飞机基本飞行性能的计算60页PPT
合集下载
飞机飞行性能计算
航空宇航学院
• 计算公式
pH
=
G 0.7 Ma 2 SC L
其中: pH ——计算升限高度上的大气压力 G ——升限计算所用给定重力 CL ——升限飞行升力系数
• 计算方法
航空宇航学院
1.确定升限计算重量;
2.采用逐次逼近的方法,首先假定一个升限,
3.利用图4查得 ∆CD,Re ,再利用图2、3、5查得对应速 度的 CD,0 、A、∆CD,c 值, 4.计算 CF。把这些参数代入公式求得 CL 值,如果≤0.3,
vy
=
(F
− D)v
G
⎜⎜⎝⎛1 +
v g
⋅
dv dH
⎟⎟⎠⎞
其余式与等速爬升相 同。也可以采用给定初值 的数值积分进行计算。
航空宇航学院
航程计算
技术航程——飞机沿预定航线,耗尽其可用燃油所 经过的水平距离(包括爬升、下滑段的水平距离)。 (投掉耗尽燃油的空副油箱。)
实用航程——飞机沿预定航线并留有规定的着陆余 油所能达到的水平距离。(投掉耗尽燃油的空副 油箱。)
ω = g nz2 −1 × 57.3 [(º)/s]
v
盘旋过载:
nz = L CL, pf
航空宇航学院
式中: CL ——盘旋状态飞机升力系数
( ) CL =
CF − CD,0 + ∆CD,Re + ∆CD,c
A
CL, pf ——平飞升力系数
CL, pf = G qS
• 计算方法
航空宇航学院
1.给定计算高度、计算Ma数和计算重量 。
2.着陆滑跑距离计算
航空宇航学院
lzh
=
1 2g
⎡ ⎢
飞机性能分析的原始数据飞机的平飞性能
m为飞机的 d 2质x d量t2为飞机重心在x轴方向——航迹 的切线方向的加速度, d 2为y 飞dt2机重心在y轴方向—— 航迹法线方向的加速度。由于是等速运动切向加速
度 d 2 x ;dt2由于是直线运动,法向加速度 d 2 y dt2 。0飞
机等速直线运动的方程式为
•
•
Fx 0
Fy
0
• 上式,实际上是一组静力平衡方程式,飞机的等速直线
的增加,由于空气密度减小而引起发动机流量减小,
发动机推力相应减小。
•
当涡轮喷气发动机安装在飞机上,因安装部位不
同,进气道形式及尾喷管不同,从而引起不同程度的推
力损失。这样,真正作用于飞机发动机的推力就将低于
发动机特性曲线给出的数值(用P来表示)。很明显,P可用与
P的关系应是 P可用 P,称为效率系数。通常飞行性能 分析与计算时,应根据具体情况确定出 随飞行状态的
飞机性能分析的原始数据 飞机的平飞性能
介绍飞机性能分析的 主要原始数据 飞机的平飞性能
飞机的平飞性能参数介绍
飞机的平飞性能 2/60
第三章 飞机的飞行性能
• 前面讨论了飞机在飞行中空气动力的产生和 变化规律,即空气动力学问题,从这一章开始, 我们要研究飞行重心的移动和绕重心的转动两类 问题。飞机的移动,是把飞机的质量集中到重心, 即把飞机当作质点,讨论在外力(空气动力、发动 机推力或拉力和重力)作用下重心的运动特性,也 就是研究力的平衡问题。通常用来解决飞机飞多 快、多远、多高、多久以及飞机的机动性能、起 落性能等问题。这就是本章所要讨论的飞机的飞 行性能。
式可写为
G
•
P平需 K
• 由此可见,平飞所需推力与飞机重量成正比,而与
飞机的升阻比成反比。即是说,飞机重量越重,平飞所
度 d 2 x ;dt2由于是直线运动,法向加速度 d 2 y dt2 。0飞
机等速直线运动的方程式为
•
•
Fx 0
Fy
0
• 上式,实际上是一组静力平衡方程式,飞机的等速直线
的增加,由于空气密度减小而引起发动机流量减小,
发动机推力相应减小。
•
当涡轮喷气发动机安装在飞机上,因安装部位不
同,进气道形式及尾喷管不同,从而引起不同程度的推
力损失。这样,真正作用于飞机发动机的推力就将低于
发动机特性曲线给出的数值(用P来表示)。很明显,P可用与
P的关系应是 P可用 P,称为效率系数。通常飞行性能 分析与计算时,应根据具体情况确定出 随飞行状态的
飞机性能分析的原始数据 飞机的平飞性能
介绍飞机性能分析的 主要原始数据 飞机的平飞性能
飞机的平飞性能参数介绍
飞机的平飞性能 2/60
第三章 飞机的飞行性能
• 前面讨论了飞机在飞行中空气动力的产生和 变化规律,即空气动力学问题,从这一章开始, 我们要研究飞行重心的移动和绕重心的转动两类 问题。飞机的移动,是把飞机的质量集中到重心, 即把飞机当作质点,讨论在外力(空气动力、发动 机推力或拉力和重力)作用下重心的运动特性,也 就是研究力的平衡问题。通常用来解决飞机飞多 快、多远、多高、多久以及飞机的机动性能、起 落性能等问题。这就是本章所要讨论的飞机的飞 行性能。
式可写为
G
•
P平需 K
• 由此可见,平飞所需推力与飞机重量成正比,而与
飞机的升阻比成反比。即是说,飞机重量越重,平飞所
飞机基本飞行性能课件.讲义共57页文档
▪
29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇
▪
30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
57
▪
26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭
▪
27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗不如乐之者。——孔子
飞机基本飞行性能课件.讲义
1、纪律是管理关系的形式。——阿法 纳西耶 夫 2、改革如果不讲纪律,就难以成功。
3、道德行为训练,不是通过语言影响 ,而是 让儿童 练习良 好道德 行为, 克服懒 惰、轻 率、不 守纪律 、颓废 等不良 行为。 4、学校没有纪律便如磨房里没有水。 ——夸 美纽斯
5、教导儿童服从真理、服从集体,养 成儿童 自觉的 纪律性 ,这是 儿童道 德教育 最重要 的部分 。—— 陈鹤琴
第二讲 飞机的基本飞行性能
北航 509
计算基本条件
1)基本气动外形 2)给定发动机工作状态(加力、最大、额定等)
第 二 章 引 言 北航 509
3)平均飞行重量或其它给定重量
求解方法
1)近似解析法 2)数值计算法
正常装载、半油的飞机重量 通过图解比较可用推力/功率(已知) 和需用推力/功率(由平飞条件Y=G 求出)得到飞机基本性能特点。
Q0 Qi K max Ppxmin 有利状态
小展弦比 2 1 2 Q M ,Qi 2 , A , C 基本不变, 0 大后掠角 x0 - M 薄翼型 1 M Myl,Q0 Qi,Qpf 最小, K Kmax 细长机身 飞 机 跨音速面 ) 定 M lj M 1.2 ~ 1.3(跨音速范围 积律等 常 M Ppx C x 0 ,A , 平 飞 此时,波阻为主(音障),应采用低波阻构形。 需 用 M 1.2 ~ 1.3(超音速范围 ) 推 力 C x 0 1 / M 2 1,Q0 M,Qi可逐渐忽略 曲 Ppx增加较跨音速区缓慢。 线 为了兼跨不同M数下的要求,采用变后掠、切尖三角翼加 北航 边条等先进气动技术。
北航 509
平飞需用推力的计算
1 2 P Q C V S px pf x Qpf Cx 1 G 2 Ppx Qpf Y Cy K K 1 2 G Y C y V S 2
K max Ppx min Vyl , yl , C yyl
V
θ
Vy dH dt
Vy
V sin V
V y max
(VP ) max G
P G
一般H , V y max
2 - 3 飞 机 定 常 上 升 和 下 滑 性 能 的 确 定
飞机上升、下降和巡航性能PPT精选文档
● 高速下降
● 燃油最省下降
02.06.20202005-3-7
11
3.2.2 等表速下降性能分析
高度降低,下降率减小。
3.2.3 巡航下降
02.06.20202005-3-7
12
下降性能图表
02.06.20202005-3-7
13
3.2.4 应急下降
不同高度上乘客保持有效意识时间
02.06.20202005-3-7
02.06.20202005-3-7
47
4 成本指数对经济M数的影响
成本指数(CI) :C时与C油之比,即小时成本与燃油成本之比。
CI大,说明小时费高或油价低, M经济大 CI小,说明小时费低或油价高, M经济小 CI为零,则M经济=M远航
02.06.20202005-3-7
48
利用CI~CR曲线确定M经济
32
单发飘降
巡航中一台发动机失效后,飞机下降到较低的高度,用较小的 速度巡航的过程。
有利飘降速度指以最大连续推力使下降角最小的速度。该速度略 小于VMD。
02.06.20202005-3-7
33
1)保持飘降速度飞行, 随燃油消耗,飞机重 量减轻,飞机高度不 断增加。
2)根据改平高度查出 作LRC巡航的速度, 作等高LRC巡航。
14
应急下降时,应断开自动油门并收到慢车,放出扰流板,
推杆使飞机以预定俯角转入下降,但不得出现负过载;为尽快 使飞机下降,可配合采用转弯的方法;在应急下降中,应放下 起落架。
02.06.20202005-3-7
15
3.3 巡航性能
3.3.1 典型巡航剖面
加 起速 飞到 上出 升航 至速 滑 35 度 出 ft
四 飞行性能PPT课件
B
小理论速度。为保证安全,一般不
允许在α临界状态下飞行。而采用允
许升力系数Cy:
Cy=(0.82—0.85)Cy临界,与对
应的平飞速度,就是实际使用的最
小平飞速度。
Vmin
Vmin
.
P可用 A
Vmax
Vmax VI
21
III.最小阻力速度
平飞所需拉力最小的速度, P
vMD平飞最小阻力速 度在平飞所需拉力曲线的最
C
8°
2°
增大,剩余拉力先增
6°
大后减小。
40 Vmin VMP VMD
Vmax
VI
80 120 160 200 240 260
.
17
④ 平飞功率曲线和剩余功率
油门增加,可用功 N 率曲线上移;速度增 加,可用拉力减小。
120
同一油门下,以最 小阻力速度飞行时, 对应的剩余功率最 大。
A N可用
100
① v平飞计算公式和影响因素
G
Y
CY
1 2
V
2
S
2G
V平飞 CY S
.
6
●v平飞的主要影响因素
V平飞
2G
CYS
➢ 飞机重量越大,v平飞越大 ➢ 升力系数越大, v平飞越小
.
7
平飞所需速度与飞机重量、升力系 效、机翼面积和空气密度有关:
1、飞机重量; 2、升力系数; 3、空气密度; 4、机翼面积。
160
B △PMAX
120 16°
D
80
C
8°
6°
A
0° 2°
40
. Vmin VMP VMD
Vmax
飞机的起飞和着陆性能PPT课件
飞机起飞滑跑过程中加速到某一速度VI时,有一发动机 出现故障停车,飞机带鼓掌 继续起飞到达25米安全高度 所需的整个水平距离恰等于飞机从VI采用紧急刹车中断 起飞所需的水平距离。 该距离和飞机从静止加速到VI的 水平距离之和————平衡跑道长度Lph。
平衡跑道长度越小,飞机带故障起飞性能越好!!!! VI—对应平衡跑道长度Lph的决策速度!!
当发动机故障出现在飞机速度小于决策速度时,驾驶员必须使 用紧急刹车,中断起飞!
否则,一般使用弹射救生!!!(是否使用弹射救生,还需要 当时速度是否大于最小张伞速度Vzs ),最小张伞速度大概为 130-140公里/小时。
1、决策速度大于张伞速度(下图(a)) 讨论速度范围及对应的操作
2、决策速度小于张伞速度(下图(b))——不允许!!
G dV PQF g dt N GY G——飞机的重量 F=F1+F2 为地面对机轮的摩擦力 N=N1+N2为地面对机轮的支反力 FfNf(GY)
f——摩擦系数。
G g ddVtP12V2SCxf(G12V2SCy)
1 g
d VPf dt G
12VG2S(Cxf
Cy)
阻力和升力系数都对应于停机迎角 tj
矢量推力降低离地速度!
二、飞机的构造
重量和机翼面积的比G/S——翼载,降低翼载可降低离地速 度,改善起飞降落距离!。
增加机翼面积,可降低翼载,但回增加重量和阻力Q。(空中 性能和飞行品质要求确定)
三、气动特性
提高起飞升力系数(襟翼,附面层控制等)(还可降低地面 摩擦阻力) 增升装置一般会增加阻力,所以对起偏度有要求(达到大的 升阻比)
2、离地速度 离地瞬间:升力等于重力
2G
V ld S C yld
平衡跑道长度越小,飞机带故障起飞性能越好!!!! VI—对应平衡跑道长度Lph的决策速度!!
当发动机故障出现在飞机速度小于决策速度时,驾驶员必须使 用紧急刹车,中断起飞!
否则,一般使用弹射救生!!!(是否使用弹射救生,还需要 当时速度是否大于最小张伞速度Vzs ),最小张伞速度大概为 130-140公里/小时。
1、决策速度大于张伞速度(下图(a)) 讨论速度范围及对应的操作
2、决策速度小于张伞速度(下图(b))——不允许!!
G dV PQF g dt N GY G——飞机的重量 F=F1+F2 为地面对机轮的摩擦力 N=N1+N2为地面对机轮的支反力 FfNf(GY)
f——摩擦系数。
G g ddVtP12V2SCxf(G12V2SCy)
1 g
d VPf dt G
12VG2S(Cxf
Cy)
阻力和升力系数都对应于停机迎角 tj
矢量推力降低离地速度!
二、飞机的构造
重量和机翼面积的比G/S——翼载,降低翼载可降低离地速 度,改善起飞降落距离!。
增加机翼面积,可降低翼载,但回增加重量和阻力Q。(空中 性能和飞行品质要求确定)
三、气动特性
提高起飞升力系数(襟翼,附面层控制等)(还可降低地面 摩擦阻力) 增升装置一般会增加阻力,所以对起偏度有要求(达到大的 升阻比)
2、离地速度 离地瞬间:升力等于重力
2G
V ld S C yld
飞机基本飞行性能的计算
求极值可得 最小状态下的零升阻力系数:
该状态下的零升阻力系数是升致阻力系数的3倍对应的 远航升力系数为
总阻力系数:
升阻比为: 远航速度:
随着高度增加,有利和远航速度都要增加 在发动机耗油不变的情况下,在给定高度上,以有利速度飞行,续航时间最长 以远航速度飞行,航程最大
当飞行M数超过临界Mlj进入跨音速范围(临界Mlj<M<1.2-1.3)以后,由于波阻的出现 导致激增(大致与M2-M4成正比),在某一M数(大约在M=1.05-1.2)达到最大,导致平飞需用推力急剧增加(大致与M4-M6成正比)( II区)
当超音速飞行时(M>1.2-1.3),迎面阻力主要来自零升阻力 . 先大致与 成正比.而后逐渐变 为与 成正比的下降,致使在较高M数下平飞需用推力大致与M数成比例地增加.(III区)
(到达升限的时间为无穷大)——理论升限
高机动性飞机规定与 米/秒相对应、低亚音速飞机规定 米/秒相对应的实际高称为实用升限 ( 全加力、部分加力、最大状态不一样)
(4)定常上升到某一高度的最短上升时间
飞机从海平面定常上升到某一高度的最短上升时间为:
第四章飞机基本飞行性能的计算
4.1 引言
铅垂平面内的定常直线飞行——速度、航迹角不变 准定常 定常直线爬升 定常直线平飞 定常直线下滑 涡轮喷气发动机基本飞行性能最常用的简单推力法 能量高度法(考虑动能变化)
4.2 飞机的平飞需用推力
如果 、 和 较小而且 不大的情况下,有
(1) ,则有 ,定常直线平飞; (2) ,则有 , 下滑状态或减速度飞行; (3) ,则有 ,飞机爬升,或加速飞行 能量上升率代表飞机改变其能量状态的能力,代表了飞机的能量机动性
该状态下的零升阻力系数是升致阻力系数的3倍对应的 远航升力系数为
总阻力系数:
升阻比为: 远航速度:
随着高度增加,有利和远航速度都要增加 在发动机耗油不变的情况下,在给定高度上,以有利速度飞行,续航时间最长 以远航速度飞行,航程最大
当飞行M数超过临界Mlj进入跨音速范围(临界Mlj<M<1.2-1.3)以后,由于波阻的出现 导致激增(大致与M2-M4成正比),在某一M数(大约在M=1.05-1.2)达到最大,导致平飞需用推力急剧增加(大致与M4-M6成正比)( II区)
当超音速飞行时(M>1.2-1.3),迎面阻力主要来自零升阻力 . 先大致与 成正比.而后逐渐变 为与 成正比的下降,致使在较高M数下平飞需用推力大致与M数成比例地增加.(III区)
(到达升限的时间为无穷大)——理论升限
高机动性飞机规定与 米/秒相对应、低亚音速飞机规定 米/秒相对应的实际高称为实用升限 ( 全加力、部分加力、最大状态不一样)
(4)定常上升到某一高度的最短上升时间
飞机从海平面定常上升到某一高度的最短上升时间为:
第四章飞机基本飞行性能的计算
4.1 引言
铅垂平面内的定常直线飞行——速度、航迹角不变 准定常 定常直线爬升 定常直线平飞 定常直线下滑 涡轮喷气发动机基本飞行性能最常用的简单推力法 能量高度法(考虑动能变化)
4.2 飞机的平飞需用推力
如果 、 和 较小而且 不大的情况下,有
(1) ,则有 ,定常直线平飞; (2) ,则有 , 下滑状态或减速度飞行; (3) ,则有 ,飞机爬升,或加速飞行 能量上升率代表飞机改变其能量状态的能力,代表了飞机的能量机动性
飞行动力学-飞机飞行性能计算
临界迎角 失速迎角
10
20
30
40
add ayx asx
alj
常见飞机的Cymax Mig-21/J-7 1.16
(Cydd=0.65) Mig-29 1.35
a
Su-27
1.85
50 F-16
1.4
展弦比对升力系数的影响
阻力的产生
• 阻力按照产生的原因分类
– 摩擦阻力 – 压差阻力 – 诱导阻力 – 干扰阻力 – 零升波阻 – 升致波阻
10
5
0
40
50
60
70
80
90 100
n/%
推力—速度
某飞机在11km高空的全加力推力随M数变化曲线
P / kN
12
10
8
6
4
2
0
0.0
0.5
1.0
1.5
2.0
2.5
M
推力—高度
18
16
不同高度下,大气温度、
14
密度不同,因而推力不同。
H / km
12
H>11km时,温度不变,推
10
力与密度有如下关系:
8
Pr
6
P11 r11
4
2
0
0
2
4
6
8
10 12
P / kN
可用推力Pky
• 发动机安装在飞机上会带来推力损失
Pky=hP
• 通常最大状态或加力状态的推力对性能计算比较重要, 所以可用推力一般是指发动机(一台或多台)安装在 飞机上之后,其最大推力或全加力推力
• 不同高度下,可用推力随M数变化的曲线称为可用推 力曲线
飞机基本飞行性能课件
H X 曲线右移 P ky 曲线下移
P
H增加
Vmin.p
H , Vmin. yx
M
H , 则Vmin , M min H
低空受Vminyx 约束 高空受Vminp约束
升力限制
推力限制
Mmin
飞机定常平飞性能
确定Vmin的步骤
2G 1 1) 取几点 M , 由 C y a2S M 2 得 C ypx,及 C y max M,绘制在 已知 C ypx M 曲线上,而曲 线交点为 M min . px
下滑时通常减小油门, 若推力为零则称为滑 翔。 θ X
H(km) 0 5 10
(kg/m3) a
1.225 0.736 0.413 340.3 320.5 299.5
15
20
0.194
0.088
295.1
295.1
飞机定常平飞推力特性 平飞需用推力随飞行高度的变化规律
X 0 ~ V 曲线向右下移动 1) H M yl X i ~ V 曲线向右上移动
-1
200
250
Vymax / ms
飞机的定直上升性能
4. 最短上升时间
如果飞机上升过程中,在不同高度下均以Vyks飞行,则达到 预定高度的时间最短
dH 从 H1 H 2 ,dt Vy max
可得
1/Vymax
tmin
H2
H1
dH Vy max
H H1 H2 Hmax.ll
可由数值积分/图解积分求得。
X
1 X 0 Cx 0 M S ( a 2 ) 2 A 2m2 g 2 1 Xi 2 ( )( 2 ) M S a
P
H增加
Vmin.p
H , Vmin. yx
M
H , 则Vmin , M min H
低空受Vminyx 约束 高空受Vminp约束
升力限制
推力限制
Mmin
飞机定常平飞性能
确定Vmin的步骤
2G 1 1) 取几点 M , 由 C y a2S M 2 得 C ypx,及 C y max M,绘制在 已知 C ypx M 曲线上,而曲 线交点为 M min . px
下滑时通常减小油门, 若推力为零则称为滑 翔。 θ X
H(km) 0 5 10
(kg/m3) a
1.225 0.736 0.413 340.3 320.5 299.5
15
20
0.194
0.088
295.1
295.1
飞机定常平飞推力特性 平飞需用推力随飞行高度的变化规律
X 0 ~ V 曲线向右下移动 1) H M yl X i ~ V 曲线向右上移动
-1
200
250
Vymax / ms
飞机的定直上升性能
4. 最短上升时间
如果飞机上升过程中,在不同高度下均以Vyks飞行,则达到 预定高度的时间最短
dH 从 H1 H 2 ,dt Vy max
可得
1/Vymax
tmin
H2
H1
dH Vy max
H H1 H2 Hmax.ll
可由数值积分/图解积分求得。
X
1 X 0 Cx 0 M S ( a 2 ) 2 A 2m2 g 2 1 Xi 2 ( )( 2 ) M S a
5、飞行力学第二章2.1-2.3
L=W TR=D
Ma> Mamax,不能等速平飞 Ma< Mamax,可等速平飞(收油门) Mamax
共61页 飞行器飞行力学
Ma
16
Vmax ( Mamax ) ~H 关系 T H增加 H
亚音速 跨音速 超音速 飞机 飞机 飞机
11km 取决于 曲线移 动快慢 Ma
分析
1 Ta = TR = C D ρV 2 S ⇒ Vmax = 2
共61页 飞行器飞行力学 6
求解方法
通过图解比较可用推力 (已知) 和需用推力 (由平飞条件L=W求 出)得到飞机基本性能的方法。
2.1.1 飞机定常平飞需用推力曲线
一、基本定义和计算公式 定义
Thrust Required 飞机在一定高度、一定速度作定常平飞时,所需 要的发动机推力,称为定常平飞需用推力TR。
C D 0 ∝ 1 / Ma 2 − 1,D0 ∝ Ma ,Di 所占比重很小
共61页 飞行器飞行力学
Ma
10
综合
Ma ↑ , TR 先 ↓
Ma = Ma .opt,D0 = Di,
TR
D0 Di
TR 最小,K = K max
Ma继续 ↑ , TR ↑
Ma.opt Macr
1.3
Ma
Ma > Macr 后, TR ↑↑
CD
常规迎角下,飞机在一定的高度作定直平飞时,一定的速 说明 度与一定的迎角和推力相对应,迎角随速度的增加而减小
共61页 飞行器飞行力学 8
二、平飞需用推力的组成及变化规律
TR = D = D0 + Di
2
CL =
1 = (C D0 + AC L ) ρV 2 S 2 1 AW 2 = C D0 ρV 2 S + 1 2 ρV 2 S 2
飞 行 性 能
。 中断起飞距离是飞机从速度为零开始加速滑跑到一台 发动机停车,飞行员判断并采用相应的制动程序、使飞机 完全停下来所需的距离。飞机从速度为零开始做全发加速 滑跑,当增加到某一速度时,一台发动机停车,发动机停 车时飞机的滑跑速度记为VE,从速度为零加速到速度为VE 时称为全发加速段。从发动机停车到飞行员判断出发动机 停车,根据当时情况进行综合判断并完成相应的制动程序, 需要一定的时间,这个时间称为过渡段时间,用It表示,It 可经过试飞得出。
飞行性能
二、 爬升性能
从飞机起飞结束(此时飞机的高度为1500 英尺)到达规定的巡航速度和高度的过程称为航 线爬升。民用大型飞机的爬升是指在中低空保持 表速不变爬升,而在高空保持等M数不变爬升。 爬升过程中,若保持表速不变,由于空气密度减 小,真速将不断增大,即为了保持表速不变,必 须用一部分剩余推力增速,所以飞机的爬升梯度 和爬升率都要减小。
C:在10 000英尺高度平飞加速到上升速度。 D:按给定的表速和指示马赫数上升到上升顶点。 E:在初始巡航高度加速到巡航速度。 F:巡航。
飞行性能
三、 下降性能
与爬升性能类似,下降性能主要 由下降时间、下降的水平距离和下降 时所消耗的燃油量来表示。大型民航 运输机常用的下降方式有低速下降、 高速下降和最省燃油下降。
飞行性能
飞行姿态仪表
图2-19 高速下降和低速下降
飞行性能
四、 巡航性能
巡航性能是指 飞机从爬升顶点到 下降开始点之间的 平飞巡航性能。选 择好巡航高度和巡 航速度可以实现良 好的经济性。图221为某型号飞机的 典型巡航剖面图。
图2-21 某型号飞机的典型巡航剖面图
飞行性能
五、 着陆性能
飞机经历下降阶段后,开始进近与着陆。 着陆阶段虽然历时短,却是飞行中最危险、 最关键,也是最重要的阶段。现代大型民航 客机多是按仪表飞行规则飞行。各航空公司 对进近和着陆都制定了严格、全面的标准操 作程序和规章制度。
飞行性能
二、 爬升性能
从飞机起飞结束(此时飞机的高度为1500 英尺)到达规定的巡航速度和高度的过程称为航 线爬升。民用大型飞机的爬升是指在中低空保持 表速不变爬升,而在高空保持等M数不变爬升。 爬升过程中,若保持表速不变,由于空气密度减 小,真速将不断增大,即为了保持表速不变,必 须用一部分剩余推力增速,所以飞机的爬升梯度 和爬升率都要减小。
C:在10 000英尺高度平飞加速到上升速度。 D:按给定的表速和指示马赫数上升到上升顶点。 E:在初始巡航高度加速到巡航速度。 F:巡航。
飞行性能
三、 下降性能
与爬升性能类似,下降性能主要 由下降时间、下降的水平距离和下降 时所消耗的燃油量来表示。大型民航 运输机常用的下降方式有低速下降、 高速下降和最省燃油下降。
飞行性能
飞行姿态仪表
图2-19 高速下降和低速下降
飞行性能
四、 巡航性能
巡航性能是指 飞机从爬升顶点到 下降开始点之间的 平飞巡航性能。选 择好巡航高度和巡 航速度可以实现良 好的经济性。图221为某型号飞机的 典型巡航剖面图。
图2-21 某型号飞机的典型巡航剖面图
飞行性能
五、 着陆性能
飞机经历下降阶段后,开始进近与着陆。 着陆阶段虽然历时短,却是飞行中最危险、 最关键,也是最重要的阶段。现代大型民航 客机多是按仪表飞行规则飞行。各航空公司 对进近和着陆都制定了严格、全面的标准操 作程序和规章制度。
民航概论课件第二章民用航空器之飞行性能
Payload
Payload
Allowed payload Range
Range
平衡
平衡
Forward limit
CG
Aft limit
manoeuvrability
stability mg
平 衡
Weight (kg) 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000 15000 16000 17000 18000 FULL
第二章 民用航空器
第七节 飞行性能
起 飞 速 度
着陆
VREF 50 ft
VREF 1,23 VSR VMCL
Means of braking :
wheel brakes Spoilers Reverses
braking
V=0
LD
飞行剖面与油量
En route reserபைடு நூலகம்e
Taxi fuel
Payload
Range
最大业载的计算
• Payload ≤ (MTOW - dow - AF - HF) - (TF + RR) • Payload ≤ (MLW - dow - AF - HF) - RR • Payload ≤ (MZFW - dow)
Payload
Range
最大业载的计算
– Cabin capacity – Cargo capacity – Tanks capacity
最大业载的计算
• tow = dow + payload + fuel ≤ MTOW • lw = dow + payload + fuel - trip fuel ≤ MLW • zfw = dow + payload ≤ MZFW • trip fuel + reserves + taxi fuel ≤ Tanks capacity