举出所有情况,看恰好是一位男同学和一位女同学占总情况的多少即可【详解】由扇形图可以看到发箴言三条的有3名学生且占25%,故该班团员人数为:325%12÷=(人),则发4条箴言的人数为:1222314----=(人),所以本月该班团员所发的箴言共212233441536⨯+⨯+⨯+⨯+⨯=(条),则平均所发箴言的条数是:36123÷=(条).(2)画树形图如下:由树形图可得,所选两位同学恰好是一位男同学和一位女同学的概率为712 P=.【点睛】此题考查扇形统计图,条形统计图,列表法与树状图法和扇形统计图,看懂图中数据是解题关键26.(1)y=10x+100;(2)这种干果每千克应降价9元;(3)该干果每千克降价5元时,商贸公司获利最大,【解析】【分析】(1)由待定系数法即可得到函数的解析式;(2)根据销售量×每千克利润=总利润列出方程求解即可;(3)根据销售量×每千克利润=总利润列出函数解析式求解即可.【详解】(1)设y 与x 之间的函数关系式为:y =kx+b ,把(2,120)和(4,140)代入得,21204140k b k b +=⎧⎨+=⎩, 解得:10100k b =⎧⎨=⎩, ∴y 与x 之间的函数关系式为:y =10x+100;(2)根据题意得,(60﹣40﹣x)(10x+100)=2090,解得:x =1或x =9,∵为了让顾客得到更大的实惠,∴x =9,答:这种干果每千克应降价9元;(3)该干果每千克降价x 元,商贸公司获得利润是w 元,根据题意得,w =(60﹣40﹣x)(10x+100)=﹣10x 2+100x+2000,∴w =﹣10(x ﹣5)2+2250,∵a=-100<,∴当x =5时,w 2250=最大故该干果每千克降价5元时,商贸公司获利最大,最大利润是2250元.【点睛】本题考查的是二次函数的应用,此类题目主要考查学生分析、解决实际问题能力,又能较好地考查学生“用数学”的意识.2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为()A.180元B.200元C.225元D.259.2元2.如图所示,在长为8cm,宽为6cm的矩形中,截去一个矩形(图中阴影部分),如果剩下的矩形与原矩形相似,那么剩下矩形的面积是()A.28cm2B.27cm2C.21cm2D.20cm23.将抛物线y=2x2向左平移3个单位得到的抛物线的解析式是( )A.y=2x2+3 B.y=2x2﹣3C.y=2(x+3)2D.y=2(x﹣3)24.估算9153+÷的运算结果应在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间5.如图,在△ABC中,点D在BC上,DE∥AC,DF∥AB,下列四个判断中不正确的是( )A.四边形AEDF是平行四边形B.若∠BAC=90°,则四边形AEDF是矩形C.若AD平分∠BAC,则四边形AEDF是矩形D.若AD⊥BC且AB=AC,则四边形AEDF是菱形6.分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是()A.15B.25C.35D.457.如图,两个同心圆(圆心相同半径不同的圆)的半径分别为6cm和3cm,大圆的弦AB与小圆相切,则劣弧AB的长为( )A.2πcm B.4πcm C.6πcm D.8πcm8.如图,在矩形ABCD 中,E 是AD 上一点,沿CE 折叠△CDE ,点D 恰好落在AC 的中点F 处,若CD =3,则△ACE 的面积为( )A .1B .3C .2D .239.设点()11A ,x y 和()22B ,x y 是反比例函数k y x =图象上的两个点,当1x <2x <时,1y <2y ,则一次函数2y x k =-+的图象不经过的象限是A .第一象限B .第二象限C .第三象限D .第四象限10.如图,已知抛物线21y x 4x =-+和直线2y 2x =.我们约定:当x 任取一值时,x 对应的函数值分别为y 1、y 2,若y 1≠y 2,取y 1、y 2中的较小值记为M ;若y 1=y 2,记M= y 1=y 2.下列判断: ①当x >2时,M=y 2;②当x <0时,x 值越大,M 值越大;③使得M 大于4的x 值不存在;④若M=2,则x=" 1" .其中正确的有A .1个B .2个C .3个D .4个二、填空题(本题包括8个小题)11.桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图所示,这个几何体最多可以由___________个这样的正方体组成.12.关于x 的分式方程3111m x x+=--的解为正数,则m 的取值范围是___________.13.计算:12+3=_______.14.实数16,﹣3,117,35,0中的无理数是_____.15.函数y=12x的自变量x的取值范围是_____.16.将一个含45°角的三角板ABC,如图摆放在平面直角坐标系中,将其绕点C顺时针旋转75°,点B的对应点'B恰好落在轴上,若点C的坐标为(1,0),则点'B的坐标为____________.17.如图所示,一个宽为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么该光盘的半径是____cm.18.如图,AB是⊙O的直径,点C在⊙O上,AE是⊙O的切线,A为切点,连接BC并延长交AE于点D.若AOC=80°,则ADB的度数为()A.40°B.50°C.60°D.20°三、解答题(本题包括8个小题)19.(6分)如图,直线y1=﹣x+4,y2=34x+b都与双曲线y=kx交于点A(1,m),这两条直线分别与x轴交于B,C两点.求y与x之间的函数关系式;直接写出当x>0时,不等式34x+b>kx的解集;若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P的坐标.20.(6分)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止)转动转盘一次,求转出的数字是-2的概率;转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.21.(6分)先化简,再求值:(m+2﹣52m -)•243m m --,其中m=﹣12. 22.(8分)2018年10月23日,港珠澳大桥正式开通,成为横亘在伶仃洋上的一道靓丽的风景线.大桥主体工程隧道的东、西两端各设置了一个海中人工岛,来衔接桥梁和海地隧道,西人工岛上的A 点和东人工岛上的B 点间的距离约为5.6千米,点C 是与西人工岛相连的大桥上的一点,A ,B ,C 在一条直线上.如图,一艘观光船沿与大桥AC 段垂直的方向航行,到达P 点时观测两个人工岛,分别测得PA ,PB 与观光船航向PD 的夹角18DPA ∠=︒,53DPB ∠=︒,求此时观光船到大桥AC 段的距离PD 的长(参考数据:180.31sin ︒≈,180.95cos ︒≈,180.33tan ︒≈,530.80sin ︒≈,530.60cos ︒≈,53 1.33tan ︒≈).23.(8分)6月14日是“世界献血日”,某市采取自愿报名的方式组织市民义务献血.献血时要对献血者的血型进行检测,检测结果有“A 型”、“B 型”、“AB 型”、“O 型”4种类型.在献血者人群中,随机抽取了部分献血者的血型结果进行统计,并根据这个统计结果制作了两幅不完整的图表:血型 A B AB O人数10 5(1)这次随机抽取的献血者人数为人,m=;补全上表中的数据;若这次活动中该市有3000人义务献血,请你根据抽样结果回答:从献血者人群中任抽取一人,其血型是A型的概率是多少?并估计这3000人中大约有多少人是A型血?24.(10分)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量y (件)与销售单价x(元)之间存在一次函数关系,如图所示.求y与x之间的函数关系式;如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.25.(10分)已知:如图,E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE.求证:(1)△AFD≌△CEB.(2)四边形ABCD是平行四边形.26.(12分)如图,已知AB是⊙O上的点,C是⊙O上的点,点D在AB的延长线上,∠BCD=∠BAC.求证:CD是⊙O的切线;若∠D=30°,BD=2,求图中阴影部分的面积.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.A【解析】【分析】设这种商品每件进价为x元,根据题中的等量关系列方程求解.【详解】设这种商品每件进价为x元,则根据题意可列方程270×0.8-x=0.2x,解得x=180.故选A.【点睛】本题主要考查一元一次方程的应用,解题的关键是确定未知数,根据题中的等量关系列出正确的方程. 2.B【解析】【分析】根据题意,剩下矩形与原矩形相似,利用相似形的对应边的比相等可得.【详解】解:依题意,在矩形ABDC中截取矩形ABFE,则矩形ABDC∽矩形FDCE,则AB BD DF DC设DF=xcm,得到:68 = x6解得:x=4.5,则剩下的矩形面积是:4.5×6=17cm1.。

湖北省宜昌市天问学校2019-2020学年九年级数学中考模拟题(一)(无答案)

湖北省宜昌市天问学校2019-2020学年九年级数学中考模拟题(一)(无答案)

1 / 2(第18题)A BCDEF2019-2020湖北省宜昌市天问学校九年级数学中考模拟题(一)一、选择题.(在各小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡上指定的位置填涂符合要求的选项前面的字母代号.本大题共15小题,每小题3分,计45分) 1.如果零上13℃记作+13℃,那么零下2℃记作( ).A .2B .-2C .2℃D .-2℃ 2.用五个小正方体堆成如图的立方体,这个立方体的主视图是( ).3.下列运算正确的是( ).A .x 3+x 3=x 6B .2x ·3x 2=6x 3C .(2 x )3=6x 3D .(2x 3+x )÷x =2x4.神舟九号飞船发射成功后,一条相关的微博被转发了3 570 000次,数据3 570 000用科学记数法表示为( ).A .357×104B .35.7×105C .3.57×106D .3.57×107 5.如图,直线AB ∥CD ,AF 交CD 于点E ,∠CEF =140°,则∠A =( ). A .35° B .40° C .45° D . 50°6.已知实数m ,n 在数轴上的对应点的位置如图所示,则下列判断正确的是( ). A .m >0 B .n <0 C .mn <0 D .m -n >07.把等腰△ABC 沿底边BC 翻折,得到△DBC ,那么四边形ABDC ( ). A .是中心对称图形,不是轴对称图形 B .不是中心对称图形,是轴对称图形 C .既是中心对称图形,又是轴对称图形 D .既不是中心对称图形,也不是轴对称图形8.下列计算正确的是( ).A .20=210B .(-3)2=-3C .4-2=2D .2·3=6 9.已知,菱形ABCD 中,对角线AC 与BD 相交于点O ,OE ∥DC 交BC 于点E ,AD =6 cm ,则OE =( ). A .3cm B .4cm C .5cm D .6cm10.某校901班某兴趣小组共有7名成员,他们的年龄分别是13,14,14,15,13,14,15,则他们年龄的众数和中位数分别是( ).A .14,15B .15,14C .14,14.5D .14,1411. 已知关于x 的一元二次方程(m ﹣2)x 2+2x+1=0有实数根,则m 的取值范围是( ) A 、B 、C 、D 、12.函数y =1x -2中自变量x 的取值范围是( ). A .x >2 B .x <2 C .x ≠2 D .x ≥213. 某养鱼专业户为了估计鱼塘中鱼的总条数,他先从鱼塘中捞出100条,将每条鱼作了记号后放回水中,当它们完全混合于鱼群后,再从鱼塘中捞出100条鱼,发现其中带记号的鱼有10条,估计该鱼塘里约有( )条鱼.A 、1000B 、1100C 、900D 、不确定14.如图,扇形的圆心角∠AOB =120°,半径OA =3,用这个扇形围成一个圆锥的侧面,那么这个圆锥的底面圆的周长为( ). A .4π B .3π C .2π D .π15.已知二次函数y =ax 2+bx +c 的图象如图所示,那么一次函数y =bx +c 和反比例函数y =a x在).二、解答题.(请将解答过程书写在答题卡上指定的位置.本大题共9小题,计75分)16.(本题满分6分)解不等式组:2(5)63212.x x x +≥->+⎧⎨⎩,.17.(本题满分6分)化简: x 2+2x +1x +2÷x 2-1x -1-xx +2.18.(本题满分7分)如图,已知D 是AB 上一点,DF 交 AC 于点E ,AE =EC ,CF ∥AB ,求证:AD =CF .A B C D(第2题)BC D E F(第5题)(第6题)(第7题)AB(第9题) AODC B(第15题)x yO x yO x yO yxO yOy O (第14题)120°2 / 2m %A37%D C B 19.(本题满分7分)甲、乙两人同时从相距90千米的A 地前往B 地,甲乘汽车,乙骑摩托车,甲到达B 地停留半个小时后返回A 地,如图是他们离A 地的距离y (千米)与时间x (时)之间的函数图像:1)求甲从B 地返回A 地的过程中,y 与x 之间的函数关系式,并写出自变量x 的取值范围;2)若乙出发后2小时和甲相遇,求乙从A 地到B 地用了多长时间?20.(本题满分8分)为了解大学生参加公益活动的情况,几位同学设计了调查问卷,对几所大学的学生进行了随机调查.问卷如下:以下是根据调查结果的相关数据绘制的统计图的一部分.请回答以下问题:(1)此次调查对象共______人,扇形统计图中m 的值为__________ ; (2)请补全条形统计图并在图上标出数据;(3)据统计,该市某大学有学生15000人,请根据上述调查结果估计这所大学2014—2015学年度第一学期参加过至少两次公益活动的大约有____人.21.(本题满分8分)如图,在Rt △ABC 中,∠ACB =90°,延长BC 到点E , 使得CE =BC ,过点E 作 EF ⊥AB 于点F ,点D ,G 分别为边AB ,EH 的中 点,连接CG ,CD ,HD ,HB .(1)求证:CG ⊥CD ;(2)若DH ∥BC ,点P 是在四边形EHDB 内随机确定的一个点,求点P 落在△HDB 区域内的概率.22.(本题满分10分)【背景】《宜昌市城市总体规划(2011--2030)》明确要求:到2030年末宜昌市中心城区人口控制在300万左右,建设用地控制在300万平方公里以内,为此宜昌市要在2015年末实现总人口480万(其中中心城区人口200万)、中心城区建设用地200万平方公里的目标。

湖北省宜昌市2019-2020学年中考数学一模考试卷含解析

湖北省宜昌市2019-2020学年中考数学一模考试卷含解析

湖北省宜昌市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若关于x的一元二次方程2210x x kb-++=有两个不相等的实数根,则一次函数y kx b=+的图象可能是:A.B. C.D.2.如图,在平面直角坐标系xOy中,点A从(3,4)出发,绕点O顺时针旋转一周,则点A不经过()A.点M B.点N C.点P D.点Q3.如图,已知////AB CD EF,那么下列结论正确的是()A.AD BCDF CE=B.BC DFCE AD=C.CD BCEF BE=D.CD ADEF AF=4.如图,小明将一张长为20cm,宽为15cm的长方形纸(AE>DE)剪去了一角,量得AB=3cm,CD =4cm,则剪去的直角三角形的斜边长为()A.5cm B.12cm C.16cm D.20cm5.能说明命题“对于任何实数a ,|a|>﹣a”是假命题的一个反例可以是( )A .a =﹣2B .a =13C .a =1D .a =26.如图,二次函数y=ax 2+bx+c 的图象与y 轴正半轴相交,其顶点坐标为(,1),下列结论:①ac <1;②a+b=1;③4ac ﹣b 2=4a ;④a+b+c <1.其中正确结论的个数是( )A .1B .2C .3D .47.如图,在△ABC 中,BC=8,AB 的中垂线交BC 于D ,AC 的中垂线交BC 于E ,则△ADE 的周长等于( )A .8B .4C .12D .168.如图,AB 是O e 的直径,CD 是O e 的弦,连接AD ,AC ,BD ,则DAB ∠与C ∠的数量关系为( )A .DABC ∠=∠B .2DABC ∠=∠ C .90DAB C ∠+∠=︒D .180DAB C ∠+∠=︒9.某市2017年国内生产总值(GDP )比2016年增长了12%,由于受到国际金融危机的影响,预计2018比2017年增长7%,若这两年GDP 年平均增长率为x %,则x %满足的关系是( )A .12%7%%x +=B .(112%)(17%)2(1%)x ++=+C .12%7%2%x +=D .2(112%)(17%)(1%)x ++=+10.如图,在Y ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD 交于点F ,DEF ABF S S 425∆∆=::,则DE :EC=( )A .2:5B .2:3C .3:5D .3:211.二次函数y =a(x -4)2-4(a≠0)的图象在2<x <3这一段位于x 轴的下方,在6<x <7这一段位于x 轴的上方,则a 的值为( )A .1B .-1C .2D .-212.2016的相反数是( )A .12016-B .12016C .2016-D .2016二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.因式分解:223x 6xy 3y -+- =14.同时掷两粒骰子,都是六点向上的概率是_____. 15.若关于x 的一元二次方程kx 2+2(k+1)x+k -1=0有两个实数根,则k 的取值范围是16.为了了解某班数学成绩情况,抽样调查了13份试卷成绩,结果如下:3个140分,4个135分,2个130分,2个120分,1个100分,1个80分.则这组数据的中位数为______分.17.如图,矩形ABCD 中,AB=3,BC=5,点P 是BC 边上的一个动点(点P 与点B ,C 都不重合),现将△PCD 沿直线PD 折叠,使点C 落到点F 处;过点P 作∠BPF 的角平分线交AB 于点E .设BP=x ,BE=y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( )18.一只不透明的袋子中装有红球和白球共30个,这些球除了颜色外都相同,校课外学习小组做摸球实验,将球搅匀后任意摸出一个球,记下颜色后放回,搅匀,通过多次重复试验,算得摸到红球的频率是0.2,则袋中有________个红球.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)为了解某校学生的课余兴趣爱好情况,某调查小组设计了“阅读”、“打球”、“书法”和“舞蹈”四个选项,用随机抽样的方法调查了该校部分学生的课余兴趣爱好情况(每个学生必须选一项且只能选一项),并根据调查结果绘制了如图统计图:根据统计图所提供的倍息,解答下列问题:(1)本次抽样调查中的学生人数是多少人;(2 )补全条形统计图;(3)若该校共有2000名学生,请根据统计结果估计该校课余兴趣爱好为“打球”的学生人数;(4)现有爱好舞蹈的两名男生两名女生想参加舞蹈社,但只能选两名学生,请你用列表或画树状图的方法,求出正好选到一男一女的概率.20.(6分)在平面直角坐标系中,已知抛物线经过A(-3,0),B(0,-3),C(1,0)三点.(1)求抛物线的解析式;(2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S.求S关于m 的函数关系式,并求出S 的最大值;(3)若点P 是抛物线上的动点,点Q 是直线y=-x 上的动点,判断有几个位置能够使得点P 、Q 、B 、O 为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.21.(6分)工人师傅用一块长为10dm ,宽为6dm 的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)求长方体底面面积为12dm 2时,裁掉的正方形边长多大?22.(8分)先化简,再求值:2311221x x x x x x -⎛⎫-÷- ⎪+++⎝⎭,其中x 满足210x x --=. 23.(8分)一位运动员推铅球,铅球运行时离地面的高度y (米)是关于运行时间x (秒)的二次函数.已知铅球刚出手时离地面的高度为53米;铅球出手后,经过4秒到达离地面3米的高度,经过10秒落到地面.如图建立平面直角坐标系.(Ⅰ)为了求这个二次函数的解析式,需要该二次函数图象上三个点的坐标.根据题意可知,该二次函数图象上三个点的坐标分别是____________________________;(Ⅱ)求这个二次函数的解析式和自变量x的取值范围.24.(10分)某同学用两个完全相同的直角三角形纸片重叠在一起(如图1)固定△ABC不动,将△DEF 沿线段AB向右平移.(1)若∠A=60°,斜边AB=4,设AD=x(0≤x≤4),两个直角三角形纸片重叠部分的面积为y,试求出y 与x的函数关系式;(2)在运动过程中,四边形CDBF能否为正方形,若能,请指出此时点D的位置,并说明理由;若不能,请你添加一个条件,并说明四边形CDBF为正方形?25.(10分)如图,⊙O直径AB和弦CD相交于点E,AE=2,EB=6,∠DEB=30°,求弦CD长.26.(12分)如图,在大楼AB正前方有一斜坡CD,坡角∠DCE=30°,楼高AB=60米,在斜坡下的点C 处测得楼顶B的仰角为60°,在斜坡上的D处测得楼顶B的仰角为45°,其中点A,C,E在同一直线上.求坡底C点到大楼距离AC的值;求斜坡CD的长度.27.(12分)某学校为了解学生的课余活动情况,抽样调查了部分学生,将所得数据处理后,制成折线统计图(部分)和扇形统计图(部分)如图:(1)在这次研究中,一共调查了学生,并请补全折线统计图;(2)该校共有2200名学生,估计该校爱好阅读和爱好体育的学生一共有多少人?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】【详解】由方程2210x x kb ++=-有两个不相等的实数根,可得()4410kb =-+V>, 解得0kb <,即k b 、异号,当00k b >,<时,一次函数y kx b =+的图象过一三四象限,当00k b <,>时,一次函数y kx b =+的图象过一二四象限,故答案选B.2.C【解析】【分析】根据旋转的性质:对应点到旋转中心的距离相等,逐一判断即可.【详解】解:连接OA 、OM 、ON 、OP ,根据旋转的性质,点A 的对应点到旋转中心的距离与OA 的长度应相等根据网格线和勾股定理可得:22345+=,22345+=,22345+=,222425+=OQ=5∵OA=OM=ON=OQ≠OP∴则点A不经过点P故选C.【点睛】此题考查的是旋转的性质和勾股定理,掌握旋转的性质:对应点到旋转中心的距离相等和用勾股定理求线段的长是解决此题的关键.3.A【解析】【分析】已知AB∥CD∥EF,根据平行线分线段成比例定理,对各项进行分析即可.【详解】∵AB∥CD∥EF,∴AD BC DF CE=.故选A.【点睛】本题考查平行线分线段成比例定理,找准对应关系,避免错选其他答案.4.D【解析】【分析】解答此题要延长AB、DC相交于F,则BFC构成直角三角形,再用勾股定理进行计算.【详解】延长AB、DC相交于F,则BFC构成直角三角形,运用勾股定理得:BC 2=(15-3)2+(1-4)2=122+162=400,所以BC=1.则剪去的直角三角形的斜边长为1cm .故选D .【点睛】本题主要考查了勾股定理的应用,解答此题要延长AB 、DC 相交于F ,构造直角三角形,用勾股定理进行计算.5.A【解析】【分析】将各选项中所给a 的值代入命题“对于任意实数a ,a a >- ”中验证即可作出判断.【详解】(1)当2a =-时,22?(2)2a a =-=-=--=,,此时a a =-, ∴当2a =-时,能说明命题“对于任意实数a ,a a >- ”是假命题,故可以选A ;(2)当13a =时,11 33a a =-=-,,此时a a >-, ∴当13a =时,不能说明命题“对于任意实数a ,a a >- ”是假命题,故不能B ; (3)当1a =时,1?1a a =-=-,,此时a a >-, ∴当1a =时,不能说明命题“对于任意实数a ,a a >- ”是假命题,故不能C ;(4)当2a =2?2a a ,=-=-a a >-, ∴当2a =“对于任意实数a ,a a >- ”是假命题,故不能D ;故选A.【点睛】熟知“通过举反例说明一个命题是假命题的方法和求一个数的绝对值及相反数的方法”是解答本题的关键. 6.C【解析】①根据图象知道:a <1,c >1,∴ac <1,故①正确;②∵顶点坐标为(1/2 ,1),∴x="-b/2a" ="1/2" ,∴a+b=1,故②正确;③根据图象知道:x=1时,y=a++b+c>1,故③错误;④∵顶点坐标为(1/2 ,1),∴=1,∴4ac-b2=4a,故④正确.其中正确的是①②④.故选C7.A【解析】【详解】∵AB的中垂线交BC于D,AC的中垂线交BC于E,∴DA=DB,EA=EC,则△ADE的周长=AD+DE+AE=BD+DE+EC=BC=8,故选A.8.C【解析】【分析】首先根据圆周角定理可知∠B=∠C,再根据直径所得的圆周角是直角可得∠ADB=90°,然后根据三角形的内角和定理可得∠DAB+∠B=90°,所以得到∠DAB+∠C=90°,从而得到结果.【详解】e的直径,解:∵AB是O∴∠ADB=90°.∴∠DAB+∠B=90°.∵∠B=∠C,∴∠DAB+∠C=90°.故选C.【点睛】本题考查了圆周角定理及其逆定理和三角形的内角和定理,掌握相关知识进行转化是解题的关键.9.D【解析】分析:根据增长率为12%,7%,可表示出2017年的国内生产总值,2018年的国内生产总值;求2年的增长率,可用2016年的国内生产总值表示出2018年的国内生产总值,让2018年的国内生产总值相等即可求得所列方程.详解:设2016年的国内生产总值为1,∵2017年国内生产总值(GDP)比2016年增长了12%,∴2017年的国内生产总值为1+12%;∵2018年比2017年增长7%, ∴2018年的国内生产总值为(1+12%)(1+7%),∵这两年GDP 年平均增长率为x%, ∴2018年的国内生产总值也可表示为:()21%x +,∴可列方程为:(1+12%)(1+7%)=()21%x +.故选D .点睛:考查了由实际问题列一元二次方程的知识,当必须的量没有时,应设其为1;注意2018年的国内生产总值是在2017年的国内生产总值的基础上增加的,需先算出2016年的国内生产总值.10.B【解析】【详解】∵四边形ABCD 是平行四边形,∴AB ∥CD∴∠EAB=∠DEF ,∠AFB=∠DFE∴△DEF ∽△BAF∴()2DEF ABF S S DE AB ∆∆=:: ∵DEF ABF S S 425∆∆=::, ∴DE :AB=2:5∵AB=CD ,∴DE :EC=2:3故选B11.A【解析】试题分析:根据角抛物线顶点式得到对称轴为直线x=4,利用抛物线对称性得到抛物线在1<x <2这段位于x 轴的上方,而抛物线在2<x <3这段位于x 轴的下方,于是可得抛物线过点(2,0)然后把(2,0)代入y =a(x -4)2-4(a≠0)可求出a=1.故选A12.C【解析】根据相反数的定义“只有符号不同的两个数互为相反数”可知:2016的相反数是-2016.故选C.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.﹣3(x ﹣y )1【解析】解:﹣3x 1+6xy ﹣3y 1=﹣3(x 1+y 1﹣1xy )=﹣3(x ﹣y )1.故答案为:﹣3(x ﹣y )1.点睛:本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.14.1 36.【解析】【分析】同时掷两粒骰子,一共有6×6=36种等可能情况,都是六点向上只有一种情况,按概率公式计算即可. 【详解】解:都是六点向上的概率是1 36.【点睛】本题考查了概率公式的应用.15.k≥,且k≠1【解析】试题解析:∵a=k,b=2(k+1),c=k-1,∴△=4(k+1)2-4×k×(k-1)=3k+1≥1,解得:k≥-,∵原方程是一元二次方程,∴k≠1.考点:根的判别式.16.1【解析】【详解】∵13份试卷成绩,结果如下:3个140分,4个1分,2个130分,2个120分,1个100分,1个80分,∴第7个数是1分,∴中位数为1分,故答案为1.17.C【解析】【分析】先证明△BPE∽△CDP,再根据相似三角形对应边成比例列出式子变形可得.【详解】由已知可知∠EPD=90°,∴∠BPE+∠DPC=90°,∵∠DPC+∠PDC=90°,∴∠CDP=∠BPE ,∵∠B=∠C=90°,∴△BPE ∽△CDP ,∴BP :CD =BE :CP ,即x:3=y:(5-x), ∴y=253x x -+(0<x<5); 故选C .考点:1.折叠问题;2.相似三角形的判定和性质;3.二次函数的图象.18.1【解析】【详解】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,设袋中有x 个红球,列出方程30x =20%, 求得x=1. 故答案为1.点睛:此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)本次抽样调查中的学生人数为100人;(2)补全条形统计图见解析;(3)估计该校课余兴趣爱好为“打球”的学生人数为800人;(4)23. 【解析】【分析】(1)用选“阅读”的人数除以它所占的百分比即可得到调查的总人数;(2)先计算出选“舞蹈”的人数,再计算出选“打球”的人数,然后补全条形统计图;(3)用2000乘以样本中选“打球”的人数所占的百分比可估计该校课余兴趣爱好为“打球”的学生人数;(4)画树状图展示所有12种等可能的结果数,再找出选到一男一女的结果数,然后根据概率公式求解.【详解】(1)30÷30%=100, 所以本次抽样调查中的学生人数为100人;(2)选”舞蹈”的人数为100×10%=10(人),选“打球”的人数为100﹣30﹣10﹣20=40(人),补全条形统计图为:(3)2000×40100=800, 所以估计该校课余兴趣爱好为“打球”的学生人数为800人;(4)画树状图为:共有12种等可能的结果数,其中选到一男一女的结果数为8,所以选到一男一女的概率=82123=. 【点睛】本题考查了条形统计图与扇形统计图,列表法与树状图法求概率,读懂统计图,从中找到有用的信息是解题的关键.本题中还用到了知识点为:概率=所求情况数与总情况数之比.20.(1)223y x x =+- 32m =-时,S 最大为278(1)(-1,1)或3333332222⎛⎫-+- ⎪ ⎪⎝⎭,或3333332222⎛⎫--+ ⎪ ⎪⎝⎭,或(1,-1) 【解析】试题分析:(1)先假设出函数解析式,利用三点法求解函数解析式.(2)设出M 点的坐标,利用S=S △AOM +S △OBM ﹣S △AOB 即可进行解答;(1)当OB 是平行四边形的边时,表示出PQ 的长,再根据平行四边形的对边相等列出方程求解即可;当OB 是对角线时,由图可知点A 与P 应该重合,即可得出结论.试题解析:解:(1)设此抛物线的函数解析式为:y=ax 2+bx+c (a≠0),将A (-1,0),B (0,-1),C (1,0)三点代入函数解析式得:93030a b c c a b c -+=⎧⎪=-⎨⎪++=⎩解得123a b c =⎧⎪=⎨⎪=-⎩:,所以此函数解析式为:223y x x =+-.(2)∵M 点的横坐标为m ,且点M 在这条抛物线上,∴M 点的坐标为:(m ,223m m +-),∴S=S △AOM +S △OBM -S △AOB =12×1×(-223m m +-)+12×1×(-m )-12×1×1=-(m+32)2+278, 当m=-32时,S 有最大值为:S=278-. (1)设P (x ,223x x +-).分两种情况讨论:①当OB 为边时,根据平行四边形的性质知PB ∥OQ ,∴Q 的横坐标的绝对值等于P 的横坐标的绝对值,又∵直线的解析式为y=-x ,则Q (x ,-x ).由PQ=OB ,得:|-x-(223x x +-)|=1解得: x=0(不合题意,舍去),-1, 3332-±,∴Q 的坐标为(-1,1)或33333322⎛⎫-+- ⎪ ⎪⎝⎭,或33333322⎛⎫--+ ⎪ ⎪⎝⎭,; ②当BO 为对角线时,如图,知A 与P 应该重合,OP=1.四边形PBQO 为平行四边形则BQ=OP=1,Q 横坐标为1,代入y=﹣x 得出Q 为(1,﹣1).综上所述:Q 的坐标为:(-1,1)或33333322⎛⎫-+- ⎪ ⎪⎝⎭,或33333322⎛⎫--+ ⎪ ⎪⎝⎭,或(1,-1).点睛:本题是对二次函数的综合考查,有待定系数法求二次函数解析式,三角形的面积,二次函数的最值问题,平行四边形的对边相等的性质,平面直角坐标系中两点间的距离的表示,综合性较强,但难度不大,仔细分析便不难求解.21.裁掉的正方形的边长为2dm ,底面积为12dm 2.【解析】试题分析:设裁掉的正方形的边长为xdm ,则制作无盖的长方体容器的长为(10-2x )dm ,宽为(6-2x )dm ,根据长方体底面面积为12dm 2列出方程,解方程即可求得裁掉的正方形边长.试题解析:设裁掉的正方形的边长为xdm ,由题意可得(10-2x)(6-2x)=12,即x 2-8x+12=0,解得x=2或x=6(舍去),答:裁掉的正方形的边长为2dm ,底面积为12dm 2.22.1【解析】试题分析:原式第一项括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分后,两项通分并利用同分母分式的减法法则计算得到最简结果,已知方程变形后代入计算即可求出值. 试题解析:原式=21(2)2111x x x x x x x x x -+⋅-+-+=+ ∵x 2−x−1=0,∴x 2=x+1,则原式=1.23.(0,53),(4,3) 【解析】 试题分析:(Ⅰ)根据“刚出手时离地面高度为53米、经过4秒到达离地面3米的高度和经过1秒落到地面”可得三点坐标;(Ⅱ)利用待定系数法求解可得.试题解析:解:(Ⅰ)由题意知,该二次函数图象上的三个点的坐标分别是(0,53)、(4,3)、(1,0).故答案为:(0,53)、(4,3)、(1,0). (Ⅱ)设这个二次函数的解析式为y=ax 2+bx+c ,将(Ⅰ)三点坐标代入,得:531643100100c a b c a b c ⎧=⎪⎪++=⎨⎪++=⎪⎩,解得:1122353 abc⎧=-⎪⎪⎪=⎨⎪⎪=⎪⎩,所以所求抛物线解析式为y=﹣112x2+23x+53,因为铅球从运动员抛出到落地所经过的时间为1秒,所以自变量的取值范围为0≤x≤1.24.(1)y=23(4)8x-(0≤x≤4);(2) 不能为正方形,添加条件:AC=BC时,当点D运动到AB中点位置时四边形CDBF为正方形.【解析】分析:(1)根据平移的性质得到DF ∥AC,所以由平行线的性质、勾股定理求得GD=,BG==,所以由三角形的面积公式列出函数关系式;(2)不能为正方形,添加条件:AC=BC 时,点D运动到AB中点时,四边形CDBF为正方形;当D运动到AB中点时,四边形CDBF是菱形,根据“直角三角形斜边上的中线等于斜边的一半”推知CD=12AB,BF=12DE,所以AD=CD=BD=CF,又有BE=AD,则CD=BD=BF=CF,故四边形CDBF是菱形,根据有一内角为直角的菱形是正方形来添加条件. 详解:(1)如图(1)∵DF∥AC,∴∠DGB=∠C=90°,∠GDB=∠A=60°,∠GBD=30°∵BD=4﹣x,∴GD=,BG==y=S△BDG=××=(0≤x≤4);(2)不能为正方形,添加条件:AC=BC时,当点D运动到AB中点位置时四边形CDBF为正方形.∵∠ACB=∠DFE=90°,D是AB的中点∴CD=AB,BF=DE,∴CD=BD=BF=B E,∵CF=BD,∴CD=BD=BF=CF,∴四边形CDBF是菱形;∵AC=BC,D是AB的中点.∴CD⊥AB即∠CDB=90°∵四边形CDBF为菱形,∴四边形CDBF是正方形.点睛:本题是几何变换综合题型,主要考查了平移变换的性质,勾股定理,正方形的判定,菱形的判定与性质以及直角三角形斜边上的中线.(2)难度稍大,根据三角形斜边上的中线推知CD=BD=BF=BE是解题的关键. 25.【解析】试题分析:过O作OF垂直于CD,连接OD,利用垂径定理得到F为CD的中点,由AE+EB求出直径AB的长,进而确定出半径OA与OD的长,由OA﹣AE求出OE的长,在直角三角形OEF中,利用30°所对的直角边等于斜边的一半求出OF的长,在直角三角形ODF中,利用勾股定理求出DF的长,由CD=2DF即可求出CD的长.试题解析:过O作OF⊥CD,交CD于点F,连接OD,∴F为CD的中点,即CF=DF,∵AE=2,EB=6,∴AB=AE+EB=2+6=8,∴OA=4,∴OE=OA﹣AE=4﹣2=2,在Rt△OEF中,∠DEB=30°,∴OF=OE=1,在Rt△ODF中,OF=1,OD=4,根据勾股定理得:DF==,则CD=2DF=2.考点:垂径定理;勾股定理.26.(1)坡底C点到大楼距离AC的值为3(2)斜坡CD的长度为3-120米.【解析】分析:(1)在直角三角形ABC 中,利用锐角三角函数定义求出AC 的长即可;(2)过点D 作DF ⊥AB 于点F ,则四边形AEDF 为矩形,得AF=DE ,DF=AE.利用DF=AE=AC+CE 求解即可.详解:(1)在直角△ABC 中,∠BAC=90°,∠BCA=60°,AB=60米,则AC=203603AB tan ==︒(米) 答:坡底C 点到大楼距离AC 的值是203米.(2)过点D 作DF ⊥AB 于点F ,则四边形AEDF 为矩形,∴AF=DE ,DF=AE.设CD=x 米,在Rt △CDE 中,DE=12x 米,CE=32x 米 在Rt △BDF 中,∠BDF=45°,∴BF=DF=AB-AF=60-12x (米) ∵DF=AE=AC+CE , ∴332x=60-12x 解得:3-120(米)故斜坡CD 的长度为(3-120)米.点睛:此题考查了解直角三角形-仰角俯角问题,坡度坡角问题,熟练掌握勾股定理是解本题的关键. 27.(1)200名;折线图见解析;(2)1210人.【解析】【分析】(1)由“其他”的人数和所占百分数,求出全部调查人数;先由“体育”所占百分数和全部调查人数求出体育的人数,进一步求出阅读的人数,补全折线统计图;(2)利用样本估计总体的方法计算即可解答.【详解】(1)调查学生总人数为40÷20%=200(人),体育人数为:200×30%=60(人),阅读人数为:200﹣(60+30+20+40)=200﹣150=50(人).补全折线统计图如下:.(2)2200×5060200=1210(人).答:估计该校学生中爱好阅读和爱好体育的人数大约是1210人.【点睛】本题考查了统计知识的应用,试题以图表为载体,要求学生能从中提取信息来解题,与实际生活息息相关,符合新课标的理念.。

湖北省宜昌市天问学校2019-2020学年九年级数学中考模拟题(一)(无答案)

湖北省宜昌市天问学校2019-2020学年九年级数学中考模拟题(一)(无答案)

1 / 2(第18题)A BCDEF2019-2020湖北省宜昌市天问学校九年级数学中考模拟题(一)一、选择题.(在各小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡上指定的位置填涂符合要求的选项前面的字母代号.本大题共15小题,每小题3分,计45分) 1.如果零上13℃记作+13℃,那么零下2℃记作( ).A .2B .-2C .2℃D .-2℃ 2.用五个小正方体堆成如图的立方体,这个立方体的主视图是( ).3.下列运算正确的是( ).A .x 3+x 3=x 6B .2x ·3x 2=6x 3C .(2 x )3=6x 3D .(2x 3+x )÷x =2x4.神舟九号飞船发射成功后,一条相关的微博被转发了3 570 000次,数据3 570 000用科学记数法表示为( ).A .357×104B .35.7×105C .3.57×106D .3.57×107 5.如图,直线AB ∥CD ,AF 交CD 于点E ,∠CEF =140°,则∠A =( ). A .35° B .40° C .45° D . 50°6.已知实数m ,n 在数轴上的对应点的位置如图所示,则下列判断正确的是( ). A .m >0 B .n <0 C .mn <0 D .m -n >07.把等腰△ABC 沿底边BC 翻折,得到△DBC ,那么四边形ABDC ( ). A .是中心对称图形,不是轴对称图形 B .不是中心对称图形,是轴对称图形 C .既是中心对称图形,又是轴对称图形 D .既不是中心对称图形,也不是轴对称图形8.下列计算正确的是( ).A .20=210B .(-3)2=-3C .4-2=2D .2·3=6 9.已知,菱形ABCD 中,对角线AC 与BD 相交于点O ,OE ∥DC 交BC 于点E ,AD =6 cm ,则OE =( ). A .3cm B .4cm C .5cm D .6cm10.某校901班某兴趣小组共有7名成员,他们的年龄分别是13,14,14,15,13,14,15,则他们年龄的众数和中位数分别是( ).A .14,15B .15,14C .14,14.5D .14,1411. 已知关于x 的一元二次方程(m ﹣2)x 2+2x+1=0有实数根,则m 的取值范围是( ) A 、B 、C 、D 、12.函数y =1x -2中自变量x 的取值范围是( ). A .x >2 B .x <2 C .x ≠2 D .x ≥213. 某养鱼专业户为了估计鱼塘中鱼的总条数,他先从鱼塘中捞出100条,将每条鱼作了记号后放回水中,当它们完全混合于鱼群后,再从鱼塘中捞出100条鱼,发现其中带记号的鱼有10条,估计该鱼塘里约有( )条鱼.A 、1000B 、1100C 、900D 、不确定14.如图,扇形的圆心角∠AOB =120°,半径OA =3,用这个扇形围成一个圆锥的侧面,那么这个圆锥的底面圆的周长为( ). A .4π B .3π C .2π D .π15.已知二次函数y =ax 2+bx +c 的图象如图所示,那么一次函数y =bx +c 和反比例函数y =a x在).二、解答题.(请将解答过程书写在答题卡上指定的位置.本大题共9小题,计75分)16.(本题满分6分)解不等式组:2(5)63212.x x x +≥->+⎧⎨⎩,.17.(本题满分6分)化简: x 2+2x +1x +2÷x 2-1x -1-xx +2.18.(本题满分7分)如图,已知D 是AB 上一点,DF 交 AC 于点E ,AE =EC ,CF ∥AB ,求证:AD =CF .A B C D(第2题)BC D E F(第5题)(第6题)(第7题)AB(第9题) AODC B(第15题)x yO x yO x yO yxO yOy O (第14题)120°2 / 2m %A37%D C B 19.(本题满分7分)甲、乙两人同时从相距90千米的A 地前往B 地,甲乘汽车,乙骑摩托车,甲到达B 地停留半个小时后返回A 地,如图是他们离A 地的距离y (千米)与时间x (时)之间的函数图像:1)求甲从B 地返回A 地的过程中,y 与x 之间的函数关系式,并写出自变量x 的取值范围;2)若乙出发后2小时和甲相遇,求乙从A 地到B 地用了多长时间?20.(本题满分8分)为了解大学生参加公益活动的情况,几位同学设计了调查问卷,对几所大学的学生进行了随机调查.问卷如下:以下是根据调查结果的相关数据绘制的统计图的一部分.请回答以下问题:(1)此次调查对象共______人,扇形统计图中m 的值为__________ ; (2)请补全条形统计图并在图上标出数据;(3)据统计,该市某大学有学生15000人,请根据上述调查结果估计这所大学2014—2015学年度第一学期参加过至少两次公益活动的大约有____人.21.(本题满分8分)如图,在Rt △ABC 中,∠ACB =90°,延长BC 到点E , 使得CE =BC ,过点E 作 EF ⊥AB 于点F ,点D ,G 分别为边AB ,EH 的中 点,连接CG ,CD ,HD ,HB .(1)求证:CG ⊥CD ;(2)若DH ∥BC ,点P 是在四边形EHDB 内随机确定的一个点,求点P 落在△HDB 区域内的概率.22.(本题满分10分)【背景】《宜昌市城市总体规划(2011--2030)》明确要求:到2030年末宜昌市中心城区人口控制在300万左右,建设用地控制在300万平方公里以内,为此宜昌市要在2015年末实现总人口480万(其中中心城区人口200万)、中心城区建设用地200万平方公里的目标。

湖北省宜昌市2019-2020学年中考数学最后模拟卷含解析

湖北省宜昌市2019-2020学年中考数学最后模拟卷含解析

湖北省宜昌市2019-2020学年中考数学最后模拟卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.实数6的相反数是()A.-6B.6C.6D.6-2.如图,直线y=kx+b与x轴交于点(﹣4,0),则y>0时,x的取值范围是()A.x>﹣4 B.x>0 C.x<﹣4 D.x<03.下列计算正确的是()A.a2•a3=a6B.(a2)3=a6C.a6﹣a2=a4D.a5+a5=a104.下列计算正确的是()A.3a2﹣6a2=﹣3B.(﹣2a)•(﹣a)=2a2C.10a10÷2a2=5a5D.﹣(a3)2=a65.下列式子成立的有( )个①﹣12的倒数是﹣2②(﹣2a2)3=﹣8a52325 2④方程x2﹣3x+1=0有两个不等的实数根A.1 B.2 C.3 D.46.如图,四边形ABCD是正方形,点P,Q分别在边AB,BC的延长线上且BP=CQ,连接AQ,DP 交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:①AQ⊥DP;②△OAE∽△OPA;③当正方形的边长为3,BP=1时,cos∠DFO=35,其中正确结论的个数是( )A .0B .1C .2D .37.超市店庆促销,某种书包原价每个x 元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程( ) A .0.8x ﹣10=90B .0.08x ﹣10=90C .90﹣0.8x=10D .x ﹣0.8x ﹣10=908.在2016年泉州市初中体育中考中,随意抽取某校5位同学一分钟跳绳的次数分别为:158,160,154,158,170,则由这组数据得到的结论错误..的是( ) A .平均数为160B .中位数为158C .众数为158D .方差为20.39.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为( ) A .180元B .200元C .225元D .259.2元10.从3、1、-2这三个数中任取两个不同的数作为P 点的坐标,则P 点刚好落在第四象限的概率是( ) A .14B .13C .23D .1211.下列说法正确的是( )A .掷一枚均匀的骰子,骰子停止转动后,6点朝上是必然事件B .甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是2=0.4S 甲,2=0.6S 乙,则甲的射击成绩较稳定 C .“明天降雨的概率为12”,表示明天有半天都在降雨 D .了解一批电视机的使用寿命,适合用普查的方式 12.如果菱形的一边长是8,那么它的周长是( ) A .16B .32C .16D .32二、填空题:(本大题共6个小题,每小题4分,共24分.)13.飞机着陆后滑行的距离y (单位:m )关于滑行时间t (单位:s )的函数解析式是y=60t ﹣232t .在飞机着陆滑行中,最后4s 滑行的距离是_____m . 14.分解因式8x 2y ﹣2y =_____.15.如图,小军、小珠之间的距离为2.7 m ,他们在同一盏路灯下的影长分别为1.8 m ,1.5 m ,已知小军、小珠的身高分别为1.8 m ,1.5 m ,则路灯的高为____m.16.小红沿坡比为1:3的斜坡上走了100米,则她实际上升了_____米.17.计算2x3·x2的结果是_______.18.如图,点A,B,C在⊙O上,四边形OABC是平行四边形,OD⊥AB于点E,交⊙O于点D,则∠BAD=_______°.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A(2,2),B(4,0),C(4,﹣4).请在图中,画出△ABC向左平移6个单位长度后得到的△A1B1C1;以点O为位似中心,将△ABC缩小为原来的12,得到△A2B2C2,请在图中y轴右侧,画出△A2B2C2,并求出∠A2C2B2的正弦值.20.(6分)如图,在⊙O中,AB是直径,点C是圆上一点,点D是弧BC中点,过点D作⊙O切线DF,连接AC并延长交DF于点E.(1)求证:AE⊥EF;(2)若圆的半径为5,BD=6 求AE的长度.21.(6分)某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件.当每件的销售价为52元时,该纪念品每天的销售数量为 件;当每件的销售价x 为多少时,销售该纪念品每天获得的利润y 最大?并求出最大利润. 22.(8分)(1)计算:(12)﹣3×[12﹣(12)3]﹣4cos30°+12; (2)解方程:x (x ﹣4)=2x ﹣823.(8分)在某市组织的大型商业演出活动中,对团体购买门票实行优惠,决定在原定票价基础上每张降价80元,这样按原定票价需花费6000元购买的门票张数,现在只花费了4800元.求每张门票原定的票价;根据实际情况,活动组织单位决定对于个人购票也采取优惠措施,原定票价经过连续二次降价后降为324元,求平均每次降价的百分率. 24.(10分)用你发现的规律解答下列问题.111122=-⨯ 1112323=-⨯ 1113434=-⨯ ┅┅计算111111223344556++++=⨯⨯⨯⨯⨯ .探究1111......122334(1)n n ++++=⨯⨯⨯+ .(用含有n 的式子表示)若1111......133557(21)(21)n n ++++⨯⨯⨯-+的值为1735,求n 的值. 25.(10分)如图,在四边形ABCD 中,∠BAC=∠ACD=90°,∠B=∠D . (1)求证:四边形ABCD 是平行四边形; (2)若AB=3cm ,BC=5cm ,AE=13AB ,点P 从B 点出发,以1cm/s 的速度沿BC→CD→DA 运动至A 点停止,则从运动开始经过多少时间,△BEP 为等腰三角形.26.(12分)如图所示,直线y=﹣2x+b 与反比例函数y=kx 交于点A 、B ,与x 轴交于点C . (1)若A (﹣3,m )、B (1,n ).直接写出不等式﹣2x+b >kx的解.(2)求sin ∠OCB 的值.(3)若CB ﹣CA=5,求直线AB 的解析式.27.(12分)某品牌手机去年每台的售价y(元)与月份x之间满足函数关系:y=﹣50x+2600,去年的月销量p(万台)与月份x之间成一次函数关系,其中1﹣6月份的销售情况如下表:月份(x)1月2月3月4月5月6月销售量(p) 3.9万台 4.0万台 4.1万台 4.2万台 4.3万台 4.4万台(1)求p关于x的函数关系式;(2)求该品牌手机在去年哪个月的销售金额最大?最大是多少万元?(3)今年1月份该品牌手机的售价比去年12月份下降了m%,而销售量也比去年12月份下降了1.5m%.今年2月份,经销商决定对该手机以1月份价格的“八折”销售,这样2月份的销售量比今年1月份增加了1.5万台.若今年2月份这种品牌手机的销售额为6400万元,求m的值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】根据相反数的定义即可判断.【详解】6的相反数是6故选A.【点睛】此题主要考查相反数的定义,解题的关键是熟知相反数的定义即可求解.2.A【解析】试题分析:充分利用图形,直接从图上得出x的取值范围.由图可知,当y<1时,x<-4,故选C.考点:本题考查的是一次函数的图象点评:解答本题的关键是掌握在x轴下方的部分y<1,在x轴上方的部分y>1.3.B【解析】【分析】根据同底数幂乘法、幂的乘方的运算性质计算后利用排除法求解.【详解】A、a2•a3=a5,错误;B、(a2)3=a6,正确;C、不是同类项,不能合并,错误;D、a5+a5=2a5,错误;故选B.【点睛】本题综合考查了整式运算的多个考点,包括同底数幂的乘法、幂的乘方、合并同类项,需熟练掌握且区分清楚,才不容易出错.4.B【解析】【分析】根据整式的运算法则分别计算可得出结论.【详解】选项A,由合并同类项法则可得3a2﹣6a2=﹣3a2,不正确;选项B,单项式乘单项式的运算可得(﹣2a)•(﹣a)=2a2,正确;选项C,根据整式的除法可得10a10÷2a2=5a8,不正确;选项D,根据幂的乘方可得﹣(a3)2=﹣a6,不正确.故答案选B.考点:合并同类项;幂的乘方与积的乘方;单项式乘单项式.5.B【解析】【分析】根据倒数的定义,幂的乘方、二次根式的混合运算法则以及根的判别式进行判断.【详解】解:①﹣12的倒数是﹣2,故正确;②(﹣2a2)3=﹣8a6,故错误;)﹣2,故错误;④因为△=(﹣3)2﹣4×1×1=5>0,所以方程x2﹣3x+1=0有两个不等的实数根,故正确.故选B.【点睛】考查了倒数的定义,幂的乘方、二次根式的混合运算法则以及根的判别式,属于比较基础的题目,熟记计算法则即可解答.6.C【解析】【分析】由四边形ABCD是正方形,得到AD=BC,90DAB ABC∠=∠=︒,根据全等三角形的性质得到∠P=∠Q,根据余角的性质得到AQ⊥DP;故①正确;根据勾股定理求出5,AQ==,DFO BAQ∠=∠直接用余弦可求出.【详解】详解:∵四边形ABCD是正方形,∴AD=BC,90DAB ABC∠=∠=o,∵BP=CQ,∴AP=BQ,在△DAP与△ABQ中,AD ABDAP ABQAP BQ=⎧⎪∠=∠⎨⎪=⎩,∴△DAP≌△ABQ,∴∠P=∠Q,∵90Q QAB∠+∠=o,∴90P QAB∠+∠=o,∴90AOP∠=o,∴AQ⊥DP;故①正确;②无法证明,故错误.∵BP=1,AB=3,∴4BQ AP ==,5,AQ == ,DFO BAQ ∠=∠∴3cos cos .5AB DFO BAQ AQ ∠=∠== 故③正确, 故选C . 【点睛】考查正方形的性质,三角形全等的判定与性质,勾股定理,锐角三角函数等,综合性比较强,对学生要求较高. 7.A 【解析】试题分析:设某种书包原价每个x 元,根据题意列出方程解答即可. 设某种书包原价每个x 元, 可得:0.8x ﹣10=90考点:由实际问题抽象出一元一次方程. 8.D 【解析】解:A .平均数为(158+160+154+158+170)÷5=160,正确,故本选项不符合题意; B .按照从小到大的顺序排列为154,158,158,160,170,位于中间位置的数为158,故中位数为158,正确,故本选项不符合题意;C .数据158出现了2次,次数最多,故众数为158,正确,故本选项不符合题意;D .这组数据的方差是S 2=15[(154﹣160)2+2×(158﹣160)2+(160﹣160)2+(170﹣160)2]=28.8,错误,故本选项符合题意. 故选D .点睛:本题考查了众数、平均数、中位数及方差,解题的关键是掌握它们的定义,难度不大. 9.A 【解析】 【分析】设这种商品每件进价为x 元,根据题中的等量关系列方程求解. 【详解】设这种商品每件进价为x 元,则根据题意可列方程270×0.8-x =0.2x ,解得x =180.故选A. 【点睛】本题主要考查一元一次方程的应用,解题的关键是确定未知数,根据题中的等量关系列出正确的方程.10.B【解析】解:画树状图得:∵共有6种等可能的结果,其中(1,-2),(3,-2)点落在第四项象限,∴P点刚好落在第四象限的概率=26=13.故选B.点睛:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件,熟记各象限内点的符号特点是解题的关键.11.B【解析】【分析】利用事件的分类、普查和抽样调查的特点、概率的意义以及方差的性质即可作出判断.【详解】解:A、掷一枚均匀的骰子,骰子停止转动后,6点朝上是可能事件,此选项错误;B、甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定,此选项正确;C、“明天降雨的概率为12”,表示明天有可能降雨,此选项错误;D、解一批电视机的使用寿命,适合用抽查的方式,此选项错误;故选B.【点睛】本题考查方差;全面调查与抽样调查;随机事件;概率的意义,掌握基本概念是解题关键.12.B【解析】【分析】根据菱形的四边相等,可得周长【详解】菱形的四边相等∴菱形的周长=4×8=32故选B.【点睛】本题考查了菱形的性质,并灵活掌握及运用菱形的性质 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.24 【解析】 【分析】先利用二次函数的性质求出飞机滑行20s 停止,此时滑行距离为600m ,然后再将t=20-4=16代入求得16s 时滑行的距离,即可求出最后4s 滑行的距离. 【详解】 y=60t ﹣23t 2=32-(t-20)2+600,即飞机着陆后滑行20s 时停止,滑行距离为600m ,当t=20-4=16时,y=576, 600-576=24,即最后4s 滑行的距离是24m , 故答案为24. 【点睛】本题考查二次函数的应用,解题的关键是理解题意,熟练应用二次函数的性质解决问题. 14.2y (2x+1)(2x ﹣1) 【解析】 【分析】首先提取公因式2y ,再利用平方差公式分解因式得出答案. 【详解】8x 2y-2y=2y (4x 2-1) =2y (2x+1)(2x-1). 故答案为2y (2x+1)(2x-1). 【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键. 15.3 【解析】试题分析:如图,∵CD ∥AB ∥MN , ∴△ABE ∽△CDE ,△ABF ∽△MNF ,∴,CD DE FN MNAB BE FB AB ==, 即1.8 1.8 1.5 1.5,1.8 1.5 2.7AB BD AB BD==++-, 解得:AB=3m , 答:路灯的高为3m .。

湖北省宜昌市2019-2020学年中考数学模拟试题(1)含解析

湖北省宜昌市2019-2020学年中考数学模拟试题(1)含解析

湖北省宜昌市2019-2020学年中考数学模拟试题(1)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.“龟兔赛跑”是同学们熟悉的寓言故事.如图所示,表示了寓言中的龟、兔的路程S和时间t的关系(其中直线段表示乌龟,折线段表示兔子).下列叙述正确的是()A.赛跑中,兔子共休息了50分钟B.乌龟在这次比赛中的平均速度是0.1米/分钟C.兔子比乌龟早到达终点10分钟D.乌龟追上兔子用了20分钟2.计算33xx x-+的结果是()A.6xx+B.6xx-C.12D.13.完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n、m的大矩形,则图中阴影部分的周长是()A.6(m﹣n)B.3(m+n)C.4n D.4m4.下列长度的三条线段能组成三角形的是A.2,3,5 B.7,4,2C.3,4,8 D.3,3,45.﹣2018的相反数是()A.﹣2018 B.2018 C.±2018 D.﹣1 20186.如图,AB∥ED,CD=BF,若△ABC≌△EDF,则还需要补充的条件可以是()A .AC=EFB .BC=DFC .AB=DED .∠B=∠E7.如图,由四个正方体组成的几何体的左视图是( )A .B .C .D .8.如图,AB 是O e 的直径,CD 是O e 的弦,连接AD ,AC ,BD ,则DAB ∠与C ∠的数量关系为( )A .DABC ∠=∠ B .2DAB C ∠=∠ C .90DAB C ∠+∠=︒D .180DAB C ∠+∠=︒9.关于x 的一元二次方程x 2-2x-(m-1)=0有两个不相等的实数根,则实数m 的取值范围是( ) A .0m >且1m ≠B .0m >C .0m ≥且1m ≠D .0m ≥10.山西有着悠久的历史,远在100 多万年前就有古人类生息在这块土地上.春秋时期,山西大部分为晋国领地,故山西简称为“晋”,战国初韩、赵、魏三分晋,山西又有“三晋”之称,下面四个以“晋”字为原型的Logo 图案中,是轴对称图形的共有( ) A .B .C .D .11.为了支援地震灾区同学,某校开展捐书活动,九(1)班40名同学积极参与.现将捐书数量绘制成频数分布直方图如图所示,则捐书数量在5.5~6.5组别的频率是( )A.0.1 B.0.2C.0.3 D.0.412.如图,四边形ABCD是边长为1的正方形,动点E、F分别从点C,D出发,以相同速度分别沿CB,DC运动(点E到达C时,两点同时停止运动).连接AE,BF交于点P,过点P分别作PM∥CD,PN∥BC,则线段MN的长度的最小值为()A.5B.51C.12D.1二、填空题:(本大题共6个小题,每小题4分,共24分.)13.将一张矩形纸片折叠成如图所示的图形,若AB=6cm,则AC= cm.14.点A(-2,1)在第_______象限.15.定义:在平面直角坐标系xOy中,把从点P出发沿纵或横方向到达点Q(至多拐一次弯)的路径长称为P,Q的“实际距离”.如图,若P(﹣1,1),Q(2,3),则P,Q的“实际距离”为1,即PS+SQ=1或PT+TQ=1.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A,B,C三个小区的坐标分别为A(3,1),B(1,﹣3),C(﹣1,﹣1),若点M表示单车停放点,且满足M到A,B,C的“实际距离”相等,则点M的坐标为_____.16.如图,BD是⊙O的直径,∠CBD=30°,则∠A的度数为_____.17.对于实数x,我们规定[x]表示不大于x的最大整数,例如[1.1]=1,[3]=3,[﹣2.2]=﹣3,若[43x]=5,则x的取值范围是_____.18.如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是»AD的中点,CE⊥AB于点E,过点D 的切线交EC的延长线于点G,连接AD,分别交CE,CB于点P,Q,连接AC,关于下列结论:①∠BAD =∠ABC;②GP=GD;③点P是△ACQ的外心,其中结论正确的是________(只需填写序号).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,有长为14m的篱笆,现一面利用墙(墙的最大可用长度a为10m)围成中间隔有一道篱笆的长方形花圃,设花圃的宽AB为xm,面积为Sm1.求S与x的函数关系式及x值的取值范围;要围成面积为45m1的花圃,AB的长是多少米?当AB的长是多少米时,围成的花圃的面积最大?20.(6分)如图,AB是⊙O的直径,点C为⊙O上一点,经过C作CD⊥AB于点D,CF是⊙O的切线,过点A作AE⊥CF于E,连接AC.(1)求证:AE=AD.(2)若AE=3,CD=4,求AB的长.21.(6分)如图,矩形ABCD为台球桌面,AD=260cm,AB=130cm,球目前在E点位置,AE=60cm.如果小丁瞄准BC边上的点F将球打过去,经过反弹后,球刚好弹到D点位置.求BF的长.22.(8分)如图,在Rt△ABC中,∠C=90°,O为BC边上一点,以OC为半径的圆O,交AB于D点,且AD=AC,延长DO交圆O于E点,连接AE.求证:DE⊥AB;若DB=4,BC=8,求AE的长.23.(8分)我校举行“汉字听写”比赛,每位学生听写汉字39个,比赛结束后随机抽查部分学生的听写结果,以下是根据抽查结果绘制的统计图的一部分.组别正确数字x 人数A 0≤x<8 10B 8≤x<16 15C 16≤x<24 25D 24≤x<32 mE 32≤x<40 n根据以上信息解决下列问题:(1)在统计表中,m=,n=,并补全条形统计图.(2)扇形统计图中“C组”所对应的圆心角的度数是.(3)有三位评委老师,每位老师在E组学生完成学校比赛后,出示“通过”或“淘汰”或“待定”的评定结果.学校规定:每位学生至少获得两位评委老师的“通过”才能代表学校参加鄂州市“汉字听写”比赛,请用树形图求出E组学生王云参加鄂州市“汉字听写”比赛的概率.24.(10分)如图,在平面直角坐标系中,直线y x m =-+与x 轴交于点(4,0)A ,与y 轴交于点B ,与函数(0)ky x x=>的图象的一个交点为(3,)C n .(1)求m ,n ,k 的值;(2)将线段AB 向右平移得到对应线段A B '',当点B '落在函数(0)ky x x=>的图象上时,求线段AB 扫过的面积.25.(10分)﹣(﹣1)20184﹣(13)﹣126.(12分)如图,在边长为1 个单位长度的小正方形网格中:(1)画出△ABC 向上平移6 个单位长度,再向右平移5 个单位长度后的△A 1B 1C 1.(2)以点B 为位似中心,将△ABC 放大为原来的2倍,得到△A 2B 2C 2,请在网格中画出△A 2B 2C 2. (3)求△CC 1C 2的面积.27.(12分)计算:2sin30°﹣|13(12)﹣1参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.D 【解析】分析:根据图象得出相关信息,并对各选项一一进行判断即可.详解:由图象可知,在赛跑中,兔子共休息了:50-10=40(分钟),故A 选项错误; 乌龟跑500米用了50分钟,平均速度为:5001050=(米/分钟),故B 选项错误; 兔子是用60分钟到达终点,乌龟是用50分钟到达终点,兔子比乌龟晚到达终点10分钟,故C 选项错误; 在比赛20分钟时,乌龟和兔子都距起点200米,即乌龟追上兔子用了20分钟,故D 选项正确. 故选D.点睛:本题考查了从图象中获取信息的能力.正确识别图象、获取信息并进行判断是解题的关键. 2.D 【解析】 【分析】根据同分母分式的加法法则计算可得结论. 【详解】33x x x -+=33x x -+=xx=1. 故选D . 【点睛】本题考查了分式的加减法,解题的关键是掌握同分母分式的加减运算法则. 3.D 【解析】 【详解】解:设小长方形的宽为a ,长为b ,则有b=n-3a , 阴影部分的周长:2(m-b)+2(m-3a)+2n=2m-2b+2m-6a+2n=4m-2(n-3a)-6a+2n=4m-2n+6a-6a+2n=4m . 故选D . 4.D 【解析】试题解析:A .∵3+2=5,∴2,3,5不能组成三角形,故A 错误; B .∵4+2<7,∴7,4,2不能组成三角形,故B 错误; C .∵4+3<8,∴3,4,8不能组成三角形,故C 错误; D .∵3+3>4,∴3,3,4能组成三角形,故D 正确; 故选D . 5.B 【解析】分析:只有符号不同的两个数叫做互为相反数. 详解:-1的相反数是1. 故选:B .点睛:本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键. 6.C 【解析】 【分析】根据平行线性质和全等三角形的判定定理逐个分析. 【详解】由//AB ED ,得∠B=∠D, 因为CD BF ,若ABC V ≌EDF V ,则还需要补充的条件可以是: AB=DE,或∠E=∠A, ∠EFD=∠ACB, 故选C 【点睛】本题考核知识点:全等三角形的判定. 解题关键点:熟记全等三角形判定定理.7.B【解析】从左边看可以看到两个小正方形摞在一起,故选B.8.C【解析】【分析】首先根据圆周角定理可知∠B=∠C,再根据直径所得的圆周角是直角可得∠ADB=90°,然后根据三角形的内角和定理可得∠DAB+∠B=90°,所以得到∠DAB+∠C=90°,从而得到结果.【详解】e的直径,解:∵AB是O∴∠ADB=90°.∴∠DAB+∠B=90°.∵∠B=∠C,∴∠DAB+∠C=90°.故选C.【点睛】本题考查了圆周角定理及其逆定理和三角形的内角和定理,掌握相关知识进行转化是解题的关键.9.A【解析】【分析】根据一元二次方程的系数结合根的判别式△>1,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.【详解】∵关于x的一元二次方程x2﹣2x﹣(m﹣1)=1有两个不相等的实数根,∴△=(﹣2)2﹣4×1×[﹣(m﹣1)]=4m >1,∴m>1.故选B.【点睛】本题考查了根的判别式,牢记“当△>1时,方程有两个不相等的实数根”是解题的关键.10.D【解析】【分析】根据轴对称图形的概念求解.【详解】A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确.故选D.【点睛】此题主要考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.11.B【解析】∵在5.5~6.5组别的频数是8,总数是40,∴=0.1.故选B.12.B【解析】分析:由于点P在运动中保持∠APD=90°,所以点P的路径是一段以AD为直径的弧,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,再由勾股定理可得QC的长,再求CP即可.详解:由于点P在运动中保持∠APD=90°,∴点P的路径是一段以AD为直径的弧,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,在Rt△QDC中,QC=2215122⎛⎫+=⎪⎝⎭,∴CP=QC-QP=512-,故选B.点睛:本题主要考查的是圆的相关知识和勾股定理,属于中等难度的题型.解决这个问题的关键是根据圆的知识得出点P的运动轨迹.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1.【解析】试题分析:如图,∵矩形的对边平行,∴∠1=∠ACB,∵∠1=∠ABC,∴∠ABC=∠ACB,∴AC=AB,∵AB=1cm,∴AC=1cm.考点:1轴对称;2矩形的性质;3等腰三角形.14.二【解析】【分析】根据点在第二象限的坐标特点解答即可.【详解】∵点A的横坐标-2<0,纵坐标1>0,∴点A在第二象限内.故答案为:二.【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).15.(1,﹣2).【解析】【详解】若设M(x,y),则由题目中对“实际距离”的定义可得方程组:3-x+1-y=y+1+x+1=1-x+3+y,解得:x=1,y=-2,则M(1,-2).故答案为(1,-2).16.60°【解析】解:∵BD是⊙O的直径,∴∠BCD=90°(直径所对的圆周角是直角),∵∠CBD=30°,∴∠D=60°(直角三角形的两个锐角互余),∴∠A=∠D=60°(同弧所对的圆周角相等);故答案是:60°17.11≤x <1【解析】【分析】根据对于实数x 我们规定[x]不大于x 最大整数,可得答案.【详解】由[43x +]=5,得: 453463x x +⎧≥⎪⎪⎨+⎪<⎪⎩ , 解得11≤x <1,故答案是:11≤x <1.【点睛】考查了解一元一次不等式组,利用[x]不大于x 最大整数得出不等式组是解题关键.18.②③【解析】试题分析:∠BAD 与∠ABC 不一定相等,选项①错误;∵GD 为圆O 的切线,∴∠GDP=∠ABD ,又AB 为圆O 的直径,∴∠ADB=90°,∵CF ⊥AB ,∴∠AEP=90°,∴∠ADB=∠AEP ,又∠PAE=∠BAD ,∴△APE ∽△ABD ,∴∠ABD=∠APE ,又∠APE=∠GPD ,∴∠GDP=∠GPD ,∴GP=GD ,选项②正确;由AB 是直径,则∠ACQ=90°,如果能说明P 是斜边AQ 的中点,那么P 也就是这个直角三角形外接圆的圆心了.Rt △BQD 中,∠BQD=90°-∠6, Rt △BCE 中,∠8=90°-∠5,而∠7=∠BQD ,∠6=∠5, 所以∠8=∠7, 所以CP=QP ;由②知:∠3=∠5=∠4,则AP=CP ; 所以AP=CP=QP ,则点P 是△ACQ 的外心,选项③正确.则正确的选项序号有②③.故答案为②③.考点:1.切线的性质;2.圆周角定理;3.三角形的外接圆与外心;4.相似三角形的判定与性质.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)S=﹣3x1+14x,143≤x< 8;(1)5m;(3)46.67m1【解析】【分析】(1)设花圃宽AB为xm,则长为(14-3x),利用长方形的面积公式,可求出S与x关系式,根据墙的最大长度求出x的取值范围;(1)根据(1)所求的关系式把S=2代入即可求出x,即AB;(3)根据二次函数的性质及x的取值范围求出即可.【详解】解:(1)根据题意,得S=x(14﹣3x),即所求的函数解析式为:S=﹣3x1+14x,又∵0<14﹣3x≤10,∴1483x≤<;(1)根据题意,设花圃宽AB为xm,则长为(14-3x),∴﹣3x1+14x=2.整理,得x1﹣8x+15=0,解得x=3或5,当x=3时,长=14﹣9=15>10不成立,当x=5时,长=14﹣15=9<10成立,∴AB长为5m;(3)S=14x﹣3x1=﹣3(x﹣4)1+48∵墙的最大可用长度为10m,0≤14﹣3x≤10,∴1483x≤<,∵对称轴x=4,开口向下,∴当x=143m,有最大面积的花圃.【点睛】二次函数在实际生活中的应用是本题的考点,根据题目给出的条件,找出合适的等量关系,列出方程是解题的关键.20.(1)证明见解析(2)25 3【解析】【分析】(1)连接OC,根据垂直定义和切线性质定理证出△CAE≌△CAD(AAS),得AE=AD;(2)连接CB,由(1)得AD=AE=3,根据勾股定理得:AC=5,由cos∠EAC=,cos∠CAB==,∠EAC=∠CAB,得=.【详解】(1)证明:连接OC,如图所示,∵CD⊥AB,AE⊥CF,∴∠AEC=∠ADC=90°,∵CF是圆O的切线,∴CO⊥CF,即∠ECO=90°,∴AE∥OC,∴∠EAC=∠ACO,∵OA=OC,∴∠CAO=∠ACO,∴∠EAC=∠CAO,在△CAE和△CAD中,,∴△CAE≌△CAD(AAS),∴AE=AD;(2)解:连接CB,如图所示,∵△CAE≌△CAD,AE=3,∴AD=AE=3,∴在Rt△ACD中,AD=3,CD=4,根据勾股定理得:AC=5,在Rt△AEC中,cos∠EAC==,∵AB为直径,∴∠ACB=90°,∴cos∠CAB==,∵∠EAC=∠CAB,∴=,即AB=.【点睛】本题考核知识点:切线性质,锐角三角函数的应用. 解题关键点:由全等三角形性质得到线段相等,根据直角三角形性质得到相应等式.21.BF的长度是1cm.【解析】【分析】利用“两角法”证得△BEF∽△CDF,利用相似三角形的对应边成比例来求线段CF的长度.【详解】解:如图,在矩形ABCD中:∠DFC=∠EFB,∠EBF=∠FCD=90°,∴△BEF∽△CDF;∴BECD=BFCF,又∵AD=BC=260cm ,AB=CD=130cm ,AE=60cm∴BE=70cm,CD=130cm,BC=260cm ,CF=(260-BF)cm∴70130=260BFBF-,解得:BF=1.即:BF的长度是1cm.【点睛】本题主要考查相似三角形的判定和性质,关键要掌握:有两角对应相等的两三角形相似;两三角形相似,对应边的比相等.22.(1)详见解析;(2)2【解析】【分析】(1)连接CD,证明90ODC ADC∠+∠=︒即可得到结论;(2)设圆O的半径为r,在Rt△BDO中,运用勾股定理即可求出结论.【详解】(1)证明:连接CD,∵OD OC =∴ODC OCD ∠=∠∵AD AC =∴ADC ACD ∠=∠90,90,OCD ACD ODC ADC DE AB ∠+∠=︒∴∠+∠=∴⊥Q .(2)设圆O 的半径为r ,()2224+8,3r r r ∴=-∴=, 设()22222,84,6,6+662AD AC x x x x AE ==∴+=+∴=∴==.【点睛】本题综合考查了切线的性质和判定及勾股定理的综合运用.综合性比较强,对于学生的能力要求比较高.23.(1)m=30, n=20,图详见解析;(2)90°;(3)727. 【解析】分析:(1)、根据B 的人数和百分比得出总人数,从而根据总人数分别求出m 和n 的值;(2)、根据C 的人数和总人数的比值得出扇形的圆心角度数;(3)、首先根据题意画出树状图,然后根据概率的计算法则得出答案.详解:(1)∵总人数为15÷15%=100(人),∴D 组人数m=100×30%=30,E 组人数n=100×20%=20,补全条形图如下:(2)扇形统计图中“C 组”所对应的圆心角的度数是360°×=90°,(3)记通过为A 、淘汰为B 、待定为C ,画树状图如下:由树状图可知,共有27种等可能结果,其中获得两位评委老师的“通过”有7种情况,∴E 组学生王云参加鄂州市“汉字听写”比赛的概率为727. 点睛:本题主要考查的就是扇形统计图、条形统计图以及概率的计算法则,属于基础题型.解决这个问题,我们一定要明白样本容量=频数÷频率,根据这个公式即可进行求解.24.(1)m=4, n=1,k=3.(2)3.【解析】【分析】(1) 把点(4,0)A ,分别代入直线y x m =-+中即可求出m=4,再把(3,)C n 代入直线y x m =-+即可求出n=1.把(3,1)C 代入函数(0)k y x x=>求出k 即可; (2)由(1)可求出点B 的坐标为(0,4),点B‘是由点B 向右平移得到,故点B’的纵坐标为4,把它代入反比例函数解析式即可求出它的横坐标,根据平移的知识可知四边形AA’B’B 是平行四边形,再根据平行四边形的面积计算公式计算即可.【详解】解:(1)把点(4,0)A ,分别代入直线y x m =-+中得:-4+m=0,m=4,∴直线解析式为4y x =-+.把(3,)C n 代入4y x =-+得:n=-3+4=1.∴点C 的坐标为(3,1)把(3,1)代入函数(0)k y x x =>得: 13k = 解得:k=3.∴m=4, n=1,k=3.(2)如图,设点B 的坐标为(0,y )则y=-0+4=4∴点B 的坐标是(0,4)当y=4时,34 x=解得,34 x=∴点B’(34,4)∵A’,B’是由A,B向右平移得到,∴四边形AA’B’B是平行四边形,故四边形AA’B’B的面积=34⨯4=3.【点睛】本题考查了一次函数与反比例函数的交点问题及函数的平移,利用数形结合思想作出图形是解题的关键. 25.-1.【解析】【分析】直接利用负指数幂的性质以及算术平方根的性质分别化简得出答案.【详解】原式=﹣1+1﹣3=﹣1.【点睛】本题主要考查了实数运算,正确化简各数是解题的关键.26.(1)见解析(2)见解析(3)9【解析】试题分析:(1)将△ABC向上平移6个单位长度,再向右平移5个单位长度后的△A1B1C1,如图所示;(2)以点B为位似中心,将△ABC放大为原来的2倍,得到△A2B2C2,如图所示.试题解析:(1)根据题意画出图形,△A1B1C1为所求三角形;(2)根据题意画出图形,△A2B2C2为所求三角形.考点:1.作图-位似变换,2. 作图-平移变换27.43【解析】【分析】原式利用绝对值的代数意义,特殊角的三角函数值,负整数指数幂的法则计算即可.【详解】原式=2×123﹣1)+2=13=43【点睛】本题考查了实数的运算,熟练掌握运算法则是解本题的关键.。

湖北省宜昌市2019-2020学年中考数学仿真第一次备考试题含解析

湖北省宜昌市2019-2020学年中考数学仿真第一次备考试题含解析

湖北省宜昌市2019-2020学年中考数学仿真第一次备考试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在平面直角坐标系中,以A(-1,0),B(2,0),C(0,1)为顶点构造平行四边形,下列各点中不能作为平行四边形顶点坐标的是()A.(3,1)B.(-4,1)C.(1,-1)D.(-3,1)2.如图,在△ABC中,∠C=90°,M是AB的中点,动点P从点A出发,沿AC方向匀速运动到终点C,动点Q从点C出发,沿CB方向匀速运动到终点B.已知P,Q两点同时出发,并同时到达终点.连结MP,MQ,PQ.在整个运动过程中,△MPQ的面积大小变化情况是()A.一直增大B.一直减小C.先减小后增大D.先增大后减小3.如图,矩形ABCD的边长AD=3,AB=2,E为AB的中点,F在边BC上,且BF=2FC,AF分别与DE、DB相交于点M,N,则MN的长为()A.225B.9220C.324D.4254.如果两圆只有两条公切线,那么这两圆的位置关系是( )A.内切B.外切C.相交D.外离5.一次函数满足,且随的增大而减小,则此函数的图象不经过()A .第一象限B .第二象限C .第三象限D .第四象限6.如图是由若干个相同的小正方体搭成的一个几何体的主视图和俯视图,则所需的小正方体的个数最少是( )A .6B .5C .4D .37.-5的相反数是( )A .5B .15C .5D .15- 8.为了解某小区小孩暑期的学习情况,王老师随机调查了该小区8个小孩某天的学习时间,结果如下(单位:小时):1.5,1.5,3,4,2,5,2.5,4.5,关于这组数据,下列结论错误的是( )A .极差是3.5B .众数是1.5C .中位数是3D .平均数是39.如图,A 、B 、C 、D 四个点均在⊙O 上,∠AOD=50°,AO ∥DC ,则∠B 的度数为( )A .50°B .55°C .60°D .65°10.小手盖住的点的坐标可能为( )A .()5,2B .()3,4-C .()6,3-D .()4,6-- 11.化简221x -÷11x -的结果是( ) A .21x + B .2x C .21x - D .2(x +1)12.如图,二次函数y=ax 2+bx+c (a≠0)的图象与x 轴交于点A 、B 两点,与y 轴交于点C ,对称轴为直线x=-1,点B 的坐标为(1,0),则下列结论:①AB=4;②b 2-4ac >0;③ab <0;④a 2-ab+ac <0,其中正确的结论有( )个.A .3B .4C .2D .1二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如果抛物线y=(m ﹣1)x 2的开口向上,那么m 的取值范围是__.14.分解因式:8a 3﹣8a 2+2a=_____.15.如图,在菱形ABCD 中,AB=3,∠B=120°,点E 是AD 边上的一个动点(不与A ,D 重合),EF ∥AB 交BC 于点F ,点G 在CD 上,DG=DE .若△EFG 是等腰三角形,则DE 的长为_____.16.计算:(﹣2a 3)2=_____.17.已知两圆相切,它们的圆心距为3,一个圆的半径是4,那么另一个圆的半径是_______.18.已知关于x 的方程x 2+kx ﹣3=0的一个根是x=﹣1,则另一根为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C ,再在笔直的车道l 上确定点D ,使CD 与l 垂直,测得CD 的长等于21米,在l 上点D 的同侧取点A 、B ,使∠CAD=30︒,∠CBD=60︒.(1)求AB 的长(精确到0.1米,参考数据:3 1.732 1.41≈≈,);(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A 到B 用时2秒,这辆校车是否超速?说明理由.20.(6分) “六一”儿童节前夕,某县教育局准备给留守儿童赠送一批学习用品,先对红星小学的留守儿童人数进行抽样统计,发现各班留守儿童人数分别为6名,7名,8名,10名,12名这五种情形,并绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)该校有_____个班级,补全条形统计图;(2)求该校各班留守儿童人数数据的平均数,众数与中位数;(3)若该镇所有小学共有60个教学班,请根据样本数据,估计该镇小学生中,共有多少名留守儿童.21.(6分)为倡导“低碳生活”,人们常选择以自行车作为代步工具、图(1)所示的是一辆自行车的实物图.图(2)是这辆自行车的部分几何示意图,其中车架档AC与CD的长分别为45cm和60cm,且它们互相垂直,座杆CE的长为20cm.点A、C、E在同一条直线上,且∠CAB=75°.(参考数据:sin75°=0.966,cos75°=0.259,tan75°=3.732)(1)求车架档AD的长;(2)求车座点E到车架档AB的距离(结果精确到1cm).22.(8分)解不等式组:2(2)3 {3122x xx+>-≥-,并将它的解集在数轴上表示出来.23.(8分)在△ABC中,AB=AC,以AB为直径的⊙O交AC于点E,交BC于点D,P为AC延长线上一点,且∠PBC=12∠BAC,连接DE,BE.(1)求证:BP是⊙O的切线;(2)若sin∠PBC=5,AB=10,求BP的长.24.(10分)如图,将△ABC放在每个小正方形的边长为1的网格中,点A、点B、点C均落在格点上.(I)计算△ABC的边AC的长为_____.(II)点P、Q分别为边AB、AC上的动点,连接PQ、QB.当PQ+QB取得最小值时,请在如图所示的网格中,用无刻度的直尺,画出线段PQ、QB,并简要说明点P、Q的位置是如何找到的_____(不要求证明).25.(10分)解不等式组210 2323xx x+>⎧⎪-+⎨≥⎪⎩并在数轴上表示解集.26.(12分)如图1,三个正方形ABCD、AEMN、CEFG,其中顶点D、C、G在同一条直线上,点E 是BC边上的动点,连结AC、AM.(1)求证:△ACM∽△ABE.(2)如图2,连结BD、DM、MF、BF,求证:四边形BFMD是平行四边形.(3)若正方形ABCD的面积为36,正方形CEFG的面积为4,求五边形ABFMN的面积.27.(12分)在某校举办的2012 年秋季运动会结束之后,学校需要为参加运动会的同学们发纪念品.小王负责到某商场买某种纪念品,该商场规定:一次性购买该纪念品200 个以上可以按折扣价出售;购买200 个以下(包括200 个)只能按原价出售.小王若按照原计划的数量购买纪念品,只能按原价付款,共需要1050 元;若多买35 个,则按折扣价付款,恰好共需1050 元.设小王按原计划购买纪念品x 个.(1)求x 的范围;(2)如果按原价购买5 个纪念品与按打折价购买6 个纪念品的钱数相同,那么小王原计划购买多少个纪念品?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】作出图形,结合图形进行分析可得.【详解】如图所示:①以AC为对角线,可以画出▱AFCB,F(-3,1);②以AB为对角线,可以画出▱ACBE,E(1,-1);③以BC为对角线,可以画出▱ACDB,D(3,1),故选B.2.C【解析】如图所示,连接CM,∵M是AB的中点,∴S△ACM=S△BCM=12S△ABC,开始时,S△MPQ=S△ACM=12S△ABC;由于P,Q两点同时出发,并同时到达终点,从而点P到达AC的中点时,点Q也到达BC的中点,此时,S△MPQ=14S△ABC;结束时,S△MPQ=S△BCM=12S△ABC.△MPQ的面积大小变化情况是:先减小后增大.故选C.3.B【解析】【分析】过F作FH⊥AD于H,交ED于O,于是得到FH=AB=1,根据勾股定理得到=OH=13AE=13,由相似三角形的性质得到153AM AEFM FO===35,求得AM=38AF=4,根据相似三角形的性质得到AN ADFN BF==32,求得AN=35AF=5,即可得到结论.【详解】过F作FH⊥AD于H,交ED于O,则FH=AB=1.∵BF=1FC,BC=AD=3,∴BF=AH=1,FC=HD=1,∴=∵OH∥AE,∴HO DHAE AD==13,∴OH=13AE=13,∴OF=FH﹣OH=1﹣13=53,∵AE∥FO,∴△AME∽△FMO,∴153AM AEFM FO===35,∴AM=38AF=4,∵AD∥BF,∴△AND∽△FNB,∴AN ADFN BF==32,∴AN=35,∴MN=AN﹣B.【点睛】构造相似三角形是本题的关键,且求长度问题一般需用到勾股定理来解决,常作垂线4.C【解析】【分析】两圆内含时,无公切线;两圆内切时,只有一条公切线;两圆外离时,有4条公切线;两圆外切时,有3条公切线;两圆相交时,有2条公切线.【详解】根据两圆相交时才有2条公切线.故选C.【点睛】本题考查了圆与圆的位置关系.熟悉两圆的不同位置关系中的外公切线和内公切线的条数.5.A【解析】试题分析:根据y随x的增大而减小得:k<0,又kb>0,则b<0,故此函数的图象经过第二、三、四象限,即不经过第一象限.故选A.考点:一次函数图象与系数的关系.6.B【解析】【分析】主视图、俯视图是分别从物体正面、上面看,所得到的图形.【详解】综合主视图和俯视图,底层最少有4个小立方体,第二层最少有1个小立方体,因此搭成这个几何体的小正方体的个数最少是5个.故选:B.【点睛】此题考查由三视图判断几何体,解题关键在于识别图形7.A由相反数的定义:“只有符号不同的两个数互为相反数”可知-5的相反数是5. 故选A.8.C【解析】【分析】由极差、众数、中位数、平均数的定义对四个选项一一判断即可.【详解】A.极差为5﹣1.5=3.5,此选项正确;B.1.5个数最多,为2个,众数是1.5,此选项正确;C.将式子由小到大排列为:1.5,1.5,2,2.5,3,4,4.5,5,中位数为12×(2.5+3)=2.75,此选项错误;D.平均数为:18×(1.5+1.5+2+2.5+3+4+4.5+5)=3,此选项正确.故选C.【点睛】本题主要考查平均数、众数、中位数、极差的概念,其中在求中位数的时候一定要将给出的数据按从大到小或者从小到大的顺序排列起来再进行求解.9.D【解析】试题分析:连接OC,根据平行可得:∠ODC=∠AOD=50°,则∠DOC=80°,则∠AOC=130°,根据同弧所对的圆周角等于圆心角度数的一半可得:∠B=130°÷2=65°.考点:圆的基本性质10.B【解析】【分析】根据题意,小手盖住的点在第四象限,结合第四象限点的坐标特点,分析选项可得答案.【详解】根据图示,小手盖住的点在第四象限,第四象限的点坐标特点是:横正纵负;分析选项可得只有B符合.故选:B.【点睛】此题考查点的坐标,解题的关键是记住各象限内点的坐标的符号,进而对号入座,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).11.A【分析】原式利用除法法则变形,约分即可得到结果.【详解】原式=211x x +-()()•(x ﹣1)=21x +. 故选A .【点睛】本题考查了分式的乘除法,熟练掌握运算法则是解答本题的关键.12.A【解析】【分析】利用抛物线的对称性可确定A 点坐标为(-3,0),则可对①进行判断;利用判别式的意义和抛物线与x 轴有2个交点可对②进行判断;由抛物线开口向下得到a >0,再利用对称轴方程得到b=2a >0,则可对③进行判断;利用x=-1时,y <0,即a-b+c <0和a >0可对④进行判断.【详解】∵抛物线的对称轴为直线x=-1,点B 的坐标为(1,0),∴A (-3,0),∴AB=1-(-3)=4,所以①正确;∵抛物线与x 轴有2个交点,∴△=b 2-4ac >0,所以②正确;∵抛物线开口向下,∴a >0,∵抛物线的对称轴为直线x=-2b a =-1, ∴b=2a >0,∴ab >0,所以③错误;∵x=-1时,y <0,∴a-b+c <0,而a >0,∴a (a-b+c )<0,所以④正确.故选A .【点睛】本题考查了抛物线与x 轴的交点:对于二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0),△=b 2-4ac 决定抛物线与x 轴的交点个数:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.也考查了二次函数的性质.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.m >2【解析】试题分析:根据二次函数的性质可知,当抛物线开口向上时,二次项系数m ﹣2>2.解:因为抛物线y=(m ﹣2)x 2的开口向上,所以m ﹣2>2,即m >2,故m 的取值范围是m >2.考点:二次函数的性质.14.2a (2a ﹣1)2【解析】【分析】提取2a,再将剩下的4a 2-4a+1用完全平方和公式配出(2a ﹣1)2,即可得出答案.【详解】原式=2a (4a 2-4a+1)=2a (2a ﹣1)2.【点睛】本题考查了因式分解,仔细观察题目并提取公因式是解决本题的关键.15.1或3 【解析】【分析】由四边形ABCD 是菱形,得到BC ∥AD ,由于EF ∥AB ,得到四边形ABFE 是平行四边形,根据平行四边形的性质得到EF ∥AB ,于是得到△EFG 为等腰三角形时,①时,于是得到DE=DG=12,②GE=GF 时,根据勾股定理得到 【详解】 解:∵四边形ABCD 是菱形,∠B=120°,∴∠D=∠B=120°,∠A=180°-120°=60°,BC ∥AD ,∵EF ∥AB ,∴四边形ABFE 是平行四边形,∴EF ∥AB ,∴DEF=∠A=60°,∠EFC=∠B=120°,∵DE=DG ,∴∠DEG=∠DGE=30°,∴∠FEG=30°,当△EFG 为等腰三角形时,当EF=EG 时,EG=3, 如图1,过点D 作DH ⊥EG 于H ,∴EH=12EG=32, 在Rt △DEH 中,DE=0cos30HE =1, GE=GF 时,如图2,过点G 作GQ ⊥EF ,∴EQ=123Rt △EQG 中,∠QEG=30°, ∴EG=1,过点D 作DP ⊥EG 于P ,∴PE=12EG=12, 同①的方法得,DE=33, 当EF=FG 时,由∠EFG=180°-2×30°=120°=∠CFE ,此时,点C 和点G 重合,点F 和点B 重合,不符合题意,故答案为1或3 【点睛】本题考查了菱形的性质,平行四边形的性质,等腰三角形的性质以及勾股定理,熟练掌握各性质是解题的关键.【解析】【分析】根据积的乘方运算法则进行运算即可.【详解】原式64.a故答案为64.a【点睛】考查积的乘方,掌握运算法则是解题的关键.17.1或1【解析】【分析】由两圆相切,它们的圆心距为3,其中一个圆的半径为4,即可知这两圆内切,然后分别从若大圆的半径为4与若小圆的半径为4去分析,根据两圆位置关系与圆心距d ,两圆半径R ,r 的数量关系间的联系即可求得另一个圆的半径.【详解】∵两圆相切,它们的圆心距为3,其中一个圆的半径为4,∴这两圆内切,∴若大圆的半径为4,则另一个圆的半径为:4-3=1,若小圆的半径为4,则另一个圆的半径为:4+3=1.故答案为:1或1【点睛】此题考查了圆与圆的位置关系.此题难度不大,解题的关键是注意掌握两圆位置关系与圆心距d ,两圆半径R ,r 的数量关系间的联系,注意分类讨论思想的应用.18.1【解析】【分析】设另一根为x 2,根据一元二次方程根与系数的关系得出-1•x 2=-1,即可求出答案.【详解】设方程的另一个根为x 2,则-1×x 2=-1, 解得:x 2=1,故答案为1.本题考查了一元二次方程根与系数的关系:如果x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,那么x1+x2=-ba,x1x2=ca.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)24.2米(2) 超速,理由见解析【解析】【分析】(1)分别在Rt△ADC与Rt△BDC中,利用正切函数,即可求得AD与BD的长,从而求得AB的长.(2)由从A到B用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速.【详解】解:(1)由題意得,在Rt△ADC中,CDADtan30︒=3=,在Rt△BDC中,CDBDtan60===︒,∴AB=AD-BD=14 1.73=24.2224.2-≈⨯≈(米).(2)∵汽车从A到B用时2秒,∴速度为24.2÷2=12.1(米/秒),∵12.1米/秒=43.56千米/小时,∴该车速度为43.56千米/小时.∵43.56千米/小时大于40千米/小时,∴此校车在AB路段超速.20.(1)16;(2)平均数是3,众数是10,中位数是3;(3)1.【解析】【分析】(1)根据有7名留守儿童班级有2个,所占的百分比是2.5%,即可求得班级的总个数,再求出有8名留守儿童班级的个数,进而补全条形统计图;(2)将这组数据按照从小到大排列即可求得统计的这组留守儿童人数数据的平均数、众数和中位数;(3)利用班级数60乘以(2)中求得的平均数即可.【详解】解:(1)该校的班级数是:2÷2.5%=16(个).则人数是8名的班级数是:16﹣1﹣2﹣6﹣2=5(个).条形统计图补充如下图所示:故答案为16;(2)每班的留守儿童的平均数是:(1×6+2×7+5×8+6×10+2×2)÷16=3将这组数据按照从小到大排列是:6,7,7,8,8,8,8,8,10,10,10,10,10,10,2,2.故这组数据的众数是10,中位数是(8+10)÷2=3.即统计的这组留守儿童人数数据的平均数是3,众数是10,中位数是3;(3)该镇小学生中,共有留守儿童60×3=1(名).答:该镇小学生中共有留守儿童1名.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了平均数、中位数和众数以及用样本估计总体.21.63cm.【解析】试题分析:(1)在Rt ACD,AC=45,DC=60,根据勾股定理可得AD=即可得到AD 的长度;(2)过点E作EF AB,垂足为F,由AE=AC+CE,在直角EFA中,根据EF=AEsin75°可求出EF的长度,即为点E到车架档AB的距离;试题解析:22.-1≤x<4,在数轴上表示见解析.【解析】试题分析: 分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.试题解析:()223{3x122x x+>-≥-①②,由①得,x<4;由②得,x⩾−1.故不等式组的解集为:−1⩽x<4.在数轴上表示为:23.(1)证明见解析;(2)403【解析】【分析】(1)连接AD,求出∠PBC=∠ABC,求出∠ABP=90°,根据切线的判定得出即可;(2)解直角三角形求出BD,求出BC,根据勾股定理求出AD,根据相似三角形的判定和性质求出BE,根据相似三角形的性质和判定求出BP即可.【详解】解:(1)连接AD,∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴AD平分∠BAC,∴∠BAD=12∠BAC,∵∠ADB=90°,∴∠BAD+∠ABD=90°,∵∠PBC=12∠BAC,∴∠PBC+∠ABD=90°,∴∠ABP=90°,即AB⊥BP,∴PB是⊙O的切线;(2)∵∠PBC=∠BAD,∴sin∠PBC=sin∠BAD,∵sin∠5=BDAB,AB=10,∴52210(25)-5∴5∵由三角形面积公式得:AD×BC=BE×AC,∴5510,∴BE=8,∴在Rt△ABE中,由勾股定理得:AE=6,∵∠BAE=∠BAP,∠AEB=∠ABP=90°,∴△ABE∽△APB,∴BEPB=AEAB,∴PB=AB BEAE⨯=1086⨯=403.【点睛】本题考查了切线的判定、圆周角定理、勾股定理、解直角三角形、相似三角形的性质和判定等知识点,能综合运用性质定理进行推理是解此题的关键.24.5作线段AB关于AC的对称线段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此时PQ+QB的值最小【解析】【分析】(1)利用勾股定理计算即可;(2)作线段AB关于AC的对称线段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此时PQ+QB 的值最小.【详解】解:(1)AC=221+2=5.故答案为5.(2)作线段AB关于AC的对称线段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此时PQ+QB 的值最小.故答案为作线段AB关于AC的对称线段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此时PQ+QB 的值最小.【点睛】本题考查作图-应用与设计,勾股定理,轴对称-最短问题,垂线段最短等知识,解题的关键是学会利用轴对称,根据垂线段最短解决最短问题,属于中考常考题型.25.﹣12<x≤0,不等式组的解集表示在数轴上见解析.【解析】【分析】先求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解不等式2x+1>0,得:x>﹣12,解不等式2323x x-+≥,得:x≤0,则不等式组的解集为﹣12<x≤0, 将不等式组的解集表示在数轴上如下:【点睛】本题考查了解一元一次不等式组,解题的关键是掌握“同大取大;同小取小;大小小大中间找;大大小小找不到”.26.(1)证明见解析;(2)证明见解析;(3)74.【解析】【分析】(1)根据四边形ABCD 和四边形AEMN 都是正方形得2AB AC AC AM ==,∠CAB=∠MAC=45°,∠BAE=∠CAM ,可证△ACM ∽△ABE ;(2)连结AC ,由△ACM ∽△ABE 得∠ACM=∠B=90°,易证∠MCD=∠BDC=45°,得BD ∥CM,由MC=2BE ,FC=2CE ,得MF=BD ,从而可以证明四边形BFMD 是平行四边形;(3)根据S 五边形ABFMN =S 正方形AEMN +S 梯形ABFE +S 三角形EFM 求解即可.【详解】(1)证明:∵四边形ABCD 和四边形AEMN 都是正方形,∴2AB AC AC AM ==,∠CAB=∠MAC=45°, ∴∠CAB-∠CAE=∠MAC-∠CAE ,∴∠BAE=∠CAM ,∴△ACM ∽△ABE.(2)证明:连结AC因为△ACM ∽△ABE ,则∠ACM=∠B=90°,因为∠ACB=∠ECF=45°,所以∠ACM+∠ACB+∠ECF=180°,所以点M,C,F在同一直线上,所以∠MCD=∠BDC=45°,所以BD平行MF,又因为MC=2BE,FC=2CE,所以MF=2BC=BD,所以四边形BFMD是平行四边形(3)S五边形ABFMN=S正方形AEMN+S梯形ABFE+S三角形EFM=62+42+12(2+6)⨯4+12⨯2⨯6=74.【点睛】本题主要考查了正方形的性质的应用,解此题的关键是能正确作出辅助线,综合性比较强,有一定的难度.27.(1)0<x≤200,且x是整数(2)175【解析】【分析】(1)根据商场的规定确定出x的范围即可;(2)设小王原计划购买x个纪念品,根据按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同列出分式方程,求出解即可得到结果.【详解】(1)根据题意得:0<x≤200,且x为整数;(2)设小王原计划购买x个纪念品,根据题意得:105010505635x x⨯=⨯+,整理得:5x+175=6x,解得:x=175,经检验x=175是分式方程的解,且满足题意,则小王原计划购买175个纪念品.【点睛】此题考查了分式方程的应用,弄清题中的等量关系“按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同”是解本题的关键.。

湖北省宜昌市九年级数学中考一模试卷

湖北省宜昌市九年级数学中考一模试卷

湖北省宜昌市九年级数学中考一模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2020七上·秀洲月考) 若一个数的相反数的倒数为,则这个数是()A .B .C .D .2. (2分) (2020八下·重庆期中) 下列运算正确的是()A .B .C . ,D .3. (2分) (2016七上·利州期末) 某市在去年4月份突遇大风,冰雹灾害性天气,造成直接经济损失5000万元.5000万元用科学记数法表示为()A . 5000万元B . 5×102万元C . 5×103万元D . 5×104万元4. (2分) (2017八下·鞍山期末) 在函数y=2x图象上的点是()A . (2,1)B . (﹣2,1)C . (1,﹣2)D . (﹣1,﹣2)5. (2分) (2018九上·永定期中) 若关于x的一元二次方程(k﹣1)x2+6 x +3=0有实数根,则实数k的取值范围为()A . k<4B . k<4,且k≠1C . k≤4D . k≤4,且k≠16. (2分) (2020八下·上饶月考) 如图,长方体的底面邻边长分别是5cm和7cm,高为20cm,如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B(点B为棱的中点),那么所用细线最短为()A . 20cmB . 24cmC . 26cmD . 28cm7. (2分) (2017八下·德州期末) 2022年将在北京﹣张家口举办冬季奥运会,很多学校开设了相关的课程.如表记录了某校4名同学短道速滑选拔赛成绩的平均数与方差s2:队员1队员2队员3队员4平均数(秒)51505150方差s2(秒2) 3.5 3.514.515.5根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择()A . 队员1B . 队员2C . 队员3D . 队员48. (2分) (2020九上·川汇期末) 直线y=kx+4与函数y=的图象有且只有一个公共点,则k的值为()A . 2B . ﹣2C . ﹣1D . ±29. (2分) (2019八上·南关期末) 如图①,分别沿长方形纸片ABCD和正方形纸片EFGH的对角线BD,FH剪开,拼成如图②所示的四边形KLMN,若中间空白部分四边形OPQR恰好是正方形,且四边形KLMN的面积为52,则正方形EFGH的面积是()A . 24B . 25C . 26D . 2710. (2分)(2019·夏津模拟) 如图PA,PB是⊙O的切线,A,B是切点,点C是劣弧AB上的一个动点,若∠ACB=110°,则∠P的度数是()A . 55°B . 40°C . 35°D . 30°个11. (2分) (2019九下·温州竞赛) 如图,从一块直径为2m的圈形铁皮上剪出一个圆心角为60°的扇形,则此扇形的面积为()A .B .C .D .12. (2分) (2017八下·邗江期中) 如图,将矩形ABCD绕点C顺时针旋转90°得到矩形FGCE,点M、N分别是BD、GE的中点,若BC=14,CE=2,则MN的长()A . 7B . 8C . 9D . 10二、填空题 (共6题;共6分)13. (1分)在函数y=中,自变量x的取值范围是________14. (1分)(2017·东平模拟) 因式分解2x4﹣2=________.15. (1分) (2017七下·东城期中) 如图,把一块含45°的直角三角板的两个顶点放在直尺的对边上,如果∠1=20°,那么∠2的度数是________.16. (1分)两组数据:3,a,2b,5与a,6,b的平均数都是6,若将这两组数据合并为一组数据,则这组新数据的中位数为________17. (1分)(2017·新吴模拟) 如图,已知AB是⊙O的直径,BC为弦,过圆心O作OD⊥BC交弧BC于点D,连接DC,若∠DCB=32°,则∠BAC=________.18. (1分)(2018·济宁模拟) 在草稿纸上计算:① ;② ;③ ;④ ,观察你计算的结果,用你发现的规律直接写出下面式子的值 =________.三、解答题 (共8题;共88分)19. (10分) (2019九下·河南月考) 先化简,再求值:,其中x=4|cos30°|+320. (6分) (2019九上·鼓楼期中) 如图,已知△ABC中,D为AB的中点.(1)请用尺规作图法作出边AC的中点E,并连接DE(保留作图痕迹,不要求写作法)(2)在(1)条件下,若△ADE的周长为2,求△ABC的周长.21. (10分)一次函数y=kx+b的图象与反比例函数y= 的图象交于点A(﹣3,m+8),B(n,﹣6)两点.(1)求一次函数与反比例函数的解析式;(2)求△AOB的面积.22. (12分)某校中午学生用餐比较拥挤,为建议学校分年级错时用餐,李老师带领数学学习小组在某天随机调查了部分学生,统计了他们从下课到就餐结束所用的时间,并绘制成统计表和如图所示的不完整统计图.根据以上提供的信息,解答下列问题:(1)表中a=________,b=________,c=________,补全频数分布直方图;(2)此次调查中,中位数所在的时间段是________min.时间分段频(人)百分比/min数10≤x<15820%15≤x<2014a20≤x<251025%25≤x<30b12.50%30≤x<3537.50%合计c100%(3)这所学校共有1200人,试估算从下课到就餐结束所用时间不少于20min的共有多少人?23. (10分)(2017·高青模拟) 为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?24. (10分)(2017·埇桥模拟) 定义:有一组对角互补的凸四边形叫做“对补四边形”,性质:“对补四边形”一定是圆内接四边形.(1)概念理解:请你根据上述描述定义举一个“对补四边形”的例子;(2)问题探究:如图1,在对补四边形ABCD中,如果∠A=∠C,试探究AB、AD、BC、CD之间的数量关系,并说明理由;(3)应用拓展:如图2,在四边形ABCD中,AB≠BC,∠A=∠C=90°,连接BD,将△BCD沿BD折叠,得到△BFD.①连接AF,四边形ABDF是对补四边形吗?请说明理由;②若AB=1,BD=2,且BF把△ABD分成两个三角形的面积比为1:2,请求出CD的长.25. (15分)(2018·济南) 如图1,抛物线平移后过点A(8,,0)和原点,顶点为B,对称轴与轴相交于点C,与原抛物线相交于点D.(1)求平移后抛物线的解析式并直接写出阴影部分的面积;(2)如图2,直线AB与轴相交于点P,点M为线段OA上一动点,为直角,边MN与AP相交于点N,设,试探求:① 为何值时为等腰三角形;② 为何值时线段PN的长度最小,最小长度是多少.26. (15分)(2012·玉林) 如图,在平面直角坐标系xOy中,矩形AOCD的顶点A的坐标是(0,4),现有两动点P,Q,点P从点O出发沿线段OC(不包括端点O,C)以每秒2个单位长度的速度匀速向点C运动,点Q从点C出发沿线段CD(不包括端点C,D)以每秒1个单位长度的速度匀速向点D运动.点P,Q同时出发,同时停止,设运动时间为t(秒),当t=2(秒)时,PQ=2 .(1)求点D的坐标,并直接写出t的取值范围.(2)连接AQ并延长交x轴于点E,把AE沿AD翻折交CD延长线于点F,连接EF,则△AEF的面积S是否随t 的变化而变化?若变化,求出S与t的函数关系式;若不变化,求出S的值.(3)在(2)的条件下,t为何值时,四边形APQF是梯形?参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共88分)19-1、20-1、20-2、21-1、21-2、22-1、22-2、22-3、23-1、23-2、23-3、24-1、24-2、25-1、25-2、26-1、26-2、26-3、。

湖北省宜昌市2019-2020学年中考数学一月模拟试卷含解析

湖北省宜昌市2019-2020学年中考数学一月模拟试卷含解析

湖北省宜昌市2019-2020学年中考数学一月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若不等式组236x m x x <⎧⎨-<-⎩无解,那么m 的取值范围是( )A .m≤2B .m≥2C .m <2D .m >22.如图,在平行四边形ABCD 中,∠ABC 的平分线BF 交AD 于点F ,FE ∥AB .若AB=5,AD=7,BF=6,则四边形ABEF 的面积为( )A .48B .35C .30D .243.衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x 万千克,根据题意,列方程为( )A .3036101.5x x -= B .3030101.5x x -= C .3630101.5x x-= D .3036101.5x x+= 4.如图,正方形ABCD 边长为4,以BC 为直径的半圆O 交对角线BD 于点E ,则阴影部分面积为( )A .πB .32π C .6﹣πD .23﹣π5.若2a 2a 30--=,代数式a 2a 23-⨯的值是( ) A .0B .2a 3-C .2D .12-6.若函数y=kx ﹣b 的图象如图所示,则关于x 的不等式k (x ﹣3)﹣b >0的解集为( )A .x <2B .x >2C .x <5D .x >57.如图,矩形 ABCD 的边 AB=1,BE 平分∠ABC ,交 AD 于点 E ,若点 E 是 AD 的中点,以点 B 为圆心,BE 长为半径画弧,交 BC 于点 F ,则图中阴影部分的面积是( )A .2-4π B .324π- C .2-8π D .324π- 8.如图,在边长为6的菱形ABCD 中,60DAB ∠=︒ ,以点D 为圆心,菱形的高DF 为半径画弧,交AD 于点E ,交CD 于点G ,则图中阴影部分的面积是( )A .183π-B .1839π-C .9932π-D .1833π-9.如图,AB 与⊙O 相切于点A ,BO 与⊙O 相交于点C ,点D 是优弧AC 上一点,∠CDA =27°,则∠B 的大小是( )A .27°B .34°C .36°D .54°102x 有意义,则实数x 的取值范围是( ) A .x >0B .x≥0C .x≠0D .任意实数11.如果t>0,那么a+t 与a 的大小关系是( ) A .a+t>a B .a+t<a C .a+t≥a D .不能确定 12.下列计算正确的是( ) A .(﹣2a )2=2a 2 B .a 6÷a 3=a 2 C .﹣2(a ﹣1)=2﹣2aD .a•a 2=a 2二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.已知654a b c==,且26a b c +-=,则a 的值为__________. 14.如图,这是一幅长为3m ,宽为1m 的长方形世界杯宣传画,为测量宣传画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4附近,由此可估计宣传画上世界杯图案的面积约为___________________m1.15.按照一定规律排列依次为59111315,1,,,,410131619,…..按此规律,这列数中的第100个数是_____.16.如图,直线y1=mx经过P(2,1)和Q(-4,-2)两点,且与直线y2=kx+b交于点P,则不等式kx+b>mx>-2的解集为_________________.17.有公共顶点A,B的正五边形和正六边形按如图所示位置摆放,连接AC交正六边形于点D,则∠ADE 的度数为()A.144°B.84°C.74°D.54°18.某篮球架的侧面示意图如图所示,现测得如下数据:底部支架AB的长为1.74m,后拉杆AE的倾斜角∠EAB=53°,篮板MN到立柱BC的水平距离BH=1.74m,在篮板MN另一侧,与篮球架横伸臂DG等高度处安装篮筐,已知篮筐到地面的距离GH的标准高度为3.05m.则篮球架横伸臂DG的长约为_____m(结果保留一位小数,参考数据:sin53°≈45,cos53°≈35,tan53°≈43).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.(1)求证:四边形DEBF是矩形;(2)若AF平分∠DAB,AE=3,BF=4,求▱ABCD的面积.20.(6分)计算:8﹣(﹣2016)0+|﹣3|﹣4cos45°.21.(6分)某初级中学对毕业班学生三年来参加市级以上各项活动获奖情况进行统计,七年级时有48人次获奖,之后逐年增加,到九年级毕业时累计共有183人次获奖,求这两年中获奖人次的平均年增长率.22.(8分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为P(2,9),与x轴交于点A,B,与y轴交于点C(0,5).(Ⅰ)求二次函数的解析式及点A,B的坐标;(Ⅱ)设点Q在第一象限的抛物线上,若其关于原点的对称点Q′也在抛物线上,求点Q的坐标;(Ⅲ)若点M在抛物线上,点N在抛物线的对称轴上,使得以A,C,M,N为顶点的四边形是平行四边形,且AC为其一边,求点M,N的坐标.23.(8分)已知P是⊙O外一点,PO交⊙O于点C,OC=CP=2,弦AB⊥OC,∠AOC的度数为60°,连接PB.求BC的长;求证:PB是⊙O的切线.24.(10分)(1)计算:(a-b)2-a(a-2b);(2)解方程:23x=3x.25.(10分)如图,AC=DC,BC=EC,∠ACD=∠BCE.求证:∠A=∠D.26.(12分)计算:(12)﹣2(﹣2)0+|2| 27.(12分)数学不仅是一门学科,也是一种文化,即数学文化.数学文化包括数学史、数学美和数学应用等多方面.古时候,在某个王国里有一位聪明的大臣,他发明了国际象棋,献给了国王,国王从此迷上了下棋,为了对聪明的大臣表示感谢,国王答应满足这位大臣的一个要求.大臣说:“就在这个棋盘上放一些米粒吧.第1格放1粒米,第2格放2粒米,第3格放4粒米,然后是8粒、16粒、32粒······一只到第64格.”“你真傻!就要这么一点米粒?”国王哈哈大笑.大臣说:“就怕您的国库里没有这么多米!”国王的国库里真没有这么多米吗?题中问题就是求1236312222++++⋅⋅⋅+是多少?请同学们阅读以下解答过程就知道答案了.设1236312222S =++++⋅⋅⋅+, 则()123632212222S =++++⋅⋅⋅+ 2346364222222=++++⋅⋅⋅++()()2363236322122212222S S ∴-=+++⋅⋅⋅+-++++⋅⋅⋅+即:6421S =-事实上,按照这位大臣的要求,放满一个棋盘上的64个格子需要()12363641222221+++⋅⋅⋅+=-粒米.那么6421-到底多大呢?借助计算机中的计算器进行计算,可知答案是一个20位数:184467440737********,这是一个非常大的数,所以国王是不能满足大臣的要求.请用你学到的方法解决以下问题:()1我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有多少盏灯?()2计算: 13927...3.n +++++()3某中学“数学社团”开发了一款应用软件,推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知一列数:1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,⋅⋅⋅,其中第一项是02,接下来的两项是012,2,再接下来的三项是0122,2,2,⋅⋅⋅,以此类推,求满足如下条件的所有正整数:10100N N <<,且这一数列前N 项和为2的正整数幂.请直接写出所有满足条件的软件激活码正整数N 的值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.A 【解析】 【分析】先求出每个不等式的解集,再根据不等式组解集的求法和不等式组无解的条件,即可得到m 的取值范围. 【详解】236x m x x <⎧⎨-<-⎩①② 由①得,x <m , 由②得,x >1, 又因为不等式组无解, 所以m≤1. 故选A . 【点睛】此题的实质是考查不等式组的求法,求不等式组的解集,要根据以下原则:同大取较大,同小较小,小大大小中间找,大大小小解不了. 2.D 【解析】分析:首先证明四边形ABEF 为菱形,根据勾股定理求出对角线AE 的长度,从而得出四边形的面积. 详解:∵AB ∥EF ,AF ∥BE , ∴四边形ABEF 为平行四边形, ∵BF 平分∠ABC , ∴四边形ABEF 为菱形, 连接AE 交BF 于点O , ∵BF=6,BE=5,∴BO=3,EO=4, ∴AE=8,则四边形ABEF 的面积=6×8÷2=24,故选D .点睛:本题主要考查的是菱形的性质以及判定定理,属于中等难度的题型.解决本题的关键就是根据题意得出四边形为菱形. 3.A 【解析】 【分析】根据题意可得等量关系:原计划种植的亩数-改良后种植的亩数10=亩,根据等量关系列出方程即可. 【详解】设原计划每亩平均产量x 万千克,则改良后平均每亩产量为1.5x 万千克, 根据题意列方程为:3036101.5x x-=.故选:A . 【点睛】本题考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系. 4.C 【解析】 【分析】根据题意作出合适的辅助线,可知阴影部分的面积是△BCD 的面积减去△BOE 和扇形OEC 的面积. 【详解】 由题意可得,BC=CD=4,∠DCB=90°, 连接OE ,则OE=12BC ,∴OE ∥DC ,∴∠EOB=∠DCB=90°,∴阴影部分面积为:2••90222360BC CD OE OB π⨯⨯--=442290422360π⨯⨯⨯⨯-- =6-π, 故选C . 【点睛】本题考查扇形面积的计算、正方形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答. 5.D 【解析】 【分析】由2a 2a 30--=可得2a 2a 3-=,整体代入到原式()2a 2a6--=即可得出答案.【详解】解:2a 2a 30--=Q ,2a2a3∴-=,则原式()2a2a31662 ---===-.故选:D.【点睛】本题主要考查整式的化简求值,熟练掌握整式的混合运算顺序和法则及代数式的求值是解题的关键.6.C【解析】【分析】根据函数图象知:一次函数过点(2,0);将此点坐标代入一次函数的解析式中,可求出k、b的关系式;然后将k、b的关系式代入k(x﹣3)﹣b>0中进行求解即可.【详解】解:∵一次函数y=kx﹣b经过点(2,0),∴2k﹣b=0,b=2k.函数值y随x的增大而减小,则k<0;解关于k(x﹣3)﹣b>0,移项得:kx>3k+b,即kx>1k;两边同时除以k,因为k<0,因而解集是x<1.故选C.【点睛】本题考查一次函数与一元一次不等式.7.B【解析】【分析】利用矩形的性质以及结合角平分线的性质分别求出AE,BE的长以及∠EBF的度数,进而利用图中阴影部分的面积=S ABCD矩形-S ABEV -S EBF扇形,求出答案.【详解】∵矩形ABCD的边AB=1,BE平分∠ABC,∴∠ABE=∠EBF=45°,AD∥BC,∴∠AEB=∠CBE=45°,∴,∵点E是AD的中点,∴AE=ED=1,∴图中阴影部分的面积=S ABCD 矩形 −S ABE V −S EBF 扇形 =1×2−123-24π故选B. 【点睛】此题考查矩形的性质,扇形面积的计算,解题关键在于掌握运算公式 8.B 【解析】 【分析】由菱形的性质得出AD=AB=6,∠ADC=120°,由三角函数求出菱形的高DF ,图中阴影部分的面积=菱形ABCD 的面积-扇形DEFG 的面积,根据面积公式计算即可. 【详解】∵四边形ABCD 是菱形,∠DAB=60°, ∴AD=AB=6,∠ADC=180°-60°=120°, ∵DF 是菱形的高, ∴DF ⊥AB ,∴DF=AD•sin60°∴阴影部分的面积=菱形ABCD 的面积-扇形DEFG 的面积=6×9π. 故选B . 【点睛】本题考查了菱形的性质、三角函数、菱形和扇形面积的计算;由三角函数求出菱形的高是解决问题的关键. 9.C 【解析】 【分析】由切线的性质可知∠OAB=90°,由圆周角定理可知∠BOA=54°,根据直角三角形两锐角互余可知∠B=36°. 【详解】解:∵AB 与⊙O 相切于点A , ∴OA ⊥BA . ∴∠OAB=90°. ∵∠CDA=27°, ∴∠BOA=54°. ∴∠B=90°-54°=36°.故选C.考点:切线的性质.10.C【解析】【分析】根据分式和二次根式有意义的条件进行解答.【详解】解:依题意得:x2≥1且x≠1.解得x≠1.故选C.【点睛】考查了分式有意义的条件和二次根式有意义的条件.解题时,注意分母不等于零且被开方数是非负数.11.A【解析】试题分析:根据不等式的基本性质即可得到结果.t>0,∴a+t>a,故选A.考点:本题考查的是不等式的基本性质点评:解答本题的关键是熟练掌握不等式的基本性质1:不等式两边同时加或减去同一个整式,不等号方向不变.12.C【解析】【详解】4a;解:选项A,原式=2选项B,原式=a3;选项C,原式=-2a+2=2-2a;选项D,原式=3a故选C二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】分析:直接利用已知比例式假设出a,b,c的值,进而利用a+b-2c=6,得出答案.详解:∵654a b c ==, ∴设a=6x ,b=5x ,c=4x ,∵a+b-2c=6,∴6x+5x-8x=6,解得:x=2,故a=1.故答案为1.点睛:此题主要考查了比例的性质,正确表示出各数是解题关键.14.1.4【解析】【分析】由概率估计图案在整副画中所占比例,再求出图案的面积.【详解】估计宣传画上世界杯图案的面积约为3×1×0.4=1.4m 1. 故答案为1.4【点睛】本题考核知识点:几何概率. 解题关键点:由几何概率估计图案在整副画中所占比例.15.203301【解析】【分析】 根据按一定规律排列的一列数依次为579111315,,,,,4710131619…,可得第n 个数为2331n n ++,据此可得第100个数.【详解】 由题意,数列可改写成579111315,,,,,4710131619,…, 则后一个数的分子比前一个数的法则大2,后一个数的分母比前一个数的分母大3,∴第n 个数为5(1)24(1)3n n +-⨯+-⨯=2331n n ++, ∴这列数中的第100个数为2100331001⨯+⨯+=203301; 故答案为:203301. 【点睛】 本题考查数字类规律,解题的关键是读懂题意,掌握数字类规律基本解题方法.16.-4<x<1 【解析】将P(1,1)代入解析式y1=mx,先求出m的值为12,将Q点纵坐标y=1代入解析式y=12x,求出y1=mx的横坐标x=-4,即可由图直接求出不等式kx+b>mx>-1的解集为y1>y1>-1时,x的取值范围为-4<x <1.故答案为-4<x<1.点睛:本题考查了一次函数与一元一次不等式,求出函数图象的交点坐标及函数与x轴的交点坐标是解题的关键.17.B【解析】正五边形的内角是∠ABC=()521805-⨯=108°,∵AB=BC,∴∠CAB=36°,正六边形的内角是∠ABE=∠E=()621806-⨯=120°,∵∠ADE+∠E+∠ABE+∠CAB=360°,∴∠ADE=360°–120°–120°–36°=84°,故选B.18.1.1.【解析】【分析】过点D作DO⊥AH于点O,先证明△ABC∽△AOD得出ABAO=CBDO,再根据已知条件求出AO,则OH=AH-AO=DG.【详解】解:过点D作DO⊥AH于点O,如图:由题意得CB∥DO,∴△ABC∽△AOD,∴ABAO=CBDO,∵∠CAB=53°,tan53°=4 3 ,∴tan∠CAB=CBAB=43,∵AB=1.74m,∴CB=1.31m,∵四边形DGHO为长方形,∴DO=GH=3.05m,OH=DG,∴1.74AO=2.323.05,则AO=1.1875m,∵BH=AB=1.75m,∴AH=3.5m,则OH=AH-AO≈1.1m,∴DG≈1.1m.故答案为1.1.【点睛】本题考查了相似三角形的性质与应用,解题的关键是熟练的掌握相似三角形的性质与应用.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)证明见解析(2)3【解析】试题分析:(1)根据平行四边形的性质,可证DF∥EB,然后根据一组对边平行且相等的四边形为平行四边形可证四边形DEBF是平行四边形,然后根据有一个角是直角的平行四边形是矩形可证;(2)根据(1)可知DE=BF,然后根据勾股定理可求AD的长,然后根据角平分线的性质和平行线的性质可求得DF=AD,然后可求CD的长,最后可用平行四边形的面积公式可求解.试题解析:(1)∵四边形ABCD是平行四边形,∴DC∥AB,即DF∥EB.又∵DF=BE,∴四边形DEBF是平行四边形.∵DE⊥AB,∴∠EDB=90°.∴四边形DEBF是矩形.(2)∵四边形DEBF是矩形,∴DE=BF=4,BD=DF.∵DE⊥AB,∴AD1.∵DC∥AB,∴∠DFA=∠FAB.∵AF平分∠DAB,∴∠DAF=∠FAB.∴∠DAF=∠DFA.∴DF=AD=1.∴BE=1.∴AB=AE+BE=3+1=2.∴S□ABCD=AB·BF=2×4=3.20.1.【解析】【分析】根据二次根式性质,零指数幂法则,绝对值的代数意义,以及特殊角的三角函数值依次计算后合并即可.【详解】解:原式﹣1+3﹣4×2=1.【点睛】本题考查实数的运算及特殊角三角形函数值.21.25%【解析】【分析】首先设这两年中获奖人次的平均年增长率为x,则可得八年级的获奖人数为48(1+x),九年级的获奖人数为48(1+x)2;故根据题意可得48(1+x)2=183,即可求得x的值,即可求解本题.【详解】设这两年中获奖人次的平均年增长率为x,根据题意得:48+48(1+x)+48(1+x)2=183,解得:x1=14=25%,x2=﹣134(不符合题意,舍去).答:这两年中获奖人次的年平均年增长率为25%22.(1)y=﹣x2+4x+5,A(﹣1,0),B(5,0);(2)Q;(3)M(1,8),N(2,13)或M′(3,8),N′(2,3).【解析】【分析】(1)设顶点式,再代入C点坐标即可求解解析式,再令y=0可求解A和B点坐标;(2)设点Q(m,﹣m2+4m+5),则其关于原点的对称点Q′(﹣m,m2﹣4m﹣5),再将Q′坐标代入抛物线解析式即可求解m的值,同时注意题干条件“Q在第一象限的抛物线上”;(3)利用平移AC的思路,作MK⊥对称轴x=2于K,使MK=OC,分M点在对称轴左边和右边两种情况分类讨论即可.【详解】(Ⅰ)设二次函数的解析式为y=a(x﹣2)2+9,把C(0,5)代入得到a=﹣1,∴y=﹣(x﹣2)2+9,即y=﹣x2+4x+5,令y=0,得到:x2﹣4x﹣5=0,解得x=﹣1或5,∴A(﹣1,0),B(5,0).(Ⅱ)设点Q(m,﹣m2+4m+5),则Q′(﹣m,m2﹣4m﹣5).把点Q′坐标代入y=﹣x2+4x+5,得到:m2﹣4m﹣5=﹣m2﹣4m+5,(舍弃),∴m=5或5∴Q(5,45).(Ⅲ)如图,作MK⊥对称轴x=2于K.①当MK=OA,NK=OC=5时,四边形ACNM是平行四边形.∵此时点M的横坐标为1,∴y=8,∴M(1,8),N(2,13),②当M′K=OA=1,KN′=OC=5时,四边形ACM′N′是平行四边形,此时M′的横坐标为3,可得M′(3,8),N′(2,3).【点睛】本题主要考查了二次函数的应用,第3问中理解通过平移AC可应用“一组对边平行且相等”得到平行四边形.23.(1)BC=2;(2)见解析【解析】试题分析:(1)连接OB,根据已知条件判定△OBC的等边三角形,则BC=OC=2;(2)欲证明PB是⊙O的切线,只需证得OB⊥PB即可.(1)解:如图,连接OB.∵AB⊥OC,∠AOC=60°,∴∠OAB=30°,∵OB=OA,∴∠OBA=∠OAB=30°,∴∠BOC=60°,∵OB=OC,∴△OBC的等边三角形,∴BC=OC.又OC=2,∴BC=2;(2)证明:由(1)知,△OBC的等边三角形,则∠COB=60°,BC=OC.∵OC=CP,∴BC=PC,∴∠P=∠CBP.又∵∠OCB=60°,∠OCB=2∠P,∴∠P=30°,∴∠OBP=90°,即OB⊥PB.又∵OB是半径,∴PB是⊙O的切线.考点:切线的判定.24.(1) b2 (2)1【解析】分析:(1)、根据完全平方公式以及多项式的乘法计算法则将括号去掉,然后进行合并同类项即可得出答案;(2)、收下进行去分母,将其转化为整式方程,从而得出方程的解,最后需要进行验根.详解:(1) 解:原式=a2-2ab+b2-a2+2ab =b2 ;(2) 解:()233x x =-, 解得:x =1,经检验 x =1为原方程的根, 所以原方程的解为x =1.点睛:本题主要考查的是多项式的乘法以及解分式方程,属于基础题型.理解计算法则是解题的关键.分式方程最后必须要进行验根.25.证明见试题解析.【解析】试题分析:首先根据∠ACD=∠BCE 得出∠ACB=∠DCE ,结合已知条件利用SAS 判定△ABC 和△DEC 全等,从而得出答案.试题解析:∵∠ACD=∠BCE ∴∠ACB=∠DCE 又∵AC=DC BC=EC ∴△ABC ≌△DEC ∴∠A=∠D考点:三角形全等的证明26.【解析】【分析】直接利用零指数幂的性质以及负指数幂的性质、绝对值的性质、二次根式以及立方根的运算法则分别化简得出答案.【详解】解:原式=4﹣﹣2=.【点睛】本题考查实数的运算,难点也在于对原式中零指数幂、负指数幂、绝对值、二次根式以及立方根的运算化简,关键要掌握这些知识点.27.(1)3;(2)1312n +-;(3)1218,95N N == 【解析】【分析】()1设塔的顶层共有x 盏灯,根据题意列出方程,进行解答即可.()2参照题目中的解题方法进行计算即可.()3由题意求得数列的每一项,及前n 项和S n =2n+1-2-n ,及项数,由题意可知:2n+1为2的整数幂.只需将-2-n 消去即可,分别分别即可求得N 的值【详解】()1设塔的顶层共有x 盏灯,由题意得01234562222222381x x x x x x x ++++++=.解得3x =,∴顶层共有3盏灯.()2设13927...3n S =+++++,133927...,33n n S +=+++++()()133927...3313927...3n n n S S +∴-=++++-++++++, 即:1231,n S +=-1312n S +-=. 即13113927...3.2n n+-+++++= ()3由题意可知:20第一项,20,21第二项,20,21,22第三项,…20,21,22…,2n−1第n 项,根据等比数列前n 项和公式,求得每项和分别为:12321,21,21,,21n ---⋯-,每项含有的项数为:1,2,3,…,n , 总共的项数为1(1)232n n N n +=+++⋯+=, 所有项数的和为123:21212121,n n S -+-+-+⋯+-()1232222,n n =+++⋯+-()221,21n n -=--122n n +=--,由题意可知:12n +为2的整数幂,只需将−2−n 消去即可,则①1+2+(−2−n)=0,解得:n=1,总共有()111232+⨯+=,不满足N>10, ②1+2+4+(−2−n)=0,解得:n=5,总共有()1553182+⨯+=, 满足:10100N <<, ③1+2+4+8+(−2−n)=0,解得:n=13,总共有()113134952+⨯+=, 满足:10100N <<, ④1+2+4+8+16+(−2−n)=0,解得:n=29,总共有()1292954402+⨯+=, 不满足100N <,∴1218,95N N ==【点睛】考查归纳推理,读懂题目中等比数列的求和方法是解题的关键.。

湖北省宜昌市2019-2020学年中考一诊数学试题含解析

湖北省宜昌市2019-2020学年中考一诊数学试题含解析

湖北省宜昌市2019-2020学年中考一诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知∠BAC=45。

,一动点O在射线AB上运动(点O与点A不重合),设OA=x,如果半径为1的⊙O 与射线AC有公共点,那么x的取值范围是()A.0<x≤1B.1≤x<2C.0<x≤2D.x>22.如图,已知AB是⊙O的直径,弦CD⊥AB于E,连接BC、BD、AC,下列结论中不一定正确的是()A.∠ACB=90°B.OE=BE C.BD=BC D.»»AD AC=3.在平面直角坐标系中,有两条抛物线关于x轴对称,且他们的顶点相距10个单位长度,若其中一条抛物线的函数表达式为y=2x+6x+m,则m的值是()A.-4或-14 B.-4或14 C.4或-14 D.4或144.下列运算正确的是()A.(a2)3 =a5B.23a a a=g C.(3ab)2=6a2b2D.a6÷a3 =a25.计算1211x xx x+---的结果是()A.1 B.﹣1 C.1﹣x D.311 xx+ -6.若顺次连接四边形ABCD各边中点所得的四边形是菱形,则四边形ABCD一定是()A.矩形B.菱形C.对角线互相垂直的四边形D.对角线相等的四边形7.关于x的一元二次方程230x x m-+=有两个不相等的实数根,则实数m的取值范围是()A.94m<B.94m…C.94m>D.94m…8.计算tan30°的值等于()A.B.C.D.9.关于反比例函数y=2x,下列说法中错误的是()A.它的图象是双曲线B.它的图象在第一、三象限C .y 的值随x 的值增大而减小D .若点(a ,b )在它的图象上,则点(b ,a )也在它的图象上10.如图,在△ABC 中,AC=BC ,∠ACB=90°,点D 在BC 上,BD=3,DC=1,点P 是AB 上的动点,则PC+PD 的最小值为( )A .4B .5C .6D .711.足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线. 不考虑空气阻力,足球距离地面的高度h (单位:m )与足球被踢出后经过的时间t (单位:s )之间的关系如下表: t 0 1 2 3 4 5 6 7 … h 0 8 14 18 20 20 18 14 …下列结论:①足球距离地面的最大高度为20m ;②足球飞行路线的对称轴是直线92t =;③足球被踢出9s 时落地;④足球被踢出1.5s 时,距离地面的高度是11m. 其中正确结论的个数是( )A .1B .2C .3D .412.已知关于x ,y 的二元一次方程组231ax by ax by +=⎧⎨-=⎩的解为11x y =⎧⎨=-⎩,则a ﹣2b 的值是( ) A .﹣2 B .2 C .3 D .﹣3二、填空题:(本大题共6个小题,每小题4分,共24分.)13.因式分解:2xy 4x -= .14.如果点()14,A y -、()23,B y -是二次函数22(y x k k =+是常数)图象上的两点,那么1y ______2.(y 填“>”、“<”或“=”)15.如图,在△ABC 中,AB =4,AC =3,以BC 为边在三角形外作正方形BCDE ,连接BD ,CE 交于点O ,则线段AO 的最大值为_____.16.如图,点,A B是反比例函数(0,0)ky k xx=>>图像上的两点(点A在点B左侧),过点A作AD x⊥轴于点D,交OB于点E,延长AB 交x轴于点C,已知21 25OABADCSS∆∆=,145OAES∆=,则k的值为__________.17.计算:18-2=________.18.不等式组2012xxx-≤⎧⎪⎨-<⎪⎩的最大整数解是__________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,矩形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(m,n)(m<0,n>0),E点在边BC上,F点在边OA上.将矩形OABC沿EF折叠,点B正好与点O重合,双曲线过点E.(1) 若m=-8,n =4,直接写出E、F的坐标;(2) 若直线EF的解析式为,求k的值;(3) 若双曲线过EF的中点,直接写出tan∠EFO的值.20.(6分)如图,小明今年国庆节到青城山游玩,乘坐缆车,当登山缆车的吊箱经过点A到达点B时,它经过了200m,缆车行驶的路线与水平夹角∠α=16°,当缆车继续由点B到达点D时,它又走过了200m,缆车由点B到点D的行驶路线与水平面夹角∠β=42°,求缆车从点A到点D垂直上升的距离.(结果保留整数)(参考数据:sin16°≈0.27,cos16°≈0.77,sin42°≈0.66,cos42°≈0.74)21.(6分) (1)计算:()10201631(1)2384π-⎛⎫---+-⨯+ ⎪⎝⎭ (2)先化简,再求值:2214()244x x x x x x x +---÷--+,其中x 是不等式371x +>的负整数解. 22.(8分)如图,直角坐标系中,⊙M 经过原点O (0,0),点A (3,0)与点B (0,﹣1),点D 在劣弧OA 上,连接BD 交x 轴于点C ,且∠COD =∠CBO .(1)请直接写出⊙M 的直径,并求证BD 平分∠ABO ;(2)在线段BD 的延长线上寻找一点E ,使得直线AE 恰好与⊙M 相切,求此时点E 的坐标.23.(8分)如图,△ABC 中,AB=8厘米,AC=16厘米,点P 从A 出发,以每秒2厘米的速度向B 运动,点Q 从C 同时出发,以每秒3厘米的速度向A 运动,其中一个动点到端点时,另一个动点也相应停止运动,设运动的时间为t .⑴用含t 的代数式表示:AP= ,AQ= .⑵当以A ,P ,Q 为顶点的三角形与△ABC 相似时,求运动时间是多少?24.(10分)反比例函数y=k x(k≠0)与一次函数y=mx+b (m≠0)交于点A (1,2k ﹣1).求反比例函数的解析式;若一次函数与x 轴交于点B ,且△AOB 的面积为3,求一次函数的解析式.25.(10分)如图,∠A =∠D ,∠B =∠E ,AF =DC .求证:BC =EF .26.(12分)尺规作图:用直尺和圆规作图,不写作法,保留痕迹.已知:如图,线段a,h.求作:△ABC,使AB=AC,且∠BAC=∠α,高AD=h.27.(12分)A粮仓和B粮仓分别库存粮食12吨和6吨,现决定支援给C市10吨和D市8吨.已知从A 粮仓调运一吨粮食到C市和D市的运费分别为400元和800元;从B粮仓调运一吨粮食到C市和D市的运费分别为300元和500元.设B粮仓运往C市粮食x吨,求总运费W(元)关于x的函数关系式.(写出自变量的取值范围)若要求总运费不超过9000元,问共有几种调运方案?求出总运费最低的调运方案,最低运费是多少?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】如下图,设⊙O与射线AC相切于点D,连接OD,∴∠ADO=90°,∵∠BAC=45°,∴△ADO是等腰直角三角形,∴AD=DO=1,∴OA=2,此时⊙O与射线AC有唯一公共点点D,若⊙O再向右移动,则⊙O与射线AC就没有公共点了,∴x的取值范围是02x.<≤故选C.2.B【解析】【分析】根据垂径定理及圆周角定理进行解答即可.【详解】∵AB 是⊙O 的直径,∴∠ACB=90°,故A 正确;∵点E 不一定是OB 的中点,∴OE 与BE 的关系不能确定,故B 错误;∵AB ⊥CD ,AB 是⊙O 的直径,∴»»BDBC =, ∴BD=BC ,故C 正确;∴AD AC =u u u r u u u r ,故D 正确.故选B .【点睛】本题考查的是垂径定理,熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键. 3.D【解析】【分析】根据顶点公式求得已知抛物线的顶点坐标,然后根据轴对称的性质求得另一条抛物线的顶点,根据题意得出关于m 的方程,解方程即可求得.【详解】∵一条抛物线的函数表达式为y=x 2+6x+m ,∴这条抛物线的顶点为(-3,m-9),∴关于x 轴对称的抛物线的顶点(-3,9-m ),∵它们的顶点相距10个单位长度.∴|m-9-(9-m )|=10,∴2m-18=±10,当2m-18=10时,m=1,当2m-18=-10时,m=4,∴m 的值是4或1.故选D .【点睛】本题考查了二次函数图象与几何变换,解答本题的关键是掌握二次函数的顶点坐标公式,坐标和线段长度之间的转换,关于x 轴对称的点和抛物线的关系.4.B【解析】分析:本题考察幂的乘方,同底数幂的乘法,积的乘方和同底数幂的除法.解析: ()326a a = ,故A 选项错误; a 3·a = a 4故B 选项正确;(3ab)2 = 9a 2b 2故C 选项错误; a 6÷a 3 = a 3故D 选项错误.故选B.5.B【解析】【分析】根据同分母分式的加减运算法则计算可得.【详解】解:原式=121x x x +-- =1-1x x - =()--11x x -=-1,故选B .【点睛】本题主要考查分式的加减法,解题的关键是熟练掌握同分母分式的加减运算法则.6.C【解析】【分析】如图,根据三角形的中位线定理得到EH ∥FG ,EH=FG ,EF=12BD ,则可得四边形EFGH 是平行四边形,若平行四边形EFGH 是菱形,则可有EF=EH ,由此即可得到答案.【点睛】如图,∵E ,F ,G ,H 分别是边AD ,DC ,CB ,AB 的中点,∴EH=12AC ,EH ∥AC ,FG=12AC ,FG ∥AC ,EF=12BD , ∴EH ∥FG ,EH=FG ,∴四边形EFGH 是平行四边形,假设AC=BD ,∵EH=12AC,EF=12BD,则EF=EH,∴平行四边形EFGH是菱形,即只有具备AC=BD即可推出四边形是菱形,故选D.【点睛】本题考查了中点四边形,涉及到菱形的判定,三角形的中位线定理,平行四边形的判定等知识,熟练掌握和灵活运用相关性质进行推理是解此题的关键.7.A【解析】【分析】根据一元二次方程的根的判别式,建立关于m的不等式,求出m的取值范围即可.【详解】∵关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,∴△=b2﹣4ac=(﹣3)2﹣4×1×m>0,∴m<94,故选A.【点睛】本题考查了根的判别式,解题的关键在于熟练掌握一元二次方程根的情况与判别式△的关系,即:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.8.C【解析】tan30°=.故选C.9.C【解析】【分析】根据反比例函数y=2x的图象上点的坐标特征,以及该函数的图象的性质进行分析、解答.【详解】A.反比例函数2yx=的图像是双曲线,正确;B.k=2>0,图象位于一、三象限,正确;C.在每一象限内,y的值随x的增大而减小,错误;D.∵ab=ba,∴若点(a,b)在它的图像上,则点(b,a)也在它的图像上,故正确.故选C.【点睛】本题主要考查反比例函数的性质.注意:反比例函数的增减性只指在同一象限内.10.B【解析】试题解析:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP.此时DP+CP=DP+PC′=DC′的值最小.∵DC=1,BC=4,∴BD=3,连接BC′,由对称性可知∠C′BE=∠CBE=41°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=41°,∴BC=BC′=4,根据勾股定理可得22'BC BD+2234+.故选B.11.B【解析】试题解析:由题意,抛物线的解析式为y=ax(x﹣9),把(1,8)代入可得a=﹣1,∴y=﹣t2+9t=﹣(t﹣4.5)2+20.25,∴足球距离地面的最大高度为20.25m,故①错误,∴抛物线的对称轴t=4.5,故②正确,∵t=9时,y=0,∴足球被踢出9s时落地,故③正确,∵t=1.5时,y=11.25,故④错误,∴正确的有②③,故选B.12.B【解析】【详解】把11xy=⎧⎨=-⎩代入方程组231ax byax by+=⎧⎨-=⎩得:231a ba b-=⎧⎨+=⎩,解得:4313 ab⎧=⎪⎪⎨⎪=-⎪⎩,所以a−2b=43−2×(13-)=2. 故选B. 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.. 【解析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式x 后继续应用平方差公式分解即可:()()()22xy 4x x y 4x y 2y 2-=-=+-. 14.>【解析】【分析】根据二次函数解析式可知函数图象对称轴是x=0,且开口向上,分析可知两点均在对称轴左侧的图象上;接下来,结合二次函数的性质可判断对称轴左侧图象的增减性,【详解】解:二次函数22y x k =+的函数图象对称轴是x=0,且开口向上,∴在对称轴的左侧y 随x 的增大而减小,∵-3>-4,∴1y >2y .故答案为>.【点睛】本题考查了二次函数的图像和数形结合的数学思想.15.22【解析】【分析】过O 作OF ⊥AO 且使OF=AO ,连接AF 、CF ,可知△AOF 是等腰直角三角形,进而可得2AO ,根据正方形的性质可得OB=OC ,∠BOC=90°,由锐角互余的关系可得∠AOB=∠COF ,进而可得△AOB ≌△COF ,即可证明AB=CF ,当点A 、C 、F 三点不共线时,根据三角形的三边关系可得AC+CF>AF ,当点A 、C 、F 三点共线时可得AC+CF=AC+AB=AF=7,即可得AF 的最大值,由2AO 即可得答案.【详解】如图,过O 作OF ⊥AO 且使OF=AO ,连接AF 、CF ,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020湖北省宜昌市天问学校九年级数学中考模拟题(一)
一、选择题.(在各小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡上指定的位置填涂符合要求的选项前面的字母代号.本大题共15小题,每小题3分,计45分) 1.如果零上13℃记作+13℃,那么零下2℃记作( ).
A .2
B .-2
C .2℃
D .-2℃ 2.用五个小正方体堆成如图的立方体,这个立方体的主视图是( ).
3.下列运算正确的是( ).
A .x 3+x 3=x 6
B .2x ·3x 2=6x 3
C .(2 x )3=6x 3
D .(2x 3+x )÷x =2x
4.神舟九号飞船发射成功后,一条相关的微博被转发了3 570 000次,数据3 570 000用科学记数法表示为( ).
A .357×104
B .35.7×105
C .3.57×106
D .3.57×107 5.如图,直线AB ∥CD ,AF 交CD 于点
E ,∠CE
F =140°,则∠A =( ). A .35° B .40° C .45° D . 50°
6.已知实数m ,n 在数轴上的对应点的位置如图所示,则下列判断正确的是( ). A .m >0 B .n <0 C .mn <0 D .m -n >0
7.把等腰△ABC 沿底边BC 翻折,得到△DBC ,那么四边形ABDC ( ). A .是中心对称图形,不是轴对称图形 B .不是中心对称图形,是轴对称图形 C .既是中心对称图形,又是轴对称图形 D .既不是中心对称图形,也不是轴对称图形
8.下列计算正确的是( ).
A .20=210
B .(-3)2=-3
C .4-2=2
D .2·3=6 9.已知,菱形ABCD 中,对角线AC 与BD 相交于点O ,O
E ∥DC 交BC 于点E ,AD =6 cm ,则OE =( ). A .3cm B .4cm C .5cm D .6cm 10.某校901班某兴趣小组共有7名成员,他们的年龄分别是13,14,14,15,13,14,15,则他们年龄的
众数和中位数分别是( ).
A .14,15
B .15,14
C .14,14.5
D .14,14
11. 已知关于x 的一元二次方程(m ﹣2)x 2+2x+1=0有实数根,则m 的取值范围是(
)
A B C D
(第2题)
B
C D E F
(第5题)
(第6题)
(第7题)
A
B
(第9题) A
O
D
C B
(第18题)
A B
C
D
E
F
A 、
B 、
C 、
D 、
12.函数y =
1
x -2
中自变量x
的取值范围是( ). A .x >2 B .x <2 C .x ≠2 D .x ≥2
13. 某养鱼专业户为了估计鱼塘中鱼的总条数,他先从鱼塘中捞出100条,将每条鱼作了记号后放回水中,当它们完全混合于鱼群后,再从鱼塘中捞出100条鱼,发现其中
带记号的鱼有10条,估计该鱼塘里约有( )条鱼. A 、1000 B 、1100 C 、900 D 、不确定
14.如图,扇形的圆心角∠AOB =120°,半径OA =3,用这个扇形围成一个圆锥的侧面,那么这个圆锥的底面圆的周长为( ).
A .4π
B .3π
C .2π
D .π
15.已知二次函数y =ax 2+bx +c 的图象如图所示,那么一次函数y =bx +c 和反比例函数y =a
x 在同一平面
二、解答题.(请将解答过程书写在答题卡上指定的位置.本大题共9小题,计75分)
16.(本题满分6分)解不等式组:2(5)63212.x x x +≥->+⎧⎨⎩
,.
17.(本题满分6分)化简: x 2+2x +1x +2÷x 2-1x -1-x
x +2
.
18.(本题满分7分)如图,已知D 是AB 上一点,DF 交 AC 于点E ,AE =EC ,CF ∥AB ,求证:AD =CF .
19.(本题满分7分)甲、乙两人同时从相距90千米的A 地前往B 地,甲乘汽车,乙骑摩托车,甲到达B 地停留半个小时后返回A 地,如图是他们离A 地的距离y (千米)与时间x (时)之间的函数图像: 1)求甲从B 地返回A 地的过程中,y 与x 之间的函数关系式,并写出自变量x 的取值范围; 2)若乙出发后2小时和甲相遇,求乙从A 地到B 地用了多长时间?
(第15题)
x y
O x y
O x y
O y
x
O
y
O
y
O (第14题)
120°
m %
A
37%
D C B 20.(本题满分8分)为了解大学生参加公益活动的情况,几位同学设计了调查问卷,对几所大学的学生进
行了随机调查.问卷如下:
以下是根据调查结果的相关数据绘制的统计图的一部分.
请回答以下问题:
(1)此次调查对象共______人,扇形统计图中m 的值为__________ ; (2)请补全条形统计图并在图上标出数据;
(3)据统计,该市某大学有学生15000人,请根据上述调查结果估计
这所大学2014—2015学年度第一学期参加过至少两次公益活动的大约有____人.
21.(本题满分8分)如图,在Rt △ABC 中,∠ACB =90°,延长BC 到点E , 使得CE =BC ,过点E 作 EF ⊥AB 于点F ,点D ,G 分别为边AB ,EH 的中 点,连接CG ,CD ,HD ,HB .
(1)求证:CG ⊥CD ;
(2)若DH ∥BC ,点P 是在四边形EHDB 内随机确定的一个点,求点P 落在△HDB 区域内的概率. 22.(本题满分10分)【背景】《宜昌市城市总体规划(2011--2030)》明确要求:到2030年末宜昌市中心城区人口控制在300万左右,建设用地控制在300万平方公里以内,为此宜昌市要在2015年末实现总人口480万(其中中心城区人口200万)、中心城区建设用地200万平方公里的目标。

据统计,2013年末宜昌市总人口为400万人,其中中心城区人口140万人,2013年末宜昌市中心城区人均住房面积达到了35平方米。

当前宜昌市以建设特大城市的理念和标准全力进行新区建设,同时加强旧城的拆除改造,确保在2015年末实现中心城区人均住房面积达到了40平方米。

2012年末宜昌市中心城区住房总面积为75a 万平方米,每年拆除的旧房面积相同。

2013年新建设的住房面积为8a 万平方米,计划以后每年新建设的住房面积比上一年减少a 万平方米,这样,到2015年末宜昌市新旧城区住房总面积比2012年末增加了20%,思考:
(1)每年拆除旧房面积是多少万平方米?(用含a 的代数式表示)
(2)按此速度建设,到2015年末中心城区人均住房面积能达到40平方米吗?
23.(本题满分11分)已知:OC 是圆M 的直径,点D 在半圆弧上运动(点D 与点O 和C 不重合),∠OCD
2014—2015学年度第一学期 大学生参加公益活动统计图
2014—2015学年度第一学期 大学生参加公益活动分布统计图
(第21题) A B
C
D E
F H
G
2014—2015学年度第一学期你参加过几次公益活动? A .没有参加过公益活动 B .参加过一次公益活动 C .参加过二次至四次公益活动 D .参加过五次或五次以上公益活动
的平分线与圆M 交与点E ,连接OE 交CD 的延长线于B ,点A 在直径OC 上,且OA=OD. (1)如图1,当点D 运动到什么位置时,点A 和点M 重合;
(2)如图2,作EF ⊥CO 于点F,猜想EF 与图中已有的哪条线段的一半相等,并加以证明;
(3)如图3,在上述条件下,过点E 作CO 的平行线交CB 于点N ,当NA ⊥OC 时,求∠EOC 的正切值。

24.(本题满分12分)如图,抛物线y =-1
2x 2+bx +c 经过点O (0,0),点A (2,0),x =m ,x =n 是垂直于x 轴的两条直线,且m <n , (1)求b ,c 的值;
(2)若经过点B (0,2)的直线y =kx +d 与抛物线y =-1
2x 2+bx +c 只有一个交点,求该直线的函数表达
式;
(3)是否存在m ,n 的值,当m ≤x ≤n 时,使3m ≤-1
2x 2+x ≤3n ?若存在,求出m ,n 的值;若不存
在,请说明理由.
(第24题)此图供参考。

相关文档
最新文档